More stories

  • in

    Active lithoautotrophic and methane-oxidizing microbial community in an anoxic, sub-zero, and hypersaline High Arctic spring

    Pollard W, Omelon C, Andersen D, McKay C. Perennial spring occurrence in the Expedition Fiord area of western Axel Heiberg Island, Canadian High Arctic. Can J Earth Sci. 1999;36:105–20.CAS 
    Article 

    Google Scholar 
    Andersen DT. Cold springs in permafrost on Earth and Mars. J Geophys Res. 2002;107:4–1-4-7.
    Google Scholar 
    Niederberger TD, Perreault NN, Tille S, Lollar BS, Lacrampe-Couloume G, Andersen D, et al. Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J. 2010;4:1326–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goordial J, Lamarche-Gagnon G, Lay CY, Whyte L. Left out in the cold: life in cryoenvironments. In: Seckbach J, Oren A, Stan-Lotter H, editors. Polyextremophiles. New York: Springer; 2013. p. 335–64.Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, et al. Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol. 2005;53:117–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA. Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol. 2000;66:3230–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brown MV, Bowman JP. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol. 2001;35:267–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Murray AE, Kenig F, Fritsen CH, McKay CP, Cawley KM, Edwards R, et al. Microbial life at -13 degrees C in the brine of an ice-sealed Antarctic lake. Proc Natl Acad Sci USA. 2012;109:20626–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, et al. Radar evidence of subglacial liquid water on Mars. Science. 2018;361:490–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lauro SE, Pettinelli E, Caprarelli G, Guallini L, Pio Rossi A, Mattei E, et al. Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nat Astron. 2021;5:63–70.Article 

    Google Scholar 
    Bishop JL, Yesilbas M, Hinman NW, Burton ZFM, Englert PAJ, Toner JD, et al. Martian subsurface cryosalt expansion and collapse as trigger for landslides. Sci Adv. 2021;7:1–13.
    Google Scholar 
    Allen CC, Oehler DZ. A case for ancient springs in Arabia Terra, Mars. Astrobiology. 2008;8:1093–112.CAS 
    PubMed 
    Article 

    Google Scholar 
    Battler MM, Osinski GR, Banerjee NR. Mineralogy of saline perennial cold springs on Axel Heiberg Island, Nunavut, Canada and implications for spring deposits on Mars. Icarus. 2013;224:364–81.CAS 
    Article 

    Google Scholar 
    Leask EK, Ehlmann BL. Evidence for deposition of chloride on Mars from small‐volume surface water events into the Late Hesperian‐Early Amazonian. AGU Adv. 2022;3:1–19.Article 

    Google Scholar 
    Howell SM, Pappalardo RT. NASA’s Europa Clipper-a mission to a potentially habitable ocean world. Nat Commun. 2020;11:1–4.Article 

    Google Scholar 
    Farley KA, Williford KH, Stack KM, Bhartia R, Chen A, de la Torre M, et al. Mars 2020 mission overview. Space Sci Rev. 2020;216:1–41.Article 

    Google Scholar 
    Kargel JS, Kaye JZ, Head JW, Marion GM, Sassen R, Crowley JK, et al. Europa’s crust and ocean: origin, composition, and the prospects for life. Icarus. 2000;148:226–65.CAS 
    Article 

    Google Scholar 
    Taubner RS, Pappenreiter P, Zwicker J, Smrzka D, Pruckner C, Kolar P, et al. Biological methane production under putative Enceladus-like conditions. Nat Commun. 2018;9:1–11.CAS 
    Article 

    Google Scholar 
    Lamarche-Gagnon G, Comery R, Greer CW, Whyte LG. Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 degrees C and hypersaline sediments of a high Arctic permafrost spring. Extremophiles. 2015;19:1–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lay CY, Mykytczuk NC, Yergeau E, Lamarche-Gagnon G, Greer CW, Whyte LG. Defining the functional potential and active community members of a sediment microbial community in a high-arctic hypersaline subzero spring. Appl Environ Microbiol. 2013;79:3637–48.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:1–9.Article 

    Google Scholar 
    Gruber-Vodicka HR, Seah BKB, Pruesse E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems. 2020;5:1–16.Article 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:1–15.Article 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen IA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M, et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 2020;49:D751–D63.PubMed Central 
    Article 

    Google Scholar 
    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi JC, Lee J, et al. Genomes OnLine Database (GOLD) v.8: overview and updates. Nucleic Acids Res. 2020;49:D723–D733.PubMed Central 
    Article 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    Schmieder R, Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE. 2011;6:1–11.Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Royo-Llonch M, Sanchez P, Ruiz-Gonzalez C, Salazar G, Pedros-Alio C, Sebastian M, et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat Microbiol. 2021;6:1561–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev. 2009;33:999–1043.CAS 
    PubMed 
    Article 

    Google Scholar 
    Boden R. Reclassification of Halothiobacillus hydrothermalis and Halothiobacillus halophilus to Guyparkeria gen. nov. in the Thioalkalibacteraceae fam. nov., with emended descriptions of the genus Halothiobacillus and family Halothiobacillaceae. Int J Syst Evol Microbiol. 2017;67:3919–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sorokin DY, Abbas B, van Zessen E, Muyzer G. Isolation and characterization of an obligately chemolithoautotrophic Halothiobacillus strain capable of growth on thiocyanate as an energy source. FEMS Microbiol Lett. 2014;354:69–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 2017;11:1545–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Headd B, Engel AS. Evidence for niche partitioning revealed by the distribution of sulfur oxidation genes collected from areas of a terrestrial sulfidic spring with differing geochemical conditions. Appl Environ Microbiol. 2013;79:1171–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preisig O, Zufferey R, Thoney-Meyer L, Appleby CA, Hennecke H. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol. 1996;178:1532–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, et al. A contemporary microbially maintained subglacial ferrous “ocean”. Science. 2009;324:397–400.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA. 2015;112:4015–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd KG, Lapham L, Teske A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol. 2006;72:7218–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maignien L, Parkes RJ, Cragg B, Niemann H, Knittel K, Coulon S, et al. Anaerobic oxidation of methane in hypersaline cold seep sediments. FEMS Microbiol Ecol. 2013;83:214–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Campen R, Kowalski J, Lyons WB, Tulaczyk S, Dachwald B, Pettit E, et al. Microbial diversity of an Antarctic subglacial community and high-resolution replicate sampling inform hydrological connectivity in a polar desert. Environ Microbiol. 2019;21:2290–306.PubMed 
    Article 

    Google Scholar 
    Cooper ZS, Rapp JZ, Carpenter SD, Iwahana G, Eicken H, Deming JW. Distinctive microbial communities in subzero hypersaline brines from Arctic coastal sea ice and rarely sampled cryopegs. FEMS Microbiol Ecol. 2019;95:1–15.Article 

    Google Scholar 
    Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R, et al. Anaerobic methanotrophic communities thrive in deep submarine permafrost. Sci Rep. 2018;8:1–13.CAS 

    Google Scholar 
    Lay CY, Mykytczuk NC, Niederberger TD, Martineau C, Greer CW, Whyte LG. Microbial diversity and activity in hypersaline high Arctic spring channels. Extremophiles. 2012;16:177–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bhattarai S, Cassarini C, Lens PNL. Physiology and distribution of archaeal methanotrophs that couple anaerobic oxidation of methane with sulfate reduction. Microbiol Mol Biol Rev. 2019;83:1–31.Article 

    Google Scholar 
    Kleindienst S, Ramette A, Amann R, Knittel K. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol. 2012;14:2689–710.CAS 
    PubMed 
    Article 

    Google Scholar 
    Timmers PH, Welte CU, Koehorst JJ, Plugge CM, Jetten MS, Stams AJ. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea. 2017;2017:1–22.Article 

    Google Scholar 
    Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan Z, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 2020;14:1030–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013;500:567–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cai C, Leu AO, Xie GJ, Guo J, Feng Y, Zhao JX, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 2018;12:1929–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oshkin IY, Wegner CE, Luke C, Glagolev MV, Filippov IV, Pimenov NV, et al. Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers. Appl Environ Microbiol. 2014;80:5944–54.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cabrol L, Thalasso F, Gandois L, Sepulveda-Jauregui A, Martinez-Cruz K, Teisserenc R, et al. Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes. Sci Total Environ. 2020;736:1–16.Article 

    Google Scholar 
    Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta. 2005;69:4267–81.CAS 
    Article 

    Google Scholar 
    Knittel K, Losekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol. 2005;71:467–79.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schubert CJ, Coolen MJ, Neretin LN, Schippers A, Abbas B, Durisch-Kaiser E, et al. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environ Microbiol. 2006;8:1844–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang J, Hua M, Cai C, Hu J, Wang J, Yang H, et al. Spatial-temporal pattern of sulfate-dependent anaerobic methane oxidation in an intertidal zone of the East China Sea. Appl Environ Microbiol. 2019;85:1–15.
    Google Scholar 
    Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Perreault NN, Greer CW, Andersen DT, Tille S, Lacrampe-Couloume G, Lollar BS, et al. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high Arctic. Appl Environ Microbiol. 2008;74:6898–907.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nigro LM, Elling FJ, Hinrichs KU, Joye SB, Teske A. Microbial ecology and biogeochemistry of hypersaline sediments in Orca Basin. PLoS ONE. 2020;15:1–25.Article 

    Google Scholar 
    Rath KM, Fierer N, Murphy DV, Rousk J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2019;13:836–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yoon JH, Lee MH, Kang SJ, Oh TK. Salegentibacter salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol. 2008;58:365–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sangwan N, Xia F, Gilbert JA. Recovering complete and draft population genomes from metagenome datasets. Microbiome. 2016;4:1–11.Article 

    Google Scholar 
    Goordial J, Raymond-Bouchard I, Zolotarov Y, de Bethencourt L, Ronholm J, Shapiro N, et al. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol Ecol. 2016;92:1–11.
    Google Scholar 
    Laso-Perez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature. 2016;539:396–401.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dombrowski N, Teske AP, Baker BJ. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun. 2018;9:1–13.CAS 
    Article 

    Google Scholar 
    Oren A. Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol. 2011;13:1908–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gunde-Cimerman N, Plemenitas A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42:353–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hechler T, Pfeifer F. Anaerobiosis inhibits gas vesicle formation in halophilic. Archaea Mol Microbiol. 2009;71:132–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ Microbiol. 2012;14:1333–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 2015;526:587–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio. 2017;8:1–14.Article 

    Google Scholar 
    Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol. 2018;20:1651–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Youssef NH, Rinke C, Stepanauskas R, Farag I, Woyke T, Elshahed MS. Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum ‘Diapherotrites’. ISME J. 2015;9:447–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol. 2018;16:629–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett. 2019;366:1–12.Article 

    Google Scholar 
    Wong HL, MacLeod FI, White RA 3rd, Visscher PT, Burns BP. Microbial dark matter filling the niche in hypersaline microbial mats. Microbiome. 2020;8:1–14.Article 

    Google Scholar 
    Schut GJ, Nixon WJ, Lipscomb GL, Scott RA, Adams MW. Mutational analyses of the enzymes involved in the metabolism of hydrogen by the hyperthermophilic archaeon Pyrococcus furiosus. Front Microbiol. 2012;3:1–6.Article 

    Google Scholar 
    Ruuskanen MO, Colby G, St. Pierre KA, St. Louis VL, Aris‐Brosou S, Poulain AJ. Microbial genomes retrieved from High Arctic lake sediments encode for adaptation to cold and oligotrophic environments. Limnol Oceanogr. 2020;65:S233–S247.CAS 
    Article 

    Google Scholar 
    Vigneron A, Cruaud P, Lovejoy C, Vincent WF. Genomic evidence of functional diversity in DPANN archaea, from oxic species to anoxic vampiristic consortia. ISME Commun. 2022;2:1–10.Article 

    Google Scholar 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meheust R, Castelle CJ, Matheus Carnevali PB, Farag IF, He C, Chen LX, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 2020;14:2907–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hahn CR, Farag IF, Murphy CL, Podar M, Elshahed MS, Youssef NH. Microbial diversity and sulfur cycling in an early earth analogue: from ancient novelty to modern commonality. mBio. https://doi.org/10.1128/mbio.00016-22. (in press).Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG, Boston PJ, et al. A new analysis of Mars “Special Regions”: findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology. 2014;14:887–968.PubMed 
    Article 

    Google Scholar 
    Harris RL, Schuerger AC, Wang W, Tamama Y, Garvin ZK, Onstott TC. Transcriptional response to prolonged perchlorate exposure in the methanogen Methanosarcina barkeri and implications for Martian habitability. Sci Rep. 2021;11:1–16.Article 

    Google Scholar 
    Webster CR, Mahaffy PR, Atreya SK, Moores JE, Flesch GJ, Malespin C, et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science. 2018;360:1093–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Oehler DZ, Etiope G. Methane seepage on Mars: where to look and why. Astrobiology. 2017;17:1233–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marlow JJ, Larowe DE, Ehlmann BL, Amend JP, Orphan VJ. The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars. Astrobiology. 2014;14:292–307.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berg JS, Ahmerkamp S, Pjevac P, Hausmann B, Milucka J, Kuypers MMM. How low can they go? Aerobic respiration by microorganisms under apparent anoxia. FEMS Microbiol Rev. 2022;fuac006. https://doi.org/10.1093/femsre/fuac006.Berg JS, Pjevac P, Sommer T, Buckner CRT, Philippi M, Hach PF, et al. Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters. Environ Microbiol. 2019;21:1611–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stamenković V, Ward LM, Mischna M, Fischer WW. O2 solubility in Martian near-surface environments and implications for aerobic life. Nat Geosci. 2018;11:905–9.Article 

    Google Scholar  More

  • in

    The critical benefits of snowpack insulation and snowmelt for winter wheat productivity

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Sindelar, A. J. et al. Winter oilseed production for biofuel in the US Corn Belt: opportunities and limitations. GCB Bioenergy 9, 508–524 (2017).CAS 

    Google Scholar 
    Stöckle, C. O. et al. Evaluating opportunities for an increased role of winter crops as adaptation to climate change in dryland cropping systems of the U.S. Inland Pacific Northwest. Clim. Change 146, 247–261 (2018).
    Google Scholar 
    Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).
    Google Scholar 
    Seifert, C. A., Azzari, G. & Lobell, D. B. Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environ. Res. Lett. 13, 064033 (2018).
    Google Scholar 
    Marcillo, G. S. & Miguez, F. E. Corn yield response to winter cover crops: an updated meta-analysis. J. Soil Water Conserv. 72, 226–239 (2017).
    Google Scholar 
    Zhu, L., Ives, A. R., Zhang, C., Guo, Y. & Radeloff, V. C. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Change 9, 886–893 (2019).
    Google Scholar 
    Mankin, J. S. & Diffenbaugh, N. S. Influence of temperature and precipitation variability on near-term snow trends. Clim. Dynam. 45, 1099–1116 (2015).
    Google Scholar 
    Zhu, L., Radeloff, V. C. & Ives, A. R. Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products. Remote Sens. Environ. 191, 168–178 (2017).
    Google Scholar 
    Huning, L. S. & AghaKouchak, A. Global snow drought hot spots and characteristics. Proc. Natl Acad. Sci. USA 117, 19753–19759 (2020).CAS 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).
    Google Scholar 
    Trnka, M. et al. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 4, 637–643 (2014).
    Google Scholar 
    Li, D., Wrzesien, M. L., Durand, M., Adam, J. & Lettenmaier, D. P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172 (2017).
    Google Scholar 
    Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).
    Google Scholar 
    Acevedo, E., Silva, P. & Silva, H. in Bread Wheat: Improvement and Production (eds Curtis, B. C. et al.) 39–70 (FAO Plant Production and Protection, 2002).Baker, J. T., Pinter, P. J., Reginato, R. J. & Kanemasu, E. T. Effects of temperature on leaf appearance in spring and winter wheat cultivars. Agron. J. 78, 605–613 (1986).
    Google Scholar 
    Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).CAS 

    Google Scholar 
    Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).
    Google Scholar 
    Talukder, A. S. M. H. M., McDonald, G. K. & Gill, G. S. Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Res. 160, 54–63 (2014).
    Google Scholar 
    Farooq, M., Bramley, H., Palta, J. A. & Siddique, K. H. M. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 30, 491–507 (2011).Cuadra, S. V., Kimball, B. A., Boote, K. J., Suyker, A. E. & Pickering, N. Energy balance in the DSSAT-CSM-CROPGRO model. Agric. For. Meteorol. 297, 108241 (2021).
    Google Scholar 
    Harder, P., Helgason, W. D. & Pomeroy, J. W. Modeling the snowpack energy balance during melt under exposed crop stubble. J. Hydrometeorol. 19, 1191–1214 (2018).
    Google Scholar 
    Barlow, K. M., Christy, B. P., O’Leary, G. J., Riffkin, P. A. & Nuttall, J. G. Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crops Res. 171, 109–119 (2015).
    Google Scholar 
    Wang, W. et al. Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region. Cryosphere 10, 1721–1737 (2016).
    Google Scholar 
    Seifert, C. A. & Lobell, D. B. Response of double cropping suitability to climate change in the United States. Environ. Res. Lett. 10, 024002 (2015).
    Google Scholar 
    Pullens, J. W. M. et al. Risk factors for European winter oilseed rape production under climate change. Agric. For. Meteorol. 272–273, 30–39 (2019).
    Google Scholar 
    Chopra, R. et al. Identification and stacking of crucial traits required for the domestication of pennycress. Nat. Food 1, 84–91 (2020).
    Google Scholar 
    Crews, T. E., Carton, W. & Olsson, L. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 1, e11 (2018).Harkness, C. et al. Adverse weather conditions for UK wheat production under climate change. Agric. Meteorol. 282–283, 107862 (2020).
    Google Scholar 
    Schierhorn, F., Hofmann, M., Gagalyuk, T., Ostapchuk, I. & Müller, D. Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages. Clim. Change 169, 39 (2021).Michel, S. et al. Improving and maintaining winter hardiness and frost tolerance in bread wheat by genomic selection. Front. Plant Sci. 10, 1195 (2019).
    Google Scholar 
    Mahfoozi, S., Limin, A. E. & Fowler, D. B. Influence of vernalization and photoperiod responses on cold hardiness in winter cereals. Crop Sci. 41, 1006–1011 (2001).
    Google Scholar 
    Dutra, E. et al. An improved snow scheme for the ECMWF land surface model: description and offline validation. J. Hydrometeorol. 11, 899–916 (2010).
    Google Scholar 
    Ge, Y. & Gong, G. Land surface insulation response to snow depth variability. J. Geophys. Res. Atmos. 115, 8107 (2010).
    Google Scholar 
    Hunt, J. R. et al. Early sowing systems can boost Australian wheat yields despite recent climate change. Nat. Clim. Change 9, 244–247 (2019).
    Google Scholar 
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020) .Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).
    Google Scholar 
    Shimoda, S. et al. Effects of snow compaction ‘yuki-fumi’ on soil frost depth and volunteer potato control in potato–wheat rotation system in Hokkaido. Plant Prod. Sci. 24, 186–197 (2021).CAS 

    Google Scholar 
    Luojus, K. et al. GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset. Sci. Data 8, 163 (2021)..IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions Version 1 (NSIDC, 2008).Jing, Q. et al. Assessing the options to improve regional wheat yield in Eastern Canada using the CSM–CERES–wheat model. Agron. J. 109, 510–523 (2017).
    Google Scholar 
    Vogel, F. A. & Bange, G. A. Understanding USDA Crop Forecasts (USDA, 1999).Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).
    Google Scholar 
    Brown, R. D. & Brasnett, B. Daily Snow Depth Analysis Data Version 1 (Canadian Meteorological Centre, 2010).Brasnett, B. A global analysis of snow depth for numerical weather prediction. J. Appl. Meteorol. Climatol. 38, 726–740 (1999).
    Google Scholar 
    Toure, A. M., Reichle, R. H., Forman, B. A., Getirana, A. & De Lannoy, G. J. M. Assimilation of MODIS snow cover fraction observations into the NASA catchment land surface model. Remote Sens. 10, 316 (2018).
    Google Scholar 
    Snauffer, A. M., Hsieh, W. W. & Cannon, A. J. Comparison of gridded snow water equivalent products with in situ measurements in British Columbia, Canada. J. Hydrol. 541, 714–726 (2016).
    Google Scholar 
    Census of Agriculture (USDA National Agricultural Statistics Service, 2017).Skinner, D. Z. & Mackey, B. Freezing tolerance of winter wheat plants frozen in saturated soil. Field Crops Res. 113, 335–341 (2009).
    Google Scholar 
    Lollato, R. P. et al. Climate-risk assessment for winter wheat using long-term weather data. Agron. J. 112, 2132–2151 (2020).
    Google Scholar 
    Siebers, M. H. et al. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob. Change Biol. 21, 3114–3125 (2015).
    Google Scholar 
    Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 89, 1–16 (2004).
    Google Scholar 
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).
    Google Scholar 
    Chen, M., Griffis, T. J., Baker, J., Wood, J. D. & Xiao, K. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes. J. Geophys. Res. Biogeosci. 120, 310–325 (2015).CAS 

    Google Scholar 
    Larson, K. M. & Small, E. E. Daily Snow Depth and SWE from GPS Signal-to-Noise Ratios Version 1 (NSIDC, 2017).Sturm, M. et al. Estimating snow water equivalent using snow depth data and climate classes. J. Hydrometeorol. 11, 1380–1394 (2010).
    Google Scholar 
    McCabe, G. J. & Wolock, D. M. Recent declines in western U.S. snowpack in the context of twentieth-century climate variability. Earth Interact. 13, 1–15 (2009).
    Google Scholar 
    Wu, X. et al. Uneven winter snow influence on tree growth across temperate China. Glob. Change Biol. 25, 144–154 (2019).
    Google Scholar 
    Qiao, S. et al. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5, 014010 (2010).
    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).CAS 

    Google Scholar 
    Xie, Y., Gibbs, H. K. & Lark, T. J. Landsat-based Irrigation Dataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997–2017. Earth Syst. Sci. Data 13, 5689–5710 (2021).
    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).CAS 

    Google Scholar 
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Elliott, J. et al. The global gridded crop model intercomparison: data and modeling protocols for phase 1 (v1.0). Geosci. Model Dev. 8, 261–277 (2015).
    Google Scholar 
    Li, X., Shen, Z., Harri, A. & Coble, K. H. Comparing survey-based and programme-based yield data: implications for the U.S. Agricultural Risk Coverage-County programme. Geneva Pap. Risk Insur. Issues Pract. 45, 184–202 (2020).
    Google Scholar 
    Hawkins, E., Osborne, T. M., Ho, C. K. & Challinor, A. J. Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric. Meteorol. 170, 19–31 (2013).
    Google Scholar 
    Ho, C. K., Stephenson, D. B., Collins, M., Ferro, C. A. T. & Brown, S. J. Calibration strategies: a source of additional uncertainty in climate change projections. Bull. Am. Meteorol. Soc. 93, 21–26 (2012).
    Google Scholar  More

  • in

    Fusarium species isolated from post-hatchling loggerhead sea turtles (Caretta caretta) in South Africa

    Zhang, N. et al. Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J. Clin. Microbiol. 44, 2186–2190 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Donnell, K. et al. Molecular Phylogenetic Diversity, Multilocus Haplotype Nomenclature, and In Vitro antifungal resistance within the Fusarium solani species complex. J. Clin. Microbiol. 46, 2477–2490 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Schroers, H. J. et al. Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia 108, 806–819 (2016).CAS 
    PubMed 

    Google Scholar 
    O’Donnell, K. Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92, 919–938 (2000).
    Google Scholar 
    Gleason, F., Allerstorfer, M. & Lilje, O. Newly emerging diseases of marine turtles, especially sea turtle egg fusariosis (SEFT), caused by species in the Fusarium solani complex (FSSC). Mycology 11, 184–194 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernando, N. et al. Fatal Fusarium solani species complex infections in elasmobranchs: the first case report for black spotted stingray (Taeniura melanopsila) and a literature review. Mycoses 58, 422–431 (2015).PubMed 

    Google Scholar 
    Sarmiento-Ramírez, J. M. et al. Global distribution of two fungal pathogens threatening endangered Sea Turtles. PLoS ONE 9, e85853 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayayo, E., Pujol, I. & Guarro, J. Experimental pathogenicity of four opportunist Fusarium species in a murine model. J. Med. Microbiol. 48, 363–366 (1999).CAS 
    PubMed 

    Google Scholar 
    Muhvich, A. G., Reimschuessel, R., Lipsky, M. M. & Bennett, R. O. Fusarium solani isolated from newborn bonnethead sharks, Sphyrna tiburo (L.). J. Fish Dis. 12, 57–62 (1989).
    Google Scholar 
    Crow, G. L., Brock, J. A. & Kaiser, S. Fusarium solani fungal infection of the lateral line canal system in captive scalloped hammerhead sharks (Sphyrna lewini) in Hawaii. J. Wildl. Dis. 31, 562–565 (1995).CAS 
    PubMed 

    Google Scholar 
    Cabañes, F. J. et al. Cutaneous hyalohyphomycosis caused by Fusarium solani in a loggerhead sea turtle (Caretta caretta L.). J. Clin. Microbiol. 35, 3343–3345 (1997).PubMed 
    PubMed Central 

    Google Scholar 
    Cafarchia, C. et al. Fusarium spp. in Loggerhead Sea Turtles (Caretta caretta): From Colonization to Infection. Vet. Pathol. 57, 139–146 (2019).PubMed 

    Google Scholar 
    Garcia-Hartmann, M., Hennequin, C., Catteau, S., Béatini, C. & Blanc, V. Cas groupés d’infection à Fusarium solani chez de jeunes tortues marines Caretta caretta nées en captivité. J. Mycol. Med. 28, 113–118 (2017).
    Google Scholar 
    Orós, J., Delgado, C., Fernández, L. & Jensen, H. E. Pulmonary hyalohyphomycosis caused by Fusarium spp in a Kemp’s ridley sea turtle (Lepidochelys kempi): An immunohistochemical study. N. Z. Vet. J. 52, 150–152 (2004).PubMed 

    Google Scholar 
    Candan, A. Y., Katılmış, Y. & Ergin, Ç. First report of Fusarium species occurrence in loggerhead sea turtle (Caretta caretta) nests and hatchling success in Iztuzu Beach, Turkey. Biologia (Bratisl). https://doi.org/10.2478/s11756-020-00553-4 (2020).Article 

    Google Scholar 
    Sarmiento-Ramirez, J. M., van der Voort, M., Raaijmakers, J. M. & Diéguez-Uribeondo, J. Unravelling the Microbiome of eggs of the endangered Sea Turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme. PLoS ONE 9, e95206 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sarmiento-Ramírez, J. M. et al. Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiol. Lett. 312, 192–200 (2010).PubMed 

    Google Scholar 
    Sarmiento-Ramirez, J. M., Sim, J., Van West, P. & Dieguez-Uribeondo, J. Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island. J. Mar. Biol. Assoc. United Kingdom 97, 661–667 (2017).CAS 

    Google Scholar 
    Hoh, D., Lin, Y., Liu, W., Sidique, S. & Tsai, I. Nest microbiota and pathogen abundance in sea turtle hatcheries. Fungal Ecol. 47, 100964 (2020).
    Google Scholar 
    Güçlü, Ö., Bıyık, H. & Şahiner, A. Mycoflora identified from loggerhead turtle (Caretta caretta) egg shells and nest sand at Fethiye beach, Turkey. Afr. J. Microbiol. Res. 4, 408–413 (2010).
    Google Scholar 
    Gambino, D. et al. First data on microflora of loggerhead sea turtle (Caretta caretta) nests from the coastlines of Sicily. Biol. Open 9, bio045252 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bailey, J. B., Lamb, M., Walker, M., Weed, C. & Craven, K. S. Detection of potential fungal pathogens Fusarium falciforme and F. keratoplasticum in unhatched loggerhead turtle eggs using a molecular approach. Endanger. Species Res. 36, 111–119 (2018).
    Google Scholar 
    Summerbell, R. C. & Schroers, H.-J. Analysis of Phylogenetic Relationship of Cylindrocarpon lichenicola and Acremonium falciforme to the Fusarium solani Species Complex and a Review of similarities in the spectrum of opportunistic infections caused by these fungi. J. Clin. Microbiol. 40, 2866–2875 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nel, R., Punt, A. E. & Hughes, G. R. Are coastal protected areas always effective in achieving population recovery for nesting sea turtles?. PLoS ONE 8, e63525 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Branch, G. & Branch, M. Living Shores. (Pippa Parker, 2018).Fuller, M. S., Fowles, B. E. & Mclaughlin, D. J. Isolation and pure culture study of marine phycomycetes. Mycologia 56, 745–756 (1964).
    Google Scholar 
    Greeff, M. R., Christison, K. W. & Macey, B. M. Development and preliminary evaluation of a real-time PCR assay for Halioticida noduliformans in abalone tissues. Dis. Aquat. Organ. 99, 103–117 (2012).CAS 
    PubMed 

    Google Scholar 
    Sandoval-Denis, M., Lombard, L. & Crous, P. W. Back to the roots: a reappraisal of Neocosmospora. Persoonia Mol. Phylogeny Evol. Fungi 43, 90–185 (2019).CAS 

    Google Scholar 
    O’Donnell, K., Cigelnik, E. & Nirenberg, H. I. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90, 465–493 (1998).
    Google Scholar 
    Geiser, D. M. et al. FUSARIUM-ID v. 1. 0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110, 473–479 (2004).ADS 
    CAS 

    Google Scholar 
    O’Donnell, K. et al. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and FUSARIUM MLST. Mycologia 104, 427–445 (2012).PubMed 

    Google Scholar 
    Chehri, K., Salleh, B. & Zakaria, L. Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microb. Ecol. 69, 457–471 (2015).PubMed 

    Google Scholar 
    Lanfear, R., Frandsen, P., Wright, A., Senfeld, T. & Calcott, B. PartionFinder 2: new methods for selecting partioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. https://doi.org/10.1093/molbev/msw260 (2016).Article 

    Google Scholar 
    Ronquist, F. et al. Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Leslie, J. F. & Summerell, B. A. The Fusarium Laboratory manual (Blackwell Publishing, Hoboken, 2006).
    Google Scholar 
    Fisher, N. L., Burgess, L. W., Toussoun, T. A. & Nelson, P. E. Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72, 151 (1982).
    Google Scholar 
    Smyth, C. W. et al. Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF). PLOS Pathog. 15, e1007682 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rachowicz, L. J. et al. The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife. Conserv. Biol. 19, 1441–1448 (2005).
    Google Scholar 
    Lombard, L., Sandoval-Denis, M., Cai, L. & Crous, P. W. Changing the game: resolving systematic issues in key Fusarium species complexes. Persoonia Mol. Phylogeny Evol. Fungi 43, i–ii (2019).CAS 

    Google Scholar 
    Short, D. P. G., Donnell, K. O., Zhang, N., Juba, J. H. & Geiser, D. M. Widespread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains. J. Clin. Microbiol. 49, 4264–4272 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    White, T. J., Burns, T., Lee, S. & Taylor, J. Amplification and direct identification of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a guide to methods and applications (eds Innis, M. A. et al.) 315–322 (Academic Press, San Diego, 1990).
    Google Scholar 
    Sekimoto, S., Hatai, K. & Honda, D. Molecular phylogeny of an unidentified Haliphthoros-like marine oomycete and Haliphthoros milfordensis inferred from nuclear-encoded small- and large-subunit rRNA genes and mitochondrial-encoded cox2 gene. Mycoscience 48, 212–221 (2007).CAS 

    Google Scholar 
    Petersen, A. B. & Rosendahl, S. Ø. Phylogeny of the Peronosporomycetes (Oomycota) based on partial sequences of the large ribosomal subunit (LSU rDNA). Mycol. Res. 104, 1295–1303 (2000).CAS 

    Google Scholar 
    O’Donnell, K. et al. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J. Clin. Microbiol. 45, 2235–2248 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Migheli, Q. et al. Molecular Phylogenetic diversity of dermatologic and other human pathogenic fusarial isolates from hospitals in Northern and Central Italy. J. Clin. Microbiol. 48, 1076–1084 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Herding then farming in the Nile Delta

    Butzer, K. W. Early Hydraulic Civilization in Egypt: a Study in Cultural Ecology (University of Chicago Press, Chicago, 1976).Said, R. The River Nile: Geology, Hydrology and Utilization (Pergamon Press, Oxford, 1993).Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc. Natl Acad. Sci. USA 105, 11597–11604 (2008).CAS 
    Article 

    Google Scholar 
    Shirai, N. The Archaeology of the First Farmer-Herders in Egypt: New Insights into the Fayum Epipalaeolithic and Neolithic (Uni. Leiden Press, the Netherlands, 2010).Garcea, E. A. A. Multi-stage dispersal of Southwest Asian domestic livestock and the path of pastoralism in the Middle Nile Valley. Quat. Int. 412, 54–64 (2016).Article 

    Google Scholar 
    Wilson, P. Prehistoric settlement in the western Delta: a regional and local view from Sais (Sa el-Hagar). J. Egypt. Archaeol. 92, 75–126 (2006).Article 

    Google Scholar 
    Van Geel, B. Non-Pollen Palynomorphs. Smol J. P., Birks H. J. B., Last W. M., Bradley R. S., Alverson K. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, 3 (Springer, Dordrecht, 2002).Van Geel, B., Hallewas, J. P. & Pals, J. P. A Late Holocene deposit under the Westfriese Zeedijk near Nkhuizen (Prov. of N-Holland, The Netherlands): palaeoecological and archaeological aspects. Rev. Palaeobot. Palyno 38, 269–335 (1983).Article 

    Google Scholar 
    Van Geel, B. A paleoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev. Palaeobot. Palyno 25, 1–120 (1978).Article 

    Google Scholar 
    Marinova, E. & Atanassova, J. Anthropogenic impact on vegetation and environment during the bronze age in the area of Lake Durankulak, NE Bulgaria: pollen, microscopic charcoal, non-pollen palynomorphs and plant macrofossils. Rev. Palaeobot. Palyno. 141, 165–178 (2006).Article 

    Google Scholar 
    Van Geel, B. et al. Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev. Palaeobot. Palynol. 164, 174–190 (2011).Article 

    Google Scholar 
    Gelorini, V., Verbeken, A., van Geel, B. B., Cocquyt, C. & Verschuren, D. Modern non-pollen palynomorphs from East African lake sediments. Rev. Palaeobot. Palyno 164, 143–173 (2011).Article 

    Google Scholar 
    Hillbrand, M., Geel, B. V., Hasenfratz, A., Hadorn, P. & Haas, J. N. Non-pollen palynomorphs show human-and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 BC). Holocene 24, 559–568 (2014).Article 

    Google Scholar 
    Stanley, J. D. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).Article 

    Google Scholar 
    Pennington, B. T., Sturt, F., Wilson, P., Rowland, J. & Brown, A. G. The fluvial evolution of the Holocene Nile Delta. Quarter. Sci. Rev 170, 212–231 (2017).Article 

    Google Scholar 
    Negm, A. M., Saavedra O., & El-Adawy A. In The Handbook of Environmental Chemistry, 55 (Springer, 2017).Viste, E. & Sorteberg, A. The effect of moisture transport variability on Ethiopian summer precipitation. Int. J. Climatol. 33, 3106–3123 (2013).Article 

    Google Scholar 
    Revel, M., Colin, C., Bernasconi, S., Combourieu-Nebout, N. & Mascle, J. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan. Reg. Environ. Change 14, 1685–1696 (2014).Article 

    Google Scholar 
    Wijmstra, T. A., Smit, A., Van der Hammen, T. & Van Geel, B. Vegetational succession, fungal spores and short-term cycles in pollen diagrams from the Wietmarscher Moor. Acta Botanica Neerlandica 20, 401–410 (1971).Article 

    Google Scholar 
    Wilson, P. In The Nile Delta as a centre of cultural interactions between Upper Egypt and the Southern Levant in the 4th millennium BC, 299–318 (Poznań Archaeological Museum, Poznan, 2014).Zong, Y. Q. et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449, 459–462 (2007).CAS 
    Article 

    Google Scholar 
    Yang, S. et al. Modern pollen assemblages from cultivated rice fields and rice pollen morphology: application to a study of ancient land use and agriculture in the Pearl River delta, China. The Holocene 22, 1393–1404 (2012).Article 

    Google Scholar 
    He, K. et al. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu Culture in the lower Yangtze River. China. Quarter. Sci. Rev. 188, 90–103 (2018).Article 

    Google Scholar 
    Edwards, K. J., Whittington, G., Robinson, M. & Richter, D. Palaeoenvironments, the archaeological record and cereal pollen detection at Clickimin, Shetland, Scotland. J. Archaeo. Sci. 32, 1741–1756 (2005).Article 

    Google Scholar 
    Andersen, S. T. Identification of Wild Grass and Cereal Pollen [fossil Pollen, Annulus Diameter, Surface Sculpturing], Aarbog, 69–92 (Danmarks Geologiske Undersoegelse, 1979).Tweddle, J. C., Edwards, K. J. & Fieller, N. R. Multivariate statistical and other approaches for the separation of cereal from wild Poaceae pollen using a large Holocene dataset. Veg. Hist. Archaeobot. 14, 15–30 (2005).Article 

    Google Scholar 
    Joly, C., Barille, L., Barreau, M., Mancheron, A. & Visset, L. Grain and annulus diameter as criteria for distinguishing pollen grains of cereals from wild grasses. Rev. Palaeobot. Palynol. 146, 221–233 (2007).Article 

    Google Scholar 
    Salgado-Labouriau, M. L. & Rinaldi, M. Palynology of Gramineae of the Venezuelan mountains. Grana Palynologica 29, 119–128 (1990).Article 

    Google Scholar 
    Josefsson, T., Ramqvist, P. H. & Rnberg, G. The history of early cereal cultivation in northernmost Fennoscandia as indicated by palynological research. Veg. Hist. Archaeobot. 23, 821–840 (2014).Article 

    Google Scholar 
    Zhao, X. S. et al. Climate-driven early agricultural origins and development in the Nile Delta. Egypt. J. Archaeo. Sci. 136, 105498 (2021).Article 

    Google Scholar 
    Willcox, G. The distribution, natural habitats and availability of wild cereals in relation to their domestication in the near east: multiple events, multiple centres. Veg. Hist. Archaeobot. 14, 534–541 (2005).Article 

    Google Scholar 
    Riemer, H. Barbara e. barich. People, water and grain: the beginnings of domestication in the Sahara and the Nile Valley, Roma 1998. Archol. Inf. 24, 117–119 (2014).
    Google Scholar 
    Arranz-Otaegui, A., Colledge, S., Zapata, L., Teira-Mayolini, L. C. & Juan, J. Regional diversity on the timing for the initial appearance of cereal cultivation and domestication in Southwest Asia. Proc. Natl Acad. Sci. USA 113, 201612797 (2016).Article 

    Google Scholar 
    Zohary, D., Hopf, M. & Weiss, E. Domestication of plants in the Old World (Oxford University Press, Oxford, 2012).Kvavadze, E. & Bitadze, N. L. Special issue: fresh insights into the palaeoecological and palaeoclimatological value of quaternary non-pollen palynomorphs || Fibres of Linum (flax), Gossypium (cotton) and animal wool as non-pollen palynomorphs in the Late Bronze Age burials of Saphar-Kharaba, southern Georgia. Veg. Hist. Archaeobot. 19, 479–494 (2010).Article 

    Google Scholar 
    Karg, S. New research on the cultural history of the useful plant Linum usitatissimum L. (flax), a resource for food and textiles for 8,000 years. Veg. Hist. Archaeobot. 20, 507–508 (2011).Article 

    Google Scholar 
    Zhao, X. S. et al. Holocene climate change and its influence on early agriculture in the Nile Delta, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 547, 109702 (2020).Article 

    Google Scholar 
    Reimer, P. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. 6, 457–474 (2011).Article 

    Google Scholar 
    Moore, P. D., Webb, J. A. & Collison, M. E. Pollen analysis (Blackwell Scientific Publications, Oxford, UK, 1991).Kholeif, S. E. A. & Mudie, P. J. Palynological records of climate and oceanic conditions in the Late Pleistocene and Holocene of the Nile Cone, Southeastern Mediterranean, Egypt. Palynology 33, 1–24 (2009).Article 

    Google Scholar 
    Leroy, S. A. G. Palynological evidence of Azolla nilotica Dec. in recent Holocene of the eastern Nile Delta and palaeoenvironment. Veg. Hist. Archaeobot. 1, 43–52 (1992).Article 

    Google Scholar 
    Kholeif, S. E. A. Holocene paleoenvironmental change in inner continental shelf sediments, Southeastern Mediterranean, Egypt. J. Afr. Earth. Sci. 57, 143–153 (2010).CAS 
    Article 

    Google Scholar  More

  • in

    A prenatal acoustic signal of heat affects thermoregulation capacities at adulthood in an arid-adapted bird

    All procedures were approved by Deakin University Animal Ethics Committee (G06-2017), the Animal Ethics Committee of the University of Pretoria (protocol EC048-18) and the Research and Scientific Ethics Committee of the South African National Biodiversity Institute (P18/36). All experiments were performed in accordance with Australian guidelines and regulations for the use of animals in research. This study was conducted in compliance with the ARRIVE guidelines (https://arriveguidelines.org).Experimental acoustic treatments and housingExperimental birds were wild-derived zebra finches from an acoustic playback experiment previously presented in Mariette and Buchanan31. At laying (Feb–March 2014), eggs were collected from outdoor aviaries (Deakin University, Geelong, Australia), replaced by dummy eggs and placed in an artificial incubator at 37.5 °C and 60% relative humidity. After nine days, whole clutches were randomly assigned to one of two acoustic playback groups: treatment eggs were exposed to heat-calls (aka “incubation calls”) and controls to adult contact calls (i.e. tet calls), whilst both groups were also exposed to common nest-specific calls (i.e. whine calls) to ensure normal acoustic stimulation. Playbacks had 20 min of heat-calls or tet calls per 1h15, separated by silence and whine calls, and played from 9:30 a.m. to 6:30 p.m.31. To avoid any differences in incubation conditions, eggs and sound cards were swapped daily between incubators. After hatching, nestlings were reared in mixed or single-group broods, in the same outdoor aviaries (see Supplementary Material).At adulthood (March–April 2018), we tested 34 experimental birds (16 females and 18 males; 15 treatment and 19 control birds) at the end of their fourth summer. From February 2018, birds were moved to indoor cages for acclimation, at least 27 days before experimental trials, at a constant room temperature of 25 °C and day-night cycle of 12 h:12 h, and supplied with ad libitum finch seed mix, grit, cucumber and water. After three days, we implanted a temperature-sensitive passive integrated transponder (PIT) tag (Biomark, Boise ID, USA) subcutaneously into the bird’s flank. Subcutaneous PIT tags reduce the risk of injuries and generally yield Tb values similar to those obtained using intraperitoneally-injected tags in small birds such as the zebra finch62,63.Experimental heat exposure protocolAll birds were tested twice. Each individual’s second trial occurred on a different day than the first, with an average of 16 days between the two trials, but each bird was tested in the morning for one trial (~ 10:30 a.m.) and in the afternoon (~ 2:50 p.m.) for the other, in random order. On average, trials lasted 125 min (range: 93–151 min). The predicted mean digesta retention time for a 12 g bird is ~ 50 min64. Hence, to ensure birds were post-absorptive, they were fasted (but with ad-libitum water) for two hours before each trial, within auditory and visual contact of conspecifics. Birds were then weighed to measure the initial mass (massinit ± 0.01 g), before being placed individually in the metabolic chamber within a temperature-controlled cabinet. There were no significant difference in massinit between heat-call (12.04 ± 0.18 g) and control individuals (12.03 ± 0.15 g; t (60) = − 0.059, p = 0.953).During each trial, Ta in the metabolic chamber was gradually increased in a succession of “stages”. Trials started with Ta = 27 °C for 25 min or 45 min (for the first or second trial respectively), then Ta = 35 °C for 30 min (i.e. thermoneutrality54, followed by 20-min stages in succession at Ta = 40, 42 and 44 °C. Temperature transition took 1 (for 2 °C) to 6 min (for 8 °C increments).To “complete the trial”, individuals had to be able to remain in the chamber for 20 min at Ta = 44 °C. Bird behaviour in the chamber was monitored using two infrared video cameras by an experimenter (AP) blind to playback treatments. The trial was terminated early if the bird showed sustained escape behaviour, or reached a thermal endpoint (e.g., loss of balance or severe hyperthermia with Tb  > 45 °C16,52). Immediately after trial termination or completion, birds were taken out of the chamber and exposed to room temperature. They were then weighed (massend), given water on their bill, and transferred to the holding room at 25 °C in an individual cage with ad libitum seeds and water. After one hour, birds were weighed again (mass1h). No bird died during the trials.Thermoregulatory measurements and data processingWe used an open flow-through respirometry system to measure CO2 production and EWL, following Whitfield et al.52 and as commonly used to assess avian thermoregulation in the heat19,53,60. Dry air was pushed into a 1.5-L plastic metabolic chamber, maintained at low humidity levels ( More

  • in

    Quantifying and categorising national extinction-risk footprints

    Previous studies have used number of species threats6,7, countryside species-area relationship1,3,17, and potentially disappeared fraction of species4 to quantify biodiversity loss. We introduce the non-normalised Species Threat Abatement and Restoration (nSTAR) metric as the quantifiable representation of biodiversity loss in our analysis, a unit-less, species-centred metric which relies on detailed information curated in the IUCN Red List of Threatened Species11. On its own, this metric can be used to support production-based accounting of the extinction risk of species and identify the most significant threats at a specific location to inform direct interventions26. However, once manipulated into a structure that allows it to be appended to a multi-region input–output (MRIO) table, an environmentally-extended MRIO can be created. This unlocks the power of consumption-based accounting of this extinction risk, connecting the direct environmental impact with the consumption which ultimately induces it.IUCN Red List of Threatened SpeciesThe IUCN Red List version 2020–211 provided information on extinction risk for over 122,000 species and details of the threats acting on those species, including the threat classification, scope, timing, and severity. The species scope was limited to comprehensively assessed terrestrial species, ensuring that only species which have been assessed across all countries were included, and thus eliminating any geographical bias introduced by incomplete assessments27. Species with an extinction risk category of Near Threatened (NT), Vulnerable (VU), Endangered (EN), or Critically Endangered (CR) were included. Three species were excluded to avoid double counting where two different extinction risk categories were provided for the same species, leaving 5295 amphibian, mammal, and bird species in scope.The information contained in the IUCN Red List regarding the threats facing each species is crucial, since many of these threats are attributable to economic activity28,29. Specialist assessors are required to assign one or more of 118 different threat classes to each species’ record, with additional documentation of the severity, scope and timing of each threat recommended, based on the impact of that threat on the species’ population30. To connect this threat information to economic sectors, a key requirement for input–output analysis, background information on threat classes was sourced from the IUCN Threats Classification Scheme version 3.229. Each threat was assessed for connection to each of the 6357 economic sectors classified in the UN Statistics Division Central Product Classification Standard31, based on the likelihood that activity associated with each sector directly contributes to the threat being assessed. As an example, the economic sectors associated with rice cultivation were allocated to the threats grouped under IUCN Threat Class 2.1—Annual & perennial non-timber crops. A total of 55 out of 118 threats were allocated to at least one economic sector, with higher-level threat classes excluded from this allocation if information was available for the associated lower-level threat classes to avoid double counting. Species threats driven by activity that cannot be attributed to an economic sector, such as invasive species, were not allocated to any sectors and as a result, the extinction-risk footprint does not necessarily represent the full magnitude of extinction risk for each species. While not all threats were allocated to an economic sector, all economic sectors were allocated to at least one threat. Further details on the connection of economic sectors to threats are available in Supplementary Note S5, which includes a link to the detailed 6357 × 118 binary concordance matrix used to execute these sector-threat allocations.The IUCN Red List also requires inclusion of a range map and habitat classification, which were combined with remote sensed land cover and elevation data to generate a high-resolution area of habitat (AOH) map for each in-scope species32,33. These maps, reapplied from Strassburg et al.34, were used to calculate the percentage of each species’ AOH present in each country.Quantifying biodiversity loss: the nSTAR metricThis detailed information from the IUCN Red List was used to calculate the nSTAR metric, which quantifies each threat’s impact, rather than just its presence, on each species. Adapted from the newly developed Species Threat Abatement and Restoration metric (STAR)26 by removing the normalisation step, the nSTAR metric, which has no units, was calculated for each species in two stages.First, a numeric representation of each species’ extinction risk category (Wi) was determined, following the equal steps methodology introduced by Butchart et al.35. Extinction risk categories of Data Deficient (DD) and Least Concern (LC) were assigned Wi = 0, Near Threatened (NT) was assigned Wi = 1, Vulnerable (VU) was assigned Wi = 2, Endangered (EN) was assigned Wi = 3, and Critically Endangered (CR) was assigned Wi = 4.Next, a Threat Impact score (TSij) for each threat (j) acting on a species (i) was determined based on the scope and severity information recorded for that threat, according to the values set out in Table 1, which are adapted from those proposed by Garnett et al.36. Reapplying the methodology of the STAR metric, where no value was recorded for the scope or severity of a threat, the median possible value for these were used, and only threats noted as Ongoing or Future were included. Further details on these methodological choices and sensitivity analyses to support them are available in Mair et al.26.Table 1 Numeric representation of threat information.Full size tableThe numeric nSTAR value for each species-threat combination (ij) was calculated by multiplying the value representing the species’ extinction risk category (Wi) by the Threat Impact score (TSij) for that threat:$${text{nSTAR}}_{ij} = W_{i} *TS_{ij}$$
    (1)
    The total nSTAR for species (i) can be calculated by multiplying the extinction risk category value (Wi) for that species by the sum of all Threat Impact scores for the species:$${text{nSTAR}}_{i} = W_{i} *(TS_{i1} + TS_{i2} + TS_{i3} + cdots + TS_{ij} )$$
    (2)
    Once calculated according to Eq. (1), the nSTARij value for each species-threat combination was allocated to economic sectors using the 6357 × 118 sector-threat concordance (available in Supplementary Note S5), which was normalised based on the economic size of each sector. Finally these nSTAR values, derived for each species-sector combination, were allocated to each country based on the country’s share of the AOH for that species, calculated from the intersection of the species’ AOH map with each country’s borders34.The nSTAR metric introduced here differs from the STAR metric from which it is adapted in that the normalisation step executed at this point in the STAR methodology is omitted. This ensures that the nSTAR metric is both additive and independent across all three dimensions of species, country, and economic sector, a necessary condition for use in input–output analysis. The STAR metric normalises the total value calculated in Eq. (2) to ensure that the total STAR value for any species is equal to Wi * 100, resulting in all species with the same extinction risk category being allocated the same STAR value regardless of the number of threats acting on them26. This normalisation facilitates the aggregation of the STAR metric by species taxonomy however it is problematic when aggregating the STAR metric by threat, since the STAR value attributed to each species-threat combination will be dependent not only on the characteristics of that threat, but also on the number and characteristics of other threats acting on the species. This dependence on more than one variable in the calculation of the STAR value for each species-threat combination means that it is not suitable for aggregation by threat and, by extension, economic sectors once the threat to sector allocation has been carried out.In order to provide a metric which can be aggregated and disaggregated across species, sector, and country hierarchies the nSTAR methodology excludes this normalisation step. Consistent with the STAR methodology, the nSTAR metric is calculated using numeric values only and therefore has no unit of measure26.Input–output analysisOnce calculated, the nSTAR metric was partnered with the global supply-chain data available in the 2013 Eora MRIO, chosen for its extensive coverage of 190 regions (189 countries and one ‘rest of world’ region) and between 26 and 1022 economic sectors in each country, depending on the level of detail in each country’s publicly available National Accounts12.A satellite block, or Q matrix, was created using the nSTAR values for 5295 species across 6357 economic sectors for 190 regions. This satellite block was then aggregated to match the sectoral structure of the Eora MRIO, a total of 14,839 country-sector combinations. A process flow diagram to illustrate the stages of data manipulation required to convert the IUCN Red List data to a satellite block ready for use with the Eora MRIO is included in Supplementary Fig. S5.The Eora MRIO provided the intermediate transaction matrix T, the final demand matrix Y, and the value-added matrix V. Consumption based footprints were calculated by connecting the nSTAR value captured in the satellite block Q to the final demand matrix Y following Leontief’s methodology9,10. Central to this methodology is the Leontief Inverse L, a concise mathematical representation of the interdependencies across all economic sectors, which is expressed as:$${mathbf{L}} = left( {{mathbf{I}}{-}{mathbf{A}}} right)^{{ – {1}}}$$
    (3)
    where I is an identity matrix with dimensions equal to the those of the intermediate transaction matrix T, and A is the direct requirements matrix, derived from the T matrix in a number of stages. First the total output vector x is calculated, then diagonalised, and the inverse calculated to derive ({widehat{mathbf{X}}}^{-1}), which returns the direct requirements matrix A when multiplied by T.Next the satellite block was converted into an intensity matrix q by multiplying Q by ({widehat{mathbf{X}}}^{-1}) to calculate the nSTAR value attributable to each dollar of total output produced by each sector. Once the q, L and Y matrices are available, the consumption extinction-risk footprint for a sector k (fk) can be calculated using Eq. (4):$${mathbf{f}}_{k} = {mathbf{q}}*{mathbf{L}}*{mathbf{Y}}_{k}$$
    (4)
    where Yk represents the final demand for that sector. Consumption extinction-risk footprint values were generated for each species-sector-country combination, a total of more than 78 million datapoints.Further matrix manipulation was used to calculate the country-level imported, exported, and domestic extinction-risk footprints. For each country the final demand matrix, Y, was separated into two matrices, Ydom, representing demand from that country for the economic sectors in that country, and Yoth, representing demand from all other countries for the economic sectors in that country. Next, the intensity matrix, q, was separated into two matrices, qdom, representing the nSTAR intensity for each of the species within that country’s borders, and qoth, representing the nSTAR intensity for all remaining species. The three sub-footprints for each country were calculated using Eqs. (5), (6) & (7). A simplified illustration of this methodology is included in Supplementary Fig. S3.$${mathbf{f}}_{dom} = {mathbf{q}}_{dom} *{mathbf{L}}*{mathbf{Y}}_{dom}$$
    (5)
    $${mathbf{f}}_{exp} = {mathbf{q}}_{dom} *{mathbf{L}}*{mathbf{Y}}_{oth}$$
    (6)
    $${mathbf{f}}_{imp} = {mathbf{q}}_{oth} *{mathbf{L}}*{mathbf{Y}}_{dom}$$
    (7)
    Imported, exported, and domestic extinction-risk footprints were calculated for 188 countries.LimitationsWhile very powerful in unravelling the intricacies of the global economy, there are limitations to the effectiveness of input–output analysis. Since it relies on National Accounts data, only activity which can be directly connected into reported economic activity is captured. This means that any activities that are not transacted within the boundaries of the formal economy, such as subsistence hunting and illegal logging, will be excluded unless they have been incorporated into the relevant country’s National Accounts data. The exclusion of threats due to their timing or non-economic classification (such as geological events, disease, and invasive species) resulted in a zero nSTAR value for 519 species, leaving 4776 species with a material nSTAR value. In addition, any limitations in the sector categorisations, their spatial and technological homogeneity, or assumptions included in the allocation of economic activity to sectors within the National Accounts data in each country will be propagated through to the footprint calculations. These limitations are common to consumption-based analyses5,6,7,17,25 and we do not further address them here.Further limitations exist with the use of the scope and severity data for each threat captured in the IUCN Red List, since this does not take into account interaction between threats, or between the severity and scope of an individual threat36. As a result, the impact from a single threat acting on a species may be overstated, and higher nSTAR values attributed to that species than would otherwise be warranted. In addition, any variations in the location, scope, or severity of threats acting across a species’ distribution range are not captured and thus the impact of different economic sectors may be over or under-represented26.There is a temporal displacement between the economic activity and the extinction risk used in this analysis. The extinction risk category assigned to each species is due to the cumulative sum of current and historical impacts acting on it, while the value of economic interactions used to trace this extinction risk through the global economy is based on one year of activity. This is typical of related approaches1,6, and may not introduce much uncertainty given that current economic activity is higher than at any time in history37. Nevertheless, there is no doubt that some current extinction risk is due to past economic activity and development of methods to incorporate this temporal dimension would be a valuable research avenue. More

  • in

    Cophylogeny and convergence shape holobiont evolution in sponge–microbe symbioses

    Hyman, L. H. The Invertebrates: Protozoa Through Ctenophora Vol. 1 (McGraw-Hill, 1940).Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giles, E. C. et al. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol. Ecol. 83, 232–241 (2013).CAS 
    PubMed 

    Google Scholar 
    Gloeckner, V. et al. The HMA–LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 

    Google Scholar 
    Moitinho-Silva, L. et al. Predicting the HMA–LMA status in marine sponges by machine learning. Front. Microbiol. 8, 752 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Cárdenas, C. A. et al. High similarity in the microbiota of cold-water sponges of the genus Mycale from two different geographical areas. PeerJ 6, e4935 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: love and other relationships. Environ. Microbiol. 14, 335–346 (2012).CAS 
    PubMed 

    Google Scholar 
    Freeman, C. J. et al. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 14, 1571–1583 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bell, J. J. et al. Climate change alterations to ecosystem dominance: how might sponge-dominated reefs function? Ecology 99, 1920–1931 (2018).PubMed 

    Google Scholar 
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).CAS 
    PubMed 

    Google Scholar 
    Lesser, M. P. Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 328, 277–288 (2006).
    Google Scholar 
    de Goeij, J. M., Lesser, M. P. & Pawlik, J. R. in Climate Change, Ocean Acidification and Sponges (eds Carballo, J. L. & Bell, J. J.) 373–410 (Springer, 2017); https://doi.org/10.1007/978-3-319-59008-0_8Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Slaby, B. M., Hackl, T., Horn, H., Bayer, K. & Hentschel, U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 11, 2465–2478 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ. Microbiol. 16, 3683–3698 (2014).CAS 
    PubMed 

    Google Scholar 
    Weisz, J. B., Lindquist, N. & Martens, C. S. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155, 367–376 (2008).PubMed 

    Google Scholar 
    Poppell, E. et al. Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Mar. Ecol. 35, 414–424 (2014).
    Google Scholar 
    McFall-Ngai, M. J. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016113 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225–e2000229 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    O’Brien, P. A. et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 14, 2211–2222 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Houwenhuyse, S., Stoks, R., Mukherjee, S. & Decaestecker, E. Locally adapted gut microbiomes mediate host stress tolerance. ISME J. 15, 2401–2414 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moeller, A. H. et al. Experimental evidence for adaptation to species-specific gut microbiota in house mice. mSphere 4, e00387-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis impacts adaptive traits in Nasonia wasps. mBio https://doi.org/10.1128/mBio.00887-19 (2019).Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. R. Soc. B https://doi.org/10.1098/rspb.2019.2900 (2020).Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. https://doi.org/10.1038/s41467-018-07275-x (2018).Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: comparative analyses of ecological interactions. Am. Nat. 183, 174–187 (2014).PubMed 

    Google Scholar 
    Hill, M. S. et al. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes. PLoS ONE 8, e50437 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Redmond, N. E. et al. Phylogeny and systematics of Demospongiae in light of new small-subunit ribosomal DNA (18S) sequences. Int. Comp. Biol. 53, 388–415 (2013).CAS 

    Google Scholar 
    Worheide, G. et al. in Advances in Marine Biology: Advances in Sponge Science Vol. 61 (eds Becerro, M. A. et al.) 1–78 (Elsevier, 2012).Schuster, A. et al. Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth–death clock model. BMC Evol. Biol. 18, 114 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Stanley, G. D. & Fautin, D. G. Paleontology and evolution. Orig. Mod. Corals Sci. 291, 1913–1914 (2001).CAS 

    Google Scholar 
    Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).
    Google Scholar 
    Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl Acad. Sci. USA 117, 9508–9518 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faulkner, D. J., Harper, M. K., Haygood, M. G., Salomon, C. E. & Schmidt, E. W. in Drugs from the Sea (ed. Fusetani, N.) 107–119 (Karger, 2000).Loh, T.-L. & Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc. Natl Acad. Sci. USA 111, 4151–4156 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pagel, M. Detecting correlated evolution on phylogenies—a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).
    Google Scholar 
    Easson, C. G. & Thacker, R. W. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front. Microbiol. 5, 532 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, D. R. & Foulds, L. R. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).
    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Apprill, A. The role of symbioses in the adaptation and stress responses of marine organisms. Annu. Rev. Mar. Sci. 12, 291–314 (2020).
    Google Scholar 
    Lesser, M. P., Slattery, M. & Mobley, C. Biodiversity and functional ecology of mesophotic coral reefs. Annu. Rev. Ecol. Evol. Syst. 49, 49–71 (2018).
    Google Scholar 
    Lipps, J. H. & Stanley, G. D. in Coral Reefs at the Crossroads (eds Hubbard, D. K. et al.) 175–196 (Springer, 2016); https://doi.org/10.1007/978-94-017-7567-0_8Macartney, K. J., Slattery, M. & Lesser, M. P. Trophic ecology of Caribbean sponges in the mesophotic zone. Limnol. Oceanogr. 66, 1113–1124 (2021).CAS 

    Google Scholar 
    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).CAS 

    Google Scholar 
    Olinger, L. K., Strangman, W. K., McMurray, S. E. & Pawlik, J. R. Sponges with microbial symbionts transform dissolved organic matter and take up organohalides. Front. Mar. Sci. 8, 665789 (2021).
    Google Scholar 
    Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Baracaldo, P. Origin of marine planktonic cyanobacteria. Sci. Rep. 5, 17418 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Bracaldo, P., Ridgwell, A. & Raven, J. A. A neoproterozoic transition in the marine nitrogen cycle. Curr. Biol. 24, 652–657 (2014).
    Google Scholar 
    Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).CAS 
    PubMed 

    Google Scholar 
    Wang, D. et al. Coupling of ocean redox and animal evolution during the Ediacaran–Cambrian transition. Nat. Commun. 9, 2575 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).PubMed 

    Google Scholar 
    Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
    Google Scholar 
    Després, L., David, J.-P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).PubMed 

    Google Scholar 
    Richardson, K. L., Gold-Bouchot, G. & Schlenk, D. The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Comp. Biochem. Physiol. C 150, 279–284 (2009).
    Google Scholar 
    Bayer, K., Jahn, M. T., Slaby, B. M., Moitinho-Silva, L. & Hentschel, U. Marine sponges as Chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems 3, e00150-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. R Soc. B https://doi.org/10.1098/rspb.2013.2146 (2014).Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108, 10800–10807 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seutin, G., White, B. N. & Boag, P. T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. https://doi.org/10.1139/z91-013 (2011).Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol. 99, 45–56 (1999).
    Google Scholar 
    Li, W. & Godzik, A. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 

    Google Scholar 
    Francis, W. R. et al. The genome of the contractile demosponge Tethya wilhelma and the evolution of metazoan neural signalling pathways. Preprint at bioRxiv https://doi.org/10.1101/120998 (2017).Altschul, S. F. A protein alignment scoring system sensitive at all evolutionary distances. J. Mol. Evol. 36, 290–300 (1993).CAS 
    PubMed 

    Google Scholar 
    Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simion, P. et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.02.031 (2017).Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 

    Google Scholar 
    Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).CAS 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 

    Google Scholar 
    Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).CAS 
    PubMed 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5 (2019).Lahti, L. et al. Tools for Microbiome Analysis in R. Microbiome package version 1.17.2 https://github.com/microbiome/microbiome (2017).Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    PubMed 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbrook, A. et al. PALADIN: protein alignment for functional profiling whole metagenome shotgun data. Bioinformatics 33, 1473–1478 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waddell, B. & Pawlik, J. R. Defenses of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Mar. Ecol. Prog. Ser. 195, 125–132 (2000).
    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. FEMS Microbiol. Ecol. 20, 289–290 (2004).CAS 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Artificial shelters provide suitable thermal habitat for a cold-blooded animal

    Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic Biomes: 10,000 BCE to 2015 CE. Land. 9(5), 129 (2020).Article 

    Google Scholar 
    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS. 109, 16083–8 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).PubMed 
    Article 

    Google Scholar 
    Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Google Scholar 
    Rodgers, J. A. & Schwikert, S. T. Buffer-zone distances to protect foraging and loafing waterbirds from disturbance by personal watercraft and outboard-powered boats. Conserv. Bio. 16, 216–224 (2002).Article 

    Google Scholar 
    Constantine, R., Brunton, D. H. & Dennis, T. Dolphin-watching tour boats change bottlenose dolphin (Tursiops truncates) behaviour. Biol. Conserv. 117, 299–307 (2004).Article 

    Google Scholar 
    Gill, J. A., Sutherland, W. J. & Watkinson, A. R. A method to quantify the effects of human disturbance on animal populations. J. Appl. Ecol. 33, 786–792 (1996).Article 

    Google Scholar 
    King, J. M. & Heinen, J. T. An assessment of the behaviors of overwintering manatees as influenced by interactions with tourists at two sites in central Florida. Biol. Conserv 117, 227–234 (2004).Article 

    Google Scholar 
    Stockwell, C. A., Bateman, G. C. & Berger, J. Conflicts in national parks: A case study of helicopters and bighorn sheep time budgets at the Grand Canyon. Biol. Conserv 56, 317–328 (1991).Article 

    Google Scholar 
    Diamond, J. M. The design of a nature reserve system for Indone-Asian New Guinea. In Conservation Biology: The Science of Scarcity and Cliversity (ed. Soule, M.) 485–503 (Sinauer, Sunderland, Massachusetts, 1986).Ceballos, G., García, A. & Ehrlich, P. R. The sixth extinction crisis loss of animal populations and species. J. Cosmol. 8, 1821–1831 (2010).
    Google Scholar 
    Kerr, J. T. & Deguise, I. Habitat loss and the limits to endangered species recovery. Ecol. Lett. 7, 1163–1169 (2004).Article 

    Google Scholar 
    Mbora, D. N. M. & McPeek, M. A. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. J. Anim. Ecol. 78, 210–218 (2009).PubMed 
    Article 

    Google Scholar 
    Low, T. The New Nature (Penguin Books Limited, 2003).
    Google Scholar 
    Baxter-Gilbert, J., Riley, J. L. & Measey, J. Fortune favors the bold toad: Urban-derived behavioral traits may provide advantages for invasive amphibian populations. Behav. Ecol. Sociobiol. 75, 130 (2021).Article 

    Google Scholar 
    Coleman, J. L. & Barclay, R. M. R. Prey availability and foraging activity of grassland bats in relation to urbanization. J. Mammal. 94, 1111–1122 (2013).Article 

    Google Scholar 
    Castellano, M. J. & Valone, T. J. Effects of livestock removal and perennial grass recovery on the lizards of a desertified arid grassland. J. Arid Environ. 66, 87e95 (2006).Article 

    Google Scholar 
    Huey, R. B. Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia (eds. Gans, C., & Pough, F.H.) Vol. 12. (Academic Press, London, 1982).White, D. et al. Assessing risks to biodiversity from future landscape change. Conserv. Biol. 11, 349360 (1997).Article 

    Google Scholar 
    Carpio, A. J., Oteros, J., Tortosa, F. S. & Guerrero-Casado, J. Land use and biodiversity patterns of the herpetofauna: The role of olive groves. Acta Oecol. 70, 103–111 (2016).Article 

    Google Scholar 
    Geyle, H. M., Tingley, R., Amey, A. P. & Chapple, D. G. Reptiles on the brink: Identifying the Australian terrestrial snake and lizard species most at risk of extinction. Pac. Conserv. Biol. 27, 3–12 (2021).Article 

    Google Scholar 
    Doherty, T. S. et al. Reptile responses to anthropogenic habitat modification: A global meta-analysis. Glob. Ecol. Biogeogr. 29(7), 1265–1279 (2020).Article 

    Google Scholar 
    Hu, Y., Doherty, T. S. & Jessop, T. S. How influential are squamate reptile traits in explaining population responses to environmental disturbances?. Wildl. Res. 47(3), 249–259 (2020).Article 

    Google Scholar 
    Poole, G. & Berman, C. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ. Manag. 27, 787–802 (2001).CAS 
    Article 

    Google Scholar 
    Tang, X. et al. Human activities enhance radiation forcing through surface albedo associated with vegetation in beijing. Remote Sens. 12(5), 837 (2020).Article 

    Google Scholar 
    Barna, A., Masum, A. K. M., Hossain, M. E., Bahadur, E.H. & Alam, M. S. A study on human activity recognition using gyroscope, accelerometer, temperature and humidity data. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2019).Moore, M. & Seigel, R. A. No place to nest or bask: Effects of human disturbance on the nesting and basking habits of yellow-blotched map turtles (Graptemys flavimaculata). J. Biol. Conserv. 130(3), 386–393 (2006).Article 

    Google Scholar 
    Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: Dispersal and mortality in snakes. Biol. Conserv. 89(1), 39–50 (1999).Article 

    Google Scholar 
    Haxton, T. Road mortality of Snapping Turtles, Chelydra serpentina, in central Ontario during their nesting period. Can. Field-Nat. 114(1), 106–110 (2000).
    Google Scholar 
    Koenig, J., Shine, R. & Shea, G. L. The ecology of an Australian reptile icon: How do blue-tongued lizards (Tiliqua scincoides) survive in suburbia?. Wildl. Res. 28(3), 214–227 (2001).Article 

    Google Scholar 
    Uetz, P. How many Reptile species?. Herpetol. Rev. 31, 13–15 (2000).
    Google Scholar 
    Todd, R. L., Steven, P., Rowland, G. & Oldham, G. Herpetological observations from field expeditions to North Karnataka and Southwest Maharashtra, India. Herpetol. Bull. 112, 17–37 (2010).
    Google Scholar 
    Sathish Kumar, V. M. The conservation of Indian Reptiles: An approach with molecular aspects. Reptile Rap. 14, 2–8 (2012).
    Google Scholar 
    Berryman, A. A. & Hawkins, B. A. The refuge as an integrating concept in ecology and evolution. Oikos. 115, 92–196 (2006).Article 

    Google Scholar 
    Webb, J. K., Pringle, R. M. & Shine, R. How do nocturnal snakes select diurnal retreat sites?. Copeia 2004, 919–925 (2004).Article 

    Google Scholar 
    Skinner, M. & Miller, N. Aggregation and social interaction in garter snakes (Thamnophis sirtalis sirtalis). Behav. Ecol. Sociobiol. 74, 51 (2020).Article 

    Google Scholar 
    Aubret, F. & Shine, R. Causes and consequences of aggregation by neonatal tiger snakes (Notechis scutatus, Elapidae). Austral Ecol. 34(2), 210–217 (2009).Article 

    Google Scholar 
    Myres, B. & Eells, M. Thermal aggregation in Boa constrictor. Herpetologica 24(1), 61–66 (1968).
    Google Scholar 
    Parrish, J. K. & Edelstein-keshet, L. Coinplexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trevesa, A. Theory and method in studies of vigilance and aggregation. Anim. Behav. 60, 711–722 (2000).Article 

    Google Scholar 
    Greene, H. W. Snakes (University of California Press, 1997).Book 

    Google Scholar 
    Huey, R. B., Peterson, C. R., Arnold, S. J. & Porter, W. P. Hot rocks and not-so-hot rocks: Retreat-site selection by garter snakes and its thermal consequences. Ecology 70, 931–944 (1989).Article 

    Google Scholar 
    Christian, K. & Weavers, B. Analysis of activity and energetics of the lizard Varanus rosenbergi. Copeia 1994, 289–295 (1994).Article 

    Google Scholar 
    Autumn, K. & de Nardo, D. F. Behavioural thermoregulation increases growth rate in nocturnal lizard. J. Herpetol. 29, 157–162 (1995).Article 

    Google Scholar 
    Milne, T., Bull, C. M. & Hutchinson, M. N. Use of burrows by the endangered pygmy blue-tongue lizard, Tiliqua adelaidensis (Scincidae). Wildl. Res. 30, 523–528 (2003).Article 

    Google Scholar 
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS. 111, 5610–5615 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘“cold-blooded”’ animals against climate warming. PNAS 106, 3835–3840 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevenson, D. J., Dyer, K. J. & Willis-Stevenson, B. A. Survey and monitoring of the eastern indigo snake in georgia. Southeast. Nat. 2(3), 393–408 (2003).Article 

    Google Scholar 
    Zappalorti, R. T. & Reinert, H. K. Artificial refugia as a habitat-improvement strategy for snake conservation. Contrib. Herpetol. 11, 369–375 (1994).
    Google Scholar 
    Griffith, B., Scott, J. M., Carpenter, J. W. & Reed, C. Translocation as a species conservation tool: Status and strategy. Science 245, 477–480 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mullin, S. J. Snakes Ecology and Conservation (eds. Stephen, J. M. & Richard, A. S.). (Cornell University Press, 2011).Lei, J., Booth, D. T. & Dwyer, R. G. Spatial ecology of yellow-spotted goannas adjacent to a sea turtle nesting beach. Aust. J. Zool. 65, 77–86 (2017).Article 

    Google Scholar 
    Ermi, Z. Snakes of China. (Anhui Science and Technology Press, 2006).Schulz, K. D. A Monograph of the Colubrid Snakes of the Genus Elaphe Fitzinger (Czech Republic, Koeltz Scientific Books, 1996).
    Google Scholar 
    Pallas, P. S. Reise durch verschiedene Provinzen des Russischen Reiches, Vol. 2. 744 (Kaiserl. Akad. Wiss., St. Petersburg, 1773).Auffenberg, W., Arian, Q. N. & Kurshid, N. Preferred habitat, home range and movement patterns of Varanus bengalensis in southern Pakistan. Mertensiella 2, 7–28 (1991).
    Google Scholar 
    McDiarmid, R. W. Reptile Biodiversity: Standard Methods for Inventory and Monitoring. (University of California Press, 2002).Riley, J. L., Baxter-gilbert, J. H. & Litzgus, J. D. A comparison of three external transmitter attachment methods for snakes. Wildl. Soc. Bull. 41(1), 132–139 (2017).Article 

    Google Scholar 
    Meine, C., & Archibald, G. The Cranes: Status Survey and Conservation Action Plan (IUCN, 1996).Mori, A. & Toda, M. Body temperature of subtropical snakes at night: How cold is their blood?. Curr. Herpetol. 37(2), 151–157 (2018).Article 

    Google Scholar 
    Crane, M., Silva, I., Marshall, B. M. & Strine, C. T. Lots of movement, little progress: A review of reptile home range literature. PeerJ 9, e11742 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article 

    Google Scholar 
    Fleming, C. H. & Calabrese, J. M. A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol. Evol. 8, 571–579 (2017).Article 

    Google Scholar 
    Fleming, C. H. et al. From fine-scale foraging to home ranges: A semivariance approach to identifying movement modes across spatiotemporal scales. Am. Nat. 183, 154–167 (2014).Article 

    Google Scholar 
    Fleming, C. H., Noonan, M. J., Medici, E. P. & Calabrese, J. M. Overcoming the challenge of small effective sample sizes in home-range estimation. Methods Ecol. Evol. 10, 1679–1689 (2019).Article 

    Google Scholar 
    Uhlenbeck, G. E. & Ornstein, L. S. On the theory of the Brownian motion. Phys. Rev. 36, 823 (1930).CAS 
    MATH 
    Article 

    Google Scholar 
    Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions. News Bull. Calcutta Math. Soc. 35, 99–109 (1943).MathSciNet 
    MATH 

    Google Scholar 
    Winner, K. et al. Statistical inference for home range overlap. Methods Ecol. Evol. 9, 1679–1691 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2016). http://www.R-project.org. Accessed September 2022.Calenge, A. The package ‘“adehabitat”’ for the R software: Tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Manley, B. F. J., McDonald, L. L. & Thomas, D. L. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Chapman and Hall, 1993).Book 

    Google Scholar  More