More stories

  • in

    Spatio-temporal inhabitation of settlements by Hystrix cristata L., 1758

    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and evolution of mating systems. Science 197(4300), 215–223 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Lagos, V. O., Bozinovic, F. & Contreras, L. C. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: Thermoregulatory constraints or predation risk? J. Mammal. 76(3), 900–905 (1995).Article 

    Google Scholar 
    Lagos, V. O., Contreras, L. C., Meserve, P. L., Gutiérrez, J. R. & Jaksic, F. M. Effects of predation risk on space use by small mammals: A field experiment with a neotropical rodent. Oikos 74, 259–264 (1995).Article 

    Google Scholar 
    Schradin, C. & Pillay, N. Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability. Behav. Ecol. 17(3), 452–458. https://doi.org/10.1093/beheco/arj047 (2006).Article 

    Google Scholar 
    Hayes, L. D., Chesh, A. S. & Ebensperger, L. A. Ecological predictors of range areas and use of burrow systems in the diurnal rodent, Octodon degus. Ethology 113, 155–165. https://doi.org/10.1111/j.1439-0310.2006.01305.x (2007).Article 

    Google Scholar 
    Brivio, F. et al. Forecasting the response to global warming in a heat-sensitive species. Sc. Rep. 9, 3048. https://doi.org/10.1038/s41598-019-39450-5 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Santamaría, A. E., Olea, P. P., Vinuela, J. & Garcia, J. T. Spatial and seasonal variation in occupation and abundance of common vole burrows in highly disturbed agricultural ecosystems. Eur. J. Wildl. Res. 65, 52. https://doi.org/10.1007/s10344-019-1286-2 (2019).Article 

    Google Scholar 
    Kinlaw, A. A review of burrowing by semi-fossorial vertebrates in arid environments. J. Arid Environ. 41, 127–145 (1999).ADS 
    Article 

    Google Scholar 
    Daly, M., Beherends, P. R. & Wilson, M. I. Activity patterns of kangaroo rats—Granivores in a desert habitat. In Activity Patterns in Small Mammals: An Ecological Approach (eds Halle, S. & Stenseth, N. C.) 145–158 (Springer, 2000).Chapter 

    Google Scholar 
    Mackin-Rogalska, R., Adamczewska-Andrzejewska, K. & Nabaglo, L. Common vole numbers in relation to the utilization of burrow system. Acta Theriol. 31(2), 17–44 (1986).Article 

    Google Scholar 
    Powell, R. A. & Fried, J. J. Helping by juvenile pine voles (Microtus pinetorum), growth and survival of younger siblings, and the evolution of pine vole sociality. Behav. Ecol. 3, 325–333 (1992).Article 

    Google Scholar 
    Randall, J. A., Rogovin, K., Parker, P. G. & Eimes, J. A. Flexible social structure of a desert rodent, Rhombomys opimus: Philopatry, kinship, and ecological constraints. Behav. Ecol. 16, 961–973 (2005).Article 

    Google Scholar 
    Ebensperger, L. A. et al. Burrow limitations and group living in the communally rearing rodent, Octodon degus. J. Mammal. 92(1), 21–30 (2011).Article 

    Google Scholar 
    Santini, L. The habits and influence on the environment of the old world porcupine Hystrix cristata L. in the northernmost part of its range. In Proc. 9th Vertebrate Pest Conference, Vol. 34, 149–153 (1980).Felicioli, A., Grazzini, A. & Santini, L. The mounting and copulation behaviour of the crested porcupine Hystrix cristata. Ital. J. Zool. 64, 155–161 (1997).Article 

    Google Scholar 
    Felicioli, A., Grazzini, A. & Santini, L. The mounting behaviour of a pair of crested porcupine H. cristata L.. Mammalia 61(1), 123–126 (1997).
    Google Scholar 
    Felicioli, A. Analisi spazio-temporale dell’attività motoria in Hystrix cristata L. Dissertation, University of Pisa (1991).Felicioli, A. & Santini, L. Burrow entrance-hole orientation and first emergence time in the crested porcupine Hystrix cristata L.: Space-time dependence on sunset. Pol. Ecol. Stud. 20(3–4), 317–321 (1994).
    Google Scholar 
    Mori, E., Nourisson, D. H., Lovari, S., Romeo, G. & Sforzi, A. Self-defence may not be enough: Moonlight avoidance in a large, spiny rodent. J. Zool. 294, 31–40 (2014).Article 

    Google Scholar 
    Corsini, M. T., Lovari, S. & Sonnino, S. Temporal activity patterns of crested porcupine Hystrix cristata. J. Zool. Lond. 236, 43–54 (1995).Article 

    Google Scholar 
    Coppola, F., Vecchio, G. & Felicioli, A. Diurnal motor activity and “sunbathing” behaviour in crested porcupine (Hystrix cristata L., 1758). Sci. Rep. 9, 14283 (2019).ADS 
    Article 

    Google Scholar 
    Pigozzi, G. Crested porcupines (Hystrix cristata) within badger setts (Meles meles) in the Maremma Natural Park, Italy. Saugetierk. Mitt. 33, 261–263 (1986).
    Google Scholar 
    Coppola, F. & Felicioli, A. Reproductive behaviour in free-ranging crested-porcupine Hystrix cristata L., 1758. Sci. Rep. 11, 20142. https://doi.org/10.1038/s41598-021-99819-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Monetti, L., Massolo, A., Sforzi, A. & Lovari, S. Site selection and fidelity by crested porcupines for denning. Ethol. Ecol. Evol. 17, 149–159 (2005).Article 

    Google Scholar 
    Coppola, F., Dari, C., Vecchio, G., Scarselli, D. & Felicioli, A. Co-habitation of settlements among Crested Porcupines (Hystrix cristata), Red Foxes (Vulpes vulpes) and European Badgers (Meles meles). Curr. Sci. 119(5), 817–822 (2020).Article 

    Google Scholar 
    De Villiers, M. S., Van Aarde, R. J. & Dott, H. M. Habitat utilization by the Cape porcupine Hystrix africaeaustralis in a savanna ecosystem. J. Zool. Lond. 232, 539–549 (1994).Article 

    Google Scholar 
    Corbet, N. U. & de Aarde, R. J. Social organization and space use in the Cape porcupine in a Southern African savanna. Afr. J. Ecol. 34, 1–14 (1996).Article 

    Google Scholar 
    Massolo, A., Dani, F. R. & Bella, N. Sexual and individual cues in the peri-anal gland secretum of crested porcupines (Hystrix cristata). Mamm. Biol. 74, 488–496 (2009).Article 

    Google Scholar 
    Mori, E. & Lovari, S. Sexual size monomorphism in the crested porcupine (Hystrix cristata). Mamm. Biol. 79, 157–160 (2014).Article 

    Google Scholar 
    Mori, E. et al. Patterns of spatial overlap in a monogamous large rodent, the crested porcupine. Behav. Process. 107, 112–118 (2014).Article 

    Google Scholar 
    Mukherjee, A., Pilakandy, R., Kumara, H. N., Manchi, S. S. & Bhupathy, S. Burrow characteristics and its importance in occupancy of burrow dwelling vertebrates in Semiarid area of Keoladeo National Park, Rajasthan, India. J. Arid Environ. 141, 7–15 (2017).ADS 
    Article 

    Google Scholar 
    Mukherjee, A., Pal, A., Velankar, A. D., Kumara, H. N. & Bhupathy, S. Stay awhile in my burrow! Interspecific associations of vertebrates to Indian crested porcupine burrows. Ethol. Ecol. Evol. 3(4), 313–328 (2019).Article 

    Google Scholar 
    Fernandez, N. & Palomares, F. The selection of breeding dens by the endangered Iberian lynx (Lynx pardinus): Implications for its conservation. Biol. Conserv. 94, 51–61 (2000).Article 

    Google Scholar 
    Ross, S., Kamnitzer, R., Munkhtsog, B. & Harris, S. Den-site selection is critical for Pallas’s cats (Otocolobus manul). Can. J. Zool. 88(9), 905–913. https://doi.org/10.1139/Z10-056 (2010).Article 

    Google Scholar 
    Libal, N. S., Belant, J. L., Leopold, B. D., Wang, G. & Owen, A. Despotism and risk of infanticide influence grizzly bear den-site selection. PLoS ONE 6(9), e24133. https://doi.org/10.1371/journal.pone.0024133 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbroch, L. M., Lendrum, P. E. & Quigley, H. Cougar den site selection in the Southern Yellowstone ecosystem. Mamm. Res. 60, 89–96. https://doi.org/10.1007/s13364-015-0212-6 (2015).Article 

    Google Scholar 
    Solomon, N. G., Christiansen, A. M., Kirk Lin, Y. & Hayes, L. D. Factors affecting nest location of prairie voles (Microtus ochrogaster). J. Mammal. 86(3), 555–560 (2005).Article 

    Google Scholar 
    Pereoglou, F. et al. Refuge site selection by the eastern chestnut mouse in recently burnt heath. Wildl. Res. 38(4), 290–298. https://doi.org/10.1071/WR11007 (2011).Article 

    Google Scholar 
    Grazzini, M. T. Comportamento riproduttivo e accrescimento post-natale in Hystrix cristata L. (Rodentia, Hystricidae). Dissertation, University of Pisa (1992).Capizzi, D. & Santini, L. Hystrix cristata Linnaeus, 1758. In Fauna d’Italia, Mammalia II: Erinaceomorpha, Soricomorpha, Lagomorpha, Rodentia (eds Amori, G. et al.) 695–706 (Edizione Calderini de il Sole 24 Ore, 2008).
    Google Scholar 
    Coppola, F. New knowledge tools for crested porcupine (Hystrix cristata L., 1758) management in the wild: First census model, new behavioural ecology aspects and preliminary investigation on health status. University of Pisa, PhD thesis (2021).Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book 

    Google Scholar 
    Wood, S. N. A simple test for random effects in regression models. Biometrika 100, 1005–1010 (2013).MathSciNet 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 

    Google Scholar  More

  • in

    Tropical tree growth driven by dry-season climate variability

    Forest Ecology and Forest Management Group, Wageningen University, Wageningen, the NetherlandsPieter A. Zuidema & Ute Sass-KlaassenSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USAFlurin BabstLaboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USAFlurin Babst, Valerie Trouet, Zakia Hassan Khamisi, Paul R. Sheppard & Ramzi TouchanDepartment of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, BrazilPeter Groenendijk & José Roberto Vieira AragãoWorld Agroforestry Centre (ICRAF), Addis Ababa, EthiopiaAbrham AbiyuDepartment of Microbiology and Parasitology, Universidad Nacional Autónoma de México, Mexico City, MexicoRodolfo Acuña-SotoLaboratory of Protection and Forest Management, Department of Forest Engineering, Universidade Regional de Blumenau, Santa Catarina, BrazilEduardo Adenesky-FilhoDepartment of Biology, Wilfrid Laurier University, Waterloo, Ontario, CanadaRaquel Alfaro-SánchezDepartment of Forest Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, BrazilGabriel Assis-Pereira, Claudia Fontana & Mario Tomazello-FilhoTree-Ring Laboratory, Forest Science Department, Federal University of Lavras, Lavras, BrazilGabriel Assis-Pereira & Ana Carolina BarbosaCAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, ChinaXue Bai, Ze-Xin Fan, Shankar Panthi & Zhe-Kun ZhouDepartment of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, ItalyGiovanna BattipagliaService of Wood Biology, Royal Museum for Central Africa, Tervuren, BelgiumHans Beeckman, Camille Couralet & Benjamin ToirambeBrazilian Agricultural Research Corporation (Embrapa), Embrapa Forestry, Colombo, BrazilPaulo Cesar BotossoU.S. Department of Agriculture, Forest Service, NWCG Member Agency, Washington, DC, USATim BradleyInstitute of Geography, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, GermanyAchim Bräuning, Mahmuda Islam, Mulugeta Mokria & Mizanur RahmanSchool of Geography, University of Leeds, Leeds, UKRoel Brienen & Emanuel GloorLamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USABrendan M. Buckley & Rosanne D’ArrigoInstituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, SpainJ. Julio CamareroCentre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, PortugalAna Carvalho & Cristina NabaisDepartment of Botany, Institute of Biosciences, University of São Paulo, São Paulo, BrazilGregório Ceccantini, Bruno Barçante Ladvocat Cintra & Giuliano Maselli LocosselliInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaría en Relación Agua-Suelo-Planta-Atmósfera (CENID-RASPA), Gómez Palacio, MéxicoLibrado R. Centeno-Erguera, Julián Cerano-Paredes & Jose Villanueva-DiazInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Centro – Altos de Jalisco, Tepatitlán de Morelos, MéxicoÁlvaro Agustín Chávez-DuránDepartment of Geosciences, University of Arkansas, Fayetteville, AR, USAMalcolm K. Cleaveland & Daniela Granato-SouzaDepartment of Forest Sciences, Universidad Nacional de Colombia – Sede Medellín, Medellín, ColombiaJorge Ignacio del ValleMaster School for Carpentry and Cabinetmaking, Ebern, GermanyOliver DünischDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABrian J. EnquistSanta Fe Institute, Santa Fe, NM, USABrian J. EnquistDepartment of Biological Sciences, University of Joinville Region ‐ UNIVILLE, Joinville, BrazilKarin Esemann-QuadrosPostgraduate Program in Forestry, Regional University of Blumenau – FURB, Blumenau, BrazilKarin Esemann-QuadrosCollege of Life Science, Climate Science Center and Department of Earth Science, Addis Ababa University, Addis Ababa, EthiopiaZewdu EshetuDepartamento de Dendrocronología e Historia Ambiental, IANIGLA, CCT-CONICET-Mendoza, Mendoza, ArgentinaM. Eugenia Ferrero, Lidio Lopez, Fidel Alejandro Roig & Ricardo VillalbaLaboratorio de Dendrocronología, Universidad Continental, Huancayo, PerúM. Eugenia Ferrero, Janet G. Inga & Edilson Jimmy Requena-RojasDepartment of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling, Göttingen University, Göttingen, GermanyEsther FichtlerInstitute of Pacific Islands Forestry, USDA Forest Service Pacific Southwest Research Station, Hilo, HI, USAKainana S. Francisco & Mulugeta MokriaWorld Agroforestry Centre (ICRAF), Nairobi, KenyaAster GebrekirstosFlanders Heritage Agency, Brussels, BelgiumKristof HanecaDepartment of Geography and Geological Sciences, University of Idaho, Moscow, ID, USAGrant Logan HarleyGerman Archaeological Institute DAI, Berlin, GermanyIngo HeinrichGeography Department, Humboldt University Berlin, Berlin, GermanyIngo HeinrichGFZ German Research Centre for Geosciences, Potsdam, GermanyIngo Heinrich & Gerd HelleDepartment of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, BangladeshMahmuda Islam & Mizanur RahmanFaculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech RepublicYu-mei JiangUS Fish and Wildlife Service, Albuquerque, NM, USAMark KaibDepartment of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, PolandMarcin KoprowskiCentre for Climate Change Research, Nicolaus Copernicus University, Toruń, PolandMarcin KoprowskiWater Systems and Global Change Group, Wageningen University and Research, Wageningen, the NetherlandsBart KruijtInstituto Nacional de Innovación Agraria, Programa Nacional de Investigación Forestal, Huancayo, PerúEva LaymeEnvironmental Systems Analysis Group, Wageningen University and Research, Wageningen, the NetherlandsRik LeemansDepartment of Natural Resource Management, South Dakota State University, Brookings, USA, SDA. Joshua LefflerLaboratory of Plant Anatomy and Dendrochronology, Department of Biology, Universidade Federal de Sergipe, Sergipe, BrazilClaudio Sergio Lisi, Mariana Alves Pagotto & Adauto de Souza Ribeiro Department of Geography, Swansea University, Swansea, UKNeil J. Loader & Iain RobertsonDepartamento Forestal, Universidad Autónoma Agraria Antonio Narro, Saltillo, MexicoMaría I. López-HernándezCITAB – Department of Forestry Sciences and Landscape (CIFAP), University of Trás-os-Montes and Alto Douro, Vila Real, PortugalJosé Luís Penetra Cerveira LousadaEscuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, ColombiaHooz A. MendivelsoBrazilian Agricultural Research Corporation (Embrapa), Embrapa Amazônia Ocidental, Manaus, BrazilValdinez Ribeiro MontóiaIHE Delft, Delft, the NetherlandsEddy MoorsVU University Amsterdam, Amsterdam, the NetherlandsEddy MoorsDepartment of Biomaterials Science and Technology, School of Natural Resources, The Copperbelt University, Kitwe, ZambiaJustine NgomaLaboratory of Ecology and Dendrology of the Federal Institute of Sergipe, São Cristovão, BrazilFrancisco de Carvalho Nogueira JúniorLaboratory of Plant Ecology, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, BrazilJuliano Morales Oliveira & Gabriela Morais OlmedoBIOAPLIC, Departamento de Botánica, Universidade de Santiago de Compostela, EPSE, Lugo, SpainGonzalo Pérez-De-LisLaboratorio de Dendrocronología, Carrera de Ingeniería Forestal, Universidad Nacional de Loja, Loja, EcuadorDarwin Pucha-CofrepFaculty of Environment and Resource studies, Mahidol University, Nakhon Pathom, ThailandNathsuda PumijumnongFacultad de Ciencias Agrarias, Universidad del Cauca, Popayán, ColombiaJorge Andres RamirezHémera Centro de Observación de la Tierra, Escuela de Ingeniería Forestal, Facultad de Ciencias, Universidad Mayor, Santiago, ChileFidel Alejandro Roig & Alejandro Venegas-GonzálezInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro de Investigación Regional Pacífico Centro – Campo Experimental, Centro Altos de Jalisco, MéxicoErnesto Alonso Rubio-CamachoNational Institute for Amazon Research, Petrópolis, Manaus, BrazilJochen SchöngartDepartment of Earth Sciences, Freie Universität Berlin, Berlin, GermanyFranziska SlottaDepartment of Earth and Environmental Systems, Indiana State University, Terre Haute, IN, USAJames H. SpeerDepartment of Geography, University of Alabama, Tuscaloosa, AL, USAMatthew D. TherrellDepartment of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USAMax C. A. TorbensonDepartment of Geography, Johannes Gutenberg University, Mainz, GermanyMax C. A. TorbensonDepartment of Plant and Environmental Sciences, School of Natural Resources, The Copperbelt University, Kitwe, ZambiaRoyd VinyaForest and Nature Management, Van Hall Larenstein University of Applied Sciences, Velp, the NetherlandsMart VlamSchool of Teacher Training for Secondary Education Tilburg, Fontys University of Applied Sciences, Tilburg, the NetherlandsTommy WilsP.A.Z., P.G. and V.T. initiated the tropical tree-ring network; P.A.Z., F.B., P.G. and V.T. designed the study; all co-authors except F.B. contributed tree-ring data; F.B. and P.G. analysed the data, with important contributions from P.A.Z.; P.A.Z. and V.T. wrote the manuscript, with important contributions from F.B. and P.G. All co-authors read and approved the manuscript. More

  • in

    Small brains predisposed Late Quaternary mammals to extinction

    Martin, P. S. & Klein, R. G. Quaternary extinctions: a prehistoric revolution. (University of Arizona Press, 1984).Waguespack, N. M. & Surovell, T. A. Clovis hunting strategies, or how to make out on plentiful resources. Am. Antiq. 68, 333–352 (2003).
    Google Scholar 
    Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. Proc. Natl. Acad. Sci. 113, 886–891 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Martin, P. S. Prehistoric overkill: the global model. In Quaternary extinctions: a prehistoric revolution (eds. Martin, P. S. & Klein, R. G.) 355–403 (University of Arizona Press, 1984).Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quatern. Int. 217, 10–29 (2010).
    Google Scholar 
    Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc. Natl. Acad. Sci. 109, 4527–4531 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).
    Google Scholar 
    Wolfe, A. L. & Broughton, J. M. A foraging theory perspective on the associational critique of North American Pleistocene overkill. J. Archaeol. Sci. 119, 105162 (2020).
    Google Scholar 
    Berger, J., Swenson, J. E. & Persson, I. L. Recolonizing carnivores and naïve prey: Conservation lessons from pleistocene extinctions. Science 291, 1036–1039 (2001).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Brook, B. W. & Bowman, D. M. J. S. The uncertain blitzkrieg of Pleistocene megafauna. J. Biogeogr. 31, 517–523 (2004).
    Google Scholar 
    Johnson, C. N. Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc. R. Soc. London. Ser. B Biol. Sci. 269, 2221–2227 (2002).CAS 

    Google Scholar 
    Bourgon, N. et al. Trophic ecology of a Late Pleistocene early modern human from tropical Southeast Asia inferred from zinc isotopes. J. Hum. Evol. 161, 103075 (2021).PubMed 

    Google Scholar 
    Meltzer, D. J. Overkill, glacial history, and the extinction of North America’s Ice Age megafauna. Proc. Natl. Acad. Sci. 117, 28555–28563 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 965 (2021).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: State of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).
    Google Scholar 
    Cardillo, M. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Meiri, S. & Liang, T. Rensch’s rule—Definitions and statistics. Glob. Ecol. Biogeogr. 30, 573–577 (2021).
    Google Scholar 
    Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, 20160342 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Alroy, J. A multispecies overkill simulation of the end-pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Smaers, J. B. et al. The evolution of mammalian brain size. Sci. Adv. 7, 1–12 (2021).
    Google Scholar 
    Jerison, H. J. Evolution of the Brain and Intelligence (Academic Press, 1973). https://doi.org/10.2307/4512058.Book 

    Google Scholar 
    Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172, S63–S71 (2008).PubMed 

    Google Scholar 
    Møller, A. P. & Erritzøe, J. Brain size in birds is related to traffic accidents. R. Soc. Open Sci. 4, 161040 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).
    Google Scholar 
    Budd, G. E. & Jensen, S. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biol. Rev. 92, 446–473 (2017).PubMed 

    Google Scholar 
    Benoit, J. et al. Brain evolution in Proboscidea (Mammalia, Afrotheria) across the Cenozoic. Sci. Rep. 9, 9323 (2019).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Møller, A. P. & Erritzøe, J. Brain size and the risk of getting shot. Biol. Lett. 12, 20160647 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Di Febbraro, M. et al. Does the jack of all trades fare best? Survival and niche width in Late Pleistocene megafauna. J. Biogeogr. 44, 2828–2838 (2017).
    Google Scholar 
    Morris, S. D., Kearney, M. R., Johnson, C. N. & Brook, B. W. Too hot for the devil? Did climate change cause the mid-Holocene extinction of the Tasmanian devil Sacrophilus harrisii from mainland Australia? Ecography 2022, (2022).Fillios, M., Crowther, M. S. & Letnic, M. The impact of the dingo on the thylacine in Holocene Australia. World Archaeol. 44, 118–134 (2012).
    Google Scholar 
    González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).PubMed 

    Google Scholar 
    Barton, R. A. & Capellini, I. Maternal investment, life histories, and the costs of brain growth in mammals. Proc. Natl. Acad. Sci. U.S.A. 108, 6169–6174 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Abelson, E. S. Brain size is correlated with endangerment status in mammals. Proc. R. Soc. B Biol. Sci. 283, 20152772 (2016).
    Google Scholar 
    Gonzalez-Voyer, A., González-Suárez, M., Vilà, C. & Revilla, E. Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution (N.Y.) 70, 1364–1375 (2016).
    Google Scholar 
    Ives, A. R. & Helmus, M. R. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 81, 511–525 (2011).
    Google Scholar 
    Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).
    Google Scholar 
    Billet, G. Phylogeny of the Notoungulata (Mammalia) based on cranial and dental characters. J. Syst. Palaeontol. 9, 481–497 (2011).
    Google Scholar 
    Shultz, S., Bradbury, R. B., Evans, K. L., Gregory, R. D. & Blackburn, T. M. Brain size and resource specialization predict long-term population trends in British birds. Proc. R. Soc. B Biol. Sci. 272, 2305–2311 (2005).
    Google Scholar 
    Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).PubMed 

    Google Scholar 
    Abelson, E. S. Big brains reduce extinction risk in Carnivora. Oecologia 191, 721–729 (2019).PubMed 
    ADS 

    Google Scholar 
    Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proceedings of the National Academy of Sciences 117, 7871–7878 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shultz, S. & Dunbar, R. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proceedings of the National Academy of Sciences 107, 21582–21586 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gould, S. J. & Vrba, E. S. Exaptation—A missing term in the science of form. Paleobiology 8, 4–15 (1982).
    Google Scholar 
    Wroe, S. et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl. Acad. Sci. U.S.A. 110, 8777–8781 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the Causes of Late Pleistocene Extinctions on the Continents. Science 306, 70–75 (2004).Article 
    PubMed 

    Google Scholar 
    Profico, A., Buzi, C., Melchionna, M., Veneziano, A. & Raia, P. Endomaker, a new algorithm for fully automatic extraction of cranial endocasts and the calculation of their volumes. Am. J. Phys. Anthropol. 172, 511–515 (2020).PubMed 

    Google Scholar 
    Damuth, J. & Macfadden, B. J. Body Size in Mammalian Paleobiology: Estimation and Biological Implications (Cambridge University Press, 1990).
    Google Scholar 
    Zagwijn, W. H. The beginning of the Ice Age in Europe and its major subdivisions. Quatern. Sci. Rev. 11, 583–591 (1992).ADS 

    Google Scholar 
    Hearty, P. J., Hollin, J. T., Neumann, A. C., O’Leary, M. J. & McCulloch, M. Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quatern. Sci. Rev. 26, 2090–2112 (2007).ADS 

    Google Scholar 
    Ashwell, K. W. S., Hardman, C. D. & Musser, A. M. Brain and behaviour of living and extinct echidnas. Zoology 117, 349–361 (2014).PubMed 

    Google Scholar 
    Castiglione, S. et al. The influence of domestication, insularity and sociality on the tempo and mode of brain size evolution in mammals. Biol. J. Linn. Soc. 132, 221–231 (2021).
    Google Scholar 
    Wilkins, A. S., Wrangham, R. W. & Tecumseh Fitch, W. The ‘domestication syndrome’ in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Sayol, F., Steinbauer, M. J., Blackburn, T. M., Antonelli, A. & Faurby, S. Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. Sci. Adv. 6, eabb6095 (2020).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Fromm, A., Meiri, S. & McGuire, J. Big, flightless, insular and dead: Characterising the extinct birds of the Quaternary. J. Biogeogr. 48(9), 2350–2359. https://doi.org/10.1111/jbi.14206 (2021).Article 

    Google Scholar 
    Meiri, S., Dayan, T. & Simberloff, D. The generality of the island rule reexamined. J. Biogeogr. 33, 1571–1577 (2006).
    Google Scholar 
    Larramendi, A. & Palombo, M. R. Body Size, Structure, Biology and Encephalization Quotient of Palaeoloxodon ex gr. P. falconeri from Spinagallo Cave (Hyblean plateau, Sicily). Hystrix, the Italian Journal of Mammalogy 26, 102–109 (2015).Article 

    Google Scholar 
    Slavenko, A., Tallowin, O. J. S., Itescu, Y., Raia, P. & Meiri, S. Late Quaternary reptile extinctions: Size matters, insularity dominates. Glob. Ecol. Biogeogr. 25, 1308–1320 (2016).
    Google Scholar 
    Tracy, C. R. & George, T. L. On the determinants of extinction. Am. Nat. 139, 102–122 (1992).
    Google Scholar 
    Manne, L. L., Brooks, T. M. & Pimm, S. L. Relative risk of extinction of passerine birds on continents and islands. Nature 399, 258–261 (1999).CAS 
    ADS 

    Google Scholar 
    Turvey, S. T. In the shadow of the megafauna: prehistoric mammal and bird extinctions across the Holocene. in Holocene Extinctions 17–40 (Oxford University Press, 2009). https://doi.org/10.1093/acprof:oso/9780199535095.003.0002Ebinger, P. A cytoarchitectonic volumetric comparison of brains in wild and domestic sheep. Zeitschrift für Anat. und Entwicklungsgeschichte 144, 267–302 (1974).CAS 

    Google Scholar 
    Röhrs, M. & Ebinger, P. Welche quantitativen beziehungen bestehen bei säugetieren zwischen schädelkapazität und hirnvolumen? Mammalian Biology 66, 102–110 (2001).Köhler, M. & Moyà-Solà, S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain Behav. Evol. 63, 125–140 (2004).PubMed 

    Google Scholar 
    de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot. 50, 349–357 (2015).
    Google Scholar 
    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 Package. October (2007).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Raia, P. & Meiri, S. The tempo and mode of evolution: Body sizes of island mammals. Evolution 65, 1927–1934 (2011).

    Google Scholar 
    Montgomery, S. H. et al. The evolutionary history of cetacean brain and body size. Evolution 67, 3339–3353 (2013).
    PubMed 

    Google Scholar 
    Li, D., Dinnage, R., Nell, L. A., Helmus, M. R. & Ives, A. R. phyr: An r package for phylogenetic species-distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).
    Google Scholar 
    Melchionna, M. et al. Macroevolutionary trends of brain mass in Primates. Biological Journal of the Linnean Society 129, 14–25 (2020).Article 

    Google Scholar 
    Serio, C. et al. Macroevolution of toothed whales exceptional relative brain size. Evol. Biol. 46, 332–342 (2019).
    Google Scholar 
    Wickham, H. et al. Welcome to the Tidyverse. Journal of Open Source Software 4, 1686 (2019).Barton, K. Package ‘MuMIn’ Title Multi-Model Inference. CRAN-R (2018). More

  • in

    Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction

    Martin, G., Martin-Clouaire, R. & Duru, M. Farming system design to feed the changing world. A review. Agron. Sustain. Dev. 33, 131–149 (2013).
    Google Scholar 
    McElwee, G. & Bosworth, G. Exploring the strategic skills of farmers across a typology of farm diversification approaches. J. Farm Manag. 13, 819–838 (2010).
    Google Scholar 
    Maghrebi, M. et al. Iran’s agriculture in the anthropocene. Earth’s Future. https://doi.org/10.1029/2020EF001547 (2020).Article 

    Google Scholar 
    Raorane, A. A. & Kulkarni, R. V. Data mining: An effective tool for yield estimation in the agricultural sector. Int. J. Emerg. Trends Technol. Comput. Sci. 1, 1–4 (2012).
    Google Scholar 
    Gonzalez-Sanchez, A., Frausto-Solis, J. & Ojeda-Bustamante, W. Attribute selection impact on linear and nonlinear regression models for crop yield prediction. Sci. World J. 2014, 509429 (2014).
    Google Scholar 
    Salman, S. A. et al. Changes in climatic water availability and crop water demand for Iraq region. Sustainability 12, 3437 (2020).
    Google Scholar 
    Mahmood, N., Arshad, M., Kächele, H., Ullah, A. & Müller, K. Economic efficiency of rainfed wheat farmers under changing climate: Evidence from Pakistan. Environ. Sci. Pollut. Res. 27, 34453–34467 (2020).
    Google Scholar 
    Pracha, A. S. & Volk, T. A. An edible energy return on investment (EEROI) analysis of wheat and rice in Pakistan. Sustainability 3, 2358–2391 (2011).
    Google Scholar 
    Canadell, J. et al. Abberton, M., Conant, R., & Batello, C. (Eds.). (2010). Grassland carbon sequestration: Management, policy and economics. Food and Agriculture Organization of the United Nations, Integrated Crop Management, Vol. 11–2010. Ahlstrom, A., Raupach, M., Schurgers. Sensit. A Semi-Arid Grassl. To Extrem. Precip. Events 127, 6 (2021).
    Google Scholar 
    Canton, H. Food and Agriculture Organization of the United Nations—FAO. In The Europa Directory of International Organizations 2021 (ed. Canton, H.) 297–305 (Routledge, 2021).
    Google Scholar 
    Abdullah, A. et al. Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview. J. Clean. Prod. 287, 125047 (2020).
    Google Scholar 
    Mughal, I. et al. Protein quantification and enzyme activity estimation of Pakistani wheat landraces. PLoS ONE 15, e0239375 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dorosh, P. & Salam, A. Wheat markets and price stabilisation in Pakistan: An analysis of policy options. Pak. Dev. Rev. 47, 71–87 (2008).
    Google Scholar 
    Fowke, V. The National Policy and the Wheat Economy (University of Toronto Press, 2019).
    Google Scholar 
    Hussain, S. et al. Study the effects of COVID-19 in Punjab, Pakistan using space-time scan statistic for policy measures in regional agriculture and food supply chain. Environ. Sci. Pollut. Res. Int. 20, 1–14 (2021).
    Google Scholar 
    Sajjad, S. A. Story of Pakistan’s Elite Wheat (The Express Tribune, 2017).
    Google Scholar 
    Durgun, Y. Ö., Gobin, A., Duveiller, G. & Tychon, B. A study on trade-offs between spatial resolution and temporal sampling density for wheat yield estimation using both thermal and calendar time. Int. J. Appl. Earth Obs. Geoinf. 86, 101988 (2020).
    Google Scholar 
    Vannoppen, A. et al. Wheat yield estimation from NDVI and regional climate models in Latvia. Remote Sens. 12, 2206 (2020).ADS 

    Google Scholar 
    Irmak, A. et al. Artificial neural network model as a data analysis tool in precision farming. Trans. ASABE 49, 2027–2037 (2006).
    Google Scholar 
    Bannerjee, G., Sarkar, U., Das, S. & Ghosh, I. Artificial intelligence in agriculture: A literature survey. Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud. 7, 1–6 (2018).
    Google Scholar 
    Patrício, D. I. & Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153, 69–81 (2018).
    Google Scholar 
    Yaseen, Z. M. et al. Prediction of evaporation in arid and semi-arid regions: A comparative study using different machine learning models. Eng. Appl. Comput. Fluid Mech. 14, 70–89 (2019).
    Google Scholar 
    Bauer, M. E. The role of remote sensing in determining the distribution and yield of crops. In Advances in Agronomy (ed. Sparks, D. L.) 271–304 (Elsevier, 1975). https://doi.org/10.1016/s0065-2113(08)70012-9.Chapter 

    Google Scholar 
    Dempewolf, J. et al. Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. Remote Sens. 6, 9653–9675 (2014).ADS 

    Google Scholar 
    Hamid, N., Pinckney, T. C., Gnaegy, S. & Valdes, A. The Wheat Economy of Pakistan: Setting and Prospects (IFPRI, 2015).
    Google Scholar 
    Muhammad, K. Description of the Historical Background of Wheat Improvement in Baluchistan, Pakistan (Agriculture Research Institute (Sariab, Quetta, Baluchistan, Pakistan), 1989).
    Google Scholar 
    Iqbal, N., Bakhsh, K., Maqbool, A. & Abid Shohab, A. Use of the ARIMA model for forecasting wheat area and production in Pakistan. J. Agric. Soc. Sci. 1, 120–122 (2005).
    Google Scholar 
    Sher, F. & Ahmad, E. Forecasting wheat production in Pakistan. LAHORE J. Econ. 13, 57–85 (2008).
    Google Scholar 
    Khan, N. et al. Determination of cotton and wheat yield using the standard precipitation evaporation index in Pakistan. Arab. J. Geosci. 14, 1–16 (2021).
    Google Scholar 
    Rahman, M. M., Haq, N. & Rahman, R. M. Machine learning facilitated rice prediction in Bangladesh. In 2014 Annual Global Online Conference on Information and Computer Technology. https://doi.org/10.1109/gocict.2014.9 (2014).Chen, C. & Mcnairn, H. A neural network integrated approach for rice crop monitoring. Int. J. Remote Sens. 27, 1367–1393 (2006).
    Google Scholar 
    Kaul, M., Hill, R. L. & Walthall, C. Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 85, 1–18 (2005).
    Google Scholar 
    Deo, R. C., Samui, P., Kisi, O. & Yaseen, Z. M. Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation: Theory and Practice of Hazard Mitigation (Springer Nature, 2020).
    Google Scholar 
    Sanikhani, H. et al. Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors. Comput. Electron. Agric. 152, 242–260 (2018).
    Google Scholar 
    Hai, T. et al. Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive model. IEEE Access 8, 12026–12042 (2020).
    Google Scholar 
    Ramos, A. P. M. et al. A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. Comput. Electron. Agric. 178, 105791 (2020).
    Google Scholar 
    Suchithra, M. S. & Pai, M. L. Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters. Inf. Process. Agric. 7, 72–82 (2020).
    Google Scholar 
    Feng, Z., Huang, G. & Chi, D. Classification of the complex agricultural planting structure with a semi-supervised extreme learning machine framework. Remote Sens. 12, 3708 (2020).ADS 

    Google Scholar 
    Tur, R. & Yontem, S. A comparison of soft computing methods for the prediction of wave height parameters. Knowl. Based Eng. Sci. 2, 31–46 (2021).
    Google Scholar 
    Yaseen, Z. M., Ali, M., Sharafati, A., Al-Ansari, N. & Shahid, S. Forecasting standardized precipitation index using data intelligence models: Regional investigation of Bangladesh. Sci. Rep. 11, 1–25 (2021).
    Google Scholar 
    Sharafati, A., Asadollah, S. B. H. S. & Neshat, A. A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125468 (2020).Article 

    Google Scholar 
    Huang, G.-B., Zhu, Q.-Y. & Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (2006).
    Google Scholar 
    Adnan, R. M. et al. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl. Based Syst. 230, 107379 (2021).
    Google Scholar 
    Yaseen, Z. M. et al. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J. Hydrol. 542, 603–614 (2016).ADS 

    Google Scholar 
    Prasad, R., Deo, R. C., Li, Y. & Maraseni, T. Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors. Soil Tillage Res. https://doi.org/10.1016/j.still.2018.03.021 (2018).Article 

    Google Scholar 
    Tiyasha, T. et al. Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: Development of hybrid tree-based artificial intelligence models. Mar. Pollut. Bull. 170, 112639 (2021).CAS 
    PubMed 

    Google Scholar 
    Ali, M. et al. Variational mode decomposition based random forest model for solar radiation forecasting: New emerging machine learning technology. Energy Rep. 7, 6700–6717 (2021).
    Google Scholar 
    Khozani, Z. S. et al. Determination of compound channel apparent shear stress: Application of novel data mining models. J. Hydroinform. 21, 798–811 (2019).MathSciNet 

    Google Scholar 
    Dorigo, M. & Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999. https://doi.org/10.1109/CEC.1999.782657 (1999).Mullen, R. J., Monekosso, D., Barman, S. & Remagnino, P. A review of ant algorithms. Expert Syst. Appl. https://doi.org/10.1016/j.eswa.2009.01.020 (2009).Article 

    Google Scholar 
    Sweetlin, J. D., Nehemiah, H. K. & Kannan, A. Feature selection using ant colony optimization with tandem-run recruitment to diagnose bronchitis from CT scan images. Comput. Methods Prog. Biomed. https://doi.org/10.1016/j.cmpb.2017.04.009 (2017).Article 

    Google Scholar 
    Cordon, O., Herrera, F. & Stützle, T. A review on the ant colony optimization metaheuristic: Basis, models and new trends. Mathw. Comput. 9, 2–3 (2002).MathSciNet 
    MATH 

    Google Scholar 
    Singh, G., Kumar, N. & Kumar Verma, A. Ant colony algorithms in MANETs: A review. J. Netw. Comput. Appl. https://doi.org/10.1016/j.jnca.2012.07.018 (2012).Article 

    Google Scholar 
    Kumar, S., Solanki, V. K., Choudhary, S. K., Selamat, A. & González Crespo, R. Comparative study on ant colony optimization (ACO) and K-means clustering approaches for jobs scheduling and energy optimization model in internet of things (IoT). Int. J. Interact. Multimed. Artif. Intell. 6, 107 (2020).
    Google Scholar 
    Paniri, M., Dowlatshahi, M. B. & Nezamabadi-pour, H. MLACO: A multi-label feature selection algorithm based on ant colony optimization. Knowl. Based Syst. 192, 105285 (2020).
    Google Scholar 
    Yaseen, Z. M., Sulaiman, S. O., Deo, R. C. & Chau, K.-W. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 569, 387–408 (2019).ADS 

    Google Scholar 
    Manju Parkavi, R., Shanthi, M. & Bhuvaneshwari, M. C. Recent trends in ELM and MLELM: A review. Adv. Sci. Technol. Eng. Syst. https://doi.org/10.25046/aj020108 (2017).Article 

    Google Scholar 
    Araba, A. M., Memon, Z. A., Alhawat, M., Ali, M. & Milad, A. Estimation at completion in Civil engineering projects: Review of regression and soft computing models. Knowl. Based Eng. Sci. 2, 1–12 (2021).
    Google Scholar 
    Tamura, S. & Tateishi, M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Trans. Neural Netw. 8, 251–255 (1997).CAS 
    PubMed 

    Google Scholar 
    Huang, G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 14, 274–281 (2003).PubMed 

    Google Scholar 
    Ali, M., Deo, R. C., Downs, N. J. & Maraseni, T. Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting. Atmos. Res. 213, 450–464 (2018).
    Google Scholar 
    Liang, N.-Y., Huang, G.-B., Saratchandran, P. & Sundararajan, N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17, 1411–1423 (2006).PubMed 

    Google Scholar 
    Lan, Y., Soh, Y. C. & Huang, G.-B. Ensemble of online sequential extreme learning machine. Neurocomputing 72, 3391–3395 (2009).
    Google Scholar 
    Yadav, B., Ch, S., Mathur, S. & Adamowski, J. Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: A case study in Neckar River, Germany. Measurement 92, 433–445 (2016).ADS 

    Google Scholar 
    Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).MATH 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 

    Google Scholar 
    Al-Sulttani, A. O. et al. Proposition of new ensemble data-intelligence models for surface water quality prediction. IEEE Access 9, 108527–108541 (2021).
    Google Scholar 
    Carranza, C., Nolet, C., Pezij, M. & Van Der Ploeg, M. Root zone soil moisture estimation with random forest. J. Hydrol. 593, 125840 (2021).
    Google Scholar 
    Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. Modeling species distribution and change using random forest. In Predictive Species and Habitat Modeling in Landscape Ecology (eds Ashton Drew, C. et al.) 139–159 (Springer, 2011).
    Google Scholar 
    Rahmati, O., Pourghasemi, H. R. & Melesse, A. M. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. CATENA 137, 360–372 (2016).
    Google Scholar 
    Prasad, R., Ali, M., Kwan, P. & Khan, H. Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation. Appl. Energy 236, 778–792 (2019).
    Google Scholar 
    Sharafati, A. et al. The potential of novel data mining models for global solar radiation prediction. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-019-02344-0 (2019).Article 

    Google Scholar 
    Service, A. M. I. District-Wise Area of Wheat Crop. Available at: http://www.amis.pk/Agristatistics/DistrictWise/2010-2012/Wheat.html (2012).Service, A. M. I. District-Wise Area of Wheat Crop. Available at: http://www.amis.pk/Agristatistics/DistrictWise/2012-2014/Wheat.html (2014).Punjab, P. Population. Available at: https://en.wikipedia.org/wiki/Punjab_Pakistan (2015).Steiniger, S. & Hunter, A. J. S. The 2012 free and open source GIS software map—A guide to facilitate research, development, and adoption. Comput. Environ. Urban Syst. 39, 136–150 (2013).
    Google Scholar 
    Hsu, C.-W. et al. A practical guide to support vector classification. BJU Int. https://doi.org/10.1177/02632760022050997 (2008).Article 
    PubMed 

    Google Scholar 
    Bergmeir, C. & Benítez, J. M. On the use of cross-validation for time series predictor evaluation. Inf. Sci. (NY) 191, 192–213 (2012).
    Google Scholar 
    Xia, Y., Liu, C., Li, Y. Y. & Liu, N. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Syst. Appl. https://doi.org/10.1016/j.eswa.2017.02.017 (2017).Article 

    Google Scholar 
    Yen, B. C., ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models of the Watershed Management Committee Irrigation and Drainage Division. Discussion and closure: Criteria for evaluation of watershed models. J. Irrig. Drain. Eng. 121, 130–132 (1995).
    Google Scholar 
    Yaseen, Z. M. An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere 277, 130126 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dawson, C. W., Abrahart, R. J. & See, L. M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 22, 1034–1052 (2007).
    Google Scholar 
    Legates, D. R. & Mccabe, G. J. Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35, 233–241 (1999).ADS 

    Google Scholar 
    Willmott, C. J. & Willmott, C. J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/1520-0477(1982)063%3c1309:SCOTEO%3e2.0.CO;2 (1982).Article 
    MATH 

    Google Scholar 
    Willmott, C. J. On the validation of models. Phys. Geogr. https://doi.org/10.1080/02723646.1981.10642213 (1981).Article 
    MATH 

    Google Scholar 
    Sharafati, A., Yasa, R. & Azamathulla, H. M. Assessment of stochastic approaches in prediction of wave-induced pipeline scour depth. J. Pipeline Syst. Eng. Pract. 9, 04018024 (2018).
    Google Scholar 
    Mohammadi, K. et al. A new hybrid support vector machine-wavelet transform approach for estimation of horizontal global solar radiation. Energy Convers. Manag. 92, 162–171 (2015).
    Google Scholar 
    Willmott, C. J., Robeson, S. M. & Matsuura, K. A refined index of model performance. Int. J. Climatol. 32, 2088–2094 (2012).
    Google Scholar 
    Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 10, 282–290 (1970).ADS 

    Google Scholar 
    Yaseen, Z. M. et al. Hourly river flow forecasting: Application of emotional neural network versus multiple machine learning paradigms. Water Resour. Manag. 34, 1075–1091 (2020).
    Google Scholar 
    Bhagat, S. K., Tung, T. M. & Yaseen, Z. M. Heavy metal contamination prediction using ensemble model: Case study of Bay sedimentation, Australia. J. Hazard. Mater. 403, 123492 (2021).CAS 
    PubMed 

    Google Scholar 
    Hora, J. & Campos, P. A review of performance criteria to validate simulation models. Expert Syst. 32, 578–595 (2015).
    Google Scholar 
    Nourani, V., Kisi, Ö. & Komasi, M. Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2011.03.002 (2011).Article 

    Google Scholar 
    Ertekin, C. & Yaldiz, O. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Convers. Manag. 41, 311–330 (2000).
    Google Scholar 
    Li, M. F., Tang, X. P., Wu, W. & Liu, H. B. General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers. Manag. 70, 139–148. https://doi.org/10.1016/j.enconman.2013.03.004 (2013).Article 

    Google Scholar 
    Xu, Z., Hou, Z., Han, Y. & Guo, W. A diagram for evaluating multiple aspects of model performance in simulating vector fields. Geosci. Model Dev. 9, 4365–4380 (2016).ADS 

    Google Scholar 
    Dan Foresee, F. & Hagan, M. T. Gauss–Newton approximation to bayesian learning. In IEEE International Conference on Neural Networks—Conference Proceedings. https://doi.org/10.1109/ICNN.1997.614194 (1997).Akhtar, I. U. H. Pakistan needs a new crop forecasting system (2012).Stathakis, D., Savina, I. & Nègrea, T. Neuro-fuzzy modeling for crop yield prediction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34, 1–4 (2006).
    Google Scholar 
    Kumar, P., Gupta, D. K., Mishra, V. N. & Prasad, R. Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data. Int. J. Remote Sens. 36, 1604–1617 (2015).
    Google Scholar 
    Sun, J., Xu, W. & Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In 2004 IEEE Conference on Cybernetics and Intelligent Systems. https://doi.org/10.1109/iccis.2004.1460396 (2004)Naganna, S. et al. Dew point temperature estimation: Application of artificial intelligence model integrated with nature-inspired optimization algorithms. Water. https://doi.org/10.3390/w11040742 (2019).Article 

    Google Scholar 
    Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 61, 3999–4010 (2013).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Bokde, N., Feijóo, A., Al-Ansari, N., Tao, S. & Yaseen, Z. M. The hybridization of ensemble empirical mode decomposition with forecasting models: Application of short-term wind speed and power modeling. Energies 13, 1666 (2020).
    Google Scholar 
    Chau, K. W. & Wu, C. L. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J. Hydroinform. 12, 458–473 (2010).
    Google Scholar  More

  • in

    Individual experience as a key to success for the cuckoo catfish brood parasitism

    Study systemThe cuckoo catfish (Synodontis multipunctatus) belongs to the African catfish family Mochokidae. The genus Synodontis, with 131 species distributed across African freshwaters57, gave rise to a small radiation in Lake Tanganyika, with 10 described endemic species58. The taxonomy of the group is not well established59 and we use the name S. multipunctatus as this species is confirmed as a brood parasite30 and the name was used in previous studies4,30,32,37,42. Cuckoo catfish primarily parasitise mouthbrooding cichlids from the tribe Tropheini30, but species from other lineages can also be parasitised59.Experimental designAll experiments took place between January and August 2020 at the Institute of Vertebrate Biology, Czech Republic. Prior to experimental use, fish were housed in mixed-sex groups in tanks equipped with shelter and internal filtration. Cuckoo catfish were F1 generation of commercially imported wild-caught parents (10 pairs). Host cichlids were descendant of wild fish imported from Kalambo, Zambia. Experimental tanks (420 L; length 150 cm, depth 70 cm, height 40 cm) were equipped with internal filtration, fine gravel (2–4 mm diameter), half a clay pot as a shelter on each side of the tank, and one artificial plant in the centre of each tank. Water temperature was maintained at 27 °C (±1 °C) and the dark – light regime was set to 11 h:13 h. In total, we stocked 18 tanks with 4 males and 12 females of the mouthbrooding cichlid Astatotilapia burtoni and introduced 3 cuckoo catfish pairs of one of three different experience levels. Naïve catfish (n = 36 individuals) had no prior experience with cichlids. Experienced catfish (n = 36) were housed together with reproductive cichlids for 12 months prior to the experiment and were age-matched to naïve catfish (5 years old). Highly experienced catfish (n = 36) were raised, coexisted and reproduced with cichlids for 7 years (and were on average 7–8% larger than both naïve and experienced catfish; mean ± SE, naïve: 116.2 ± 1.9 mm, experienced: 117.1 ± 1.5 mm, highly experienced: 125.6 ± 1.4 mm; Linear Model (LM): experienced vs. highly experienced, estimate ± S.E = 8.44 ± 2.29, t = 3.68, P = 0.0004, experienced vs. naïve, estimate ± S.E = −0.94 ± 2.29, t = −0.41, P = 0.681, n = 108). Additionally, both naïve and experienced cuckoo catfish were bred using in-vitro fertilisation32 to avoid cichlid imprinting (i.e., priming with cichlid cues), while highly experienced catfish were bred under natural conditions within the buccal cavities of their hosts. Each experimental tank contained catfish with the same experience level. Due to space limitations, we split the experiment into two consecutive phases with 3 replicate tanks for each treatment within both phases (in total 9 experimental tanks per phase). Between the two experimental phases, host cichlids were placed together and haphazardly assigned to new experimental tanks. During the second phase, we removed some cichlids from the tanks because of injuries caused by their intraspecific aggression (3 males and 3 females in total), and those hosts were not replaced. Over an experimental phase, cuckoo catfish and cichlids freely interacted for 15–16 weeks. During this period, each tank was checked for mouthbrooding cichlids twice each week (Tuesday and Friday). We caught the mouthbrooding females, gently washed the eggs out of their mouths using a jet of water from a Pasteur pipette, measured their body size to the nearest mm, and released them back to their experimental tank. For each female, we counted the number of cichlid eggs and cuckoo catfish eggs (if present). At the end of each experimental phase, we measured body size of all cuckoo catfish to the nearest mm. There was no significant difference between the number of cichlid spawnings between naïve and experienced catfish treatments (Generalised Linear Models with negative binomial error distribution, estimate ± S.E.: −0.093 ± 0.145, z = −0.644, P = 0.519), nor between naïve and highly experienced catfish (estimate ± S.E.: −0.269 ± 0.148, z = −1.810, P = 0.070).Behavioural recordingOver the experimental period, we successfully recorded 18 videos of spawning events (Lamax x3.1 ATLAS cameras; naïve catfish treatment, n = 9; experienced catfish treatment, n = 6; highly experienced catfish treatment, n = 3). One camera was placed near the spawning site approximately 20 cm away from spawning activity and a second camera was placed outside the experimental tank to obtain an overall view. Nine spawnings were recorded from the start (n = 7 naïve catfish experiments and 2 experienced catfish experiments) and nine spawnings were recorded from the timepoint when we recognised ongoing spawning activity (n = 2 naïve, 4 experienced, and 3 highly experienced catfish experiments). From the video footage taken for each spawning, we scored all overt aggression that host cichlids directed towards cuckoo catfish, counted the number of intruding catfish during each distinct cichlid spawning behaviour (i.e., male and female cichlid interact in a repeated succession of quivering and T-positions), measured the delay of intruding catfish to each distinct spawning behaviour (i.e., the time from the start of spawning behaviour until the first catfish directly approaches the spawning cichlids), and recorded the presence or absence of catfish during each spawning behaviour. Additionally, we recorded whether cichlids used the available shelters for spawning as this might have impeded catfish recognition of the spawning activity. When spawning was recorded from the start, scoring started 100 s before we detected the first egg laid (cichlid or cuckoo catfish). When spawning was already ongoing, the scoring started immediately after the cameras were in place. Mounting of the cameras did not interrupt the normal behaviour of cichlids or catfish. For all video footage, scoring ended 100 s after the last male-female interaction within the spawning site. To estimate the duration of male T-positions during spawnings, we measured the time period from the start of male nuzzling near female genital papilla until the female turned around either to collect eggs or start nuzzling near the male´s genital papilla (n = 115 male T-positions from 12 cichlid spawnings).Statistical analysisWe used R v. 3.5.1 (R Development Core Team, 2018) for all statistical analyses. All statistical tests were two-sided. First, we compared body size among the three cuckoo catfish experience levels using a Linear Model with catfish size (mm) as response variable and ‘treatment’ (naïve, experienced, and highly experienced catfish) as predictor variable. Second, we formally tested whether the number of host spawnings varied between the treatment groups (total numbers: naïve = 191 spawnings, experienced = 174 spawnings, highly experienced = 146 spawnings). To obtain an insight into temporal dynamics of cichlid spawning, we calculated the number of cichlid spawnings for each treatment in each quarter of the duration of the experimental period. We fitted a GLM with a negative binomial error distribution (to account for slightly overdispersed data) with the number of cichlid spawnings as the response variable and our treatment groups as predictors.To test how experience with host spawning (treatment) affected cuckoo catfish ability to place their eggs in the care of the host, we compared (1) the number of parasitised cichlid clutches among the three catfish experience groups (prevalence of parasitism), (2) the mean number of catfish eggs introduced into cichlid clutches among the three treatment levels (mean parasite egg abundance, the mean number of catfish eggs calculated across all cichlid broods, (3) mean parasite clutch size (the number of catfish eggs calculated only across parasitised cichlid broods), and examined (4) temporal dynamics of all three measures of parasite success within each treatment group throughout the duration of the experiment.To test for differences in prevalence of parasitism among different cuckoo catfish experience treatments, we applied a Generalised Linear Mixed-effects Model (GLMM, R package glmmTMB)60 with a binomial error distribution. We fitted the occurrence of ‘catfish parasitism’ (1 = yes, 0 = no) as the binary response variable and ‘treatment effect’ (i.e., ‘catfish experience’), ‘time progress of experiment’ (1–113 days) and ‘host female body size’ (in mm) as predictor variables. We additionally fitted an interaction between treatment (‘catfish experience’) and ‘time progress of experiment’ to the model to test whether parasitism rate changed over time at treatment-specific rates. We included tank identity (‘tank ID’) as a random intercept to account for nonindependence of data obtained from the same tank.Next, we tested whether the mean number of parasite eggs that were accepted by host females during one spawning bout differed between catfish experience treatments. We applied two GLMMs (R package glmmTMB)60 with a negative binomial error distribution (i.e., nbinom1) to account for over-dispersed count data. We applied GLMMs on the mean abundance of catfish eggs (across all host clutches) and on mean clutch size of cuckoo catfish using a subset of clutches that were parasitised. For both GLMMs, we included the ‘number of cuckoo catfish eggs per clutch’ as the response variable and treatment (‘catfish experience’), ‘time progress of experiment’, and their interaction as predictor variables. We additionally fitted ‘host female body size’ as a predictor variable because larger female cichlids are capable of laying more eggs and may appear more attractive hosts to cuckoo catfish. Further, a higher number of host eggs may increase the number of opportunities for cuckoo catfish to deposit their own eggs in the host clutch. ‘Tank ID’ was included as random intercept to account for nonindependence of data.To test whether cuckoo catfish presence affected cichlid spawning activity, we applied a GLMM (R package glmmTMB)60 with Gaussian error distribution (which provided superior model fit compared to Poisson and negative binomial distributions by ‘simulateResiduals’ and ‘testDispersion’ functions in the R package DHARMa)61. We fitted the ‘number of host eggs’ per clutch as the response variable and treatment (‘catfish experience’), ‘host female body size’, ‘time progress of experiment’, and ‘experimental phase’ (1st or 2nd phase) as predictor variables. We also included ‘tank ID’ as random intercept to account for nonindependence of data. The full model further included an interaction between treatment and ‘time progress of experiment’ to accommodate the possibility that host egg numbers may be affected differently across catfish experience treatments over time. As this full model predicted no difference in temporal aspect of host clutch size among treatments (‘catfish experience’: ‘time progress’, experienced: z = 0.92, P = 0.360, highly experienced: z = 1.46, P = 0.143), we subsequently dropped the interaction term from the final model.We used data collected from video footage to investigate whether naïve, experienced and highly experienced cuckoo catfish differed in their response to host spawnings and, additionally, if catfish from the three treatments elicited different host reactions towards them by applying Linear Mixed-effect Models using the R packages lme462 and glmmTMB60. To account for different starting times of recordings, we calculated either the rate of behaviour per minute of observation (i.e., for aggression) or their relative values (i.e., for the number of host courtships that cuckoo catfish missed).First, we tested whether host spawning pairs increased their aggressions towards cuckoo catfish over the experimental period to rule out the presence of host adaptation to cuckoo catfish intrusions, which would interfere with our aim of understanding parasite learning. We fitted a Generalised Linear Mixed-effects Model (GLMM, R package glmmTMB) with a negative binomial error distribution. The number of overt aggressive behaviours that the spawning pair performed towards cuckoo catfish per minute of catfish presence at the spawning site (summed over male and female cichlid) was fitted as the response variable and treatment (‘catfish experience’) as the predictor variable. We further included ‘time progress of experiment’ and ‘experimental phase’ as predictors to account for their possible effect on host aggression. We additionally included ‘tank ID’ as random intercept in the model to account for individual variation in host aggression levels among experimental tanks.To investigate if naïve cuckoo catfish missed more opportunities to parasitise cichlids than experienced and highly experienced catfish, we fitted a GLMM (R package lme4) with a binomial error distribution. We included the proportion of missed spawning behaviours (coded as ‘missed spawnings behaviours’ versus ‘intruded spawning behaviours’, based on count data for each spawning) as the response variable (‘spawnings missed’) and treatment (‘catfish experience’) as a predictor variable. We fitted ‘tank ID’ as a random intercept to the model to account for nonindependence of data within tanks, and we additionally fitted a random intercept based on whether the spawning was covered by a shelter or not (‘sheltered spawn’, yes / no) since spawning in a shelter may have been less apparent to catfish.We tested whether cuckoo catfish experience played a role in the timing of their intrusion to specific spawning behaviours by fitting a GLMM (R package lme4) with a Gamma error distribution to account for a positive skew in the data distribution. We included the mean delay of catfish to the first appearance of cichlid T-position in seconds (‘catfish delay’, see main text and Supplementary Movie 1 for a detailed description of cichlid spawning sequence) as the response variable and ‘catfish experience’ as the predictor variable. We included ‘tank ID’ and ‘sheltered spawn’ as random intercepts.Finally, we fitted a GLMM with a Poisson error distribution to test whether cuckoo catfish learn to synchronise their intrusion behaviour as they gain experience through interactions with their hosts. We included the maximum number of catfish during a specific cichlid spawning behaviour (‘intruder number’, count data) as the response variable and ‘catfish experience’ as the predictor variable. To account for nonindependence of data within experimental tanks and spawnings, we included a random intercept where each spawning was nested within ‘tank ID’ in the model.Ethical complianceResearch adhered to all national and institutional animal care and use guidelines, was administered under permit No. CZ62760203 and was approved by ethical boards of the Institute of Vertebrate Biology and the Czech Academy of Sciences (approval No. 32-2019).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Funding battles stymie ambitious plan to protect global biodiversity

    NEWS
    31 March 2022

    Funding battles stymie ambitious plan to protect global biodiversity

    Researchers are disappointed with the progress — but haven’t lost hope.

    Natasha Gilbert

    Natasha Gilbert

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Animals such as this orangutan in Indonesia are endangered because of illegal deforestation.Credit: Jami Tarris/Future Publishing via Getty

    Scientists are frustrated with countries’ progress towards inking a new deal to protect the natural world. Government officials from around the globe met in Geneva, Switzerland, on 14–29 March to find common ground on a draft of the deal, known as the post-2020 global biodiversity framework, but discussions stalled, mostly over financing. Negotiators say they will now have to meet again before a highly anticipated United Nations biodiversity summit later this year, where the deal was to be signed.The framework so far sets out 4 broad goals, including slowing species extinction, and 21 mostly quantitative targets, such as protecting at least 30% of the world’s land and seas. It is part of an international treaty known as the UN Convention on Biological Diversity, and aims to address the global biodiversity crisis, which could see one million plant and animal species go extinct in the next few decades because of factors such as climate change, human activity and disease.
    China takes centre stage in global biodiversity push
    The COVID-19 pandemic has already slowed discussions of the deal. Over the past two years, countries’ negotiators met only virtually; the Geneva meeting was the first in-person gathering since the pandemic began. When it ended, Basile van Havre, one of the chairs of the framework negotiations working group, said that because negotiators couldn’t agree on goals, additional discussions will need to take place in June in Nairobi. The convention’s pivotal summit — its Conference of the Parties (COP15) — is expected to be held in Kunming, China, in August and September, but no firm date has been set.Anne Larigauderie, executive secretary of the Intergovernmental Platform on Biodiversity and Ecosystem Services in Bonn, Germany, who attended the Geneva gathering, told Nature: “We are leaving the meeting with no quantitative elements. I was hoping for more progress.”Robert Watson, a retired environmental scientist at the University of East Anglia, UK, says the quantitative targets are crucial to conserving biodiversity and monitoring progress towards that goal. He calls on governments to “bite the bullet and negotiate an appropriate deal that both protects and restores biodiversity”.Finance fightMany who were at the meeting say that disagreements over funding for biodiversity conservation were the main hold-up to negotiations. For example, the draft deal proposed that US$10 billion of funding per year should flow from developed nations to low- and middle-income countries to help them to implement the biodiversity framework. But many think this is not enough. A group of conservation organizations has called for at least $60 billion per year to flow to poorer nations.
    Biodiversity moves beyond counting species
    The consumption habits of wealthy nations are among the key drivers of biodiversity loss. And poorer nations are often home to areas rich in biodiversity, but have fewer means to conserve them.“The most challenging aspect is the amount of financing that wealthy nations are committing to developing nations,” says Brian O’Donnell, director of the Campaign for Nature in Washington DC, a partnership of private charities and conservation organizations advocating a deal to safeguard biodiversity. “Nations need to up their level of financing to get progress in the COP.”Other nations, particularly low-income ones, probably don’t want to agree “unless they have assurances of resources to allow them to implement the new framework”, Larigauderie says.Countries including Argentina and Brazil are largely responsible for stalling the deal, several sources close to the negotiations told Nature. They asked to remain anonymous because the negotiations are confidential.
    The world’s species are playing musical chairs: how will it end?
    No agreement could be reached even on targets with broad international support, such as protecting at least 30% of the world’s land and seas by 2030. O’Donnell says that just one country blocked agreement on this target, questioning its scientific basis.Van Havre downplayed the lack of progress, saying that the brinksmanship at the meeting was part of a “normal negotiating process”. He told reporters: “We are happy with the progress made.” Further delays ‘unacceptable’A bright spot in the negotiations, van Havre said, was a last-minute “major step forward” in discussions on how to fairly and equitably share the benefits of digital sequence information (DSI). DSI consists of genetic data collected from plants, animals and other organisms.
    Why deforestation and extinctions make pandemics more likely
    When pressed, however, van Havre admitted that the progress was simply an agreement between countries to continue discussing a way forward.Thomas Brooks, chief scientist at the International Union for Conservation of Nature in Gland, Switzerland, says that DSI discussions have actually been fraught. Communities from biodiverse-rich regions where genetic material is collected have little control over the commercialization of the data that come from it, and no way to recoup financial and other benefits, he explains.Like biodiversity financing, DSI rights could hold up negotiations on the overall framework. Low-income countries want a fair and equitable share of the benefits from genetic material that originates in their lands, but rich nations don’t want unnecessary barriers to sharing the information.“We are a long way from a watershed moment, and there remain genuine disagreements,” Brooks says. However, he is optimistic that progress will eventually be made.
    The biodiversity leader who is fighting for nature amid a pandemic
    Some conservation organizations take hope from new provisional language in the deal that calls for halting all human-caused species extinctions. The previous draft of the deal proposed only a reduction in the rate and risk of extinctions, says Paul Todd, an environmental lawyer at the Natural Resources Defense Council, a non-profit group based in New York City.Given how much work governments must do to reach agreement on the deal, Watson says the extra Nairobi meeting is a “logical” move. But he warns: “Any further delay would be unacceptable.”“This isn’t even the hard work,” Todd says. “Implementing the deal will be the real work.”

    doi: https://doi.org/10.1038/d41586-022-00916-8

    Related Articles

    China takes centre stage in global biodiversity push

    The biodiversity leader who is fighting for nature amid a pandemic

    Why deforestation and extinctions make pandemics more likely

    Biodiversity moves beyond counting species

    The battle for the soul of biodiversity

    The world’s species are playing musical chairs: how will it end?

    Subjects

    Biodiversity

    Conservation biology

    Climate change

    Latest on:

    Biodiversity

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Africa: sequence 100,000 species to safeguard biodiversity
    Comment 15 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    Climate change

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    The race to upcycle CO2 into fuels, concrete and more
    News Feature 29 MAR 22

    Biden bids again to boost science spending — but faces long odds
    News 28 MAR 22

    Jobs

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Research Group Leader on Robustness and Decision Making in Cells and Tissues

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Research Group Leader on Physical Measurement and Manipulation of Living Systems

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany More

  • in

    Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions

    Morton JT, Sanders J, Quinn RA, McDonald D, Gonzalez A, Vázquez-Baesa Y, et al. Balance trees reveal microbial niche differentiation. MSystems. 2017;2:e00162–16.Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salles JF, Poly F, Schmid B, Le Roux X. Community niche predicts the functioning of denitrifying bacterial assemblages. Ecology. 2009;90:3324–32.PubMed 

    Google Scholar 
    Ge X, Thorgersen MP, Poole FL, Deutschbauer AM, Chandonia J-M, Novichov PS, et al. Characterization of a metal-resistant bacillus strain with a high molybdate affinity ModA from contaminated sediments at the Oak Ridge Reservation. Front Microbiol. 2020;11:2543.
    Google Scholar 
    Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.CAS 
    PubMed 

    Google Scholar 
    Moon J-W, Paradis CJ, Joyner DC, von Netzer F, Majumder EL, Dixon ER, et al. Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. Chemosphere. 2020;255:126951.CAS 
    PubMed 

    Google Scholar 
    Berkowitz B, Silliman SE, Dunn AM. Impact of the capillary fringe on local flow, chemical migration, and microbiology. Vadose Zo J. 2004;3:534–48.CAS 

    Google Scholar 
    Winter J, Ippisch O, Vogel H-J. Dynamic processes in capillary fringes. Vadose Zo J. 2015;14:1–2.Silliman SE, Berkowitz B, Simunek J, van Genuchten MT. Fluid flow and solute migration within the capillary fringe. Ground Water. 2002;40:76–84.CAS 
    PubMed 

    Google Scholar 
    Haberer CM, Rolle M, Liu S, Cirpka OA, Prathwohl P. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater. J Contam Hydrol. 2011;122:26–39.CAS 
    PubMed 

    Google Scholar 
    Bouskill NJ, Conrad ME, Bill M, Brodie EL, Cheng Y, Hobson C, et al. Evidence for microbial mediated NO3− cycling within floodplain sediments during groundwater fluctuations. Front Earth Sci. 2019;7:189.
    Google Scholar 
    Rühle FA, von Netzer F, Lueders T, Stumpp C. Response of transport parameters and sediment microbiota to water table fluctuations in laboratory columns. Vadose Zo J. 2015;14:vzj2014.09.0116.Aigle A, Prosser JI, Gubry-Rangin C. The application of high-throughput sequencing technology to analysis of amoA phylogeny and environmental niche specialisation of terrestrial bacterial ammonia-oxidisers. Environ Microbiome. 2019;14:3.PubMed 
    PubMed Central 

    Google Scholar 
    Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. Comparative genomics of marine sponge-derived Streptomyces spp. isolates SM17 and SM18 with their closest terrestrial relatives provides novel insights into environmental niche adaptations and secondary metabolite biosynthesis potential. Front Microbiol. 2019;10:1713.PubMed 
    PubMed Central 

    Google Scholar 
    Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T, et al. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:754.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 2014;38:720–60.CAS 
    PubMed 

    Google Scholar 
    Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 2012;20:262–7.CAS 
    PubMed 

    Google Scholar 
    Wisniewski-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, et al. Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes. 2012;3:576–602.Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol. 1947;54:291–303.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boivin-Jahns V, Bianchi A, Ruimy R, Garcin J, Daumas S, Cristen R, et al. Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol. 1995;61:3400–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rusterholtz KJ, Mallory LM. Density, activity, and diversity of bacteria indigenous to a karstic aquifer. Microb Ecol. 1994;28:79–99.CAS 
    PubMed 

    Google Scholar 
    Eschbach M, Möbitz H, Rompf A, Jahn D. Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. FEMS Microbiol Lett. 2003;223:227–30.CAS 
    PubMed 

    Google Scholar 
    Banerjee S, Palit R, Sengupta C, Standing D. Stress induced phosphate solubilization by ’Arthrobacter’ Sp. and ’Bacillus’ sp. isolated from tomato rhizosphere. Aust J Crop Sci. 2010;4:378–83.CAS 

    Google Scholar 
    Keddie RM, Collins D, Jones D. Genus Arthrobacter. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG, editors. Bergey’s manual of systematic bacteriology. Vol 2. Williams and Wilkins: New York, NY. 1986. p. 1288–301.Crocker FH, Fredrickson JK, White DC, Ringelberg DB, Balkwill DL. Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Microbiology. 2000;146:1295–310.CAS 
    PubMed 

    Google Scholar 
    Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun. 2015;6:8289.CAS 
    PubMed 

    Google Scholar 
    Wu X, Spencer S, Gushgari-Doyle S, Yee MO, Voriskova J, Li Y, et al. Culturing of “unculturable” subsurface microbes: natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front Microbiol. 2020;11:3171.
    Google Scholar 
    Watson DB, Kostka JE, Fields MW, Jardine PM. The Oak Ridge Field Research Center conceptual model. NABIR F. Res. Center: Oak Ridge, TN; 2004.Moon J, Roh Y, Phelps TJ, Phillips DH, Watson DB, Kim Y-J, et al. Physicochemical and mineralogical characterization of soil–saprolite cores from a field research site, Tennessee. J Environ Qual. 2006;35:1731–41.CAS 
    PubMed 

    Google Scholar 
    Wu X, Wu L, Liu Y, Zhang P, Li Q, Zhou J, et al. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Front Microbiol. 2018;9:1234.PubMed 
    PubMed Central 

    Google Scholar 
    Chakraborty R, Woo H, Dehal P, Walker R, Zemla M, Auer M, et al. Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a Hexavalent Chromium [Cr(VI)] contaminated site. Stand Genomic Sci. 2017;12:23.PubMed 
    PubMed Central 

    Google Scholar 
    Guttenberger M, Hampp R. Ectomycorrhizins—symbiosis-specific or artifactual polypeptides from ectomycorrhizas? Planta. 1992;188:129–36.CAS 
    PubMed 

    Google Scholar 
    Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595.PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt D, Chen G, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.PubMed 
    PubMed Central 

    Google Scholar 
    Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60.PubMed 
    PubMed Central 

    Google Scholar 
    Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50:D801–D807.CAS 
    PubMed 

    Google Scholar 
    Price MN, Deutschbauer AM, Arkin AP. GapMind: automated annotation of amino acid biosynthesis. mSystems. 2020;5:e00291–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertelli C, Laird MR, Wiliams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Procter JB, Carstairs GM, Soares B, Mourão K, Ofoegbu TC, Barton D, et al. Alignment of biological sequences with Jalview. In: Katoh K Editor. Multiple sequence alignment. Springer, Humana Press: New York, NY. 2021. p. 203–24.Letunic I, Bork P. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6. https://doi.org/10.1093/nar/gkab301.Eren AM, Esen O, Quince C, Vines JH, Horrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    Qiong W, Garrity GM, Tiedge JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
    Google Scholar 
    Liao J, Guo X, Weller DL, Pollak S, Buckley DH, Wiedmann M, et al. Nationwide genomic atlas of soil-dwelling Listeria reveals effects of selection and population ecology on pangenome evolution. Nat Microbiol. 2021;6:1021–30.CAS 
    PubMed 

    Google Scholar 
    Schwyn B, Neilands JB. Universal chemical assay for detection and determination of siderophores. Anal Biochem. 1987;160:47–56.CAS 
    PubMed 

    Google Scholar 
    Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernandez FJ. O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods. 2007;70:127–31.PubMed 

    Google Scholar 
    Nyyssönen M, Tran HM, Karaoz U, Weihe C, Hadi MZ, Martiny JBH, et al. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Front Microbiol. 2013;4:282PubMed 
    PubMed Central 

    Google Scholar 
    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Gregory Caporaso J, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.PubMed 

    Google Scholar 
    Oliveira PL, de, Duarte MCT, Ponezi AN, Durrant LR. Purification and partial characterization of manganese peroxidase from Bacillus pumilus and Paenibacillus sp. Braz J Microbiol. 2009;40:818–26.PubMed 
    PubMed Central 

    Google Scholar 
    Varrot A, Yip VLY, Li Y, Rajan SS, Yang X, Anderson WF, et al. NAD+ and metal-ion dependent hydrolysis by family 4 glycosidases: structural insight into specificity for phospho-β-D-glucosides. J Mol Biol.2005;346:423–35.CAS 
    PubMed 

    Google Scholar 
    Lambers H. Introduction: dryland salinity: a key environmental issue in southern Australia. Plant Soil. 2003;257:v–vii.Galinski EA, Trüper HG. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev. 1994;15:95–108.CAS 

    Google Scholar 
    Korom SF. Natural denitrification in the saturated zone: a review. Water Resour Res. 1992;28:1657–68.CAS 

    Google Scholar 
    Niewerth H, Schuldes J, Parschat K, Kiefer P, Vorholt JA, Daniel R, et al. Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a. BMC Genomics. 2012;13:1–19.
    Google Scholar 
    See-Too W-S, Ee R, Lim Y-L, Convey P, Pearce DA, Mohidin TBM, et al. Complete genome of Arthrobacter alpinus strain R3. 8, bioremediation potential unraveled with genomic analysis. Stand Genomic Sci. 2017;12:1–7.
    Google Scholar 
    Bazhanov DP, Li C, Li H, Li J, Zhang X, Chen X, et al. Occurrence, diversity and community structure of culturable atrazine degraders in industrial and agricultural soils exposed to the herbicide in Shandong Province, PR China. BMC Microbiol. 2016;16:1–21.
    Google Scholar 
    Fan X, Nie MQ, Wang Y, Diwu ZJ, Liu L, Liu Y. Characteristics of the co-metabolism of 1-naphthol by Arthrobacter crystallopoietes NT16 and symbiotic Bacillus NG16. Acta Sci Circumstantiae. 2019;39:1482–8.CAS 

    Google Scholar 
    Nakatsu CH, Barabote R, Thompson S, Bruce D, Detter C, Brettin T, et al. Complete genome sequence of Arthrobacter sp. strain FB24. Stand Genomic Sci. 2013;9:106–16.PubMed 
    PubMed Central 

    Google Scholar 
    Shimasaki T, Masuda S, Garrido-Oter R, Kawasaki T, Aoki Y, Shibata A, et al. Tobacco root endophytic Arthrobacter harbors genomic features enabling the catabolism of host-specific plant specialized metabolites. MBio. 2021;12:e00846–21.CAS 
    PubMed Central 

    Google Scholar 
    Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S. Complete genome sequence of Arthrobacter alpinus ERGS4: 06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya. J Biotechnol. 2016;220:86–87.CAS 
    PubMed 

    Google Scholar 
    Russell DA, Hatfull GF. Complete genome sequence of Arthrobacter sp. ATCC 21022, a host for bacteriophage discovery. Genome Announc. 2016;4:e00168–16.PubMed 
    PubMed Central 

    Google Scholar 
    Fomenkov A, Akimov VN, Vasilyeva LV, Andersen DT, Vincze T, Roberts RJ, et al. Complete genome and methylome analysis of psychrotrophic bacterial isolates from Lake Untersee in Antarctica. Genome Announc. 2017;5:e01753–16.PubMed 
    PubMed Central 

    Google Scholar 
    Hiraoka S, Machiyama A, Ijichi M, Inoue K, Oshima K, Hattori M, et al. Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami. BMC Genomics. 2016;17:1–13.
    Google Scholar 
    Han S-R, Kim B, Jang JH, Park H, Oh T-J. Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation. BMC Genomics. 2021;22:1–14.
    Google Scholar 
    Koh H-W, Kang M, Lee K, Lee E, Kim H, Park SJ. Arthrobacter dokdonellae sp. nov., isolated from a plant of the genus Campanula. J Microbiol. 2019;57:732–7.CAS 
    PubMed 

    Google Scholar 
    Xu X, Xu M, Zhao Q, Xia Y, Chen C, Shen Z. Complete genome sequence of Cd (II)-resistant Arthrobacter sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation. Curr Microbiol. 2018;75:1231–9.CAS 
    PubMed 

    Google Scholar 
    Lee GLY, Ahmad SA, Yasid NA, Zulkharnain A, Convey P, Johari WLW, et al. Biodegradation of phenol by cold-adapted bacteria from Antarctic soils. Polar Biol. 2018;41:553–62.
    Google Scholar 
    Stockdale A, Davison W, Zhang H. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence. Earth-Science Rev. 2009;92:81–97.CAS 

    Google Scholar 
    Whiting AK, Boldt YR, Hendrich MP, Wackett LP, Que L. Manganese (II)-dependent extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis CM-2. Biochemistry. 1996;35:160–70.CAS 
    PubMed 

    Google Scholar 
    Jeng W-Y, Wang M, Lin N, Lin C, Liaw Y, Cheng W, et al. Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol. 2011;173:46–56.CAS 
    PubMed 

    Google Scholar 
    Stevenson IL. Utilization of aromatic hydrocarbons by Arthrobacter spp. Can J Microbiol. 1967;13:205–11.CAS 
    PubMed 

    Google Scholar 
    Dsouza M, Taylor MW, Turner SJ, Aislabie J. Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genomics. 2015;16:36.PubMed 
    PubMed Central 

    Google Scholar 
    Taylor R, Cronin A, Pedley S, Barker J, Atkinson T. The implications of groundwater velocity variations on microbial transport and wellhead protection–review of field evidence. FEMS Microbiol Ecol. 2004;49:17–26.CAS 
    PubMed 

    Google Scholar 
    Zhang X, Liu X, Yang F, Chen L. Pan-genome analysis links the hereditary variation of leptospirillum ferriphilum with its evolutionary adaptation. Front Microbiol. 2018;9:577.PubMed 
    PubMed Central 

    Google Scholar 
    Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, et al. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics. 2012;13:533.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang Y, Sievert S. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol. 2014;5:110.PubMed 
    PubMed Central 

    Google Scholar 
    Aminov R. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;2:158.PubMed 
    PubMed Central 

    Google Scholar 
    Kothari A, Wu Y, Chandonia J-M, Charrier M, Rajiv L, Rocha AM, et al. Large circular plasmids from groundwater plasmidomes span multiple incompatibility groups and are enriched in multimetal resistance genes. MBio. 2019;10:e02899–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Penn K, Jenkins C, Nett M, Udwary DW, Gontang EA, McGlinchey RP, et al. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J. 2009;3:1193–203.CAS 
    PubMed 

    Google Scholar 
    Wu X, Kazakov AE, Gushgari-Doyle S, Yu X, Trotter V, Stuart RK, et al. Comparative genomics reveals insights into induction of violacein biosynthesis and adaptive evolution in Janthinobacterium. Microbiol Spectr. 2022;9:e01414–e01421.
    Google Scholar 
    Jonkheer EM, Brankovics B, Houwers IM, van der Wolf JM, Bonants PJM, Vreeburg RAM, et al. The Pectobacterium pangenome, with a focus on Pectobacterium brasiliense, shows a robust core and extensive exchange of genes from a shared gene pool. BMC Genomics. 2021;22:265.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdel-Glil MY, Rischer U, Steinhagen D, McCarthy U, Neubauer H, Sprague LD. Phylogenetic relatedness and genome structure of Yersinia ruckeri revealed by whole genome sequencing and a comparative analysis. Front Microbiol. 2021;12:782415.González-Dominici LI, Saati-Santamaría Z, García-Fraile P. Genome analysis and genomic comparison of the novel species Arthrobacter ipsi reveal its potential protective role in its bark beetle host. Microb Ecol. 2021;81:471–82.PubMed 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.CAS 
    PubMed 

    Google Scholar 
    Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol. 1997;63:2330–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–77.
    Google Scholar  More

  • in

    Gentamicin at sub-inhibitory concentrations selects for antibiotic resistance in the environment

    Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic. 2008;8:1–13.CAS 
    Article 

    Google Scholar 
    Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014;22:536–45. Available from: https://doi.org/10.1016/j.tim.2014.05.005.CAS 
    Article 
    PubMed 

    Google Scholar 
    Kalasseril S, Paul R, J RK V, Pillai D. Investigating the impact of hospital antibiotic usage on aquatic environment and aquaculture systems: A molecular study of quinolone resistance in Escherichia coli. Sci Total Environ. 2020;748:141538. Available from: https://doi.org/10.1016/j.scitotenv.2020.141538.CAS 
    Article 

    Google Scholar 
    Ashbolt NJ. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environ Health Perspect. 2013;121:993–1002.Article 

    Google Scholar 
    Bengtsson-Palme J, Kristiansson E, Larsson DGJ Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2017;(October 2017):68–80. Available from: http://academic.oup.com/femsre/advance-article/doi/10.1093/femsre/fux053/4563583Manaia CM Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Vol. 25, Trends in Microbiology. 2017.Manaia CM, Macedo G, Fatta-Kassinos D, Nunes OC. Antibiotic resistance in urban aquatic environments: can it be controlled? Appl Microbiol Biotechnol. 2016;100:1543–57.CAS 
    Article 

    Google Scholar 
    Durso LM, Cook KL. Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr Opin Microbiol. 2014;19:37–44. https://doi.org/10.1016/j.mib.2014.05.019. Available fromArticle 
    PubMed 

    Google Scholar 
    Almakki A, Jumas-Bilak E, Marchandin H, Licznar-Fajardo P. Antibiotic resistance in urban runoff. Sci Total Environ. 2019;667:64–76. https://linkinghub.elsevier.com/retrieve/pii/S0048969719306710.CAS 
    Article 

    Google Scholar 
    Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014;12:465–78. Available from: https://doi.org/10.1038/nrmicro3270.CAS 
    Article 
    PubMed 

    Google Scholar 
    Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7:1–9.Article 

    Google Scholar 
    Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. Novel insights into selection for antibiotic resistance in complex microbial communities. MBio. 2018;9:1–12. http://mbio.asm.org/lookup/doi/10.1128/mBio.00969-18.CAS 
    Article 

    Google Scholar 
    Chow L, Waldron L, Gillings MR. Potential impacts of aquatic pollutants: sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance. Front Microbiol. 2015;6:1–10.
    Google Scholar 
    Bruchmann J, Kirchen S, Schwartz T. Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates. Environ Sci Pollut Res. 2013;20:3539–49.CAS 
    Article 

    Google Scholar 
    Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals. mBio. 2014;5:19–23.Article 

    Google Scholar 
    Choung S, Yun Z, Kwon EE, Cho Y, Ha U-H, Oh J, et al. Transfer of antibiotic resistance plasmids in pure and activated sludge cultures in the presence of environmentally representative micro-contaminant concentrations. Sci Total Environ. 2014;468–469:813–20. https://doi.org/10.1016/j.scitotenv.2013.08.100.CAS 
    Article 
    PubMed 

    Google Scholar 
    Shun-Mei E, Zeng JM, Yuan H, Lu Y, Cai RX, Chen C. Sub-inhibitory concentrations of fluoroquinolones increase conjugation frequency. Microb Pathog. 2018;114:57–62.CAS 
    Article 

    Google Scholar 
    Jutkina J, Rutgersson C, Flach CF, Joakim Larsson DG. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci Total Environ. 2016;548–549:131–8. https://doi.org/10.1016/j.scitotenv.2016.01.044.CAS 
    Article 
    PubMed 

    Google Scholar 
    Jutkina J, Marathe NP, Flach CF, Larsson DGJ. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ. 2018;616–617:172–8. https://doi.org/10.1016/j.scitotenv.2017.10.312.CAS 
    Article 
    PubMed 

    Google Scholar 
    Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. Novel insights into selection for antibiotic resistance in complex microbial communities. MBio. 2018;9:1–12.CAS 
    Article 

    Google Scholar 
    Le-minh N, Khan SJ, Drewes JE, Stuetz RM. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010;44:4295–323. https://doi.org/10.1016/j.watres.2010.06.020.CAS 
    Article 
    PubMed 

    Google Scholar 
    George J, Halami PM. Sub-inhibitory concentrations of gentamicin triggers the expression of aac(6′)Ie-aph(2″)Ia, chaperons and biofilm related genes in Lactobacillus plantarum MCC 3011. Res Microbiol. 2017;168:722–31. https://doi.org/10.1016/j.resmic.2017.06.002.CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang AN, Li LG, Ma L, Gillings MR, Tiedje JM, Zhang T. Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome. 2018;6:1–14.Article 

    Google Scholar 
    Gillings MR. Integrons: Past, Present, and Future. Microbiol Mol Biol Rev. 2014;78:257–77.Article 

    Google Scholar 
    Guironnet A, Sanchez-Cid C, Vogel TM, Wiest L, Vulliet E Aminoglycosides analysis optimization using Ion pairing Liquid Chromatography coupled to tandem Mass Spectrometry and application on wastewater samples. J Chromatogr. 2021;1651.Muyzer G, Hottentrager S, Teske A, Wawer C Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA—a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans A, van Elsas J, de Bruijn F, editors. Molecular microbial ecology manual. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995. p. 1–23.Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods. 2001;44:253–62.CAS 
    Article 

    Google Scholar 
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11.Article 

    Google Scholar 
    Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics. 2012;13:31 http://www.biomedcentral.com/1471-2105/13/31.CAS 
    Article 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    Article 

    Google Scholar 
    Holmes AJ, Gillings MR, Nield BS, Mabbutt BC, Nevalainen KMH, Stokes HW. The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol. 2003;5:383–94.CAS 
    Article 

    Google Scholar 
    Gillings MR, Xuejun D, Hardwick SA, Holley MP, Stokes HW. Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons? ISME J. 2009;3:209–15.CAS 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    Article 

    Google Scholar 
    Minoche AE, Dohm JC, Himmelbauer H Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol. 2011;12.Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:1–22.Article 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. Available from: https://doi.org/10.1038/nmeth.1923.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: An advanced analysis and visualization platformfor’omics data. PeerJ. 2015;2015:1–29.
    Google Scholar 
    Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.CAS 
    Article 

    Google Scholar 
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    Article 

    Google Scholar 
    Menzel P, Ng KL, Krogh A Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7.Ramirez SM, Tolmasky EM. Aminoglycoside modifing enzymes. Drug Resist Updat. 2011;13:151–71. Available from: https://doi.org/10.1016/j.drup.2010.08.003.CAS 
    Article 

    Google Scholar 
    Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C. Human Health Risk Assessment of Antibiotic Resistance Associated with Antibiotic Residues in the Environment: A Review. Environ Res. 2018;169:483–93. https://www.sciencedirect.com/science/article/pii/S0013935118304298.Article 

    Google Scholar 
    Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int. 2016;86:140–9. https://doi.org/10.1016/j.envint.2015.10.015.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol. 2018;9(September). Available from: https://www.frontiersin.org/article/10.3389/fmicb.2018.02066/fullCasin I, Bordon F, Bertin P, Coutrot A, Podglajen I, Brasseur R, et al. Aminoglycoside 6’-N-acetyltransferase variants of the Ib type with altered substrate profile in clinical isolates of Enterobacter cloacae and Citrobacter freundii. Antimicrob Agents Chemother. 1998;42:209–15.CAS 
    Article 

    Google Scholar 
    Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.CAS 
    Article 

    Google Scholar 
    Chow LKM, Ghaly TM, Gillings MR. A survey of sub-inhibitory concentrations of antibiotics in the environment. J Environ Sci (China). 2021;99:21–7. https://doi.org/10.1016/j.jes.2020.05.030.Article 

    Google Scholar 
    Gillings MR. Class 1 integrons as invasive species. Curr Opin Microbiol. 2017;38:10–5. https://doi.org/10.1016/j.mib.2017.03.002.CAS 
    Article 
    PubMed 

    Google Scholar 
    Ma L, Li AD, Yin XL, Zhang T. The prevalence of integrons as the carrier of antibiotic resistance genes in natural and man-made environments. Environ Sci Technol. 2017;51:5721–8.CAS 
    Article 

    Google Scholar 
    Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol. 2008;190:5095–100.CAS 
    Article 

    Google Scholar 
    Bürgmann H, Frigon D, Gaze WH, Manaia CM, Pruden A, Singer AC, et al. Water and sanitation: An essential battlefront in the war on antimicrobial resistance. FEMS Microbiol Ecol. 2018;94.Pena-Miller R, Laehnemann D, Jansen G, Fuentes-Hernandez A, Rosenstiel P, Schulenburg H, et al. When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition. PLoS Biol. 2013;11:14–6.Article 

    Google Scholar  More