More stories

  • in

    Myzorhynchus series of Anopheles mosquitoes as potential vectors of Plasmodium bubalis in Thailand

    Templeton, T. J., Martinsen, E., Kaewthamasorn, M. & Kaneko, O. The rediscovery of malaria parasites of ungulates. Parasitology 143, 1501–1508. https://doi.org/10.1017/S0031182016001141 (2016).Article 
    PubMed 

    Google Scholar 
    Sheather, A. A malaria parasite in the blood of a buffalo. J. Comp. Pathol. Ther. 32, 80026–80027 (1919).Article 

    Google Scholar 
    Templeton, T. J. et al. Ungulate malaria parasites. Sci. Rep. 6, 23230. https://doi.org/10.1038/srep23230 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kandel, R. C. et al. First report of malaria parasites in water buffalo in Nepal. Vet. Parasitol. Reg. Stud. Rep. 18, 100348. https://doi.org/10.1016/j.vprsr.2019.100348 (2019).Article 

    Google Scholar 
    Garnham, P. & Edeson, J. Two new malaria parasites of the Malayan mousedeer. Riv. Malariol. 41, 1–8 (1962).CAS 
    PubMed 

    Google Scholar 
    Hoo, C. & Sandosham, A. The early forms of Hepatocystis fieldi and Plasmodium traguli in the Malayan mouse-deer Tragulus javanicus. Med. J. Malays. 22, 299–301 (1968).
    Google Scholar 
    de Mello, F.d., Paes, S. Sur une plasmodiae du sang des chèvres. Cr. Séanc. Soc. Biol. 88, 829–830 (1923).Kaewthamasorn, M. et al. Genetic homogeneity of goat malaria parasites in Asia and Africa suggests their expansion with domestic goat host. Sci. Rep. 8, 5827. https://doi.org/10.1038/s41598-018-24048-0 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rattanarithikul, R. H., Bruce, A., Harbach, R. E., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand IV. Anopheles. Southeast Asian J Trop Med Public Health. 37 (2006).Walter Reed Biosystematics Unit. 2021. Systematic catalogue of Culicidae. http://mosquitocatalog.org. Last accessed on 20/09/2021.Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit. Vectors. 4, 89. https://doi.org/10.1186/1756-3305-4-89 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Syafruddin, D. et al. Malaria prevalence in Nias District, North Sumatra Province, Indonesia. Malar. J. 6, 116. https://doi.org/10.1186/1475-2875-6-116 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vantaux, A. et al. Anopheles ecology, genetics and malaria transmission in northern Cambodia. Sci. Rep. 11, 6458. https://doi.org/10.1038/s41598-021-85628-1 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manguin, S., Garros, C., Dusfour, I., Harbach, R. & Coosemans, M. Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: An updated review. Infect. Genet. Evol. 8, 489–503. https://doi.org/10.1016/j.meegid.2007.11.004 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paredes-Esquivel, C., Donnelly, M. J., Harbach, R. E. & Townson, H. A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: implications for identification of disease vectors. Mol. Phylogenet. Evol. 50, 141–151. https://doi.org/10.1016/j.ympev.2008.10.011 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sungvornyothin, S., Garros, C., Chareonviriyaphap, T. & Manguin, S. How reliable is the humeral pale spot for identification of cryptic species of the Minimus Complex?. J. Am. Mosq. Control. Assoc. 22, 185–191. https://doi.org/10.2987/8756-971X(2006)22[185:HRITHP]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Brosseau, L. et al. A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasite. Vectors. 12, 223. https://doi.org/10.1186/s13071-019-3494-8 (2019).Article 

    Google Scholar 
    Taai, K. & Harbach, R. E. Systematics of the Anopheles barbirostris species complex (Diptera: Culicidae: Anophelinae) in Thailand. Zool. J. Linn. Soc. 174, 244–264. https://doi.org/10.1111/zoj.12236 (2015).Article 

    Google Scholar 
    Dahan-Moss, Y. et al. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar. J. 19, 1–9. https://doi.org/10.1186/s12936-020-03168-x (2020).CAS 
    Article 

    Google Scholar 
    De Ang, J. X., Yaman, K., Kadir, K. A., Matusop, A. & Singh, B. New vectors that are early feeders for Plasmodium knowlesi and other simian malaria parasites in Sarawak, Malaysian Borneo. Sci. Rep. https://doi.org/10.1038/s41598-021-86107-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Bortel, W. et al. Confirmation of Anopheles varuna in Vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus. Am. J. Trop. Med. Hyg. 65, 729–732. https://doi.org/10.4269/ajtmh.2001.65.729 (2001).Article 
    PubMed 

    Google Scholar 
    Wharton, R., Eyles, D. E., Warren, M., Moorhouse, D. & Sandosham, A. Investigations leading to the identification of members of the Anopheles umbrosus group as the probable vectors of mouse deer malaria. Bull. World. Health. Organ. 29, 357 (1963).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boundenga, L. et al. Haemosporidian parasites of antelopes and other vertebrates from Gabon, Central Africa. PLoS ONE 11, e0148958. https://doi.org/10.1371/journal.pone.0148958 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martinsen, E. S. et al. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Sci. Adv. 2, e1501486. https://doi.org/10.1126/sciadv.1501486 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garnham, P. C. C. Malaria Parasites and Other Haemosporidia (Blackwell Sci. Pub, 1966).
    Google Scholar 
    Nguyen, A. H. L., Tiawsirisup, S. & Kaewthamasorn, M. Low level of genetic diversity and high occurrence of vector-borne protozoa in water buffaloes in Thailand based on 18S ribosomal RNA and mitochondrial cytochrome b genes. Infect. Genet. Evol. 82, 104304. https://doi.org/10.1016/j.meegid.2020.104304 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hebert, P. D., Cywinska, A. & Ball, S. L. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).CAS 
    Article 

    Google Scholar 
    Cywinska, A., Hunter, F. & Hebert, P. D. Identifying Canadian mosquito species through DNA barcodes. Med. Vet. Entomol. 20, 413–424. https://doi.org/10.1111/j.1365-2915.2006.00653.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ogola, E. O., Chepkorir, E., Sang, R. & Tchouassi, D. P. A previously unreported potential malaria vector in a dry ecology of Kenya. Parasites Vectors 12, 80. https://doi.org/10.1186/s13071-019-3332-z (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maquart, P.-O., Fontenille, D., Rahola, N., Yean, S. & Boyer, S. Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia. Parasite 28, 60. https://doi.org/10.1051/parasite/2021056 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saeung, A. et al. Geographic distribution and genetic compatibility among six karyotypic forms of Anopheles peditaeniatus (Diptera: Culicidae) in Thailand. Trop. Biomed. 29, 613–625 (2012).CAS 
    PubMed 

    Google Scholar 
    Tainchum, K., Kongmee, M., Manguin, S., Bangs, M. J. & Chareonviriyaphap, T. Anopheles species diversity and distribution of the malaria vectors of Thailand. Trends Parasitol. 31, 109–119. https://doi.org/10.1016/j.pt.2015.01.004 (2015).Article 
    PubMed 

    Google Scholar 
    Chookaew, S. et al. Anopheles species composition in malaria high-risk areas in Ranong Province. Dis. Cont. J. 46, 483–493. https://doi.org/10.14456/dcj.2020.45 (2020).Article 

    Google Scholar 
    Reid, J. A. The Anopheles barbirostris group (Diptera, Culicidae). Bull. Entomol. Res. 53, 1–57 (1962).Article 

    Google Scholar 
    Harrison, B. A. & Scanlon, J. E. Medical entomology studies–II. The subgenus Anopheles in Thailand (Diptera: Culicidae). Contributions of the American Entomological Institute (Ann Arbor) 12 (1): iv + 1–iv 307 (1975).Wang, Y., Xu, J. & Ma, Y. Molecular characterization of cryptic species of Anopheles barbirostris van der Wulp in China. Parasite Vectors 7, 592. https://doi.org/10.1186/s13071-014-0592-5 (2014).CAS 
    Article 

    Google Scholar 
    Wang, G. et al. An evaluation of the suitability of COI and COII gene variation for reconstructing the phylogeny of, and identifying cryptic species in, anopheline mosquitoes (Diptera Culicidae). Mitochondrial DNA Part A. 28, 769–777. https://doi.org/10.1080/24701394.2016.1186665 (2017).CAS 
    Article 

    Google Scholar 
    Davidson, J. R. et al. Molecular analysis reveals a high diversity of Anopheles species in Karama, West Sulawesi, Indonesia. Parasite Vectors https://doi.org/10.1186/s13071-020-04252-6 (2020).Article 

    Google Scholar 
    Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145(5), 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gunathilaka, N. Illustrated key to the adult female Anopheles (Diptera: Culicidae) mosquitoes of Sri Lanka. Appl. Entomol. Zool. 52, 69–77. https://doi.org/10.1007/s13355-016-0455-y (2017).Article 
    PubMed 

    Google Scholar 
    WHO. Pictorial identification key of important disease vectors in the WHO South-East Asia Region. https://apps.who.int/iris/handle/10665/332202 (accessed 20 August 2021).Rigg, C. A., Hurtado, L. A., Calzada, J. E. & Chaves, L. F. Malaria infection rates in Anopheles albimanus (Diptera: Culicidae) at Ipetí-Guna, a village within a region targeted for malaria elimination in Panamá. Infect. Genet. Evol. 69, 216–223. https://doi.org/10.1016/j.meegid.2019.02.003 (2019).Article 
    PubMed 

    Google Scholar 
    Torres-Cosme, R. et al. Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Darién, Panama. PLoS ONE 16, e0250059. https://doi.org/10.1371/journal.pone.0250059 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beebe, N. W. & Saul, A. Discrimination of all Members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am. J. Trop. Med. Hyg. 53, 478–481. https://doi.org/10.4269/ajtmh.1995.53.478 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Perkins, S. L. & Schall, J. J. A molecular phylogeny of malaria parasites recovered from cytochrome b gene sequences. J. Parasitol. 88, 972–978. https://doi.org/10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Snounou, G. et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 61, 315–320. https://doi.org/10.1016/0166-6851(93)90077-b (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Schoener, E. et al. Avian Plasmodium in Eastern Austrian mosquitoes. Malar. J. 16, 389. https://doi.org/10.1186/s12936-017-2035-1 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ventim, R. et al. Avian malaria infections in western European mosquitoes. Parasitol. Res. 111, 637–645. https://doi.org/10.1007/s00436-012-2880-3 (2012).Article 
    PubMed 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755 (2001).CAS 
    Article 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Wildmeat consumption and child health in Amazonia

    Milner-Gulland, E. J. & Bennett, E. L. Wild meat: The bigger picture. Trends Ecol. Evol. 18, 351–357 (2003).
    Google Scholar 
    Van Vliet, N. et al. Bushmeat and human health: Assessing the evidence in tropical and sub-tropical forests. Ethnobio. Conserv. 6, 3. https://doi.org/10.15451/ec2017-04-6.3-1-45 (2017).Article 

    Google Scholar 
    Ingram, D. J. et al. Wild meat is still on the menu: Progress in wild meat research, policy, and practice from 2002 to 2020. Annu. Rev. Environ. Resour. 46, 221–254. https://doi.org/10.1146/annurev-environ-041020-063132 (2021).Article 

    Google Scholar 
    Golden, C. D., Fernald, L. C. H., Brashares, J. S., Rasolofoniaina, B. J. R. & Kremen, C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. P. Natl. Acad. Sci. 108, 19653–19656 (2011).ADS 
    CAS 

    Google Scholar 
    Roe, D. et al. Beyond banning wildlife trade: COVID-19, conservation and development. World Dev. 136, 105121. https://doi.org/10.1016/j.worlddev.2020.105121 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W., Orrick, K., Lim, A. & Dove, M. Reframing conservation and development perspectives on bushmeat. Environ. Res. Lett. 17, 011001. https://doi.org/10.1088/1748-9326/ac3db1 (2021).ADS 
    Article 

    Google Scholar 
    Cawthorn, D.-M. & Hoffman, L. C. The bushmeat and food security nexus: A global account of the contributions, conundrums and ethical collisions. Food Res. Int. 76, 906–925 (2015).PubMed Central 

    Google Scholar 
    Antunes, A. P. et al. A conspiracy of silence: Subsistence hunting rights in the Brazilian Amazon. Land Use Policy 84, 1–11 (2019).
    Google Scholar 
    Friant, S. et al. Eating bushmeat improves food security in a biodiversity and infectious disease “Hotspot”. EcoHealth 17, 125–138 (2020).PubMed 

    Google Scholar 
    Fa, J. E., Currie, D. & Meeuwig, J. Bushmeat and food security in the Congo Basin: Linkages between wildlife and people’s future. Environ. Conserv. 30, 71–78 (2003).
    Google Scholar 
    Borgerson, C., Razafindrapaoly, B., Rajaona, D., Rasolofoniaina, B. J. R. & Golden, C. D. Food insecurity and the unsustainable hunting of wildlife in a UNESCO world heritage site. Front. Sustain. Food Syst. 3, 99. https://doi.org/10.3389/fsufs.2019.00099 (2019).Article 

    Google Scholar 
    Booth, H. et al. Investigating the risks of removing wild meat from global food systems. Curr. Biol. 31, 1788–1797. https://doi.org/10.1016/j.cub.2021.01.079 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Vliet, N., Nebesse, C. & Nasi, R. Bushmeat consumption among rural and urban children from Province Orientale, Democratic Republic of Congo. Oryx 49, 165–174 (2015).
    Google Scholar 
    Sirén, A. & Machoa, J. Fish, wildlife, and human nutrition in tropical forests: A fat gap?. Interciencia 33, 186–193 (2008).
    Google Scholar 
    Sarti, F. M. et al. Beyond protein intake: Bushmeat as source of micronutrients in the Amazon. E&S 20, 22 (2015).
    Google Scholar 
    Hoffman, L. C. What is the role and contribution of meat from wildlife in providing high quality protein for consumption?. Anim. Front. 2, 15 (2012).
    Google Scholar 
    Fa, J. E. et al. Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Sci. Rep. 5, 8168. https://doi.org/10.1038/srep08168 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castro, T. G., Baraldi, L. G., Muniz, P. T. & Cardoso, M. A. Dietary practices and nutritional status of 0–24-month-old children from Brazilian Amazonia. Public Health Nutr. 12, 2335–2342 (2009).CAS 
    PubMed 

    Google Scholar 
    Mintz, S. W. & Du Bois, C. M. The anthropology of food and eating. Annu. Rev. Anthropol. 31, 99–119 (2002).
    Google Scholar 
    Lokossou, Y. U. A., Tambe, A. B., Azandjèmè, C. & Mbhenyane, X. Socio-cultural beliefs influence feeding practices of mothers and their children in Grand Popo, Benin. J. Health Popul. Nutr. 40, 33 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Murphy, S. P. & Allen, L. H. Nutritional importance of animal source foods. J. Nutr. 133, 3932S-3935S (2003).CAS 
    PubMed 

    Google Scholar 
    Neumann, C. G. et al. Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings. J. Nutr. 133, 3941S-3949S (2003).CAS 
    PubMed 

    Google Scholar 
    Desalegn, A., Mossie, A. & Gedefaw, L. Nutritional iron deficiency anemia: Magnitude and its predictors among school age children, Southwest Ethiopia: A community based cross-sectional study. PLoS ONE 9, e114059 (2014).ADS 
    PubMed Central 

    Google Scholar 
    Safiri, S. et al. Burden of anemia and its underlying causes in 204 countries and territories, 1990–2019: Results from the Global Burden of Disease Study 2019. J. Hematol. Oncol. 14, 185 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).
    Google Scholar 
    Investing in the future: a united call to action on vitamin and mineral deficiencies: global report, 2009. (Micronutrient Initiative, 2009).Walker, S. P. et al. Child development: Risk factors for adverse outcomes in developing countries. Lancet 369, 145–157 (2007).PubMed 

    Google Scholar 
    Saloojee, H. & Pettifor, J. M. Iron deficiency and impaired child development: The relation may be causal, but it may not be a priority for intervention. BMJ 323, 1377–1378 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neumann, C., Harris, D. M. & Rogers, L. M. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutr. Res. 22, 193–220 (2002).CAS 

    Google Scholar 
    Haileselassie, M. et al. Why are animal source foods rarely consumed by 6–23 months old children in rural communities of Northern Ethiopia? A qualitative study. PLoS ONE 15, e0225707 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Victor, R., Baines, S. K., Agho, K. E. & Dibley, M. J. Factors associated with inappropriate complementary feeding practices among children aged 6–23 months in Tanzania: Complementary feeding practices in Tanzania. Matern. Child Nutr. 10, 545–561 (2014).PubMed 

    Google Scholar 
    Morsello, C. et al. Cultural attitudes are stronger predictors of bushmeat consumption and preference than economic factors among urban Amazonians from Brazil and Colombia. E&S 20, 21 (2015).
    Google Scholar 
    Parry, L., Barlow, J. & Pereira, H. Wildlife Harvest and Consumption in Amazonia’s Urbanized Wilderness: Wildlife consumption in urbanized Amazonia. Conserv. Lett. 7, 565–574 (2014).
    Google Scholar 
    Chaves, W. A., Wilkie, D. S., Monroe, M. C. & Sieving, K. E. Market access and wild meat consumption in the central Amazon, Brazil. Biol. Conserv. 212, 240–248 (2017).
    Google Scholar 
    Dufour, D. L., Piperata, B. A., Murrieta, R. S. S., Wilson, W. M. & Williams, D. D. Amazonian foods and implications for human biology. Ann. Hum. Biol. 43, 330–348 (2016).PubMed 

    Google Scholar 
    Piperata, B. A. Nutritional status of Ribeirinhos in Brazil and the nutrition transition. Am. J. Phys. Anthropol. 133, 868–878 (2007).PubMed 

    Google Scholar 
    Garcia, M. T., Granado, F. S. & Cardoso, M. A. Alimentação complementar e estado nutricional de crianças menores de dois anos atendidas no Programa Saúde da Família em Acrelândia, Acre, Amazônia Ocidental Brasileira. Cad. Saúde Pública 27, 305–316 (2011).PubMed 

    Google Scholar 
    Marques, R. C., Bernardi, J. V. E., Dorea, C. C. & Dórea, J. G. Intestinal parasites, anemia and nutritional status in young children from transitioning Western Amazon. IJERPH 17, 577 (2020).PubMed Central 

    Google Scholar 
    Granado, F. S., Augusto, R. A., Muniz, P. T. & Cardoso, M. A. Team, the A. S. Anaemia and iron deficiency between 2003 and 2007 in Amazonian children under 2 years of age: Trends and associated factors. Public Health Nutr. 16, 1751–1759 (2013).PubMed 

    Google Scholar 
    Nogueira-de-Almeida, C. A. et al. Prevalence of childhood anaemia in Brazil: Still a serious health problem: A systematic review and meta-analysis. Public Health Nutr. 24, 6450–6465. https://doi.org/10.1017/S136898002100286X (2021).Article 
    PubMed 

    Google Scholar 
    de Souza, A. A., Mingoti, S. A., Paes-Sousa, R. & Heller, L. Combination of conditional cash transfer program and environmental health interventions reduces child mortality: An ecological study of Brazilian municipalities. BMC Public Health 21, 627 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, H. S. et al. Prevalence of anaemia in Brazilian children in different epidemiological scenarios: An updated meta-analysis. Public Health Nutr. 24, 2171–2184 (2021).PubMed 

    Google Scholar 
    Leite, M. S. et al. Prevalence of anemia and associated factors among indigenous children in Brazil: Results from the First National Survey of Indigenous People’s Health and Nutrition. Nutr. 12, 69 (2013).
    Google Scholar 
    WHO, W. H. O. Prevalence of anaemia in children aged 6–59 months (%). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-children-under-5-years-(-) (2021).Schreiner, M. A Poverty Probability Index (PPI®) for Brazil (2008). (2010).Walzer, C. COVID-19 and the curse of piecemeal perspectives. Front. Vet. Sci. 7, 582983 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Carignano, T. P., Morsello, C. & Parry, L. Rural-urban mobility influences wildmeat access and consumption in the Brazilian Amazon. Oryx (In press).Ferreira, M. U. et al. Anemia and iron deficiency in school children, adolescents, and adults: A community-based study in Rural Amazonia. Am. J. Public Health 97, 237–239 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    de Castro, T. G., Silva-Nunes, M., Conde, W. L., Muniz, P. T. & Cardoso, M. A. Anemia e deficiência de ferro em pré-escolares da Amazônia Ocidental brasileira: Prevalência e fatores associados. Cad. Saúde Pública 27, 131–142 (2011).PubMed 

    Google Scholar 
    Cotta, R. M. M. et al. Social and biological determinants of iron deficiency anemia. Cad. Saúde Pública 27, s309–s320 (2011).PubMed 

    Google Scholar 
    Chaves, W. A., Valle, D., Tavares, A. S., Morcatty, T. Q. & Wilcove, D. S. Impacts of rural to urban migration, urbanization, and generational change on consumption of wild animals in the Amazon. Conserv. Biol. 35, 1186–1197. https://doi.org/10.1111/cobi.13663 (2020).Article 

    Google Scholar 
    El Bizri, H. R. et al. Urban wild meat consumption and trade in central Amazonia. Conserv. Biol. 34, 438–448 (2020).PubMed 

    Google Scholar 
    Chaves, W. A., Valle, D., Tavares, A. S., von Mühlen, E. M. & Wilcove, D. S. Investigating illegal activities that affect biodiversity: The case of wildlife consumption in the Brazilian Amazon. Ecol. Appl. 31, e02402. https://doi.org/10.1002/eap.2402 (2021).Article 
    PubMed 

    Google Scholar 
    Chaves, W. A., Monroe, M. C. & Sieving, K. E. Wild meat trade and consumption in the Central Amazon, Brazil. Hum. Ecol. 47, 733–746 (2019).
    Google Scholar 
    Ohl-Schacherer, J. et al. The sustainability of subsistence hunting by matsigenka native communities in Manu National Park, Peru. Conserv. Biol. 21, 1174–1185 (2007).PubMed 

    Google Scholar 
    Shaffer, C. A., Yukuma, C., Marawanaru, E. & Suse, P. Assessing the sustainability of Waiwai subsistence hunting in Guyana by comparison of static indices and spatially explicit, biodemographic models. Anim. Conserv. 21, 148–158 (2018).
    Google Scholar 
    Pesquisa de orçamentos familiares, 2008–2009. (IBGE, 2010).Aguiar, J. P. L. Tabela de composição de alimentos da Amazônia. Acta Amaz 26, 121–126 (1996).
    Google Scholar 
    de Bruyn, J. et al. Food composition tables in resource-poor settings: exploring current limitations and opportunities, with a focus on animal-source foods in sub-Saharan Africa. Br. J. Nutr. 116, 1709–1719 (2016).PubMed Central 

    Google Scholar 
    World Bank. Poverty and Shared Prosperity 2020: Reversals of Fortune. (World Bank, 2020).Coad, L. M. et al. Toward a Sustainable, Participatory and Inclusive Wild Meat Sector. (Center for International Forestry Research (CIFOR) https://doi.org/10.17528/cifor/007046 (2019).Cowlishaw, G., Mendelson, S. & Rowcliffe, J. M. Evidence for post-depletion sustainability in a mature bushmeat market. J. Appl. Ecol. 42, 460–468 (2005).
    Google Scholar 
    Carignano Torres, P., Morsello, C., Parry, L. & Pardini, R. Forest cover and social relations are more important than economic factors in driving hunting and bushmeat consumption in post-frontier Amazonia. Biol. Conserv. 253, 108823. https://doi.org/10.1016/j.biocon.2020.108823 (2021).Article 

    Google Scholar 
    Nunes, A. V., Oliveira-Santos, L. G. R., Santos, B. A., Peres, C. A. & Fischer, E. Socioeconomic drivers of hunting efficiency and use of space by traditional Amazonians. Hum. Ecol. 48, 307–315 (2020).
    Google Scholar 
    Freitas, C. T. et al. Co-management of culturally important species: A tool to promote biodiversity conservation and human well-being. People Nat. 2, 61–81 (2020).
    Google Scholar 
    Campos-Silva, J. V., Peres, C. A., Antunes, A. P., Valsecchi, J. & Pezzuti, J. Community-based population recovery of overexploited Amazonian wildlife. PECON 15, 266–270 (2017).
    Google Scholar 
    Nunes, A. V., Peres, C. A., de Constantino, P. A. L., Santos, B. A. & Fischer, E. Irreplaceable socioeconomic value of wild meat extraction to local food security in rural Amazonia. Biol. Conserv. 236, 171–179 (2019).
    Google Scholar 
    Balarajan, Y., Ramakrishnan, U., Özaltin, E., Shankar, A. H. & Subramanian, S. Anaemia in low-income and middle-income countries. Lancet 378, 2123–2135 (2011).PubMed 

    Google Scholar 
    Mendes, M. M. et al. Association between iron deficiency anaemia and complementary feeding in children under 2 years assisted by a Conditional Cash Transfer programme. Public Health Nutr. 24, 4080–4090 (2021).PubMed 

    Google Scholar 
    Brondízio, E. S., de Lima, A. C. B., Schramski, S. & Adams, C. Social and health dimensions of climate change in the Amazon. Ann. Hum. Biol. 43, 405–414 (2016).PubMed 

    Google Scholar 
    Ingram, D. J. Wild meat in changing times. J. Ethnobiol. 40, 117 (2020).
    Google Scholar 
    Nunes, A. V., Guariento, R. D., Santos, B. A. & Fischer, E. Wild meat sharing among non-indigenous people in the southwestern Amazon. Behav. Ecol. Sociobiol. 73, 26 (2019).
    Google Scholar 
    Parry, L. et al. Social vulnerability to climatic shocks is shaped by urban accessibility. Ann. Am. Assoc. Geogr. 108, 125–143 (2018).
    Google Scholar 
    IBGE, I. B. de G. e E. Censo Demográfico 2010. (2010).IBGE, I. B. de G. e E. Estimativas da população residente para os municípios e para as unidades da federação com data de referência em 1o de julho de 2019. (2019).Cardoso, M. A., Scopel, K. K. G., Muniz, P. T., Villamor, E. & Ferreira, M. U. Underlying factors associated with anemia in amazonian children: A population-based cross-sectional study. PLOS ONE 7, e36341 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattiello, V. et al. Diagnosis and management of iron deficiency in children with or without anemia: consensus recommendations of the SPOG Pediatric Hematology Working Group. Eur. J. Pediatr. 179, 527–545 (2020).PubMed 

    Google Scholar 
    R Core Team. R: The R project for statistical computing. (2015).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    Devereux, S. Social Protection for Rural Poverty Reduction. Rural Transformations Technical Series 1 (2016).Barton, K. Mu-MIn: Multi-model Inference. R Package Version 0.12.2/r18. (2009).Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Berti, P. R. Intrahousehold distribution of food: A review of the literature and discussion of the implications for food fortification programs. Food Nutr. Bull. 33, S163–S169 (2012).PubMed 

    Google Scholar 
    Piperata, B. A., Schmeer, K. K., Hadley, C. & Ritchie-Ewing, G. Dietary inequalities of mother–child pairs in the rural Amazon: Evidence of maternal-child buffering?. Soc. Sci. Med. 96, 183–191 (2013).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The great acceleration of plant phenological shifts

    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. Quat. Sci. Rev. 28, 3016–3034 (2009).Article 

    Google Scholar 
    Zheng, Z. et al. Proc. Natl Acad. Sci. USA 118, e2022210118 (2021).CAS 
    Article 

    Google Scholar 
    Lewis, S. L. & Maslin, M. A. Nature 519, 171–180 (2015).CAS 
    Article 

    Google Scholar 
    Steffen, W. et al. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Ripple, W. J. et al. BioScience 70, 8–12 (2020).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. Nat. Clim. Change 8, 224–228 (2018).Article 

    Google Scholar 
    Vitasse, Y. et al. Biol. Rev. 96, 1816–1835 (2021).Article 

    Google Scholar 
    Aono, Y. & Kazui, K. Int. J. Climatol. 28, 905–914 (2008).Article 

    Google Scholar 
    Sparks, T. H. & Carey, P. D. J. Ecol. 83, 321–329 (1995).Article 

    Google Scholar 
    Ge, Q. et al. J. Geophys. Res. Biogeosci. 119, 301–311 (2014).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Post, E., Steinman, B. A. & Mann, M. E. Sci. Rep. 8, 3927 (2018).Article 

    Google Scholar 
    Primack, R. B. & Miller-Rushing, A. J. Bioscience 62, 170–181 (2012).Article 

    Google Scholar 
    Kharouba, H. M. et al. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Parker, D. E., Legg, T. P. & Folland, C. K. Int. J. Climatol. 12, 317–342 (1992).Article 

    Google Scholar  More

  • in

    The citizens who chart changing climate

    Jean Combes’s love of nature as a child led her to note the signs of starting spring. Her long-term records are now part of a vital growing citizen science dataset that starkly shows how climate change is shifting the timing of the natural world.For people living in colder parts of the world, watching for the first signs of spring — from the opening of snowdrops and daffodils, to birds building their nests, to the return of bees and butterflies — is a common winter pastime. Jean Combes has not just been watching out for these signs, but also recording them, ever since she was a child. Taking note of the earliest emergence of leaves in springtime — first as a child of 11 years, and then continuously from the age of 20 years — Jean has now collected one of the longest continuous datasets of spring leaf-out time in the UK (see also Correspondence by Vitasse et al.). These almost 75 years of data show a clear shift that corroborates shifts now acknowledged for diverse species around the world: springtime is coming earlier, and the patterns of advance match the global trends in the changing climate. Jean’s naturalist endeavours have already earned her high honours in the form of an OBE (Order of the British Empire), and recognition of her own work is mirrored in a growing recognition of the vital role of citizen scientists in tracking the signs of our rapidly changing world.
    This is a preview of subscription content More

  • in

    Understanding urban plant phenology for sustainable cities and planet

    Meng, L. et al. Proc. Natl Acad. Sci. USA 117, 4228 (2020).CAS 
    Article 

    Google Scholar 
    Wohlfahrt, G., Tomelleri, E. & Hammerle, A. Nat. Ecol. Evol. 3, 1668–1674 (2019).Article 

    Google Scholar 
    Wortman, S. E. & Lovell, S. T. J. Environ. Qual. 42, 1283–1294 (2013).CAS 
    Article 

    Google Scholar 
    Su, Y. et al. Agri. For. Meterol. 280, 107765 (2020).Article 

    Google Scholar 
    Smith, I. A., Dearborn, V. K. & Hutyra, L. R. PLoS ONE 14, e0215846 (2019).Article 

    Google Scholar 
    Richardson, A. D. et al. Nature 560, 368–371 (2018).CAS 
    Article 

    Google Scholar 
    Meineke, E. K., Dunn, R. R. & Frank, S. D. Biol. Lett. 10, 20140586 (2014).Article 

    Google Scholar 
    Liu, J. et al. Tour. Manag. 70, 262–272 (2019).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 222, 267–274 (2019).CAS 
    Article 

    Google Scholar 
    Wang, S. et al. Nat. Ecol. Evol. 3, 1076–1085 (2019).Article 

    Google Scholar 
    Feeley, K. J. et al. Nat. Clim. Change 10, 965–970 (2020).CAS 
    Article 

    Google Scholar 
    Li, D. et al. Nat. Ecol. Evol. 3, 1661–1667 (2019).Article 

    Google Scholar 
    Li, X. et al. Earth Syst. Sci. Data 11, 881–894 (2019).Article 

    Google Scholar 
    Román, M. O. et al. Remote Sens. Environ. 210, 113–143 (2018).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 215, 74–84 (2018).Article 

    Google Scholar  More

  • in

    System dynamics modeling of lake water management under climate change

    System dynamics methodThe SD method applies systemic processing to simulate complex non-linear dynamics and feedback. Systemic processing resorts to various tools to simulate complex system behavior and performance24. Systems evolve through states, which change with flows. An example of a state variable is water storage in the study of lakes. The SD method simulates changes in system states driven by flows and various feedbacks25.This work employs the SD method to simulate storage change in Lake Urmia in one historical period (1957–2005) and two future periods (2021–2050 and 2051–2080). The lake’s water volume is the state variable, which is governed by inflows (precipitation, surface water inflows, and groundwater inflows) and outflows (evaporation, leakage, and surface water outflows). The lake’s mass balance equation is expressed as:$$S_{t + 1} = intlimits_{t}^{t + 1} {[I_{s} – O_{s} ]ds + S_{t} }$$
    (1)
    where St+1 , St, Is, and Os denote the lake’s storage at time t + 1, the lake’s storage at time t, the inflow rate to the lake at time s (units of volume/time), and the outflow rate from the lake at time s (units of volume/time), respectively.The SD method employs the Euler and Runge Kutta methods for the solution of differential equations. The software STELLA, Vensim, Powersim, and Dynamo feature SD solvers26. This work applies the widely-used Vensim software27.Climate changeThe data sets needed for modeling Lake Urmia’s storage over the two future periods were generated after simulating the lake’s water balance during the historical period. HADCM3, a coupled atmosphere–ocean general circulation model’s (AOGCM) climate projections were used to generate precipitation and surface temperature projections over the future periods. The AOGCM data at coarse spatial scales were downscaled to the regional scale suitable for lake storage simulation. The commonly used downscaling methods are statistic and dynamic in nature28,29. This works applies the delta-change downscaling method, in which monthly temperature and precipitation differences between the future and historical are calculated by29:$$Delta T_{t} = overline{T}_{GCM,fut,t} – overline{T}_{GCM,hist,t}$$
    (2)
    $$Delta P_{t} = overline{P}_{GCM,fut,t} – overline{P}_{GCM,hist,t}$$
    (3)
    where ∆Tt denotes the difference in long-term average temperatures simulated by HADCM3 for the future ((overline{T}_{GCM,fut,t})) and historical ((overline{T}_{GCM,hist,t})) periods in month t (°C); ∆Pt represents the difference in long-term average precipitations simulated by HADCM3 for the future ((overline{P}_{GCM,fut,t})) and historical ((overline{P}_{GCM,hist,t})) periods in month t (mm). Then, ∆Tt and ∆Pt are applied to project the future downscaled data as follows29:$$T_{t} = T_{obs,t} + , Delta T_{t}$$
    (4)
    $$P_{t} = P_{obs,t} { + }Delta P_{t}$$
    (5)
    where Tobs,t, and Pobs,t denote respectively the observed temperature (°C) and precipitation (mm) in month t in the baseline period; and Tt and Pt are the downscaled temperature (°C) and precipitation (mm) in month t of the future period, respectively. Delta-change downscaling is a simple yet efficient option when it comes to spatial downscaling of climate change projections (e.g.30,31,32). The gist of this method is to replicate the changing patterns that are projected by the atmospheric ocean general circulation models (AOGCMs) to generate the climate change patterns of hydro-climatic variables on a regional scale. As such, one would simply compute the relative changes in the long-term variations of the variable that is projected by the models within the baseline and future timeframes. These relative changing patterns would be applied to the historical data to project the impact of climate change on a local scale.Rainfall-runoff modelingThe IHACRES (identification of unit hydrographs and component flows from rainfall, evapotranspiration and streamflow) model is herein applied to simulate runoff from precipitation. Ashofteh et al.33 implemented the IHACRES model to investigate the effects of climate change on reservoir performance in agricultural water supply. Ashofteh et al.34 evaluated the probability of flood occurrence in future periods with IHACRES.The IHACRES model includes a non-linear loss module and a linear unit hydrograph module. The non-linear loss module converts the observed rainfall into the effective rainfall, after which the linear unit hydrograph module converts the effective rainfall into the simulated streamflow35. Here, precipitation rk in time step k is converted to effective precipitation uk through the non-linear loss module employing a catchment wetness index sk:$$u_{k} = , s_{k} times , r_{k}$$
    (6)
    The effective precipitation is converted to the surface runoff in time step k with the linear unit hydrograph module. The parameters of this model can be set through a thorough grid numeric search and trial-and-error. Perhaps, one of the major advantages of the IHACRES model over other commonly-used rainfall-runoff models is its minimal input data requirement (i.e., air temperature and precipitation)31,35.The other alternative for hydrologic simulation is to use data-driven models. Here, the multilayer perceptron (MLP), a variety of the artificial neural network (ANN) method, was also used to simulate runoff. This model consists of an inlet layer, one or several middle (hidden) layer(s), and an output layer. All of the neurons of a layer are connected to the ones in the next layer, forming a network with complete connections. The primary parameters in modeling the neural network of MLP are: (1) the number of neurons in each layer, (2) the number of layers in the network, and (3) the forcing functions. A regular MLP neural network has three layers36. The first and the third layers are respectively the system inputs and outputs. The middle layer consists of neurons that perform calculations on the inputs. Choosing the number of layers in a neural network is made by trial and error37. From a hydrological simulation standpoint the main idea behind this model is to create a suitable artificial neural network that is capable of accurately converting a set of hydro-climatic variables such as precipitation and temperature as input data into streamflow values. It should be noted that, like most data-driven models, the process of opting for a proper neural network architecture (i.e., selecting the number of layers, number of neurons, and the forcing function) is, for the most part, a trial-and-error procedure.One must objectively evaluate the performance of the hydrological models in order to opt for the setting of a suitable parameter. The root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE) are herein employed to assess the performance of the rainfall-runoff model. They are respectively calculated as follows:$$RMSE = sqrt {frac{{sumlimits_{t = 1}^{N} {(x_{t} – y_{t} )^{2} } }}{N}}$$
    (7)
    $$R^{2} = left( {frac{{sumnolimits_{t = 1}^{N} {(x_{t} – overline{x} ).(y_{t} – overline{y} )} }}{{sqrt {sumnolimits_{t = 1}^{N} {(x_{t} – overline{x} )^{2} } } .sqrt {sumnolimits_{t = 1}^{N} {(y_{t} – overline{y} )^{2} } } }}} right)^{2}$$
    (8)
    $$MAE = frac{{sumnolimits_{t = 1}^{N} {left| {x_{t} – y_{t} } right|} }}{N}$$
    (9)
    where xt , yt, and N denote the simulated value in time step t; the observed value in time step t; and the number data values, respectively. Large errors have a disproportionately large effect on RMSE or MAE.Performance criteriaVarious quantitative measures can be used to assess the performance of water resources systems under different strategies. When it comes to water resources planning and management, perhaps, some of the most common performance criteria are the probability-based performance criteria (PBPC) (i.e., reliability, vulnerability, and resiliency)31,38. In this context, reliability represents the probability of successful functioning of a system; resiliency measures the probability of successful functioning following a system failure; lastly, vulnerability is the severity of failure during an operation horizon39,40. The basic idea behind a performance evaluation attribute is to provide a quantitative measure to describe and assess the performance of a system. In the context of water resources planning and management, these measures have proven time and again that they can be reliable options to evaluate a set of strategic management options objectively (see, e.g.40,41,42,43, and44, just to name a few).Operating policyAny water resources system requires something called the “rule curve,” which determines how water is allocated in a given situation45. A common and effective rule curve when it comes to operation of water resource systems is the standard operation policy (SOP). SOP is a simple, and perhaps best-known real-time operation policy in water resources planning and management46. The core principle here is to minimize the water shortage at the current time step with no conservation policy (e.g., hedging rules) in place. The SOP, as a standard rule curve, determines how the operator acts to control a system at any given state of a reservoir47,48. This rule curve is established as an attempt to balance various water demands including but not limited to flood control, hydropower, water supply, and recreation49. A SOP operating system attempts to release water to meet a water demand at the current time, with no regard to the future. Thus, according to the SOP’s principle, the decision-makers, first allocate the available water to meet the demand of the stakeholder with the highest priority. After this first water demand is fully satisfied, the available water can be used for the next demand. Such an allocation process continues until no water is available.Ethics approvalAll authors accept all ethical approvals.Consent to participateAll authors consent to participate.Consent to publishAll authors consent to publish. More

  • in

    Spatial cover and carbon fluxes of urbanized Sonoran Desert biological soil crusts

    Bethany, J., Giraldo-Silva, A., Nelson, C., Barger, N. N. & Garcia-Pichel, F. Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils. Appl. Environ. Microbiol. 85(15), e00735-e819 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Belnap, J. & Gardner, J. S. Soil microstructure in soils of the colorado plateau—The role of the cyanobacterium Microcoleus-vaginatus. Gt. Basin Nat. 53(1), 40–47 (1993).
    Google Scholar 
    Belnap, J. Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 241–261 (2001).
    Google Scholar 
    Cameron, R. E. & Blank, G. B. Desert algae: Soil crusts and diaphanous substrata as algal habitats. Tech. Rep. Jet Propul. Lab. Calif. Technol. 32–971, 1–41 (1966).
    Google Scholar 
    Friedmann EI, Galun M. Desert algae lichens and fungi. in Desert Biology (Brown Jr, G.W. eds). Vol. 2. 165–212. (Illus Academic Press, Inc., 1974).Maier, S., Tamm, A., Wu, D.A.-O., Caesar, J., Grube, M., & Weber, B.A.-O. Photoautotrophic Organisms Control Microbial Abundance, Diversity, and Physiology in Different Types of Biological Soil Crusts. (1751–7370 (electronic)).Cable, J. M. & Huxman, T. E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141(2), 317–324 (2004).ADS 
    PubMed 

    Google Scholar 
    Evans, R. D. & Johansen, J. R. Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18(2), 183–225 (1999).
    Google Scholar 
    Thompson, J. N. et al. Frontiers of ecology. Bioscience 51(1), 15–24 (2001).
    Google Scholar 
    Warren, S. D., Rosentreter, R. & Pietrasiak, N. Biological soil crusts of the Great Plains: A review. Rangel Ecol. Manag. 1(78), 213–219 (2021).
    Google Scholar 
    Warren, S. D. et al. Biological soil crust response to late season prescribed fire in a Great Basin Juniper Woodland. Rangel. Ecol. Manag. 68(3), 241–247 (2015).
    Google Scholar 
    Thomas, A. D., Hoon, S. R. & Linton, P. E. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Appl. Soil Ecol. 39, 254–263 (2008).
    Google Scholar 
    Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the Mojave Desert, USA: Micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76(5), 1685–1695 (2012).ADS 
    CAS 

    Google Scholar 
    Belnap, J. & Lange, O. L. Ecological studies: Biological soil crusts: Structure, function, and management. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 1–503 (2001).
    Google Scholar 
    Jordan, W. R. I. Restoration ecology: A synthetic approach to ecological research. Rehabil. Damaged Ecosyst. 2, 373–384 (1995).
    Google Scholar 
    Nash, T. H. et al. Photosynthetic patterns of Sonoran desert lichens.1. Environmental considerations and preliminary field-measurements. Flora 172(4), 335–345 (1982).
    Google Scholar 
    St. Clair, L. L., Johansen, J. R. & Rushforth, S. R. Lichens of soil crust communities in the Intermountain Area of the western United States. Gt Basin Nat. 53(1), 5 (1993).
    Google Scholar 
    Bowker, M. A., Belnap, J. & Miller, M. E. Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangel. Ecol. Manag. 59(5), 519–529 (2006).
    Google Scholar 
    Mayland, H. F., McIntosh, T. H. & Fuller, W. H. Fixation of isotopic nitrogen on a semiarid soil by algal crust organisms. Soil Sci. Soc. Am. Proc. 30(1), 56 (1966).ADS 
    CAS 

    Google Scholar 
    McIlvanie, S. K. Grass seedling establishment, and productivity—Overgrazed vs. protected range soils. Ecology 23(2), 228–231 (1942).
    Google Scholar 
    Webb, R. H. & Wilshire, H. G. Environmental Effects of Off-Road Vehicles : Impacts and Management in Arid Regions (Springer, 1983).
    Google Scholar 
    Zobel, D. & Antos, J. A decade of recovery of understory vegetation buried by volcanic tephra from Mount St. Helens. Ecol. Monogr. 1, 67 (1997).
    Google Scholar 
    Condon, L. & Pyke, D. Resiliency of biological soil crusts and vascular plants varies among morphogroups with disturbance intensity. Plant Soil. 12, 433 (2020).
    Google Scholar 
    Harper, K., & Marble, J. A role for nonvascular plants in management of arid and semiarid rangelands. in Vegetation Science Applications for Rangeland Analysis and Management [Internet] (Tueller, P.T., ed.). Handbook of Vegetation Science. Vol. 14. 135–169. https://doi.org/10.1007/978-94-009-3085-8_7. (Springer, 1988). Evans, R. D. & Belnap, J. Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80(1), 150–160 (1999).
    Google Scholar 
    Sheridan, R. P. Impact of emissions from coal-fired electricity generating facilities on N2-fixing lichens. Bryologist 82(1), 54–58 (1979).CAS 

    Google Scholar 
    Henriksson, L. E. & Dasilva, E. J. Effects of some inorganic elements on nitrogen-fixation in blue-green-algae and some ecological aspects of pollution. Z. Allg. Mikrobiol. 18(7), 487–494 (1978).CAS 
    PubMed 

    Google Scholar 
    Freebury, C. Lichens and lichenicolous fungi of Grasslands National Park (Saskatchewan, Canada). Opusc Philolichenum 13, 102–121 (2009).
    Google Scholar 
    Szyja, M. et al. Neglected but potent dry forest players: ecological role and ecosystem service provision of biological soil crusts in the human-modified Caatinga. Front. Ecol. Evol. (Internet). https://doi.org/10.3389/fevo.2019.00482 (2019).Article 

    Google Scholar 
    Rosentreter, R. Biological soil of crusts of North American drylands: Cryptic diversity at risk. in Reference Module in Earth Systems and Environmental Sciences [Internet]. https://www.sciencedirect.com/science/article/pii/B9780128211397000738 (Elsevier, 2021). Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G. & Heitman, J. L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 261, 110209 (2020).
    Google Scholar 
    Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112(18), 5756 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaye, J. P., Groffman, P. M., Grimm, N. B., Baker, L. A. & Pouyat, R. V. A distinct urban biogeochemistry?. Trends Ecol. Evol. 21(4), 192–199 (2006).PubMed 

    Google Scholar 
    Pavao-Zuckerman, M. A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 16(4), 642–649 (2008).
    Google Scholar 
    Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118 (2002).CAS 
    PubMed 

    Google Scholar 
    Behzad, H., Mineta, K., & Gojobori, T. Global Ramifications of Dust and Sandstorm Microbiota. (1759–6653 (electronic)).Warren, S., Clair, L. & Leavitt, S. Aerobiology and passive restoration of biological soil crusts. Aerobiologia 3, 35 (2021).
    Google Scholar 
    Hall, S. J. et al. Urbanization alters soil microbial functioning in the Sonoran Desert. Ecosystems 12(4), 654–671 (2009).CAS 

    Google Scholar 
    Ball, B. A. & Guevara, J. A. The nutrient plasticity of moss-dominated crust in the urbanized Sonoran Desert. Plant Soil. 389(1–2), 225–235 (2015).CAS 

    Google Scholar 
    Allen, C. D. Monitoring environmental impact in the Upper Sonoran lifestyle: A new tool for rapid ecological assessment. Environ. Manag. 43(2), 346–356 (2009).ADS 

    Google Scholar 
    Evans, R. A. & Love, R. M. The step-point method of sampling: A practical tool in range research. J. Range Manag. 10(5), 208–212 (1957).
    Google Scholar 
    Coulloudon, B., & National Applied Resource Sciences C. Sampling Vegetation Attributes Interagency Technical Reference [Internet]. http://www.blm.gov/nstc/library/pdf/samplveg.pdf. (Bureau of Land Management : National Business Center, 1999). Faithfull, N. T. Methods in agricultural chemical analysis: A practical handbook. Methods Agric. Chem. Anal. Pract. Handb. 1–22, 1–266 (2002).
    Google Scholar 
    Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6(4), 886–897 (2012).CAS 
    PubMed 

    Google Scholar 
    Lorenz, K. & Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 35(1), 1–8 (2009).CAS 
    PubMed 

    Google Scholar 
    Chamizo, S., Canton, Y., Lazaro, R., Sole-Benet, A. & Domingo, F. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 15(1), 148–161 (2012).
    Google Scholar 
    Kidron, G. J. & Gutschick, V. P. Soil moisture correlates with shrub-grass association in the Chihuahuan Desert. CATENA 107, 71–79 (2013).
    Google Scholar 
    Kidron, G. J., Monger, H. C., Vonshak, A. & Conrod, W. Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology 15(139), 484–494 (2012).ADS 

    Google Scholar 
    Berdugo, M., Soliveres, S. & Maestre, F. T. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17, 1242 (2014).CAS 

    Google Scholar 
    Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol. 19, 3835 (2013).ADS 

    Google Scholar 
    Valenzuela, A. et al. Aerosol radiative forcing during African desert dust events (2005–2010) over southeastern Spain. Atmos. Chem. Phys. 12(21), 10331–10351 (2012).ADS 
    CAS 

    Google Scholar 
    Kaya, S., Basar, U. G., Karaca, M. & Seker, D. Z. Assessment of urban heat islands using remotely sensed data. Ekoloji 21(84), 107–113 (2012).
    Google Scholar 
    Demmigadams, B. et al. Effect of high light on the efficiency of photochemical energy-conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180(3), 400–409 (1990).CAS 

    Google Scholar 
    Gauslaa, Y. & Rikkinen, J. What’s behind the pretty colours? A study on the photobiology of lichens. Nord. J. Bot. 17(5), 556–556 (1995).
    Google Scholar 
    Garciapichel, F. & Castenholz, R. W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27(3), 395–409 (1991).CAS 

    Google Scholar 
    Garcia-Pichel, F. & Castenholz, R. W. The role of sheath pigments in the adaptation of terrestrial cyanobacteria to near UV radiation. J. Phycol. 27(3 SUPPL), 24–24 (1991).
    Google Scholar 
    McDonnell, M. J. et al. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1(1), 21–36 (1997).
    Google Scholar 
    Pavao-Zuckerman, M. A. & Byrne, L. B. Scratching the surface and digging deeper: Exploring ecological theories in urban soils. Urban Ecosyst. 12(1), 9–20 (2009).
    Google Scholar 
    Pavao-Zuckerman, M. A. Urban greenscape, soils, and ecosystem functioning in a semi-arid urban ecosystem. J. Nematol. 41(4), 369–370 (2009).
    Google Scholar 
    Collins, S. L. et al. Pulse dynamics and microbial processes in aridland ecosystems. J. Ecol. 96(3), 413–420 (2008).
    Google Scholar 
    Noy-Meir, I. Desert ecosystems environment and producers. In Annual Review on Ecology System (Johnston Richard, F. ed.). Vol. 4. 25–51. (Illus Map Annu Rev Inc, 1973). More

  • in

    Hair cortisol concentration reflects the life cycle and management of grey wolves across four European populations

    Collection of wolf hair samplesHair samples were collected by researchers from opportunistically found-dead wolves upon standard necropsy (all the Alpine and part of the Iberian samples) or in the field (all the Dinaric-Balkan and most of the Iberian samples), or from legally harvested wolves (only in the Scandinavian population). At the time of sample collection, wolves were legally harvested in Sweden, Slovenia, and Spain, and under total protection in Portugal and Italy. Hair samples were collected from four body regions, when possible: lumbar (n = 133), dorsal cervical (n = 66), tail (n = 33) and ventral thorax (n = 27) (Tables S1 and S2). The hair was cut as close as possible to the skin with scissors to avoid collecting hair follicles, but in some samples, hairs were pulled from the carcass. Samples were stored at room temperature in paper envelopes. Age, sex, date, and cause of death/capture, geographical location, body mass, and total length were obtained for most of the wolves.Age was estimated by the dental eruption and wear or cementum age analysis and classified as ‘juveniles’ ( 2 years)40, or ‘unknown’. Sex was assessed by inspection of genitalia. Causes of death were classified as ‘acute’, likely lasting minutes to hours (vehicle accident and legal or illegal shooting); ‘subacute’, likely lasting hours to days (drowning, poisoning, trapping and intraspecific aggression); ‘chronic’, likely lasting several weeks (infectious diseases—canine distemper, canine parvovirosis, leptospirosis; sarcoptic mange; or neoplastic diseases) or ‘unknown’. Total length was obtained by measuring with metric tape (1 mm precision) the distance from snout to the distal end of the last tail vertebrae. The body mass was measured with 100 g precision with scales.The detailed protocol for the handling of wolves live trapped in the scope of ecological and conservation studies (n = 7, all from the Iberian population) has been previously described5. Traps were monitored twice every day, in the early morning and late afternoon, hence the duration of restraint after capture was unknown for 8 wolves, potentially up to 12 h. Trap-alarms were deployed in the capture of 2 wolves, with 41 and 70 min intervals between activation of the alarm and administration of the drugs. Live trapping was conducted under permits issued by the nature conservation authorities of Portugal (Instituto de Conservação da Natureza e das Florestas: 338/2007/CAPT, 258/2008/CAPT, 286/2008/CAPT, 260/2009/CAPT, 332/2010/MANU, 333/2010/CAPT, 336/2010/MANU, 26/2012/MANU, and 72/2014/CAPT) and Spain (Dirección Xeral de Conservación da Naturaleza, Xunta de Galicia: E-0020/13-PNPE, 095/2013; Consejería de Medio Ambiente, Principado de Asturias: 31/08/2017-BOPA 05/09/17) and according to European Union directives on the protection of animals used for scientific purposes (Directive 2010/63/EU) and international wildlife standards41,42. The study was undertaken in compliance with the ARRIVE guidelines43.Cortisol extractionThe protocol for the extraction of cortisol from the hair was adapted from previously described procedures15,27. Forty mg of guard hairs were separated from the undercoat and placed in 15 ml falcon tubes. Hair follicles were cut whenever found in the sample. For each sample, the length of three intact hairs was recorded. The samples were washed twice with 40 µl of distilled water/mg hair and three times with the same amount of isopropanol. In each washing step, the samples and washing solution were vortexed, the supernatant discarded, and the hair dried using clean paper towels. After the final wash, samples were dried overnight at room temperature and 30 mg of hair cut into a 2 ml polypropylene screw cap plastic tube with five 4 mm steel beads added to each tube.The hair was ground to a fine powder in a FastPrep sample homogenizer (MP Biomedicals, USA) for four times 1 min at 6.0 m/s. 50 µl methanol/mg hair were added to each sample and sonicated for 30 min at 50 Hz at 50 °C. The samples were incubated for 18 h at 50 °C in an orbital shaker at 160 rpm, centrifuged for 15 min at 14,000g at 20 °C, and 1000 µl of supernatant was collected to a screw cap glass chromatography vial and dried at room temperature in a gentle stream of nitrogen gas. Due to restrictions on laboratory use during the SARS-Cov-2 pandemic, some batches of samples were instead evaporated overnight on a suction hood. This unexpected change in the methanol evaporation protocol was recorded and accounted for in the statistical analysis.Cortisol quantificationA commercial competitive ELISA kit (Cortisol free in Saliva ELISA, Demeditec, Germany) was used to quantify the concentration of cortisol, following the manufacturer’s instructions. The kit plate wells are provided coated with polyclonal rabbit antibody against cortisol, and cortisol-horseradish peroxidase was used as conjugate. According to the manufacturer, the cross-reactivity of the test to selected steroids is low (Table S3), the intra-assay variation is 3.8–5.8% and the inter-assay variation is 6.2–6.4%. Samples, standards, and controls were tested in duplicate.The 4-parameter standard curve was calculated from the log-transformed cortisol concentration of the standard solutions and their measured OD45044. Standard curves were estimated using the software GraphPad Prism 6.04 (GraphPad Software, La Jolla, California USA), and yielded an average R2adjusted = 0.991 (range 0.968–0.999). The cortisol concentration of the reconstituted samples was estimated from the standard curve and converted to cortisol concentration as picograms (pg) of cortisol/mg of guard hair.Intra and inter-assay coefficients of variation were estimated for six ELISA assays of 37–40 samples each. The low and high controls included in the kit were used to estimate the inter-assay coefficient of variation and the duplicate runs of each sample were used to estimate the intra-assay coefficient of variation. Linearity was assessed by two-fold dilutions (1:1, 1:2, 1:4 and 1:8) of 4 extracted samples, comparing the expected and observed concentrations. Recovery was assessed by spiking 6 ground hair samples with known concentrations of cortisol (50, 25, 12.5, 6.25 pg/mg, and no spiking), comparing the expected and observed concentrations.The intra-assay coefficient of variation of the ELISA assays ranged from 6.50 to 9.97% (average 7.66%). The inter-assay coefficient of variation was 11.54% for the low concentration controls and 9.08% for the high concentration controls (average 10.31%). Assay linearity was 91% for the 1:2 dilution, 103% for 1:4, and 117% for 1:8 (average 103%). The recovery of cortisol averaged 94%, being 73% for the 50 pg/mg spiked samples, 74% for 25 pg/mg, 95% for 12.5 pg/mg, and 113% for 6.25 pg/mg.Determinants of hair cortisol concentrationThe potential determinants of HCC investigated included wolf intrinsic variables: sex, age, body condition, body structural size, month of death/capture, and wolf population. The scaled mass index was selected as a measure of body condition45 and estimated from the log-transformed body weight (g) and total length (mm). Log-transformed total length was used as an indicator of body structural size46. Samples were assigned to the Iberian, Alpine, Dinaric-Balkan, or Scandinavian wolf populations16 from the geographical location of the death or live-trapping sites (Fig. 1).The relationship between HCC and additional variables related to the sampling procedure or to the work conducted in the laboratory (length of hair used for cortisol extraction, sample storage time, body region, cause of death/capture, and methanol evaporation protocol), herein referred to as methodological variables, was also investigated as potential confounding variables. Sample storage time was the period in months between death/capture and cortisol extraction. In those samples for which only the year of death was available, 30 June was assigned as the date of death, solely to estimate storage time. All continuous variables were standardized to their z-scores.Statistical analysisFirst, the effect of body region was investigated by a linear mixed model with HCC as the dependent variable, and the independent variables body region, as a categorical fixed effect, and individual wolf, as a random effect. The lumbar region was set as the reference class as it was the most represented in our sample (Table S1). Data from 27 wolves for which samples were available from all 4 body regions were used in this analysis. Four outliers in the dataset violated the assumption of normality in the residuals of the model comparing HCC across body regions (Fig. S1A) and were excluded from this model’s dataset (Fig. S1B).Second, the effect of intrinsic and methodological variables on HCC from the lumbar body region was investigated by another linear mixed model with sex, age, body condition, body structural size (standardized log-transformed total length), cause of death/capture, wolf population, hair length, sample storage time, and methanol evaporation protocol as fixed effect independent variables. The month of death/capture was included as a random effect. Reference classes for the categorical variables were set as female, adult, acute death, Iberian population, and methanol evaporation by nitrogen gas stream. Two outliers in the dataset violated the assumption of normality in the residuals of the model (Full model, Table S4) and were excluded from this analysis (Fig. S1C,D).The goal of this analysis was to assess the relationship between HCC and wolf intrinsic variables, controlling for the potential confounding effect of the methodological variables. Starting from the full model (Table S4), models including all possible combinations of variables were ranked by their AICc using the package “MuMIn”47 in R 3.6.148. The most supported model was selected for inference and models with ΔAICc  More