More stories

  • in

    Population density, bottom-up and top-down control as an interactive triplet to trigger dispersal

    Nathan, R. The challenges of studying dispersal. Trends. Ecol. Evol. 16, 481–483. https://doi.org/10.1016/S0169-5347(01)02272-8 (2001).CAS 
    Article 

    Google Scholar 
    Bonte, D. et al. Costs of dispersal. Biol. Rev. Camb. Philos. Soc. 87, 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x (2012).Article 
    PubMed 

    Google Scholar 
    Matthysen, E. Multicausality of dispersal: A review. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 3–18 (Oxford University Press, 2012).Chapter 

    Google Scholar 
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209. https://doi.org/10.1111/j.1461-0248.2008.01267.x (2009).Article 
    PubMed 

    Google Scholar 
    Poethke, H. J. & Hovestadt, T. Evolution of density- and patch-size-dependent dispersal rates. Proc. R. Soc. Lond. 269, 637–645. https://doi.org/10.1098/rspb.2001.1936 (2002).Article 

    Google Scholar 
    Benton, T. G. & Bowler, D. E. Dispersal in invertebrates: Influences on individual decisions. Ecol. Evol. 1, 41–49 (2012).
    Google Scholar 
    Legrand, D. et al. Ranking the ecological causes of dispersal in a butterfly. Ecography 38, 822–831. https://doi.org/10.1111/ecog.01283 (2015).Article 

    Google Scholar 
    Travis, J. M. J., Murrell, D. J. & Dytham, C. The evolution of density–dependent dispersal. Proc. R. Soc. Lond. B 266, 1837–1842. https://doi.org/10.1098/rspb.1999.0854 (1999).Article 

    Google Scholar 
    Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416. https://doi.org/10.1111/j.0906-7590.2005.04073.x (2005).Article 

    Google Scholar 
    de Meester, N., Derycke, S., Rigaux, A. & Moens, T. Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species. Oikos 124, 561–570. https://doi.org/10.1111/oik.01779 (2015).Article 

    Google Scholar 
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225. https://doi.org/10.1017/S1464793104006645 (2005).Article 
    PubMed 

    Google Scholar 
    Bengtsson, G., Hedlund, K. & Rundgren, S. Food- and density-dependent dispersal: Evidence from a soil collembolan. J. Anim. Ecol. 63, 513. https://doi.org/10.2307/5218 (1994).Article 

    Google Scholar 
    Fellous, S., Duncan, A., Coulon, A. & Kaltz, O. Quorum sensing and density-dependent dispersal in an aquatic model system. PLoS ONE 7, e48436. https://doi.org/10.1371/journal.pone.0048436 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aguillon, S. M. & Duckworth, R. A. Kin aggression and resource availability influence phenotype-dependent dispersal in a passerine bird. Behav. Ecol. Sociobiol. 69, 625–633. https://doi.org/10.1007/s00265-015-1873-5 (2015).Article 

    Google Scholar 
    Byers, J. E. Effects of body size and resource availability on dispersal in a native and a non-native estuarine snail. J. Exp. Mar. Biol. Ecol. 248, 133–150. https://doi.org/10.1016/S0022-0981(00)00163-5 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    de Meester, N., Derycke, S. & Moens, T. Differences in time until dispersal between cryptic species of a marine nematode species complex. PLoS ONE 7, e42674. https://doi.org/10.1371/journal.pone.0042674 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sepulveda, A. J. & Marczak, L. B. Active dispersal of an aquatic invader determined by resource and flow conditions. Biol. Invasions 14, 1201–1209. https://doi.org/10.1007/s10530-011-0149-x (2012).Article 

    Google Scholar 
    Lobbia, P. A. & Mougabure-Cueto, G. Active dispersal in Triatoma infestans (Klug, 1834) (Hemiptera Reduviidae: Triatominae): Effects of nutritional status, the presence of a food source and the toxicological phenotype. Acta Trop. 204, 105345. https://doi.org/10.1016/j.actatropica.2020.105345 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbraud, C., Johnson, A. R. & Bertault, G. Phenotypic correlates of post-fledging dispersal in a population of greater flamingos: The importance of body condition. J. Anim. Ecol. 72, 246–257. https://doi.org/10.1046/j.1365-2656.2003.00695.x (2003).Article 

    Google Scholar 
    Bonte, D. & de La Peña, E. Evolution of body condition-dependent dispersal in metapopulations. J. Evol. Biol. 22, 1242–1251. https://doi.org/10.1111/j.1420-9101.2009.01737.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Moran, N. P., Sánchez-Tójar, A., Schielzeth, H. & Reinhold, K. Poor nutritional condition promotes high-risk behaviours: A systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 96, 269–288. https://doi.org/10.1111/brv.12655 (2021).Article 
    PubMed 

    Google Scholar 
    Altermatt, F. & Fronhofer, E. A. Dispersal in dendritic networks: Ecological consequences on the spatial distribution of population densities. Freshw. Biol. 63, 22–32. https://doi.org/10.1111/fwb.12951 (2018).Article 

    Google Scholar 
    McCauley, S. J. & Rowe, L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6, 449–452. https://doi.org/10.1098/rsbl.2009.1082 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baines, C. B., McCauley, S. J. & Rowe, L. Dispersal depends on body condition and predation risk in the semi-aquatic insect, Notonecta undulata. Ecol. Evol. 5, 2307–2316. https://doi.org/10.1002/ece3.1508 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammill, E., Fitzjohn, R. G. & Srivastava, D. S. Conspecific density modulates the effect of predation on dispersal rates. Oecologia 178, 1149–1158. https://doi.org/10.1007/s00442-015-3303-9 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    Fronhofer, E. A. et al. Bottom-up and top-down control of dispersal across major organismal groups. Nat. Ecol. Evol. 2, 1859–1863. https://doi.org/10.1038/s41559-018-0686-0 (2018).Article 
    PubMed 

    Google Scholar 
    Delm, M. Vigilance for predators: Detection and dilution effects. Behav. Ecol. Sociobiol. https://doi.org/10.1007/BF00171099 (1990).Article 

    Google Scholar 
    Matthysen, E. Multicausality of dispersal: A review. Ecol. Evol. 1, 3–18 (2012).
    Google Scholar 
    Bowler, D. E. & Benton, T. G. Variation in dispersal mortality and dispersal propensity among individuals: The effects of age, sex and resource availability. J. Anim. Ecol. 78, 1234–1241. https://doi.org/10.1111/j.1365-2656.2009.01580.x (2009).Article 
    PubMed 

    Google Scholar 
    Giere, O. Meiobenthology. The microscopic motile fauna of aquatic sediments 2nd edn. (Springer, 2009).
    Google Scholar 
    Ptatscheck, C. & Traunspurger, W. The ability to get everywhere: Dispersal modes of free-living, aquatic nematodes. Hydrobiologia 22, 71. https://doi.org/10.1007/s10750-020-04373-0 (2020).Article 

    Google Scholar 
    Ptatscheck, C. & Gansfort, B. Dispersal of free-living nematodes. In Ecology of Freshwater Nematodes (ed. Traunspurger, W.) 151–184 (CABI, 2021).Chapter 

    Google Scholar 
    Traunspurger, W., Bergtold, M., Ettemeyer, A. & Goedkoop, W. Effects of copepods and chironomids on the abundance and vertical distribution of nematodes in a freshwater sediment. J. Freshw. Ecol. 21, 81–90. https://doi.org/10.1080/02705060.2006.9664100 (2006).Article 

    Google Scholar 
    Bargmann, C. I. Chemosensation in C. elegans. WormBook 1, 1–29. https://doi.org/10.1895/wormbook.1.123.1 (2006).Article 

    Google Scholar 
    Chasnov, J. R. & Chow, K. L. Why are there males in the hermaphroditic species Caenorhabditis elegans?. Genetics 160, 983–994 (2002).CAS 
    Article 

    Google Scholar 
    Ramot, D., Johnson, B. E., Berry, T. L., Carnell, L. & Goodman, M. B. The Parallel Worm Tracker: A platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE 3, e2208. https://doi.org/10.1371/journal.pone.0002208 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muschiol, D. & Traunspurger, W. Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9, 271–284. https://doi.org/10.1163/156854107780739117 (2007).Article 

    Google Scholar 
    Beier, S., Bolley, M. & Traunspurger, W. Predator-prey interactions between Dugesia gonocephala and free-living nematodes. Freshw. Biol. 49, 77–86. https://doi.org/10.1046/j.1365-2426.2003.01168.x (2004).Article 

    Google Scholar 
    Powers, E. M. & Sayre, R. M. A predacious soil turbellarian that feeds on free-living and plant-parasitic nematodes. Nematology 12, 619–629. https://doi.org/10.1163/187529266X00482 (1966).Article 

    Google Scholar 
    Kreuzinger-Janik, B., Kruscha, S., Majdi, N. & Traunspurger, W. Flatworms like it round: Nematode consumption by Planaria torva (Müller 1774) and Polycelis tenuis (Ijima 1884). Hydrobiologia 819, 231–242. https://doi.org/10.1007/s10750-018-3642-8 (2018).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Practical use of the information-theoretic approach. In Model Selection and Inference (eds Burnham, K. P. & Anderson, D. R.) 75–117 (Springer, 1998).Chapter 

    Google Scholar 
    McCulloch, C. E., Searle, S. R. & Neuhaus, J. M. Generalized, Linear, and Mixed Models (Wiley, 2008).MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).Bonte, D., de Roissart, A., Wybouw, N. & van Leeuwen, T. Fitness maximization by dispersal: Evidence from an invasion experiment. Ecology 95, 3104–3111. https://doi.org/10.1890/13-2269.1 (2014).Article 

    Google Scholar 
    You, Y., Kim, J., Raizen, D. M. & Avery, L. Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab. 7, 249–257. https://doi.org/10.1016/j.cmet.2008.01.005 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shtonda, B. B. & Avery, L. Dietary choice behavior in Caenorhabditis elegans. J. Exp. Biol. 209, 89–102. https://doi.org/10.1242/jeb.01955 (2006).Article 
    PubMed 

    Google Scholar 
    Mathieu, J. et al. Habitat quality, conspecific density, and habitat pre-use affect the dispersal behaviour of two earthworm species, Aporrectodea icterica and Dendrobaena veneta, in a mesocosm experiment. Soil Biol. Biochem. 42, 203–209. https://doi.org/10.1016/j.soilbio.2009.10.018 (2010).CAS 
    Article 

    Google Scholar 
    Oro, D., Cam, E., Pradel, R. & Martínez-Abraín, A. Influence of food availability on demography and local population dynamics in a long-lived seabird. Proc. R. Soc. Lond. B 271, 387–396. https://doi.org/10.1098/rspb.2003.2609 (2004).Article 

    Google Scholar 
    Harvey, S. C. Non-dauer larval dispersal in Caenorhabditis elegans. J. Exp. Zool. B Mol. Dev. Evol. 312B, 224–230. https://doi.org/10.1002/jez.b.21287 (2009).Article 
    PubMed 

    Google Scholar 
    Wilden, B., Majdi, N., Kuhlicke, U., Neu, T. R. & Traunspurger, W. Flatworm mucus as the base of a food web. BMC Ecol. 19, 15. https://doi.org/10.1186/s12898-019-0231-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gloria-Soria, A. & Azevedo, R. B. R. npr-1 Regulates foraging and dispersal strategies in Caenorhabditis elegans. Curr. Biol. 18, 1694–1699. https://doi.org/10.1016/j.cub.2008.09.043 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Harrison, R. G. Dispersal Polymorphisms in Insects. Annu. Rev. Ecol. Syst. 11, 95–118. https://doi.org/10.1146/annurev.es.11.110180.000523 (1980).Article 

    Google Scholar 
    Denno, R. F. & Peterson, M. A. Density-dependent dispersal and its consequences for population dynamics. Popul Dyn 1, 113–130 (2021).
    Google Scholar 
    Srinivasan, J. et al. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 10, e1001237. https://doi.org/10.1371/journal.pbio.1001237 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bretscher, A. J. et al. Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69, 1099–1113. https://doi.org/10.1016/j.neuron.2011.02.023 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freckman, D. W., Duncan, D. A. & Larson, J. R. Nematode density and biomass in an annual grassland ecosystem. J. Range Manag. 32, 418. https://doi.org/10.2307/3898550 (1979).Article 

    Google Scholar 
    Cote, J. et al. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40, 56–73. https://doi.org/10.1111/ecog.02538 (2017).Article 

    Google Scholar  More

  • in

    A biologging database of juvenile white sharks from the northeast Pacific

    Tagging deployments and study subjectsTable 1 contains an overview of the fields in the metadata file (JWS_metadata.xlsx) providing extensive background details on each of the 79 tag deployments and 63 study subjects. The data in this file give essential contextual information needed to understand the methodological, environmental, and demographic factors surrounding the deployments, which are critical for further examination and hypothesis testing of the sensor data. These metadata fall into several specific categories, but are not limited to, (i) information on the deployed electronic devices (platform, model, Platform Transmitter Terminal identifications), (ii) sharks (unique identifying numbers, sex, length), (iii) capture event (date, location, duration, methodology, interaction type), and (iv) the reporting period (duration, linear surface travel distance).Table 1 Metadata descriptions of the sharks, tagging operations, and deployments for all tags included in the database.Full size tableFigure 1 illustrates a typical C. carcharias tagging operation. This involves a contracted commercial fishing vessel with purpose-built gears to capture sharks (Fig. 1a) and a research crew to handle animals, monitor health (Fig. 1b) and attach electronic tags (Fig. 1c). More details on the tagging program and its methodologies are provided elsewhere14,19,20. Figure. 2 provides summaries of the deployment schedule, geographic locations, devices, and capture operations. Of note, 39.7% (25/64) of all tagging operations involved collaborations with commercial fishery operators (Fig. 2f–h), whose engagement was temporarily impacted (Fig. 2a) during the scientific review process when the population was under consideration for US Endangered Species Act listing. Figure 3 displays the demographic focus on small juvenile C. carcharias, with modest deployment durations and travel distances.Fig. 1Depiction of a typical research operation for capturing and tagging juvenile White Sharks in the Southern California Bight. (a) Aquarium research vessel (RV Lucile) with crew approaching a contracted purse seine vessel containing a captured juvenile white shark. (b) Research crew on the RV Lucile leading the shark into a sling, where it is subsequently transferred to the vessel’s deck for tagging. (c) Successfully applied PAT and acoustic tags each positioned lateral of the dorsal fin, anchored via leaders, and affixed with titanium darts (yellow arrows). All images taken by Steve McNicholas (Great White Shark 3D) for the Monterey Bay Aquarium and used with permission.Full size imageFig. 2Metadata summaries of the field program that deployed biologging tags on juvenile white sharks in the southern California Current. (a) Deployment schedule for 72 electronic tags released on 64 White Sharks from 2001–2020 (b) Tagging activity peaked in the late summer months when the population is most locally abundant. Field operations decreased from 2011–2013 when the population was being considered for listing under the U.S. Endangered Species Act (ESA). (c) Deployments focused on opportunities in the Southern California Bight coastline and included deployments in the nursery area of Bahía Sebastian Vizcaíno, Mexico and releases after exhibition at the Monterey Bay Aquarium. (d) Researchers released a variety of pop-up archival transmitting (PAT, 58 sharks), acoustic (21 sharks), and smart position and temperature (SPOT, 20 sharks) tags. This manuscript only reports the geolocation, temperature and depth data from the PAT and SPOT platforms. (e) Half (35 of 64, 54.7%) of all sharks received multiple tags, primarily to compare their relative performance. (f) Most tags (38 of 64, 60.3%) were deployed during focused scientific research operations. (g) The remainder were joint operations resulting from opportunistic bycatch in commercial fisheries using various gears and (h) Targeting various species. “Jab” gear refers to research operations that uses pole extensions to apply tags to sharks without capturing and handling.Full size imageFig. 3Demographic and deployment summaries from the juvenile white shark tagging program. (a) Total body length (TL) histogram indicates that most individuals tagged were either neonates ( More

  • in

    MeadoWatch: a long-term community-science database of wildflower phenology in Mount Rainier National Park

    Study origin and designThe MeadoWatch project (MW) is a project run collaboratively between the University of Washington (UW) and the United States National Park Service to monitor the phenology of alpine and subalpine wildflower species across large elevational gradients in Mount Rainier National Park (Fig. 2). MW was established in 2013 with the goal of understanding long-term effects of climate change on Mount Rainier National Park wildflower communities using community-science approaches. The first MW transect was established along Reflection Lakes, Skyline, and Paradise Glacier trail system in 2013 (9–11 plots). In 2015, MW expanded to include a second transect (15–17 plots) along the Glacier Basin trail (Fig. 1a). The MW transects span around 5 km each, over a 400 m altitudinal gradient (Reflection Lakes: 1490m–1889m a.s.l.; Glacier Basin: 1460m–1831m a.s.l.)Fig. 2Alpine meadows, plot extension, and target species. (a) Species-rich alpine meadow in Mount Rainier National Park (Mount Tahoma), showing many of the target species in the foreground. (b) MW volunteer coordinator Anna Wilson at a plot, indicating the arm span that defines the plot area (personal likeness used with confirmed consent). (c) Species composition and proportion of reports per species in each of the transects; species common to both trails are highlighted with striped shadowing. Photographs: A. John (a), L. Felker (b).Full size imagePlots are located along the side of each trail, marked with a colored survey marker. The area of each plot is defined by the arm-span of volunteers when they position themselves over the plot marker looking away from the trail (Fig. 2b). While less accurate than marking the corners of plots, this approach was used to avoid establishing permanent structures in wilderness areas within the National Park. The surveyed area in each plot is, on average, 1.25 m2. Each plot is also equipped with temperature sensors (HOBO Pendant Logger, Onset Computer Corp.) buried approximately 4 cm below the ground. Sensors are placed at the start of each fall season and removed at the beginning of each summer season for data downloading. The HOBO sensors provide an estimate for the date of snow disappearance and in-situ temperature at 3 hours intervals. Once plots are covered in snow, soil temperatures remain at 0 °C and show no diurnal variation, so that daily changes in temperatures above 1 °C can be used to determine the earliest date without snow cover20. We use these approaches to provide dates of snow appearance and disappearance, snow cover duration, and minimum soil temperatures for each year and plot. Occasionally, temperature data during the snow disappearing window were lost due to sensor failure or loss of sensors (which occurs because plots are not permanently marked and/or well-meaning visitors remove sensors). This, and the lack of temperature sensors in the first year of the project, resulted in approx. 20% of cases of missing data. In those cases, we used a data imputation method to estimate the missing values based on data from nearby plots and a parallel temperature data collection with 890 total observations. These estimates were highly reliable in filling the data gaps (see Appendix C in16 for further details).Focal speciesWe originally targeted 16 native wildflower species along each transect, which were chosen based on their abundance, ease of identification, and presence in the plot. Four of those target species were present on both transects. In 2016 we replaced one species with a different one (see further information below), making for a total of 17 species monitored (Fig. 2c). The focal species are: American bistort* (Polygonum bistortoides), avalanche lily (Erythronium montanum), bracted lousewort* (Pedicularis bracteosa), broadleaf arnica (Arnica latifolia), cascade aster (Aster ledophyllus; synonym Eucephalus ledophyllus), glacier lily (Erythronium grandiflorum), Gray’s lovage (Ligusticum grayi), magenta paintbrush (Castilleja parviflora), mountain daisy (Erigenon peregrinus; synonym Erigeron glacialis), northern microseris (Microseris alpestris; synonym Nothocalais alpestris), scarlet paintbrush (Castilleja miniata), sharptooth angelica (Angelica arguta), sitka valerian* (Valeriana sitchensis), subalpine lupine* (Lupinus arcticus; synonym Lupinus latifolius var. subalpinus), tall bluebell (Mertensia paniculata), Canby’s licorice-root (Ligusticum canbyi), and western anemone (Anemone occidentalis). Asterisks denote species monitored along both trails.Due to challenges in species identification, we dropped Canby’s licorice-root (Ligusticum canbyi) as a target species in 2016. Consequently, Ligusticum canbyi has limited replication in the database (Fig. 2c). While we included the phenological records of this species for the sake of completeness, we recommend focusing on the other 16 species, which are both better represented (in terms of data coverage) and are free of any potential misidentification issues.For additional information on the species, methods, identification cues, and image resources see: http://www.meadowatch.org, https://www.youtube.com/channel/UCGBFTKxf8FIWswMDxBavpuQ, and the appendices therein16.Data collection and volunteer trainingDuring the summer months, MW volunteers and scientists collect reproductive phenology data with a frequency between 3 and 9 trail reports per week. Each report records the presence or absence of 4 phenophases for each target species present in each of the plots. The phenophases are ‘budding’, ‘flowering’, ‘ripening fruit’, and ‘releasing seed’. Phenophases were defined as follows:BuddingThe beginning growth of the flower which has not yet opened. A plant is considered budding if buds are present, but the stamen and pistils are not yet visible and available to pollinators.FloweringThe generally “showy” part of the plant that holds the reproductive parts (stamens and pistils). A plant is considered flowering when at least one flower is open, and the stamens and pistils are visible and available for pollination and reproduction.Ripening fruitThe fruit develops from the female part of the flower following successful pollination. In the target species, fruits can take many forms, from hard, fleshy capsules, juicy berries, to a feathery tuft on the end of a seed. A plant is in the ripening fruit stage when reproductive parts on at least one reproductive stalk are non-functional and the formation of the fruit part is clearly ongoing (visible), but seeds are not yet fully mature and not yet being dispersed.Releasing seedAfter the fruit ripens, seeds are released to be dispersed by gravity, wind, or animals. A plant is considered in the releasing seed stage if seeds are actively being released on at least one reproductive stalk (but there are still seeds present).A full description, including illustrations for each species’ phenophase and identification cues is available in http://www.meadowatch.org/volunteer-resources.html, as well as in Annex 1 – Supplementary Documentation. Multiple phenophases can be present simultaneously, depending on the species, and are noted independently. Additionally, volunteers are also asked to record the presence of snow (‘snow covered plot’, ‘partially covered plot’, or ‘snow-free plot’), and, since 2017, the presence of damage by herbivory (‘presence of browsed stems’) on each plot.In years not impacted by the SARS-Cov-2 pandemic MW volunteers attend an in-person 3-hour botanical and phenological training session taught by UW scientists at the beginning of each sampling season. Volunteers were also provided with detailed species-identification guides, including an extensive description of sampling methods and location of the plots. The trainings for the 2020 and 2021 seasons were held virtually via a series of online training videos. In these years, volunteers took a quiz on wildflower phenology, plant identification and data collection methods after viewing these videos and were required to ‘pass’ a certain threshold to volunteer (unlimited attempts were allowed). During these virtual trainings, volunteers were provided with digital copies of the species identification guides, with many returning volunteers using printed guides they had kept from previous years.At the end of their phenological hike, volunteers submit their data sheets either by depositing them in lockboxes located within the park, or by scanning and emailing them directly to mwatch@uw.edu. Data are then entered manually and stored in the UW repositories after being checked for consistency at the end of each sampling season.The parallel data collection by members of UW’s Hille Ris Lambers group (including PI, postdoctoral researchers, graduate students, and trained interns) acted as the following: (i) a quality-control, i.e., allowing us to compare the consistency in phenology assessments between volunteers and scientists, and (ii) a way to increase the temporal resolution and scale of the data, e.g., by reducing early season gaps and ‘weekend bias’17. This parallel expert sampling was carried out around once a week between 2013 and 2020, showing great consistency between the two groups. For detailed comparisons between volunteers and scientists’ assessments see the data validation section (as well as Appendix E in16).Processed dataIn addition to the raw phenological data, we also provide here parameters to construct the year, species, and plot-specific flowering phenology based on the timing of snow disappearance (as in16). Models describe unimodal probability distributions that were fitted with maximum likelihood models to binomial flowering data from each species, year, and plot. These curves have been used to estimate peak flowering dates and diversity and link them to reported visitor experiences16. Here, we provide the 3 parameters defining the unimodal curve of flowering probability per species i, plot j and year k: the duration of flowering (𝛿ijk), the maximum probability of flowering (𝜇ijk), and peak flowering (in DOY – ρijk); following the equations described in16 and https://github.com/ajijohn/MeadoWatch).The parameters of these probability distribution curves are ready-to-use values that can be broadly and easily used to estimate floral compositional change over past seasons due to changing environmental conditions—for example, to inform plant-pollinator interaction networks if combined with pollinator behavioral data (e.g.21). More

  • in

    A global map of planting years of plantations

    FAO & UNEP. The state of the world’s forests 2020: Forests, biodiversity and people (2020).Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nature Communications 8, 1–6 (2017).ADS 

    Google Scholar 
    Mitchard, E. T. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. science 342, 850–853 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tsujino, R., Yumoto, T., Kitamura, S., Djamaluddin, I. & Darnaedi, D. History of forest loss and degradation in Indonesia. Land use policy 57, 335–347 (2016).
    Google Scholar 
    Holl, K. D. & Brancalion, P. H. Tree planting is not a simple solution. Science 368, 580–581 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, Y. et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecological Indicators 61, 404–412 (2016).
    Google Scholar 
    Soliño, M., Oviedo, J. L. & Caparrós, A. Are forest landowners ready for woody energy crops? Preferences for afforestation programs in Southern Spain. Energy Economics 73, 239–247 (2018).
    Google Scholar 
    Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Frontiers in Ecology and the Environment 8, 27–34 (2010).
    Google Scholar 
    Zulkefli, F., Syahlan, S. & Aziz, M. F. A. Negatives Impact Faced by Oil Palm Estate Management in managing Foreign Workers: A Case Study. International Journal of Academic Research in Business and Social Sciences 8 (2018).Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity? Trends in ecology & evolution 23, 538–545 (2008).
    Google Scholar 
    Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PloS one 11, e0159668 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Koh, L. P., Miettinen, J., Liew, S. C. & Ghazoul, J. Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Sciences 108, 5127–5132 (2011).ADS 
    CAS 

    Google Scholar 
    Guillaume, T. et al. Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nature communications 9, 1–11 (2018).CAS 

    Google Scholar 
    Lucas-Borja, M. E., Hedo, J., Cerdá, A., Candel-Pérez, D. & Viñegla, B. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine (Pinus nigra Ar. ssp. salzmannii) Forest. Science of the Total Environment 562, 145–154 (2016).ADS 
    CAS 

    Google Scholar 
    Besnard, S. et al. Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters 13, 124018 (2018).ADS 

    Google Scholar 
    Dzikiti, S. et al. Estimating the water requirements of high yielding and young apple orchards in the winter rainfall areas of South Africa using a dual source evapotranspiration model. Agricultural water management 208, 152–162 (2018).
    Google Scholar 
    Zhang, Y., Yao, Y., Wang, X., Liu, Y. & Piao, S. Mapping spatial distribution of forest age in China. Earth and Space Science 4, 108–116 (2017).ADS 

    Google Scholar 
    Chen, B., Jin, Y. & Brown, P. Automatic mapping of planting year for tree crops with Landsat satellite time series stacks. ISPRS Journal of Photogrammetry and Remote Sensing 151, 176–188 (2019).ADS 

    Google Scholar 
    Danylo, O. et al. A map of the extent and year of detection of oil palm plantations in Indonesia, Malaysia and Thailand. Scientific data 8, 1–8 (2021).
    Google Scholar 
    O’Brien, S. T., Hubbell, S. P., Spiro, P., Condit, R. & Foster, R. B. Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology 76, 1926–1939 (1995).
    Google Scholar 
    Fichtler, E., Clark, D. A. & Worbes, M. Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C1. Biotropica 35, 306–317 (2003).
    Google Scholar 
    Zhang, C. et al. Mapping forest stand age in China using remotely sensed forest height and observation data. Journal of Geophysical Research: Biogeosciences 119, 1163–1179 (2014).ADS 

    Google Scholar 
    Wang, B., Li, M., Fan, W., Yu, Y. & Chen, J. M. Relationship between net primary productivity and forest stand age under different site conditions and its implications for regional carbon cycle study. Forests 9, 5 (2018).
    Google Scholar 
    Wang, S. et al. Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. Journal of environmental management 92, 1651–1662 (2011).PubMed 

    Google Scholar 
    Gupta, N., Kukal, S., Bawa, S. & Dhaliwal, G. Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. Agroforestry Systems 76, 27–35 (2009).
    Google Scholar 
    Huang, C. et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment 114, 183–198 (2010).ADS 

    Google Scholar 
    Thomas, N. E. et al. Validation of North American forest disturbance dynamics derived from Landsat time series stacks. Remote Sensing of Environment 115, 19–32 (2011).ADS 
    MathSciNet 

    Google Scholar 
    Ye, S., Rogan, J., Zhu, Z. & Eastman, J. R. A near-real-time approach for monitoring forest disturbance using Landsat time series: Stochastic continuous change detection. Remote Sensing of Environment 252, 112167 (2021).ADS 

    Google Scholar 
    Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote sensing of Environment 114, 106–115 (2010).ADS 

    Google Scholar 
    Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sensing of Environment 114, 2897–2910 (2010).ADS 

    Google Scholar 
    Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E. & Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote sensing of environment 205, 131–140 (2018).ADS 

    Google Scholar 
    Vogeler, J. C., Braaten, J. D., Slesak, R. A. & Falkowski, M. J. Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015). Remote sensing of environment 209, 363–374 (2018).ADS 

    Google Scholar 
    de Jong, S. M. et al. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. International Journal of Applied Earth Observation and Geoinformation 97, 102293 (2021).
    Google Scholar 
    Harris, N., Goldman, E. D. & Gibbes, S. Spatial database of planted trees (SDPT VERSION 1.0). Technical Note. (2019).Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth System Science Data 13, 1211–1231 (2021).ADS 

    Google Scholar 
    Li, C. et al. The first all-season sample set for mapping global land cover with landsat-8 data. Science Bulletin 62, 508–515 (2017).ADS 

    Google Scholar 
    Masek, J. G. et al. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters 3, 68–72 (2006).ADS 

    Google Scholar 
    Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment 185, 46–56 (2016).ADS 
    PubMed 

    Google Scholar 
    Foga, S. et al. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote sensing of environment 194, 379–390 (2017).ADS 

    Google Scholar 
    Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nature Geoscience 12, 632–637 (2019).CAS 

    Google Scholar 
    He, T. et al. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM+, and OLI data based on the unified direct estimation approach. Remote Sensing of Environment 204, 181–196 (2018).ADS 

    Google Scholar 
    Flood, N. Continuity of reflectance data between Landsat-7 ETM+ and Landsat-8 OLI, for both top-of-atmosphere and surface reflectance: a study in the Australian landscape. Remote Sensing 6, 7952–7970 (2014).ADS 

    Google Scholar 
    Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote sensing of Environment 185, 57–70 (2016).ADS 
    PubMed 

    Google Scholar 
    Key, C. & Benson, N. Landscape assessment: remote sensing of severity, the normalized burn ratio and ground measure of severity, the composite burn index. FIREMON: Fire effects monitoring and inventory system Ogden, Utah: USDA Forest Service, Rocky Mountain Res. Station (2005).Guo, J. & Gong, P. The potential of spectral indices in detecting various stages of afforestation over the Loess Plateau Region of China. Remote Sensing 10, 1492 (2018).ADS 

    Google Scholar 
    Kennedy, R. E. et al. Implementation of the LandTrendr algorithm on google earth engine. Remote Sensing 10, 691 (2018).ADS 

    Google Scholar 
    Yu, L. et al. A multi-resolution global land cover dataset through multisource data aggregation. Science China Earth Sciences 57, 2317–2329 (2014).ADS 

    Google Scholar 
    Du, Z. et al. A global map of planting years of plantations. figshare https://doi.org/10.6084/m9.figshare.19070084.v1 (2022).Gong, P. et al. Finer resolution observation and monitoring of global land cover: First mapping results with landsat tm and etm+ data. International Journal of Remote Sensing 34, 2607–2654 (2013).ADS 

    Google Scholar 
    Huang, H. et al. The migration of training samples towards dynamic global land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing 161, 27–36 (2020).ADS 

    Google Scholar  More

  • in

    Life, death and cyanobacterial biogeography

    Flores, C. O. et al. Proc. Natl Acad. Sci. USA 108, 288–297 (2011).Article 

    Google Scholar 
    Carlson, M. C. G. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01088-x (2022).Article 

    Google Scholar 
    Flombaum, P. et al. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).CAS 
    Article 

    Google Scholar 
    Coleman, M. L. & Chisholm, S. W. Trends Microbiol. 15, 398–407 (2007).CAS 
    Article 

    Google Scholar 
    Johnson, Z. I. et al. Science 311, 1737–1740 (2006).CAS 
    Article 

    Google Scholar 
    Martiny, A. C. et al. PLoS ONE 11, e0168291 (2016).Article 

    Google Scholar 
    Wilhelm, S. W. & Suttle, C. A. Bioscience 49, 781–788 (1999).Article 

    Google Scholar 
    Follett, C. L. et al. Proc. Natl Acad. Sci. USA 119, e2110993118 (2022).CAS 
    Article 

    Google Scholar 
    Mojica, K. D. A. et al. ISME J. 10, 500–513 (2016).CAS 
    Article 

    Google Scholar 
    Mruwat, N. et al. ISME J. 15, 41–54 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Tropical forests have big climate benefits beyond carbon storage

    NEWS
    01 April 2022

    Tropical forests have big climate benefits beyond carbon storage

    Study finds that trees cool the planet by one-third of a degree through biophysical mechanisms such as humidifying the air.

    Freda Kreier

    Freda Kreier

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Tropical forests create cloud cover that reflects sunlight and cools the air.Credit: Thomas Marent/Minden Pictures

    Tropical forests have a crucial role in cooling Earth’s surface by extracting carbon dioxide from the air. But only two-thirds of their cooling power comes from their ability to suck in CO2 and store it, according to a study1. The other one-third comes from their ability to create clouds, humidify the air and release cooling chemicals.
    How much can forests fight climate change?
    This is a larger contribution than expected for these ‘biophysical effects’ says Bronson Griscom, a forest climate scientist at the non-profit environmental organization Conservation International, headquartered in Arlington, Virginia. “For a while now, we’ve assumed that carbon dioxide alone is telling us essentially all we need to know about forest–climate interactions,” he says. But this study confirms that tropical forests have other significant ways of plugging into the climate system, he says.The analysis, published in Frontiers in Forests and Global Change on 24 March1, could enable scientists to improve their climate models, while helping governments to devise better conservation and climate strategies.The findings underscore growing concerns about rampant deforestation across the tropics. Scientists warn that one-third of the world’s tropical forests have been mown down in the past few centuries, and another one-third has been degraded by logging and development. This, when combined with climate change, could transform vast swathes of forest into grasslands2.“This study gives us even more reasons why tropical deforestation is bad for the climate,” says Nancy Harris, forest-research director at the World Resources Institute in Washington DC.More than a carbon spongeForests are major players in the global carbon cycle because they soak up CO2 from the atmosphere as they grow. Tropical forests, in particular, store around one-quarter of all terrestrial carbon on the planet, making them “centrepieces for climate policy” in their home countries, Griscom says.
    Tropical forests may be carbon sources, not sinks
    “There’s clear evidence that the tropics are producing excellent climate benefits for the entire planet,” says Deborah Lawrence, an environmental scientist at the University of Virginia in Charlottesville and a co-author of the latest study. She and her colleagues analysed the cooling capacity of forests around the globe, in particular considering biophysical effects alongside carbon storage. Tropical forests, they found, can cool Earth by a whole 1 °C — and biophysical effects contribute significantly.Although scientists knew about these effects, they hadn’t understood to what extent the various factors counter global warming.Trees in the tropics provide shade, but they also act as giant humidifiers by pulling water from the ground and emitting it from their leaves, which helps to cool the surrounding area in a way similar to sweating, Griscom says.“If you go into a forest, it immediately is a considerably cooler environment,” he says.This transpiration, in turn, creates the right conditions for clouds, which like snow and ice in the Arctic, can reflect sunlight higher into the atmosphere and further cool the surroundings. Trees also release organic compounds — for example, pine-scented terpenes — that react with other chemicals in the atmosphere to sometimes create a net cooling effect.Locally coolTo quantify these effects, Lawrence and her colleagues compared how the various effects of forests around the world feed into the climate system, breaking down their contributions in bands of ten degrees of latitude. When they considered only the biophysical effects, the researchers found that the world’s forests collectively cool the surface of the planet by around 0.5 °C.
    When will the Amazon hit a tipping point?
    Tropical forests are responsible for most of that cooling. But this band of trees across Latin America, Central Africa and southeast Asia is under increasing pressure from climate change and deforestation. Both of these human-caused impacts can lead rainforests to dry out, says Christopher Boulton, a geographer at the University of Exeter, UK. Last month, he and his colleagues published a review2 of nearly 30 years’ worth of satellite images of the Amazon, the largest rainforest in the world. By measuring the biomass of the vegetation in the images, the team discovered that three-quarters of the Amazon is losing resilience — the ability to recover from an extreme weather event such as a drought.Threats to tropical rainforests are dangerous not only for the global climate, but also for communities that neighbour the forests, Lawrence says. She and her colleagues found that the cooling caused by biophysical effects was especially significant locally. Having a rainforest nearby can help to protect an area’s agriculture and cities from heatwaves, Lawrence says. “Every tenth of a degree matters in limiting extreme weather. And where you have forests, the extremes are minimized.”Governments across the tropics have struggled to conserve their forests despite more than two decades of global campaigns to halt deforestation, promote sustainable development and protect the climate. Lawrence says that her team’s findings make it clear that protecting forests is a matter of self-interest, and has immediate benefits for local communities.

    doi: https://doi.org/10.1038/d41586-022-00934-6

    ReferencesLawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2022.756115 (2022).Article 

    Google Scholar 
    Boulton, C. A., Lenton, T. M. & Boers, N. Nature Clim. Change 12, 271–278 (2022).Article 

    Google Scholar 
    Download references

    Related Articles

    How much can forests fight climate change?

    When will the Amazon hit a tipping point?

    Tropical forests may be carbon sources, not sinks

    Illegal mining in the Amazon hits record high amid Indigenous protests

    Subjects

    Climate sciences

    Climate change

    Conservation biology

    Latest on:

    Climate sciences

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    From the archive: fishy business in 1972 and 1922
    News & Views 29 MAR 22

    Climate change

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    The race to upcycle CO2 into fuels, concrete and more
    News Feature 29 MAR 22

    Jobs

    Postdoctoral Fellow in Electrochemical CO2 reduction

    The University of British Columbia (UBC)
    Kelowna, Canada

    Staff Member in Project Coordination (for 19 h/week)

    Jülich Research Centre (FZJ)
    Erlangen-Nürnberg, Germany

    Student assistant IT administration (m/f/d)

    Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research (AWI)
    Potsdam, Germany

    Physicist (postdoctoral researcher) (all genders) in the field of Theoretical Astrophysics

    Helmholtz Centre for Heavy Ion Research GmbH (GSI)
    Darmstadt, Germany More

  • in

    Direct and latent effects of ocean acidification on the transition of a sea urchin from planktonic larva to benthic juvenile

    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 

    Google Scholar 
    Intergovernmental Panel on Climate Change. Climate Change 2013: 5th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
    Google Scholar 
    Torres, O., Kwiatkowski, L., Sutton, A. J., Dorey, N. & Orr, J. C. Characterizing mean and extreme diurnal variability of ocean CO2 system variables across marine environments. Geophys. Res. Lett. 48, 2 (2021).
    Google Scholar 
    Dorey, N., Lançon, P., Thorndyke, M. & Dupont, S. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob. Change Biol. 19, 3355–3367 (2013).
    Google Scholar 
    Hauri, C. et al. Spatiotemporal variability and long-term trends of ocean acidification in the California current system. Biogeosci. Discuss. 9, 10371–10428 (2012).ADS 

    Google Scholar 
    Dupont, S. & Pörtner, H.-O. A snapshot into ocean acidification research. Mar. Biol. 160, 1765–1771 (2013).CAS 

    Google Scholar 
    Dupont, S. & Thorndyke, M. Chapter: Direct impacts of near-future ocean acidification on sea urchins. in Climate Change Perspective from the Atlantic: Past, Present and Future (eds. Fernández-Palacios, J. et al.) 461–485 (2013).Byrne, M. & Hernández, J. C. Chapter 16: Sea urchins in a high CO2 world: Impacts of climate warming and ocean acidification across life history stages. in Developments in Aquaculture and Fisheries Science vol. 43 281–297 (Elsevier, 2020).Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).PubMed 

    Google Scholar 
    L. Kelley, A., J. Lunden, J., 1 Ocean Acidification Research Center, College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, Fairbanks, AK, 99775, USA, & 2 Haverford College, Haverford, PA, 19041, USA. Meta-analysis identifies metabolic sensitivities to ocean acidification. AIMS Environ. Sci. 4, 709–729 (2017).Stumpp, M. et al. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc. Natl. Acad. Sci. U. S. A. 109, 18192–18197 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stumpp, M. et al. Digestion in sea urchin larvae impaired under ocean acidification. Nat. Clim. Change 3, 1044–1049 (2013).ADS 
    CAS 

    Google Scholar 
    Runcie, D. E. et al. Genomic characterization of the evolutionary potential of the sea urchin Strongylocentrotus droebachiensis facing ocean acidification. Genome Biol. Evol. 8, 272 (2017).
    Google Scholar 
    Sewell, M. Utilization of lipids during early development of the sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 304, 133–142 (2005).ADS 
    CAS 

    Google Scholar 
    Lucas, M. I., Walker, G., Holland, D. L. & Crisp, D. J. An energy budget for the free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Mar. Biol. 55, 221–229 (1979).
    Google Scholar 
    Shilling, F. M., Hoegh-Guldberg, O. & Manahan, D. T. Sources of energy for increased metabolic demand during metamorphosis of the abalone Haliotis rufescens (Mollusca). Biol. Bull. 191, 402–412 (1996).CAS 
    PubMed 

    Google Scholar 
    Meidel, S. K. & Scheibling, R. E. Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 134, 155–166 (1999).
    Google Scholar 
    Pearce, C. M. & Scheibling, R. E. Induction of metamorphosis of larvae of the green sea urchin, Strongylocentrotus droebachiensis by coralline red algae. Biol. Bull. 179, 304–311 (1990).CAS 
    PubMed 

    Google Scholar 
    Gosselin, P. & Jangoux, M. From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata, Echinoida). Zoomorphology 118, 31–43 (1998).
    Google Scholar 
    Hinegardner, R. T. Growth and development of the laboratory cultured sea urchin. Biol. Bull. 137, 465–475 (1969).CAS 
    PubMed 

    Google Scholar 
    Strathmann, R. R. Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. Exp. Biol. Ecol. 34, 23–27 (1978).
    Google Scholar 
    Byrne, M. et al. Unshelled abalone and corrupted urchins: Development of marine calcifiers in a changing ocean. Proc. Biol. Sci. 278, 2376–2383 (2011).PubMed 

    Google Scholar 
    Dupont, S., Dorey, N., Stumpp, M., Melzner, F. & Thorndyke, M. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 160, 1835–1843 (2013).CAS 

    Google Scholar 
    Uthicke, S. et al. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS ONE 8, e82938 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dupont, S., Lundve, B. & Thorndyke, M. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J. Exp. Zool. Mol. Dev. Evol. 314, 382–389 (2010).
    Google Scholar 
    Lim, Y.-K., Dang, X. & Thiyagarajan, V. Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification. Sci. Total Environ. 782, 146704 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hettinger, A. et al. Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93, 2758–2768 (2012).PubMed 

    Google Scholar 
    Hettinger, A. et al. Larval carry-over effects from ocean acidification persist in the natural environment. Glob. Change Biol. https://doi.org/10.1111/gcb.12307 (2013).Article 

    Google Scholar 
    Albright, R. & Langdon, C. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob. Change Biol. 17, 2478–2487 (2011).ADS 

    Google Scholar 
    Yuan, X. et al. Elevated CO2 delays the early development of scleractinian coral Acropora gemmifera. Sci. Rep. 8, 2787 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maboloc, E. A. & Chan, K. Y. K. Parental whole life cycle exposure modulates progeny responses to ocean acidification in slipper limpets. Glob. Change Biol. 2, 15647. https://doi.org/10.1111/gcb.15647 (2021).Article 

    Google Scholar 
    Mos, B., Byrne, M. & Dworjanyn, S. A. Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification. Aquaculture 528, 735618 (2020).CAS 

    Google Scholar 
    Harianto, J., Aldridge, J., Torres Gabarda, S. A., Grainger, R. J. & Byrne, M. Impacts of acclimation in warm-low pH conditions on the physiology of the sea urchin Heliocidaris erythrogramma and carryover effects for juvenile offspring. Front. Mar. Sci. 7, 588938 (2021).
    Google Scholar 
    Houlihan, E. P., Espinel-Velasco, N., Cornwall, C. E., Pilditch, C. A. & Lamare, M. D. Diffusive boundary layers and ocean acidification: Implications for sea urchin settlement and growth. Front. Mar. Sci. 7, 577562 (2020).
    Google Scholar 
    Norderhaug, K. M. & Christie, H. C. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Mar. Biol. Res. 5, 515–528 (2009).
    Google Scholar 
    Dickson, A., Sabine, C. L. & Christian, J. R. Guide to best practices for ocean CO2 measurements. (PICES Special Publication 3;191 pp, 2007).Lavigne, H. & Gattuso, J.-P. seacarb: seawater carbonate chemistry with R. R package version 2.4. http://CRAN.R-project.org/package=seacarb. (2011).R Core Team. R: A language and environment for statistical computing. R: A language and environment for statistical computing (2017).Guillard, R. R. L. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).CAS 
    PubMed 

    Google Scholar 
    Stumpp, M., Wren, J., Melzner, F., Thorndyke, M. & Dupont, S. CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay. Comp. Biochem. Physiol. Mol. Integr. Physiol. 160, 331–340 (2011).CAS 

    Google Scholar 
    His, E., Heyvang, I., Geffard, O. & De Montaudouin, X. A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for toxicological studies. Water Res. 33, 1706–1718 (1999).CAS 

    Google Scholar 
    U. S. National Institutes of Health, Bethesda, Maryland, U. ImageJ, Rasband, W.S., http://imagej.nih.gov/ij/.Smith, M. M., Cruz Smith, L., Cameron, R. A. & Urry, L. The larval stages of the sea urchin, Strongylocentrotus purpuratus. J. Morphol. 269, 713–733 (2008).PubMed 

    Google Scholar 
    Kahm, M., Hasenbrink, G., Lichtenberg-Frate, H., Ludwig, J. & Kschischo, M. grofit: Fitting Biological Growth Curves with R. J. Stat. Softw., 33(7), 1–21. URL http://www.jstatsoft.org/v33/i07/. (2010).Pinheiro, J., Bates, D., & R-core. Package ‘nlme’: Linear and Nonlinear Mixed Effects Models. Cran-R (2018).Pan, T.-C.F., Applebaum, S. L. & Manahan, D. T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl. Acad. Sci. U. S. A. 112, 4696–4701 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jager, T., Ravagnan, E. & Dupont, S. Near-future ocean acidification impacts maintenance costs in sea-urchin larvae: Identification of stress factors and tipping points using a DEB modelling approach. J. Exp. Mar. Biol. Ecol. 474, 11–17 (2016).
    Google Scholar 
    Hoegh-Guldberg, O. & Emlet, R. B. Energy use during the development of a lecithotrophic and a planktotrophic echinoid. Biol. Bull. 192, 27–40 (1997).CAS 
    PubMed 

    Google Scholar 
    Vaïtilingon, D. et al. Effects of delayed metamorphosis and food rations on the perimetamorphic events in the echinoid Paracentrotus lividus (Lamarck, 1816) (Echinodermata). J. Exp. Mar. Biol. Ecol. 262, 41–60 (2001).
    Google Scholar 
    García, E., Clemente, S. & Hernández, J. C. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. Mar. Environ. Res. 110, 61–68 (2015).PubMed 

    Google Scholar 
    Wangensteen, O. S., Dupont, S., Casties, I., Turon, X. & Palacín, C. Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J. Exp. Mar. Biol. Ecol. 449, 304–311 (2013).
    Google Scholar 
    García, E., Clemente, S. & Hernández, J. C. Effects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement. Mar. Environ. Res. 139, 11–18 (2018).PubMed 

    Google Scholar 
    Marshall, D. J. & Keough, M. J. Variation in the dispersal potential of non-feeding invertebrate larvae: The desperate larva hypothesis and larval size. Mar. Ecol. Prog. Ser. 255, 145–153 (2003).ADS 

    Google Scholar 
    Huggett, M. J., Williamson, J. E., de Nys, R., Kjelleberg, S. & Steinberg, P. D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149, 604–619 (2006).ADS 
    PubMed 

    Google Scholar 
    Espinel-Velasco, N., Agüera, A. & Lamare, M. Sea urchin larvae show resilience to ocean acidification at the time of settlement and metamorphosis. Mar. Environ. Res. 159, 104977 (2020).CAS 
    PubMed 

    Google Scholar 
    Lamare, M. & Barker, M. Settlement and recruitment of the New Zealand sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 218, 153–166 (2001).ADS 

    Google Scholar 
    Martin, S. et al. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J. Exp. Biol. 214, 1357–1368 (2011).CAS 
    PubMed 

    Google Scholar 
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).
    Google Scholar 
    Espinel-Velasco, N. et al. Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: a review. Mar. Ecol. Prog. Ser. 606, 237–257 (2018).ADS 

    Google Scholar 
    Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar. Pollut. Bull. 64, 1519–1528 (2012).CAS 
    PubMed 

    Google Scholar 
    Gaylord, B. et al. Ocean acidification through the lens of ecological theory. Ecology 96, 3–15 (2015).PubMed 

    Google Scholar  More

  • in

    Analysis of individual-level data from 2018–2020 Ebola outbreak in Democratic Republic of the Congo

    Ebola datasetThe 2018–2020 DRC EVD outbreak lasted over 24 months and spread over 3 distinct spatial and temporal waves. Between the emergency declaration of the EVD outbreak in northern DRC on August 1, 2018 and the outbreak’s official end on June 25, 2020, the DRC Ministry of Health has reported a total of 3481 cases (including confirmed and probable), 1162 recoveries, and 2299 deaths16 in the provinces of Northern Kivu, Southern Kivu, and Ituri. The dataset considered here is a large subset of the entire EVD database compiled by the University of Kinshasa School of Public Health, which comprises 3117 total case records (confirmed and probable) recorded between May 3, 2018, and September 12, 2019. The data included partially de-identified but still detailed patient information, such as each person’s location, date of symptom onset and hospitalization, as well as discharge due to recovery or death. These individual records came from the Ebola treatment centers in 24 different health zones, spread out among the three DRC provinces of Northern Kivu, Southern Kivu, and Ituri.Of the 24 health zones, 77.1% of all cases were from only 6: Beni, Butembo, Katwa, Kalunguta, Mabalako, and Mandima. Only 9.7% of cases were under the age of 18. There is also a slightly larger proportion of females contracting the disease, comprising 57.0% of the cases. Approximately 5% of the cases were health care workers. About one-third of the EVD fatalities were not identified until patient’s death and thus not effectively isolated from the time of infection. Although over 170,000 contacts of confirmed and probable Ebola cases had been monitored across all affected health zones for 21 days after their last known exposure by the end of the epidemic, some of the contact tracing was incomplete due to insecurity that prevented public health response teams from entering some communities. The overall case density map is presented in panel (A) of Fig. 1 with the animated version of the map presented in the online appendix in Fig. A.1. Notice that the high-density areas, particularly Butembo, Katwa, and Beni, are all spatially small health zones corresponding to cities or towns with larger populations.Figure 1DRC Ebola dataset. (A) The spatial distribution of 3481 EVD cases across the northern DRC health zones during Ebola 2018–2020 outbreak. (B) The flowchart of personal records available up to September 12, 2019 available for the current analysis. The total number of available individual disease records was 3080. Map created using open software R17 with geospatial data obtained from18.Full size imageFigure 2Daily incidence and removal rates. Daily incidence (grey bars) and removal counts (red dots) during DRC Ebola 2018–2020 outbreak between August 15, 2018 and September 12, 2020 along with their respective trendlines (loess smoothers). The blue trendline above the plot represents daily effective reproduction number (mathcal{R}_t) defined as the ratio of daily number of new infections to new removals. The vertical lines indicate cut-off dates for data collection in each wave as listed in Table 1.Full size imageTable 1 Observed cases by EVD wave.Full size tableCase alerts and definitionsSince early August, 2018, the DRC Ministry of Health has been collaborating with several international partners to support and enhance EVD response activities through its emergency operations center in Goma. To the extent possible given regional security considerations19, the response teams were deployed to interview patients and their suspected contacts using a standardized case investigation form classifying cases as suspected, probable, or confirmed. A suspected case (whether surviving or not) was defined as one with the acute onset of fever (over 100(^{circ })F) and at least three Ebola-compatible clinical signs or symptoms (headache, vomiting, anorexia, diarrhea, lethargy, stomach pain, muscle or joint aches, difficulty swallowing or breathing, hiccups, unexplained bleeding, or any sudden, unexplained death) in a North Kivu, South Kivu, or Ituri resident or any person who had traveled to these provinces during this period and reported the signs or symptoms defined above. A patient who met the suspected case definition and died but from whom no specimens were available was considered a probable case. A confirmed Ebola case was defined as a suspected case with at least one positive test for Ebola virus using reverse transcription polymerase chain reaction (RT-PCR)20 testing. Patients with suspected Ebola were isolated and transported to an Ebola treatment center for confirmatory testing and treatment2.Onset and removalIn our analysis of the DRC dataset, we focused on dates of symptom onset and removal, with removal defined as either a death/recovery at home or transfer to an Ebola treatment center (ETC). It was assumed that, once in the treatment center, the probability of further infection spread by an isolated individual was very small due to the strict safety protocols—and later due also to vaccination of healthcare personnel and family members who were in contact with the suspected Ebola case. As summarized in panel (B) of Fig. 1, we were able to access 3117 out of 3481 individual records of confirmed and probable Ebola cases. Of these 3117 records, 37 were missing both the onset and recovery dates and were removed from further analysis. In about 30% of the remaining records, either their dates of onset or removal were missing. A detailed flow diagram summarizing the amount of missing data and data processing leading to the final dataset is presented in panel (B) of Fig. 1. The distribution of the original and the partially imputed records across the three waves of infection is provided for further reference in Table 1.Spatial and temporal patternsThroughout the pandemic, the incidence rates exhibited strong spatial and temporal patterns that can be summarized as three distinct waves of infections with approximate boundaries marked by vertical lines in Fig. 1. The distribution of weekly reported cases across the most affected health zones listed in Table 1 is provided in the bar plot and in the corresponding animation in the appendix (see Figure A.1). As seen from the bar chart and the animated plot, the epidemic was initially driven largely by infections in the health zones of Beni, Mandima and Mabalako. After several months, the incidence of new cases in these zones subsided, but the epidemic moved south to the health zones of Katwa and Butembo, where the majority of new infections was registered between weeks 22 to 45 of the epidemic (see Panel (A) in Figure A.1 in the online Appendix). In the final spatial shift, around week 49, the epidemic returned to the health zones of Beni, Mandima, and Mabalako, where it was mostly extinguished around week 60 (September 2019). Isolated Ebola incidences occurred sporadically across northern DRC until end of the outbreak was officially declared in June 2020.The empirical patterns of incidence and removal for EVD cases are summarized in Fig. 2 with the bar and the dot plots representing the daily numbers of new infections and removals, respectively. As seen from the plot, these daily counts closely follow a three-wave temporal pattern in Table 1. This is further evident from the black and red trendlines representing the loess smoothers (see21). The daily ratio of new cases and removals may be interpreted as a crude estimate of the effective reproduction number (mathcal{R}_t) defined more formally in (2) in Model for Data Analysis below. In particular, the blue trendline for (mathcal{R}_t) indicates that towards the end of the observed time period, the number of removals outpaced the number of new infections ((mathcal{R}_t 0) and (r_t = 0) where (beta > 0) is the rate of infection, (gamma > 0) is the rate of recovery and (rho > 0) is the initial amount of infection. In particular, the model implies the existence of the basic reproduction number (mathcal{R}_0) (R-naught), which determines the average speed of disease spread11 and is given by the formula$$mathcal{R}_0=beta /gamma .$$If (mathcal{R}_0 > 1), the proportion of infected initially rises and then subsides, with the final proposition of surviving susceptibles given by (s_infty = 1 – tau > 0) where (tau) is know as the epidemic’s final size. In typical statistical analysis, an estimate of (mathcal{R}_0) is obtained by separately estimating the parameters (beta) and (gamma). Another important quantity related to (1) is the effective reproduction number, which is typically defined as$$begin{aligned} mathcal{R}_t= mathcal{R}_0 s_t. end{aligned}$$
    (2)
    Although equation (1) is typically considered in the context of an average behavior of a large population, for our purposes we interpret it as defining the individual histories of infection and recovery, according to the idea of the dynamic survival analysis (DSA) discussed recently in10 and24 and also briefly summarized in the Appendix. With the DSA approach, we interpret equation (1) as the so-called stochastic master equation25 describing the change in probability of a randomly selected individual being at time t either susceptible, infected, or removed. These respective probabilities are represented by the scaled proportions (s_t/(1+rho )), (iota _t/(1+rho )), and (r_t/(1+rho )) and evolve according to (1). As outlined in10, the DSA-based interpretation of the classical SIR equations has a number of advantages that make it particularly convenient for analyzing epidemic data consisting of individual histories of infection onsets and removals, which is exactly the type of data available in the DRC Ebola dataset. The fact that the model is individual-based implies also that we can vary the parameters (theta =(beta ,gamma ,rho )) to account for individual covariates and changes in the parameter values over time, as different waves of infection sweep through the population. Finally, for the purpose of our analysis, it is also important to note that the DSA model does not require any knowledge of the size of the susceptible population subjected to the epidemic pressure. For the DRC dataset, that assumption would be difficult to justify due to spatial and temporal heterogeneity of the epidemic and the frequent movements of local populations driven by political conflicts and insecurity. Another element complicating the determination of the size of susceptible population was the ring vaccination campaign that has been conducted since 2019 wherever possible in the northern DRC during periods of relative stability, despite local mistrust and supply issues. This campaign ultimately resulted in over 250,000 vaccinations.Note that, because (s_0 = 1), the values of (mathcal{R}_0) and (mathcal{R}_t) coincide for (t = 0). Moreover, (s_t = exp left( -mathcal{R}_0 int _0^t r_u mathrm {d}u right)) is a decreasing function of time and therefore, so is (mathcal{R}_t). However, in practice, this implication is problematic. Rewriting (mathcal{R}_t = – {dot{s}}_t/ {dot{r}}_t) suggests that a crude but sensible way to estimate (mathcal{R}_t) empirically is to take the ratio of daily number of new infections to new removals. The empirical (mathcal{R}_t) thus estimated will not be necessarily monotonically decreasing. In the light of possibly changing parameters and the effective population size, we have adopted this approach to estimating the daily effective reproduction number (mathcal{R}_t) in Fig. 2.Parameter estimationWe assume that, for each of the three waves of the epidemic, we have a separate and independent set of parameters (theta) and that, in each wave, we observe (n_T) histories (records) of infection. The i-th individual history may be represented either by the times of disease onset and removal ((t_i,T_i)) or by (t_i) or (T_i) times alone ((t_i,circ )) or ((circ ,T_i)) ((circ) denoting missing value). We assume that among the available (n_T) histories we have n complete records ((t_i,T_i)), (n_1) incomplete ones ((t_i,circ )) and (n_2) incomplete ones ((circ ,T_i )). The wave-specific DSA likelihood function for n complete data records is (see Appendix)$$begin{aligned} begin{aligned} {mathcal {L}}_C(theta vert t_1ldots ,t_n,T_1,ldots ,T_n,T)=(s_T-1)^{-n}prod _{i=1}^n {dot{s}}_{t_i}gamma ^{w_i}e^{-gamma (T_i wedge T -t_i)} end{aligned} end{aligned}$$
    (3)
    where T is the available time horizon and (w_i) is the binary variable indicating whether (T_i) is right-censored (that is, (T_iwedge T =T)) in which case (w_i = 0) and otherwise (w_i = 1). For the remaining (n_1+n_2) records that are partially incomplete, the wave-specific DSA likelihood function is$$begin{aligned} begin{aligned} {mathcal {L}}_I(theta vert t_1ldots ,t_{n_1},T_1,ldots ,T_{n_2},T)= (s_T-1)^{-(n_1+n_2)} gamma ^{n_2}prod _{i=1}^{n_1} {dot{s}}_{t_i} prod _{i=1}^{n_2} (rho e^{-gamma T_i }-iota _{T_i}) end{aligned} end{aligned}$$
    (4)
    where we assume that (T_i1). Given the wave-specific time horizons (T’s), the set of parameters for each epidemic wave was estimated independently using 2 independent chains of 3000 iterations, with a burn-in period of 1000 iterations. The chains’ convergence assessed using Rubin’s R statistic28. The analysis resulted in approximate samples from the posterior distribution of (theta) for each of the three waves of the epidemic (see e.g., Fig. 4).Ethics statement on human subjects and methodsThe research was conducted in accordance with the relevant guidelines and regulations of the US law and OSU Institutional Review Board. The research activities involving human subjects discussed in the paper meet the US federal exemption criteria under 45 CFR 46 and 21 CFR 56. More