More stories

  • in

    Mutualism promotes insect fitness by fungal nutrient compensation and facilitates fungus propagation by mediating insect oviposition preference

    Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, Peñaflor MFGV, et al. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. ISME J. 2021;15:3522–33.CAS 

    Google Scholar 
    Huang H, Ren L, Li H, Schmidt A, Gershenzon J, Lu Y, et al. The nesting preference of an invasive ant is associated with the cues produced by actinobacteria in soil. PLoS Pathog. 2020;16:e1008800.CAS 

    Google Scholar 
    Angleró-Rodríguez YI, Blumberg BJ, Dong Y, Sandiford SL, Pike A, Clayton AM, et al. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Sci Rep. 2016;6:34084.
    Google Scholar 
    Davis TS, Landolt PJ. A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. J Chem Ecol. 2013;39:860–8.CAS 

    Google Scholar 
    Flury P, Vesga P, Dominguez-Ferreras A, Tinguely C, Ullrich CI, Kleespies RG, et al. Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME J. 2018;13:860–72.
    Google Scholar 
    Kandasamy D, Gershenzon J, Andersson MN, Hammerbacher A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019;13:1788–800.CAS 

    Google Scholar 
    Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, Grosse-Wilde E, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8:265.
    Google Scholar 
    Paul GB, Gerhard F, Elżbieta R, Alexandra S, Arne H, Sébastien L, et al. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol. 2012;26:1365–2435.
    Google Scholar 
    Ganter PF. Yeast and invertebrate associations. In: Gábor P, Carlos R, editors. Biodiversity and ecophysiology of yeasts. Berlin, Heidelberg: Springer; 2006. pp 303–70.Anagnostou C, Legrand EA, Rohlfs M. Friendly food for fitter flies?—Influence of dietary microbial species on food choice and parasitoid resistance in Drosophila. Oikos. 2010;119:533–41.
    Google Scholar 
    Günther CS, Knight SJ, Jones R, Goddard MR. Are Drosophila preferences for yeasts stable or contextual? Ecol Evol. 2019;9:8075–86.
    Google Scholar 
    Luo Y, Johnson JC, Chakraborty TS, Piontkowski A, Gendron CM, Pletcher SD. Yeast volatiles double starvation survival in Drosophila. Sci Adv. 2021;7:eabf8896.CAS 

    Google Scholar 
    Fogleman S. Coadaptation of Drosophila and yeasts in their natural habitat. J Chem Ecol. 1986;12:1037–55.
    Google Scholar 
    Droby S, Eick A, Macarisin D, Cohen L, Rafael G, Stange R, et al. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol Tec. 2008;49:386–96.CAS 

    Google Scholar 
    Stensmyr MC, Dweck HK, Farhan A, Ibba I, Strutz A, Mukunda L, et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell. 2012;151:1345–57.CAS 

    Google Scholar 
    Melo N, Wolff GH, Costa-da-Silva AL, Arribas R, Triana MF, Gugger M, et al. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Curr Biol. 2020;30:127–34.CAS 

    Google Scholar 
    Wei DD, He W, Lang N, Miao ZQ, Xiao LF, Dou W, et al. Recent research status of Bactrocera dorsalis: Insights from resistance mechanisms and population structure. Arch Insect Biochem. 2019;102:e21601.CAS 

    Google Scholar 
    Han P, Wang X, Niu CY, Dong YC, Zhu JQ, Desneux N. Population dynamics, phenology, and overwintering of Bactrocera dorsalis (Diptera: Tephritidae) in Hubei Province, China. J Pest Sci. 2011;84:289–95.
    Google Scholar 
    Duyck PF, David P, Quilici S. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol Entomol. 2004;29:511–20.
    Google Scholar 
    Wen T, Zheng L, Dong S, Gong Z, Sang M, Long X, et al. Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis (Hendel) based on electronic nose. Postharvest Biol Tec. 2019;147:156–65.
    Google Scholar 
    Li X, Yang H, Wang T, Wang J, Wei H. Life history and adult dynamics of Bactrocera dorsalis in the citrus orchard of Nanchang, a subtropical area from China: implications for a control timeline. ScienceAsia. 2019;45:212–20.
    Google Scholar 
    Chalupowicz D, Veltman B, Droby S, Eltzov E. Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit. Sens Actuat B-Chem. 2020;311:127896.CAS 

    Google Scholar 
    Turlings TC, Lengwiler UB, Bernasconi ML, Wechsler D. Timing of induced volatile emissions in maize seedlings. Planta. 1998;207:146–52.CAS 

    Google Scholar 
    Wang B, Dong W, Li H, D’Onofrio C, Bai P, Chen R, et al. Molecular basis of (E)-β-farnesene-mediated aphid location in the predator Eupeodes corollae. Curr Biol. 2022;32:951–62.CAS 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.CAS 

    Google Scholar 
    Cellar NA, De Nison JE, Seipelt CT, Twohig M, Burgess JA. Title of subordinate document. In: Dramatic improvements in assay reproducibility for water-soluble vitamins using ACQUITY UPLC and the Ultra-Sensitive Xevo TQ-S Mass Spectrometer. 2013. https://www.waters.com/webassets/cms/library/docs/720004690en.pdf.Ren FR, Sun X, Wang TY, Yan JY, Yao YL, Li CQ, et al. Pantothenate mediates the coordination of whitefly and symbiont fitness. ISME J. 2021;15:1655–67.CAS 

    Google Scholar 
    Batta YA. Quantitative postharvest contamination and transmission of Penicillium expansum (Link) conidia to nectarine and pear fruit by Drosophila melanogaster (Meig.) adults. Postharvest Biol Tec. 2006;40:190–6.
    Google Scholar 
    Rohlfs M. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors. Front Zool. 2005;2:2.
    Google Scholar 
    Becher PG, Bengtsson M, Hansson BS, Witzgall P. Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors. J Chem Ecol. 2010;36:599–607.CAS 

    Google Scholar 
    Dionigi C, Ahten T, Wartelle L. Effects of several metals on spore, biomass, and geosmin production by Streptomyces tendae and Penicillium expansum. J Ind Microbiol Biot. 1996;17:84–88.CAS 

    Google Scholar 
    Jin S, Zhou X, Gu F, Zhong G, Yi X. Olfactory plasticity: variation in the expression of chemosensory receptors in Bactrocera dorsalis in different physiological states. Front Physiol. 2017;8:672.
    Google Scholar 
    Li H, Ren L, Xie M, Gao Y, He M, Hassan B, et al. Egg-surface bacteria are indirectly associated with oviposition aversion in Bactrocera dorsalis. Curr Biol. 2020;30:4432–40.CAS 

    Google Scholar 
    Liu Y, Cui Z, Si P, Liu Y, Zhou Q, Wang G. Characterization of a specific odorant receptor for linalool in the Chinese citrus fly Bactrocera minax (Diptera: Tephritidae). Insect Biochem Molec. 2020;122:103389.CAS 

    Google Scholar 
    Ju JF, Bing XL, Zhao DS, Guo Y, Hong XY. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2019;14:1–12.
    Google Scholar 
    Liu F, Wickham JD, Cao Q, Lu M, Sun J. An invasive beetle–fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. ISME J. 2020;14:2829–42.CAS 

    Google Scholar 
    Douglas AE. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr Opin Insect Sci. 2017;23:65–69.
    Google Scholar 
    Honda K, Ômura H, Hayashi N, Abe F, Yamauchi T. Conduritols as oviposition stimulants for the danaid butterfly, Parantica sita, identified from a host plant, Marsdenia tomentosa. J Chem Ecol. 2004;30:2285–96.CAS 

    Google Scholar 
    Soldano A, Alpizar YA, Boonen B, Franco L, Lopez-Requena A, Liu G, et al. Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. Elife. 2016;5:e13133.
    Google Scholar 
    Hussain A, Üçpunar HK, Zhang M, Loschek LF, Grunwald Kadow IC. Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLoS Biol. 2016;14:e1002455.
    Google Scholar 
    Stötefeld L, Holighaus G, Schütz S, Rohlfs M. Volatile-mediated location of mutualist host and toxic non-host microfungi by Drosophila larvae. Chemoecology. 2015;5:271–83.
    Google Scholar 
    Gou B, Liu Y, Guntur A, Stern U, Yang HC. Mechanosensitive neurons on the internal reproductive tract contribute to egg-laying-induced acetic acid attraction in Drosophila. Cell Rep. 2014;9:522–30.CAS 

    Google Scholar 
    Mezzera C, Brotas M, Gaspar M, Pavlou HJ, Goodwin SF, Vasconcelos ML. Ovipositor extrusion promotes the transition from courtship to copulation and signals female acceptance in Drosophila melanogaster. Curr Biol. 2020;30:3736–48.CAS 

    Google Scholar 
    Teimoori-Boghsani Y, Ganjeali A, Cernava T, Müller H, Asili J, Berg G. Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol. 2020;10:3013–20.
    Google Scholar 
    Holden JT, Furman C, Snell EE. D-alanine and the vitamin B6 content of microorganisms. J Biol Chem. 1949;178:789–97.CAS 

    Google Scholar 
    Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Micro. 2014;80:5844–53.
    Google Scholar 
    Ren FR, Sun X, Wang TY, Yao YL, Huang YZ, Zhang X, et al. Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits. ISME J. 2020;14:2542–53.CAS 

    Google Scholar 
    Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc Biol Sci. 2014;281:20141838.
    Google Scholar  More

  • in

    Variation in the ratio of compounds in a plant volatile blend during transmission by wind

    Beyaert, I. & Hilker, M. Plant odour plumes as mediators of plant–insect interactions. Biol. Rev. 89, 68–81 (2014).
    Google Scholar 
    Simpraga, M., Takabayashi, J. & Holopainen, J. K. Language of plants: Where is the word?. J. Integr. Plant Biol. 58, 343–349 (2016).CAS 

    Google Scholar 
    Bruce, T. J. A., Wadhams, L. J. & Woodcock, C. M. Insect host location: A volatile situation. Trends Plant Sci. 10, 269–274 (2005).CAS 

    Google Scholar 
    Bruce, T. J. A. & Pickett, J. A. Perception of plant volatile blends by herbivorous insects—Finding the right mix. Phytochemistry 72, 1605–1611 (2011).CAS 

    Google Scholar 
    Raguso, R. A. Wake up and smell the roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. S. 39, 549–569 (2008).
    Google Scholar 
    Schiestl, F. P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13, 643–656 (2010).
    Google Scholar 
    Arimura, G., Kost, C. & Boland, W. Herbivore-induced, indirect plant defences. Biochim. Biophys. Acta. 1734, 91–111 (2005).CAS 

    Google Scholar 
    Hare, J. D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56, 161–180 (2011).CAS 

    Google Scholar 
    Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the earth system. New Phytol. 183, 27–51 (2009).CAS 

    Google Scholar 
    Dicke, M., van Loon, J. J. A. & Soler, R. Chemical complexity of volatiles from plant induced by multiple attack. Nature Chem. Biol. 5, 317–324 (2009).CAS 

    Google Scholar 
    Loreto, F. & Schnitzler, J. P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15, 154–166 (2010).CAS 

    Google Scholar 
    Tasin, M. et al. Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68, 203–209 (2007).CAS 

    Google Scholar 
    Riffell, J. A., Lei, H., Christensen, T. A. & Hildebrand, J. G. Characterization and coding of behaviorally significant odor mixtures. Curr. Biol. 19, 335–340 (2009).CAS 

    Google Scholar 
    Riffell, J. A., Lei, H. & Hildebrand, J. G. Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proc. Natl. Acad. Sci. USA 106, 19219–19226 (2009).ADS 
    CAS 

    Google Scholar 
    Atema, J. Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors. Biol. Bull. 191, 129–138 (1996).CAS 

    Google Scholar 
    Conchou, L. et al. Insect odorscapes: From plant volatiles to natural olfactory scenes. Front. Physiol. 10, 972 (2019).
    Google Scholar 
    Riffell, J. A., Abrell, L. & Hildebrand, J. G. Physical processes and real-time chemical measurement of the insect olfactory environment. J. Chem. Ecol. 34, 837–853 (2008).CAS 

    Google Scholar 
    Mylne, K. R., Davidson, M. J. & Thomson, D. J. Concentration fluctuation measurements in tracer plumes using high and low frequency response detectors. Bound-Lay. Meteorol. 79, 225–242 (1996).ADS 

    Google Scholar 
    Finelli, C. M., Pentcheff, N. D., Zimmer-Faust, R. K. & Wethey, D. S. Odor transport in turbulent flows: Constraints on animal navigation. Limnol. Oceanogr. 44, 1056–1071 (1999).ADS 
    CAS 

    Google Scholar 
    Murlis, J., Elkinton, J. S. & Cardé, R. T. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992).
    Google Scholar 
    Murlis, J., Willis, M. A. & Cardé, R. T. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211–222 (2000).CAS 

    Google Scholar 
    Kennedy, J. S. The visual response of flying mosquitoes. Proc. Zool. Soc. London Ser. A 109, 221–242 (1940).
    Google Scholar 
    Bursell, E. Observations on the orientation of tsetse flies (Glossina pallidipes) to wind-borne odours. Physio. Entomol. 9, 133–137 (1984).
    Google Scholar 
    Murlis, J., Elkinton, J. S. & Cardé, R. T. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992).
    Google Scholar 
    Kennedy, J. S., Ludlow, A. R. & Sanders, C. J. Guidance of flying male moths by wind-borne sex-pheromone. Physiol. Entomol. 6, 395–412 (1981).
    Google Scholar 
    Koehl, M. A. R. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31, 93–105 (2006).CAS 

    Google Scholar 
    Baker, T. C., Willis, M. A., Haynes, K. F. & Phelan, P. L. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10, 257–265 (1985).
    Google Scholar 
    Willis, M. A. & Baker, T. C. Effects of intermittent and continuous pheromone stimulation on the flight behavior of the oriental fruit moth, Grapholita molesta. Physiol. Entomol. 9, 341–358 (1984).
    Google Scholar 
    Mafraneto, A. & Cardé, R. T. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144 (1994).ADS 
    CAS 

    Google Scholar 
    Mafraneto, A. & Cardé, R. T. Dissection of the pheromone-modulated flight of moths using single-pulse response as a template. Experientia 52, 373–379 (1996).CAS 

    Google Scholar 
    Vickers, N. J. & Baker, T. C. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci. USA 91, 5756–5760 (1994).ADS 
    CAS 

    Google Scholar 
    Lei, H., Riffell, J. A., Gage, S. L. & Hildebrand, J. G. Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. J. Biol. 8, 21 (2009).
    Google Scholar 
    Kuenen, L. & Carde, R. T. Strategies for recontacting a lost pheromone plume: Casting and upwind flight in the male gypsy moth. Physiol. Entomol. 19, 15–29 (1994).
    Google Scholar 
    Vickers, N. J. & Baker, T. C. Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J. Comp. Physiol. A. 178, 831–847 (1996).
    Google Scholar 
    Vickers, N. J. Mechanisms of animal navigation in odor plumes. Biol. Bull. 198, 203–212 (2000).CAS 

    Google Scholar 
    Cardé, R. T. & Willis, M. A. Navigational strategies used by insects to find distant, wind-borne sources of odor. J. Chem. Ecol. 34, 854–866 (2008).
    Google Scholar 
    Willis, M. A. & Baker, T. C. Effects of varying sex pheromone component ratios on the zigzagging flight movements of the oriental fruit moth, Grapholita molesta. J. Insect. Behav. 1, 357–371 (1988).
    Google Scholar 
    Voskamp, K. E., Den Otter, C. J. & Noorman, N. Electroantennogram responses of tsetse flies (Glossina pallidipes) to host odours in an open field and riverine woodland. Physiol. Entomol. 23, 176–183 (1998).
    Google Scholar 
    Cai, X. M., Xu, X. X., Bian, L., Luo, Z. X. & Chen, Z. M. Measurement of volatile plant compounds in field ambient air by thermal desorption–gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 407, 9105–9114 (2015).CAS 

    Google Scholar 
    Zollner, G. E., Torr, S. J., Ammann, C. & Meixner, F. X. Dispersion of carbon dioxide plumes in African woodland: implications for host-finding by tsetse flies. Physiol. Entomol. 29, 381–394 (2004).
    Google Scholar 
    McFrederick, Q. S., Kathilankal, J. C. & Fuentes, J. D. Air pollution modifies floral scent trails. Atmos. Environ. 42, 2336–2348 (2008).ADS 
    CAS 

    Google Scholar 
    Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F. & NealStewart, C. Jr. Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol. Evol. 24, 323–331 (2009).
    Google Scholar 
    Weissburg, M. J. The fluid dynamical context of chemosensory behavior. Biol. Bull. 198, 188–202 (2000).CAS 

    Google Scholar 
    Atkinson, R. & Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 37, 197–219 (2003).ADS 

    Google Scholar 
    Helmig, D., Bocquet, F., Pollmann, J. & Revermann, T. Analytical techniques for sesquiterpene emission rate studies in vegetation enclosure experiments. Atmos. Environ. 38, 557–572 (2004).ADS 
    CAS 

    Google Scholar 
    Riffell, J. A, Shlizerman, E., Sanders, E., Abrell, L., Medina, B., Hinterwirth, A. J. & NathanKutz, J. Flower discrimination by pollinators in a dynamic chemical environment. Science 344, 1515–1518 (2014).Shorey, H. H. Animal communication by pheromones (Academic Press, 1976).Cardé, R. T. & Charlton, R. E. Olfactory sexual communication in Lepidoptera: Strategy, sensitivity and selectivity In Insect communication (ed. Lewis, T.) 241–265 (Academic Press, 1984).Elkinton, J. S., Schal, C., Ono, T. & Carde, R. T. Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol. Entomol. 12, 399–406 (1987).
    Google Scholar 
    Baker, T. C., Fadamiro, H. Y. & Cosse, A. A. Moth uses fine tuning for odour resolution. Nature 393, 530 (1998).ADS 
    CAS 

    Google Scholar 
    Szyszka, P., Stierle, J. S., Biergans, S. & Galizia, C. G. The speed of smell: Odor-object segregation within milliseconds. PLoS One 7, e36096 (2012).ADS 
    CAS 

    Google Scholar 
    Hildebrand, J. G. Analysis of chemical signals by nervous systems. Proc. Natl. Acad. Sci. USA 92, 67–74 (1995).ADS 
    CAS 

    Google Scholar 
    Cai, X. M. et al. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Sci. Rep. 7, 41818 (2017).ADS 
    CAS 

    Google Scholar 
    Xu, X. X. et al. Does background odor in tea gardens mask attractants? Screening and application of attractants for Empoasca onukii Matsuda. J. Econ. Entomol. 110, 2357–2363 (2017).CAS 

    Google Scholar 
    Hare, J. D. & Sun, J. J. Production of induced volatiles by Datura wrightii in response to damage by insects: Effect of herbivore species and time. J. Chem. Ecol. 37, 751–764 (2011).CAS 

    Google Scholar 
    Mumm, R., Tiemann, T., Schulz, S. & Hilker, M. Analysis of volatiles from black pine (Pinus nigra): Significance of wounding and egg deposition by a herbivorous sawfly. Phytochemistry 65, 3221–3230 (2004).CAS 

    Google Scholar  More

  • in

    Selective feeding of three bivalve species on the phytoplankton community in a marine pond revealed by high-throughput sequencing

    Mao, Y. et al. Bivalve production in China (eds. Smaal, A., Ferreira, J., Grant, J., Petersen, J, & Strand, Ø.) 51–72 (Springer, New York, 2019).CFSY. China fishery statistical yearbook. (China Agriculture Publishing House, Beijing, 2021).Muller-Feuga, A. Microalgae for aquaculture: the current global situation and future trends (ed. Richmond, A.) 352–364 (Blackwell Science, Hoboken, 2004).Lindahl, O. Mussel farming as a tool for re‐eutrophication of coastal waters: experiences from Sweden (ed. Shumway, S. E.) 217–237 (Wiley-Blackwell, Hoboken, 2011).Petersen, J. K., Hasler, B., Timmermann, K., Nielsen, P. & Holmer, M. Mussels as a tool for mitigation of nutrients in the marine environment. Mar. Pollut. Bull. 82, 137–143 (2014).CAS 

    Google Scholar 
    Petersen, J. K., Saurel, C., Nielsen, P. & Timmermann, K. The use of shellfish for eutrophication control. Aquacult. Int. 24, 857–878 (2016).
    Google Scholar 
    Hily, C., Grall, J., Chauvaud, L., Lejart, M. & Clavier, J. CO2 generation by calcified invertebrates along rocky shores of Brittany, France. Mar. Freshwater. Res. 64, 91–101 (2013).CAS 

    Google Scholar 
    Filgueira, R. Strohmeier, T. & Strand, Ø. Regulating services of bivalve molluscs in the context of the carbon cycle and implications for ecosystem valuation (eds. Smaal, A., Ferreira, J., Grant, J., Petersen, J. & Strand, Ø.) 231–251 (Springer, New York, 2019).Newell, R. I. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J. Shellfish. Res. 23, 51–62 (2004).
    Google Scholar 
    Benemann, J. R. Microalgae aquaculture feeds. J. Appl. Phycol. 4, 233–245 (1992).
    Google Scholar 
    Brown, M. R. & Blackburn, I. Live microalgae as feeds in aquaculture hatcheries (eds. Allan, G. & Burnell, G.) 117–156 (Woodhead Publishing Series in Food Science, Technology and Nutrition, 2013).Thajuddin, N. & Subramanian, G. Cyanobacterial biodiversity and potential applications in biotechnology. Curr. Sci. 89, 47–57 (2005).CAS 

    Google Scholar 
    Caers, M., Coutteau, P. & Sorgeloos, P. Dietary impact of algal and artificial diets, fed at different feeding rations, on the growth and fatty acid composition of Tapes philippinarum (L.) spat. Aquaculture 170, 307–322 (1999).CAS 

    Google Scholar 
    Chen, S. M., Tseng, K. Y. & Huang, C. H. Fatty acid composition, sarcoplasmic reticular lipid oxidation, and immunity of hard clam (Meretrix lusoria) fed different dietary microalgae. Fish. Shellfish. Immunol. 45, 141–145 (2015).CAS 

    Google Scholar 
    Rosa, M., Ward, J. E. & Shumway, S. E. Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: a review. J. Shellfish. Res. 37, 727–746 (2018).
    Google Scholar 
    Ward, J. E. & Shumway, S. E. Separating the grain from the chaff: particle selection in suspension-and deposit-feeding bivalves. J. Exp. Mar. Biol. Ecol. 300, 83–130 (2004).
    Google Scholar 
    Tang, B., Liu, B., Wang, G., Tao, Z. & Xiang, J. Effects of various algal diets and starvation on larval growth and survival of Meretrix meretrix. Aquaculture 254, 526–533 (2006).
    Google Scholar 
    Espinosa, E. P., Cerrato, R. M., Wikfors, G. H. & Allam, B. Modeling food choice in the two suspension-feeding bivalves, Crassostrea virginica and Mytilus edulis. Mar. Biol. 163, 1–13 (2016).
    Google Scholar 
    Jones, J., Allam, B. & Espinosa, E. P. Particle selection in suspension-feeding bivalves: does one model fit all?. Biol. Bull. 238, 41–53 (2020).CAS 

    Google Scholar 
    Pales Espinosa, E., Cerrato, R. M., Wikfors, G. H. & Allam, B. Modeling food choice in the two suspension-feeding bivalves, Crassostrea virginica and Mytilus edulis. Mar. Biol. 163, 1–13 (2016).CAS 

    Google Scholar 
    Barillé, L., Prou, J., Héral, M. & Bourgrier, S. No influence of food quality, but ration-dependent retention efficiencies in the Japanese oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 171, 91–106 (1993).
    Google Scholar 
    Petersen, J. K. et al. Intercalibration of mussel Mytilus edulis clearance rate measurements. Mar. Ecol. Prog. Ser. 267, 187–194 (2004).ADS 

    Google Scholar 
    Zhang, T. et al. Effects of environmental factors on the survival and growth of juvenile hard clam Mercenaria mercenaria (Linnaeus,1758). Oceanol. Limnol. Sin. 34, 142–149 (2003).
    Google Scholar 
    Matias, D. et al. The influence of different microalgal diets on European clam (Ruditapes decussatus, Linnaeus, 1758) larvae culture performances. Aquacult. Res. 46, 2527–2543 (2015).
    Google Scholar 
    Liao, K. et al. qPCR analysis of bivalve larvae feeding preferences when grazing on mixed microalgal diets. PLoS ONE 12, e0180730 (2017).
    Google Scholar 
    Sautour, B., Artigas, L. F., Delmas, D., Herbland, A. & Laborde, P. Grazing impact of micro- and mesozooplankton during a spring situation in coastal waters off the Gironde estuary. J. Plankton. Res. 22, 531–552 (2000).
    Google Scholar 
    Manoylov, K. M. Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment. J. Phycol. 50, 409–424 (2014).
    Google Scholar 
    Shokralla, S. et al. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol. Ecol. Resour. 14, 892–901 (2014).CAS 

    Google Scholar 
    Hirai, J., Hidaka, K., Nagai, S. & Ichikawa, T. Molecular-based diet analysis of the early post-larvae of Japanese sardine Sardinops melanostictus and Pacific round herring Etrumeus teres. Mar. Ecol. Prog. Ser. 564, 99–113 (2017).ADS 
    CAS 

    Google Scholar 
    Su, M., Liu, H., Liang, X., Gui, L. & Zhang, J. Dietary analysis of marine fish species: enhancing the detection of prey-specific dna sequences via high-throughput sequencing using blocking primers. Estuar. Coast. 41, 560–571 (2018).
    Google Scholar 
    Talwar, C., Nagar, S., Lal, R. & Negi, R. K. Fish gut microbiome: current approaches and future perspectives. Indian J. Microbiol. 58, 397–414 (2018).CAS 

    Google Scholar 
    Yi, X. et al. In situ diet of the copepod Calanus sinicus in coastal waters of the South Yellow Sea and the Bohai Sea. Acta. Oceanol. Sin. 36, 68–79 (2017).CAS 

    Google Scholar 
    Reis, A. D., Jeffs, A. G. & Lavery, S. D. From feeding habits to food webs: exploring the diet of an opportunistic benthic generalist. Mar. Ecol. Prog. Ser. 655, 107–121 (2020).ADS 

    Google Scholar 
    Yeh, H. D., Questel, J. M., Maas, K. R. & Bucklin, A. Metabarcoding analysis of regional variation in gut contents of the copepod Calanus finmarchicus in the North Atlantic Ocean. Deep Sea Res. II 180, 104738 (2020).
    Google Scholar 
    Zeale, M. R., Howeverlin, R. K., Barker, G. L., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11, 236–244 (2011).CAS 

    Google Scholar 
    Sherwood, A. R. & Presting, G. G. Universal primers amplify a 23s rDNA plastid marker in eukaryotic algae and cyanobacteria. J. Phycol. 43, 605–608 (2007).
    Google Scholar 
    Qiao, L., Chang, Z., Li, J. & Chen, Z. Phytoplankton community succession in relation to water quality changes in the indoor industrial aquaculture system for Litopenaeus vannamei. Aquaculture 527, 735441 (2020).CAS 

    Google Scholar 
    Vahl, O. Efficiency of particle retention in Mytilus edulis L. Ophelia 10, 17–25 (1972).
    Google Scholar 
    Riisgård, H. U. Efficiency of particle retention and filtration rate in 6 species of northeast American bivalves. Mar. Ecol. Prog. Ser. 45, 217–223 (1988).ADS 

    Google Scholar 
    Rosa, M. et al. Examining the physiological plasticity of particle capture by the blue mussel, Mytilus edulis (L.): confounding factors and potential artifacts with studies utilizing natural seston. J. Exp. Mar. Biol. Ecol. 473, 207–217 (2015).
    Google Scholar 
    Shumway, S. E. et al. Flow cytometry: a new method for characterization of differential ingestion, digestion and egestion by suspension feeders. Mar. Ecol. Prog. Ser. 24, 201–204 (1985).ADS 

    Google Scholar 
    Dupuy, C. et al. Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the mediterranean thau lagoon. Mar. Ecol. Prog. Ser. 205, 171–184 (2000).ADS 

    Google Scholar 
    Strøhmeier, T., Strand, Ø., Alunno-Bruscia, M., Duinker, A. & Cranford, P. J. Variability in particle retention efficiency by the mussel Mytilus edulis. J. Exp. Mar. Biol. Ecol. 412, 96–102 (2012).
    Google Scholar 
    Yahel, G., Marie, D., Beninger, P. G., Eckstein, S. & Genin, A. In situ evidence for pre-capture qualitative selection in the tropical bivalve Lithophaga simplex. Aquat. Biol. 6, 235–246 (2009).
    Google Scholar 
    Bass, A. E., Malouf, R. E. & Shumway, S. E. Growth of northern quahogs, Mercenaria mercenaria (Linnaeus, 1758) fed on picophytoplankton. J. Shellfish. Res. 9, 299–307 (1990).
    Google Scholar 
    Leblanc, A. et al. Determination of isotopic labeling of proteins by precursor ion scanning liquid chromatography/tandem mass spectrometry of derivatized amino acids applied to nuclear magnetic resonance studies. Rapid Commun. Mass. Spectrom. 26, 1165–1174 (2012).ADS 
    CAS 

    Google Scholar 
    Sonier, R. et al. Picoplankton contribution to Mytilus edulis growth in an intense culture environment. Mar. Biol. 163, 73–85 (2016).
    Google Scholar 
    Herdman, M., Castenholz, R. W., Waterbury, J. B. & Rippka, R. Form-genus XIII. Synechococcus (eds. Boone, D. R. & Castenholz, R. W.) 508–512 (Springer, New York, 2001).Hibberd, D. J. Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot. J. Linn. Soc. 82, 93–119 (1981).
    Google Scholar 
    Wei, Y. Chrysochromulina parva Lackey Prymnesiophyceae new record in China and its seasonal fluctuation in Lake Donghu, Wuhan. Acta Hydrobiol. Sin. 20, 317–321 (1996).
    Google Scholar 
    Stockner, J. G. & Antia, N. J. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43, 2472–2503 (1986).
    Google Scholar 
    Gallager, S., Waterbury, J. & Stoecker, D. Efficient grazing and utilization of the marine cyanobacterium Synechococcus sp. by larvae of the bivalve Mercenaria mercenaria. Mar. Biol. 119, 251–259 (1994).
    Google Scholar 
    Seychelles, L. H., Audet, C., Tremblay, R., Fournier, R. & Pernet, F. Essential fatty acid enrichment of cultured rotifers (Brachionus plicatilis, Müller) using frozen-concentrated microalgae. Aqua. Nut. 15, 431–439 (2009).CAS 

    Google Scholar 
    Hughes, T. G. The sorting of food particles by Abra sp. (bivalvia: tellinacea). J. Exp. Mar. Biol. Ecol. 20, 137–156 (1975).
    Google Scholar 
    Hernroth, B., Larsson, A. & Edebo, L. Influence on uptake, distribution and elimination of Salmonella typhimurium in the blue mussel, Mytilus edulis, by the cell surface properties of the bacteria. J. Shellfish. Res. 19, 167–174 (2000).
    Google Scholar 
    Rosa, M. et al. Effects of particle surface properties on feeding selectivity in the eastern oyster Crassostrea virginica and the blue mussel Mytilus edulis. J. Exp. Mar. Biol. Ecol. 446, 320–327 (2013).
    Google Scholar 
    Rosa, M., Ward, J. E., Holohan, B. A., Shumway, S. E. & Wikfors, G. H. Physicochemical surface properties of microalgae and their combined effects on particle selection by suspension-feeding bivalve molluscs. J. Exp. Mar. Biol. Ecol. 486, 59–68 (2017).CAS 

    Google Scholar 
    Grasland, B., Mitalane, J., Briandet, R., Quemener, E. & Haras, D. Bacterial biofilm in seawater: cell surface properties of early-attached marine bacteria. Biofouling 19, 307–313 (2003).CAS 

    Google Scholar 
    Ozkan, A. & Berberoglu, H. Physico-chemical surface properties of microalgae. Colloids. Surf. B. 112, 287–293 (2013).CAS 

    Google Scholar 
    Dadon-Pilosof, A. et al. Surface properties of SAR 11 bacteria facilitate grazing avoidance. Nat. Microbiol. 2, 1608–1615 (2017).
    Google Scholar 
    Xiao, G., Zhang, J., Cai, X., Lu, R. & Fang, J. Studies on the filtration feeding, respiration ration and excretion of Ruditapes philippinarum juvenile. J. Oceanogr. Taiwan Strait 25, 30–35 (2006).
    Google Scholar 
    Atkins, D. On the ciliary mechanisms and interrelationships of lamellibranchs. VII: latero-frontal cilia of the gill filaments and their phylogenetic value. Q. J. Microsc. Sci. 80, 345–433 (1938).
    Google Scholar 
    Owen, G. & Mccrae, J. M. Further studies on the latero-frontal tracts of bivalves. Proc. R. Soc. London. 194, 527–544 (1976).ADS 

    Google Scholar 
    Owen, G. Classification and the bivalve gill. Phil. Trans. R. Soc. Lond. 284, 377–385 (1978).
    Google Scholar 
    Ward, J. E., Sanford, L. P. & Newell, R. A new explanation of particle capture in suspension- feeding bivalve molluscs. Limnol. Oceanogr. 43, 741–752 (1998).ADS 

    Google Scholar 
    Winter, J. E. A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13, 1–33 (1978).
    Google Scholar 
    Newell, C. R., Wildish, D. J. & Macdonald, B. A. The effects of velocity and seston concentration on the exhalant siphon area, valve gape and filtration rate of the mussel Mytilus edulis. J. Exp. Mar. Biol. Ecol. 262, 91–111 (2001).
    Google Scholar 
    Jacobs, P., Troost, K., Riegman, R., Van der, M. & J.,. Length- and weight-dependent clearance rates of juvenile mussels (Mytilus edulis) on various planktonic prey items. Helgol. Mar. Res. 69, 101–112 (2015).ADS 

    Google Scholar 
    Ivlev, V. S. Experimental ecology of the feeding of fish. (Yale University Press New Haven, Connecticut, 1961) p 302.Strauss, R. E. Reliability estimates for Ivlevs electivity index the forage ratio and a proposed linear index of food selection. Trans. Am. Fish. Soc. 108, 344–352 (1979).
    Google Scholar 
    Puig, S., Videla, F., Cona, M. I. & Monge, A. S. Use of food availability by guanacos (Lama guanicoe) and livestock in Northern Patagonia (Mendoza, Argentina). J. Arid. Environ. 47, 291–308 (2001).ADS 

    Google Scholar  More

  • in

    Genomic evidence for homoploid hybrid speciation between ancestors of two different genera

    Lotsy, J. P. Evolution by Means of Hybridization (Martinus Nijhoff, 1916).Abbott, R. J. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).PubMed 
    Article 

    Google Scholar 
    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Z. F. et al. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant 14, 208–222 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Müntzing, A. Outlines to a genetic monograph for the genus Galeopsis: with special reference to the nature and inheritance of partial sterility. Hereditas 13, 185–341 (1930).Article 

    Google Scholar 
    Schumer, M., Cui, R., Rosenthal, G. G. & Andolfatto, P. Reproductive isolation of hybrid populations driven by genetic incompatibilities. Plos. Genet. 11, e1005041 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kong, S. & Kubatko, L. S. Comparative performance of popular methods for hybrid detection using genomic data. Syst. Biol. 70, 891–907 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Goulet, B. E., Roda, F. & Hopkins, R. Hybridization in plants: old ideas, new techniques. Plant Physiol. 173, 65–78 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jiang, Y. F. et al. Differentiating homoploid hybridization from ancestral subdivision in evaluating the origin of the D lineage in wheat. N. Phytol. 228, 409–414 (2020).Article 

    Google Scholar 
    Rokas, A. & Holland, P. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15, 454–459 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bapteste, E. & Philippe, H. The potential value of indels as phylogenetic markers: position of trichomonads as a case study. Mol. Biol. Evol. 19, 972–977 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mavárez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature 441, 868–871 (2006).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Zhang, B. W. et al. Phylogenomics reveals an ancient hybrid origin of the Persian walnut. Mol. Biol. Evol. 36, 2451–2461 (2019).CAS 
    Article 

    Google Scholar 
    Guo, X., Thomas, D. C. & Saunders, R. M. K. Gene tree discordance and coalescent methods support ancient intergeneric hybridisation between Dasymaschalon and Friesodielsia (Annonaceae). Mol. Phylogenet. Evol. 127, 14–29 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Winkler, H. Betulaceae. In: Pflanzenreich IV (Verlag von Wilhelm Engelmann, 1904).Li, P. Q. & Skvortsov, A. K. Betulaceae. In: Flora of China (Science Press & Missouri Botanical Garden Press, 1999).Crane, P. R. Betulaceous leaves and fruits from the British Upper Palaeocene. Bot. J. Linn. Soc. 83, 103–136 (1981).Article 

    Google Scholar 
    Li, P. Q. & Cheng, S. X. Betulaceae. In: Flora Reipublicae Popularis Sinicae (Science Press, 1979).Yoo, K. O. & Wen, J. Phylogeny and biogeography of Carpinus and subfamily Coryloideae (Betulaceae). Int. J. Plant Sci. 163, 641–650 (2002).Article 

    Google Scholar 
    Li, J. H. Sequences of low-copy nuclear gene support the monophyly of Ostrya and paraphyly of Carpinus (Betulaceae). J. Sys. Evol. 46, 333–340 (2008).
    Google Scholar 
    Yang, X. Y. et al. Plastomes of Betulaceae and phylogenetic implications. J. Sys. Evol. 57, 508–518 (2019).Article 

    Google Scholar 
    Yang, Y. Z. et al. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana. Nat. Commun. 9, 5449 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang, X. Y. et al. A chromosome-level reference genome of the hornbeam, Carpinus fangiana. Sci. Data 7, 24 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, Y. et al. The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding. Hortic. Res. 8, 54 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salojärvi, J. et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet. 49, 904–912 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tajima, F. Evolutionary relationship of DNA-sequences in finite populations. Genetics 105, 437–460 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blischak, P. D., Chifman, J., Wolfe, A. D. & Kubatko, L. S. HyDe: a Python package for genome-scale hybridization detection. Syst. Biol. 67, 821–829 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kubatko, L. S. & Chifman, J. An invariants-based method for efficient identification of hybrid species from large-scale genomic data. BMC Evol. Biol. 19, 112 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baack, E., Melo, M. C., Rieseberg, L. H. & Ortiz-Barrientos, D. The origins of reproductive isolation in plants. N. Phytol. 207, 968–984 (2015).Article 

    Google Scholar 
    Sobel, J. M. & Chen, G. F. Unification of methods for estimating the strength of reproductive isolation. Evolution 68, 1511–1522 (2014).PubMed 
    Article 

    Google Scholar 
    Imura, Y. et al. CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis. Plant Cell Physiol. 53, 287–303 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, S.-J. & Bassham, D. C. TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis. Plant Physiol. 156, 514–526 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, F. et al. Control of leaf blade outgrowth and floral organ development by LEUNIG, ANGUSTIFOLIA3 and WOX transcriptional regulators. N. Phytol. 223, 2024–2038 (2019).CAS 
    Article 

    Google Scholar 
    Liu, Z. C., Franks, R. G. & Klink, V. P. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 12, 1879–1891 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sitaraman, J., Bui, M. & Liu, Z. LEUNIG_HOMOLOG and LEUNIG perform partially redundant functions during Arabidopsis embryo and floral development. Plant Physiol. 147, 672–681 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, C. L. et al. Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae). J. Sys. Evol. 59, 1198–1208 (2021).Article 

    Google Scholar 
    Morales-Briones, D. F. et al. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. Syst. Biol. 70, 219–235 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Yang, Y. Z. et al. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nat. Plants 6, 215–222 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stull, G. W. et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7, 1015–1025 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Luo, X. et al. Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor. Mol. Ecol. 26, 3037–3049 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Grover, C. E. et al. Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol. Phylogenet. Evol. 92, 45–52 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Edger, P. P., McKain, M. R., Bird, K. A. & VanBuren, R. Subgenome assignment in allopolyploids: challenges and future directions. Curr. Opin. Plant Biol. 42, 76–80 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).
    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. Plos ONE 9, e112963 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinf. 5, 4.10.1–4.10.14 (2004).Article 

    Google Scholar 
    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).CAS 
    Article 

    Google Scholar 
    Conesa, A. & Götz, S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ye, G. et al. De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth. Plant J. 97, 779–794 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marrano, A. et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. GigaScience 9, giaa050 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Löytynoja, A. Phylogeny-aware alignment with PRANK. In: Multiple Sequence Alignment Methods, Methods in Molecular Biology (Humana Press, 2014).Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Y. P. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kielbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153 (2018).Article 

    Google Scholar 
    Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malinsky, M., Matschiner, M. & Svardal, H. Dsuite—Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).PubMed 
    Article 

    Google Scholar 
    Hudson, R. R., Kreitman, M. & Aguadé, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Individual and collective learning in groups facing danger

    Experimental setupThis research was approved by the Carnegie Mellon University Committee of the Use of Human Subjects. All methods were performed in accordance with the relevant guidelines and regulations. Informed consent was obtained from all participants. Our data includes no identifying information of human participants. We conducted experiments from February to August 2021 (except for the preliminary sessions of random information; we ran the condition from June to November 2020). We preregistered the main experiment settings using AsPredicted (https://aspredicted.org/sm4k5.pdf).A total of 2786 subjects participated in our incentivized decision-making game experiments. We recruited subjects using Amazon Mechanical Turk (MTurk)52,53. Supplementary Table 1 shows the subject demographics. Our participants interacted anonymously over the Internet using customized software playable in a browser window (available at http://breadboard.yale.edu). All participants provided explicit consent and passed a series of human verification checks and a screening test of understanding game rules and payoffs before playing the game (see SI). We prohibited subjects from participating in more than one session of the experiment by using unique identifications for each subject on MTurk.In each session, subjects were paid a $2.00 show-up fee and a bonus depending on whether they took the appropriate disaster decision in four rounds. Furthermore, subjects earned $1.00 when they completed all four rounds. In each round, when a disaster stroke before they evacuated, the subjects earned no bonus. Otherwise, they earned a bonus of $1.00 without disaster or $0.50 with disaster by spending $0.50 for evacuation, plus $0.05 per other players who took the correct action accordingly (Supplementary Table 2). We have confirmed with prior work that the amount of evacuation cost, if any, makes no significant difference in the game’s performance23.At the start, subjects were required to pass a series of human verification checks. They needed to pass Google’s reCAPTCHA using the “I’m not a robot” checkbox. They were also requested to answer whether they were human players. The exact question asked was: “Please select an applicable answer about you.” The options were: “I am not a bot. I am a real person.” “I am not a real person. I am a bot.” “I am anything but a human.” and “I am a computer program working for a person.” The option’s order was randomized. Only the participants who selected “I am not a bot. I am a real person.” moved to the step of informed consent.When subjects provided explicit consent, they were asked to take a tutorial before the actual game would begin. In the tutorial, each subject separately interacted with three dummy players in two rounds of a 45-s practice game. In the actual game, some subjects would be informed in advance whether a disaster would indeed strike or not. In the practice game, while all subjects were not informed of such information in the first round, they were informed of the information in the second round. Thus, they practiced both conditions in terms of prior information on the disaster (see SI).After the practice game, subjects were assessed for their comprehension of the game rules and payment structure using four multiple-choice questions with three options. If they failed to select the correct answer in one of the questions, they could reselect it only once through the entire test. If they failed to select the correct answer more than once, they were unable to join the actual game.At 720 s after the tutorial beginning, a “Ready” button became visible simultaneously to all the subjects who completed the tutorial and passed the comprehension tests. The actual games started 30 s after the “Ready” button showed up. If subjects did not click the button before the game started, they were dropped. The game required a certain number of subjects. When the subjects who successfully clicked the button were more than 16, surplus subjects, randomly selected, were dropped from the game. When the number of qualified subjects was less than 12, the game did not start. As a result, subjects started the game in a group with an average size of 15.5 (s.d. = 1.1).At the start of the actual game, we selected one subject (the “informant”) at random who was informed in advance whether a disaster would indeed strike or not. The other subjects were informed that some players had accurate information about the disaster, but they were not informed who the informant was. The exact sentence that the informants received in their game screen was “A disaster is going to strike!” when a disaster would strike or “There is no disaster.” when a disaster would not strike. The one that the other uninformed subjects received was “A disaster may or may not strike.” Then, the group had the same informant across the four rounds except for a supplement condition of random informants. In the random informant condition, an informant was randomly selected every round.To prevent an end-of-game effect, we randomly set the game time with a normal distribution of a mean of 75 s and a standard deviation of 10 s. Prior work has confirmed that the game time is sufficient for players to communicate and make an evacuation decision23. As a result, each round ended at 75.0 s on average (s.d. = 9.5) without prior notice. In half of the sessions, a disaster struck at the end of the game. We did not inform any subjects, including the informants, when their sessions would end, the global network structure they were embedded in, or how many informants were in the game. After making their evacuation choice, subjects were informed of their success and failure along with overall results in their group. Then, subjects played another round of the evacuation game until they completed four total rounds. They had the same local network environment across four rounds except for the dynamic network condition.Network structure and tie rewiringIn the network sessions, subjects played the game in a directed network with a random graph configuration. A certain number of ties were present at the game’s onset as the initial density was set to 0.25.In the dynamic network conditions, subjects also could change their neighbors by making or breaking ties between rounds. In the tie-rewiring step, 40% of all the possible subject pairs were chosen at random. Thus, subjects could choose every other player at least once throughout the entire session (i.e., a set of four rounds) with a probability of about 80%. When the chosen pairs were connected, the pairs (the ties) were dissolved if the predecessor subject of the directed ties chose to break the tie. When the chosen pairs were not connected, the pairs (the ties) were newly created when the predecessor of the potential tie chose to create the tie. Subjects were not informed of the rewiring rate.To equalize the game time, we made subjects in the independent and static network conditions wait for additional 10 s after each game round ended. Despite the adjustment, the game time was significantly longer in the dynamic network sessions than in the independent and static network sessions. The average game time is 429.5 s (s.d. = 20.2) for the independent condition; 428.8 s (s.d. = 19.0) for the static network condition; and 564.7 s (s.d. = 36.3) for the dynamic network condition.To clarify mechanisms for dynamic networks to facilitate collective intelligence, we added one supplementary condition. In the supplementary condition, subjects were assigned to one of the 40 isomorphic networks that other subjects had developed with tie-rewiring options through the three rounds in the dynamic network condition (567 subjects in 40 groups). Network structure and other game settings (i.e., whether a disaster stroke, how long the game was, and which node was the informant) were identical to where the others played the game at the final round. However, players were different, and they had no prior experience in the game. They played the game in a network with a topology created by others ostensibly to optimize the accurate flow of information. In contrast to other conditions, subjects played only one round in the isomorphic network condition.Signal buttonsDuring the game of network sessions, subjects were allowed to share information about the possibly impending “disaster” by using “Safe” and “Danger” buttons that indicated their assessment (see SI). The default node color was grey. Then, when they clicked the Safe button, their node turned blue and, after 5 s, automatically returned to grey. Likewise, the Danger button turned their node to red for 5 s. Subjects could see only the colors of neighbors to whom they were directly connected. Since the signal exchange occurred through directed connections, an individual could send, but not receive, information from another subject (and vice versa). Once subjects chose to evacuate, they could no longer send signals, and their node showed grey (the default color) for the rest of the game. The neighbors of evacuated subjects were not informed of their evacuation. We have confirmed with prior work that collective performance does not vary with the communication continuity and the evacuation visibility23. Subjects could use the Safe and Danger buttons any time unless they evacuated, or they did not have to.Players dropping during the gameAfter each game round, when a player was inactive for 10 s, they were warned about being dropped. When they remained inactive after 10 s, they were dropped. When the selected informant was dropped, the session stopped at the round, and we did not use the data. Furthermore, as too many dropped players could affect the network structure and the behavioral dynamics of remaining players, we did not use the sessions where more than 25% of initial players were dropped during the game. Overall, 4 players dropped in 15 sessions; 3 players dropped in 22 sessions; 2 players dropped in 41 sessions; 1 player dropped in 44 sessions; and no player dropped in 58 sessions. The dropped players were prohibited from joining another session of this experiment.As noted above, players took the additional tie-rewiring step every round in the dynamic network sessions. Thus, the total game time was longer in the dynamic network sessions than in the independent and static network sessions even with the adjustment. As a result, more players were dropped in the dynamic network sessions than in the independent and static network sessions. The average number of dropped players across the four rounds is 0.40 (s.d. = 0.60) for the independent condition; 1.15 (s.d. = 0.86) for the static network condition; 1.75 (s.d. = 1.19) for the dynamic network condition. Although group size could affect collective performance, we found the differences in group size small enough for our study. We have confirmed the dynamic network’s performance improvement with a comprehensive analysis controlling the effect of group size (Supplementary Table 3). Also, there was no statistically significant difference in the dropped players’ performance of the dynamic network condition, compared with the other two conditions. The rate of correct actions of dropped players is 0.456 (s.d. = 0.322) for the independent condition, 0.594 (s.d. = 0.387) for the static network condition, and 0.558 (s.d. = 0.411) for the dynamic network condition; P = 0.106 between the independent condition and the dynamic network condition; P = 0.599 between the static network condition and the dynamic network condition (Welch two-sample t test).Analysis of signal diffusionsTo examine the change in signal diffusion, we analyzed “diffusion chains” for each signal type in the network sessions. We first identified the subjects who sent a signal when their neighbors had never sent one as spontaneous “diffusion sources.” When a subject sent a signal after at least one neighbor had sent the same type of signal, we regarded the subject’s signaling (and evacuation with danger signals) as occurring in a chain of signal diffusion and the total number of the responded subjects (including the diffusion source) as the diffusion size.We analyzed the distribution of signal diffusion chains with complementary cumulative distribution functions, measuring the fraction of diffusion chains that exhibit a given number of diffusion sizes. We found that the number of diffusions of both signals did not change across rounds. Safe-signal diffusions were more likely to occur than danger-signal diffusions regardless of whether a “disaster” would strike and how many rounds subjects played. On the other hand, the diffusion size varied greatly across rounds in disaster situations. With “disaster,” false safe signals spread further than true danger signals at the first round, but after that, warnings outperformed safe signals in terms of diffusion size. Figure 2B and Supplementary Fig. 3 scrutinize the changes in diffusion chains with their distributions.Analysis of individual responsivenessWe analyzed how individual evacuation behavior varies with exposure to signals from neighbors54. Let$${a}_{i}^{evacuate},, (t)=left{begin{array}{ll}1&quad text{if subject } i text{ evacuates at time } t\ 0&quad text{otherwise}end{array}right.$$$${a}_{i}^{show, safe},, (t)=left{begin{array}{ll}1&quad text{if subject } i mathrm{ shows a safe signal at time } t\ 0&quad text{otherwise}end{array}right.$$$${a}_{i}^{show , danger} ,, (t)=left{begin{array}{ll}1&quad text{if subject } i text{ shows a danger signal at time } t\ 0&quad text{otherwise}end{array}right.$$The hazard function, or instantaneous rate of occurrence of subject (i)’s evacuation at time t, is defined as:$${lambda }_{i},, (t)=underset{mathit{dt}to 0}{{mathrm{lim}}}frac{{mathrm{Pr}}({a}_{i}^{evacuate}=1;,, tt)}{dt}$$To model the time to evacuation, We used a Cox proportional hazards model with time-varying covariates for the number of signals, incorporating an individual actor-specific random effect55:$${lambda }_{i} ,, left{t|{{P}_{i}, X}_{i}(t), {G}_{i},{Y}_{i}(t)right}={lambda }_{0}(t)mathrm{exp}left{{{beta }_{P}^{{prime}}{P}_{i}+beta }_{X}^{{prime}}{X}_{i}(t)+{beta }_{G}^{{prime}}{G}_{i}+{beta }_{Y}^{{prime}}{Y}_{i}(t)+{gamma }_{i}right}$$where λ0(t) is a baseline hazard at time t.In the model, the hazard λi(t) depends on the covariates Pi, Xi(t), Gi, and Yi(t). The covariate Pi is the vector of subject i’s experiences before the sessions; that is, the number of rounds, the number of disasters that she has experienced, and the number of disasters that she has been struck by.The covariate Xi(t) is the vector of the number of safe signals ({x}_{i}^{safe} (t)), the number of danger signals ({x}_{i}^{danger} (t)). When subject j is a neighbor of subject i (i.e., (jin {N}_{i})), subject i is exposed to the signal of subject j, so that:$${x}_{i}^{safe},, (t)=sum_{jin {N}_{i}}{a}_{j}^{show, safe}(t)$$$${x}_{i}^{danger},, (t)=sum_{jin {N}_{i}}{a}_{j}^{show, danger}(t)$$The covariate Gi is the vector of the properties of the network in which subject i is embedded, out-degree, in-degree, and a network plasticity indicator. The covariate Yi(t) is the vector of the number of the subject i’s actions of sending safe and danger signals before time t. The coefficients β are the fixed effects and γi is the random effect for individual i. We assumed that waiting times to evacuation in different actors are conditionally independent given the sequence of signals they receive from network neighbors. This model shows how the hazard of an individual’s evacuation depends on the signaling actions of others, their network position, and experience (Supplementary Table 4). We applied the same model to the first signaling behavior. More

  • in

    High genomic diversity in the endangered East Greenland Svalbard Barents Sea stock of bowhead whales (Balaena mysticetus)

    Kovacs, K. M. et al. The endangered Spitsbergen bowhead whales’ secrets revealed after hundreds of years in hiding. Biol. Lett. https://doi.org/10.1098/rsbl.2020.0148 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooke, J. & Reeves, R. Balaena mysticetus (East Greenland-Svalbard-Barents Sea subpopulation). The IUCN Red List of Threatened Species 2018, e.T2472A50348144 (2018). https://doi.org/10.2305/IUCN.UK.2018-1.RLTS.T2472A50348144.enAllen, R. C. & Keay, I. Bowhead whales in the eastern Arctic, 1611–1911: Population reconstruction with historical whaling records. Environ. Hist. 12, 89–113 (2006).Article 

    Google Scholar 
    Reeves, R. R. Spitsbergen bowhead stock: A short review. Mar. Fish. Rev. 42, 65–69 (1980).
    Google Scholar 
    Shelden, K. E. W. & Rugh, D. J. The Bowhead Whale, Balaena mysticetus: Its Historic and Current Status. Mar. Fish. Rev. 57, 1–20 (1995).
    Google Scholar 
    Gilg, O. & Born, E. W. Recent sightings of the bowhead whale (Balaena mysticetus) in Northeast Greenland and the Greenland Sea. Polar Biol. 28, 796–801. https://doi.org/10.1007/s00300-005-0001-9 (2005).Article 

    Google Scholar 
    Boertmann, D., Kyhn, L. A., Witting, L. & Heide-Jørgensen, M. P. A hidden getaway for bowhead whales in the Greenland Sea. Polar Biol. 38, 1315–1319. https://doi.org/10.1007/s00300-015-1695-y (2015).Article 

    Google Scholar 
    Wiig, Ø., Bachmann, L., Janik, V., Kovac, K. & Lydersen, C. Spitsbergen bowhead whales revisited. Mar. Mamm. Sci. 23, 688–693. https://doi.org/10.1111/j.1748-7692.2007.02373.x (2007).Article 

    Google Scholar 
    Wiig, Ø., Bachmann, L., Øien, N., Kovacs, K. & Lydersen, C. Observations of bowhead whales (Balaena mysticetus) in the Svalbard area 1940–2009. Polar Biol. 33, 979–984. https://doi.org/10.1007/s00300-010-0776-1 (2010).Article 

    Google Scholar 
    Lydersen, C. et al. Lost highway not forgotten: Satellite tracking of a bowhead whale (Balaena mysticetus) from the critically endangered Spitsbergen stock. Arctic 65, 76–86. https://doi.org/10.14430/arctic4167 (2012).Article 

    Google Scholar 
    Vacquié-Garcia, J. et al. Late summer distribution and abundance of ice-associated whales in the Norwegian High Arctic. Endang. Spec. Res. 32, 59–70. https://doi.org/10.3354/esr00791 (2017).Article 

    Google Scholar 
    Givens, G. H. & Heide-Jørgensen, M. P. Abundance. In The Bowhead Whale: Balaena Mysticetus: Biology and Human Interactions (eds George, J. C. & Thewissen, J. G. M.) 77–86 (Academic Press, 2020).
    Google Scholar 
    Rooney, A. P., Honeycutt, R. L. & Derr, J. N. Historical population size change of bowhead whales inferred from DNA sequence polymorphism data. Evolution 55, 1678–1685. https://doi.org/10.1111/j.0014-3820.2001.tb00687.x (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Borge, T., Bachmann, L., Bjørnstad, G. & Wiig, Ø. Genetic variation in Holocene bowhead whales from Svalbard. Mol. Ecol. 16, 2223–2235. https://doi.org/10.1111/j.1365-294X.2007.03287.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    LeDuc, R. G. et al. Genetic analyses (mtDNA and microsatellites) of Okhotsk and Bering/Chukchi/Beaufort Seas populations of bowhead whales. J. Cetacean Res. Manag. 7, 107–111 (2005).
    Google Scholar 
    Meschersky, I. G., Chichkina, A. N., Shpak, O. V. & Rozhnov, V. V. Molecular genetic analysis of the Shantar Summer Group of bowhead whales (Balaena mysticetus L.) in the Okhotsk Sea. Russ. J. Genet. 50, 395–405. https://doi.org/10.1134/S1022795414040097 (2014).CAS 
    Article 

    Google Scholar 
    Bachmann, L. et al. Mitogenomics and the genetic differentiation of contemporary Balaena mysticetus (Cetacea) from Svalbard. Zool. J. Linn. Soc. 191, 1192–1203. https://doi.org/10.1093/zoolinnean/zlaa082 (2021).Article 

    Google Scholar 
    Grond, J., Płecha, M., Hahn, C., Wiig, Ø. & Bachmann, L. Mitochondrial genomes of ancient bowhead whales (Balaena mysticetus) from Svalbard. Mitochondrial DNA Part B 4, 4152–4154. https://doi.org/10.1080/23802359.2019.1693284 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nyhus, E. S. et al. Mitogenomes of contemporary Spitsbergen stock bowhead whales (Balaena mysticetus). Mitochondrial DNA Part B 1, 898–900. https://doi.org/10.1080/23802359.2016.1258345 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keane, M. et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 10, 112–122. https://doi.org/10.1016/j.celrep.2014.12.008) (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993. https://doi.org/10.1093/bioinformatics/btr509 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ortiz, E. M. vcf2phylip v2.0: Convert a VCF matrix into several matrix formats for phylogenetic analysis. zenodo.org, https://zenodo.org/record/2540861#.YDUOKy1Q0f0 (2019).Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. https://doi.org/10.1093/molbev/msj030 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Purcell, S. et al. PLINK: A tool set for whole-genome and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–576. https://doi.org/10.1086/519795 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2020).Knaus, B. J. & Grunwald, N. J. VcfR: An R package to manipulate and visualize VCF format data. bioRxiv, 041277 (2016). https://doi.org/10.1101/041277Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hanghøj, K., Moltke, I., Alstrup Andersen, P., Manica, A. & Korneliussen, T. S. Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding. GigaScience 8, giz034. https://doi.org/10.1093/gigascience/giz034 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of next generation sequencing data. BMC Bioinform. 15, 356. https://doi.org/10.1186/s12859-014-0356-4 (2014).Article 

    Google Scholar 
    Renaud, G., Hanghøj, K., Korneliussen, T. S., Willerslev, E. & Orlando, L. Joint estimates of heterozygosity and runs of homozygosity for modern and ancient samples. Genetics 212, 587–614. https://doi.org/10.1534/genetics.119.302057 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grabherr, M. G. et al. Genome-wide synteny through highly sensitive sequence alignment: Satsuma. Bioinformatics 26, 1145–1151. https://doi.org/10.1093/bioinformatics/btq102 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbury, M. V. et al. Extended and continuous decline in effective population size results in low genomic diversity in the world’s rarest hyena species, the brown hyena. Mol. Biol. Evol. 35, 1225–1237. https://doi.org/10.1093/molbev/msy037 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from whole genome sequence of a single individual. Nature 475, 493–496. https://doi.org/10.1038/nature10231 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbury, M. V., Petersen, B., Garde, E., Heide-Jørgensen, M. P. & Lorenzen, E. D. Narwhal genome reveals long-term low genetic diversity despite current large abundance size. iScience 15, 592–599. https://doi.org/10.1016/j.isci.2019.03.023 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taylor, B. et al. Synthesis of lines of evidence for population structure for bowhead whales in the Bering-Chukchi-Beaufort region. Paper SC/59/BRG35 presented to the IWC Scientific Committee, Anchorage, Alaska (2007).Phillips, C. D. et al. Molecular insights into the historic demography of bowhead whales: Understanding the evolutionary basis of contemporary management practices. Ecol. Evol. 3, 18–37. https://doi.org/10.1002/ece3.374 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, X. & Fu, Y. X. Stairway Plot 2: Demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 280. https://doi.org/10.1186/s13059-020-02196-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbury, M. V. et al. Speciation in the face of gene flow within the toothed whale superfamily Delphinoidea. bioRxiv, https://doi.org/10.1101/2020.10.23.352286 (2020).Westbury, M. V. et al. Ecological specialisation and evolutionary reticulation in extant Hyaenidae. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msab055 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    IWC. Report of the Scientific Committee Virtual Meeting, 11–26 May 2020. J. Cetacean Res. Manag. (Supplement) 22, 1–122 (2021).Jonsgård, Å. A right whale (Balaena sp.), in all probability a Greenland right whale (Balaena mysticetus) observed in the Barents Sea. Norsk Hvalfangst-Tidende 53, 311–313 (1964).
    Google Scholar 
    De Jong, C. The hunt of the Greenland whale: A short history and statistical sources. Rep. Int. Whaling Comm. Spec. Issue 5, 83–106 (1983).
    Google Scholar 
    Weslawski, J. M., Hacquebord, L., Stempniewicz, L. & Malinga, M. Greenland whales and walruses in the Svalbard food web before and after exploitation. Oceanologia 2, 37–56 (2000).
    Google Scholar 
    George, J. C. et al. Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Can. J. Zool. 77, 571–580. https://doi.org/10.1139/z99-015 (1999).Article 

    Google Scholar 
    de Jager, D. et al. High diversity, inbreeding and a dynamic Pleistocene demographic history revealed by African buffalo genomes. Sci. Rep. 11, 4540. https://doi.org/10.1038/s41598-021-83823-8 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Belikov, S. E., Gorbunov, Y. A. & Shil’nikov, V. I. Distribution of pinnipedia and cetacea in Soviet arctic seas and the Bering Sea in winter. Sov. J. Marine Biology 15, 251–257 (1989).
    Google Scholar 
    Gavrilo, M. V. Status of the bowhead whale Balaena mysticetus in the waters of Franz Josef Land Archipelago. Paper SC/66a/BRG20 Presented to the IWC Scientific Committee, May 2015, San Diego, USA (2015).Heide-Jorgensen, M. P., Hansen, R. G. & Shpak, O. V. Distribution, migrations, and ecology of the Atlantic and the Okhotsk Sea Populations. In The Bowhead Whale: Balaena Mysticetus: Biology and Human Interactions (eds George, J. C. & Thewissen, J. G. M.) 57–75 (Academic Press, 2020).
    Google Scholar 
    Petrov, S. A. et al. The results of marine mammal countins during the four expeditions in the Arctic in 2014 and 2015. Collection of scientific papers 9th International Conference ‘Marine mammals of the Holarctic’, Astrakhan, Russia, 2016. 91–102 (2018).Gavrilo, M. V. & Tretiakov V. Y. Observation of bowhead whales (Balaena mysticetus) in the East-Siberian Sea during 2007 season with record-low ice cover – Marine mammals of the Holarctic. In: Collection of Scientific Papers. Odessa, 191–194 (2008).Citta, J. J., Quakenbush, L. & George, J. C. Distribution and behavior of Bering-Chukchi-Beaufort bowhead whales as inferred by telemetry. In The Bowhead Whale: Balaena Mysticetus: Biology and Human Interactions (eds George, J. C. & Thewissen, J. G. M.) 31–56 (Academic Press, 2021). https://doi.org/10.1016/B978-0-12-818969-6.00004-2.Chapter 

    Google Scholar 
    Arnason, Ú., Lammers, F., Kumar, V., Nilsson, M. A. & Janke, A. Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Sci. Adv. 4, eaap9873. https://doi.org/10.1126/sciadv.aap9873 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572. https://doi.org/10.1126/science.1122033 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Corbett-Detig, R., Hartl, D. L. & Sackton, T. B. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 13, e1002112. https://doi.org/10.1371/journal.pbio.1002112 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vachon, F., Whitehead, H. & Frasier, T. R. What factors shape genetic diversity in cetaceans?. Ecol. Evol. 8, 1554–1572. https://doi.org/10.1002/ece3.3727 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. U.S.A. 99, 803–808. https://doi.org/10.1073/pnas.022629899 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bininda-Emonds, O. R. P. Fast genes and slow clades: Comparative rates of molecular evolution in mammals. Evol. Bioinf. 3, 59–85. https://doi.org/10.1177/117693430700300008 (2007).CAS 
    Article 

    Google Scholar 
    Jackson, J. A. et al. Big and slow: Phylogenetic estimates of molecular evolution in baleen whales (Suborder Mysticeti). Mol. Biol. Evol. 26, 2427–2440. https://doi.org/10.1093/molbev/msp169 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1667. https://doi.org/10.1038/ncomms2714 (2013).CAS 
    Article 

    Google Scholar 
    Wiig, Ø., Bachmann, L. & Hufthammer, A. K. Late Pleistocene and Holocene occurrence of bowhead whales (Balaena mysticetus) along the coasts of Norway. Polar Biol. 42, 645–656. https://doi.org/10.1007/s00300-019-02460-0 (2018).Article 

    Google Scholar 
    Alter, S. E. et al. Gene flow on ice: The role of sea ice and whaling in shaping Holarctic genetic diversity and population differentiation in bowhead whales (Balaena mysticetus). Ecol. Evol. 2, 2895–2911. https://doi.org/10.1093/zoolinnean/zlaa082 (2012).Article 

    Google Scholar  More

  • in

    Trajectory to local extinction of an isolated dugong population near Okinawa Island, Japan

    Deterministic logistic modelThe following population dynamics model was applied to reconstruct the initial dugong population size in 1894 from fishery statistics between 1894 and 1914:$$N_{t + 1} = N_{t} left( {1 , + r{-}r , N_{t} /K} right) – C_{t} ,$$where r is the intrinsic rate of population increase, Nt is the population size in year t, K is the carrying capacity, and Ct is the number of individuals removed from the waters near the Ryukyu Islands in year t. The carrying capacity (K) in 1893 was sufficient to sustain the initial population of dugongs at that time (N1894). The intrinsic rate of population increase (r) was given between 1 and 5% within a range of natural one.Approximate Bayesian calculationWe conducted approximate Bayesian calculation (ABC)32 to estimate the number of individuals in 1979 based on bycatch data between 1979 and 2019, and the constraints of the numbers of individuals were 11 in 1997, three in 2007, and almost extinct in 2019. We denoted fecundity as f, the survival rate until 1 year old as s0, the annual survival rate after 1 year old as s, the age at maturity as am, and the physiological longevity as A. We assumed that the sex ratio at birth was 1:1 on average; the age at maturity am was eight years of age33, and the physiological longevity A was 73 years6. We ignored environmental stochasticity because no mass deaths caused by infectious diseases or changes in survival or mortality rates due to environmental fluctuations have not been recorded during this period. We also ignored density effects because the carrying capacity of the location was sufficiently greater than the initial population size, and our goal was to investigate the possibility of population recovery after a decrease in population using a population dynamics model and estimate the natural growth rate during this period. The detailed extinction risk depends on age structure.According to the life history parameters, except the physiological longevity compiled by (ref.33), the annual survival probability of an a year-old individual is s for a = 1, 2, …, 72; s0 for a = 0, and 0 for a = 73; the reproductive probability of an adult female  > 8 years old is 2f. As the number of years for a population to become extinct or recover depends on age composition, age-specific survival, and reproductive rates, we obtain the population growth rate by the maximum eigenvalue of the following Leslie matrix, L = {Lij} (i = 1,…73, j = 1,…,73) as:$$L_{i1} = s_{0} f/2quad {text{for}}quad i ge a_{m} ,L_{i+ 1,i} = squad {text{for}}quad i = 1, ldots ,72,quad {text{and}}quad L_{ij} = 0,{text{otherwise}}{.}$$We used the population growth rate λ, defined by the maximum eigenvalue of L, as an indicator of the population growth rate.We assumed that the sex of each individual in 1979 was randomly sampled by the 1:1 sex ratio, and its age was randomly sampled by the stable age structure that is given by the eigenvector of the Leslie matrix with the maximum eigenvalue. We assumed that the number of individuals at age 1 year in year t + 1, denoted by N1,t+1, is determined by the binomial distribution:$$Prleft[ {N_{1,t + 1} = x} right] = left( {begin{array}{*{20}c} {N_{f} } \ x \ end{array} } right)left( {s_{0} f} right)^{x} left[ {1 – left( {s_{0} f} right)} right]^{{N_{f} – x}} ,$$where Nf represents the number of adult females in year t. We assumed that no twins were born. We assumed that the probability that an individual with age x survived in the next year is s if x = 1 or s0 if x = 0. We also assumed that Ct individuals who died by bycatch were randomly chosen from any sex and age because the age of individuals caught by bycatch is rarely known. We do not know the sex of some individuals.We assumed the following prior distributions for N1997, f, and s: N1979 (in) U(11, 80), f (in) U(1/14, 1/6) if at least one adult male existed in the population, s0 (in) U(0.1, 0.85); and s (in) U(0.8, 0.97), where U(a, b) is the uniform random variable between a and b. These probabilities were constant for each simulation trial from 1997 to 2019. We selected the set of parameters with the population growth rate (λ) obtained when the maximum eigenvalue of the Leslie matrix was between 0.96 and 1.01.We rejected trials that did not satisfy the following summary statistics: N1997 ≥ 11 (intensive survey in 1997), Nt ≥ 3 during 2004–2017 (monitoring), and N2019 ≤ 1 (“local extinction”). We obtained the prior distributions of N1997, f, s0, s, and N2004, and of the  > 130,000 trials in the prior distribution with natural population growth rates λ of 96.1–98.8%, 99.3% were rejected. For 95% of the 1000 adopted trials, N1979 ranged from 14 to 58. If λ  > 98%, N1997 was ≤ 45 for the adopted trials (Extended Data Fig. 7. Even if all the stranding deaths were due to anthropogenic factors, such as the release of dugongs after bycatch or boat strike, the range of N1997 changed to  98%, with only a slight upward shift, but positive natural growth rate (or λ  > 1) was again very unlikely (0.3%) among the adopted trials.Population viability analysis to assess the impact of bycatch on the extinction riskWe re-evaluated the extinction risk with and without bycatch using the 1000 parameter sets of N1979, f, s0, and s that satisfied the summary statistics in the ABC and stochastic individual-based model, beginning from N1979 for the corresponding parameters. For each parameter set, 100 trials were conducted for each scenario to compare the extinction risks. More

  • in

    Water security determines social attitudes about dams and reservoirs in South Europe

    Karr, J.R., & Chu, E.W. Introduction: sustaining living rivers. In Assessing the Ecological Integrity of Running Waters, Developments in Hydrobiology, vol 149 (eds. Jungwirth, M., Muhar, S., & S. Schmutz, S.) 1–14. (Springer: Dordrecht, 2000).Lu, S., Dai, W., Tang, Y. & Guo, M. A review of the impact of hydropower reservoirs on global climate change. Sci. Total Environ. 711, 134996 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Liu, C., Ahn, C. R., An, X. & Lee, S. H. Life-cycle assessment of concrete dam construction: comparison of environmental impact of rock-filled and conventional concrete. J. Constr. Eng. Manage. 20139(12), A4013009. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000752 (2013).Article 

    Google Scholar 
    Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).ADS 
    Article 

    Google Scholar 
    Grigg, N. S. Global water infrastructure: state of the art review. Int. J. Water Resour. Dev. 35(2), 181–205. https://doi.org/10.1080/07900627.2017.1401919 (2019).Article 

    Google Scholar 
    European Environment Agency. European waters: Assessment of status and pressures 2018. https://www.eea.europa.eu/publications/state-of-water (Publications Office of the European Union (2018).Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10(1), 015001 (2015).ADS 
    Article 

    Google Scholar 
    Kim, J. & An, K. G. Integrated ecological river health assessments, based on water chemistry, physical habitat quality and biological integrity. Water 7(11), 6378–6403. https://doi.org/10.3390/w7116378 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561. https://doi.org/10.1038/nature09440 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    McCartney, M. Living with dams: managing the environmental impacts. Water Policy 11(S1), 121–139 (2009).MathSciNet 
    Article 

    Google Scholar 
    Van Cappellen, P. & Maavara, T. Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 16(2), 106–111 (2016).Article 

    Google Scholar 
    Drouineau, H. et al. Freshwater eels: a symbol of the effects of global change. Fish Fish 19(5), 903–930 (2018).Article 

    Google Scholar 
    Jones, J. et al. A comprehensive assessment of stream fragmentation in Great Britain. Sci. Total Environ. 673, 756–762. https://doi.org/10.1016/j.scitotenv.2019.04.125 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).Article 

    Google Scholar 
    Hermoso, V., Clavero, M., Blanco-Garrido, F. & Prenda, J. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss. Ecol. Appl. 21(1), 175–188 (2011).Article 

    Google Scholar 
    Maceda-Veiga, A. Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Rev. Fish Biol. Fish. 23(1), 1–22 (2013).Article 

    Google Scholar 
    Sánchez-Pérez, A. et al. Seasonal use of fish passes in a modified Mediterranean river: first insights of the LIFE+ Segura-Riverlink. FiSHMED 008, 3. https://doi.org/10.29094/FiSHMED.2016.008 (2016).Article 

    Google Scholar 
    Schiermeir, Q. Dam removal restores rivers. Nature 557, 290–291. https://doi.org/10.1038/d41586-018-05182-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Benjankar, R. et al. Dam operations may improve aquatic habitat and offset negative effects of climate change. J. Environ. Manage. 213, 126–134. https://doi.org/10.1016/j.jenvman.2018.02.066 (2018).Article 

    Google Scholar 
    Tupiño Salinas, C. E., Pinto Vidal de Oliveira, V., Brito, L., Ferreira, A. V. & de Araújo, J. C. Social impacts of a large-dam construction: the case of Castanhão, Brazil. Water Int. 44(8), 871–885. https://doi.org/10.1080/02508060.2019.1677303 (2019).Article 

    Google Scholar 
    Opperman, J. J. et al. Valuing Rivers: How the diverse benefits of healthy rivers underpin economies. WWF Global Science (2018).Kellner, E. Social acceptance of a multi-purpose reservoir in a recently deglaciated landscape in the Swiss Alps. Sustainability 11, 3819. https://doi.org/10.3390/su11143819 (2019).Article 

    Google Scholar 
    Boyé, H., & de Vivo, M. The environmental and social acceptability of dams. Field Actions Sci. Rep. http://journals.openedition.org/factsreports/4055 (2016).Wiejaczka, Ł, Piróg, D. & Fidelus-Orzechowska, J. Cost-benefit analysis of dam projects: the perspectives of resettled and non-resettled communities. Water Resour. Manag. 34(1), 343–357 (2020).Article 

    Google Scholar 
    Rodeles, A. A., Galicia, D. & Miranda, R. Recommendations for monitoring freshwater fishes in river restoration plans: a wasted opportunity for assessing impact. Aquat. Conserv. 27(4), 880–885. https://doi.org/10.1002/aqc.2753 (2017).Article 

    Google Scholar 
    Birnie-Gauvin, K., Tummers, J. S., Lucas, M. C. & Aarestrup, K. Adaptive management in the context of barriers in European freshwater ecosystems. J. Environ. Manag. 204, 436–441. https://doi.org/10.1016/j.jenvman.2017.09.023 (2017).Article 

    Google Scholar 
    Yousefi-Sahzabi, A. et al. Turkish challenges for low-carbon society: current status, government policies and social acceptance. Renew. Sustain. Energy Rev. 68, 596–608. https://doi.org/10.1016/j.rser.2016.09.090 (2017).Article 

    Google Scholar 
    Jiang, H., Lin, P. & Qiang, M. Public-opinion sentiment analysis for large hydro projects. J. Construct. Eng. Manage. 142(2), 05015013. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001039 (2016).Article 

    Google Scholar 
    Schulz, C., Martin-Ortega, J. & Glenk, K. Understanding public views on a dam construction boom: the role of values. Water Resour. Manage. 33, 4687–4700. https://doi.org/10.1007/s11269-019-02383-9 (2019).Article 

    Google Scholar 
    Kirchherr, J., Pohlner, H. & Charles, K. J. Cleaning up the big muddy: A meta-synthesis of the research on the social impact of dams. Environ. Impact Assess. Rev. 60, 115–125. https://doi.org/10.1016/j.eiar.2016.02.007 (2016).Article 

    Google Scholar 
    Piróg, D., Fidelus-Orzechowska, J., Wiejaczka, L. & Łajczak, A. Hierarchy of factors affecting the social perception of dam reservoirs. Environ. Impact Assess. Rev. 79, 106301. https://doi.org/10.1016/j.eiar.2019.106301 (2019).Article 

    Google Scholar 
    Arboleya, E., Fernandez, S., Clusa, L., Dopico, E. & Garcia-Vazquez, E. River connectivity is crucial for safeguarding biodiversity but may be socially overlooked. Insights from Spanish University students. Front. Environ. Sci. 9, 643820. https://doi.org/10.3389/fenvs.2021.643820 (2021).Article 

    Google Scholar 
    Gilg, A., & Barr, S. Behavioural attitudes towards water saving? Evidence from a study of environmental actions. Ecol. Econ. 57(3), 400–414. doi:https://doi.org/10.1016/j.ecolecon.2005.04.010 (2006)Schapper, A., Unrau, C., & Killoh, S. Social mobilization against large hydroelectric dams: a comparison of Ethiopia, Brazil, and Panama. Sustain. Develop. 28, 413–423. doi:https://doi.org/10.1002/sd.1995 (2020)Flaminio, S., Piégay, H., & Le Lay, Y-F. To dam or not to dam in an age of anthropocene: insights from a genealogy of media discourses. Anthropocene. 36, 100312, doi:https://doi.org/10.1016/j.ancene.2021.100312 (2021)Bellmore, J. R. et al. Conceptualizing ecological responses to dam removal: If you remove it, what’s to come?. Bioscience 69(1), 26–39. https://doi.org/10.1093/biosci/biy152 (2019).Article 

    Google Scholar 
    Heberlein, T. A. Navigating environmental attitudes. Conserv. Biol. 26(4), 583–585. https://doi.org/10.1111/j.1523-1739.2012.01892.x (2012).Article 

    Google Scholar 
    Lewandowsky, S., Gignac, G. E. & Vaughan, S. The pivotal role of perceived scientific consensus in acceptance of science. Nat. Clim. Change. 3, 399–404. https://doi.org/10.1038/NCLIMATE1720 (2013).ADS 
    Article 

    Google Scholar 
    Schuldt, J. P., Roh, S. & Schwarz, N. Questionnaire design effects in climate change surveys: Implications for the partisan divide. Ann. Am. Acad. Pol. Soc. Sci. 658(1), 67–85. https://doi.org/10.1177/0002716214555066 (2015).Article 

    Google Scholar 
    Bowden, V., Nyberg, D. & Wright, C. Planning for the past: local temporality and the construction of denial in climate change adaptation. Glob. Environ. Change 57, 101939. https://doi.org/10.1016/j.gloenvcha.2019.101939 (2019).Article 

    Google Scholar 
    Venus, T. E., Hinzmann, M., Bakken, T. H., Gerdes, H., Nunes Godinho, F., Hansen, B., Pinheiro, A., & Sauer, J. The public’s perception of run-of-the-river hydropower across Europe. Energy Policy. 140, 111422. doi:https://doi.org/10.1016/j.enpol.2020.111422 (2020)Schober, M. F. The future of face-to-face interviewing. Qual. Assur. Educ. 26(2), 290–302. https://doi.org/10.1108/QAE-06-2017-0033 (2018).MathSciNet 
    Article 

    Google Scholar 
    Couper, M. P. The future of modes of data collection. Public Opin. Q. 75, 889–908. https://doi.org/10.1093/poq/nfr046 (2011).Article 

    Google Scholar 
    Zhang, X., Kuchinke, L., Woud, M. L., Velten, J. & Margraf, J. Survey method matters: Online/offline questionnaires and face-to-face or telephone interviews differ. Comput. Hum. Behav. 71, 172–180. https://doi.org/10.1016/j.chb.2017.02.006 (2017).Article 

    Google Scholar 
    Garcia de Leaniz, C., Berkhuysen, A., & Belletti, B. Beware small dams, they can do damage, too. Nature 570, 164–164; doi:https://doi.org/10.1038/d41586-019-01826-y (2019).Belletti, B., et al. Small isn’t beautiful: the impact of small barriers on longitudinal connectivity of European rivers. Geophys. Res. Abst. 20: EGU2018-PREVIEW (2018).Hophmayer-Tokich, S. & Krozer, Y. Public participation in rural area water management: experiences from the North Sea countries in Europe. Water Int. 33(2), 243–257. https://doi.org/10.1080/02508060802027604 (2008).Article 

    Google Scholar 
    San-Martín, E., Larraz, B. & Gallego, M. S. When the river does not naturally flow: a case study of unsustainable management in the Tagus River (Spain). Water Int. 45(3), 189–221. https://doi.org/10.1080/02508060.2020.1753395 (2020).Article 

    Google Scholar 
    Dunlap, R. E. Environmental concern. The Wiley‐Blackwell Encyclopedia of Globalization. (Wiley, Amsterdam, 2012).European Commission Ethics for researchers. Facilitating Research Excellence in FP7. https://doi.org/10.2777/7491 (Publications Office of the European Union, 2013).Jenner, B. M. & Myers, K. C. Intimacy, rapport, and exceptional disclosure: a comparison of in-person and mediated interview contexts. Int. J. Soc. Res. Methodol. 22(2), 165–177. https://doi.org/10.1080/13645579.2018.1512694 (2019).Article 

    Google Scholar 
    Given, L. M. 100 questions (and answers) about qualitative research (Sage, 2015).
    Google Scholar 
    Saris, W. E. & Gallhofer, I. N. Design, evaluation, and analysis of questionnaires for survey research (Wiley, 2014).Book 

    Google Scholar 
    Avella, J. R. Delphi panels: research design, procedures, advantages, and challenges. IJDS 11(1), 305–321. https://doi.org/10.28945/3561 (2016).Article 

    Google Scholar 
    Vandenplas, C. & Loosveldt, G. Modeling the weekly data collection efficiency of face-to-face surveys: six rounds of the European social survey. J. Surv. Stat. Methodol. 5(2), 212–232. https://doi.org/10.1093/jssam/smw034 (2017).Article 

    Google Scholar 
    Barbero-García, M. I., Vila-Abad, E. & Holgado-Tello, F. P. Tests adaptation in cross-cultural comparative studies. Acción Psicol. 5, 7–16. https://doi.org/10.5944/ap.5.2.454 (2008).Article 

    Google Scholar 
    Flick, U. Triangulation in data collection. The SAGE Handbook of Qualitative Data Collection. (Sage, London, 2018).Heesen, R., Bright, L. K. & Zucker, A. Vindicating methodological triangulation. Synthese 196(8), 3067–3081. https://doi.org/10.1007/s11229-016-1294-7 (2019).MathSciNet 
    Article 

    Google Scholar 
    DeVellis, R. F. Scale development: Theory and applications (Sage, 2012).
    Google Scholar 
    Hammer, Ø., Harper, D.A.T., & Ryan, P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Elect. 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm (2001). More