More stories

  • in

    Analysis of individual-level data from 2018–2020 Ebola outbreak in Democratic Republic of the Congo

    Ebola datasetThe 2018–2020 DRC EVD outbreak lasted over 24 months and spread over 3 distinct spatial and temporal waves. Between the emergency declaration of the EVD outbreak in northern DRC on August 1, 2018 and the outbreak’s official end on June 25, 2020, the DRC Ministry of Health has reported a total of 3481 cases (including confirmed and probable), 1162 recoveries, and 2299 deaths16 in the provinces of Northern Kivu, Southern Kivu, and Ituri. The dataset considered here is a large subset of the entire EVD database compiled by the University of Kinshasa School of Public Health, which comprises 3117 total case records (confirmed and probable) recorded between May 3, 2018, and September 12, 2019. The data included partially de-identified but still detailed patient information, such as each person’s location, date of symptom onset and hospitalization, as well as discharge due to recovery or death. These individual records came from the Ebola treatment centers in 24 different health zones, spread out among the three DRC provinces of Northern Kivu, Southern Kivu, and Ituri.Of the 24 health zones, 77.1% of all cases were from only 6: Beni, Butembo, Katwa, Kalunguta, Mabalako, and Mandima. Only 9.7% of cases were under the age of 18. There is also a slightly larger proportion of females contracting the disease, comprising 57.0% of the cases. Approximately 5% of the cases were health care workers. About one-third of the EVD fatalities were not identified until patient’s death and thus not effectively isolated from the time of infection. Although over 170,000 contacts of confirmed and probable Ebola cases had been monitored across all affected health zones for 21 days after their last known exposure by the end of the epidemic, some of the contact tracing was incomplete due to insecurity that prevented public health response teams from entering some communities. The overall case density map is presented in panel (A) of Fig. 1 with the animated version of the map presented in the online appendix in Fig. A.1. Notice that the high-density areas, particularly Butembo, Katwa, and Beni, are all spatially small health zones corresponding to cities or towns with larger populations.Figure 1DRC Ebola dataset. (A) The spatial distribution of 3481 EVD cases across the northern DRC health zones during Ebola 2018–2020 outbreak. (B) The flowchart of personal records available up to September 12, 2019 available for the current analysis. The total number of available individual disease records was 3080. Map created using open software R17 with geospatial data obtained from18.Full size imageFigure 2Daily incidence and removal rates. Daily incidence (grey bars) and removal counts (red dots) during DRC Ebola 2018–2020 outbreak between August 15, 2018 and September 12, 2020 along with their respective trendlines (loess smoothers). The blue trendline above the plot represents daily effective reproduction number (mathcal{R}_t) defined as the ratio of daily number of new infections to new removals. The vertical lines indicate cut-off dates for data collection in each wave as listed in Table 1.Full size imageTable 1 Observed cases by EVD wave.Full size tableCase alerts and definitionsSince early August, 2018, the DRC Ministry of Health has been collaborating with several international partners to support and enhance EVD response activities through its emergency operations center in Goma. To the extent possible given regional security considerations19, the response teams were deployed to interview patients and their suspected contacts using a standardized case investigation form classifying cases as suspected, probable, or confirmed. A suspected case (whether surviving or not) was defined as one with the acute onset of fever (over 100(^{circ })F) and at least three Ebola-compatible clinical signs or symptoms (headache, vomiting, anorexia, diarrhea, lethargy, stomach pain, muscle or joint aches, difficulty swallowing or breathing, hiccups, unexplained bleeding, or any sudden, unexplained death) in a North Kivu, South Kivu, or Ituri resident or any person who had traveled to these provinces during this period and reported the signs or symptoms defined above. A patient who met the suspected case definition and died but from whom no specimens were available was considered a probable case. A confirmed Ebola case was defined as a suspected case with at least one positive test for Ebola virus using reverse transcription polymerase chain reaction (RT-PCR)20 testing. Patients with suspected Ebola were isolated and transported to an Ebola treatment center for confirmatory testing and treatment2.Onset and removalIn our analysis of the DRC dataset, we focused on dates of symptom onset and removal, with removal defined as either a death/recovery at home or transfer to an Ebola treatment center (ETC). It was assumed that, once in the treatment center, the probability of further infection spread by an isolated individual was very small due to the strict safety protocols—and later due also to vaccination of healthcare personnel and family members who were in contact with the suspected Ebola case. As summarized in panel (B) of Fig. 1, we were able to access 3117 out of 3481 individual records of confirmed and probable Ebola cases. Of these 3117 records, 37 were missing both the onset and recovery dates and were removed from further analysis. In about 30% of the remaining records, either their dates of onset or removal were missing. A detailed flow diagram summarizing the amount of missing data and data processing leading to the final dataset is presented in panel (B) of Fig. 1. The distribution of the original and the partially imputed records across the three waves of infection is provided for further reference in Table 1.Spatial and temporal patternsThroughout the pandemic, the incidence rates exhibited strong spatial and temporal patterns that can be summarized as three distinct waves of infections with approximate boundaries marked by vertical lines in Fig. 1. The distribution of weekly reported cases across the most affected health zones listed in Table 1 is provided in the bar plot and in the corresponding animation in the appendix (see Figure A.1). As seen from the bar chart and the animated plot, the epidemic was initially driven largely by infections in the health zones of Beni, Mandima and Mabalako. After several months, the incidence of new cases in these zones subsided, but the epidemic moved south to the health zones of Katwa and Butembo, where the majority of new infections was registered between weeks 22 to 45 of the epidemic (see Panel (A) in Figure A.1 in the online Appendix). In the final spatial shift, around week 49, the epidemic returned to the health zones of Beni, Mandima, and Mabalako, where it was mostly extinguished around week 60 (September 2019). Isolated Ebola incidences occurred sporadically across northern DRC until end of the outbreak was officially declared in June 2020.The empirical patterns of incidence and removal for EVD cases are summarized in Fig. 2 with the bar and the dot plots representing the daily numbers of new infections and removals, respectively. As seen from the plot, these daily counts closely follow a three-wave temporal pattern in Table 1. This is further evident from the black and red trendlines representing the loess smoothers (see21). The daily ratio of new cases and removals may be interpreted as a crude estimate of the effective reproduction number (mathcal{R}_t) defined more formally in (2) in Model for Data Analysis below. In particular, the blue trendline for (mathcal{R}_t) indicates that towards the end of the observed time period, the number of removals outpaced the number of new infections ((mathcal{R}_t 0) and (r_t = 0) where (beta > 0) is the rate of infection, (gamma > 0) is the rate of recovery and (rho > 0) is the initial amount of infection. In particular, the model implies the existence of the basic reproduction number (mathcal{R}_0) (R-naught), which determines the average speed of disease spread11 and is given by the formula$$mathcal{R}_0=beta /gamma .$$If (mathcal{R}_0 > 1), the proportion of infected initially rises and then subsides, with the final proposition of surviving susceptibles given by (s_infty = 1 – tau > 0) where (tau) is know as the epidemic’s final size. In typical statistical analysis, an estimate of (mathcal{R}_0) is obtained by separately estimating the parameters (beta) and (gamma). Another important quantity related to (1) is the effective reproduction number, which is typically defined as$$begin{aligned} mathcal{R}_t= mathcal{R}_0 s_t. end{aligned}$$
    (2)
    Although equation (1) is typically considered in the context of an average behavior of a large population, for our purposes we interpret it as defining the individual histories of infection and recovery, according to the idea of the dynamic survival analysis (DSA) discussed recently in10 and24 and also briefly summarized in the Appendix. With the DSA approach, we interpret equation (1) as the so-called stochastic master equation25 describing the change in probability of a randomly selected individual being at time t either susceptible, infected, or removed. These respective probabilities are represented by the scaled proportions (s_t/(1+rho )), (iota _t/(1+rho )), and (r_t/(1+rho )) and evolve according to (1). As outlined in10, the DSA-based interpretation of the classical SIR equations has a number of advantages that make it particularly convenient for analyzing epidemic data consisting of individual histories of infection onsets and removals, which is exactly the type of data available in the DRC Ebola dataset. The fact that the model is individual-based implies also that we can vary the parameters (theta =(beta ,gamma ,rho )) to account for individual covariates and changes in the parameter values over time, as different waves of infection sweep through the population. Finally, for the purpose of our analysis, it is also important to note that the DSA model does not require any knowledge of the size of the susceptible population subjected to the epidemic pressure. For the DRC dataset, that assumption would be difficult to justify due to spatial and temporal heterogeneity of the epidemic and the frequent movements of local populations driven by political conflicts and insecurity. Another element complicating the determination of the size of susceptible population was the ring vaccination campaign that has been conducted since 2019 wherever possible in the northern DRC during periods of relative stability, despite local mistrust and supply issues. This campaign ultimately resulted in over 250,000 vaccinations.Note that, because (s_0 = 1), the values of (mathcal{R}_0) and (mathcal{R}_t) coincide for (t = 0). Moreover, (s_t = exp left( -mathcal{R}_0 int _0^t r_u mathrm {d}u right)) is a decreasing function of time and therefore, so is (mathcal{R}_t). However, in practice, this implication is problematic. Rewriting (mathcal{R}_t = – {dot{s}}_t/ {dot{r}}_t) suggests that a crude but sensible way to estimate (mathcal{R}_t) empirically is to take the ratio of daily number of new infections to new removals. The empirical (mathcal{R}_t) thus estimated will not be necessarily monotonically decreasing. In the light of possibly changing parameters and the effective population size, we have adopted this approach to estimating the daily effective reproduction number (mathcal{R}_t) in Fig. 2.Parameter estimationWe assume that, for each of the three waves of the epidemic, we have a separate and independent set of parameters (theta) and that, in each wave, we observe (n_T) histories (records) of infection. The i-th individual history may be represented either by the times of disease onset and removal ((t_i,T_i)) or by (t_i) or (T_i) times alone ((t_i,circ )) or ((circ ,T_i)) ((circ) denoting missing value). We assume that among the available (n_T) histories we have n complete records ((t_i,T_i)), (n_1) incomplete ones ((t_i,circ )) and (n_2) incomplete ones ((circ ,T_i )). The wave-specific DSA likelihood function for n complete data records is (see Appendix)$$begin{aligned} begin{aligned} {mathcal {L}}_C(theta vert t_1ldots ,t_n,T_1,ldots ,T_n,T)=(s_T-1)^{-n}prod _{i=1}^n {dot{s}}_{t_i}gamma ^{w_i}e^{-gamma (T_i wedge T -t_i)} end{aligned} end{aligned}$$
    (3)
    where T is the available time horizon and (w_i) is the binary variable indicating whether (T_i) is right-censored (that is, (T_iwedge T =T)) in which case (w_i = 0) and otherwise (w_i = 1). For the remaining (n_1+n_2) records that are partially incomplete, the wave-specific DSA likelihood function is$$begin{aligned} begin{aligned} {mathcal {L}}_I(theta vert t_1ldots ,t_{n_1},T_1,ldots ,T_{n_2},T)= (s_T-1)^{-(n_1+n_2)} gamma ^{n_2}prod _{i=1}^{n_1} {dot{s}}_{t_i} prod _{i=1}^{n_2} (rho e^{-gamma T_i }-iota _{T_i}) end{aligned} end{aligned}$$
    (4)
    where we assume that (T_i1). Given the wave-specific time horizons (T’s), the set of parameters for each epidemic wave was estimated independently using 2 independent chains of 3000 iterations, with a burn-in period of 1000 iterations. The chains’ convergence assessed using Rubin’s R statistic28. The analysis resulted in approximate samples from the posterior distribution of (theta) for each of the three waves of the epidemic (see e.g., Fig. 4).Ethics statement on human subjects and methodsThe research was conducted in accordance with the relevant guidelines and regulations of the US law and OSU Institutional Review Board. The research activities involving human subjects discussed in the paper meet the US federal exemption criteria under 45 CFR 46 and 21 CFR 56. More

  • in

    Tropical forests have big climate benefits beyond carbon storage

    NEWS
    01 April 2022

    Tropical forests have big climate benefits beyond carbon storage

    Study finds that trees cool the planet by one-third of a degree through biophysical mechanisms such as humidifying the air.

    Freda Kreier

    Freda Kreier

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Tropical forests create cloud cover that reflects sunlight and cools the air.Credit: Thomas Marent/Minden Pictures

    Tropical forests have a crucial role in cooling Earth’s surface by extracting carbon dioxide from the air. But only two-thirds of their cooling power comes from their ability to suck in CO2 and store it, according to a study1. The other one-third comes from their ability to create clouds, humidify the air and release cooling chemicals.
    How much can forests fight climate change?
    This is a larger contribution than expected for these ‘biophysical effects’ says Bronson Griscom, a forest climate scientist at the non-profit environmental organization Conservation International, headquartered in Arlington, Virginia. “For a while now, we’ve assumed that carbon dioxide alone is telling us essentially all we need to know about forest–climate interactions,” he says. But this study confirms that tropical forests have other significant ways of plugging into the climate system, he says.The analysis, published in Frontiers in Forests and Global Change on 24 March1, could enable scientists to improve their climate models, while helping governments to devise better conservation and climate strategies.The findings underscore growing concerns about rampant deforestation across the tropics. Scientists warn that one-third of the world’s tropical forests have been mown down in the past few centuries, and another one-third has been degraded by logging and development. This, when combined with climate change, could transform vast swathes of forest into grasslands2.“This study gives us even more reasons why tropical deforestation is bad for the climate,” says Nancy Harris, forest-research director at the World Resources Institute in Washington DC.More than a carbon spongeForests are major players in the global carbon cycle because they soak up CO2 from the atmosphere as they grow. Tropical forests, in particular, store around one-quarter of all terrestrial carbon on the planet, making them “centrepieces for climate policy” in their home countries, Griscom says.
    Tropical forests may be carbon sources, not sinks
    “There’s clear evidence that the tropics are producing excellent climate benefits for the entire planet,” says Deborah Lawrence, an environmental scientist at the University of Virginia in Charlottesville and a co-author of the latest study. She and her colleagues analysed the cooling capacity of forests around the globe, in particular considering biophysical effects alongside carbon storage. Tropical forests, they found, can cool Earth by a whole 1 °C — and biophysical effects contribute significantly.Although scientists knew about these effects, they hadn’t understood to what extent the various factors counter global warming.Trees in the tropics provide shade, but they also act as giant humidifiers by pulling water from the ground and emitting it from their leaves, which helps to cool the surrounding area in a way similar to sweating, Griscom says.“If you go into a forest, it immediately is a considerably cooler environment,” he says.This transpiration, in turn, creates the right conditions for clouds, which like snow and ice in the Arctic, can reflect sunlight higher into the atmosphere and further cool the surroundings. Trees also release organic compounds — for example, pine-scented terpenes — that react with other chemicals in the atmosphere to sometimes create a net cooling effect.Locally coolTo quantify these effects, Lawrence and her colleagues compared how the various effects of forests around the world feed into the climate system, breaking down their contributions in bands of ten degrees of latitude. When they considered only the biophysical effects, the researchers found that the world’s forests collectively cool the surface of the planet by around 0.5 °C.
    When will the Amazon hit a tipping point?
    Tropical forests are responsible for most of that cooling. But this band of trees across Latin America, Central Africa and southeast Asia is under increasing pressure from climate change and deforestation. Both of these human-caused impacts can lead rainforests to dry out, says Christopher Boulton, a geographer at the University of Exeter, UK. Last month, he and his colleagues published a review2 of nearly 30 years’ worth of satellite images of the Amazon, the largest rainforest in the world. By measuring the biomass of the vegetation in the images, the team discovered that three-quarters of the Amazon is losing resilience — the ability to recover from an extreme weather event such as a drought.Threats to tropical rainforests are dangerous not only for the global climate, but also for communities that neighbour the forests, Lawrence says. She and her colleagues found that the cooling caused by biophysical effects was especially significant locally. Having a rainforest nearby can help to protect an area’s agriculture and cities from heatwaves, Lawrence says. “Every tenth of a degree matters in limiting extreme weather. And where you have forests, the extremes are minimized.”Governments across the tropics have struggled to conserve their forests despite more than two decades of global campaigns to halt deforestation, promote sustainable development and protect the climate. Lawrence says that her team’s findings make it clear that protecting forests is a matter of self-interest, and has immediate benefits for local communities.

    doi: https://doi.org/10.1038/d41586-022-00934-6

    ReferencesLawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2022.756115 (2022).Article 

    Google Scholar 
    Boulton, C. A., Lenton, T. M. & Boers, N. Nature Clim. Change 12, 271–278 (2022).Article 

    Google Scholar 
    Download references

    Related Articles

    How much can forests fight climate change?

    When will the Amazon hit a tipping point?

    Tropical forests may be carbon sources, not sinks

    Illegal mining in the Amazon hits record high amid Indigenous protests

    Subjects

    Climate sciences

    Climate change

    Conservation biology

    Latest on:

    Climate sciences

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    From the archive: fishy business in 1972 and 1922
    News & Views 29 MAR 22

    Climate change

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    The race to upcycle CO2 into fuels, concrete and more
    News Feature 29 MAR 22

    Jobs

    Postdoctoral Fellow in Electrochemical CO2 reduction

    The University of British Columbia (UBC)
    Kelowna, Canada

    Staff Member in Project Coordination (for 19 h/week)

    Jülich Research Centre (FZJ)
    Erlangen-Nürnberg, Germany

    Student assistant IT administration (m/f/d)

    Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research (AWI)
    Potsdam, Germany

    Physicist (postdoctoral researcher) (all genders) in the field of Theoretical Astrophysics

    Helmholtz Centre for Heavy Ion Research GmbH (GSI)
    Darmstadt, Germany More

  • in

    Direct and latent effects of ocean acidification on the transition of a sea urchin from planktonic larva to benthic juvenile

    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 

    Google Scholar 
    Intergovernmental Panel on Climate Change. Climate Change 2013: 5th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
    Google Scholar 
    Torres, O., Kwiatkowski, L., Sutton, A. J., Dorey, N. & Orr, J. C. Characterizing mean and extreme diurnal variability of ocean CO2 system variables across marine environments. Geophys. Res. Lett. 48, 2 (2021).
    Google Scholar 
    Dorey, N., Lançon, P., Thorndyke, M. & Dupont, S. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob. Change Biol. 19, 3355–3367 (2013).
    Google Scholar 
    Hauri, C. et al. Spatiotemporal variability and long-term trends of ocean acidification in the California current system. Biogeosci. Discuss. 9, 10371–10428 (2012).ADS 

    Google Scholar 
    Dupont, S. & Pörtner, H.-O. A snapshot into ocean acidification research. Mar. Biol. 160, 1765–1771 (2013).CAS 

    Google Scholar 
    Dupont, S. & Thorndyke, M. Chapter: Direct impacts of near-future ocean acidification on sea urchins. in Climate Change Perspective from the Atlantic: Past, Present and Future (eds. Fernández-Palacios, J. et al.) 461–485 (2013).Byrne, M. & Hernández, J. C. Chapter 16: Sea urchins in a high CO2 world: Impacts of climate warming and ocean acidification across life history stages. in Developments in Aquaculture and Fisheries Science vol. 43 281–297 (Elsevier, 2020).Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).PubMed 

    Google Scholar 
    L. Kelley, A., J. Lunden, J., 1 Ocean Acidification Research Center, College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, Fairbanks, AK, 99775, USA, & 2 Haverford College, Haverford, PA, 19041, USA. Meta-analysis identifies metabolic sensitivities to ocean acidification. AIMS Environ. Sci. 4, 709–729 (2017).Stumpp, M. et al. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc. Natl. Acad. Sci. U. S. A. 109, 18192–18197 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stumpp, M. et al. Digestion in sea urchin larvae impaired under ocean acidification. Nat. Clim. Change 3, 1044–1049 (2013).ADS 
    CAS 

    Google Scholar 
    Runcie, D. E. et al. Genomic characterization of the evolutionary potential of the sea urchin Strongylocentrotus droebachiensis facing ocean acidification. Genome Biol. Evol. 8, 272 (2017).
    Google Scholar 
    Sewell, M. Utilization of lipids during early development of the sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 304, 133–142 (2005).ADS 
    CAS 

    Google Scholar 
    Lucas, M. I., Walker, G., Holland, D. L. & Crisp, D. J. An energy budget for the free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Mar. Biol. 55, 221–229 (1979).
    Google Scholar 
    Shilling, F. M., Hoegh-Guldberg, O. & Manahan, D. T. Sources of energy for increased metabolic demand during metamorphosis of the abalone Haliotis rufescens (Mollusca). Biol. Bull. 191, 402–412 (1996).CAS 
    PubMed 

    Google Scholar 
    Meidel, S. K. & Scheibling, R. E. Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 134, 155–166 (1999).
    Google Scholar 
    Pearce, C. M. & Scheibling, R. E. Induction of metamorphosis of larvae of the green sea urchin, Strongylocentrotus droebachiensis by coralline red algae. Biol. Bull. 179, 304–311 (1990).CAS 
    PubMed 

    Google Scholar 
    Gosselin, P. & Jangoux, M. From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata, Echinoida). Zoomorphology 118, 31–43 (1998).
    Google Scholar 
    Hinegardner, R. T. Growth and development of the laboratory cultured sea urchin. Biol. Bull. 137, 465–475 (1969).CAS 
    PubMed 

    Google Scholar 
    Strathmann, R. R. Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. Exp. Biol. Ecol. 34, 23–27 (1978).
    Google Scholar 
    Byrne, M. et al. Unshelled abalone and corrupted urchins: Development of marine calcifiers in a changing ocean. Proc. Biol. Sci. 278, 2376–2383 (2011).PubMed 

    Google Scholar 
    Dupont, S., Dorey, N., Stumpp, M., Melzner, F. & Thorndyke, M. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 160, 1835–1843 (2013).CAS 

    Google Scholar 
    Uthicke, S. et al. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS ONE 8, e82938 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dupont, S., Lundve, B. & Thorndyke, M. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J. Exp. Zool. Mol. Dev. Evol. 314, 382–389 (2010).
    Google Scholar 
    Lim, Y.-K., Dang, X. & Thiyagarajan, V. Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification. Sci. Total Environ. 782, 146704 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hettinger, A. et al. Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93, 2758–2768 (2012).PubMed 

    Google Scholar 
    Hettinger, A. et al. Larval carry-over effects from ocean acidification persist in the natural environment. Glob. Change Biol. https://doi.org/10.1111/gcb.12307 (2013).Article 

    Google Scholar 
    Albright, R. & Langdon, C. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob. Change Biol. 17, 2478–2487 (2011).ADS 

    Google Scholar 
    Yuan, X. et al. Elevated CO2 delays the early development of scleractinian coral Acropora gemmifera. Sci. Rep. 8, 2787 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maboloc, E. A. & Chan, K. Y. K. Parental whole life cycle exposure modulates progeny responses to ocean acidification in slipper limpets. Glob. Change Biol. 2, 15647. https://doi.org/10.1111/gcb.15647 (2021).Article 

    Google Scholar 
    Mos, B., Byrne, M. & Dworjanyn, S. A. Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification. Aquaculture 528, 735618 (2020).CAS 

    Google Scholar 
    Harianto, J., Aldridge, J., Torres Gabarda, S. A., Grainger, R. J. & Byrne, M. Impacts of acclimation in warm-low pH conditions on the physiology of the sea urchin Heliocidaris erythrogramma and carryover effects for juvenile offspring. Front. Mar. Sci. 7, 588938 (2021).
    Google Scholar 
    Houlihan, E. P., Espinel-Velasco, N., Cornwall, C. E., Pilditch, C. A. & Lamare, M. D. Diffusive boundary layers and ocean acidification: Implications for sea urchin settlement and growth. Front. Mar. Sci. 7, 577562 (2020).
    Google Scholar 
    Norderhaug, K. M. & Christie, H. C. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Mar. Biol. Res. 5, 515–528 (2009).
    Google Scholar 
    Dickson, A., Sabine, C. L. & Christian, J. R. Guide to best practices for ocean CO2 measurements. (PICES Special Publication 3;191 pp, 2007).Lavigne, H. & Gattuso, J.-P. seacarb: seawater carbonate chemistry with R. R package version 2.4. http://CRAN.R-project.org/package=seacarb. (2011).R Core Team. R: A language and environment for statistical computing. R: A language and environment for statistical computing (2017).Guillard, R. R. L. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).CAS 
    PubMed 

    Google Scholar 
    Stumpp, M., Wren, J., Melzner, F., Thorndyke, M. & Dupont, S. CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay. Comp. Biochem. Physiol. Mol. Integr. Physiol. 160, 331–340 (2011).CAS 

    Google Scholar 
    His, E., Heyvang, I., Geffard, O. & De Montaudouin, X. A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for toxicological studies. Water Res. 33, 1706–1718 (1999).CAS 

    Google Scholar 
    U. S. National Institutes of Health, Bethesda, Maryland, U. ImageJ, Rasband, W.S., http://imagej.nih.gov/ij/.Smith, M. M., Cruz Smith, L., Cameron, R. A. & Urry, L. The larval stages of the sea urchin, Strongylocentrotus purpuratus. J. Morphol. 269, 713–733 (2008).PubMed 

    Google Scholar 
    Kahm, M., Hasenbrink, G., Lichtenberg-Frate, H., Ludwig, J. & Kschischo, M. grofit: Fitting Biological Growth Curves with R. J. Stat. Softw., 33(7), 1–21. URL http://www.jstatsoft.org/v33/i07/. (2010).Pinheiro, J., Bates, D., & R-core. Package ‘nlme’: Linear and Nonlinear Mixed Effects Models. Cran-R (2018).Pan, T.-C.F., Applebaum, S. L. & Manahan, D. T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl. Acad. Sci. U. S. A. 112, 4696–4701 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jager, T., Ravagnan, E. & Dupont, S. Near-future ocean acidification impacts maintenance costs in sea-urchin larvae: Identification of stress factors and tipping points using a DEB modelling approach. J. Exp. Mar. Biol. Ecol. 474, 11–17 (2016).
    Google Scholar 
    Hoegh-Guldberg, O. & Emlet, R. B. Energy use during the development of a lecithotrophic and a planktotrophic echinoid. Biol. Bull. 192, 27–40 (1997).CAS 
    PubMed 

    Google Scholar 
    Vaïtilingon, D. et al. Effects of delayed metamorphosis and food rations on the perimetamorphic events in the echinoid Paracentrotus lividus (Lamarck, 1816) (Echinodermata). J. Exp. Mar. Biol. Ecol. 262, 41–60 (2001).
    Google Scholar 
    García, E., Clemente, S. & Hernández, J. C. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. Mar. Environ. Res. 110, 61–68 (2015).PubMed 

    Google Scholar 
    Wangensteen, O. S., Dupont, S., Casties, I., Turon, X. & Palacín, C. Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J. Exp. Mar. Biol. Ecol. 449, 304–311 (2013).
    Google Scholar 
    García, E., Clemente, S. & Hernández, J. C. Effects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement. Mar. Environ. Res. 139, 11–18 (2018).PubMed 

    Google Scholar 
    Marshall, D. J. & Keough, M. J. Variation in the dispersal potential of non-feeding invertebrate larvae: The desperate larva hypothesis and larval size. Mar. Ecol. Prog. Ser. 255, 145–153 (2003).ADS 

    Google Scholar 
    Huggett, M. J., Williamson, J. E., de Nys, R., Kjelleberg, S. & Steinberg, P. D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149, 604–619 (2006).ADS 
    PubMed 

    Google Scholar 
    Espinel-Velasco, N., Agüera, A. & Lamare, M. Sea urchin larvae show resilience to ocean acidification at the time of settlement and metamorphosis. Mar. Environ. Res. 159, 104977 (2020).CAS 
    PubMed 

    Google Scholar 
    Lamare, M. & Barker, M. Settlement and recruitment of the New Zealand sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 218, 153–166 (2001).ADS 

    Google Scholar 
    Martin, S. et al. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J. Exp. Biol. 214, 1357–1368 (2011).CAS 
    PubMed 

    Google Scholar 
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).
    Google Scholar 
    Espinel-Velasco, N. et al. Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: a review. Mar. Ecol. Prog. Ser. 606, 237–257 (2018).ADS 

    Google Scholar 
    Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar. Pollut. Bull. 64, 1519–1528 (2012).CAS 
    PubMed 

    Google Scholar 
    Gaylord, B. et al. Ocean acidification through the lens of ecological theory. Ecology 96, 3–15 (2015).PubMed 

    Google Scholar  More

  • in

    A biologging database of juvenile white sharks from the northeast Pacific

    Tagging deployments and study subjectsTable 1 contains an overview of the fields in the metadata file (JWS_metadata.xlsx) providing extensive background details on each of the 79 tag deployments and 63 study subjects. The data in this file give essential contextual information needed to understand the methodological, environmental, and demographic factors surrounding the deployments, which are critical for further examination and hypothesis testing of the sensor data. These metadata fall into several specific categories, but are not limited to, (i) information on the deployed electronic devices (platform, model, Platform Transmitter Terminal identifications), (ii) sharks (unique identifying numbers, sex, length), (iii) capture event (date, location, duration, methodology, interaction type), and (iv) the reporting period (duration, linear surface travel distance).Table 1 Metadata descriptions of the sharks, tagging operations, and deployments for all tags included in the database.Full size tableFigure 1 illustrates a typical C. carcharias tagging operation. This involves a contracted commercial fishing vessel with purpose-built gears to capture sharks (Fig. 1a) and a research crew to handle animals, monitor health (Fig. 1b) and attach electronic tags (Fig. 1c). More details on the tagging program and its methodologies are provided elsewhere14,19,20. Figure. 2 provides summaries of the deployment schedule, geographic locations, devices, and capture operations. Of note, 39.7% (25/64) of all tagging operations involved collaborations with commercial fishery operators (Fig. 2f–h), whose engagement was temporarily impacted (Fig. 2a) during the scientific review process when the population was under consideration for US Endangered Species Act listing. Figure 3 displays the demographic focus on small juvenile C. carcharias, with modest deployment durations and travel distances.Fig. 1Depiction of a typical research operation for capturing and tagging juvenile White Sharks in the Southern California Bight. (a) Aquarium research vessel (RV Lucile) with crew approaching a contracted purse seine vessel containing a captured juvenile white shark. (b) Research crew on the RV Lucile leading the shark into a sling, where it is subsequently transferred to the vessel’s deck for tagging. (c) Successfully applied PAT and acoustic tags each positioned lateral of the dorsal fin, anchored via leaders, and affixed with titanium darts (yellow arrows). All images taken by Steve McNicholas (Great White Shark 3D) for the Monterey Bay Aquarium and used with permission.Full size imageFig. 2Metadata summaries of the field program that deployed biologging tags on juvenile white sharks in the southern California Current. (a) Deployment schedule for 72 electronic tags released on 64 White Sharks from 2001–2020 (b) Tagging activity peaked in the late summer months when the population is most locally abundant. Field operations decreased from 2011–2013 when the population was being considered for listing under the U.S. Endangered Species Act (ESA). (c) Deployments focused on opportunities in the Southern California Bight coastline and included deployments in the nursery area of Bahía Sebastian Vizcaíno, Mexico and releases after exhibition at the Monterey Bay Aquarium. (d) Researchers released a variety of pop-up archival transmitting (PAT, 58 sharks), acoustic (21 sharks), and smart position and temperature (SPOT, 20 sharks) tags. This manuscript only reports the geolocation, temperature and depth data from the PAT and SPOT platforms. (e) Half (35 of 64, 54.7%) of all sharks received multiple tags, primarily to compare their relative performance. (f) Most tags (38 of 64, 60.3%) were deployed during focused scientific research operations. (g) The remainder were joint operations resulting from opportunistic bycatch in commercial fisheries using various gears and (h) Targeting various species. “Jab” gear refers to research operations that uses pole extensions to apply tags to sharks without capturing and handling.Full size imageFig. 3Demographic and deployment summaries from the juvenile white shark tagging program. (a) Total body length (TL) histogram indicates that most individuals tagged were either neonates ( More

  • in

    Drivers of tropical forest loss between 2008 and 2019

    The crowdsourcing campaign was organized as a competition with prizes offered to those who contributed the most, based on a combination of quality and quantity. The Geo-Wiki platform (www.geo-wiki.org), a web platform dedicated to engaging citizens in environmental monitoring, was used as the tool to perform the campaign. A customized user interface was prepared for the campaign (Fig. 2), where participants were shown a random location in the tropics (here broadly defined as the area between 30 degrees of latitude north and south of the equator, i.e., including part of the subtropics), where a blue 1 × 1 km box showed the location to be visually interpreted. The Global Forest Change (GFC) tree loss map (v1.7)10 was overlaid on the imagery to show all areas where tree loss was detected at any point between 2008 and 2019. The tree loss area was shaded in red and the map itself was aggregated to 100 m for fast rendering.Fig. 2Customized Geo-Wiki interface for the ‘Drivers of Tropical Forest Loss’ crowdsourcing campaign showing: (a) Tools available to participants such as the NDVI and Sentinel time-series profiles, visualizing the location on Google Earth and exploring the imagery time-series, reviewing the quick-start guide and exploring examples to identify specific drivers of forest loss as well as contacting IIASA staff via chat or email; (b) country and continent of the location as well as dates of the imagery shown; (c) campaign statistics; (d) available background imagery; and (e) tasks to be undertaken by the participants along with buttons to submit or skip the location.Full size imageThe year 2008 was selected as the start date because the RED states that date as the cut-off year for conversion from high-carbon areas, i.e., forest, to other land uses7. In order to capture the main drivers of forest loss, but also include potential additional drivers such as the existence of roads as precursors of deforestation, the participants were asked to complete three steps: 1) To select the predominant tree loss driver visible inside the tree loss pixels in the blue box from a list of nine specific drivers; 2) to select all other tree loss drivers visible inside the tree loss pixels in the blue box from a list of five more general drivers, and 3) to mark if roads, trails, or buildings were visible in the blue box. The list of specific and general drivers as well as their definitions is shown in Table 1. The Geo-Wiki interface allowed participants to switch between different background imagery such as ESRI, Google Maps, and Bing Maps as well as Sentinel 2 satellite imagery. The different sources of imagery allowed the participants to see the location at different resolutions and in different periods of time. It also provided participants with information about the current country and the continent as well as the dates of the background imagery. Furthermore, it provided the participants with links for displaying NDVI and Sentinel time series, and to see the location and explore the historical imagery using the Google Earth platform. All these tools were meant to help with easier identification of the forest loss drivers by allowing participants to look at the locations during different times and at different spatial resolutions.Table 1 List and description of the available list of tree loss drivers that participants could select for steps 1 and 2 of the campaign.Full size tableAt the beginning of the campaign, each participant was shown a quick start guide of the interface and the tasks requested. As shown in Fig. 2, this quick start guide could be accessed again at any point during the campaign. Figure 2 also shows that the interface had buttons for four further functions. The first was to see the gallery of examples with access to pre-loaded video-tutorials and examples of images describing each driver of forest loss and how to do visual interpretation and selection of each of these (available at https://application.geo-wiki.org/Application/modules/drivers_forest_change/drivers_forest_change_gallery.html). An illustration of the gallery of examples shown to participants is shown in Figure S1. The second function was to ask experts for help, which automatically sent IIASA experts an email regarding a specific location. The third was to join the expert chat, which led participants to a dedicated chat interface on the Discord messaging platform. Here participants could pose questions and interact with staff and other participants directly. Finally, there was a button to see the leader board as well as the aims, rules and prizes of the campaign (available at https://application.geo-wiki.org/Application/modules/drivers_forest_change/drivers_forest_change.html). When the participants started the campaign, they were shown 10 initial practice locations, where they could try out the user interface (UI) with control points, which showed the participants how to identify the different drivers of forest loss. This set of videos, the images and the training points, together with the gallery of images, were developed to train the participants before and during the campaign.Campaign set-up and data qualityAs the aim of the campaign was to determine the drivers of tree loss across the tropics, the sample locations were selected from the GFC tree loss layer10 for the tropics (between 30 degrees north and south of the equator). No stratification was used since a completely random sample across the tropics was deemed to be the fairest representation of tree loss and their corresponding drivers. The previous map of deforestation drivers6 used a 5 K sample of 10 × 10 km grid cells to produce a global map. Here the sample size was largely driven by the estimated capacity of the crowd. Hence, we aimed to validate ca. 150k 1 × 1 km locations across the tropics, which is a considerably larger sample size than that of Curtis et al.6. In order to reduce noise, the GFC tree loss layer10 was first aggregated to a 100 m resolution from the original 30 m, and 150 K centroids were then randomly selected. From these, a sub sample of 5000 random locations were selected for visual interpretation by six IIASA experts (with backgrounds in remote sensing, agronomy, forestry and geography). Due to time constraints, only 2001 locations were evaluated by at least three different experts. In these locations, agreement was discussed and once a consensus was reached, these locations became the final control or expert data set. The control locations were then used to produce quality scores for each participant as the campaign progressed in order to rank them and determine the final prize winners. The list of prizes offered to the top 30 participants is shown in Table S1 in the Supplementary Information (SI), and a list and rank of motivations mentioned by the participants is shown on Figure S2 in the SI.The control locations were randomly shown to the participants at a ratio of approximately 2 control locations to every 20 non-control locations visited. If the participants correctly selected the predominant tree loss driver (in step 1), they were awarded 20 points; if they selected the wrong answer, they lost 15 points. If participants confused pasture and commercial agriculture or wildfire with other natural disturbances, they lost only 10 points instead of 15. Furthermore, they could win 8 additional points by selecting the correct secondary drivers in step 2. If a mixture of correct and incorrect answers were provided in step 2, the participants gained 2 points for every correct choice and lost 2 points for every incorrect one, with a minimum gain/loss of 0 points. Finally, participants could earn 2 additional points by correctly reporting the existence of roads, trails or buildings in step 3. The scoring system was based on previous Geo-Wiki campaign experiences and aimed to promote focus on the primary driver selection. The points were used to produce a leader board with the total number of points by participant. Additionally, a relative quality score (RQS) was derived from the score received by the users and the potential score that could have been obtained if all control points were correctly interpreted. This is shown in Eq. 1.$${rm{RQS}}=(({{rm{NCP}}}^{ast }15+{rm{SumScore}})/{rm{NCP}})/45$$
    (1)
    where RQS ranges between 0 and 1, NCP is the number of control points visited and SumScore is the number of points obtained.The RQS was crucial in understanding how each participant performed in terms of the quality of their visual interpretations, as this was independent of the number of locations interpreted. Once the campaign ended, an average RQS was used as a minimum criterion for participants to receive a prize, independent of where they were located on the leader board. Additionally, all users who submitted a substantial number of interpretations, i.e., more than 1000 with the minimum required RQS, were invited to become co-authors of the current manuscript, independent of whether they received a monetary prize or not. All these co-authors additionally contributed to the editing and revision of this manuscript. Furthermore, future users of the data set could use the RQS as a key data quality indicator.After the campaign, the data post-processing included eliminating interpretations made by users who broke any of the competition rules. Additionally, during the campaign, some users communicated with IIASA staff using the “Ask Experts” button and pointed out that some control points were mistaken. Consequently, the corresponding points lost were added to the final score of those participants where the correction was made. A total of 18742 validations from 1 participant were removed before the end of the campaign and the user was disqualified since their account was deemed to be shared across several people and computers, which was not allowed. Validations from another user (38,502 out of 40,828) were also removed due to inconsistencies but the user remained in the competition. Before the prizes were awarded to the top 30 users, a questionnaire was administered to all users to gather information about participant characteristics and gauge their motivations. Participation was mandatory for the top 30 users. A summary of the participant backgrounds is provided in Figure S3 in the SI. More

  • in

    Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean

    To explore how environmental gradients shape the distribution of cyanophages and picocyanobacteria, we conducted high-resolution surveys in surface waters along five oceanic transects on three cruises covering thousands of kilometres in the North Pacific Ocean in the spring or early summer of 2015, 2016 and 2017 (Fig. 1a–c). These cruises, two of which were out-and-back, passed through distinct regimes from warm, saline and nutrient-poor waters of the North Pacific Subtropical Gyre to cooler, less saline and nutrient-rich waters of higher latitudes influenced by the subpolar gyre (Fig. 1d–i)27. The shift between the two gyres was marked by abrupt changes in trophic indicators such as particulate carbon concentrations (Fig. 1g) and a chlorophyll front (defined as the 0.2 mg m−3 chlorophyll contour28; Fig. 1a–c). As such, the inter-gyre transition zone, defined by salinity and temperature thresholds29 (Fig. 1d), was distinct from both the subtropical and subpolar gyre ecosystems28.Fig. 1: Gradients in environmental conditions across the North Pacific gyres.a–c, Transects of three cruises overlaid on monthly averaged satellite-derived sea-surface chlorophyll in March 2015 (a), April 2016 (b) and June 2017 (c). d, Temperature–salinity diagram showing the boundaries of the subtropical and subpolar gyres (black dashed lines) based on the salinity thresholds reported by Roden29. e–i, Temperature (e), salinity (f) as well as the levels of particulate carbon (g), phosphate (h) and nitrate + nitrite (i) as a function of latitude. The coloured dashed lines show the position of the 0.2 mg m−3 chlorophyll contour. For environmental variables plotted against temperature, see Supplementary Fig. 3.Full size imageUnexpected Prochlorococcus declineProchlorococcus concentrations in the oligotrophic waters of the subtropical gyre were 1.5–3.0 × 105 cells ml−1, comprising an average of approximately 29% of the total bacteria (Extended Data Fig. 1) and numerically dominating the phytoplankton community in all three cruises (Extended Data Fig. 2). Prochlorococcus abundance remained high in the southern region of the transition zone in 2015 and 2016, decreasing precipitously to less than 2,000 cells ml−1 north of the chlorophyll front, generally constituting 80% of cyanophages measured, with the remainder consisting of T7-like clade A and TIM5-like cyanophages (Fig. 3 and Extended Data Fig. 4). Cyanophage abundances correlated positively with total picocyanobacteria in the subtropical gyre (Pearson’s coefficient of multiple correlation (r) = 0.54, P = 0.02, n = 26; Fig. 2d), suggesting that cyanophages were limited by the availability of susceptible hosts in this region and were not regulating picocyanobacterial populations. On average, less than 1% of the cyanobacterial populations were infected (Fig. 4), with higher infection rates by T4-like cyanophages than T7-like cyanophages (Extended Data Figs. 5 and 6). These instantaneous measurements of infection were used to estimate the daily rates of mortality39 (Methods and Supplementary Discussion), which suggests that 0.5–6% of picocyanobacterial populations were lysed by viruses each day (Extended Data Fig. 7). This implicates other factors, such as grazing45, as the major causes of cyanobacterial mortality in the North Pacific Subtropical Gyre.Fig. 3: Cyanophage community composition across the North Pacific gyres.a–c, Cyanophage abundance for the March 2015 (a), April 2016 (b) and June 2017 (c) transects. Insets: T7-like clade A and TIM5-like cyanophage abundances on an expanded scale (similar to the main images, the units for the vertical axes are ×105 viruses ml−1). The grey shaded regions show the position of the virus hotspot. See Extended Data Fig. 4 for the confidence intervals and out-and-back reproducibility and Supplementary Fig. 4 for cyanophage lineages plotted against latitude.Full size imageFig. 4: Viral infection patterns of picocyanobacteria in the North Pacific Ocean.a–f, Viral infection levels (black) of Prochlorococcus (a,c,e) and Synechococcus (b,d,f) plotted against temperature for the March 2015 (a,b), April 2016 (c,d) and June 2017 (e,f) transects. Insets: infection levels on an expanded scale. The solid lines show infection (red), Prochlorococcus (green) and Synechococcus (pink) averaged and plotted for every 0.5 °C. The dashed lines and shaded regions show the position of the chlorophyll front and the virus hotspot, respectively. For plots by latitude and the upper and lower bounds of infection, see Extended Data Figs. 5 and 6.Full size imageWithin the transition zone we observed a steep latitudinal increase in the abundance of cyanophages for every transect, which we define as a cyanophage hotspot (Fig. 2c and Extended Data Figs. 2 and 4). The cyanophage abundances in this hotspot were between three- and tenfold greater than in the subtropical gyre (Fig. 2c). Notably, cyanophages were approximately 25% more abundant (an increase of approximately 5 × 105 viruses ml−1) in the hotspot on the 2017 cruise relative to the other two cruises, reaching a maximum of 2 × 106 viruses ml−1. The hotspot peaked at temperatures of 15–16 °C on all transects, regardless of the geographical location, season or the exact pattern of the Prochlorococcus and Synechococcus distributions (Fig. 2c). Notably, the numbers of T7-like clade B cyanophages increased sharply in the transition zone to become the most abundant lineage, whereas T4-like cyanophages increased more modestly (Fig. 3 and Extended Data Fig. 4). The change in the cyanophage community structure was particularly pronounced in June 2017, when T7-like cyanophages were up to 2.3-fold more abundant than T4-like cyanophages (Fig. 3c). The switch in the relative abundance of T4-like and T7-like clade B cyanophages was diagnostic of the cyanophage hotspot compared with patterns in the subtropical and subpolar gyres.To begin assessing whether cyanophages negatively affected cyanobacterial populations in the hotspot, we tested the relationship between the abundance of cyanophages and total cyanobacteria. This showed a significant negative correlation between cyanophage and cyanobacterial abundances across all three cruises (Pearson’s r = −0.56, two-sided P = 0.0005, n = 34). This relationship was particularly distinct in 2017, when cyanobacteria were at their overall lowest abundances and cyanophages at their highest (Pearson’s r = −0.65, two-sided P = 0.004, n = 18). This suggests that viruses are one of the key regulators of picocyanobacteria in the region of the hotspot. However, no significant correlation was found across all regimes and all years (Pearson’s r = −0.008, two-sided P = 0.9, n = 87; Fig. 2d), indicating that factors other than viruses are likely to be more important in regulating the abundances of cyanobacteria in other regimes.Our single-cell infection measurements allowed us to directly evaluate active viral infection and its impact on picocyanobacteria in the transition zone. Viral infection spiked in this region each year with infection levels that were an average of two- to ninefold higher than those in the subtropical gyre (Fig. 4 and Extended Data Figs. 5,6 and 8). Infection peaked within the temperature range of 12–18 °C and was associated with a concomitant dip in Prochlorococcus abundances in all three cruises (Fig. 4 and Extended Data Fig. 5). These findings provide independent support for the strong negative correlation between cell and virus abundances (Fig. 2d) being the result of virus-induced mortality.Lineage-specific infection was also distinct in the transition zone relative to the subtropical gyre. Infection by T7-like clade B cyanophages generally increased to reach (2015 and 2016) or exceed (2017) those of T4-like cyanophages (Extended Data Figs. 5 and 6). In addition, the ratio of the abundances of T7-like clade B cyanophages to the number of cells they infected was 2.6-fold greater in the hotspot than the subtropics, whereas this ratio was similar in both regions for T4-like cyanophages. Together, these results indicate that, within the hotspot, the T4-like cyanophages displayed increased levels of infection, whereas the T7-like cyanophages displayed both increased levels of infection and produced more viruses per infection, suggesting that T7-like clade B cyanophages are better adapted to conditions in the transition zone (see below).Of the three cruises, the highest levels of viral infection were observed in June 2017, with up to 9.5% and 8.9% of Prochlorococcus and Synechococcus infected, respectively (Fig. 4e,f). This dramatic increase in infection mirrored the massive decline in Prochlorococcus abundances (Fig. 4e and Extended Data Fig. 5i). We estimate that viruses killed 10–30% of Prochlorococcus and Synechococcus cells daily at these high instantaneous levels of infection (Extended Data Fig. 6) based on the expected number of infection cycles cyanophages were able to complete at the light and temperature conditions in the transition zone (Methods and Supplementary Discussion). Given that Prochlorococcus is estimated to double every 2.8 ± 0.8 d at the low temperatures in this region12, we estimate that 21–51% of the population was infected and killed in the interval before cell division. Synechococcus is expected to have faster growth rates at these temperatures, doubling every 1.1 ± 0.2 d (refs. 12,46). Thus, we estimate that less of the Synechococcus population (9–31%) was killed before division.Under quasi-steady state conditions, abiotic controls on the growth rate of Prochlorococcus are balanced by mortality due to viral lysis, grazing and other mortality agents39,45,47. Based on the high levels of virus-mediated mortality, the parallel pattern between Prochlorococcus’ death and viral infection, and the negative correlation between cyanophage and picocyanobacterial abundances in the transition zone, we propose that enhanced viral infection in 2017 disrupted this balance, leading to the unexpected decline in Prochlorococcus populations. Grazing and other mortality agents not investigated here could also have contributed to additional mortality beyond the steady state, resulting in further losses of Prochlorococcus. In contrast to Prochlorococcus, Synechococcus maintained large populations despite high levels of infection (Fig. 4f), presumably due to their faster growth rates enabling them to maintain a positive net growth despite enhanced mortality. These findings suggest that virus-mediated mortality in 2017 was an important factor in limiting the geographic range of Prochlorococcus that resulted in a massive loss of habitat of approximately 550 km.Cyanophage abundances and infection levels dropped sharply in the higher-latitude waters north of the hotspot (Figs. 2c, 4 and Extended Data Figs. 1d,h and 2). The abundances of both T7-like clade B and T4-like cyanophages declined precipitously, yet T4-like cyanophages were the dominant cyanophage lineage (Fig. 3). T7-like clade A cyanophages generally increased locally at the northern border of the hotspot and became the dominant T7-like lineage in two samples between 38 and 39.2° N in 2017 (Fig. 3c and Extended Data Fig. 4). In contrast to all other cyanophages, the abundances of TIM5-like cyanophages increased in waters north of the hotspot (Fig. 3 and Extended Data Fig. 4d,i,m) but remained a minor component of the cyanophage community. No relationship was found between cyanophage and cyanobacterial abundances (Fig. 2d), and less than 1.5% of picocyanobacteria were infected by all cyanophage lineages in these waters (Fig. 4).The cyanophage hotspot in the transition zone is a ridge of high virus activity that separates the subtropical and subpolar gyres. The reproducibility of our observations, which were separated by days to weeks within each cruise (2016 and 2017) and by years among the three cruises (Extended Data Fig. 4), indicates that this virus hotspot is a recurrent feature at the boundary of these two major gyres in the North Pacific Ocean. This suggests that the hotspot forms due to the distinctive environment of the inter-gyre transition zone creating conditions that enhance infection of picocyanobacteria and proliferation of cyanophages. Prochlorococcus in the transition zone may be prone to stress due to being close to the limits of their temperature growth range5,6, which has the potential to increase susceptibility to viral infection. Alternatively, there may be temperature-dependent trade-offs between virus decay and production that lead to replication optima within a narrow temperature range48. Cyanophage infectivity has been observed to decay more slowly at colder temperatures49, which may allow for the accumulation of infective viruses, leading to increased infection. In addition, cyanophage infections may be more productive due to enhanced nutrient supply in the transition zone27 (Fig. 1h,i) relative to the subtropics, given that the cyanophages replicate in hosts with presumably greater intracellular nutrient quota and obtain more extracellular nutrients, both of which may increase progeny production9,10. The environmental factors influencing the production and removal of viruses probably vary in intensity at different times, leading to variability in cyanophage abundance and infection levels. Thus, the putative cyanophage replication optimum in the hotspot may reflect the combined effects of temperature and nutrient conditions that are intrinsically linked to the oceanographic forces that shape the transition zone itself.Changes in the cyanophage community structure over environmental gradients are likely to reflect differences in host range, infection properties and genomic potential to remodel host metabolism9. Our data, together with previous measurements in the North Pacific Subtropical Gyre38,39, indicate that the T4-like cyanophages are the lineage best adapted to the low-nutrient waters of the subtropics (Fig. 2d–f). As these waters are inhabited by hundreds of genomically diverse subpopulations of Prochlorococcus50, the broad host range of many T4-like cyanophages18,19,22,51 may be advantageous for finding a suitable host. T4-like cyanophages also have a large and diverse repertoire of host-derived genes21,51—such as nutrient acquisition, photosynthesis and carbon-metabolism genes—that augment host metabolism52 and may increase fitness in nutrient-poor conditions in the subtropics51. In contrast, T7-like clade A and B cyanophages seem to be better adapted to conditions in the transition zone (Fig. 3). T7-like cyanophages have narrow host ranges19,22,40, with smaller genomes and fewer genes to manipulate the host metabolism23, which may allow them to replicate and produce more progeny in regions with elevated nutrient concentrations relative to subtropical conditions. The maximal abundances of TIM5-like cyanophages were found in the most productive waters at the northern end of the transects where the cyanobacterial abundances were lowest and Synechococcus was the dominant picocyanobacterium. This may be partially due to the narrow host range of TIM5-like cyanophages and their specificity for Synechococcus40,44. Our findings of reproducible lineage-specific responses to changing ocean regimes indicate that cyanophage lineages occupy distinct ecological niches.Temperature and nutrient changes occurring in the transition zone are expected to result in shifts in picocyanobacterial diversity at the sub-genus level (Supplementary Discussion), which we speculate may affect community susceptibility to viral infection. One mechanism for this may be that the picocyanobacteria that thrive in the transition zone are intrinsically more susceptible to viral infection. Another scenario may be related to trade-offs associated with the evolution of resistance to viral infection. The horizontal advection of nutrient-rich waters to the transition zone28 may select for rapidly growing cells adapted for efficient resource utilization. Viral resistance in picocyanobacteria often incurs the cost of reduced growth rates53,54. Thus, competition for nutrients in this region may favour cells with faster growth rates but increased susceptibility to viral infection. Thus, it is probable that the cyanophage distributions do not always follow the cyanobacterial patterns (Extended Data Fig. 2) because of complex interactions between lineage-specific cyanophage traits, host community structure and environmental variables, which may vary seasonally or annually as a result of interannual variability in environmental conditions (see below).Despite consistent features in cyanophage distributions across the North Pacific Ocean, cyanophage infection was higher (Fig. 4 and Extended Data Fig. 7), whereas Prochlorococcus abundances were consistently lower (Fig. 2a), across the June 2017 transects relative to the March 2015 and April 2016 transects. Seasonality and/or climate variability could explain this interannual variability, although the data currently available to assess this are sparse. Viral infection of picocyanobacteria in the subtropical gyre increased from early spring to summer, suggesting a potential seasonal pattern that may extend across the transect (Extended Data Fig. 9a). In addition, the June 2017 transect occurred during a neutral-to-negative El Niño phase with lower sea-surface temperatures relative to the 2015 and 2016 transects, which were in years of a record marine heatwave, followed by a strong El Niño55 (Extended Data Fig. 9b). In 2015 and 2016, the Prochlorococcus abundances were found to be higher than usual in the North Pacific Ocean in this (Fig. 2a) and other studies56,57. Irrespective of the underlying drivers for the observed interannual variability, we speculate that an ecosystem tipping point was reached in the hotspot under the prevailing conditions in June 2017, aided by the higher cyanophage abundances yet smaller Prochlorococcus population sizes. In this scenario, picocyanobacterial populations were subjected to high infection levels that resulted in an accumulation of cyanophages, initiating a stronger than usual positive-feedback loop between infection and virus production, and precipitating the unexpected Prochlorococcus decline. Continued observations in the North Pacific Ocean are needed to evaluate the potential link between seasonality and/or large-scale climate forcing as ultimate drivers affecting virus–host interactions.Predicting basin-scale virus dynamicsMeasurements of cyanobacterial and cyanophage abundances rely on discrete sample collection from shipboard oceanographic expeditions, which limits the geographical and seasonal extent of available data. Therefore, we developed a multiple regression model based on high-resolution satellite data of temperature and chlorophyll to predict cyanophage abundances, a key proxy of cyanobacterial infection (Pearson’s r = 0.61, two-sided P = 1.7 × 10−8, degrees of freedom = 68, n = 70). We used the model to estimate the geographical extent of the virus hotspot. The model accurately predicted the location of the hotspot and cyanophage abundances along a fourth transect in April 2019 (Supplementary Table 1), with the majority of observations falling within the 95% confidence intervals of the model predictions (Fig. 5a–c). Application of the model to the larger region predicted that the virus hotspot formed a boundary extending across the North Pacific Ocean, with lower cyanophage abundances on both sides (Fig. 5d,e and Supplementary Fig. 1). This boundary had the hallmarks of the hotspot with a core that was dominated by T7-like cyanophages and the flanking gyre regions dominated by T4-like cyanophages. Thus, this feature may be more appropriately termed a ‘hot-zone’ due to its substantial projected aerial extent. Assuming the infection levels observed in the hotspot in June 2017 were similar throughout the hot-zone, the potential habitat loss for Prochlorococcus would be about 3.2 × 106 km2, approximately half of the cumulative area loss of the Amazonian rainforest to date58.Fig. 5: Prediction of cyanophage abundances.a–c, Model-based predictions of cyanophage abundances corresponding to the empirically measured total (a), T4-like (b) and T7-like clade B (c) cyanophage abundances along a transect in the North Pacific in April 2019. The shaded regions show the 95% confidence interval for the model predictions. d,e, Predicted total cyanophages (d) and the ratio of T4-like/T7-like clade B cyanophages (e) in June 2017 in the North Pacific Ocean. The black lines indicate the cruise track. The grey areas represent regions with no values due to cloud cover or that were beyond the limits of the predictive model. The hotspot peak corresponds to yellow regions in d and red regions in e.Full size imageVirus hotspot biogeochemistryWith the ability to predict biogeographic patterns of cyanophages, we evaluated the potential biogeochemical implications of virus-mediated picocyanobacterial lysis and release of organic material in sustaining the bacterial community6,7,8,9. The aerial extent of the hot-zone (approximately 4 × 106 km2) is only 14% of the size of the subtropical gyre (2.9 × 107 km2), and yet the total virus-mediated organic matter released from picocyanobacteria in the hot-zone in June 2017 was estimated to be on par with that for the entire North Pacific Subtropical Gyre (Methods and Supplementary Discussion). We estimate that viral lysate released from picocyanobacteria in the subtropical gyre could sustain 4.4 ± 0.8% of the calculated bacterial carbon demand there (Extended Data Fig. 10). In contrast, viral lysate released in the transition zone could sustain an average of 21 ± 12% of the bacterial carbon demand, reaching 33% in some regions (Extended Data Fig. 10), assuming that the bacterial assimilation and growth efficiencies were similar between the subtropical gyre and the hotspot. Thus, local generation of cyanobacterial viral lysate in the transition zone is likely to be an important source of carbon for the heterotrophic bacterial community that can rapidly utilize large molecular weight dissolved organic matter59 and may have contributed to the increase in their abundances south of the chlorophyll front in 2017 (Extended Data Fig. 1a,e). More

  • in

    Life, death and cyanobacterial biogeography

    Flores, C. O. et al. Proc. Natl Acad. Sci. USA 108, 288–297 (2011).Article 

    Google Scholar 
    Carlson, M. C. G. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01088-x (2022).Article 

    Google Scholar 
    Flombaum, P. et al. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).CAS 
    Article 

    Google Scholar 
    Coleman, M. L. & Chisholm, S. W. Trends Microbiol. 15, 398–407 (2007).CAS 
    Article 

    Google Scholar 
    Johnson, Z. I. et al. Science 311, 1737–1740 (2006).CAS 
    Article 

    Google Scholar 
    Martiny, A. C. et al. PLoS ONE 11, e0168291 (2016).Article 

    Google Scholar 
    Wilhelm, S. W. & Suttle, C. A. Bioscience 49, 781–788 (1999).Article 

    Google Scholar 
    Follett, C. L. et al. Proc. Natl Acad. Sci. USA 119, e2110993118 (2022).CAS 
    Article 

    Google Scholar 
    Mojica, K. D. A. et al. ISME J. 10, 500–513 (2016).CAS 
    Article 

    Google Scholar 
    Mruwat, N. et al. ISME J. 15, 41–54 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Funding battles stymie ambitious plan to protect global biodiversity

    NEWS
    31 March 2022

    Funding battles stymie ambitious plan to protect global biodiversity

    Researchers are disappointed with the progress — but haven’t lost hope.

    Natasha Gilbert

    Natasha Gilbert

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Animals such as this orangutan in Indonesia are endangered because of illegal deforestation.Credit: Jami Tarris/Future Publishing via Getty

    Scientists are frustrated with countries’ progress towards inking a new deal to protect the natural world. Government officials from around the globe met in Geneva, Switzerland, on 14–29 March to find common ground on a draft of the deal, known as the post-2020 global biodiversity framework, but discussions stalled, mostly over financing. Negotiators say they will now have to meet again before a highly anticipated United Nations biodiversity summit later this year, where the deal was to be signed.The framework so far sets out 4 broad goals, including slowing species extinction, and 21 mostly quantitative targets, such as protecting at least 30% of the world’s land and seas. It is part of an international treaty known as the UN Convention on Biological Diversity, and aims to address the global biodiversity crisis, which could see one million plant and animal species go extinct in the next few decades because of factors such as climate change, human activity and disease.
    China takes centre stage in global biodiversity push
    The COVID-19 pandemic has already slowed discussions of the deal. Over the past two years, countries’ negotiators met only virtually; the Geneva meeting was the first in-person gathering since the pandemic began. When it ended, Basile van Havre, one of the chairs of the framework negotiations working group, said that because negotiators couldn’t agree on goals, additional discussions will need to take place in June in Nairobi. The convention’s pivotal summit — its Conference of the Parties (COP15) — is expected to be held in Kunming, China, in August and September, but no firm date has been set.Anne Larigauderie, executive secretary of the Intergovernmental Platform on Biodiversity and Ecosystem Services in Bonn, Germany, who attended the Geneva gathering, told Nature: “We are leaving the meeting with no quantitative elements. I was hoping for more progress.”Robert Watson, a retired environmental scientist at the University of East Anglia, UK, says the quantitative targets are crucial to conserving biodiversity and monitoring progress towards that goal. He calls on governments to “bite the bullet and negotiate an appropriate deal that both protects and restores biodiversity”.Finance fightMany who were at the meeting say that disagreements over funding for biodiversity conservation were the main hold-up to negotiations. For example, the draft deal proposed that US$10 billion of funding per year should flow from developed nations to low- and middle-income countries to help them to implement the biodiversity framework. But many think this is not enough. A group of conservation organizations has called for at least $60 billion per year to flow to poorer nations.
    Biodiversity moves beyond counting species
    The consumption habits of wealthy nations are among the key drivers of biodiversity loss. And poorer nations are often home to areas rich in biodiversity, but have fewer means to conserve them.“The most challenging aspect is the amount of financing that wealthy nations are committing to developing nations,” says Brian O’Donnell, director of the Campaign for Nature in Washington DC, a partnership of private charities and conservation organizations advocating a deal to safeguard biodiversity. “Nations need to up their level of financing to get progress in the COP.”Other nations, particularly low-income ones, probably don’t want to agree “unless they have assurances of resources to allow them to implement the new framework”, Larigauderie says.Countries including Argentina and Brazil are largely responsible for stalling the deal, several sources close to the negotiations told Nature. They asked to remain anonymous because the negotiations are confidential.
    The world’s species are playing musical chairs: how will it end?
    No agreement could be reached even on targets with broad international support, such as protecting at least 30% of the world’s land and seas by 2030. O’Donnell says that just one country blocked agreement on this target, questioning its scientific basis.Van Havre downplayed the lack of progress, saying that the brinksmanship at the meeting was part of a “normal negotiating process”. He told reporters: “We are happy with the progress made.” Further delays ‘unacceptable’A bright spot in the negotiations, van Havre said, was a last-minute “major step forward” in discussions on how to fairly and equitably share the benefits of digital sequence information (DSI). DSI consists of genetic data collected from plants, animals and other organisms.
    Why deforestation and extinctions make pandemics more likely
    When pressed, however, van Havre admitted that the progress was simply an agreement between countries to continue discussing a way forward.Thomas Brooks, chief scientist at the International Union for Conservation of Nature in Gland, Switzerland, says that DSI discussions have actually been fraught. Communities from biodiverse-rich regions where genetic material is collected have little control over the commercialization of the data that come from it, and no way to recoup financial and other benefits, he explains.Like biodiversity financing, DSI rights could hold up negotiations on the overall framework. Low-income countries want a fair and equitable share of the benefits from genetic material that originates in their lands, but rich nations don’t want unnecessary barriers to sharing the information.“We are a long way from a watershed moment, and there remain genuine disagreements,” Brooks says. However, he is optimistic that progress will eventually be made.
    The biodiversity leader who is fighting for nature amid a pandemic
    Some conservation organizations take hope from new provisional language in the deal that calls for halting all human-caused species extinctions. The previous draft of the deal proposed only a reduction in the rate and risk of extinctions, says Paul Todd, an environmental lawyer at the Natural Resources Defense Council, a non-profit group based in New York City.Given how much work governments must do to reach agreement on the deal, Watson says the extra Nairobi meeting is a “logical” move. But he warns: “Any further delay would be unacceptable.”“This isn’t even the hard work,” Todd says. “Implementing the deal will be the real work.”

    doi: https://doi.org/10.1038/d41586-022-00916-8

    Related Articles

    China takes centre stage in global biodiversity push

    The biodiversity leader who is fighting for nature amid a pandemic

    Why deforestation and extinctions make pandemics more likely

    Biodiversity moves beyond counting species

    The battle for the soul of biodiversity

    The world’s species are playing musical chairs: how will it end?

    Subjects

    Biodiversity

    Conservation biology

    Climate change

    Latest on:

    Biodiversity

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Africa: sequence 100,000 species to safeguard biodiversity
    Comment 15 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    Climate change

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    The race to upcycle CO2 into fuels, concrete and more
    News Feature 29 MAR 22

    Biden bids again to boost science spending — but faces long odds
    News 28 MAR 22

    Jobs

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Research Group Leader on Robustness and Decision Making in Cells and Tissues

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Research Group Leader on Physical Measurement and Manipulation of Living Systems

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany More