Beyaert, I. & Hilker, M. Plant odour plumes as mediators of plant–insect interactions. Biol. Rev. 89, 68–81 (2014).
Google Scholar
Simpraga, M., Takabayashi, J. & Holopainen, J. K. Language of plants: Where is the word?. J. Integr. Plant Biol. 58, 343–349 (2016).CAS
Google Scholar
Bruce, T. J. A., Wadhams, L. J. & Woodcock, C. M. Insect host location: A volatile situation. Trends Plant Sci. 10, 269–274 (2005).CAS
Google Scholar
Bruce, T. J. A. & Pickett, J. A. Perception of plant volatile blends by herbivorous insects—Finding the right mix. Phytochemistry 72, 1605–1611 (2011).CAS
Google Scholar
Raguso, R. A. Wake up and smell the roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. S. 39, 549–569 (2008).
Google Scholar
Schiestl, F. P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13, 643–656 (2010).
Google Scholar
Arimura, G., Kost, C. & Boland, W. Herbivore-induced, indirect plant defences. Biochim. Biophys. Acta. 1734, 91–111 (2005).CAS
Google Scholar
Hare, J. D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56, 161–180 (2011).CAS
Google Scholar
Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the earth system. New Phytol. 183, 27–51 (2009).CAS
Google Scholar
Dicke, M., van Loon, J. J. A. & Soler, R. Chemical complexity of volatiles from plant induced by multiple attack. Nature Chem. Biol. 5, 317–324 (2009).CAS
Google Scholar
Loreto, F. & Schnitzler, J. P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15, 154–166 (2010).CAS
Google Scholar
Tasin, M. et al. Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68, 203–209 (2007).CAS
Google Scholar
Riffell, J. A., Lei, H., Christensen, T. A. & Hildebrand, J. G. Characterization and coding of behaviorally significant odor mixtures. Curr. Biol. 19, 335–340 (2009).CAS
Google Scholar
Riffell, J. A., Lei, H. & Hildebrand, J. G. Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proc. Natl. Acad. Sci. USA 106, 19219–19226 (2009).ADS
CAS
Google Scholar
Atema, J. Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors. Biol. Bull. 191, 129–138 (1996).CAS
Google Scholar
Conchou, L. et al. Insect odorscapes: From plant volatiles to natural olfactory scenes. Front. Physiol. 10, 972 (2019).
Google Scholar
Riffell, J. A., Abrell, L. & Hildebrand, J. G. Physical processes and real-time chemical measurement of the insect olfactory environment. J. Chem. Ecol. 34, 837–853 (2008).CAS
Google Scholar
Mylne, K. R., Davidson, M. J. & Thomson, D. J. Concentration fluctuation measurements in tracer plumes using high and low frequency response detectors. Bound-Lay. Meteorol. 79, 225–242 (1996).ADS
Google Scholar
Finelli, C. M., Pentcheff, N. D., Zimmer-Faust, R. K. & Wethey, D. S. Odor transport in turbulent flows: Constraints on animal navigation. Limnol. Oceanogr. 44, 1056–1071 (1999).ADS
CAS
Google Scholar
Murlis, J., Elkinton, J. S. & Cardé, R. T. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992).
Google Scholar
Murlis, J., Willis, M. A. & Cardé, R. T. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211–222 (2000).CAS
Google Scholar
Kennedy, J. S. The visual response of flying mosquitoes. Proc. Zool. Soc. London Ser. A 109, 221–242 (1940).
Google Scholar
Bursell, E. Observations on the orientation of tsetse flies (Glossina pallidipes) to wind-borne odours. Physio. Entomol. 9, 133–137 (1984).
Google Scholar
Murlis, J., Elkinton, J. S. & Cardé, R. T. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992).
Google Scholar
Kennedy, J. S., Ludlow, A. R. & Sanders, C. J. Guidance of flying male moths by wind-borne sex-pheromone. Physiol. Entomol. 6, 395–412 (1981).
Google Scholar
Koehl, M. A. R. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31, 93–105 (2006).CAS
Google Scholar
Baker, T. C., Willis, M. A., Haynes, K. F. & Phelan, P. L. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10, 257–265 (1985).
Google Scholar
Willis, M. A. & Baker, T. C. Effects of intermittent and continuous pheromone stimulation on the flight behavior of the oriental fruit moth, Grapholita molesta. Physiol. Entomol. 9, 341–358 (1984).
Google Scholar
Mafraneto, A. & Cardé, R. T. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144 (1994).ADS
CAS
Google Scholar
Mafraneto, A. & Cardé, R. T. Dissection of the pheromone-modulated flight of moths using single-pulse response as a template. Experientia 52, 373–379 (1996).CAS
Google Scholar
Vickers, N. J. & Baker, T. C. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci. USA 91, 5756–5760 (1994).ADS
CAS
Google Scholar
Lei, H., Riffell, J. A., Gage, S. L. & Hildebrand, J. G. Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. J. Biol. 8, 21 (2009).
Google Scholar
Kuenen, L. & Carde, R. T. Strategies for recontacting a lost pheromone plume: Casting and upwind flight in the male gypsy moth. Physiol. Entomol. 19, 15–29 (1994).
Google Scholar
Vickers, N. J. & Baker, T. C. Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J. Comp. Physiol. A. 178, 831–847 (1996).
Google Scholar
Vickers, N. J. Mechanisms of animal navigation in odor plumes. Biol. Bull. 198, 203–212 (2000).CAS
Google Scholar
Cardé, R. T. & Willis, M. A. Navigational strategies used by insects to find distant, wind-borne sources of odor. J. Chem. Ecol. 34, 854–866 (2008).
Google Scholar
Willis, M. A. & Baker, T. C. Effects of varying sex pheromone component ratios on the zigzagging flight movements of the oriental fruit moth, Grapholita molesta. J. Insect. Behav. 1, 357–371 (1988).
Google Scholar
Voskamp, K. E., Den Otter, C. J. & Noorman, N. Electroantennogram responses of tsetse flies (Glossina pallidipes) to host odours in an open field and riverine woodland. Physiol. Entomol. 23, 176–183 (1998).
Google Scholar
Cai, X. M., Xu, X. X., Bian, L., Luo, Z. X. & Chen, Z. M. Measurement of volatile plant compounds in field ambient air by thermal desorption–gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 407, 9105–9114 (2015).CAS
Google Scholar
Zollner, G. E., Torr, S. J., Ammann, C. & Meixner, F. X. Dispersion of carbon dioxide plumes in African woodland: implications for host-finding by tsetse flies. Physiol. Entomol. 29, 381–394 (2004).
Google Scholar
McFrederick, Q. S., Kathilankal, J. C. & Fuentes, J. D. Air pollution modifies floral scent trails. Atmos. Environ. 42, 2336–2348 (2008).ADS
CAS
Google Scholar
Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F. & NealStewart, C. Jr. Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol. Evol. 24, 323–331 (2009).
Google Scholar
Weissburg, M. J. The fluid dynamical context of chemosensory behavior. Biol. Bull. 198, 188–202 (2000).CAS
Google Scholar
Atkinson, R. & Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 37, 197–219 (2003).ADS
Google Scholar
Helmig, D., Bocquet, F., Pollmann, J. & Revermann, T. Analytical techniques for sesquiterpene emission rate studies in vegetation enclosure experiments. Atmos. Environ. 38, 557–572 (2004).ADS
CAS
Google Scholar
Riffell, J. A, Shlizerman, E., Sanders, E., Abrell, L., Medina, B., Hinterwirth, A. J. & NathanKutz, J. Flower discrimination by pollinators in a dynamic chemical environment. Science 344, 1515–1518 (2014).Shorey, H. H. Animal communication by pheromones (Academic Press, 1976).Cardé, R. T. & Charlton, R. E. Olfactory sexual communication in Lepidoptera: Strategy, sensitivity and selectivity In Insect communication (ed. Lewis, T.) 241–265 (Academic Press, 1984).Elkinton, J. S., Schal, C., Ono, T. & Carde, R. T. Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol. Entomol. 12, 399–406 (1987).
Google Scholar
Baker, T. C., Fadamiro, H. Y. & Cosse, A. A. Moth uses fine tuning for odour resolution. Nature 393, 530 (1998).ADS
CAS
Google Scholar
Szyszka, P., Stierle, J. S., Biergans, S. & Galizia, C. G. The speed of smell: Odor-object segregation within milliseconds. PLoS One 7, e36096 (2012).ADS
CAS
Google Scholar
Hildebrand, J. G. Analysis of chemical signals by nervous systems. Proc. Natl. Acad. Sci. USA 92, 67–74 (1995).ADS
CAS
Google Scholar
Cai, X. M. et al. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Sci. Rep. 7, 41818 (2017).ADS
CAS
Google Scholar
Xu, X. X. et al. Does background odor in tea gardens mask attractants? Screening and application of attractants for Empoasca onukii Matsuda. J. Econ. Entomol. 110, 2357–2363 (2017).CAS
Google Scholar
Hare, J. D. & Sun, J. J. Production of induced volatiles by Datura wrightii in response to damage by insects: Effect of herbivore species and time. J. Chem. Ecol. 37, 751–764 (2011).CAS
Google Scholar
Mumm, R., Tiemann, T., Schulz, S. & Hilker, M. Analysis of volatiles from black pine (Pinus nigra): Significance of wounding and egg deposition by a herbivorous sawfly. Phytochemistry 65, 3221–3230 (2004).CAS
Google Scholar More