More stories

  • in

    Accumulation-depuration data collection in support of toxicokinetic modelling

    Storage and displayAll collected datasets (directly downloadable as tabular files), the bibtex file with all references, all reports and all kinetic bioaccumulation metric estimates are publicly available on Zenodo17. An rmarkdown file18,19 was created to build the overview table with information collected from the name of the dataset and from the dataset itself (e.g., column headers, number of data, number of replicates), as well as from the bibtex file. The R package DT was additionally used20 to combine all collected information in a user-friendly manner including a convenient search tool, and the rmarkdown file was finally compiled19 in HTML format for display to the user in packs of 10 lines by default. In such a way, each new dataset added into the repository will compile the rmarkdown file automatically for update.In parallel, the database can also be accessed directly via http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/data/database/TK_database.html, or from MOSAICbioacc clicking on the “More scientific TK data” button. An example of the output of the overview table is shown in Fig. 2, while the full table is provided in the supplementary information (Table S2). The collected raw TK data of the database consist in the time-course of several types of chemical substances bioaccumulated in various species via different exposure routes.Fig. 2Screenshot of the first page of the overview table of the database available from MOSAICbioacc.Full size imageDatasets overviewEach dataset is summarized by:

    the file name (raw data directly downloadable by clicking on the file name, in text or CSV format),

    the genus of the tested organism,

    the category of the organism (e.g., aquatic, terrestrial, etc.),

    the tested chemical substance,

    the duration of the accumulation phase,

    the tested exposure routes (e.g., water, sediment, food, pore water),

    the total number of observations in the dataset (plus the number of replicate(s) in brackets),

    the kinetic bioaccumulation metric median value with its 95% uncertainty interval,

    the report which contains all the outputs from MOSAICbioacc (in PDF format),

    the link to the reference or the source of the data,

    some additional comments (e.g., lipid fraction, growth, biotransformation, if exposure was done for chemical mixtures or not, if total radioactivity was used or not, etc.).

    A summary of all datasets is presented in Table 1. Genus were separated in 12 categories: aquatic invertebrates (n = 105), fish (n = 42), insects (n = 17), aquatic worms (n = 10), terrestrial worms (n = 16), seawater sponges (n = 2), seawater plants (n = 1), aquatic algae (n = 1), terrestrial invertebrates (n = 1), vertebrates other than fish (n = 4), marine invertebrates (n = 8), and heterotrichea (n = 4). The most represented genus in the database are Gammarus (aquatic invertebrate, n = 43) and Daphnia (aquatic invertebrate, n = 27), followed by Oncorhynchus (fish, n = 15), genus that are classically used in ecotoxicological experiments. Recommended genus by OECD guidelines for bioaccumulation tests are Eisenia and Enchytraeus for terrestrial organisms (OECD 317)21, and Tubifex or Lumbriculus for aquatic invertebrates exposed to sediment (OECD 315)22; some datasets for these specific species are available in the database (n = 24).Table 1 Summary of the collected TK datasets.Full size tableChemical substances were divided in 10 classes following at the best the nomenclature used in Standartox23: pesticides (n = 71), hydrocarbons (n = 37), metals (n = 20), nanoparticules (n = 23), polychlorobiphenyls (PCB, n = 22), flame retardants (brominated or chlorinated, n = 8), pharmaceutical products (n = 14), PFAS (n = 7), octyphenol (n = 2) and other (n = 7). Among all datasets, the majority of bioaccumulation tests were performed via spiked water (n = 137). Besides, 34 datasets account for biotransformation processes, considering from 1 to 8 metabolites.According to ECHA (2017)2, BCF below 1,000 means that the chemical substance is not bioaccumulative, whereas one ranging between 1,000 and 5,000 corresponds to a bioaccumulative chemical substance: low bioaccumulative if BCF ∈]1,000; 2,000]; mid-bioaccumulative if BCF ∈]2,000; 5,000]. If BCF is >5000, the chemical substance is classified as very bioaccumulative. These ranges are reported in Table 1, where BCF median estimates are >5000 for 25 datasets, indicating a very bioaccumulative capacity of the corresponding chemical substances for the corresponding genus. Concerning BSAF and BMF estimates, their value must be compared to threshold 1. A median BSAF estimate >1 indicates that the corresponding chemical substance can bioaccumulate from soil or sediment into organisms at the base of the non-aquatic food chain24,25; a median BMF estimate >1 indicates that the corresponding chemical substance can biomagnify in the trophic relationship under consideration26. In the database, 16 datasets in 36 led to BSAF >1, for genus Eisenia (n = 2), Enchytraeus (n = 6), Gallus (n = 1), Lumbriculus (n = 2), Metaphire (n = 2), Physa (n = 1), Radix (n = 2)), while 8 datasets in 38 led to BMF >1, for genus Gallus (n = 1), Oncorhynchus (n = 5) and Perca (n = 2). On an ecotoxicological point of view, the highest BCF estimates were obtained for genus Culex and Sialis exposed to chlorpyrifos due to a very low estimate of the elimination rate, for genus Gammarus and Calanus exposed to hydrocarbons, and several aquatic invertebrates exposed to pesticides, especially chlorpyrifos (n = 4), attesting to the potential high bioaccumulation capacity and high risk of toxicity associated with this chemical substance for aquatic organisms. Overall, aquatic invertebrates seem to be the most sensitive category of organisms in terms of bioaccumulation of chemical substances representing 20 in the 25 datasets with a BCF estimates >5000. More

  • in

    Phage-encoded ribosomal protein S21 expression is linked to late-stage phage replication

    Discovery of closely related phage sequences with the conserved genetic context of bS21Multiple phage-related sequences with a conserved genomic context were detected from several freshwater metagenome-assembled datasets (see Methods). Genes for bS21, TerL, PVP, prohead core scaffolding, and protease protein (hereafter prohead protease for short), and MCP are encoded in the genomic region. BLASTp search of the TerL sequences against the ggKbase sequences (ggkbase.berkeley.edu) obtained a total of 47 unique scaffolds with the conserved genomic region (Supplementary Table 1). Two related phages were included as outgroups for comparative analyses. The corresponding samples were collected from freshwater lakes or reservoirs (one from a wastewater treatment plant), and all but three were from the oxic layer (see Methods for details).General features of manually curated genomesAll the 49 phage sequences were manually curated to fill scaffolding gaps and fix the assembly errors, and nine of them (including one outgroup phage) were curated to completion (circular and no gaps or local assembly errors) (Supplementary Table 1). A total of 14 related phage genomes from IMG/VR were also included for further analyses. The eight bS21-encoding complete genomes had genome lengths of 293–331 kbp, GC contents of 31.0–33.7% and encoded 350–413 protein-coding genes (coding density, 91.1–94.9%), with 5–25 (average 17) tRNA genes. No alternative coding signal (i.e., stop codon reassignment) was detected in any genome. In comparison, the outgroup complete genome has a size of 308 kbp (450 protein-coding genes, 6 tRNAs, 94.7% coding density) and GC content of 27.3%.Genomic context of bS21 in phagesGenomic context analyses for bS21 genes showed a highly conserved gene architecture across phage genomes in proximity to the region encoding bS21 (see Fig. 1a for example). Specifically, we found that bS21 was consistently located in between two hypothetical protein families (positions 1 and –1 in Fig. 1b and Supplementary Table 2), with core structural proteins—including the TerL, PVP, prohead protease, and MCP—generally located within five genes in both the upstream and downstream DNA. Other hypothetical proteins were also consistently found in this region, although their positions were more variable upstream (positions –4 through –10, Fig. 1b). Importantly, the bS21 gene was consistently encoded in the reverse strand relative to the conserved hypothetical and structural protein genes (Fig. 1a and Supplementary Fig. 1).Fig. 1: Genetic context of the genes encoding bS21 in the phage genomes.a Examples of genetic context of phage genomes with and without bS21. The annotation of protein-coding genes is the same as indicated in b by different colors. Those in white are genes not shown in subfigure (b). b Summary of genetic context of all phage genomes encoding bS21. The relative position of genes near the bS21 gene is shown, and the size of circles indicates the number of phages with a gene belonging to a given protein family (annotation shown on right) at that relative position. Only the 12 most frequent families are shown. The details of the genetic context are shown in Supplementary Fig. 1.Full size imagePhylogeny of bS21-encoding phagesPhylogenetic analyses based on TerL suggested the phages belonging to several groups, we thus assigned them to clades a–e (Fig. 2 and Supplementary Table 1). Most of the phages belong to clades c, d, and e, and they have a broader environmental distribution than clades a and b. Interestingly, we found that some phages within a single clade were from distant sampling sites. Closer inspection indicated they also shared large genomic fragments with high similarity (82–98% for nucleotide sequences; Supplementary Fig. 2). Comparative genome-wide analyses of the complete genomes from the same site but sampled at different time points showed sequence variations in some genes (Supplementary Fig. 3).Fig. 2: The phylogeny of bS21 phages based on the large terminal (TerL) protein sequences.Two closely related phages without bS21 encoded were included as outgroups (shown at the top of the tree). The genomes are assigned to five clades (a, b, c, d, and e) based on the topology of the phylogenetic tree. The numbers in the brackets following the scaffold names indicate the total counts of the same scaffold detected from the corresponding sampling sites. The genomes that were manually curated to completion (circular and no gap) are indicated by squares, and the genome sizes are shown in brackets.Full size imageTerL phylogeny, constructed using sequences from this study and NCBI RefSeq sequences, indicated the most closely related classified phages belong to Caudovirales of either the Myoviridae or Ackermannviridae (Supplementary Fig. 4). A phage baseplate assembly protein was encoded in most curated genomes. This is an important building block for members of Siphoviridae and Myoviridae [8], so we concluded that the bS21-encoding phages are myoviruses.Predicted bacterial hosts of bS21-encoding phagesTo predict host-phage relationships we first used CRISPR-Cas spacers targeting. While none of the 16.5k unique spacers from the relevant metagenomes targeted any of the curated phage genomes from the same sampling sites, a single cross-site target was detected. Specifically, MIW1_072018_0_1um_scaffold_78 was targeted by a spacer (24 nt and no mismatch) from a MIW2 Flavobacterium genome (affiliation: Bacteroidetes, Flavobacteria). We then predicted the bacterial hosts based on the bacterial taxonomic affiliations of the phage gene inventories as previously described [2] (Supplementary Table 3). The results indicated that all of the phages infect members of Bacteroidetes, which were detected in 43 out of 45 samples (Fig. 3 and Supplementary Table 4). The two metagenomic samples without Bacteroidetes identified were both collected via filtering through 0.2 μm and onto 0.1 μm pore size filters. Bacteroidetes were detected in both of the corresponding 0.2 μm fraction samples (Fig. 3).Fig. 3: The relative abundance of the Bacteroidetes classes in all the analyzed samples in this study.The microbial communities were profiled based on ribosomal protein S3 (rpS3) assigned to the Bacteroidetes classes. The sampling sites were indicated by colored names, and the filter sizes used during sampling are shown by circles. The three pairs of filter samples are indicated by colored stars.Full size imageWe profiled the co-detection of phage clades and Bacteroidetes classes to test for specific connections (Supplementary Fig. 5). However, this was uninformative because most samples contained more than one class. However, phages from clades a and b are unlikely to infect class Bacteroidia members, as they did not co-occur in any sample.Comparison of bacterial and phage-encoded bS21Phylogenetic analyses revealed that bS21 protein sequences from phages (this study) and the bacterial bS21 sequences (from the corresponding samples and NCBI RefSeq) clustered separately (Supplementary Fig. 6). The bacterial bS21 sequences that are most similar to phage bS21 were from Bacteroidetes, mostly from the Flavobacteriia class (Supplementary Table 5). We aligned and compared the Bacteroidetes and phage bS21 sequences and mapped the divergent and non-divergent residues to the model of the ribosome of Flavobacterium johnsoniae (Fig. 4a). Multiple divergent positions are located at the beginning of the bS21 sequences and four residues (Arg21, Phe23, Asp25, and Thr28) were significantly divergent (Fig. 4b).Fig. 4: Conservation and differences between phage and bacterial bS21.a Location of bS21 (blue) within the 16S rRNA (green) and the ASD (magenta) of the F. johnsoniae ribosome (PDB ID: 7JIL) [9]. bS21 is in the neck region of the 16S rRNA, interacting closely with the 3’ end of the 16S rRNA, where the ASD is located. The 16S rRNA is shown from the subunit interface direction. b Zebra2 divergency results from an alignment of phage and bacterial bS21 sequences mapped on F. johnsoniae bS21. Divergent positions between phage and bacterial bS21 are shown with red. c Zebra2 conservation results from the same alignment as in (b) mapped on F. johnsoniae bS21 with conserved residues shown in yellow. The stacking interaction between Tyr54 and Adenine 1534 is indicated. d The sequence logo and consensus sequences of phage and bacterial bS21 alignments and the corresponding position of Tyr54 in F. johnsoniae bS21 in the alignment are highlighted. The C-terminal parts are highlighted with gray backgrounds.Full size imageBacteroidetes usually lack the SD sequences. It was recently reported that the bS21 Tyr54 (numbering in F. johnsoniae) is an important residue for blocking the ASD in the 16S rRNA within the ribosome [9]. Our analyses predict that all the analyzed bacterial and phage bS21 in this study have an amino acid with an aromatic ring (often Tyr54 but in a few cases His54, and in one case Phe54) at the position of Tyr54 in F. johnsoniae (Fig. 4c, d and Supplementary Fig. 6). This conservation of the aromatic property in phage bS21 should ensure stacking interaction with Adenine 1534 (numbering in F. johnsoniae 16S) from the ASD. In that way, phage bS21 mimics Bacteroidetes bS21 in the region where it binds the ribosome but differs from it in the region where the mRNA would bind.In contrast, the C-terminal regions of both the bacterial and phage bS21 sets were highly divergent (Fig. 4d). However, the phage C-terminal regions are generally conserved within the clades defined based on TerL phylogeny (Fig. 2 and Supplementary Fig. 7).Metabolic potentials of bS21-encoding phagesFunctional annotation of the predicted protein-coding genes revealed that in addition to bS21, these phages carry other genes related to protein production and stability (Supplementary Table 6). Examples include protein folding chaperones and Clp protease, suggesting the importance of controlling the proteostasis network of the cell. Interestingly, we also identified many genes involved in sugar-related chemistry and polysaccharide biosynthesis. Many of these genes were predicted to perform chemical transformations related to the biosynthesis of lipopolysaccharide, a major component of the Gram-negative bacterial outer membrane. We interpret this as a potential mechanism to remodel the cell surface and prevent superinfection by competitor phages, a strategy common to the phage lysogenic cycle. These phages lack detectable integration machinery (no gene for integrase or resolvase was detected), suggesting the possibility of a non-integrative long-term infection state such as pseudolysogeny [10].Clustering analyses of 22 phages with a minimum genome size of 100 kbp (including the two outgroup genomes) based on the presence/absence of protein families indicated they shared a total of 16 protein families (Supplementary Fig. 8 and Supplementary Table 7). Phosphate starvation-inducible protein PhoH (“fam582”) was the only predicted protein detected in all 22 phages (excluding the shared predicted proteins in the conserved rpS21-encoding region described above). Other common protein families include those related to DNA replication (e.g., DNA primase/helicase, DNA polymerase, HNH endonuclease, thymidylate synthase (EC:2.1.1.45), deoxyuridine 5’-triphosphate nucleotidohydrolase (EC:3.6.1.23)), those associated with virion assembly (e.g., a phage tail sheath protein, phage baseplate assembly protein W), and those for other functions (e.g., chaperone ATPase, alpha-amylase, DegT/DnrJ/EryC1/StrS aminotransferase).Temporal and spatial distribution and activity of bS21-encoding phages in Lake RotseeTo reveal the spatial and temporal distribution of the bS21-encoding phages, we focused on the Lake Rotsee data and profiled phage occurrence based on the sequencing coverage in the metagenomic datasets. The Lake Rotsee samples were collected from the oxic (7 samples) and anoxic (3 samples) layers of the water column. The bS21-encoding phages were readily detected in oxic samples, especially in the under-ice samples when the whole water column was oxic (Fig. 5a).Fig. 5: The spatial and temporal distribution and activity of bS21 phages at Lake Rotsee.a The sequencing coverage of each phage genome in each metagenomic dataset is shown in the heatmaps. The phages are phylogenetically clustered based on their TerL protein sequences (bootstraps shown in numbers), the colored backgrounds are the same as shown in Fig. 2 for different clades. The sampling time points and depths are shown on the left, and the oxygen conditions are indicated by colored circles on the right. Two replicates were sequenced from the 15 m sample collected in 2018. b The percentage of mapped RNA reads to the phage genomes in the corresponding samples (rows labeled in (a)). The mapped RNA reads had a minimum similarity of 98% to the phage genomes. No RNA data were generated for the three samples collected on October 10, 2017. See the figure legend for each genome in the upper right, the circular genomes have names in bold font.Full size imageRotsee Lake RNA reads were mapped to the phage genomes curated from this site to reveal the transcriptional activities of bS21-encoding phages (Fig. 5b). In general, the phages were likely to be most transcriptionally active in the oxic water columns. A total of 736 genes were transcribed in at least one sample (Supplementary Table 8), those for MCP, an AAA ATPase, tail sheath protein, bS21, FKBP-type peptidyl-prolyl cis-trans isomerase, and a methyltransferase FkbM domain protein are among the top 100 most highly transcribed. The high transcriptional activities of MCP in five phages indicated they were in the late stage of replication at the time of sampling.The transcriptional behavior of phage bS21 genesTo seek evidence of a transcriptional relationship involving bS21 and other genes we focused on the three phages that were most active based on the transcriptional level of their 19 shared single-copy genes (Fig. 6a). bS21 had very similar (but slightly lower) transcriptional activities as a neighboring gene (hereafter, bS21_CN gene) encoded on the opposite strand. The bS21_CN gene encodes a hypothetical protein (protein family: fam498) and was not detected in the two outgroup phages without bS21 (Supplementary Table 6). Interestingly, a comparison of the phylogenies of bS21 and bS21_CN showed a very similar evolutionary pattern (Supplementary Fig. 9), likely suggesting their potential functional relationship in the bS21-encoding phages.Fig. 6: The transcription levels of bS21 and core structural protein genes.a The normalized transcriptional level (NTL) of shared single-copy protein families of three phages (indicated by arrows in Fig. 5b) with ≥1000 RNA reads mapped. Two families (including MCP) are listed on a different scale due to their much higher transcription levels. Refer to Fig. 5 for shape symbols that designate phage genomes and samples. b Examples of RNA mapping profiles indicating the co-transcription of some genes neighboring bS21. Hypothetical protein genes are shown in white.Full size imageInspection of the RNA reads mapping profiles indicated that the conserved region encoding bS21 and core structural proteins was not transcribed as an operon, whereas bS21 and bS21_CN, MCP and its upstream hypothetical protein gene, and prohead protease and its downstream hypothetical protein gene may each be transcribed together (Fig. 6b). Given the observed RNA expression patterns, we conclude that the phage-encoded bS21 genes were actively transcribed during late-stage replication, along with other core structural proteins.Genomic context of bS21 genes in published phage genomesTo determine whether the phage bS21 genes are generally co-located with those for core structural proteins in diverse phages, we profiled the genomic context of bS21 in 900 published bS21-encoding phages [2, 11] (Supplementary Table 9). Functional annotations were performed for the upstream and downstream ten genes of the bS21 genes using pVOG (Supplementary Table 10). Of the 20 most abundant pVOGs, 6 were related to core structural assembly (Fig. 7a), i.e., prohead protease (n = 310), MCP (n = 154), PVP (n = 120), TerL (n = 78), neck protein (n = 70), and a tail sheath protein (n = 29). A total of 388 genomes contained at least one of these genes within ten genes of bS21, and eight had all of these six core structural proteins in close proximity. Three pVOGs were related to DNA processing, i.e., an exonuclease (n = 37), an endonuclease (n = 32), DNA helicase (n = 30). Other pVOGs included Hsp20 heat shock protein (n = 127), two ATP-dependent CLP proteases (n = 50 and 47, respectively), and lysozyme (for lysis; n = 29). Interestingly, the prohead protease and the MCP pVOG genes are very close to the bS21 gene (generally 2–4 genes; Fig. 7b), as in the bS21-encoding phage genomes analyzed in this study (2–6 genes away; Fig. 1 and Supplementary Fig. 1).Fig. 7: Neighboring genes within 10 genes of bS21 in published bS21-encoding phage genomes.a The annotation and corresponding functional category (if assigned) of the 20 most commonly detected pVOG genes and their predicted functions are shown on the left, the total number of genomes with the gene are shown on the right. b The distribution of the distance of each gene to bS21 in the genomes. The position of genes next to bS21 (thus distance = 1) is highlighted using a red dashed line. The average distance of each gene to bS21 is shown on the left. c The predicted hosts of bS21-encoding phages with the top 4 most abundant genes detected within 10 genes of bS21. The total count of hosts is shown on the right.Full size imageWe respectively predicted the hosts of the bS21-encoding phages with the four most dominant pVOGs within ten genes of bS21 (Fig. 7c and Supplementary Table 11). The bacterial hosts are diverse and include Proteobacteria, Bacteroidetes, and Firmicutes. More

  • in

    Growth-stage-related shifts in diatom endometabolome composition set the stage for bacterial heterotrophy

    Co-culture dynamicsThis study was designed to enhance understanding of metabolite release and utilization across bloom stages in a simple community of phytoplankton and heterotrophic bacteria. The synthetic community was established with the diatom T. pseudonana and the bacterial strains R. pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and P. dokdonensis MED152. These bacterial strains have high genetic similarity to isolates from phytoplankton cultures [14] and represent taxa that are common in phytoplankton blooms. Metabolites derived from the diatom were the sole source of carbon available for the bacteria, since no organic substrates were added. In addition, none of the bacteria can assimilate nitrate, and usable nitrogen was only available as diatom or bacterial extracellular products. The diatom had its highest specific growth rate of 1.65 d−1 during days 0–3, after which the rate declined (Fig. 1A). The total abundance of heterotrophic bacteria increased steadily but there was a succession that favored P. dokdonensis through day 15, and then R. pomeroyi by day 20; Stenotrophomonas disappeared from the model system by day 3 (Fig. 1B). The presence of bacteria did not affect the growth of diatoms based on comparisons of abundance in co-cultures versus axenic cultures at day 15 (Fig. 1A), as has been found previously [14, 26]. Inorganic nutrients were not limiting ( >5 μM at day 15; Table S1).Fig. 1: Time course of microbial abundances.A Cell abundance based on flow cytometric analysis for co-cultures (5 time points) and axenic cultures (day 15 only) (n = 3). The intensive sampling dates for the early and late bloom comparisons are marked with gray boxes. B Mean relative abundance of bacterial species is based on CFUs (n = 3). The day 0 samples were collected 8 h after inoculation.Full size imageDiatom endometabolite shiftsAnalyses focused on the day 3 (early bloom) and day 15 (late bloom) co-culture time points, for which a complete set of metabolomic and transcriptomic data were collected. Twenty-two diatom endometabolites that were annotated with high confidence by NMR analysis (Table S2) and quantified after normalizing to diatom cell number revealed that endometabolome composition differed substantially between bloom stages. Metabolites with significantly different cellular concentrations included nine compounds that were higher in intracellular concentration during the late bloom; these were arginine, valine, lysine, DHPS, glycerol-3-phosphate, phosphorylcholine, DMSP, glycine betaine, and homarine (T-test; P  More

  • in

    Gentamicin at sub-inhibitory concentrations selects for antibiotic resistance in the environment

    Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic. 2008;8:1–13.CAS 
    Article 

    Google Scholar 
    Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014;22:536–45. Available from: https://doi.org/10.1016/j.tim.2014.05.005.CAS 
    Article 
    PubMed 

    Google Scholar 
    Kalasseril S, Paul R, J RK V, Pillai D. Investigating the impact of hospital antibiotic usage on aquatic environment and aquaculture systems: A molecular study of quinolone resistance in Escherichia coli. Sci Total Environ. 2020;748:141538. Available from: https://doi.org/10.1016/j.scitotenv.2020.141538.CAS 
    Article 

    Google Scholar 
    Ashbolt NJ. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environ Health Perspect. 2013;121:993–1002.Article 

    Google Scholar 
    Bengtsson-Palme J, Kristiansson E, Larsson DGJ Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2017;(October 2017):68–80. Available from: http://academic.oup.com/femsre/advance-article/doi/10.1093/femsre/fux053/4563583Manaia CM Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Vol. 25, Trends in Microbiology. 2017.Manaia CM, Macedo G, Fatta-Kassinos D, Nunes OC. Antibiotic resistance in urban aquatic environments: can it be controlled? Appl Microbiol Biotechnol. 2016;100:1543–57.CAS 
    Article 

    Google Scholar 
    Durso LM, Cook KL. Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr Opin Microbiol. 2014;19:37–44. https://doi.org/10.1016/j.mib.2014.05.019. Available fromArticle 
    PubMed 

    Google Scholar 
    Almakki A, Jumas-Bilak E, Marchandin H, Licznar-Fajardo P. Antibiotic resistance in urban runoff. Sci Total Environ. 2019;667:64–76. https://linkinghub.elsevier.com/retrieve/pii/S0048969719306710.CAS 
    Article 

    Google Scholar 
    Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014;12:465–78. Available from: https://doi.org/10.1038/nrmicro3270.CAS 
    Article 
    PubMed 

    Google Scholar 
    Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7:1–9.Article 

    Google Scholar 
    Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. Novel insights into selection for antibiotic resistance in complex microbial communities. MBio. 2018;9:1–12. http://mbio.asm.org/lookup/doi/10.1128/mBio.00969-18.CAS 
    Article 

    Google Scholar 
    Chow L, Waldron L, Gillings MR. Potential impacts of aquatic pollutants: sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance. Front Microbiol. 2015;6:1–10.
    Google Scholar 
    Bruchmann J, Kirchen S, Schwartz T. Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates. Environ Sci Pollut Res. 2013;20:3539–49.CAS 
    Article 

    Google Scholar 
    Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals. mBio. 2014;5:19–23.Article 

    Google Scholar 
    Choung S, Yun Z, Kwon EE, Cho Y, Ha U-H, Oh J, et al. Transfer of antibiotic resistance plasmids in pure and activated sludge cultures in the presence of environmentally representative micro-contaminant concentrations. Sci Total Environ. 2014;468–469:813–20. https://doi.org/10.1016/j.scitotenv.2013.08.100.CAS 
    Article 
    PubMed 

    Google Scholar 
    Shun-Mei E, Zeng JM, Yuan H, Lu Y, Cai RX, Chen C. Sub-inhibitory concentrations of fluoroquinolones increase conjugation frequency. Microb Pathog. 2018;114:57–62.CAS 
    Article 

    Google Scholar 
    Jutkina J, Rutgersson C, Flach CF, Joakim Larsson DG. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci Total Environ. 2016;548–549:131–8. https://doi.org/10.1016/j.scitotenv.2016.01.044.CAS 
    Article 
    PubMed 

    Google Scholar 
    Jutkina J, Marathe NP, Flach CF, Larsson DGJ. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ. 2018;616–617:172–8. https://doi.org/10.1016/j.scitotenv.2017.10.312.CAS 
    Article 
    PubMed 

    Google Scholar 
    Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. Novel insights into selection for antibiotic resistance in complex microbial communities. MBio. 2018;9:1–12.CAS 
    Article 

    Google Scholar 
    Le-minh N, Khan SJ, Drewes JE, Stuetz RM. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010;44:4295–323. https://doi.org/10.1016/j.watres.2010.06.020.CAS 
    Article 
    PubMed 

    Google Scholar 
    George J, Halami PM. Sub-inhibitory concentrations of gentamicin triggers the expression of aac(6′)Ie-aph(2″)Ia, chaperons and biofilm related genes in Lactobacillus plantarum MCC 3011. Res Microbiol. 2017;168:722–31. https://doi.org/10.1016/j.resmic.2017.06.002.CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang AN, Li LG, Ma L, Gillings MR, Tiedje JM, Zhang T. Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome. 2018;6:1–14.Article 

    Google Scholar 
    Gillings MR. Integrons: Past, Present, and Future. Microbiol Mol Biol Rev. 2014;78:257–77.Article 

    Google Scholar 
    Guironnet A, Sanchez-Cid C, Vogel TM, Wiest L, Vulliet E Aminoglycosides analysis optimization using Ion pairing Liquid Chromatography coupled to tandem Mass Spectrometry and application on wastewater samples. J Chromatogr. 2021;1651.Muyzer G, Hottentrager S, Teske A, Wawer C Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA—a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans A, van Elsas J, de Bruijn F, editors. Molecular microbial ecology manual. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995. p. 1–23.Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods. 2001;44:253–62.CAS 
    Article 

    Google Scholar 
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11.Article 

    Google Scholar 
    Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics. 2012;13:31 http://www.biomedcentral.com/1471-2105/13/31.CAS 
    Article 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    Article 

    Google Scholar 
    Holmes AJ, Gillings MR, Nield BS, Mabbutt BC, Nevalainen KMH, Stokes HW. The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol. 2003;5:383–94.CAS 
    Article 

    Google Scholar 
    Gillings MR, Xuejun D, Hardwick SA, Holley MP, Stokes HW. Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons? ISME J. 2009;3:209–15.CAS 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    Article 

    Google Scholar 
    Minoche AE, Dohm JC, Himmelbauer H Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol. 2011;12.Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:1–22.Article 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. Available from: https://doi.org/10.1038/nmeth.1923.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: An advanced analysis and visualization platformfor’omics data. PeerJ. 2015;2015:1–29.
    Google Scholar 
    Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.CAS 
    Article 

    Google Scholar 
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    Article 

    Google Scholar 
    Menzel P, Ng KL, Krogh A Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7.Ramirez SM, Tolmasky EM. Aminoglycoside modifing enzymes. Drug Resist Updat. 2011;13:151–71. Available from: https://doi.org/10.1016/j.drup.2010.08.003.CAS 
    Article 

    Google Scholar 
    Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C. Human Health Risk Assessment of Antibiotic Resistance Associated with Antibiotic Residues in the Environment: A Review. Environ Res. 2018;169:483–93. https://www.sciencedirect.com/science/article/pii/S0013935118304298.Article 

    Google Scholar 
    Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int. 2016;86:140–9. https://doi.org/10.1016/j.envint.2015.10.015.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol. 2018;9(September). Available from: https://www.frontiersin.org/article/10.3389/fmicb.2018.02066/fullCasin I, Bordon F, Bertin P, Coutrot A, Podglajen I, Brasseur R, et al. Aminoglycoside 6’-N-acetyltransferase variants of the Ib type with altered substrate profile in clinical isolates of Enterobacter cloacae and Citrobacter freundii. Antimicrob Agents Chemother. 1998;42:209–15.CAS 
    Article 

    Google Scholar 
    Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.CAS 
    Article 

    Google Scholar 
    Chow LKM, Ghaly TM, Gillings MR. A survey of sub-inhibitory concentrations of antibiotics in the environment. J Environ Sci (China). 2021;99:21–7. https://doi.org/10.1016/j.jes.2020.05.030.Article 

    Google Scholar 
    Gillings MR. Class 1 integrons as invasive species. Curr Opin Microbiol. 2017;38:10–5. https://doi.org/10.1016/j.mib.2017.03.002.CAS 
    Article 
    PubMed 

    Google Scholar 
    Ma L, Li AD, Yin XL, Zhang T. The prevalence of integrons as the carrier of antibiotic resistance genes in natural and man-made environments. Environ Sci Technol. 2017;51:5721–8.CAS 
    Article 

    Google Scholar 
    Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol. 2008;190:5095–100.CAS 
    Article 

    Google Scholar 
    Bürgmann H, Frigon D, Gaze WH, Manaia CM, Pruden A, Singer AC, et al. Water and sanitation: An essential battlefront in the war on antimicrobial resistance. FEMS Microbiol Ecol. 2018;94.Pena-Miller R, Laehnemann D, Jansen G, Fuentes-Hernandez A, Rosenstiel P, Schulenburg H, et al. When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition. PLoS Biol. 2013;11:14–6.Article 

    Google Scholar  More

  • in

    Viral diversity is linked to bacterial community composition in alpine stream biofilms

    Viral-like particle abundanceThe 10 sampling sites were equidistantly (average distance: 1.6 km) distributed between 1689 and 717 m above sea level in a 95.7 km2, pristine catchment and covered a flow-connected distance of 14.3 km (Fig. 1, Methods).Fig. 1: No evidence for a downstream accumulation of VLPs.Viral-like particles (VLP) were purified from 10 sites sampled during four seasons along an altitudinal gradient in an alpine stream (Vièze, Switzerland) (a). Neither VLP abundance (b) nor Virus-to-Prokaryote Ratios (VPR; (c)) showed pronounced spatial or temporal trends.Full size imageViral-like particle (VLP) counts normalized to areal coverage of the stream biofilm ranged from 2.8 × 109 to 3.4 × 1010 VLP m−2. On average, VLP abundance was highest in summer with 1.87 ± 0.75 × 1010 VLP m−2; however, there were no statistically significant seasonal differences in VLP abundance (repeated-measures ANOVA, F = 0.87, p = 0.47). VLP numbers did not exhibit a continuous spatial tendency, except during fall when VLP numbers increased significantly with downstream distance (r = 0.81, p 0.7 and/or pident >0.4). Indeed, 90 of the 203 putative viral depolymerases showed significant sequence similarity with 198 vOTU sequences (i.e., 6% of the overall vOTU diversity). We were able to obtain taxonomic classification for 80 of these 198 vOTUs, and found that all large Caudovirales families were represented (i.e., Myoviridae, n = 31, Siphoviridae, n = 17, Podoviridae, n = 15, Autographiviridae, n = 13, Ackermannviridae, n = 2, and Herelleviridae, n = 1). This suggests that depolymerase activity may be widespread among viruses infecting bacteria in stream biofilms. Although both the number of potential depolymerases included in our database and the number of classified vOTUs was limited, we observed that depolymerase-harboring Myoviridae vOTUs corresponded the expectation based on the overall relative abundance of Myoviridae, pointing toward the importance of dispersal for this important viral family. Siphoviridae, in contrast, were relatively underrepresented among depolymerase-harboring vOTUs. In combination with neutral model predictions, this may point towards a fundamental difference between Siphoviridae and Myoviridae in infecting stream biofilm bacteria. While Myoviridae may rather rely on efficiently spreading across distant biofilm patches facilitated by an ability to decompose the EPS matrix, many members of Siphoviridae seem to lack this ability.To investigate our second hypothesis, that lysogeny might be a successful viral life cycle strategy to spread locally within biofilm patches, we used BACPHLIP [36]. BACPHLIP predicted with high probability ( >75%) a lysogenic life cycle for 58 out of 256 complete viral genomes and a lytic life cycle for 177 viral genomes. For the remaining 21 complete viral genomes in our dataset, BACPHLIP did not result in sufficiently high prediction probability (i.e., More

  • in

    Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions

    Morton JT, Sanders J, Quinn RA, McDonald D, Gonzalez A, Vázquez-Baesa Y, et al. Balance trees reveal microbial niche differentiation. MSystems. 2017;2:e00162–16.Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salles JF, Poly F, Schmid B, Le Roux X. Community niche predicts the functioning of denitrifying bacterial assemblages. Ecology. 2009;90:3324–32.PubMed 

    Google Scholar 
    Ge X, Thorgersen MP, Poole FL, Deutschbauer AM, Chandonia J-M, Novichov PS, et al. Characterization of a metal-resistant bacillus strain with a high molybdate affinity ModA from contaminated sediments at the Oak Ridge Reservation. Front Microbiol. 2020;11:2543.
    Google Scholar 
    Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.CAS 
    PubMed 

    Google Scholar 
    Moon J-W, Paradis CJ, Joyner DC, von Netzer F, Majumder EL, Dixon ER, et al. Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. Chemosphere. 2020;255:126951.CAS 
    PubMed 

    Google Scholar 
    Berkowitz B, Silliman SE, Dunn AM. Impact of the capillary fringe on local flow, chemical migration, and microbiology. Vadose Zo J. 2004;3:534–48.CAS 

    Google Scholar 
    Winter J, Ippisch O, Vogel H-J. Dynamic processes in capillary fringes. Vadose Zo J. 2015;14:1–2.Silliman SE, Berkowitz B, Simunek J, van Genuchten MT. Fluid flow and solute migration within the capillary fringe. Ground Water. 2002;40:76–84.CAS 
    PubMed 

    Google Scholar 
    Haberer CM, Rolle M, Liu S, Cirpka OA, Prathwohl P. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater. J Contam Hydrol. 2011;122:26–39.CAS 
    PubMed 

    Google Scholar 
    Bouskill NJ, Conrad ME, Bill M, Brodie EL, Cheng Y, Hobson C, et al. Evidence for microbial mediated NO3− cycling within floodplain sediments during groundwater fluctuations. Front Earth Sci. 2019;7:189.
    Google Scholar 
    Rühle FA, von Netzer F, Lueders T, Stumpp C. Response of transport parameters and sediment microbiota to water table fluctuations in laboratory columns. Vadose Zo J. 2015;14:vzj2014.09.0116.Aigle A, Prosser JI, Gubry-Rangin C. The application of high-throughput sequencing technology to analysis of amoA phylogeny and environmental niche specialisation of terrestrial bacterial ammonia-oxidisers. Environ Microbiome. 2019;14:3.PubMed 
    PubMed Central 

    Google Scholar 
    Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. Comparative genomics of marine sponge-derived Streptomyces spp. isolates SM17 and SM18 with their closest terrestrial relatives provides novel insights into environmental niche adaptations and secondary metabolite biosynthesis potential. Front Microbiol. 2019;10:1713.PubMed 
    PubMed Central 

    Google Scholar 
    Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T, et al. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:754.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 2014;38:720–60.CAS 
    PubMed 

    Google Scholar 
    Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 2012;20:262–7.CAS 
    PubMed 

    Google Scholar 
    Wisniewski-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, et al. Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes. 2012;3:576–602.Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol. 1947;54:291–303.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boivin-Jahns V, Bianchi A, Ruimy R, Garcin J, Daumas S, Cristen R, et al. Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol. 1995;61:3400–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rusterholtz KJ, Mallory LM. Density, activity, and diversity of bacteria indigenous to a karstic aquifer. Microb Ecol. 1994;28:79–99.CAS 
    PubMed 

    Google Scholar 
    Eschbach M, Möbitz H, Rompf A, Jahn D. Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. FEMS Microbiol Lett. 2003;223:227–30.CAS 
    PubMed 

    Google Scholar 
    Banerjee S, Palit R, Sengupta C, Standing D. Stress induced phosphate solubilization by ’Arthrobacter’ Sp. and ’Bacillus’ sp. isolated from tomato rhizosphere. Aust J Crop Sci. 2010;4:378–83.CAS 

    Google Scholar 
    Keddie RM, Collins D, Jones D. Genus Arthrobacter. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG, editors. Bergey’s manual of systematic bacteriology. Vol 2. Williams and Wilkins: New York, NY. 1986. p. 1288–301.Crocker FH, Fredrickson JK, White DC, Ringelberg DB, Balkwill DL. Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Microbiology. 2000;146:1295–310.CAS 
    PubMed 

    Google Scholar 
    Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun. 2015;6:8289.CAS 
    PubMed 

    Google Scholar 
    Wu X, Spencer S, Gushgari-Doyle S, Yee MO, Voriskova J, Li Y, et al. Culturing of “unculturable” subsurface microbes: natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front Microbiol. 2020;11:3171.
    Google Scholar 
    Watson DB, Kostka JE, Fields MW, Jardine PM. The Oak Ridge Field Research Center conceptual model. NABIR F. Res. Center: Oak Ridge, TN; 2004.Moon J, Roh Y, Phelps TJ, Phillips DH, Watson DB, Kim Y-J, et al. Physicochemical and mineralogical characterization of soil–saprolite cores from a field research site, Tennessee. J Environ Qual. 2006;35:1731–41.CAS 
    PubMed 

    Google Scholar 
    Wu X, Wu L, Liu Y, Zhang P, Li Q, Zhou J, et al. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Front Microbiol. 2018;9:1234.PubMed 
    PubMed Central 

    Google Scholar 
    Chakraborty R, Woo H, Dehal P, Walker R, Zemla M, Auer M, et al. Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a Hexavalent Chromium [Cr(VI)] contaminated site. Stand Genomic Sci. 2017;12:23.PubMed 
    PubMed Central 

    Google Scholar 
    Guttenberger M, Hampp R. Ectomycorrhizins—symbiosis-specific or artifactual polypeptides from ectomycorrhizas? Planta. 1992;188:129–36.CAS 
    PubMed 

    Google Scholar 
    Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595.PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt D, Chen G, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.PubMed 
    PubMed Central 

    Google Scholar 
    Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60.PubMed 
    PubMed Central 

    Google Scholar 
    Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50:D801–D807.CAS 
    PubMed 

    Google Scholar 
    Price MN, Deutschbauer AM, Arkin AP. GapMind: automated annotation of amino acid biosynthesis. mSystems. 2020;5:e00291–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertelli C, Laird MR, Wiliams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Procter JB, Carstairs GM, Soares B, Mourão K, Ofoegbu TC, Barton D, et al. Alignment of biological sequences with Jalview. In: Katoh K Editor. Multiple sequence alignment. Springer, Humana Press: New York, NY. 2021. p. 203–24.Letunic I, Bork P. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6. https://doi.org/10.1093/nar/gkab301.Eren AM, Esen O, Quince C, Vines JH, Horrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    Qiong W, Garrity GM, Tiedge JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
    Google Scholar 
    Liao J, Guo X, Weller DL, Pollak S, Buckley DH, Wiedmann M, et al. Nationwide genomic atlas of soil-dwelling Listeria reveals effects of selection and population ecology on pangenome evolution. Nat Microbiol. 2021;6:1021–30.CAS 
    PubMed 

    Google Scholar 
    Schwyn B, Neilands JB. Universal chemical assay for detection and determination of siderophores. Anal Biochem. 1987;160:47–56.CAS 
    PubMed 

    Google Scholar 
    Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernandez FJ. O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods. 2007;70:127–31.PubMed 

    Google Scholar 
    Nyyssönen M, Tran HM, Karaoz U, Weihe C, Hadi MZ, Martiny JBH, et al. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Front Microbiol. 2013;4:282PubMed 
    PubMed Central 

    Google Scholar 
    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Gregory Caporaso J, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.PubMed 

    Google Scholar 
    Oliveira PL, de, Duarte MCT, Ponezi AN, Durrant LR. Purification and partial characterization of manganese peroxidase from Bacillus pumilus and Paenibacillus sp. Braz J Microbiol. 2009;40:818–26.PubMed 
    PubMed Central 

    Google Scholar 
    Varrot A, Yip VLY, Li Y, Rajan SS, Yang X, Anderson WF, et al. NAD+ and metal-ion dependent hydrolysis by family 4 glycosidases: structural insight into specificity for phospho-β-D-glucosides. J Mol Biol.2005;346:423–35.CAS 
    PubMed 

    Google Scholar 
    Lambers H. Introduction: dryland salinity: a key environmental issue in southern Australia. Plant Soil. 2003;257:v–vii.Galinski EA, Trüper HG. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev. 1994;15:95–108.CAS 

    Google Scholar 
    Korom SF. Natural denitrification in the saturated zone: a review. Water Resour Res. 1992;28:1657–68.CAS 

    Google Scholar 
    Niewerth H, Schuldes J, Parschat K, Kiefer P, Vorholt JA, Daniel R, et al. Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a. BMC Genomics. 2012;13:1–19.
    Google Scholar 
    See-Too W-S, Ee R, Lim Y-L, Convey P, Pearce DA, Mohidin TBM, et al. Complete genome of Arthrobacter alpinus strain R3. 8, bioremediation potential unraveled with genomic analysis. Stand Genomic Sci. 2017;12:1–7.
    Google Scholar 
    Bazhanov DP, Li C, Li H, Li J, Zhang X, Chen X, et al. Occurrence, diversity and community structure of culturable atrazine degraders in industrial and agricultural soils exposed to the herbicide in Shandong Province, PR China. BMC Microbiol. 2016;16:1–21.
    Google Scholar 
    Fan X, Nie MQ, Wang Y, Diwu ZJ, Liu L, Liu Y. Characteristics of the co-metabolism of 1-naphthol by Arthrobacter crystallopoietes NT16 and symbiotic Bacillus NG16. Acta Sci Circumstantiae. 2019;39:1482–8.CAS 

    Google Scholar 
    Nakatsu CH, Barabote R, Thompson S, Bruce D, Detter C, Brettin T, et al. Complete genome sequence of Arthrobacter sp. strain FB24. Stand Genomic Sci. 2013;9:106–16.PubMed 
    PubMed Central 

    Google Scholar 
    Shimasaki T, Masuda S, Garrido-Oter R, Kawasaki T, Aoki Y, Shibata A, et al. Tobacco root endophytic Arthrobacter harbors genomic features enabling the catabolism of host-specific plant specialized metabolites. MBio. 2021;12:e00846–21.CAS 
    PubMed Central 

    Google Scholar 
    Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S. Complete genome sequence of Arthrobacter alpinus ERGS4: 06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya. J Biotechnol. 2016;220:86–87.CAS 
    PubMed 

    Google Scholar 
    Russell DA, Hatfull GF. Complete genome sequence of Arthrobacter sp. ATCC 21022, a host for bacteriophage discovery. Genome Announc. 2016;4:e00168–16.PubMed 
    PubMed Central 

    Google Scholar 
    Fomenkov A, Akimov VN, Vasilyeva LV, Andersen DT, Vincze T, Roberts RJ, et al. Complete genome and methylome analysis of psychrotrophic bacterial isolates from Lake Untersee in Antarctica. Genome Announc. 2017;5:e01753–16.PubMed 
    PubMed Central 

    Google Scholar 
    Hiraoka S, Machiyama A, Ijichi M, Inoue K, Oshima K, Hattori M, et al. Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami. BMC Genomics. 2016;17:1–13.
    Google Scholar 
    Han S-R, Kim B, Jang JH, Park H, Oh T-J. Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation. BMC Genomics. 2021;22:1–14.
    Google Scholar 
    Koh H-W, Kang M, Lee K, Lee E, Kim H, Park SJ. Arthrobacter dokdonellae sp. nov., isolated from a plant of the genus Campanula. J Microbiol. 2019;57:732–7.CAS 
    PubMed 

    Google Scholar 
    Xu X, Xu M, Zhao Q, Xia Y, Chen C, Shen Z. Complete genome sequence of Cd (II)-resistant Arthrobacter sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation. Curr Microbiol. 2018;75:1231–9.CAS 
    PubMed 

    Google Scholar 
    Lee GLY, Ahmad SA, Yasid NA, Zulkharnain A, Convey P, Johari WLW, et al. Biodegradation of phenol by cold-adapted bacteria from Antarctic soils. Polar Biol. 2018;41:553–62.
    Google Scholar 
    Stockdale A, Davison W, Zhang H. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence. Earth-Science Rev. 2009;92:81–97.CAS 

    Google Scholar 
    Whiting AK, Boldt YR, Hendrich MP, Wackett LP, Que L. Manganese (II)-dependent extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis CM-2. Biochemistry. 1996;35:160–70.CAS 
    PubMed 

    Google Scholar 
    Jeng W-Y, Wang M, Lin N, Lin C, Liaw Y, Cheng W, et al. Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol. 2011;173:46–56.CAS 
    PubMed 

    Google Scholar 
    Stevenson IL. Utilization of aromatic hydrocarbons by Arthrobacter spp. Can J Microbiol. 1967;13:205–11.CAS 
    PubMed 

    Google Scholar 
    Dsouza M, Taylor MW, Turner SJ, Aislabie J. Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genomics. 2015;16:36.PubMed 
    PubMed Central 

    Google Scholar 
    Taylor R, Cronin A, Pedley S, Barker J, Atkinson T. The implications of groundwater velocity variations on microbial transport and wellhead protection–review of field evidence. FEMS Microbiol Ecol. 2004;49:17–26.CAS 
    PubMed 

    Google Scholar 
    Zhang X, Liu X, Yang F, Chen L. Pan-genome analysis links the hereditary variation of leptospirillum ferriphilum with its evolutionary adaptation. Front Microbiol. 2018;9:577.PubMed 
    PubMed Central 

    Google Scholar 
    Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, et al. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics. 2012;13:533.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang Y, Sievert S. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol. 2014;5:110.PubMed 
    PubMed Central 

    Google Scholar 
    Aminov R. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;2:158.PubMed 
    PubMed Central 

    Google Scholar 
    Kothari A, Wu Y, Chandonia J-M, Charrier M, Rajiv L, Rocha AM, et al. Large circular plasmids from groundwater plasmidomes span multiple incompatibility groups and are enriched in multimetal resistance genes. MBio. 2019;10:e02899–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Penn K, Jenkins C, Nett M, Udwary DW, Gontang EA, McGlinchey RP, et al. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J. 2009;3:1193–203.CAS 
    PubMed 

    Google Scholar 
    Wu X, Kazakov AE, Gushgari-Doyle S, Yu X, Trotter V, Stuart RK, et al. Comparative genomics reveals insights into induction of violacein biosynthesis and adaptive evolution in Janthinobacterium. Microbiol Spectr. 2022;9:e01414–e01421.
    Google Scholar 
    Jonkheer EM, Brankovics B, Houwers IM, van der Wolf JM, Bonants PJM, Vreeburg RAM, et al. The Pectobacterium pangenome, with a focus on Pectobacterium brasiliense, shows a robust core and extensive exchange of genes from a shared gene pool. BMC Genomics. 2021;22:265.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdel-Glil MY, Rischer U, Steinhagen D, McCarthy U, Neubauer H, Sprague LD. Phylogenetic relatedness and genome structure of Yersinia ruckeri revealed by whole genome sequencing and a comparative analysis. Front Microbiol. 2021;12:782415.González-Dominici LI, Saati-Santamaría Z, García-Fraile P. Genome analysis and genomic comparison of the novel species Arthrobacter ipsi reveal its potential protective role in its bark beetle host. Microb Ecol. 2021;81:471–82.PubMed 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.CAS 
    PubMed 

    Google Scholar 
    Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol. 1997;63:2330–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–77.
    Google Scholar  More

  • in

    Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates

    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. Part A. Oceanographic Res. Pap. 34, 267–285 (1987).CAS 

    Google Scholar 
    Gloege, L., McKinley, G. A., Mouw, C. B. & Ciochetto, A. B. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2. Glob. Biogeochemical Cycles 31, 1192–1215 (2017).ADS 
    CAS 

    Google Scholar 
    Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochemical Cycles 29, 1044–1059 (2015).ADS 
    CAS 

    Google Scholar 
    Marsay, C. M. et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS 112, 1089–1094 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omand, M. M., Govindarajan, R., He, J. & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Sci. Rep. 10, 5582 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aumont, O. et al. Variable reactivity of particulate organic matter in a global ocean biogeochemical model. Biogeosciences 14, 2321–2341 (2017).ADS 
    CAS 

    Google Scholar 
    DeVries, T., Liang, J.-H. & Deutsch, C. A mechanistic particle flux model applied to the oceanic phosphorus cycle. Biogeosciences 11, 5381–5398 (2014).ADS 

    Google Scholar 
    DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochemical Cycles 31, 535–555 (2017).ADS 
    CAS 

    Google Scholar 
    Kriest, I. & Oschlies, A. On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles. Biogeosciences 5, 55–72 (2008).ADS 
    CAS 

    Google Scholar 
    Lutz, M., Dunbar, R. & Caldeira, K. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochemical Cycles 16, 11-1–11-18 (2002).
    Google Scholar 
    Pavia, F. J. et al. Shallow particulate organic carbon regeneration in the South Pacific Ocean. PNAS 116, 9753–9758 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cael, B. B. & Bisson, K. Particle flux parameterizations: quantitative and mechanistic similarities and differences. Front. Mar. Sci. 5, (2018).Cael, B. B. & White, A. E. Sinking versus suspended particle size distributions in the North Pacific Subtropical Gyre. Geophys. Res. Lett. 47, e2020GL087825 (2020).ADS 

    Google Scholar 
    Lam, P. J., Doney, S. C. & Bishop, J. K. B. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. Global Biogeochemical Cycles 25, (2011).Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochemical Cycles 32, 858–876 (2018).ADS 
    CAS 

    Google Scholar 
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. PNAS 116, 11824–11832 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grabowski, E., Letelier, R. M., Laws, E. A. & Karl, D. M. Coupling carbon and energy fluxes in the North Pacific Subtropical Gyre. Nat. Commun. 10, 1895 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karl, D. M., Knauer, G. A. & Martin, J. H. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438–441 (1988).ADS 

    Google Scholar 
    Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M. & Mahaffey, C. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. PNAS 109, 1842–1849 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Church, M. J. et al. Production and diversity of microorganisms associated with sinking particles in the subtropical North Pacific Ocean. Limnol. Oceanogr. 66, 3255–3270 (2021).ADS 
    CAS 

    Google Scholar 
    Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cho, B. C. & Azam, F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332, 441–443 (1988).ADS 
    CAS 

    Google Scholar 
    Giering, S. L. C. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).ADS 
    CAS 

    Google Scholar 
    Cavan, E. L., Henson, S. A. & Boyd, P. W. The sensitivity of subsurface microbes to ocean warming accentuates future declines in particulate carbon export. Front. Ecol. Evol. 6, (2019).McDonnell, A. M. P. & Buesseler, K. O. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55, 2085–2096 (2010).ADS 

    Google Scholar 
    Bendtsen, J., Hilligsøe, K. M., Hansen, J. L. S. & Richardson, K. Analysis of remineralisation, lability, temperature sensitivity and structural composition of organic matter from the upper ocean. Prog. Oceanogr. 130, 125–145 (2015).ADS 

    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).ADS 

    Google Scholar 
    Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 1–6 https://doi.org/10.1038/s41561-021-00817-x (2021).Biddanda, B. & Pomeroy, L. Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. I. Microbial succession. Mar. Ecol. Prog. Ser. 42, 79–88 (1988).ADS 

    Google Scholar 
    Dilling, L. & Alldredge, A. L. Fragmentation of marine snow by swimming macrozooplankton: a new process impacting carbon cycling in the sea. Deep Sea Res. Part I: Oceanographic Res. 47, 1227–1245 (2000).ADS 
    CAS 

    Google Scholar 
    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).ADS 
    CAS 

    Google Scholar 
    Burd, A. B. & Jackson, G. A. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90 (2009).ADS 

    Google Scholar 
    Romero‐Romero, S. et al. Deep zooplankton rely on small particles when particle fluxes are low. Limnol. Oceanogr. Lett. 5, 410–416 (2020).
    Google Scholar 
    Maas, A. E. et al. Migratory zooplankton excreta and its influence on prokaryotic communities. Front. Mar. Sci. 0, (2020).Möller, K. O. et al. Marine snow, zooplankton and thin layers: indications of a trophic link from small-scale sampling with the Video Plankton Recorder. Mar. Ecol. Prog. Ser. 468, 57–69 (2012).ADS 

    Google Scholar 
    Karakaş, G. et al. Impact of particle aggregation on vertical fluxes of organic matter. Prog. Oceanogr. 83, 331–341 (2009).ADS 

    Google Scholar 
    Cavan, E. L., Trimmer, M., Shelley, F. & Sanders, R. Remineralization of particulate organic carbon in an ocean oxygen minimum zone. Nat. Commun. 8, 1–9 (2017).
    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiørboe, T., Tang, K., Grossart, H.-P. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047 (2003).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P., Kiørboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: growth and interactions. Appl Environ. Microbiol 69, 3500–3509 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9, 2743 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirchman, D. L. Growth Rates of Microbes in the Oceans. Annu. Rev. Mar. Sci. 8, 285–309 (2016).ADS 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. PNAS https://doi.org/10.1073/pnas.1908512116 (2019).Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 1–8 (2015).
    Google Scholar 
    Tamburini, C. et al. Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res. Part II: Topical Stud. Oceanogr. 56, 1533–1546 (2009).ADS 
    CAS 

    Google Scholar 
    Tamburini, C., Garcin, J., Ragot, M. & Bianchi, A. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000 m water column in the NW Mediterranean. Deep Sea Res. Part II Topical Stud. Oceanogr. 49, 2109–2123 (2002).ADS 
    CAS 

    Google Scholar 
    Tamburini, C., Boutrif, M., Garel, M., Colwell, R. R. & Deming, J. W. Prokaryotic responses to hydrostatic pressure in the ocean – a review. Environ. Microbiol. 15, 1262–1274 (2013).CAS 
    PubMed 

    Google Scholar 
    Lambert, B. S., Fernandez, V. I. & Stocker, R. Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol. Oceanogr. Lett. 4, 113–118 (2019).
    Google Scholar 
    Ploug, H. & Grossart, H.-P. Bacterial growth and grazing on diatom aggregates: respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475 (2000).ADS 
    CAS 

    Google Scholar 
    Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535.e6 (2019).CAS 
    PubMed 

    Google Scholar 
    Kaul, R. B., Kramer, A. M., Dobbs, F. C. & Drake, J. M. Experimental demonstration of an Allee effect in microbial populations. Biol. Lett. 12, 20160070 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kiørboe, T., Ploug, H. & Thygesen, U. H. Fluid motion and solute distribution around sinking aggregates I: Small-scale fluxes and heterogeneity of nutrients in the pelagic environment. Mar. Ecol. – Prog. Ser. 211, 1–13 (2001).ADS 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318 (2001).ADS 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. The ISME Journal 1–14 https://doi.org/10.1038/s41396-020-00880-z (2021).Mestre, M. et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol. Ecol. 26, 6827–6840 (2017).CAS 
    PubMed 

    Google Scholar 
    Mislan, K. A. S., Stock, C. A., Dunne, J. P. & Sarmiento, J. L. Group behavior among model bacteria influences particulate carbon remineralization depths. J. Mar. Res. 72, 183–218(36) (2014).
    Google Scholar 
    Iversen, M. H., Nowald, N., Ploug, H., Jackson, G. A. & Fischer, G. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects. Deep Sea Res. Part I: Oceanographic Res. Pap. 57, 771–784 (2010).ADS 
    CAS 

    Google Scholar 
    Ilyina, T. et al. Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Modeling Earth Syst. 5, 287–315 (2013).ADS 

    Google Scholar 
    Garber, J. H. Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston. Estuar., Coast. Shelf Sci. 18, 685–702 (1984).ADS 
    CAS 

    Google Scholar 
    Zakem, E. J., Cael, B. B. & Levine, N. M. A unified theory for organic matter accumulation. PNAS https://doi.org/10.1101/2020.09.25.314021 (2021).Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, (2015).Alldredge, A. The carbon, nitrogen and mass content of marine snow as a function of aggregate size. Deep Sea Res. Part I: Oceanographic Res. Pap. 45, 529–541 (1998).ADS 
    CAS 

    Google Scholar 
    Zakem, E. J. et al. Ecological control of nitrite in the upper ocean. Nat. Commun. 9, 1206 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyd, P. W. et al. Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 2761–2792 (1999).ADS 
    CAS 

    Google Scholar 
    Schmidt, S., Chou, L. & Hall, I. R. Particle residence times in surface waters over the north-western Iberian Margin: comparison of pre-upwelling and winter periods. J. Mar. Syst. 32, 3–11 (2002).
    Google Scholar 
    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).ADS 
    CAS 

    Google Scholar 
    Dittmar, T. et al. Enigmatic persistence of dissolved organic matter in the ocean. Nat. Rev. Earth Environ. 2, 570–583 (2021).ADS 
    CAS 

    Google Scholar 
    Poff, K. E., Leu, A. O., Eppley, J. M., Karl, D. M. & DeLong, E. F. Microbial dynamics of elevated carbon flux in the open ocean’s abyss. PNAS 118, (2021).Pelve, E. A., Fontanez, K. M. & DeLong, E. F. Bacterial Succession on Sinking Particles in the Ocean’s Interior. Front. Microbiol. 8, (2017).Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Riley, J. S. et al. The relative contribution of fast and slow sinking particles to ocean carbon export. Global Biogeochemical Cycles 26, (2012).Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res. Part II: Topical Stud. Oceanogr. 48, 1405–1447 (2001).ADS 
    CAS 

    Google Scholar 
    Conte, M. H., Dickey, T. D., Weber, J. C., Johnson, R. J. & Knap, A. H. Transient physical forcing of pulsed export of bioreactive material to the deep Sargasso Sea. Deep Sea Res. Part I: Oceanographic Res. Pap. 50, 1157–1187 (2003).ADS 
    CAS 

    Google Scholar 
    Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M. & Kahru, M. Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc. Natl Acad. Sci. USA 115, 12235–12240 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alkire, M. B. et al. Estimates of net community production and export using high-resolution, Lagrangian measurements of O2, NO3−, and POC through the evolution of a spring diatom bloom in the North Atlantic. Deep Sea Res. Part I: Oceanographic Res. Pap. 64, 157–174 (2012).ADS 
    CAS 

    Google Scholar 
    Briggs, N. et al. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep Sea Res. Part I: Oceanographic Res. Pap. 58, 1031–1039 (2011).ADS 

    Google Scholar 
    Talmy, D. et al. An empirical model of carbon flow through marine viruses and microzooplankton grazers. Environ. Microbiol. 21, 2171–2181 (2019).CAS 
    PubMed 

    Google Scholar 
    Kostadinov, T. S., Milutinović, S., Marinov, I. & Cabré, A. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution. Ocean Sci. 12, 561–575 (2016).ADS 
    CAS 

    Google Scholar 
    Jin, X., Gruber, N., Dunne, J. P., Sarmiento, J. L. & Armstrong, R. A. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochemical Cycles 20, (2006).Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, L. & Pilcher, D. Phytoplankton size impact on export flux in the global ocean. Glob. Biogeochemical Cycles 30, 1542–1562 (2016).ADS 
    CAS 

    Google Scholar  More

  • in

    Native range estimates for red-listed vascular plants

    Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Biodiversity Synthesis. (World Resources Institute, 2005).Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).
    Google Scholar 
    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).
    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science (80-.). 353, 288–291 (2016).ADS 
    CAS 

    Google Scholar 
    Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations. Transforming our World: the 2030 Agenda for Sustainable Development. A/RES/70/1 (United Nations, 2015).Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science (80-.). 366, eaax3100 (2019).Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science (80-.). 344, 1109–1113 (2014).ADS 
    CAS 

    Google Scholar 
    Chaudhary, A. & Brooks, T. M. National Consumption and Global Trade Impacts on Biodiversity. World Dev. 121, 178–187 (2019).
    Google Scholar 
    Pereira, H. M., Ziv, G. & Miranda, M. Countryside Species-Area Relationship as a Valid Alternative to the Matrix-Calibrated Species-Area Model. Conserv. Biol. 28, 874–876 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lomolino, M. V & Heaney, L. R. Frontiers of Biogeography: New Directions in the Geography of Nature. (Sinauer Associates Inc. Publishers, 2004).World Wildlife Fund. WildFinder: Online database of species distributions. http://www.worldwildlife.org/WildFinder (2006).BirdLife International. IUCN Red List for birds. http://www.birdlife.org (2019).IUCN. The IUCN Red List of Threatened Species. Version 2021-1 https://www.iucnredlist.org (2021).Curran, M. et al. Toward Meaningful End Points of Biodiversity in Life Cycle Assessment. Environ. Sci. Technol. 45, 70–79 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woods, J. S. et al. Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward. Int. J. Life Cycle Assess. 23, 1995–2006 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop.). 36, 1058–1069 (2013).
    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (Cop.). 43, 1261–1277 (2020).
    Google Scholar 
    Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographical Scheme for Recording Plant Distributions. International Working Group on Taxonomic Databases (TDWG) https://www.tdwg.org/standards/wgsrpd/ (2001).GBIF. The Global Biodiversity Information Facility: What is GBIF? https://www.gbif.org/what-is-gbif (2021).Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.0). http://biodiversityinformatics.amnh.org/open_source/maxent/ (2016).Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. Proc. Twenty-first Int. Conf. Mach. Learn. 655–662 (2004).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography (Cop.). 40, 887–893 (2017).
    Google Scholar 
    Reddy, S. & Dávalos, L. M. Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr. 30, 1719–1727 (2003).
    Google Scholar 
    Hortal, J., Jiménez-Valverde, A., Gómez, J. F., Lobo, J. M. & Baselga, A. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117, 847–858 (2008).
    Google Scholar 
    Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Linn. Soc. 115, 522–531 (2015).
    Google Scholar 
    Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140 (2011).
    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
    Google Scholar 
    ter Steege, H. et al. Hyperdominance in the Amazonian Tree Flora. Science (80-.). 342, 1243092 (2013).
    Google Scholar 
    Kuipers, K. J. J., Hellweg, S. & Verones, F. Potential Consequences of Regional Species Loss for Global Species Richness: A Quantitative Approach for Estimating Global Extinction Probabilities. Environ. Sci. Technol. 53, 4728–4738 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gade, A. L., Hauschild, M. Z. & Laurent, A. Globally differentiated effect factors for characterising terrestrial acidification in life cycle impact assessment. Sci. Total Environ. 761, 143280 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Géron, C. et al. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biol. Invasions 23, 1765–1779 (2021).
    Google Scholar 
    Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).PubMed 

    Google Scholar 
    Bachman, S., Moat, J., Hill, A., de la Torre, J. & Scott, B. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. Zookeys 150, 117–126 (2011).
    Google Scholar 
    Cardoso, P. red – an R package to facilitate species red list assessments according to the IUCN criteria. Biodivers. Data J. 5, e20530 (2017).
    Google Scholar 
    Lee, C. K. F., Keith, D. A., Nicholson, E. & Murray, N. J. Redlistr: tools for the IUCN Red Lists of ecosystems and threatened species in R. Ecography (Cop.). 42, 1050–1055 (2019).
    Google Scholar 
    Bachman, S., Walker, B., Barrios, S., Copeland, A. & Moat, J. Rapid Least Concern: towards automating Red List assessments. Biodivers. Data J. 8 (2020).POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/ (2021).Chamberlain, S. et al. taxize: Taxonomic information from around the web. R package version 0.9.98. https://github.com/ropensci/taxize (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.r-project.org/ (2021).ITIS. Integrated Taxonomic Information System. https://www.itis.gov/ (2021).Wickham, H. rvest: Easily Harvest (Scrape) Web Pages. R package version 0.3.5. https://cran.r-project.org/package=rvest (2019).Desmet, P. & Page, R. WGSRPD. GitHub repository https://github.com/tdwg/wgsrpd (2018).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0. https://cran.r-project.org/package=rgbif (2021).GBIF. GBIF Occurrence Download. https://doi.org/10.15468/dl.uvd56q (2021).Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E. & Knutti, R. Climate change now detectable from any single day of weather at global scale. Nat. Clim. Chang. 10, 35–41 (2020).ADS 

    Google Scholar 
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. https://cran.r-project.org/package=raster (2019).Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop.). 29, 773–785 (2006).
    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).
    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop.). 31, 161–175 (2008).
    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    Anderson, R. P. & Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37, 1378–1393 (2010).
    Google Scholar 
    Själander, M., Jahre, M., Tufte, G. & Reissmann, N. EPIC: An Energy-Efficient, High-Performance GPGPU Computing Research Infrastructure. arXiv 1–4 (2019).Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.1-4. https://cran.r-project.org/package=dismo (2017).Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad, Dataset https://doi.org/10.5061/dryad.kd1d4 (2018).ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2017).Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography (Cop.). 38, 541–545 (2015).
    Google Scholar 
    Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. in 2nd International Symposium on Information Theory (eds. Petrov, B. N. & Csaki, F.) 267–281 (Akademia Kiado, 1973).Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).MathSciNet 
    MATH 

    Google Scholar 
    Sugiura, N. Further analysts of the data by akaike’ s information criterion and the finite corrections. Commun. Stat. – Theory Methods 7, 13–26 (1978).MATH 

    Google Scholar 
    Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17 (2013).
    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).PubMed 

    Google Scholar 
    Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37, 17 (1950).MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Borgelt, J., Sicacha-Parada, J., Skarpaas, O. & Verones, F. Native range estimates for red-listed vascular plants. Dryad, Dataset https://doi.org/10.5061/dryad.qbzkh18h9 (2022).Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940–3941 (2005).CAS 
    PubMed 

    Google Scholar 
    Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics 31, 2595–2597 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression. The Statistician 45 (Wiley, 2013).Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
    Google Scholar 
    Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision‐recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10, 565–577 (2019).
    Google Scholar 
    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed 

    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Br. 12, 662–666 (2017).
    Google Scholar 
    Rivers, M. C. Laburnum anagyroides. The IUCN Red List of Threatened Species 2017: e.T79919483A79919650 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T79919483A79919650.en (2017).Botanic Gardens Conservation International Group & IUCN SSC Global Tree Specialist. Terminalia macrostachya. The IUCN Red List of Threatened Species 2019: e.T150118895A150118897 https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T150118895A150118897.en (2019).Heil, K., Terry, M. & Corral-Díaz, R. Mammillaria grahamii (amended version of 2013 assessment). The IUCN Red List of Threatened Species 2017: e.T152723A121546147 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T152723A121546147.en (2017).Brooker, M. & Kleinig, D. Field Guide to Eucalypts. (Bloomings Books, 2006).Koopman, M. M. A synopsis of the Malagasy endemic genus Megistostegium Hochr. (Hibisceae, Malvaceae). Adansonia 33, 101–113 (2011).
    Google Scholar 
    World Conservation Monitoring Centre. Memecylon elegantulum. The IUCN Red List of Threatened Species 1998: e.T32597A9713234 https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32597A9713234.en (1998).Landrum, L. R. A revision of the Psidium salutare complex (Myrtaceae). SIDA, Contrib. to Bot. 20, 1449–1469 (2003).
    Google Scholar 
    Tropical Plants Database. Ken Fern. tropical.theferns.info https://tropical.theferns.info/viewtropical.php?id=Psidium+salutare (2021).Bernal, R., Gradstein, S. R. & Celis, M. Siparuna conica S.S.Renner & Hausner. Catálogo de plantas y líquenes de Colombia http://catalogoplantasdecolombia.unal.edu.co (2015).Renner, S. S. & Hausner, G. New Species of Siparuna (Monimiaceae) II. Seven New Species from Ecuador and Colombia. Missouri Bot. Gard. Press 6, 103–116 (1996).
    Google Scholar 
    Melendo, M., Giménez, E., Cano, E., Mercado, F. G. & Valle, F. The endemic flora in the south of the Iberian Peninsula: taxonomic composition, biological spectrum, pollination, reproductive mode and dispersal. Flora – Morphol. Distrib. Funct. Ecol. Plants 198, 260–276 (2003).
    Google Scholar 
    Chari, L. D., Martin, G. D., Steenhuisen, S.-L., Adams, L. D. & Clark, V. R. Biology of Invasive Plants 1. Pyracantha angustifolia (Franch.) C.K. Schneid. Invasive Plant Sci. Manag. 13, 120–142 (2020).
    Google Scholar 
    Sasidharan, N. Amomum pterocarpum Thwaites. India Biodiversity Portal https://indiabiodiversity.org/species/show/258864#habitat-and-distribution (2013).Contu, S. Amomum pterocarpum. The IUCN Red List of Threatened Species 2013: e.T44393013A44450020 https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T44393013A44450020.en (2013).Babyrose Devi, N., Das, A. & Singh, P. Amomum Pterocarpum (Zingiberaceae): a new record in the flora of Manipur. Int. J. Adv. Res. 6, 546–549 (2018).
    Google Scholar 
    Jetz, W., Sekercioglu, C. H. & Watson, J. E. M. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–9 (2008).PubMed 

    Google Scholar 
    Gibbs, D. & Khela, S. Magnolia pugana. The IUCN Red List of Threatened Species 2014: e.T194806A2363344 https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T194806A2363344.en (2014).Sayer, C. Vallesia glabra. The IUCN Red List of Threatened Species 2015: e.T62543A72668627 https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T62543A72668627.en (2015).Sánchez Gómez, P., Stevens, D., Fennane, M., Gardner, M. & Thomas, P. Tetraclinis articulata. The IUCN Red List of Threatened Species 2011: e.T30318A9534227 https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T30318A9534227.en (2011).Article 

    Google Scholar 
    Stritch, L., Roy, S., Shaw, K. & Wilson, B. Corylus cornuta (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T194448A115337731 https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T194448A2336319.en (2016).Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 
    Rivers, M. C. Cotoneaster cambricus. The IUCN Red List of Threatened Species 2017: e.T102827479A102827485 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T102827479A102827485.en (2017).RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/package=rgdal (2019).Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 0.9-5. https://cran.r-project.org/package=maptools/ (2019).Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). R package version 0.5-1. https://cran.r-project.org/package=rgeos (2019).Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R. (Springer New York, 2013).Phillips, S. J. & Elith, J. POC plots: calibrating species distribution models with presence-only data. Ecology 91, 2476–2484 (2010).PubMed 

    Google Scholar 
    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104, 13384–13389 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).PubMed 

    Google Scholar  More