More stories

  • in

    Publisher Correction: Heterogeneity within and among co-occurring foundation species increases biodiversity

    Marine Ecology Research Group and Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New ZealandMads S. Thomsen, Luca Mondardini, David R. Schiel & Alfonso SicilianoDepartment of Bioscience, Aarhus University, 4000, Roskilde, DenmarkMads S. ThomsenSmithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of PanamaAndrew H. Altieri, Viktoria M. M. Frühling, Seamus B. Harrison & Gerhard ZotzEnvironmental Engineering Sciences, University of Florida, Gainesville, FL, USAAndrew H. Altieri & Christine AngeliniDepartment of Biological Sciences, Macquarie University, Sydney, NSW, AustraliaMelanie J. Bishop & Semonn OleksynDipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, ItalyFabio Bulleri & Joachim LangeneckMarine Sciences, University of Georgia, Athens, GA, USARoxanne FarhanCentre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, AustraliaPaul E. Gribben & Brendan S. LanhamSydney Institute of Marine Science, Chowder Bay Road, Mosman, 2088, Sydney, NSW, AustraliaPaul E. Gribben & Brendan S. LanhamCoastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, 200438, Shanghai, ChinaQiang HeInstitute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, GermanyMoritz Klinghardt, Tristan Schneider & Gerhard ZotzSchool of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, AustraliaYannick Mulders & Thomas WernbergDepartment of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USAAaron P. RamusNicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC, USABrian R. Silliman & Stacy ZhangMarine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UKDan A. SmaleCawthron Institute, Nelson, New ZealandPaul M. South More

  • in

    Mapping the purple menace: spatiotemporal distribution of purple loosestrife (Lythrum salicaria) along roadsides in northern New York State

    Lázaro-Lobo, A. & Ervin, G. N. A global examination on the differential impacts of roadsides on native versus exotic and weedy plant species. Glob. Ecol. Conserv. 17(e00555), 1–13 (2019).
    Google Scholar 
    Christen, D. C. & Matlack, G. R. The habitat and conduit functions of roads in the spread of three invasive plant species. Biol. Invasions 11(2), 453–465 (2009).Article 

    Google Scholar 
    Mortensen, D. A., Rauschert, E. S., Nord, A. N. & Jones, B. P. Forest roads facilitate the spread of invasive plants. Invasive Plant Sci. Manag. 2(3), 191–199 (2009).Article 

    Google Scholar 
    Lemke, A., Kowarik, I. & von der Lippe, M. How traffic facilitates population expansion of invasive species along roads: The case of common ragweed in Germany. J. Appl. Ecol. 56(2), 413–422 (2019).Article 

    Google Scholar 
    Rauschert, E. S., Mortensen, D. A. & Bloser, S. M. Human-mediated dispersal via rural road maintenance can move invasive propagules. Biol. Invasions 19(7), 2047–2058 (2017).Article 

    Google Scholar 
    Meunier, G. & Lavoie, C. Roads as corridors for invasive plant species: New evidence from smooth bedstraw (Galium mollugo). Invasive Plant Sci. Manag. 5(1), 92–100 (2012).Article 

    Google Scholar 
    Mohit, S., Johnson, T. B. & Arnott, S. E. Recreational watercraft decontamination: Can current recommendations reduce aquatic invasive species spread?. Manag. Biol. Invasions 12(1), 148–164 (2021).Article 

    Google Scholar 
    Ferguson, L., Duncan, C. L., & Snodgrass, K. Backcountry road maintenance and weed management. United States: U.S. Department of Agriculture, Forest Service, Technology & Development Program. 22pp (2003). At https://www.google.com/books/edition/Backcountry_Road_Maintenance_and_Weed_Ma/y2amRwT1rIsC?hl=en&gbpv=0.Lelong, B., Lavoie, C., Jodoin, C. & Belzile, F. Expansion pathways of the exotic common reed (Phragmites australis): A historical and genetic analysis. Divers. Distrib. 13, 430–437 (2007).Article 

    Google Scholar 
    Joly, M. et al. Paving the way for invasive species: Road type and the spread of common ragweed (Ambrosia artemisiifolia). Environ. Manag. 48(3), 514–522 (2011).ADS 
    Article 

    Google Scholar 
    Thompson, D. Q., Stuckey, R. L. & Thompson, E. B. Spread, impact, and control of purple loosestrife (Lythrum salicaria) in North American wetlands. U. S. Fish and Wildlife Service (1987). At http://stoppinginvasives.com/dotAsset/670d2f92-cd0c-41ab-9955-7204f1a9a192.pdf.Stuckey, R. L. Distributional history of Lythrum salicaria (purple loosestrife) in North America. Bartonia 47, 3–20 (1980).
    Google Scholar 
    Blossey, B., Skinner, L. C. & Taylor, J. Impact and management of purple loosestrife (Lythrum salicaria) in North America. Biodivers. Conserv. 10(10), 1787–1807 (2001).Article 

    Google Scholar 
    Wilcox, D. A. Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors. Environ. Manag. 13(3), 365–370 (1989).ADS 
    Article 

    Google Scholar 
    St. Louis, E., Stastny, M. & Sargent, R. D. The impacts of biological control on the performance of Lythrum salicaria 20 years post-release. Biol. Control. 140, 104–123 (2020).Article 

    Google Scholar 
    NYSDOT Environmental Science Bureau. Environmental Handbook for Transportation Operations: A Summary of the Environmental Requirements and Best Practices for Maintaining the Constructing Highways and Transportation Systems. Prepared by NYSDOT Environmental Science Bureau, (2011) At https://www.dot.ny.gov/divisions/engineering/environmental-analysis/repository/oprhbook.pdf.Blossey, B., Schroeder, D., Hight, S. D. & Malecki, R. A. Host specificity and environmental impact of two leaf beetles (Galerucella calmariensis and G. pusilla) for biological control of purple loosestrife (Lythrum salicaria). Weed Sci. 42, 134–140 (1994).Article 

    Google Scholar 
    Blossey, B. Before, during and after: The need for long-term monitoring in invasive plant species management. Biol. Invasions 1, 301–311 (1999).Article 

    Google Scholar 
    Blossey, B. & Hunt, T. R. Mass rearing methods for Galerucella calmariensis and G. pusilla (Coleoptera: Chrysomelidae), biological control agents of Lythrum salicaria (Lythraceae). J. Econ. Entomol. 92(2), 325–334 (1999).CAS 
    Article 

    Google Scholar 
    Grevstad, F. S. Ten-year impacts of the biological control agents Galerucella pusilla and G. calmariensis (Coleoptera: Chrysomelidae) on purple loosestrife (Lythrum salicaria) in Central New York State. Biol. Control 39(1), 1–8 (2006).Article 

    Google Scholar 
    Boag, A. E. & Eckert, C. G. The effect of host abundance on the distribution and impact of biocontrol agents on purple loosestrife (Lythrum salicaria, Lythraceae). Écoscience 20(1), 90–99 (2013).Article 

    Google Scholar 
    Lakoba, V. T., Brooks, R. K., Haak, D. C. & Barney, J. N. An Analysis of US State regulated weed lists: A discordance between biology and policy. Bioscience 70(9), 804–813 (2020).Article 

    Google Scholar 
    Welling, C. H. & Becker, R. L. Seed bank dynamics of Lythrum salicaria L.: Implications for control of this species in North America. Aquat. Bot. 38, 303–309 (1990).Article 

    Google Scholar 
    Brown, B. J. & Wickstrom, C. E. Adventitious root production and survival of purple loosestrife (Lythrum salicaria) shoot sections. Ohio J. Sci. 97, 2–4 (1997).
    Google Scholar 
    Farnsworth, E. J. & Ellis, D. R. Is purple loosestrife (Lythrum salicaria) an invasive threat to freshwater wetlands? Conflicting evidence from several ecological metrics. Wetlands 21(2), 199–209 (2001).Article 

    Google Scholar 
    Mahaney, W. M., Smemo, K. A. & Yavitt, J. B. Impacts of Lythrum salicaria invasion on plant community and soil properties in two wetlands in central New York, USA. Botany 84(3), 477–484 (2006).
    Google Scholar 
    Treberg, M. A. & Husband, B. C. Relationship between the abundance of Lythrum salicaria (purple loosestrife) and plant species richness along the Bar River Canada. Wetlands 19(1), 118–125 (1999).Article 

    Google Scholar 
    Hager, H. & Vinebrooke, R. E. Positive relationships between invasive purple loosestrife (Lythrum salicaria) and plant species diversity and abundance in Minnesota wetlands. Can. J. Bot. 82(6), 763–773 (2004).Article 

    Google Scholar 
    Lavoie, C. Should we care about purple loosestrife? The history of an invasive plant in North America. Biol. Invasions 12(7), 1967–1999 (2010).Article 

    Google Scholar 
    Fickbohm, S. S. & Zhu, W. X. Exotic purple loosestrife invasion of native cattail freshwater wetlands: Effects on organic matter distribution and soil nitrogen cycling. Appl. Soil. Ecol. 32(1), 123–131 (2006).Article 

    Google Scholar 
    Ramula, S. Annual mowing has the potential to reduce the invasion of herbaceous Lupinus polyphyllus. Biol. Invasions 22(10), 3163–3173 (2020).Article 

    Google Scholar 
    Milakovic, I., Fiedler, K. & Karrer, G. Management of roadside populations of invasive Ambrosia artemisiifolia by mowing. Weed Res. 54(3), 256–264 (2014).Article 

    Google Scholar 
    Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: The contribution of traffic and mowing machines. Neobiota 8, 53–60 (2009).
    Google Scholar 
    Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29(1), 207–231 (1998).Article 

    Google Scholar 
    Milt, A. W. et al. Minimizing opportunity costs to aquatic connectivity restoration while controlling an invasive species. Conserv. Biol. 32(4), 894–904 (2018).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC. (2021). URL http://www.rstudio.com/.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021). https://www.R-project.org/.U. S. Fish and Wildlife Service. National Wetlands Inventory. http://www.fws.gov/wetlands/ (2020).Yakimowski, S. B., Hager, H. A. & Eckert, C. G. Limits and effects of invasion by the nonindigenous wetland plant Lythrum salicaria (purple loosestrife): A seed bank analysis. Biol. Invasions 7, 687–698 (2005).Article 

    Google Scholar 
    Thomas, S. M. & Moloney, K. A. Combining the effects of surrounding land-use and propagule pressure to predict the distribution of an invasive plant. Biol. Invasions 17, 477–495 (2015).Article 

    Google Scholar 
    Barbier, E. B., Knowler, D., Gwatipedza, J., Reichard, S. H. & Hodges, A. R. Implementing policies to control invasive plant species. Bioscience 63(2), 132–138 (2013).Article 

    Google Scholar 
    Blossey, B. Measuring and Evaluating Ecological Outcomes of Biological Control Introductions. In Integrating Biological Control into Conservation Practice (eds Van Driesche, R. et al.) 161–188 (Wiley, 2016).Chapter 

    Google Scholar 
    Rowell, N. Warren County Purple Loosestrife Management Program Final Report. (2015). At https://www.warrenswcd.org/reports.html.Vanneste, T. et al. Plant diversity in hedgerows and road verges across Europe. J. Appl. Ecol. 57(7), 1244–1257 (2020).Article 

    Google Scholar 
    Auffret, A. G. & Lindgren, E. Roadside diversity in relation to age and surrounding source habitat: Evidence for long time lags in valuable green infrastructure. Ecol. Solut. Evid. 1(1), e12005 (2020).Article 

    Google Scholar 
    Mccleery, R. A., Holdorf, A. R., Hubbard, L. L. & Peer, B. D. Maximizing the wildlife conservation value of road right-of-ways in an agriculturally dominated lands. Plos one 10(3), e0120375 (2015).Article 

    Google Scholar 
    New York Invasive Species Information (NYISI). Purple Loosestrife. (2019). at http://nyis.info/invasive_species/purple-loosestrife.Rogers, J. Controlling purple loosestrife (Lythrum Salicaria) along roadsides in St. Lawrence County: Monitoring and biological controls. Adirondack J. Environ. Stud. 23(1), 5 (2019).
    Google Scholar 
    New York State Department of Transportation. Clear Zones. (2021). At https://www.dot.ny.gov/divisions/engineering/environmental-analysis/landscape/trees/rs-lsf-plant-photos.ESRI. ArcGIS Pro: Version 2.9: Environmental System Research Institute. (2021). At https://pro.arcgis.com/en/pro-app/latest/get-started/get-started.htm.IBM Corp. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp. Released 2017. More

  • in

    Spatial ecology, activity patterns, and habitat use by giant pythons (Simalia amethistina) in tropical Australia

    Seigel, R. A. & Ford, N. B. Reproductive ecology in Snakes: Ecology and Evolutionary Biology (eds. Seigel, R. A., Collins, J. T. &. Novak, S. S.). 210–252. (MacMillan Publishing, 1987).Kremen, C., Merenlender, A. M. & Murphy, D. D. Ecological monitoring: A vital need for integrated conservation and development programs in the tropics. Conserv. Biol. 8, 388–397 (1994).
    Google Scholar 
    Shine, R. & Bonnet, X. Snakes: A new ‘model organism’ in ecological research?. Trends Ecol. Evol. 15, 221–222 (2000).CAS 
    PubMed 

    Google Scholar 
    Vilela, B., Villalobos, F., Rodríguez, M. Á. & Terribile, L. C. Body size, extinction risk and knowledge bias in New World snakes. PLoS ONE 9, e113429 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mathies, T. Reproductive cycles of tropical snakes. in Reproductive Biology and Phylogeny of Snakes (eds. Sever, D. & Aldridge, R.). 523–562. (CRC Press, 2016).Shine, R., Harlow, P. S. & Keogh, J. S. The allometry of life-history traits: Insights from a study of giant snakes (Python reticulatus). J. Zool. 244, 405–414 (1998).
    Google Scholar 
    Natusch, D. J., Lyons, J. A., Riyanto, A., Khadiejah, S. & Shine, R. Detailed biological data are informative, but robust trends are needed for informing sustainability of wildlife harvesting: A case study of reptile offtake in Southeast Asia. Biol. Conserv. 233, 83–92 (2019).
    Google Scholar 
    Freeman, A. & Freeman, A. Habitat use in a large rainforest python (Morelia kinghorni) in the wet tropics of north Queensland, Australia. Herpetol. Conserv. Biol. 4, 252–260 (2009).
    Google Scholar 
    Smith, S. N., Jones, M. D., Marshall, B. M. & Strine, C. T. Native Burmese pythons exhibit site fidelity and preference for aquatic habitats in an agricultural mosaic. Sci. Rep. 11, 7014 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999).
    Google Scholar 
    Spong, G. Space use in lions, Panthera leo, in the Selous Game Reserve: Social and ecological factors. Behav. Ecol. Sociobiol. 52, 303–307 (2002).
    Google Scholar 
    Webb, J. K. & Shine, R. A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biol. Conserv. 82, 203–217 (1997).
    Google Scholar 
    Fearn, S. & Sambono, J. A reliable size record for the scrub python Morelia amethistina (Serpentes: Pythonidae) in north east Queensland. Herpetofauna 30, 2–6 (2000).
    Google Scholar 
    Grow, D., Wheeler, S. & Clark, B. Reproduction of the Amethystine python Python amethystinus kinghorni at the Oklahoma City Zoo. Int. Zoo Year. 27, 241–244 (1988).
    Google Scholar 
    Feldman, A. & Meiri, S. Length–mass allometry in snakes. Biol. J. Linn. Soc. 108, 161–172 (2013).
    Google Scholar 
    Harvey, M. B., Barker, D. G., Ammerman, L. K. & Chippindale, P. T. Systematics of pythons of the Morelia amethistina complex (Serpentes: Boidae) with the description of three new species. Herpetol. Monogr. 14, 139–185 (2000).
    Google Scholar 
    Fearn, S., Schwarzkopf, L. & Shine, R. Giant snakes in tropical forests: A field study of the Australian scrub python, Morelia kinghorni. Wildl. Res. 32, 193–201 (2005).
    Google Scholar 
    Natusch, D. J. D., Lyons, J. A. & Shine, R. Rainforest pythons flexibly adjust foraging ecology to exploit seasonal concentrations of prey. J. Zool. 313, 114–123 (2021).
    Google Scholar 
    Martin, R. W. Field observation of predation on Bennett’s tree-kangaroo (Dendrolagus bennettianus) by an amethystine python (Morelia amethistina). Herpetol. Rev. 26, 74–75 (1995).
    Google Scholar 
    Natusch, D., Lyons, J., Mears, L. A. & Shine, R. Biting off more than you can chew: Attempted predation on a human by a giant snake (Simalia amethistina). Austral. Ecol. 46, 159–162 (2021).
    Google Scholar 
    Neldner, V. J. & Clarkson, J. R. Vegetation of Cape York Peninsula. (Department of Environment and Heritage, 1995).Bureau of Meteorology. Climate Data Online. http://www.bom.gov.au/climate/data/. Accessed 17 July 2020 (2020).Whitaker, P. B. & Shine, R. A radiotelemetric study of movements and shelter-site selection by free-ranging brownsnakes (Pseudonaja textilis, Elapidae). Herpetol. Monogr. 17, 130–144 (2003).
    Google Scholar 
    Harris, S. et al. Home-range analysis using radio-tracking data–A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123 (1990).
    Google Scholar 
    Fearn, S. & Sambono, J. Some ambush predation postures of the Scrub Python Morelia amethistina (Serpentes: Pythonidae) in north east Queensland. Herpetofauna 30, 39–44 (2000).
    Google Scholar 
    Caswell, H. Theory and models in ecology: A different perspective. Ecol. Model. 43, 33–44 (1988).
    Google Scholar 
    Silva, I., Crane, M., Marshall, B. M. & Strine, C. T. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian bridge movement models. Move. Ecol. 8, 43 (2020).
    Google Scholar 
    Row, J. R. & Blouin-Demers, G. Kernels are not accurate estimators of home-range size for herpetofauna. Copeia 2006, 797–802 (2006).
    Google Scholar 
    Newman, P., Dwyer, R. G., Belbin, L. & Campbell, H. A. ZoaTrack—An online tool to analyse and share animal location data: User engagement and future perspectives. Aust. Zool. 41, 12–18. https://zoatrack.org/toolkit/doi (2020).Pearson, D. J. & Shine, R. Expulsion of interperitoneally-implanted radiotransmitters by Australian pythons. Herpetol. Rev. 33, 261–263 (2002).
    Google Scholar 
    Hale, V. L. et al. Radio transmitter implantation and movement in the wild timber rattlesnake (Crotalus horridus). J. Wildl. Dis. 53, 591–595 (2017).PubMed 

    Google Scholar 
    Martin, A. E., Jørgensen, D. & Gates, C. C. Costs and benefits of straight versus tortuous migration paths for Prairie Rattlesnakes (Crotalus viridis viridis) in seminatural and human-dominated landscapes. Can. J. Zool. 95, 921–928 (2017).
    Google Scholar 
    Glaudas, X., Rice, S. E., Clark, R. W. & Alexander, G. J. Male energy reserves, mate-searching activities, and reproductive success: Alternative resource use strategies in a presumed capital breeder. Oecologia 194, 415–425 (2020).ADS 
    PubMed 

    Google Scholar 
    Glaudas, X., Rice, S. E., Clark, R. W. & Alexander, G. J. The intensity of sexual selection, body size and reproductive success in a mating system with male–male combat: is bigger better?. Oikos 129, 998–1011 (2020).
    Google Scholar 
    Gannon, V. P. J. & Secoy, D. M. Seasonal and daily activity patterns in a Canadian population of the prairie rattlesnake, Crotalus viridus viridis. Can. J. Zool. 63, 86–91 (1985).
    Google Scholar 
    Heard, G. W., Black, D. & Robertson, P. Habitat use by the inland carpet python (Morelia spilota metcalfei: Pythonidae): Seasonal relationships with habitat structure and prey distribution in a rural landscape. Austral. Ecol. 29, 446–460 (2004).
    Google Scholar 
    Madsen, T. & Shine, R. Seasonal migration of predators and prey—A study of pythons and rats in tropical Australia. Ecology 77, 149–156 (1996).
    Google Scholar 
    Graves, B. M. & Duvall, D. Reproduction, rookery use, and thermoregulation in free-ranging, pregnant Crotalus v. viridis. J. Herpetol. 27, 33–41 (1993).
    Google Scholar 
    Chiaraviglio, M. The effects of reproductive condition on thermoregulation in the Argentina boa constrictor (Boa constrictor occidentalis) (Boidae). Herpetol. Monogr. 20, 172–177 (2006).
    Google Scholar 
    Smith, C. F., Schuett, G. W., Earley, R. L. & Schwenk, K. The spatial and reproductive ecology of the copperhead (Agkistrodon contortrix) at the northeastern extreme of its range. Herpetol. Monogr. 23, 45–73 (2009).
    Google Scholar 
    Shine, R. & Fitzgerald, M. Large snakes in a mosaic rural landscape: The ecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Biol. Conserv. 76, 113–122 (1996).
    Google Scholar 
    Heard, G. W. et al. Canid predation: A potentially significant threat to relic populations of the Inland Carpet Python ‘Morelia spilota metcalfei’ (Pythonidae) in Victoria. Vic. Nat. 123, 68–74 (2006).
    Google Scholar 
    Downes, S. & Shine, R. Sedentary snakes and gullible geckos: Predator–prey coevolution in nocturnal rock-dwelling reptiles. Anim. Behav. 55, 1373–1385 (1998).CAS 
    PubMed 

    Google Scholar 
    Miller, A. K., Maritz, B., McKay, S., Glaudas, X. & Alexander, G. J. An ambusher’s arsenal: chemical crypsis in the puff adder (Bitis arietans). Proc. R. Soc. B 282, 20152182 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Maritz, B. & Alexander, G. J. Dwarfs on the move: Spatial ecology of the world’s smallest viper, Bitis schneideri. Copeia 2012, 115–120 (2012).
    Google Scholar 
    Stirrat, S. C. Seasonal changes in home-range area and habitat use by the agile wallaby (Macropus agilis). Wildl. Res. 30, 593–600 (2003).
    Google Scholar 
    Ayers, D. Y. & Shine, R. Thermal influences on foraging ability: Body size, posture and cooling rate of an ambush predator, the python Morelia spilota. Funct. Ecol. 11, 342–347 (1997).
    Google Scholar 
    Pearson, D., Shine, R. & Williams, A. Spatial ecology of a threatened python (Morelia spilota imbricata) and the effects of anthropogenic habitat change. Austral. Ecol. 30, 261–274 (2005).
    Google Scholar 
    Freeman, A. A study in power and grace: The amethystine python. Wildl. Aust. 53, 27–29 (2016).
    Google Scholar 
    Silva, I., Crane, M., Suwanwaree, P., Strine, C. & Goode, M. Using dynamic Brownian bridge movement models to identify home range size and movement patterns in king cobras. PLoS ONE 13, e0203449 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, B. M. et al. Space fit for a king: Spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphibia-Reptilia 40, 163–178 (2019).
    Google Scholar 
    Udyawer, V., Simpfendorfer, C. A., Heupel, M. R. & Clark, T. D. Temporal and spatial activity-associated energy partitioning in free-swimming sea snakes. Funct. Ecol. 31, 1739–1749 (2017).
    Google Scholar 
    Smaniotto, N. P., Moreira, L. F., Rivas, J. A. & Strüssmann, C. Home range size, movement, and habitat use of yellow anacondas (Eunectes notaeus). Salamandra 56, 159–167 (2020).
    Google Scholar 
    Low, M. R. Rescue, rehabilitation and release of reticulated pythons in Singapore. in Global Reintroduction Perspectives: 2018. Case Studies from Around the Globe (ed. Soorae, P. S.) 78–81 (IUCN/SSC Reintroduction Specialist Group, 2018).Alexander, G. J. & Maritz, B. Sampling interval affects the estimation of movement parameters in four species of African snakes. J. Zool. 297, 309–318 (2015).
    Google Scholar 
    Smith, B. J. et al. Betrayal: Radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18, 3239–3250 (2016).
    Google Scholar  More

  • in

    Squid adjust their body color according to substrate

    Endler, J. A. Interactions between predators and prey. In Behavioural Ecology: An Evolutionary Approach 3rd edn (eds Krebs, J. R. & Davies, N. B.) 169–196 (Blackwell, 1991).
    Google Scholar 
    Stevens, M. & Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R Soc. Lond. B 364, 423–427 (2009).
    Google Scholar 
    Stevens, M. & Merilaita, S. Animal camouflage: Function and mechanisms. In Animal Camouflage: Mechanisms and Function (eds Stevens, M. & Merilaita, S.) 1–17 (Cambridge University Press, 2011).
    Google Scholar 
    Reiter, S. & Laurent, G. Visual perception and cuttlefish camouflage. Curr. Opin. Neurobiol. 260, 47–54 (2020).
    Google Scholar 
    Cott, H. B. Adaptive Coloration in Animals (Methuen, 1940).
    Google Scholar 
    Cloney, R. A. & Florey, E. Ultrastructure of cephalopod chromatophore organs. Z. Zellforsch. Mikrosk. Anat. 89, 250–280 (1968).CAS 
    PubMed 

    Google Scholar 
    Borrelli, L., Gherardi, F. & Fiorito, G. A. Catalogue of Body Patterning in Cephalopoda (Firenze University Press, 2006).
    Google Scholar 
    Reiter, S. et al. Elucidating the control and development of skin patterning in cuttlefish. Nature 562, 361–366 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbosa, A., Allen, J. J., Mäthger, L. M. & Hanlon, R. T. Cuttlefish use visual cues to determine arm postures for camouflage. Proc. R Soc. B Biol. Sci. 279, 84–90 (2012).
    Google Scholar 
    Hanlon, R. T. Cephalopod dynamic camouflage. Curr. Biol. 17, R400-404 (2007).CAS 
    PubMed 

    Google Scholar 
    Hill, A. V. & Solandt, D. Y. Myograms from the chromatophores of Sepia. J. Physiol. Lond. 83, 13–14 (1935).
    Google Scholar 
    Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10, 1–5 (2019).
    Google Scholar 
    Hanlon, R. T. et al. Rapid adaptive camouflage in cephalopods. In Animal Camouflage: Mechanisms and Functions (eds Stevens, M. & Merilaita, S.) 145–163 (Cambridge Univ Press, 2011).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Adaptive coloration in young cuttlefish (Sepia officinalis L.): The morphology and development of body patterns and their relation to behavior. Philos. Trans. R Soc. Lond. B 320, 437–487 (1988).ADS 

    Google Scholar 
    Ferguson, G., Messenger, J. B. & Budelmann, B. Gravity and light influence the countershading reflexes of the cuttlefish Sepia officinalis. J. Exp. Biol. 191, 247–256 (1994).CAS 
    PubMed 

    Google Scholar 
    Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. & Osorio, D. Cuttlefish responses to visual orientation of substrates, water flow and a model of motion camouflage. J. Exp. Biol. 209, 4717–4723 (2006).CAS 
    PubMed 

    Google Scholar 
    Barbosa, A. et al. Disruptive coloration in cuttlefish: A visual perception mechanism that regulates ontogenetic adjustment of skin patterning. J. Exp. Biol. 210, 1139–1147 (2007).PubMed 

    Google Scholar 
    Chiao, C. C., Chubb, C. & Hanlon, R. T. Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish. Vis. Res. 47, 2223–2235 (2007).PubMed 

    Google Scholar 
    Nakajima, R. & Ikeda, Y. A catalog of the chromatic, postural, and locomotor behaviors of the pharaoh cuttlefish (Sepia pharaonis) from Okinawa Island, Japan. Mar. Biodivers. 47, 735–753 (2017).
    Google Scholar 
    Packard, A. Chromatophore fields in the skin of the octopus. J. Physiol. 238, 38–40 (1974).
    Google Scholar 
    Caldwell, R. L., Ross, R., Rodaniche, A. F. & Huffard, C. L. Behavior and body patterns of the larger pacific striped octopus. PLoS ONE 10, e0134152 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gutnick, T., Shomrat, T., Mather, J. A. & Kuba, M. J. The cephalopod brain: Motion control, learning, and cognition. In Physiology of Molluscs: A Collection of Selected Reviews Vol. 2 (eds Salleudin, S. & Mukai, S.) 139–177 (Apple Academic Press, 2016).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour 2nd edn. (Cambridge University Press, 2018).
    Google Scholar 
    Cloney, R. & Brocco, S. Chromatophore organs, reflector cells, iridocytes, and leucophores. Am. Zool. 23, 581–592 (1983).
    Google Scholar 
    Mäthger, L. M. & Hanlon, R. T. Malleable skin coloration in cephalopods: Selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res. 329, 179 (2007).PubMed 

    Google Scholar 
    Josef, N., Berenshtein, I., Fiorito, G., Sykes, A. V. & Shashar, N. Camouflage during movement in the European cuttlefish (Sepia officinalis). J. Exp. Biol. 218, 3391–3398 (2015).PubMed 

    Google Scholar 
    Josef, N. et al. Size matters: Observed and modeled camouflage response of European Cuttlefish (Sepia officinalis) to different substrate patch sizes during movement. Front. Physiol. 7, 671 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1890).
    Google Scholar 
    Zhang, Y. & Richardson, J. S. Unidirectional prey–predator facilitation: Apparent prey enhance predators’ foraging success on cryptic prey. Biol. Lett. 3, 348–351 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Troscianko, T., Benton, C. P., Lovell, P. G., Tolhurst, D. J. & Pizlo, Z. Camouflage and visual perception. Philos. Trans. R Soc. B 364, 449–461 (2009).
    Google Scholar 
    Land, M. F. & Nilsson, D. E. Animal Eyes (Oxford University Press, 2012).
    Google Scholar 
    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology (Princeton University Press, 2014).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour (Cambridge University Press, 1996).
    Google Scholar 
    Staudinger, M. D., Hanlon, R. T. & Juanes, F. Primary and secondary defences of squid to cruising and ambush fish predators: Variable tactics and their survival value. Anim. Behav. 81, 585–594 (2011).
    Google Scholar 
    Ferguson, G. P. & Messenger, J. B. A countershading reflex in cephalopods. Proc. R. Soc. B 243, 63–67 (1991).ADS 

    Google Scholar 
    Zylinski, S. & Johnsen, S. Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Curr. Biol. 21, 1937–1941 (2011).CAS 
    PubMed 

    Google Scholar 
    Young, R. E. & Roper, C. F. E. Bioluminescent countershading in mid water animals: Evidence from living squid. Science 191, 1046–1048 (1976).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jereb, P. & Roper, C. F. E. Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Myopsid and Oegopsid Squids Vol. 2 (FAO, 2010).
    Google Scholar 
    Okutani, T. Life history of the oval squid, Sepioteuthis lessoniana. Saibai Giken 13, 69–75 (1984) ((in Japanese)).
    Google Scholar 
    Segawa, S. Food consumption, food conversion and growth rates of the oval squid Sepioteuthis lessoniana by laboratory experiments. Nippon Suisan Gakkai Shi 56, 217–222 (1990).
    Google Scholar 
    Izuka, T., Segawa, S., Okutani, T. & Numachi, K. Evidence on the existence of three species in the oval squid Sepioteuthis lessoniana complex in Ishigaki Island, Okinawa, southwestern Japan, by isozyme analyses. Venus Jpn. J. Malacol/Kairuigaku Zasshi 53, 217–228 (1994).
    Google Scholar 
    Izuka, T. Biochemical study of the population heterogeneity and distribution of the oval squid Sepioteuthis lessoniana complex in southwestern Japan. Am. Malac. Bull. 12, 129–135 (1996).
    Google Scholar 
    Imai, H., & Aoki, M. Genetic diversity and genetic heterogeneity of bigfin reef squid “Sepioteuthis lessoniana” species complex in northwestern Pacific Ocean. in Analysis of Genetic Variation in Animals (Caliskan, M. ed). 151–166. (InTech, 2012).Cheng, S. H. et al. Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans. Hydrobiologia 725, 165–188 (2014).CAS 

    Google Scholar 
    Tomano, S. et al. Contribution of Sepioteuthis sp. 1 and Sepioteuthis sp. 2 to oval squid fishery stocks in western Japan. Fish Sci 82, 585–596 (2016).CAS 

    Google Scholar 
    Okutani, T. Past, present and future studies on cephalopod diversity in tropical west Pacific. Phuket Mar. Biol. Center Res. Bull. 66, 39–50 (2005).
    Google Scholar 
    Lee, P. G., Turk, P. E., Yang, W. T. & Hanlon, R. T. Biological characteristics and biomedical applications of the squid Sepioteuthis lessoniana cultured through multiple generations. Biol. Bull. 186, 328–341 (1994).CAS 
    PubMed 

    Google Scholar 
    Nabhitabhata, J. & Ikeda, Y. Sepioteuthis lessoniana. In Cephalopod Culture (eds Iglesias, J. et al.) 315–347 (Springer, 2014).
    Google Scholar 
    Lajbner, Z. et al. Captive breeding of the oval squid (Aori-ika; Sepioteuthis sp.). in Cephalopod International Advisory Council Conference 2018, Book of Abstracts, St. Petersburg. 152. (2018)Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, i01 (2015).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org (R Foundation for Statistical Computing, 2019).RStudio Team. RStudio: Integrated Development for R. http://www.rstudio.com (RStudio, Inc., 2019)Kenward, M. & Roger, J. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–997 (1997).CAS 
    PubMed 
    MATH 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, C. Y., Tsai, Y. C. & Chiao, C. C. Quantitative analysis of dynamic body patterning reveals the grammar of visual signals during the reproductive behavior of the oval squid Sepioteuthis lessoniana. Front. Ecol. Evol. 5, 30 (2017).
    Google Scholar 
    Chung, W. S., Kurniawan, N. D. & Marshall, N. J. Toward an MRI-based mesoscale connectome of the squid brain. Iscience 23, 100816 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Messenger, J. B. Cephalopod chromatophores: Neurobiology and natural history. Biol. Rev. Camb. Philos. Soc. 76, 473–528 (2001).CAS 
    PubMed 

    Google Scholar 
    York, C. A. & Bartol, I. K. Anti-predator behavior of squid throughout ontogeny. J. Exp. Mar. Biol. Ecol. 480, 26–35 (2016).
    Google Scholar 
    Suzuki, M., Kimura, T., Ogawa, H., Hotta, K. & Oka, K. Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: Contributions of miniature oscillation. PLoS ONE 6, e18244 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y.C., Wang, W.C., & Grasse, B. Electrical coupling between chromatophore muscle fibers allows for versatile control of chromatophore expansion in squid. bioRxiv 2020.02.17.951715 (2020).Hadjisolomou, S. P., El-Haddad, R. W., Kloskowski, K., Chavarga, A. & Abramov, I. Quantifying the speed of chromatophore activity at the single-organ level in response to a visual startle stimulus in living, intact squid. Front. Physiol. 12, 675252. https://doi.org/10.3389/fphys.2021.675252 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Western boundary currents drive sun-coral (Tubastraea spp.) coastal invasion from oil platforms

    Katsanevakis, S. et al. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquat. Invasions 9, 391–423 (2014).
    Google Scholar 
    Huxel, G. R. Rapid displacement of native species by invasive species: Effects of hybridization. Biol. Conserv. 89, 143–152 (1999).
    Google Scholar 
    Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).
    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 

    Google Scholar 
    Ferreira, C. E. L., Gonçalves, J. E. A. & Coutinho, R. Ship hulls and oil platforms as potential vectors to marine species introduction. J. Coast. Res. SI 39 (Pro), 1341–1346 (2006).
    Google Scholar 
    Glasby, T. M., Connell, S. D., Holloway, M. G. & Hewitt, C. L. Nonindigenous biota on artificial structures: Could habitat creation facilitate biological invasions?. Mar. Biol. 151, 887–895 (2007).
    Google Scholar 
    Hedge, L. H. & Johnston, E. L. Propagule pressure determines recruitment from a commercial shipping pier. Biofouling 28, 73–85 (2012).PubMed 

    Google Scholar 
    Capel, K. C. C., Creed, J., Kitahara, M. V., Chen, C. A. & Zilberberg, C. Multiple introductions and secondary dispersion of Tubastraea spp. in the Southwestern Atlantic. Sci. Rep. 9, 1–11 (2019).CAS 

    Google Scholar 
    De Paula, A. F. & Creed, J. C. Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: A case of accidental introduction. Bull. Mar. Sci. 74, 175–183 (2004).
    Google Scholar 
    Lages, B. G., Fleury, B. G., Menegola, C. & Creed, J. C. Change in tropical rocky shore communities due to an alien coral invasion. Mar. Ecol. Prog. Ser. 438, 85–96 (2011).ADS 

    Google Scholar 
    Mantelatto, M. C., Creed, J. C., Mourão, G. G., Migotto, A. E. & Lindner, A. Range expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis in the Southwest Atlantic. Coral Reefs 30, 397–397 (2011).ADS 

    Google Scholar 
    do Santos, L. A. H., Ribeiro, F. V. & Creed, J. C. Antagonism between invasive pest corals Tubastraea spp. and the native reef-builder Mussismilia hispida in the southwest Atlantic. J. Exp. Mar. Biol. Ecol. 449, 69–76 (2013).
    Google Scholar 
    Miranda, R. J., Cruz, I. C. S. & Barros, F. Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef. Mar. Biol. 163, 1–12 (2016).CAS 

    Google Scholar 
    Silva, A. G., Lima, R. P., Gomes, A. N., Fleury, B. G. & Creed, J. C. Expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis into the tamoios ecological station marine protected area, Brazil. Aquat. Invasions 6, S105–S110 (2011).
    Google Scholar 
    Mizrahi, D., Navarrete, S. A. & Flores, A. A. V. Groups travel further: Pelagic metamorphosis and polyp clustering allow higher dispersal potential in sun coral propagules. Coral Reefs 33, 443–448 (2014).ADS 

    Google Scholar 
    De Paula, A. F., De Oliveira Pires, D. & Creed, J. C. Reproductive strategies of two invasive sun corals (Tubastraea spp.) in the southwestern Atlantic. J. Mar. Biol. Assoc. UK 94, 481–492 (2014).
    Google Scholar 
    Capel, K. C. C. et al. Clone wars: Asexual reproduction dominates in the invasive range of Tubastraea spp. (Anthozoa: Scleractinia) in the South-Atlantic Ocean. PeerJ 2017, 1–21 (2017).
    Google Scholar 
    Luz, B. L. P., Di Domenico, M., Migotto, A. E. & Kitahara, M. V. Life-history traits of Tubastraea coccinea: Reproduction, development, and larval competence. Ecol. Evol. 10, 6223–6238 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kitahara, M. V. Species richness and distribution of azooxanthellate scleractinia in Brazil. Bull. Mar. Sci. 81, 497–518 (2007).
    Google Scholar 
    da Silva, A. G., de Paula, A. F., Fleury, B. G. & Creed, J. C. Eleven years of range expansion of two invasive corals (Tubastraea coccinea and Tubastraea tagusensis) through the southwest Atlantic (Brazil). Estuar. Coast. Shelf Sci. 141, 9–16 (2014).ADS 

    Google Scholar 
    Creed, J. C. et al. The invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world: History, pathways and vectors. Biol. Invasions 19, 283–305 (2017).
    Google Scholar 
    Mantelatto, M. C., Pires, L. M., de Oliveira, G. J. G. & Creed, J. C. A test of the efficacy of wrapping to manage the invasive corals Tubastraea tagusensis and T. coccinea. Manag. Biol. Invasions 6, 367–374 (2015).
    Google Scholar 
    Crivellaro, M. S. et al. Fighting on the edge: Reproductive effort and population structure of the invasive coral Tubastraea coccinea in its southern Atlantic limit of distribution following control activities. Biol. Invasions 23, 811–823 (2021).
    Google Scholar 
    Creed, J. C., Casares, F. A., Oigman-Pszczol, S. S. & Masi, B. P. Multi-site experiments demonstrate that control of invasive corals (Tubastraea spp.) by manual removal is effective. Ocean Coast. Manag. 207, 105616 (2021).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D., Boland, G. S., Sinclair, J. & Lirette, A. Geographic expansion of hermatypic and ahermatypic corals in the Gulf of Mexico, and implications for dispersal and recruitment. J. Exp. Mar. Biol. Ecol. 436–437, 36–49 (2012).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D. & Boland, G. S. Coral settlement on oil/gas platforms in the northern Gulf of Mexico: Preliminary evidence of rarity. Gulf Mex. Sci. 32, 11–23 (2014).
    Google Scholar 
    López, C. et al. Invasive Tubastraea spp. and Oculina patagonica and other introduced scleractinians corals in the Santa Cruz de Tenerife (Canary Islands) harbor: Ecology and potential risks. Reg. Stud. Mar. Sci. 29, 100713 (2019).
    Google Scholar 
    Yeo, D. C. J. et al. Semisubmersible oil platforms: Understudied and potentially major vectors of biofouling-mediated invasions. Biofouling 26, 179–186 (2009).
    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. M. The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 15, 904–910 (2009).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D. & Boland, G. S. Expansion of coral communities within the Northern Gulf of Mexico via offshore oil and gas platforms. Mar. Ecol. Prog. Ser. 280, 129–143 (2004).ADS 

    Google Scholar 
    Macreadie, P. I., Fowler, A. M. & Booth, D. J. Rigs-to-reefs: Will the deep sea benefit from artificial habitat?. Front. Ecol. Environ. 9, 455–461 (2011).
    Google Scholar 
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies. Biol. Rev. 80, 205–225 (2005).PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 

    Google Scholar 
    Peterson, R. G. & Stramma, L. Upper-level circulation in the South Atlantic Ocean. Prog. Oceanogr. 26, 1–73 (1991).ADS 

    Google Scholar 
    Johns, W. E. et al. Annual cycle and variability of the North Brazil current. J. Phys. Oceanogr. 28, 103–128 (1998).ADS 

    Google Scholar 
    Silveira, I. C. A. et al. Brazil current off the eastern Brazilian coast. Rev. Brasil. Oceanog. 48, 171–183 (2000).
    Google Scholar 
    Soutelino, R. G., Gangopadhyay, A. & da Silveira, I. C. A. The roles of vertical shear and topography on the eddy formation near the site of origin of the Brazil Current. Cont. Shelf Res. 70, 46–60 (2013).ADS 

    Google Scholar 
    D’Agostini, A., Gherardi, D. F. M. & Pezzi, L. P. Connectivity of marine protected areas and its relation with total kinetic energy. PLoS ONE 10, 1–19 (2015).
    Google Scholar 
    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 1–11 (2019).
    Google Scholar 
    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).ADS 
    CAS 

    Google Scholar 
    López-Duarte, P. C. et al. What controls connectivity? An empirical, multi-species approach. Integr. Comp. Biol. 52, 511–524 (2012).PubMed 

    Google Scholar 
    Batista, D. et al. Distribution of the invasive orange cup coral tubastraea coccinea lesson, 1829 in an upwelling area in the South Atlantic Ocean fifteen years after its first record. Aquat. Invasions 12, 23–32 (2017).
    Google Scholar 
    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. USA. 104, 1266–1271 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cairns, S. Studies on the natural history of the Caribbean region. Stud. Fauna Curaçao other Caribb. … IXl, (2000).De Paula, A. F. & Creed, J. C. Spatial distribution and abundance of nonindigenous coral genus Tubastraea (Cnidaria, Scleractinia) around Ilha Grande, Brazil. Braz. J. Biol. 65, 661–673 (2005).CAS 
    PubMed 

    Google Scholar 
    Papacostas, K. J. et al. Biological mechanisms of marine invasions. Mar. Ecol. Prog. Ser. 565, 251–268 (2017).ADS 

    Google Scholar 
    Loureiro, T. G., Silva Gentil Anastácio, P. M., Souty-Grosset, C., Araujo, P. B. & Pereira Almerão, M. Red swamp crayfish: Biology, ecology and invasion—an overview. Nauplius 23, 1–19 (2015).
    Google Scholar 
    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).
    Google Scholar 
    Siegel, D. A. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. USA. 105, 8974–8979 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viard, F., Ellien, C. & Dupont, L. Dispersal ability and invasion success of Crepidula fornicata in a single gulf: Insights from genetic markers and larval-dispersal model. Helgol. Mar. Res. 60, 144–152 (2006).ADS 

    Google Scholar 
    Rodrigues, R. R., Rothstein, L. M. & Wimbush, M. Seasonal variability of the South Equatorial Current bifurcation in the Atlantic Ocean: A numerical study. J. Phys. Oceanogr. 37, 16–30 (2007).ADS 

    Google Scholar 
    Fenner, D. Biogeography of three Caribbean corals (Scleractinia) and the invasion of Tubastraea coccinea into the Gulf of Mexico. Bull. Mar. Sci. 69, 1175–1189 (2001).
    Google Scholar 
    Gouveia, M. B. et al. Persistent meanders and eddies lead to quasi-steady Lagrangian transport patterns in a weak western boundary current. Sci. Rep. 11, 1–18 (2021).
    Google Scholar 
    Campos, E. J., Gonçalves, J. & Ikeda, Y. Water mass characteristics and geostrophic circulation in the South Brazil bight: Summer of 1991. J. Geophys. Res. Oceans 100, 18537–18550. https://doi.org/10.1029/95jc01724 (1995).ADS 
    Article 

    Google Scholar 
    Silveira, I. C. A. et al. Is the meander growth in the Brazil Current system off Southeast Brazil due to baroclinic instability?. Dyn. Atmos. Ocean. 45, 187–207 (2008).ADS 

    Google Scholar 
    Lima, L. S. et al. Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Sci. Rep. 11, 1–12 (2021).
    Google Scholar 
    Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity?. Progr. Oceanogr. 165, 110–122 (2018).ADS 

    Google Scholar 
    Ellien, C., Thiébaut, E., Dumas, F., Salomon, J. C. & Nival, P. A modelling study of the respective role of hydrodynamic processes and larval mortality on larval dispersal and recruitment of benthic invertebrates: Example of Pectinaria koreni (Annelida: Polychaeta) in the Bay of Seine (English Channel). J. Plankton Res. 26, 117–132 (2004).
    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and coral reefs of Brazil. In Latin American Coral Reefs (ed. Cortés, J.) 9–52 (Elsevier Science, 2003).
    Google Scholar 
    Dutra, G. F., Allen, G. R., Werner, T., et al. A rapid marine biodiversity assessment of the Abrolhos Bank, Bahia, Brazil. In RAP Bull. Mar. Biol. Assessment, Vol. 38 (Conservation International, 2005).Costa, T. J. F. et al. Expansion of an invasive coral species over Abrolhos Bank, Southwestern Atlantic. Mar. Pollut. Bull. 85, 252–253 (2014).CAS 
    PubMed 

    Google Scholar 
    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, 1–12 (2016).
    Google Scholar 
    Soares, M. O., Davis, M. & de Macêdo Carneiro, P. B. Northward range expansion of the invasive coral (Tubastraea tagusensis) in the southwestern Atlantic. Mar. Biodivers. 48, 1651–1654 (2018).
    Google Scholar 
    Rocha, L. A. & Rosa, I. L. Baseline assessment of reef fish assemblages of Parcel Manuel Luiz Marine State Park, Maranhão, north-east Brazil. J. Fish Biol. 58, 985–998 (2001).
    Google Scholar 
    Luz, B. L. P. & Kitahara, M. V. Could the invasive scleractinians Tubastraea coccinea and T. tagusensis replace the dominant zoantharian Palythoa caribaeorum in the Brazilian subtidal?. Coral Reefs 36, 875 (2017).ADS 

    Google Scholar 
    Cordeiro, C. A. M. M. et al. Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luís. Coral Reefs 40, 165–185 (2021).
    Google Scholar 
    Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).
    Google Scholar 
    Cruz, R. et al. Life cycle and connectivity of the spiny lobster, Panulirus spp.: Case studies from Brazil and the Wider Caribbean (Decapoda, Achelata). Crustaceana 94, 603–645 (2021).
    Google Scholar 
    Castro, B. D., Lorenzzetti, J., Silveira, I. D. & Miranda, L. D. Estrutura termohalina e circulação na região entre o cabo de são tomé (rj) eo chuí (rs). O ambiente oceanográfco da plataforma continental e do talude na região sudeste-sul do Brasil 1, 11–120 (2006).
    Google Scholar 
    Dias, D. F., Pezzi, L. P., Gherardi, D. F. M. & Camargo, R. Modeling the spawning strategies and larval survival of the Brazilian sardine (Sardinella brasiliensis). Prog. Oceanogr. 123, 38–53 (2014).ADS 

    Google Scholar 
    Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).PubMed 

    Google Scholar 
    Vinagre, C. et al. Food web organization following the invasion of habitat-modifying Tubastraea spp. corals appears to favour the invasive borer bivalve Leiosolenus aristatus. Ecol. Indic. 85, 1204–1209 (2018).
    Google Scholar 
    Capel, K. C. C., Creed, J. C. & Kitahara, M. V. Invasive corals trigger seascape changes in the southwestern Atlantic. Bull. Mar. Sci. 96, 217–218 (2020).
    Google Scholar 
    Silva, R. et al. Sun coral invasion of shallow rocky reefs: Effects on mobile invertebrate assemblages in Southeastern Brazil. Biol. Invasions 21, 1339–1350 (2019).
    Google Scholar 
    Creed, J. C. & De Paula, A. F. Substratum preference during recruitment of two invasive alien corals onto shallow-subtidal tropical rocky shores. Mar. Ecol. Prog. Ser. 330, 101–111 (2007).ADS 

    Google Scholar 
    Glynn, P. W. et al. Reproductive ecology of the azooxanthellate coral Tubastraea coccinea in the Equatorial Eastern Pacific: Part V. Dendrophylliidae. Mar. Biol. 153, 529–544 (2008).
    Google Scholar 
    Eckman, J. E. Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates. J. Exp. Mar. Biol. Ecol. 200, 207–237 (1996).
    Google Scholar 
    Cairns, S. D. & Zibrowius, H. Azooxanthellate Scleractinia from the Philippines and Indonesian regions. Mémoires du Muséum national d’Histoire naturelle, Vol. 172, (1997).Saura, S., Bodin, Ö. & Fortin, M. J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Faria, L. C. & Kitahara, M. V. Invasive corals hitchhiking in the Southwestern Atlantic. Ecology 101, 1–3 (2020).
    Google Scholar 
    Mantelatto, M. C., Póvoa, A. A., Skinner, L. F., de Araujo, F. V. & Creed, J. C. Marine litter and wood debris as habitat and vector for the range expansion of invasive corals (Tubastraea spp.). Mar. Pollut. Bull. 160, 111659 (2020).CAS 
    PubMed 

    Google Scholar 
    Braga, M. D. A. et al. Retirement risks: Invasive coral on old oil platform on the Brazilian equatorial continental shelf. Mar. Pollut. Bull. 165, 112156 (2021).CAS 
    PubMed 

    Google Scholar 
    IMO. Anti-fouling systems. Online (2019). https://www.imo.org/en/OurWork/Environment/Pages/Anti-fouling.aspx. (Accessed 01 May 2021).Vander Zanden, M. J., Hansen, G. J. A., Higgins, S. N. & Kornis, M. S. A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. J. Great Lakes Res. 36, 199–205 (2010).
    Google Scholar 
    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84(1), 1–20 (2001).
    Google Scholar 
    Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404 (2005).ADS 

    Google Scholar 
    Shchepetkin, A. F. & McWilliams, J. C. Correction and commentary for “ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by haidvogel et al., j. comp. phys. 227, pp. 3595–3624. J. Comput. Phys. 228, 8985–9000 (2009).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Lett, C. et al. A Lagrangian tool for modelling ichthyoplankton dynamics. Environ. Model. Sofw. 23, 1210–1214 (2008).
    Google Scholar 
    Gouveia, M. B., Gherardi, D. F. M., Lentini, C. A. D., Dias, D. F. & Campos, P. C. Do the Brazilian sardine commercial landings respond to local ocean circulation?. PLoS ONE 12, 1–19 (2017).
    Google Scholar 
    Saha, S. et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1057 (2010).ADS 

    Google Scholar 
    Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: A new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).ADS 

    Google Scholar 
    Flather, R. A. A tidal model of the northeast pacific. Atmos. Ocean 25, 22–45 (1987).
    Google Scholar 
    Chapman, D. C. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr. 15(8), 1060–1075 (1985).ADS 

    Google Scholar 
    Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3, 1–20 (2001).ADS 

    Google Scholar 
    Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183–204 (2002).ADS 

    Google Scholar 
    Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Equilibrium structure and dynamics of the California current system. J. Phys. Oceanogr. 33, 753–783 (2003).ADS 

    Google Scholar 
    Mizrahi, D., Navarrete, S. A. & Flores, A. A. V. Uneven abundance of the invasive sun coral over habitat patches of different orientation: An outcome of larval or later benthic processes?. J. Exp. Mar. Biol. Ecol. 452, 22–30 (2014).
    Google Scholar 
    Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman and Hall, 1986).MATH 

    Google Scholar  More

  • in

    DNA barcoding and phylogeography of the Hoplias malabaricus species complex

    Cardoso, Y. P. et al. A continental-wide molecular approach unraveling mtDNA diversity and geographic distribution of the Neotropical genus Hoplias. PLoS ONE 13(8), e0202024. https://doi.org/10.1371/journal.pone.0202024 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertollo, L. A. C., Born, G. G., Dergam, J. A., Fenocchio, A. S. & Moreira-Filho, O. A biodiversity approach in the Neotropical Erythrinidae fish, Hoplias malabaricus: Karyotypic survey, geographic distribution of karyomorphs and cytotaxonomic considerations. Chrom. Res. 8(7), 603–613 (2000).CAS 
    Article 

    Google Scholar 
    Oyakawa, O. T. Family Erythrinidae (Trahiras). in Check list of the freshwater fishes of South and Central America (Reis, R. E., Kullander, S. O. & Ferraris, C.). Edipucrs 238–240 (Porto Alegre, 2003).Dagosta, F. C. P. & de Pinna, M. C. C. The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Museum Nat. Hist. 431, 1–163 (2019).
    Google Scholar 
    Da Rosa, R., Vicari, M. R., Dias, A. L. & Giuliano-Caetano, L. New insights into the biogeographic and Karyotypic Evolution of Hoplias Malabaricus. Zebrafish 11(3), 198–206. https://doi.org/10.1089/zeb.2013.0953 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Santos, U. et al. Molecular and karyotypic phylogeography in the neotropical Hoplias malabaricus (Erythrinidae) fish in eastern Brazil. J. Fish Biol. 75(9), 2326–2343. https://doi.org/10.1111/j.1095-8649.2009.02489.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Blanco, D. R., Lui, R. L., Bertollo, L. A. C., Diniz, D. & Filho, O. M. Characterization of invasive fish species in a river transposition region: Evolutionary chromosome studies in the genus Hoplias (Characiformes, Erythrinidae). Rev. Fish Biol. Fish. 20(1), 1–8. https://doi.org/10.1007/s11160-009-9116-3 (2010).Article 

    Google Scholar 
    Jacobina, U. P. et al. DNA barcode sheds light on systematics and evolution of neotropical freshwater trahiras. Genetica 146, 505. https://doi.org/10.1007/s10709-018-0043-x (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marques, D. F., Santos, F. A., da Silva, S. S., Sampaio, I. & Rodrigues, L. R. R. Cytogenetic and DNA barcoding reveals high divergence within the trahira, Hoplias malabaricus (Characiformes: Erythrinidae) from the lower Amazon River. Neotrop. Ichthyol. 11(2), 459–466. https://doi.org/10.1590/S1679-62252013000200015 (2013).Article 

    Google Scholar 
    Paz, F. P. C., Batista, J. S. & Porto, J. I. R. DNA barcodes of rosy tetras and allied species (Characiformes: Characidae: Hyphessobrycon) from the Brazilian Amazon Basin. PLoS ONE 9(5), e98603. https://doi.org/10.1371/journal.pone.0098603 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Guimarães, K. L. A., de Sousa, M. P. A., Ribeiro, F. R. V., Porto, J. I. R. & Rodrigues, L. R. R. DNA barcoding of fish fauna from low order streams of Tapajós River basin. PLoS ONE 13(12), e0209430. https://doi.org/10.1371/journal.pone.0209430 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Machado, V. N. et al. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognized diversity in the Amazon. Sci. Rep. 8, 8387. https://doi.org/10.1038/s41598-018-26550-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Philos. Trans. R. Soc. B 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).CAS 
    Article 

    Google Scholar 
    Pugedo, M. L., de Andrade Neto, F. R., Pessali, T. C., Birindelli, J. L. O. & Carvalho, D. C. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin. Genetica 144(3), 1–9. https://doi.org/10.1007/s10709-016-9903-4 (2016).Article 

    Google Scholar 
    Rosso, J. J. et al. Integrative taxonomy reveals a new species of the Hoplias malabaricus species complex (Teleostei: Erythrinidae). Ichthyol. Explor. Freshw. 1, 1–18. https://doi.org/10.23788/IEF-1076 (2018).Article 

    Google Scholar 
    Azpelicueta, M. M., Benítez, M., Aichino, D. & Mendez, C. M. D. A new species of the genus Hoplias (Characiformes, Erythrinidae), a tararira from the lower Paraná River, in Missiones, Argentina. Acta Zool. Lilloana 59(1–2), 71–82 (2015).
    Google Scholar 
    Rosso, J. J. et al. A new species of the Hoplias malabaricus species complex (Characiformes: Erythrinidae) from the La Plata River basin. Cybium 40(3), 199–208 (2016).
    Google Scholar 
    Cardoso, Y. P. & Montoya-Burgos, J. I. Unexpected diversity in the catfish Pseudancistrus brevispinis reveals dispersal routes in a Neotropical center of endemism: The Guyanas Region. Mol. Ecol. 18(5), 947–964. https://doi.org/10.1111/j.1365-294X.2008.04068.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hoorn, C., Wesselingh, F. P., Hovikoski, J. & Guerrero, J. The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). Amazon. Landsc. Species Evol. https://doi.org/10.1002/9781444306408.ch8 (2010).Article 

    Google Scholar 
    Albert, J. S. & Reis, R. E. Introduction to neotropical freshwaters. In Historical Biogeography of Neotropical Freshwater Fishes (eds Albert, J. S. & Reis, R. E.) 3–19 (University of California Press, 2011).
    Google Scholar 
    Leys, M., Keller, I., Räsänen, K., Gattolliat, J.-L. & Robinson, C. T. Distribution and population genetic variation of cryptic species of the Alpine mayfly Baetis alpinus (Ephemeroptera: Baetidae) in the Central Alps. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0643-y (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25(22), 4692–4693 (1997).CAS 
    Article 

    Google Scholar 
    Vitorino, C. A., Oliveira, R. C. C., Margarido, V. P. & Venere, P. C. Genetic diversity of Arapaima gigas (Schinz, 1822) (Osteoglossiformes: Arapaimidae) in the Araguaia-Tocantins basin estimated by ISSR marker. Neotrop. Ichthyol. 13, 557–568. https://doi.org/10.1590/1982-0224-20150037 (2015).Article 

    Google Scholar 
    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B 359, 1847–1857. https://doi.org/10.1098/srtb.2005.1716 (2005).Article 

    Google Scholar 
    Dunn, I. S. & Blattner, F. R. Sharons 36 to 40: Multienzyme, high capacity, recombination deficient replacement vectors with polylinkers and polystuffers. Nucleic Acids Res. 15, 2677–2698 (1987).CAS 
    Article 

    Google Scholar 
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994).CAS 
    Article 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334 (2000).CAS 
    Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. DNA-Based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8(7), e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55(4), 595–609. https://doi.org/10.1080/10635150600852011 (2006).Article 
    PubMed 

    Google Scholar 
    Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62(5), 707–724. https://doi.org/10.1093/sysbio/syt033 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21(8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Drummond, A. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. https://doi.org/10.1186/1471-2148-7-214 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. https://doi.org/10.1093/molbev/msn083 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2017).Ezard, T., Fujisawa, T. & Barraclough, T. splits: Species Limits by Threshold Statistics. R package version 1.0–19/r52. https://R-Forge.R-project.org/projects/splits/ (2017).Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 

    Google Scholar 
    Bermingham, E., McCafferty, S. S. & Martin, A. P. Fish biogeography and molecular clocks: Perspectives from the Panamanian Isthmus. In Molecular Systematics of Fishes (eds Kocher, T. D. & Stepien, C. A.) 113–128 (Academic Press, 1997).Chapter 

    Google Scholar 
    Thomaz, A. T., Malabarba, L. R., Bonatto, S. L. & Knowles, L. L. Testing the effect of palaeodrainages versus habitat stability on genetic divergence in riverine systems: Study of a Neotropical fish of the Brazilian coastal Atlantic Forest. J. Biogeogr. 42, 2389–2401. https://doi.org/10.1111/jbi.12597 (2015).Article 

    Google Scholar 
    Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic and geograhic data. Syst. Biol. 61(6), 897–911. https://doi.org/10.1093/sysbio/sys038 (2012).Article 
    PubMed 

    Google Scholar 
    Excoffier, L., Laval, G. & Schneider, S. Arlequin: A Software for Population Data Analysis. Version 3.1. http://cmpg.unibe.ch/software/arlequin3 (2007).Wright, S. Evolution and the genetics of populations: Variability within and among natural populations. Univ. Chicago 4, 580 (1978).
    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16(1), 37–48 (1999).CAS 
    Article 

    Google Scholar 
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).Article 

    Google Scholar 
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    Article 

    Google Scholar 
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    Article 

    Google Scholar 
    Austin, M. P. Continuum concept, ordination methods, and niche theory. Annu. Rev. Ecol. Syst. 16(1), 39–61. https://doi.org/10.1146/annurev.es.16.110185.000351 (1985).MathSciNet 
    Article 

    Google Scholar 
    Graham, A., Atkinson, P. & Danson, F. Spatial analysis for epidemiology. Acta Trop. 91(3), 219–225. https://doi.org/10.1016/j.actatropica.2004.05.001 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Guimarães, K. L. A., Rosso, J. J., Souza, M. F. B., de Astarloa, J. M. D. & Rodrigues, L. R. R. Integrative taxonomy reveals disjunct distribution and first record of Hoplias misionera (Characiformes: Erythrinidae) in the Amazon River basin: Morphological, DNA barcoding and cytogenetic considerations. Neotrop. Ichthyol. 19(2), e200110. https://doi.org/10.1590/1982-0224-2020-0110 (2021).Article 

    Google Scholar 
    Queiroz, L. J. et al. Evolutionary units delimitation and continental multilocus phylogeny of the hyperdiverse catfish genus Hypostomus. Mol. Phylogenet. Evol. 145, 106711. https://doi.org/10.1016/j.ympev.2019.106711 (2020).Article 

    Google Scholar 
    Phillips, J. D., Gillis, D. J. & Hanner, R. H. Incomplete estimates of genetic diversity within species: Implications for DNA barcoding. Ecol. Evol. https://doi.org/10.1002/ece3.4757 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blaxter, M. L. The promise of a DNA taxonomy. Philos. Trans. R. Soc. B. 359(1444), 669–679. https://doi.org/10.1098/rstb.2003.1447 (2004).CAS 
    Article 

    Google Scholar 
    Nwani, C. D. et al. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species. Mitochondrial DNA 22(1), 43–51. https://doi.org/10.3109/19401736.2010.536537 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aguirre, W. E., Shervette, V. R., Navarrete, R., Calle, P. & Agorastos, S. Morphological and genetic divergence of Hoplias microlepis (Characiformes: Erythrinidae) in rivers and artificial impoundments of Western Ecuador. Copeia 2013(2), 312–323. https://doi.org/10.1643/ci-12-083 (2013).Article 

    Google Scholar 
    Pires, W. M. M., Barros, M. C. & Fraga, E. C. DNA Barcoding unveils cryptic lineages of Hoplias malabaricus from Northeastern Brazil. Braz. J. Biol. 81(4), 917–927. https://doi.org/10.1590/1519-6984.231598 (2020).Article 

    Google Scholar 
    Souza, F. H. S. et al. interspecific genetic differences and historical demography in South American Arowanas (Osteoglossiformes, Osteoglossidae, Osteoglossum). Genes 10(9), 693. https://doi.org/10.3390/genes10090693 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Torati, L. S. et al. Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins. BMC Genet. https://doi.org/10.1186/s12863-018-0711-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lovejoy, N. R. & Araujo, M. L. G. Molecular systematics, biogeography and population structure of Neotropical freshwater needlefishes of the genus Potamorrhaphis. Mol. Ecol. 9(3), 259–268. https://doi.org/10.1046/j.1365-294x.2000.00845.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mabesoone, J. M. Sedimentary Basins of Northeast Brazil (Federal University of Pernambuco, 1994).
    Google Scholar 
    Haffer, J. & Prance, G. T. Impulsos climáticos da evolução na Amazônia durante o Cenozóico: Sobre a teoria dos Refúgios da diferenciação biótica. Estudos Avançados USP 46, 175–208. https://doi.org/10.1590/S0103-40142002000300014 (2002).Article 

    Google Scholar 
    Riker, S. R. L., Lima, F. J. C., Motta, M. B. Evidências de glaciação Pleistocênica na Amazônia Brasileira. Anais do 14° Simpósio de Geologia da Amazônia, Sociedade Brasileira de Geologia 15–18 (2015).Albert, J. S., Val, P. & Hoorn, C. The changing course of the Amazon River in the Neogene: Center stage for Neotropical diversification. Neotrop. Ichthyol. 16(3), e180033. https://doi.org/10.1590/1982-0224-20180033 (2018).Article 

    Google Scholar 
    Lundberg, J. G. et al. The stage for Neotropical fish diversification: a history of tropical South American rivers. (eds. Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M., Lucena, C. A. S. Phylogeny and classification of Neotropical fishes). Edipucrs 13–48 (1998).Hubert, N. & Renno, J. F. Historical biogeography of South American freshwater fishes. J. Biogeogr. 33(8), 1414–1436. https://doi.org/10.1111/j.1365-2699.2006.01518.x (2006).Article 

    Google Scholar 
    Farias, I. P. & Hrbek, T. Patterns of diversification in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon basin. Mol. Phylogenet. Evol. 49, 32–43. https://doi.org/10.1016/j.ympev.2008.05.033 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tagliacollo, V. A., Bernt, M. J., Craig, J. M., Oliveira, C. & Albert, J. S. Model-based total evidence phylogeny of Neotropical electric knifefishes (Teleostei, Gymnoti-formes). Mol. Phylogenet. Evol. 95, 20–33. https://doi.org/10.1016/j.ympev.2015.11.007 (2015).Article 
    PubMed 

    Google Scholar 
    Hutchinson, G. E. Concluding remarks. Cold Spring Harbor Symposium. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Inte-grating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    McNyset, K. M. Ecological niche conservatism in North American freshwater fishes. Biol. J. Lin. Soc. 96, 282–295 (2009).Article 

    Google Scholar 
    Silva, W. C., Marceniuk, A. P., Sales, J. B. L. & Araripe, J. Early pleistocene lineages of Bagre bagre (Linnaeus, 1766) (Siluriformes: Ariidae), from the Atlantic coast of South America, with insights into the demography and biogeography of the species. Neotrop. Ichthyol. https://doi.org/10.1590/1982-0224-20150184 (2016).Article 

    Google Scholar 
    Lemopoulos, A. & Covain, R. Biogeography of the freshwater fishes of the Guianas using a partitioned parsimony analysis of endemicity with reappraisal of ecoregional boundaries. Cladistics 35(2019), 106–124. https://doi.org/10.1111/cla.12341 (2018).Article 
    PubMed 

    Google Scholar 
    Hoorn, C. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 267–309. https://doi.org/10.1016/0031-0182(93)90087-Y (1993).Article 

    Google Scholar 
    Hoorn, C., Guerreiro, J. & Sarmiento, G. Andean tectonics as a cause for changing drainage patterns in Miocene Northern South America. Geology 23(3), 237–240. https://doi.org/10.1130/0091-7613(1995)023%3c0237:ATAACF%3e2.3.CO;2 (1995).ADS 
    Article 

    Google Scholar 
    Ribeiro, A. C. Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: An example of faunal evolution associated with a divergent continental margin. Neotrop. Ichthyol. 4(2), 225–246. https://doi.org/10.1590/S1679-62252006000200009 (2006).Article 

    Google Scholar 
    Lovejoy, N. R., Albert, J. S. & Crampton, W. G. R. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. J. S. Am. Earth Sci. 21(1–2), 5–13. https://doi.org/10.1016/j.jsames.2005.07.009 (2006).Article 

    Google Scholar  More

  • in

    Marauding crazy ants come to grief when a fungus comes to call

    .readcube-buybox { display: none !important;}

    Swarms of ‘crazy ants’ that invade houses, cause electrical short circuits and overrun birds’ nests might have met their match: a naturally occurring parasite1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00888-9

    ReferencesLeBrun, E. G., Jones, M., Plowes, R. M. & Gilbert, L. E. Proc. Natl Acad. Sci. USA 119, e2114558119 (2022).PubMed 
    Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Dozens of unidentified bat species likely live in Asia — and could host new viruses
    News 29 MAR 22

    The marine biologist whose photography pastime became a profession
    Career Column 25 MAR 22

    Subaqueous foraging among carnivorous dinosaurs
    Article 23 MAR 22

    Jobs

    Research Associate / Postdoc (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Postdoctoral Researchers in AI for Medical Data Science

    University of Luxembourg
    Luxembourg, Luxembourg

    Postdoc – Ultra-high vacuum lithography of high-performance superconducting qubits

    Jülich Research Centre (FZJ)
    Jülich, Germany More

  • in

    A nearly complete database on the records and ecology of the rarest boreal tiger moth from 1840s to 2020

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).ADS 
    CAS 

    Google Scholar 
    Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971 (2019).CAS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 

    Google Scholar 
    Heikkinen, R. K. et al. Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodivers. Conserv. 19, 695–723 (2010).
    Google Scholar 
    Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 108327 (2020).
    Google Scholar 
    Hufnagel, L. & Kocsis, M. Impacts of climate change on Lepidoptera species and communities. Appl. Ecol. Environ. Res. 9, 43–72 (2011).
    Google Scholar 
    Geyle, H. M. et al. Butterflies on the brink: identifying the Australian butterflies (Lepidoptera) most at risk of extinction. Austral Entomol. 60, 98–110 (2021).
    Google Scholar 
    Merckx, T., Huertas, B., Basset, Y. & Thomas, J. A global perspective on conserving butterflies and moths and their habitats. Key Topics in Conservation Biology 2, 237–257 (2013).
    Google Scholar 
    New, T. R. Moths (Insecta: Lepidoptera) and conservation: background and perspective. J. Insect Conserv. 8, 79–94 (2004).
    Google Scholar 
    Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl. Acad. Sci. USA 118, e2002549117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Langevelde, F. et al. Declines in moth populations stress the need for conserving dark nights. Glob. Chang. Biol. 24, 925–932 (2018).ADS 
    PubMed 

    Google Scholar 
    Green, K. et al. Australian Bogong moths Agrotis infusa (Lepidoptera: Noctuidae). 1951–2020: decline and crash. Austral Entomol. 60, 66–81 (2021).
    Google Scholar 
    Sánchez‐Bayo, F. & Wyckhuys, K. A. Further evidence for a global decline of the entomofauna. Austral Entomol. 60, 9–26 (2021).
    Google Scholar 
    Rönkä, K., Mappes, J., Kaila, L. & Wahlberg, N. Putting Parasemia in its phylogenetic place: a molecular analysis of the subtribe Arctiina (Lepidoptera). Syst. Entomol. 41, 844–853 (2016).
    Google Scholar 
    Witt, T. J., Speidel, W., Ronkay, G., Ronkay, L. & László, G. M. Subfamilia Arctiinae in Noctuidae Europaeae. Volume 13. Lymantriinae and Arctiinae including phylogeny and check list of the quadrifid Noctuoidea of Europe (eds. Witt, T. J. & Ronkay, L.) 81-216 (Entomological Press, 2011).Dowdy, N. J. et al. A deeper meaning for shallow‐level phylogenomic studies: nested anchored hybrid enrichment offers great promise for resolving the tiger moth tree of life (Lepidoptera: Erebidae: Arctiinae). Syst. Entomol. 45, 874–893 (2020).
    Google Scholar 
    Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Entomol. 37, 102–124 (2012).
    Google Scholar 
    Holloway, J. D. The Moths of Borneo 6: family Arctiidae, subfamilies: Syntominae, Euchromiinae, Arctiinae; Noctuidae misplaced in Arctiidae (Camptoma, Aganinae) (Southdene Sdn. Bhd., 1988).Černý, K. & Pinratana, A. Arctiidae. Moths of Thailand 6, 1–283 (2009).
    Google Scholar 
    Černý, K. A review of the subfamily Arctiinae (Lepidoptera: Arctiidae) from the Philippines. Entomofauna 32, 29–92 (2011).
    Google Scholar 
    Bucsek, K. Erebidae, Arctiinae (Lithosiini, Arctiini) of Malay Peninsula – Malaysia (Institut of Zoology SAS, 2012).Bolotov, I. N., Kondakov, A. V. & Spitsyn, V. M. A review of tiger moths (Lepidoptera: Erebidae: Arctiinae: Arctiini) from Flores Island, Lesser Sunda Archipelago, with description of a new species and new subspecies. Ecol. Montenegrina 16, 1–15 (2018).
    Google Scholar 
    Dubatolov, V. V. New genera and species of Arctiinae from the Afrotropical fauna (Lepidoptera: Arctiidae). Nachr. Entomol. Ver. Apollo 27, 139–152 (2006).
    Google Scholar 
    Ferro, V. G., Melo, A. S. & Diniz, I. R. Richness of tiger moths (Lepidoptera: Arctiidae) in the Brazilian Cerrado: how much do we know? Zoologia (Curitiba) 27, 725–731 (2010).
    Google Scholar 
    Schmidt, B. C. A new genus and two new species of arctiine tiger moth (Noctuidae, Arctiinae, Arctiini) from Costa Rica. Zookeys 9, 89–96 (2009).
    Google Scholar 
    Dubatolov, V. V. Tiger-moths of Eurasia (Lepidoptera, Arctiidae) (Nyctemerini by Rob de Vos and V. V. Dubatolov). Neue Ent. Nachr. 65, 1–106 (2010).
    Google Scholar 
    Fibiger, M. et al. Lymantriinae and Arctiinae, including phylogeny and check list of the quadrifid Noctuoidea of Europe. Noctuidae Europaeae 13, 1–448 (2011).
    Google Scholar 
    Koshkin, E. S. Moths (Lepidoptera, Macroheterocera, excluding Geometridae and Noctuidae s.l.) of the Bureinsky State Nature Reserve and adjacent territories (Khabarovsk Krai, Russia) [In Russian]. Amur. Zool. J. 12, 412–435 (2020).
    Google Scholar 
    Kullberg, J., Filippov, B. Y., Spitsyn, V. M., Zubrij, N. A. & Kozlov, M. V. Moths and butterflies (Insecta: Lepidoptera) of the Russian Arctic islands in the Barents Sea. Polar Biol. 42, 335–346 (2019).
    Google Scholar 
    Bolotov, I. N. et al. The distribution and biology of Pararctia subnebulosa (Dyar, 1899) (Lepidoptera: Erebidae: Arctiinae), the largest tiger moth species in the High Arctic. Polar Biol. 38, 905–911 (2015).
    Google Scholar 
    Bolotov, I. N. et al. New occurrences, morphology, and imaginal phenology of the rarest Arctic tiger moth Arctia tundrana (Erebidae: Arctiinae). Ecol. Montenegrina 39, 121–128 (2021).
    Google Scholar 
    Bolotov, I. N., Gofarov, M. Y., Kolosova, Y. S. & Frolov, A. A. Occurrence of Borearctia menetriesii (Eversmann, 1846) (Erebidae: Arctiinae) in Northern European Russia: a new locality in a disjunct species range. Nota Lepidopterol. 36, 65–75 (2013).
    Google Scholar 
    Dubatolov, V. V. Borearctia gen. n., a new genus for the tiger moth Callimorpha menetriesi (Ev.) (Lepidoptera, Arctiidae) [In Russian]. Entomol. Rev. 63, 157–161 (1984).
    Google Scholar 
    Hori, H. An unrecorded species of the Arctiidae [In Japanese]. Kontyu 1, 86 (1926).
    Google Scholar 
    Eversmann, E. Lepidoptera quaedam nova in Rossia observata. Bulletin de la Société Impériale des Naturalistes de Moscou 19, 83–88 (1846).
    Google Scholar 
    Koshkin, E. S. Life history of the rare boreal tiger moth Arctia menetriesii (Eversmann, 1846) (Lepidoptera, Erebidae, Arctiinae) in the Russian Far East. Nota Lepidopterol. 44, 141–151 (2021).
    Google Scholar 
    Krogerus, H. D. Vorkommen von Callimorpha menetriesi Ev. in Fennoskandien, nebst Beschriebungen der verschiedenen Entwicklungsstadien [In German]. Not. Entomol. 24, 79–86 (1944).
    Google Scholar 
    Saarenmaa, H. Conservation ecology of Borearctia menetriesii [online]. http://www.bormene.myspecies.info/en (2011-2021).Berlov, O. E. & Bolotov, I. N. Record of Borearctia menetriesii (Eversmann, 1846) (Lepidoptera, Erebidae, Arctiinae) larva on Aconitum rubicundum Fischer (Ranunculaceae) in Eastern Siberia. Nota Lepidopterol. 38, 23–27 (2015).
    Google Scholar 
    Staudinger, O. & Rebel, H. Catalog der Lepidopteren des palaearctischen Faunengebietes. Vol. 1. Th. Famil. Papilionidae-Hepialidae (R. Friedländer & Sohn, 1901).Filipiev, I. Lepidoptera [In Russian]. Russkoe Entomologicheskoe Obozrenie 16, 376–378 (1916).
    Google Scholar 
    Fabritius, G. R. Anmärkningsvärda fynd av fjärilar, bland dessa den för Europa nya Callimorpha menetriesii Ev. [In Finnish]. Meddeland. Soc. Fauna Fl. Fenn. 40, 47–49 (1914).
    Google Scholar 
    Carpelan, J. Callimorpha menetriesii Ev. återfunnen [In Finnish]. Meddeland. Soc. Fauna Fl. Fenn. 48, 108–109 (1921).
    Google Scholar 
    Kurentzov, A. I. Zoogeography of the Amur Region [In Russian] (Nauka Publisher, 1965).Dubatolov, V. V. Tiger moths (Lepidoptera, Arctiidae: Arctiinae) of South Siberian mountains (report 2) [In Russian] in Arthropods and Helminths, Fauna of Siberia Series (ed. Zolotarenko, G. S.) 139–169 (Nauka Publisher, 1990).Klitin, A. K. New record of the tiger moth Borearctia menetriesii on Sakhalin Island [In Russian]. Bulletin of Sakhalin Museum 16, 269–271 (2009).
    Google Scholar 
    Nupponen, K. & Fibiger, M. Additions to the checklist of Bombycoidea and Noctuoidea of the Volgo-Ural region. Part II. (Lepidoptera: Lasiocampidae, Erebidae, Nolidae, Noctuidae). Nota Lepidopterol. 35, 33–50 (2012).
    Google Scholar 
    Koshkin, E. S. Preliminary results of the examination of the fauna of Higher Moths (Macroheterocera, excluding Geometridae and Noctuidae) of the upper Bureya River basin (Khabarovsk Region) [In Russian]. Proceedings of Grodekovsky Museum (Nature of the Far East) 24, 65–75 (2010).
    Google Scholar 
    Marttila, O., Saarinen, K., Haahtela, T. & Pajari, M. Idänsiilikäs Borearctia menetriesi (Eversmann, 1846) [In Finnish] in Suomen kiitäjät ja kehrääjät [Macrolepidoptera of Finland] 265–266 (Kirjayhtymä Oy, 1996).Lappi, E., Mikkola, K. & Ryynänen, J. Idänsiilikäs Borearctia menetriesii, tervetuloa takaisin! [Welcome back Borearctia menetriesii] [In Finnish]. Baptria 29, 28–29 (2004).
    Google Scholar 
    Silvonen, K. Borearctia Dubatolov, 1985 [online]. Kimmo’s Lepidoptera Site, Finland. http://www.kolumbus.fi/~kr5298/lnel/a/bormenet.htm (2010).Bolotov, I. N. et al. Menetries’ Tiger Moth Range and Ecology Database (1840s-2020). figshare https://doi.org/10.6084/m9.figshare.15000399 (2022).Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).
    Google Scholar 
    Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).
    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Google Scholar 
    Simmons, B. I. et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Diver. 13, 103–114 (2020).
    Google Scholar 
    Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conserv. Diver. 14, 167–187 (2021).
    Google Scholar 
    Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. USA 118, e2002548117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 118, e2023989118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl. Acad. Sci. USA 118, e2002556117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berry, P. A. M., Smith, R. G. & Benveniste, J. ACE2: the new global digital elevation model in Gravity, Geoid and Earth Observation (ed. Mertikas, S. P.) 231–237 (Springer, 2010).Kurentzov, A. I. My travels [In Russian] (Far Eastern Publishing House, 1973).Dubatolov, V. V. A catalogue of type specimens of Palaearctic tiger moths (Lepidoptera, Arctiidae, Arctiinae) preserved in the collection of the Zoological Institute of Russian Academy of Sciences (St. Petersburg) [In Russian]. Entomol. Rev. 75, 338–356 (1996).
    Google Scholar 
    Bailey, R. G. Explanatory Supplement to Ecoregions Map of the Continents. Environ. Conserv. 16, 307–309 (1989).
    Google Scholar 
    Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224 (2002).
    Google Scholar 
    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    Beaumont, L. J. et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl. Acad. Sci. USA 108, 2306–2311 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).PubMed 

    Google Scholar  More