More stories

  • in

    Vulnerability to climate change of species in protected areas in Thailand

    Study areaThe study area covers the total land area of Thailand. Where it is useful, we divided Thailand into six regions (Fig. 2a), the names and boundaries of which are widely used, although they have no official administrative status. We focused on the elements of Thailand’s protected area system that were concerned principally with the in-situ conservation of biodiversity: existing and proposed National Parks, Wildlife Sanctuaries, Non-hunting Areas, and Forest Parks, covering 111, 201 km2 or 21.7% of the country’s land area37 (Fig. 1).Environmental dataA set of environmental variables that were expected to be directly or indirectly related to species distributions in Thailand was used to model suitable habitat in the present and future (Supplementary Material Table S1). These variables were chosen to encompass ecologically relevant variables and enable consistent comparison between species, regardless of species-specific preferences. GIS layers for the whole of the study area were compiled using a variety of data sources at 1-km2 resolution. For variables originally at higher than 1-km resolutions, we used the plus function in ArcMap to combine them with a mask of the study area to use the mask dimensions for all cells.The physical variables, altitude, slope, aspect, and soil pH are widely used in species distribution modeling. Slope and aspect have biologically significant impacts on both temperature and rainfall at these latitudes8 and are particularly important at the poleward margins of species ranges where species may be confined to one aspect. Slope also affects soil maturity and depth. Soil pH is a consistently measured soil variable that broadly correlates with fertility in tropical soils8. Additional soil variables, particularly soil phosphorus, have been shown to be important filters of plant species distributions in the tropics38, but they are not available for Thailand with a useful accuracy and spatial resolution. Altitudes were downloaded from the CGIAR-Consortium for Spatial Information, CGIAR-CSI version 4.1. Slope and aspect were generated by using surface tools in ArcGIS. Soil pH was extracted from ISRIC-World Soil Information version 2.0.Unlike the temperate zone, where tolerances of winter cold and requirements for summer warmth dominate plant and animal distributions, our understanding of how tropical climates filter species distributions is still weak38,39. In Thailand, as in most of the tropics, there are two major climatic gradients which correlate with changes in species composition: a rainfall gradient in the lowlands, along which total rainfall declines and the length of the dry season increases, and a gradient of steadily declining temperature with elevation7. There is no simple relationship between elevation, and thus temperature, and rainfall. An additional complication is that temperature seasonality may be significant in northern Thailand (north of c.18° N), where cooler winters reduce dry-season water stress and extreme low temperatures at high altitudes may exceed physiological tolerances. We therefore chose 8 bioclimatic variables (Supplementary Material Table S1) related to precipitation and temperature, and their seasonality, all of which have previously been used in species distribution modelling in this region9,40. These are available at a resolution of 30 arc sec (approximately 1 km at the equator) from WorldClim ver. 1.4 based on averages of 1970–1990. These variables are available from the same source (and downscaled using the same methods) for the future climate projections.Vegetation structure is an additional major influence on plant and animal distributions in the tropics, both in intact natural vegetation38,39 and when the original vegetation has been degraded or cleared8. Vegetation structure was represented through the inclusion of two continuous variables, percentage forest cover and tree density, as most of the modelled species are known to be sensitive to both the presence of forest and the degree of intactness of the tree cover9. Mean tree density per km2 was extracted from Crowther et al.41 version 2 and percentage coverage of forest per km2 was extracted from the European Space Agency (ESA) GlobCover Version 2.3.Note that the mechanistic basis of the correlations between all these variables and the current distributions of tropical plants and animals are rarely known. Temperature has a direct physiological impact on all organisms, and water supply may be seasonally limiting for plants and some amphibians, but indirect links through biotic interactions are expected to be more important in the tropics, including pest pressure on plants38 and food supply for animals39. Competition is probably also important in shaping local species assemblies. For future projections, we assumed that temperature and precipitation were changing, and that other variables (topography, soil, and vegetation) were stable, so our analysis represents the impacts of climate alone. For 2070, we used the same variables projected by three CMIP5 Earth System Models, CNRM-CM5, GFDL-CM3 and HadGEM2-ES, which have been previously used in Southeast Asia9,42 and in Thailand7. We used two Representative Concentration Pathways, RCP2.6 and RCP8.5, representing low and high greenhouse-gas concentration scenarios, respectively, and thus the potential range of radiative forcing by the end of the century43. RCP2.6 is consistent with meeting the Paris Agreement’s 2 °C global warming target.Species occurrence dataMany locality records for vertebrates were supplied by the Department of National Parks, Wildlife and Plant Conservation (DNP). Trained DNP staff walked along trails throughout the protected areas in Thailand during 2017–2018. They recorded 271,695 locations for 70 mammal species, 18 locations for 3 amphibian species, 318 locations for 18 reptile species, and 43,057 locations for 65 bird species44. We supplemented this with data downloaded from the Global Biodiversity Information Facility (GBIF, https://www.gbif.org/) for 1960–2019 for amphibians (2063 localities for 86 species)45, reptiles (1722 localities from 196 species)46, mammals (2508 localities from 191 species)47, and birds (1,559,222 localities from 884 species)48. More than 95% of the bird records from GBIF were identified as coming from eBird49, which is popular among birders in Thailand. For plants, we used occurrence data from the DNP’s forest resource inventory project from 221 plots, including 24,605 localities for 363 species, the DNP’s Forest Herbarium, including 227 localities for 141 species, and locations for 12 rare and endangered forest species collected from all over Thailand. We also downloaded data from the Botanical Information and Ecology Network (BIEN, https://bien.nceas.ucsb.edu/bien/), including 7209 localities for 1422 species.We removed suspect records (coordinate issues, name problems, etc.), duplicates from the same locality (i.e., more than one individual of the same species recorded in a cell), and species with  0.5 as adequate, but since only five SDMs out of the 1457 generated in this study had values lower than this (0.3–0.5), we retained all the models.Assessment of climate change impactsThe estimated current distribution for each species from Maxent was used as the baseline for comparison with projected distributions of suitable habitat for these species by 2070, under the two emission scenarios and three ESMs, and with and without unlimited dispersal into newly available habitat. We then assessed the impacts of climate change, both on the spatial distribution of individual species and on the pattern of species richness. To generate a species richness map, the binary habitat suitability maps for all species were stacked to produce a consolidated map, which showed the number of species for each 1 km grid cell, and then classified them into five classes (lowest, low, moderate, high, and highest), using the mean ± standard deviation as a break class40.Current and future maps were then compared for each species to calculate the change in species richness, and contingency tables were generated containing the numbers of cells (each of 1 km2) in each richness class. Suitable habitat areas were calculated for the current climate and projected for the future climate. For each species we estimated gained habitat as the areas that will become suitable for a species in future under that scenario, lost habitat as the areas currently predicted as suitable now but projected to become unsuitable under future climatic change, and stable habitat as the areas predicted as suitable now which will remain suitable into the future.We then assessed the vulnerability of each species by estimating the projected change in its range over the next 50 years and using a criteria-based approach, which combined the mean of the suitable habitat area (interpreted as equivalent to extent of occurrence) in the three models and a simplified version of the IUCN Red List criteria51. For 2070, we modified criterion A3(c) as follows; Extinct (Ex) species are projected to lose 100% of suitable habitat by 2070, Critically Endangered (CR) species are projected to lose over 80%, Endangered (EN) species are projected to lose 50–80%; Vulnerable (VU) species are projected to lose 30–50%, Near Threatened (NT) species are projected to lose  More

  • in

    A three-dimensional climate-smart conservation approach in the high seas

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Brito-Morales, I. et al. Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01323-7 (2022). More

  • in

    Restructuring of plankton genomic biogeography in the surface ocean under climate change

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science https://doi.org/10.1126/science.281.5374.237 (1998).Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature https://doi.org/10.1038/nature16942 (2016).Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles https://doi.org/10.1029/2011GB004099 (2012).Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps010257 (1983).Saab, M. A. Day-to-day variation in phytoplankton assemblages during spring blooming in a fixed station along the Lebanese coastline. J. Plankton Res. https://doi.org/10.1093/plankt/14.8.1099 (1992).Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. https://doi.org/10.1038/s41467-019-14105-1 (2020).Kavanaugh, M. T. et al. Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsw086 (2016).Longhurst, A. R. Ecological Geography of the Sea (Elsevier, 2007).Fay, A. R. & McKinley, G. A. Global open-ocean biomes: mean and temporal variability. Earth Syst. Sci. Data https://doi.org/10.5194/essd-6-273-2014 (2014).Reygondeau, G. et al. Dynamic biogeochemical provinces in the global ocean. Glob. Biogeochem. Cycles https://doi.org/10.1002/gbc.20089 (2013).Richter, D. J. et al. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems. Preprint at bioRxiv https://doi.org/10.1101/867739 (2020).Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences https://doi.org/10.5194/bg-17-609-2020 (2020).Hellweger, F. L., Van Sebille, E. & Fredrick, N. D. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science https://doi.org/10.1126/science.1254421 (2014).Laso-Jadart, R. et al. Investigating population-scale allelic differential expression in wild populations of Oithona similis (Cyclopoida, Claus, 1866). Ecol. Evol. https://doi.org/10.1002/ece3.6588 (2020).Delmont, T. O. et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife https://doi.org/10.7554/eLife.46497 (2019).Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. https://doi.org/10.1038/s41467-017-02342-1 (2018).Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell https://doi.org/10.1016/j.cell.2019.10.014 (2019).Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data https://doi.org/10.1038/sdata.2017.93 (2017).Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data https://doi.org/10.1038/sdata.2015.23 (2015).Karsenti, E. et al. A holistic approach to marine eco-systems biology. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001177 (2011).Duarte, C. M. Seafaring in the 21st century: the Malaspina 2010 circumnavigation expedition. Limnol. Oceanogr. Bull. https://doi.org/10.1002/lob.10008 (2015).Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1519080113 (2016).Benedetti, F., Guilhaumon, F., Adloff, F. & Ayata, S. D. Investigating uncertainties in zooplankton composition shifts under climate change scenarios in the Mediterranean Sea. Ecography https://doi.org/10.1111/ecog.02434 (2018).Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).Article 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science https://doi.org/10.1126/science.1239352 (2013).Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences https://doi.org/10.5194/bg-10-6225-2013 (2013).Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science https://doi.org/10.1126/science.1224836 (2012).Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell https://doi.org/10.1016/j.cell.2019.10.008 (2019).Busseni, G. et al. Large scale patterns of marine diatom richness: drivers and trends in a changing ocean. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13161 (2020).Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages revealed by genome-resolved metagenomics. Preprint at bioRxiv https://doi.org/10.1101/2020.10.15.341214 (2020).Delmont, T. O. et al. Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean. ISME J. https://doi.org/10.1038/s41396-021-01135-1 (2021).Boyer, et al. World Ocean Database 2013, NOAA Atlas NESDIS 72 (National Oceanic and Atmospheric Administration, 2013); https://doi.org/10.7289/V5NZ85MTSunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0364-5 (2020).Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0336-3 (2019).van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change https://doi.org/10.1007/s10584-011-0148-z (2011).Polovina, J. J., Dunne, J. P., Woodworth, P. A. & Howell, E. A. Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsq198 (2011).Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. https://doi.org/10.1038/s41561-019-0524-2 (2020).Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).Article 

    Google Scholar 
    Wrightson, L. & Tagliabue, A. Quantifying the impact of climate change on marine diazotrophy: insights from Earth system models. Front. Mar. Sci. 7, 635 (2020).Article 

    Google Scholar 
    Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).CAS 
    Article 

    Google Scholar 
    Luo, Y.-W. et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst. Sci. Data 4, 47–73 (2012).Article 

    Google Scholar 
    Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).Article 

    Google Scholar 
    Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).CAS 
    Article 

    Google Scholar 
    Agrawal, R. & Srikant, R. in Proceedings of the 20th International Conference on Very Large Data Bases (eds Bocca, J. B. et al.) 487–499 (Morgan Kaufmann, 1994).Laufkötter, C. et al. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences 13, 4023–4047 (2016).Article 

    Google Scholar 
    Iudicone, D. Some may like it hot. Nat. Geosci. https://doi.org/10.1038/s41561-020-0535-z (2020).Gorsky, G. et al. Expanding Tara Oceans protocols for underway, ecosystemic sampling of the ocean–atmosphere interface during Tara Pacific expedition (2016–2018). Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00750 (2019).Istace, B. et al. de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer. Gigascience https://doi.org/10.1093/gigascience/giw018 (2017).Grand, M. M. et al. Developing autonomous observing systems for micronutrient trace metals. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00035 (2019).Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: Draw geographical maps. R version 3.5.0 https://cran.r-project.org/web/packages/maps/index.html (2021).Jaccard, P. Distribution comparée de la flore alpine dans quelques régions des Alpes occidentales et orientales. Bull. Murith. 31, 81–92 (1902).
    Google Scholar 
    Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data https://doi.org/10.1038/sdata.2017.39 (2017).Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11 (Flanders Marine Institute, 2019); https://doi.org/10.14284/386Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. https://doi.org/10.5194/gmd-8-2465-2015 (2015).Bibby, T. S. & Moore, C. M. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific. Biogeosciences https://doi.org/10.5194/bg-8-657-2011 (2011).Brun, P., Kiørboe, T., Licandro, P. & Payne, M. R. The predictive skill of species distribution models for plankton in a changing climate. Glob. Change Biol. https://doi.org/10.1111/gcb.13274 (2016).Redfield, A. C. in James Johnstone Memorial Volume (ed. Daniel, R. J.) 176–192 (Liverpool Univ. Press, 1934).Michelangeli, P. A., Vrac, M. & Loukos, H. Probabilistic downscaling approaches: application to wind cumulative distribution functions. Geophys. Res. Lett. https://doi.org/10.1029/2009GL038401 (2009).Ridgeway, G. gbm: Generalized boosted regression models. R version 1.6–3.1 https://cran.r-project.org/web/packages/gbm/gbm.pdf (2010).Breiman, L. & Cutler, A. randomForest: Breiman and Cutler’s random forests for classification and regression. R package 4.1.0 https://www.stat.berkeley.edu/~breiman/RandomForests/ (2012).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, 2002).Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. https://doi.org/10.1198/016214504000000980 (2004).Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. https://doi.org/10.1016/j.patrec.2005.10.010 (2006).Biecek, P. DALEX: explainers for complex predictive models. J. Mach. Learn. Res. 19, 1–5 (2018).
    Google Scholar 
    Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsu172 (2015).Vallejos, C. A. Exploring a world of a thousand dimensions. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0330-9 (2019).Kaufman, L. and Rousseeuw, P.J. in Statistical Data Analysis Based on the L1 Norm and Related Methods (ed. Dodge, Y.) 405–416 (North-Holland, 1987).Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. https://doi.org/10.1016/0377-0427(87)90125-7 (1987).Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I https://doi.org/10.1016/0967-0637(95)00021-W (1995).Hubert, L. & Arabie, P. Comparing partitions. J. Classif. https://doi.org/10.1007/BF01908075 (1985).Somerfield, P. J. Identification of the Bray–Curtis similarity index: comment on Yoshioka (2008). Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps07841 (2008).Bloom, S. Similarity indices in community studies: potential pitfalls. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps005125 (1981).Welch, B. L. The generalisation of student’s problems when several different population variances are involved. Biometrika 34, 28–35 (1947).CAS 

    Google Scholar 
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
    Google Scholar 
    Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).Article 

    Google Scholar 
    Sthle, L. & Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 6, 259–272 (1989).Article 

    Google Scholar 
    Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).Article 

    Google Scholar 
    Frémont, P. et al. Biogeographies of genomic provinces from ‘Restructuring of plankton genomic biogeography in the surface ocean under climate change’. figshare. https://figshare.com/articles/dataset/Biogeographies_genomic_provinces/19071620 (2022). More

  • in

    Development and validation of an eDNA protocol for monitoring endemic Asian spiny frogs in the Himalayan region of Pakistan

    Lindenmayer, D. et al. A checklist of attributes for effective monitoring of threatened species and threatened ecosystems. J. Environ. Manage. 262, 110312 (2020).PubMed 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).PubMed 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2019-3. http://www.iucnredlist.org (2021).Adams, M. J. et al. Trends in amphibian occupancy in the United States. PLoS ONE 8, e64347 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corn, P. S. Climate change and amphibians. Anim. Biodivers. Conserv. 28, 59–67 (2005).
    Google Scholar 
    Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681–684 (2001).ADS 
    CAS 

    Google Scholar 
    Baldwin, R. F. & deMaynadier, P. G. Assessing threats to pool-breeding amphibian habitat in an urbanizing landscape. Biol. Conserv. 142, 1628–1638 (2009).Borzée, A., Kyong, C. N., Kil, H. K. & Jang, Y. Impact of water quality on the occurrence of two endangered Korean anurans: Dryophytes suweonensis and Pelophylax chosenicus. Herpetologica 74, 1–7 (2018).
    Google Scholar 
    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).ADS 
    CAS 

    Google Scholar 
    Caro, T., Rowe, Z., Berger, J., Wholey, P. & Dobson, A. An inconvenient misconception: climate change is not the principal driver of biodiversity loss. Conserv. Lett. e12868 (2022).Daszak, P. et al. Emerging infectious diseases and amphibian population declines. Emerg. Infect. 5, 735–748 (1999).CAS 

    Google Scholar 
    Fellers, G., Green, D. E. & Longcore, J. Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa). Copeia 2001, 945–953Blaustein, A. R. et al. Effects of ultraviolet radiation on amphibians: field experiments. Am. Zool. 38, 799–812 (1999).
    Google Scholar 
    Langhelle, A., Lindell, M. J. & Nyström, P. Effects of ultraviolet radiation on amphibian embryonic and larval development. J. Herpetol. 33, 449–456 (1999).
    Google Scholar 
    Beebee, T. J. C. Amphibians breeding and climate. Nature 374, 219–220 (1995).ADS 
    CAS 

    Google Scholar 
    Donnelly, M. A. & Crump, M. L. Potential effects of climate change on two neotropical amphibian assemblages. In Potential Impacts of Climate Change on Tropical Forest Ecosystems (ed. Markham, A.) 401–421 (Springer Netherlands, 1998).Carey, C. & Alexander, M. A. Climate change and amphibian declines: is there a link? Divers. Distrib. 9, 111–121 (2003).
    Google Scholar 
    Fisher, R. N. & Shaffer, H. B. The decline of amphibians in California’s Great Central Valley. Conserv. Biol. 10, 1387–1397 (1996).
    Google Scholar 
    Sparling, D. W., Donald, W., Linder, G. & Bishop, C. A. Ecotoxicology of Amphibians and Reptiles. (SETAC Press, 2000).Rouse, M. J. & Daellenbach, U. S. Rethinking research methods for the resource-based perspective: isolating sources of sustainable competitive advantage. Strat. Manag. J. 20, 487–494 (1999).
    Google Scholar 
    Bridges, C. M. & Boone, M. D. The interactive effects of UV-B and insecticide exposure on tadpole survival, growth and development. Biol. Conserv. 113, 49–54 (2003).
    Google Scholar 
    Schmeller, D. S. et al. National responsibilities in European species conservation: a methodological review. Conserv. Biol. 22, 593–601 (2008).PubMed 

    Google Scholar 
    Anderson, S. Area and endemism. Q. Rev. Biol. 69, 451–471 (1994).
    Google Scholar 
    Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–358 (2010).
    Google Scholar 
    Gorman, C. E., Potts, B. M., Schweitzer, J. A. & Bailey, J. K. Shifts in species interactions due to the evolution of functional differences between endemics and non-endemics: an endemic syndrome hypothesis. PLoS ONE 9, e111190 (2014).Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 

    Google Scholar 
    Fontaine, B. et al. The European Union’s 2010 target: putting rare species in focus. Biol. Conserv. 139, 167–185 (2007).
    Google Scholar 
    Saeed, M. et al. Rise in temperature causes decreased fitness and higher extinction risks in endemic frogs at high altitude forested wetlands in northern Pakistan. J. Therm. Biol. 95, 102809 (2021).McDonald, L. L. Sampling rare populations. In Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (ed. Thompson W. L.) 11–42 (Island Press, 2004).Dodd Jr. K. Monitoring Amphibians in Great Smoky Mountains National Park (USGS Survey Circular, 2003).Qu, C. & Stewart, K. A. Evaluating monitoring options for conservation : traditional and environmental DNA tools for a critically endangered mammal. Sci. Nat. 106, 9 (2019).
    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).PubMed 

    Google Scholar 
    Schmidt, B. R., Kery, M., Ursenbacher, S., Hyman, O. J. & Collins, J. P. Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4, 646–653 (2013).
    Google Scholar 
    Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: emerging methods to estimate species diversity. Trends Ecol. Evol. 29, 97–106 (2014).PubMed 

    Google Scholar 
    Kéry, M. & Schmidt, B. R. Imperfect detection and its consequences for monitoring for conservation. Community Ecol. 9, 207–216 (2008).
    Google Scholar 
    Mackenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).
    Google Scholar 
    Mackenzie, D. I. & Royle, J. A. Designing occupancy studies: general advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114 (2005).
    Google Scholar 
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Darling, J. A. & Mahon, A. R. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111, 978–988 (2011).CAS 
    PubMed 

    Google Scholar 
    Goldberg, C. S., Pilliod, D. S., Arkle, R. S. & Waits, L. P. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS ONE 6, e22746 (2011).Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, e0186462 (2017).Agersnap, S. et al. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples. PLoS ONE 12, e0179261 (2017).Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).CAS 

    Google Scholar 
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed 

    Google Scholar 
    Sigsgaard, E. E., Carl, H., Møller, P. R. & Thomsen, P. F. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol. Conserv. 183, 46–52 (2015).
    Google Scholar 
    Bedwell, M. E., Hopkins, K. V. S., Dillingham, C. & Goldberg, C. S. Evaluating Sierra Nevada yellow-legged frog distribution using environmental DNA. J. Wildl. Mangaement 85, 945–952 (2021).
    Google Scholar 
    Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brozio, S. et al. Development and application of an eDNA method to detect the critically endangered Trinidad golden tree frog (Phytotriades auratus) in bromeliad phytotelmata. PLoS ONE 12, e0170619 (2017).Pellet, J. & Schmidt, B. R. Monitoring distributions using call surveys: estimating site occupancy, detection probabilities and inferring absence. Biol. Conserv. 123, 27–35 (2005).
    Google Scholar 
    Weir, L. A., Royle, J. A., Nanjappa, P. & Jung, R. E. Modeling anuran detection and site occupancy on North American Amphibian Monitoring Program (NAAMP) routes in Maryland. J. Herpetol. 39, 627–639 (2005).
    Google Scholar 
    Fiske, I. J. & Chandler, R. B. Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23 (2011).
    Google Scholar 
    Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).
    Google Scholar 
    Holland, M. M. & Parsons, T. J. Mitochondrial DNA sequence analysis – validation and use for forensic casework. Forensic Sci. Rev. 11, 21–50 (1999).CAS 
    PubMed 

    Google Scholar 
    Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Waits, L. P. & Paetkau, D. Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J. Wildl. Manage. 69, 1419–1433 (2006).
    Google Scholar 
    Shokralla, S. et al. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol. Ecol. Resour. 14, 892–901 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mills, L. S., Pilgrim, K. L., Schwartz, M. K. & McKelvey, K. Identifying lynx and other North American felids based on mtDNA analysis. Conserv. Genet. 1, 285–288 (2000).CAS 

    Google Scholar 
    Hajibabaei, M. et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6, 959–964 (2006).CAS 

    Google Scholar 
    Kim, P., Kim, D., Yoon, T. J. & Shin, S. Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. Mar. Environ. Res. 139, 1–10 (2018).CAS 
    PubMed 

    Google Scholar 
    Dejean, T. et al. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6, e23398 (2011).Xia, Z. et al. Early detection of a highly invasive bivalve based on environmental DNA (eDNA). Biol. Invasions 20, 437–447 (2018).
    Google Scholar 
    Torresdal, J. D., Farrell, A. D. & Goldberg, C. S. Environmental DNA detection of the golden tree frog (Phytotriades auratus) in bromeliads. PLoS ONE 12, e0168787 (2017).Biggs, J. et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 183, 19–28 (2015).
    Google Scholar 
    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70, 1123–1130 (2013).CAS 

    Google Scholar 
    Smith, D. H. V., Jones, B., Randall, L. & Prescott, D. R. C. Difference in detection and occupancy between two anurans: the importance of species-specific monitoring. Herpetol. Conserv. Biol. 9, 267–277 (2014).
    Google Scholar 
    Bayley, P. B. & Peterson, J. T. An approach to estimate probability of presence and richness of fish species. Trans. Am. Fish. Soc. 130, 620–633 (2004).
    Google Scholar 
    Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).
    Google Scholar 
    Scott, Jr., N. J. & Woodward, B. D. Surveys at breeding sites. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians (eds. Heyer, W. R., Donnelly, M. A., McDiarmid, R. W., Hayek, L. C., & Foster, M. S.) 118–125 (Smithsonian Institution Press, 1994).Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).
    Google Scholar 
    Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J. & Waits, L. P. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw. Sci. 32, 792–800 (2013).
    Google Scholar 
    Mahon, A. R. et al. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS ONE 8, e58316 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, M. S. Amphibians and Reptiles of Pakistan (Krieger Publishing Company, 2006).Ruppert, K. M., Davis, D. R., Rahman, M. S. & Kline, R. J. Development and assessment of an environmental DNA (eDNA) assay for a cryptic Siren (Amphibia: Sirenidae). Environ. Adv. 7, 100163 (2022).
    Google Scholar 
    Hobbs, J., Round, J. M., Allison, M. J. & Helbing, C. C. Expansion of the known distribution of the coastal tailed frog, Ascaphus truei, in British Columbia, Canada, using robust eDNA detection methods. PLoS ONE 14, e0213849 (2019).Barata, I. M., Griffiths, R. A., Fogell, D. J. & Buxton, A. S. Comparison of eDNA and visual surveys for rare and cryptic bromeliad-dwelling frogs. Herpetol. J. 31, 1–9 (2021).
    Google Scholar 
    Ahmed, W. et al. Site occupancy of two endemic stream frogs in different forest types in Pakistan. Herpetol. Conserv. Biol. 15, 506–511 (2020).
    Google Scholar 
    Richmond, O. M. W., Hines, J. E. & Beissinger, S. R. Two-species occupancy models: a new parameterization applied to co-occurrence of secretive rails. Ecol. Appl. 20, 2036–2046 (2010).PubMed 

    Google Scholar 
    Shea, C. P., Eaton, M. J. & MacKenzie, D. I. Implementation of an occupancy-based monitoring protocol for a widespread and cryptic species, the New England cottontail (Sylvilagus transitionalis). Wildl. Res. 46, 222–235 (2019).
    Google Scholar 
    Rota, C. T. et al. A multispecies occupancy model for two or more interacting species. Methods Ecol. Evol. 7, 1164–1173 (2016).
    Google Scholar 
    Ohler, A. & Dubois, A. Phylogenetic relationships and generic taxonomy of the tribe Paini (Amphibia, Anura, Ranidae, Dicroglossinae). Zoosystema 28, 769–784 (2006).
    Google Scholar 
    Jiang, J. et al. Phylogenetic relationships of the tribe Paini (Amphibia, Anura, Ranidae) based on partial sequences of mitochondrial 12s and 16s rRNA genes. Zool. Res. 362, 353–362 (2005).
    Google Scholar 
    Rais, M. et al. A note on recapture of Nanorana vicina (Anura: Amphibia) from Murree, Pakistan. J. Anim. Plant Sci. 24, 455–458 (2014).
    Google Scholar 
    Siddiqui, M. F., Ahmed, M., Khan, N. & Khan, I. A. A quantitative description of moist temperate conifer forests of Himalayan region of Pakistan and Azad Kashmir. Int. J. Biotechnol. 7, 175–185 (2010).
    Google Scholar 
    Beck, H. E. et al. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).Sheikh, M. I. & Hafeez, S. M. Forest and Forestry in Pakistan (A-one Publishers, 2001).Lodhi, A. Conservation of leopards in Ayubia National Park, Pakistan (MS Thesis) (University of Montana, 2007).Palumbi, S. R. Nucleic acids II: the polymerase chain reaction. In Molecular Systematics, 2nd Edition (eds. Hillis, D. M. et al.) 205–247 (Sinauer, 1996).Vences, M., Thomas, M., Van Der Meijden, A., Chiari, Y. & Vieites, D. R. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front. Zool. 2, 5 (2005).Pounds, J. A. & Crump, M. L. Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conserv. Biol. 8, 72–85 (1994).
    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/ (2021).Hutchinson, R. A., Valente, J. J., Emerson, S. C., Betts, M. G. & Dietterich, T. G. Penalized likelihood methods improve parameter estimates in occupancy models. Methods Ecol. Evol. 6, 949–959 (2015).
    Google Scholar 
    Clipp, H. L., Evans, A. L., Kessinger, B. E., Kellner, K., & Rota, C. T. A penalized likelihood for multispecies occupancy models improves predictions of species interactions. Ecology 102, e03520 (2021).PubMed 

    Google Scholar  More

  • in

    Functional trade-offs in fish communities

    Eddy, T. D. et al. One Earth 4, 1278–1285 (2021).Article 

    Google Scholar 
    Mumby, P. J. et al. Science 311, 98–101 (2006).CAS 
    Article 

    Google Scholar 
    Maire, E. et al. Proc. R. Soc. Lond. B 285, 20181167 (2018).
    Google Scholar 
    Schiettekatte, N. M. D. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-0-01710-5 (2022).Article 

    Google Scholar 
    Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Funct. Ecol. 33, 1023–1034 (2019).
    Google Scholar 
    Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C. Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (Oxford Univ. Press, 2009).Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Aquat. Sci. 79, 783–801 (2017).Article 

    Google Scholar 
    Bascompte, J., Melián, C. J. & Sala, E. Proc. Natl Acad. Sci. USA 102, 5443–5447 (2005).CAS 
    Article 

    Google Scholar 
    Houk, P. & Musburger, C. Mar. Ecol. Prog. Ser. 488, 23–34 (2013).Article 

    Google Scholar 
    Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Glob. Change Biol. 23, 2166–2178 (2017).Article 

    Google Scholar 
    Meyer, J. L., Schultz, E. T. & Helfman, G. S. Science 220, 1047–1049 (1983).CAS 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Science 364, 1189–1192 (2019).CAS 
    Article 

    Google Scholar 
    Morais, R. A., Siqueira, A. C., Smallhorn-West, P. F. & Bellwood, D. R. PLoS Biol. 19, e3001435 (2021).CAS 
    Article 

    Google Scholar 
    Larned, S. T. Mar. Biol. 132, 409–421 (1998).Article 

    Google Scholar 
    McClanahan, T. R., Carreiro-Silva, M. & DiLorenzo, M. Mar. Pollut. Bull. 54, 1947–1957 (2007).CAS 
    Article 

    Google Scholar 
    McLean, M. et al. Proc. Natl Acad. Sci. USA 118, e2012318118 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas

    Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).CAS 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 
    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).CAS 

    Google Scholar 
    Davies, T. E., Maxwell, S. M., Kaschner, K., Garilao, C. & Ban, N. C. Large marine protected areas represent biodiversity now and under climate change. Sci. Rep. 7, 9569 (2017).CAS 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘protection paradox’. Biol. Conserv. 236, 305–314 (2019).
    Google Scholar 
    Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).
    Google Scholar 
    Ballantine, B. Fifty years on: lessons from marine reserves in New Zealand and principles for a worldwide network. Biol. Conserv. 176, 297–307 (2014).
    Google Scholar 
    Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).
    Google Scholar 
    Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).
    Google Scholar 
    Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).CAS 

    Google Scholar 
    McLeod, E. et al. Integrating climate and ocean change vulnerability into conservation planning. Coast. Manage. 40, 651–672 (2012).
    Google Scholar 
    Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27, 198–215 (2021).
    Google Scholar 
    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).CAS 

    Google Scholar 
    Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).
    Google Scholar 
    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).CAS 

    Google Scholar 
    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).CAS 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip inmarine species richness around the Equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).
    Google Scholar 
    Levin, N., Kark, S. & Danovaro, R. Adding the third dimension to marine conservation. Conserv. Lett. 11, e12408 (2018).
    Google Scholar 
    O’Leary, B. C. & Roberts, C. M. Ecological connectivity across ocean depths: implications for protected area design. Glob. Ecol. Conserv. 15, e00431 (2018).
    Google Scholar 
    Game, E. T. et al. Pelagic protected areas: the missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).
    Google Scholar 
    Protected Planet Report 2020 (UNEP-WCMC and IUCN, 2021); https://livereport.protectedplanet.net/Wright, G. et al. Marine spatial planning in areas beyond national jurisdiction. Mar. Policy 132, 103384 (2021).
    Google Scholar 
    Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020).Dunn, D. C. et al. The Convention on Biological Diversity’s ecologically or biologically significant areas: origins, development, and current status. Mar. Policy 49, 137–145 (2014).
    Google Scholar 
    Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).
    Google Scholar 
    Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change 8, 499–503 (2018).
    Google Scholar 
    Arafeh-Dalmau, N. et al. Incorporating climate velocity into the design of climate-smart networks of marine protected areas. Methods Ecol. Evol. 12, 1969–1983 (2021).
    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).
    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 

    Google Scholar 
    Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).
    Google Scholar 
    Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).
    Google Scholar 
    Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2, 188–196 (2020).
    Google Scholar 
    Ortuño Crespo, G. & Dunn, D. C. A review of the impacts of fisheries on open-ocean ecosystems. ICES J. Mar. Sci. 74, 2283–2297 (2017).
    Google Scholar 
    Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 170039 (2017).
    Google Scholar 
    Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0 (2021).Visalli, M. E. et al. Data-driven approach for highlighting priority areas for protection in marine areas beyond national jurisdiction. Mar. Policy 122, 103927 (2020).
    Google Scholar 
    Dunn, D. C. et al. A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Sci. Adv. 4, eaar4313 (2018).
    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
    Google Scholar 
    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).CAS 

    Google Scholar 
    Venegas-Li, R., Levin, N., Possingham, H. & Kark, S. 3D spatial conservation prioritisation: accounting for depth in marine environments. Methods Ecol. Evol. 9, 773–784 (2018).
    Google Scholar 
    Menini, E. & Van Dover, C. L. An atlas of protected hydrothermal vents. Mar. Policy 108, 103654 (2019).
    Google Scholar 
    Crespo, G. O. et al. High-seas fish biodiversity is slipping through the governance net. Nat. Ecol. Evol. 3, 1273–1276 (2019).
    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).CAS 

    Google Scholar 
    Barton, A. D. et al. The biogeography of marine plankton traits. Ecol. Lett. 16, 522–534 (2013).
    Google Scholar 
    Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).
    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).CAS 

    Google Scholar 
    Daigle, R. M. et al. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods Ecol. Evol. 11, 570–579 (2020).
    Google Scholar 
    Fredston-Hermann, A., Gaines, S. D. & Halpern, B. S. Biogeographic constraints to marine conservation in a changing climate. Ann. N. Y. Acad. Sci. 1429, 5–17 (2018).
    Google Scholar 
    Cashion, T. et al. Shifting seas, shifting boundaries: dynamic marine protected area designs for a changing climate. PLoS ONE 15, e0241771 (2020).CAS 

    Google Scholar 
    Ortuño Crespo, G. et al. Beyond static spatial management: scientific and legal considerations for dynamic management in the high seas. Mar. Policy 122, 104102 (2020).
    Google Scholar 
    Levin, L. A., Amon, D. J. & Lily, H. Challenges to the sustainability of deep-seabed mining. Nat. Sustain. 3, 784–794 (2020).
    Google Scholar 
    Levin, L. A. et al. Climate change considerations are fundamental to management of deep-sea resource extraction. Glob. Change Biol. 26, 4664–4678 (2020).
    Google Scholar 
    Morato, T., Watson, R., Pitcher, T. J. & Pauly, D. Fishing down the deep. Fish Fish. 7, 24–34 (2006).
    Google Scholar 
    Rogers, A. D. & Gianni, M. Implementation of UNGA Resolutions 61/105 and 64/72 in the Management of Deep-Sea Fisheries on the High Seas (DIANE, 2011).Bailey, D. M., Collins, M. A., Gordon, J. D. M., Zuur, A. F. & Priede, I. G. Long-term changes in deep-water fish populations in the Northeast Atlantic: a deeper reaching effect of fisheries? Proc. R. Soc. B 276, 1965–1969 (2009).CAS 

    Google Scholar 
    NOAA National Geophysical Data Center ETOPO1 1 Arc-Minute Global Relief Model (NOAA National Centers for Environmental Information, 2009).O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).
    Google Scholar 
    Vrac, M., Stein, M. L., Hayhoe, K. & Liang, X.-Z. A general method for validating statistical downscaling methods under future climate change. Geophys. Res. 34, L18701 (2007).
    Google Scholar 
    Rogers, A. D. Environmental change in the deep ocean. Annu. Rev. Environ. Resour. 40, 1–38 (2015).
    Google Scholar 
    Sayre, R. G. et al. A three-dimensional mapping of the ocean based on environmental data. Oceanography 30, 90–103 (2017).
    Google Scholar 
    Schulzweida, U. CDO User Guide (Max Planck Institute for Meteorology, 2019).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).Mumby, P. J. et al. Reserve design for uncertain responses of coral reefs to climate change. Ecol. Lett. 14, 132–140 (2011).
    Google Scholar 
    Magris, R. A., Heron, S. F. & Pressey, R. L. Conservation planning for coral reefs accounting for climate warming disturbances. PLoS ONE 10, e0140828 (2015).
    Google Scholar 
    Chollett, I., Enríquez, S. & Mumby, P. J. Redefining thermal regimes to design reserves for coral reefs in the face of climate change. PLoS ONE 9, e110634 (2014).
    Google Scholar 
    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).CAS 

    Google Scholar 
    García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).
    Google Scholar 
    Iwamura, T., Wilson, K. A., Venter, O. & Possingham, H. P. A climatic stability approach to prioritizing global conservation investments. PLoS ONE 5, e15103 (2010).CAS 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).
    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).
    Google Scholar 
    Ball, I. R., Possingham, H. P. & Watts, M. in Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) Ch. 14 (Oxford Univ. Press, 2009).Asaad, I., Lundquist, C. J., Erdmann, M. V. & Costello, M. J. Ecological criteria to identify areas for biodiversity conservation. Biol. Conserv. 213, 309–316 (2017).
    Google Scholar 
    Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species (2019).Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).
    Google Scholar 
    Froese, R. & Pauly, D. FishBase (2021).Palomares, M. L. D. & Pauly, D. SeaLifeBase (2021).Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl Acad. Sci. USA 107, 9707–9711 (2010).CAS 

    Google Scholar 
    Rowden, A. A. et al. A test of the seamount oasis hypothesis: seamounts support higher epibenthic megafaunal biomass than adjacent slopes. Mar. Ecol. 31, 95–106 (2010).
    Google Scholar 
    Devred, E., Sathyendranath, S. & Platt, T. Delineation of ecological provinces using ocean colour radiometry. Mar. Ecol. Prog. Ser. 346, 1–13 (2007).CAS 

    Google Scholar 
    Oliver, M. J. & Irwin, A. J. Objective global ocean biogeographic provinces. Geophys. Res. Lett. 35, L15601 (2008).
    Google Scholar 
    Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).
    Google Scholar 
    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. 1 126, 85–102 (2017).
    Google Scholar 
    Global Open Oceans and Deep Seabed (GOODS)—Biogeographic Classification (UNESCO, 2009).Ban, N. C. & Klein, C. J. Spatial socioeconomic data as a cost in systematic marine conservation planning. Conserv. Lett. 2, 206–215 (2009).
    Google Scholar 
    Tai, T. C., Cashion, T., Lam, V. W. Y., Swartz, W. & Sumaila, U. R. Ex-vessel fish price database: disaggregating prices for low-priced species from reduction fisheries. Front. Mar. Sci. 4, 363 (2017).
    Google Scholar 
    Gurobi Optimizer Reference Manual (Gurobi Optimization, 2020).Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).
    Google Scholar 
    IUCN Red List of Threatened Species (IUCN, 2020); https://www.iucnredlist.org/enChamberlain, S. rredlist: ‘IUCN’ Red List Client. R package version 0.7.0 (2020).McHugh, M. L. Interrater reliability: the kappa statistic. Biochem. Med. 22, 276–282 (2012).
    Google Scholar 
    Brito-Morales, I. Towards climate-smart, 3-D protected areas for biodiversity conservation in the high seas (v2.0). Zenodo https://doi.org/10.5281/zenodo.5912047 (2022). More

  • in

    Biological trade-offs underpin coral reef ecosystem functioning

    Welti, N. et al. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Front. Microbiol. 8, 1298 (2017).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e14002 (2015).Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).CAS 
    Article 

    Google Scholar 
    Pauly, D. et al. Towards sustainability in world fisheries. Nature 418, 689–695 (2002).Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct. Ecol. 33, 948–961 (2019).Williams, G. J. et al. Coral reef ecology in the Anthropocene. Funct. Ecol. 33, 1014–1022 (2019).Article 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).CAS 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9, e1000606 (2011).CAS 
    Article 

    Google Scholar 
    Barneche, D. R. et al. Scaling metabolism from individuals to reef-fish communities at broad spatial scales. Ecol. Lett. 17, 1067–1076 (2014).CAS 
    Article 

    Google Scholar 
    McIntyre, P. B. et al. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89, 2335–2346 (2008).Article 

    Google Scholar 
    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).Article 

    Google Scholar 
    Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527.e6 (2019).CAS 
    Article 

    Google Scholar 
    Morais, R. A., Connolly, S. R. & Bellwood, D. R. Human exploitation shapes productivity–biomass relationships on coral reefs. Glob. Change Biol. 26, 1295–1305 (2020).Article 

    Google Scholar 
    Barneche, D. R. et al. Body size, reef area and temperature predict global reef-fish species richness across spatial scales. Glob. Ecol. Biogeogr. 28, 315–327 (2019).Article 

    Google Scholar 
    Schiettekatte, N. M. D. et al. Nutrient limitation, bioenergetics and stoichiometry: a new model to predict elemental fluxes mediated by fishes. Funct. Ecol. 34, 1857–1869 (2020).Article 

    Google Scholar 
    Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M. & Brown, J. H. Metabolic theory predicts whole-ecosystem properties. Proc. Natl Acad. Sci. USA 112, 2617–2622 (2015).CAS 
    Article 

    Google Scholar 
    Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).Article 

    Google Scholar 
    Hood, J. M., Vanni, M. J. & Flecker, A. S. Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia 146, 247–257 (2005).Article 

    Google Scholar 
    Barneche, D. R. & Allen, A. P. The energetics of fish growth and how it constrains food-web trophic structure. Ecol. Lett. 21, 836–844 (2018).Article 

    Google Scholar 
    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).CAS 
    Article 

    Google Scholar 
    Lefcheck, J. S. et al. Tropical fish diversity enhances coral reef functioning across multiple scales. Sci. Adv. 5, eaav6420 (2019).Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12, e12638 (2019).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).CAS 
    Article 

    Google Scholar 
    Darling, E. S. & D’agata, S. Coral reefs: fishing for sustainability. Curr. Biol. 27, R65–R68 (2017).CAS 
    Article 

    Google Scholar 
    Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).CAS 
    Article 

    Google Scholar 
    Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).CAS 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the great barrier reef following mass coral bleaching. Nature 560, 92–96 (2018).CAS 
    Article 

    Google Scholar 
    Burkepile, D. E. et al. Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci. Rep. 3, 1493 (2013).CAS 
    Article 

    Google Scholar 
    Graham, N. A. J. et al. Changing role of coral reef marine reserves in a warming climate. Nat. Commun. 11, 2000 (2020).Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).Article 

    Google Scholar 
    Froese, R., Thorson, J. T. & Reyes, R. B. A Bayesian approach for estimating length–weight relationships in fishes. J. Appl. Ichthyol. 30, 78–85 (2014).Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase (2018); https://www.fishbase.in/home.htmParravicini, V. et al. Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. PLoS Biol. 18, e3000702 (2020).CAS 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–31 (2017).Article 

    Google Scholar  More

  • in

    Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).CAS 
    Article 

    Google Scholar 
    Horn, C. M., Vargas Paredes, V. H., Gilmore, M. P. & Endress, B. A. Spatio-temporal patterns of Mauritia flexuosa fruit extraction in the Peruvian Amazon: implications for conservation and sustainability. Appl. Geogr. 97, 98–108 (2018).Article 

    Google Scholar 
    Virapongse, A., Endress, B. A., Gilmore, M. P., Horn, C. & Romulo, C. Ecology, livelihoods, and management of the Mauritia flexuosa palm in South America. Glob. Ecol. Conserv. 10, 70–92 (2017).Article 

    Google Scholar 
    van der Hoek, Y., Solas, S. Á. & Peñuela, M. C. The palm Mauritia flexuosa, a keystone plant resource on multiple fronts. Biodivers. Conserv. 28, 539–551 (2019).Article 

    Google Scholar 
    Roucoux, K. H. et al. Threats to intact tropical peatlands and opportunities for their conservation. Conserv. Biol. 31, 1283–1292 (2017).CAS 
    Article 

    Google Scholar 
    Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Change 24, 669–686 (2019).Article 

    Google Scholar 
    Pandey, A. K., Tripathi, Y. C. & Kumar, A. Non timber forest products (NTFPs) for sustained livelihood: challenges and strategies. Res. J. For. 10, 1–7 (2016).CAS 

    Google Scholar 
    Kor, L., Homewood, K., Dawson, T. P. & Diazgranados, M. Sustainability of wild plant use in the Andean Community of South America. Ambio 50, 1681–1697 (2021).Draper, F. C. et al. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 9, 124017 (2014).Article 

    Google Scholar 
    Freitas, L. Impacto del aprovechamiento en la estructura, producción y valor de uso del aguaje en la Amazonía peruana. Recur. Naturales y Ambient. 67, 35–45 (2012).
    Google Scholar 
    Aprovechamiento de los Residuos de Mauritia flexuosa (ITP-CITE, 2018).Falen, L. Y. & Honorio Coronado, E. N. Assessment of the techniques use to harvest buriti fruits (Mauritia flexuosa L.f.) in the district of Jenaro Herrera, Loreto, Peru. Folia Amazónica 27, 131–150 (2018).Article 

    Google Scholar 
    Draper, F. C. et al. Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta-diversity. Ecography 41, 1256–1269 (2018).Article 

    Google Scholar 
    Bejarano, P. & Piana, R. Plan de Manejo de los Aguajales Aledaños al Caño Parinari (WWF-AIF/DK – Reserva Nacional Pacaya Samiria, 2002).Manzi, M. & Coomes, O. T. Managing Amazonian palms for community use: a case of aguaje palm (Mauritia flexuosa) in Peru. For. Ecol. Manage. 257, 510–517 (2009).Article 

    Google Scholar 
    Baker, T. R. et al. How can ecologists help realise the potential of payments for carbon in tropical forest countries? J. Appl. Ecol. 47, 1159–1165 (2010).Article 

    Google Scholar 
    Padoch, C. Marketing of non-timber forest products in Western Amazonia: general observations and research priorities. Adv. Econ. Bot. 9, 43–50 (1192).
    Google Scholar 
    Delgado, C., Couturierb, G. & Mejía, K. Mauritia flexuosa (Arecaceae: Calamoideae), an Amazonian palm with cultivation purposes in Peru. Fruits 62, 157–169 (2007).Article 

    Google Scholar 
    Living Planet Index 2020—Bending the Curve of Biodiversity Loss (WWF, 2020).Gentry, A. H. & Vasquez, R. Where have all the ceibas gone? A case history of mismanagement of a tropical forest resource. For. Ecol. Manage. 23, 73–76 (1988).Article 

    Google Scholar 
    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    Article 

    Google Scholar 
    Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. 16, 222–230 (2018).Article 

    Google Scholar 
    Nic Lughadha, E. et al. Extinction risk and threats to plants and fungi. Plants People Planet 2, 389–408 (2020).Article 

    Google Scholar 
    Ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 1, e1500936 (2015).Article 

    Google Scholar 
    Khan, F. & de Granville, J. J. Palms in Forest Ecosystems of Amazonia (Springer-Verlag, 1992).Freitas, L., Zárate, Z., Bardales, R. & Del Castillo, D. Efecto de la densidad de siembra en el desarrollo vegetativo del aguaje (Mauritia flexuosa L.f.) en plantaciones forestales. Rev. Peru. de. Biol. 26, 227–234 (2019).Article 

    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).Article 

    Google Scholar 
    Endress, B. A., Gilmore, M. P., Vargas, V. H. & Horn, C. Data on spatio-temporal patterns of wild fruit harvest from the economically important palm Mauritia flexuosa in the Peruvian Amazon. Data Brief 20, 132–139 (2018).Article 

    Google Scholar 
    Ahrends, A. et al. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proc. Natl Acad. Sci. USA 107, 14556–14561 (2010).Article 

    Google Scholar 
    Hardin, G. The tragedy of the commons. Science 162, 1243–1248 (1968).CAS 
    Article 

    Google Scholar 
    Ostrom, E. in The New Palgrave Dictionary of Economics Online (eds Durlauf, N.S. & Blume, L.E.) (Palgrave Macmillan, 2008); https://hdl.handle.net/10535/5887Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2003).CAS 
    Article 

    Google Scholar 
    Isaza, C., Bernal, R., Galeano, G. & Martorell, C. Demography of Euterpe precatoria and Mauritia flexuosa in the Amazon: application of integral projection models for their harvest. Biotropica 49, 653–664 (2017).Article 

    Google Scholar 
    Chuquinbalqui, C. M. et al. Diagnóstico socioeconómico de la población organizada para el manejo de recursos naturales en las cuencas Yanayacu Pucate y Pacaya en la Reserva Nacional Pacaya Samiria (Reserva Nacional Pacaya Samiria – SERNANP, 2014).Koh, L. & Wilcove, D. Cashing in palm oil for conservation. Nature 448, 993–994 (2007).CAS 
    Article 

    Google Scholar 
    Murdiyarso, D., Suryadiputra, I. N. & Wahyunto. Tropical peatlands management and climate change: a case study in Sumatra, Indonesia. In Proc. 12th International Peat Congress on Wise Use of Peatlands Vol. 1 (ed. Paivanen, J.) 698–706 (International Peat Society, 2004).Freitas, M. A. B. et al. Intensification of açaí palm management largely impoverishes tree assemblages in the Amazon estuarine forest. Biol. Conserv. 261, 109251 (2021).Article 

    Google Scholar 
    Plan Operativo de Castaña Región Madre de Dios (MINCETUR, 2007).La Industria de la Madera en el Perú. Identificación de las Barreras y Oportunidades para el Comercio Interno de Productos Responsables de Madera, Provenientes de Fuentes Sostenibles y Legales en las MIPYMES del Perú (FAO, 2018).Transferencias por Tipo de Canon, Regalías, y Otros (Congreso Perú, 2019).Peters, C. M., Gentry, A. H. & Mendelsohn, R. O. Valuation of an Amazonian rainforest. Nature 339, 655–656 (1989).Article 

    Google Scholar 
    Sheil, D. & Wunder, S. The value of tropical forest to local communities: complications, caveats, and cautions. Conserv. Ecol. 6, 9 (2002).Belcher, B. & Schreckenberg, K. Commercialisation of non-timber forest products: a reality check. Dev. Policy Rev. 25, 355–377 (2007).Article 

    Google Scholar 
    López, M. et al. What Do We Know about Peruvian Peatlands? (CIFOR, 2020).Gilmore, M. P., Endress, B. A. & Horn, C. M. The socio-cultural importance of Mauritia flexuosa palm swamps (aguajales) and implications for multi-use management in two Maijuna communities of the Peruvian Amazon. J. Ethnobiol. Ethnomed. 9, 29 (2013).Article 

    Google Scholar 
    Tagle Casapia, X. et al. Identifying and quantifying the abundance of economically important palms in tropical moist forest using UAV imagery. Remote Sens 12, 9 (2020).Article 

    Google Scholar 
    Bruenig, E. F. Conservation and Management of Tropical Rainforests: An integrated Approach to Sustainability 2nd edn (CABI, 2016).de Mello, N. G., Gulinckb, H., Van den Broeckc, P. & Parra, P. Social-ecological sustainability of non-timber forest products: a review and theoretical considerations for future research. For. Policy Econ. 112, 102109 (2020).Article 

    Google Scholar 
    van Lent, J. Land-Use Change and Greenhouse Gas Emissions in the Tropics: Forest Degradation on Peat Soils. PhD thesis, Wageningen Univ. Res. (2020).Baker, T. R. et al. in Peru: Deforestation in Times of Climate Change (ed. Chirif, A.) 155–174 (IWGIA, Servindi, ONAMIAP & COHARYIMA, 2019).Bhomia, R. K. et al. Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon. Mitig. Adapt Strateg. Glob. Change 24, 645–668 (2019).Article 

    Google Scholar 
    Marengo, J. in Geoecología y Desarrollo Amazónico: Estudio Integrado en la Zona de Iquitos Biológica – Geographica – Geológica (eds Kalliola, R. & Flores, S.) 35–57 (Univ. Turku Press, 1998).Koolen, H. H. F., Da Silva, F. M. A., Da Silva, V. S. V., Paz, W. H. P. & Bataglion, G. A. in Exotic Fruits (eds Rodrigues, S. et al.) 61–67 (Elsevier, 2018).Malleux, O. J. Inventarios Forestales en Bosques Tropicales (Universidad Nacional Agraria La Molina, 1982).Del Castillo, D., Otárola, E. & Freitas, L. Aguaje, La Maravillosa Palmera de la Vida (Instituto de Investigaciones de la Amazonía Peruana, 2006).Khorsand Rosa, M., Barbosa, R. & Koptur, S. Which factors explain reproductive output of Mauritia flexuosa (Arecaceae) in forest and savanna habitats of northern Amazonia? Int. J. Plant Sci. 175, 307–318 (2014).Article 

    Google Scholar 
    Quinteros, Y., Roca, F. & Quinteros, V. in XIV. Morichales y cananguchales y otros palmares inundables de Suramérica. Parte II: Colombia, Venezuela, Brasil, Perú, Bolivia, Paraguay, Uruguay y Argentina Vol. XIV Serie recursos hidrobiológicos y pesqueros continentales de Colombia (eds Lasso, C. A. et al.) 265–282 (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2016).Hergoualc’h, K., Gutiérrez-Vélez, V. H., Menton, M. & Verchot, L. V. Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. For. Ecol. Manage. 393, 63–73 (2017).Article 

    Google Scholar 
    Honorio Coronado, E. N. et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ. Res. Lett. 16, 074048 (2021).Article 

    Google Scholar 
    de Jong, J. The Impact of Indigenous and Local Communities in the Peruvian Amazon: Integrating Forest Inventory and Remote Sensing. MSc thesis, Wageningen Univ. Res. (2019).Alvarado, L. Estudio del Potencial de las Embarcaciones Solares en la Amazonía. Caso de Estudio Río Napo. MA thesis, Universidad Politécnica Madrid (2017).ArcGIS Desktop v.10.4 (ESRI, 2015).Directorio Nacional de Centrol Poblados – Censos Nacionales 2017- XII de Poblacion, VII de vivienda y III de Comunidades indigenas (Instituto Nacional de Estadítica e Informática, 2018).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).R Core Team. R: A Language and Environment for Statistical Computing. R version 3.5.3 (R Foundation for Statistical Computing, 2019).Taylor, J. R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements 2nd edn (University Science Books, 1997).Consumer Price Index (Peru) (World Bank Group, 2020); https://data.worldbank.org/indicator/FP.CPI.TOTL?locations=PE More