Elevated extinction risk of cacti under climate change
Boyle, T. H. & Anderson, E. in Cacti: Biology and Uses (ed. Nobel, P. S.) 125–141 (Univ. California Press, 2002).Gibson, A. C. & Nobel, P. S. The Cactus Primer (Harvard Univ. Press, 1986).Bravo Hollis, H. & Sánchez Mejorada, H. Las Cactáceas de México (Univ. Nacional Autónoma de México, 1978).Goettsch, B. et al. High proportion of cactus species threatened with extinction. Nat. Plants 1, 15142 (2015).CAS
PubMed
Google Scholar
Benavides, E., Breceda, A. & Anadón, J. D. Winners and losers in the predicted impact of climate change on cacti species in Baja California. Plant Ecol. 222, 29–44 (2021).
Google Scholar
Nobel, P. S. Responses of some North American CAM plants to freezing temperatures and doubled CO2 concentrations: implications of global climate change for extending cultivation. J. Arid. Environ. 34, 187–196 (1996).
Google Scholar
Reyes-García, C. & Andrade, J. L. Crassulacean acid metabolism under global climate change. N. Phytol. 181, 754–757 (2009).
Google Scholar
Smith, S. D., Didden-Zopfy, B. & Nobel, P. S. High-temperature responses of North American cacti. Ecology 65, 643–651 (1984).
Google Scholar
Larios, E., González, E. J., Rosen, P. C., Pate, A. & Holm, P. Population projections of an endangered cactus suggest little impact of climate change. Oecologia 192, 439–448 (2020).PubMed
Google Scholar
Esparza-Olguı́n, L., Valverde, T. & Vilchis-Anaya, E. Demographic analysis of a rare columnar cactus (Neobuxbaumia macrocephala) in the Tehuacan Valley, Mexico. Biol. Conserv. 103, 349–359 (2002).
Google Scholar
Seal, C. E. et al. Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae. Glob. Change Biol. 23, 5309–5317 (2017).
Google Scholar
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
Google Scholar
Gurvich, D. E. et al. Combined effect of water potential and temperature on seed germination and seedling development of cacti from a mesic Argentine ecosystem. Flora 227, 18–24 (2017).
Google Scholar
Nuzhyna, N., Baglay, K., Golubenko, A. & Lushchak, O. Anatomically distinct representatives of Cactaceae Juss. family have different response to acute heat shock stress. Flora 242, 137–145 (2018).
Google Scholar
Andrade, J. L. & Nobel, P. S. Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica 29, 261–270 (1997).
Google Scholar
Williams, D. G., Hultine, K. R. & Dettman, D. L. Functional trade-offs in succulent stems predict responses to climate change in columnar cacti. J. Exp. Bot. 65, 3405–3413 (2014).PubMed
Google Scholar
Aragón-Gastélum, J. L. et al. Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora Morphol. Distrib. Funct. Ecol. Plants 209, 499–503 (2014).
Google Scholar
Martorell, C., Montañana, D. M., Ureta, C. & Mandujano, M. C. Assessing the importance of multiple threats to an endangered globose cactus in Mexico: cattle grazing, looting and climate change. Biol. Conserv. 181, 73–81 (2015).
Google Scholar
Dávila, P., Téllez, O. & Lira, R. Impact of climate change on the distribution of populations of an endemic Mexican columnar cactus in the Tehuacán-Cuicatlán Valley, Mexico. Plant Biosyst. 147, 376–386 (2013).
Google Scholar
Conver, J. L., Foley, T., Winkler, D. E. & Swann, D. E. Demographic changes over >70 yr in a population of saguaro cacti (Carnegiea gigantea) in the northern Sonoran Desert. J. Arid. Environ. 139, 41–48 (2017).
Google Scholar
Carrillo-Angeles, I. G., Suzán-Azpiri, H., Mandujano, M. C., Golubov, J. & Martínez-Ávalos, J. G. Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae). J. Arid. Environ. 124, 310–317 (2016).
Google Scholar
de Cavalcante, A. M. B. & de Duarte, A. S. Modeling the distribution of three cactus species of the Caatinga biome in future climate scenarios. Int. J. Ecol. Environ. Sci. 45, 191–203 (2019).
Google Scholar
de Cavalcante, A. M. B., de Duarte, A. S. & Ometto, J. P. H. B. Modeling the potential distribution of Epiphyllum phyllanthus (L.) Haw. under future climate scenarios in the Caatinga biome. An. Acad. Bras. Cienc. 92, 351–358 (2020).
Google Scholar
Tellez-Valdes, O. & DiVila-Aranda, P. Protected areas and climate change: a case study of the cacti in the Tehuacan-Cuicatlan biosphere reserve, Mexico. Conserv. Biol. 17, 846–853 (2003).
Google Scholar
dos Santos Simões, S., Zappi, D., da Costa, G. M., de Oliveira, G. & Aona, L. Y. S. Spatial niche modelling of five endemic cacti from the Brazilian Caatinga: past, present and future. Austral Ecol. 45, 1–13 (2019).
Google Scholar
Gorostiague, P., Sajama, J. & Ortega-Baes, P. Will climate change cause spatial mismatch between plants and their pollinators? A test using Andean cactus species. Biol. Conserv. 226, 247–255 (2018).
Google Scholar
Butler, C. J., Wheeler, E. A. & Stabler, L. B. Distribution of the threatened lace hedgehog cactus (Echinocereus reichenbachii) under various climate change scenarios. J. Torre. Bot. Soc. 139, 46–55 (2012).
Google Scholar
Johnson, C. N. Species extinction and the relationship between distribution and abundance. Nature 394, 272–274 (1998).CAS
Google Scholar
Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).
Google Scholar
Enquist, B. J. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.2615v2 (2016).Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).
Google Scholar
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).PubMed
PubMed Central
Google Scholar
Goettsch, B., Durán, A. P. & Gaston, K. J. Global gap analysis of cactus species and priority sites for their conservation. Conserv. Biol. 33, 369–376 (2018).PubMed
Google Scholar
Maitner, B. S. et al. The bien R package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed
PubMed Central
Google Scholar
Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).
Google Scholar
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B. & Savoie, M. H. EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets. ISPRS Int. J. Geo-Inf. 1, 32–45 (2012).
Google Scholar
Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed
PubMed Central
Google Scholar
Phillips, S. maxnet: Fitting ‘maxent’ species distribution models with ‘glmnet’. R package version 0.1.4. https://CRAN.R-project.org/package=maxnet (2017).Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed
PubMed Central
Google Scholar
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
Google Scholar
Franklin, S. B., Gibson, D. J., Robertson, P. A., Pohlmann, J. T. & Fralish, J. S. Parallel analysis: a method for determining significant principal components. J. Veg. Sci. 6, 99–106 (1995).
Google Scholar
Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
Google Scholar
Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob. Ecol. Biogeogr. 23, 99–112 (2014).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing Version 3.6.0 (R Foundation for Statistical Computing, 2019). https://www.R-project.org/ More
