More stories

  • in

    Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates

    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. Part A. Oceanographic Res. Pap. 34, 267–285 (1987).CAS 

    Google Scholar 
    Gloege, L., McKinley, G. A., Mouw, C. B. & Ciochetto, A. B. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2. Glob. Biogeochemical Cycles 31, 1192–1215 (2017).ADS 
    CAS 

    Google Scholar 
    Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochemical Cycles 29, 1044–1059 (2015).ADS 
    CAS 

    Google Scholar 
    Marsay, C. M. et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS 112, 1089–1094 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omand, M. M., Govindarajan, R., He, J. & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Sci. Rep. 10, 5582 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aumont, O. et al. Variable reactivity of particulate organic matter in a global ocean biogeochemical model. Biogeosciences 14, 2321–2341 (2017).ADS 
    CAS 

    Google Scholar 
    DeVries, T., Liang, J.-H. & Deutsch, C. A mechanistic particle flux model applied to the oceanic phosphorus cycle. Biogeosciences 11, 5381–5398 (2014).ADS 

    Google Scholar 
    DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochemical Cycles 31, 535–555 (2017).ADS 
    CAS 

    Google Scholar 
    Kriest, I. & Oschlies, A. On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles. Biogeosciences 5, 55–72 (2008).ADS 
    CAS 

    Google Scholar 
    Lutz, M., Dunbar, R. & Caldeira, K. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochemical Cycles 16, 11-1–11-18 (2002).
    Google Scholar 
    Pavia, F. J. et al. Shallow particulate organic carbon regeneration in the South Pacific Ocean. PNAS 116, 9753–9758 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cael, B. B. & Bisson, K. Particle flux parameterizations: quantitative and mechanistic similarities and differences. Front. Mar. Sci. 5, (2018).Cael, B. B. & White, A. E. Sinking versus suspended particle size distributions in the North Pacific Subtropical Gyre. Geophys. Res. Lett. 47, e2020GL087825 (2020).ADS 

    Google Scholar 
    Lam, P. J., Doney, S. C. & Bishop, J. K. B. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. Global Biogeochemical Cycles 25, (2011).Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochemical Cycles 32, 858–876 (2018).ADS 
    CAS 

    Google Scholar 
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. PNAS 116, 11824–11832 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grabowski, E., Letelier, R. M., Laws, E. A. & Karl, D. M. Coupling carbon and energy fluxes in the North Pacific Subtropical Gyre. Nat. Commun. 10, 1895 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karl, D. M., Knauer, G. A. & Martin, J. H. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438–441 (1988).ADS 

    Google Scholar 
    Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M. & Mahaffey, C. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. PNAS 109, 1842–1849 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Church, M. J. et al. Production and diversity of microorganisms associated with sinking particles in the subtropical North Pacific Ocean. Limnol. Oceanogr. 66, 3255–3270 (2021).ADS 
    CAS 

    Google Scholar 
    Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cho, B. C. & Azam, F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332, 441–443 (1988).ADS 
    CAS 

    Google Scholar 
    Giering, S. L. C. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).ADS 
    CAS 

    Google Scholar 
    Cavan, E. L., Henson, S. A. & Boyd, P. W. The sensitivity of subsurface microbes to ocean warming accentuates future declines in particulate carbon export. Front. Ecol. Evol. 6, (2019).McDonnell, A. M. P. & Buesseler, K. O. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55, 2085–2096 (2010).ADS 

    Google Scholar 
    Bendtsen, J., Hilligsøe, K. M., Hansen, J. L. S. & Richardson, K. Analysis of remineralisation, lability, temperature sensitivity and structural composition of organic matter from the upper ocean. Prog. Oceanogr. 130, 125–145 (2015).ADS 

    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).ADS 

    Google Scholar 
    Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 1–6 https://doi.org/10.1038/s41561-021-00817-x (2021).Biddanda, B. & Pomeroy, L. Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. I. Microbial succession. Mar. Ecol. Prog. Ser. 42, 79–88 (1988).ADS 

    Google Scholar 
    Dilling, L. & Alldredge, A. L. Fragmentation of marine snow by swimming macrozooplankton: a new process impacting carbon cycling in the sea. Deep Sea Res. Part I: Oceanographic Res. 47, 1227–1245 (2000).ADS 
    CAS 

    Google Scholar 
    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).ADS 
    CAS 

    Google Scholar 
    Burd, A. B. & Jackson, G. A. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90 (2009).ADS 

    Google Scholar 
    Romero‐Romero, S. et al. Deep zooplankton rely on small particles when particle fluxes are low. Limnol. Oceanogr. Lett. 5, 410–416 (2020).
    Google Scholar 
    Maas, A. E. et al. Migratory zooplankton excreta and its influence on prokaryotic communities. Front. Mar. Sci. 0, (2020).Möller, K. O. et al. Marine snow, zooplankton and thin layers: indications of a trophic link from small-scale sampling with the Video Plankton Recorder. Mar. Ecol. Prog. Ser. 468, 57–69 (2012).ADS 

    Google Scholar 
    Karakaş, G. et al. Impact of particle aggregation on vertical fluxes of organic matter. Prog. Oceanogr. 83, 331–341 (2009).ADS 

    Google Scholar 
    Cavan, E. L., Trimmer, M., Shelley, F. & Sanders, R. Remineralization of particulate organic carbon in an ocean oxygen minimum zone. Nat. Commun. 8, 1–9 (2017).
    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiørboe, T., Tang, K., Grossart, H.-P. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047 (2003).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P., Kiørboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: growth and interactions. Appl Environ. Microbiol 69, 3500–3509 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9, 2743 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirchman, D. L. Growth Rates of Microbes in the Oceans. Annu. Rev. Mar. Sci. 8, 285–309 (2016).ADS 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. PNAS https://doi.org/10.1073/pnas.1908512116 (2019).Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 1–8 (2015).
    Google Scholar 
    Tamburini, C. et al. Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res. Part II: Topical Stud. Oceanogr. 56, 1533–1546 (2009).ADS 
    CAS 

    Google Scholar 
    Tamburini, C., Garcin, J., Ragot, M. & Bianchi, A. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000 m water column in the NW Mediterranean. Deep Sea Res. Part II Topical Stud. Oceanogr. 49, 2109–2123 (2002).ADS 
    CAS 

    Google Scholar 
    Tamburini, C., Boutrif, M., Garel, M., Colwell, R. R. & Deming, J. W. Prokaryotic responses to hydrostatic pressure in the ocean – a review. Environ. Microbiol. 15, 1262–1274 (2013).CAS 
    PubMed 

    Google Scholar 
    Lambert, B. S., Fernandez, V. I. & Stocker, R. Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol. Oceanogr. Lett. 4, 113–118 (2019).
    Google Scholar 
    Ploug, H. & Grossart, H.-P. Bacterial growth and grazing on diatom aggregates: respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475 (2000).ADS 
    CAS 

    Google Scholar 
    Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535.e6 (2019).CAS 
    PubMed 

    Google Scholar 
    Kaul, R. B., Kramer, A. M., Dobbs, F. C. & Drake, J. M. Experimental demonstration of an Allee effect in microbial populations. Biol. Lett. 12, 20160070 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kiørboe, T., Ploug, H. & Thygesen, U. H. Fluid motion and solute distribution around sinking aggregates I: Small-scale fluxes and heterogeneity of nutrients in the pelagic environment. Mar. Ecol. – Prog. Ser. 211, 1–13 (2001).ADS 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318 (2001).ADS 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. The ISME Journal 1–14 https://doi.org/10.1038/s41396-020-00880-z (2021).Mestre, M. et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol. Ecol. 26, 6827–6840 (2017).CAS 
    PubMed 

    Google Scholar 
    Mislan, K. A. S., Stock, C. A., Dunne, J. P. & Sarmiento, J. L. Group behavior among model bacteria influences particulate carbon remineralization depths. J. Mar. Res. 72, 183–218(36) (2014).
    Google Scholar 
    Iversen, M. H., Nowald, N., Ploug, H., Jackson, G. A. & Fischer, G. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects. Deep Sea Res. Part I: Oceanographic Res. Pap. 57, 771–784 (2010).ADS 
    CAS 

    Google Scholar 
    Ilyina, T. et al. Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Modeling Earth Syst. 5, 287–315 (2013).ADS 

    Google Scholar 
    Garber, J. H. Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston. Estuar., Coast. Shelf Sci. 18, 685–702 (1984).ADS 
    CAS 

    Google Scholar 
    Zakem, E. J., Cael, B. B. & Levine, N. M. A unified theory for organic matter accumulation. PNAS https://doi.org/10.1101/2020.09.25.314021 (2021).Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, (2015).Alldredge, A. The carbon, nitrogen and mass content of marine snow as a function of aggregate size. Deep Sea Res. Part I: Oceanographic Res. Pap. 45, 529–541 (1998).ADS 
    CAS 

    Google Scholar 
    Zakem, E. J. et al. Ecological control of nitrite in the upper ocean. Nat. Commun. 9, 1206 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyd, P. W. et al. Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 2761–2792 (1999).ADS 
    CAS 

    Google Scholar 
    Schmidt, S., Chou, L. & Hall, I. R. Particle residence times in surface waters over the north-western Iberian Margin: comparison of pre-upwelling and winter periods. J. Mar. Syst. 32, 3–11 (2002).
    Google Scholar 
    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).ADS 
    CAS 

    Google Scholar 
    Dittmar, T. et al. Enigmatic persistence of dissolved organic matter in the ocean. Nat. Rev. Earth Environ. 2, 570–583 (2021).ADS 
    CAS 

    Google Scholar 
    Poff, K. E., Leu, A. O., Eppley, J. M., Karl, D. M. & DeLong, E. F. Microbial dynamics of elevated carbon flux in the open ocean’s abyss. PNAS 118, (2021).Pelve, E. A., Fontanez, K. M. & DeLong, E. F. Bacterial Succession on Sinking Particles in the Ocean’s Interior. Front. Microbiol. 8, (2017).Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Riley, J. S. et al. The relative contribution of fast and slow sinking particles to ocean carbon export. Global Biogeochemical Cycles 26, (2012).Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res. Part II: Topical Stud. Oceanogr. 48, 1405–1447 (2001).ADS 
    CAS 

    Google Scholar 
    Conte, M. H., Dickey, T. D., Weber, J. C., Johnson, R. J. & Knap, A. H. Transient physical forcing of pulsed export of bioreactive material to the deep Sargasso Sea. Deep Sea Res. Part I: Oceanographic Res. Pap. 50, 1157–1187 (2003).ADS 
    CAS 

    Google Scholar 
    Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M. & Kahru, M. Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc. Natl Acad. Sci. USA 115, 12235–12240 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alkire, M. B. et al. Estimates of net community production and export using high-resolution, Lagrangian measurements of O2, NO3−, and POC through the evolution of a spring diatom bloom in the North Atlantic. Deep Sea Res. Part I: Oceanographic Res. Pap. 64, 157–174 (2012).ADS 
    CAS 

    Google Scholar 
    Briggs, N. et al. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep Sea Res. Part I: Oceanographic Res. Pap. 58, 1031–1039 (2011).ADS 

    Google Scholar 
    Talmy, D. et al. An empirical model of carbon flow through marine viruses and microzooplankton grazers. Environ. Microbiol. 21, 2171–2181 (2019).CAS 
    PubMed 

    Google Scholar 
    Kostadinov, T. S., Milutinović, S., Marinov, I. & Cabré, A. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution. Ocean Sci. 12, 561–575 (2016).ADS 
    CAS 

    Google Scholar 
    Jin, X., Gruber, N., Dunne, J. P., Sarmiento, J. L. & Armstrong, R. A. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochemical Cycles 20, (2006).Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, L. & Pilcher, D. Phytoplankton size impact on export flux in the global ocean. Glob. Biogeochemical Cycles 30, 1542–1562 (2016).ADS 
    CAS 

    Google Scholar  More

  • in

    Dozens of unidentified bat species likely live in Asia — and could host new viruses

    NEWS
    29 March 2022

    Dozens of unidentified bat species likely live in Asia — and could host new viruses

    Study suggests some 40% of horseshoe bats in the region have yet to be formally described.

    Smriti Mallapaty

    Smriti Mallapaty

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    There could be more species of horseshoe bat than previously thought.Credit: Chien Lee/Nature Picture Library

    A genomic analysis suggests that there are probably dozens of unknown species of horseshoe bats in southeast Asia1. Horseshoe bats (Rhinolophidae) are considered the reservoir of many zoonotic viruses — which jump from animals to people — including the close relatives of the viruses that caused severe acute respiratory syndrome and COVID-19. Identifying bat species correctly might help pinpoint geographical hotspots with a high risk of zoonotic disease, says Shi Zhengli, a virologist at the Wuhan Institute of Virology in China. “This work is important,” she says. The study was published in Frontiers in Ecology and Evolution on 29 March.Better identification of unknown bat species could also support the search for the origins of SARS-CoV-2 by narrowing down where to look for bats that may harbour close relatives of the virus, says study co-author Alice Hughes, a conservation biologist at the University of Hong Kong. The closest known relatives of SARS-CoV-2 have been found in Rhinolophus affinis bats in Yunnan province, in southwestern China2, and in three species of horseshoe bat in Laos3.Cryptic speciesHughes wanted to better understand the diversity of bats in southeast Asia and find standardized ways of identifying them. So she and her colleagues captured bats in southern China and southeast Asia between 2015 and 2020. They took measurements and photographs of the bats’ wings and noseleaf — “the funky set of tissue around their nose”, as Hughes describes it — and recorded their echolocation calls. They also collected a tiny bit of tissue from the bats’ wings to extract genetic data.To map the bats’ genetic diversity, the team used mitochondrial DNA sequences from 205 of their captured animals, and another 655 sequences from online databases — representing a total of 11 species of Rhinolophidae. As a general rule, the greater the difference between two bats’ genomes, the more likely the animals represent genetically distinct groups, and therefore different species.The researchers found that each of the 11 species were probably actually multiple species, possibly including dozens of hidden species across the whole sample. Hidden, or ‘cryptic’, species are animals that seem to belong to the same species but are actually genetically distinct. For example, the genetic diversity of Rhinolophus sinicus suggests that the group could be six separate species. Overall, they estimated that some 40% of the species in Asia have not been formally described.“It’s a sobering number, but not terribly surprising,” says Nancy Simmons, a curator at the American Museum of Natural History in New York City. Rhinolophid bats are a complex group and there has been only a limited sampling of the animals, she says.However, relying on mitochondrial DNA could mean that the number of hidden species is an overestimate. That is because mitochondrial DNA is inherited only from the mother, so could be missing important genetic information, says Simmons. Still, the study could lead to a burst of research into naming new bat species in the region, she says.Further evidenceThe findings corroborate other genetic research suggesting that there are many cryptic species in southeast Asia, says Charles Francis, a biologist at the Canadian Wildlife Service, Environment and Climate Change Canada, in Ottawa, who studies bats in the region. But, he says, the estimates are based on a small number of samples.Hughes’ team used the morphological and acoustic data to do a more detailed analysis of 190 bats found in southern China and Vietnam and found that it supported their finding that many species had not been identified in those regions. The study makes a strong argument for “the use of multiple lines of evidence when delineating species”, says Simmons.Hughes says her team also found that the flap of tissue just above the bats’ nostrils, called the sella, could be used to identify species without the need for genetic data. Gábor Csorba, a taxonomist at the Hungarian Natural History Museum in Budapest, says this means that hidden species could be identified without doing intrusive morphology studies or expensive DNA analyses.

    doi: https://doi.org/10.1038/d41586-022-00776-2

    ReferencesChornelia, A., Jianmei, L. & Hughes, A. C. Front. Ecol. Evol. 10, 854509 (2022).Article 

    Google Scholar 
    Zhou, P. et al. Nature 579, 270–273 (2020).PubMed 
    Article 

    Google Scholar 
    Temmam, S. et al. Nature https://doi.org/10.1038/s41586-022-04532-4 (2022).PubMed 
    Article 

    Google Scholar 
    Download references

    Subjects

    SARS-CoV-2

    Virology

    Ecology

    Latest on:

    SARS-CoV-2

    Time is running out for COVID vaccine patent waivers
    Editorial 29 MAR 22

    Global vaccination must be swifter
    Comment 28 MAR 22

    A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic
    Article 28 MAR 22

    Virology

    Time is running out for COVID vaccine patent waivers
    Editorial 29 MAR 22

    A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic
    Article 28 MAR 22

    Global vaccination must be swifter
    Comment 28 MAR 22

    Ecology

    The marine biologist whose photography pastime became a profession
    Career Column 25 MAR 22

    Subaqueous foraging among carnivorous dinosaurs
    Article 23 MAR 22

    Where are Earth’s oldest trees? Far from prying eyes
    Research Highlight 22 MAR 22

    Jobs

    Co-Leader, Cancer Biology and Evolution Program

    H. Lee Moffitt Cancer Center & Research Institute
    Tampa, FL, United States

    Postdoctoral Position

    Schepens Eye Research Institute, MEEI
    Boston, MA, United States

    Assistant Professor in Medical Science

    Karolinska Institutet (KI)
    Stokholm, Sweden

    Postdoctoral fellowship in RNA biology and transcription in the Gregersen Group at Department of Cellular and Molecular Medicine (ICMM)

    University of Copenhagen (UCPH)
    Copenhagen, Denmark More

  • in

    Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit

    van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).
    Google Scholar 
    Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467–471 (2011).
    Google Scholar 
    Brienen, R. J. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
    Google Scholar 
    Klein, T., Cahanovitc, R., Sprintsin, M., Herr, N. & Schiller, G. A nation-wide analysis of tree mortality under climate change: forest loss and its causes in Israel 1948–2017. For. Ecol. Manag. 432, 840–849 (2019).
    Google Scholar 
    Yu, K. et al. Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proc. Natl Acad. Sci. USA 116, 24662–24667 (2019).
    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
    Google Scholar 
    Kharuk, V. I. et al. Climate-driven conifer mortality in Siberia. Glob. Ecol. Biogeogr. 30, 543–556 (2021).
    Google Scholar 
    Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).
    Google Scholar 
    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. & Nepstad, D. The 2010 amazon drought. Science 331, 554 (2011).
    Google Scholar 
    Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).
    Google Scholar 
    Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).
    Google Scholar 
    Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).
    Google Scholar 
    Kannenberg, S. A., Driscoll, A. W., Malesky, D. & Anderegg, W. R. Rapid and surprising dieback of Utah juniper in the southwestern USA due to acute drought stress. For. Ecol. Manag. 480, 118639 (2021).
    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).
    Google Scholar 
    Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26, 3122–3133 (2020).
    Google Scholar 
    Werner, W. L. Canopy dieback in the upper montane rain forests of Sri Lanka. GeoJournal 17, 245–248 (1988).
    Google Scholar 
    Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).
    Google Scholar 
    Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
    Google Scholar 
    Werner, R. A. & Holsten, E. H. Mortality of white spruce during a spruce beetle outbreak on the Kenai Peninsula in Alaska. Can. J. For. Res. 13, 96–101 (1983).
    Google Scholar 
    Suarez, M. L., Ghermandi, L. & Kitzberger, T. Factors predisposing episodic drought-induced tree mortality in Nothofagus: site, climatic sensitivity and growth trends. J. Ecol. 92, 954–966 (2004).
    Google Scholar 
    Swemmer, A. M. Locally high, but regionally low: the impact of the 2014–2016 drought on the trees of semi-arid savannas, South Africa. Afr. J. Range Forage Sci. 37, 31–42 (2020).
    Google Scholar 
    Michaelian, M., Hogg, E. H., Hall, R. J. & Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Chang Biol. 17, 2084–2094 (2011).
    Google Scholar 
    Kharuk, V. I. et al. Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed, Siberia. For. Ecol. Manag. 384, 191–199 (2017).
    Google Scholar 
    Kharuk, V. I., Ranson, K. J., Oskorbin, P. A., Im, S. T. & Dvinskaya, M. L. Climate induced birch mortality in Trans-Baikal lake region, Siberia. For. Ecol. Manag. 289, 385–392 (2013).
    Google Scholar 
    Crouchet, S. E., Jensen, J., Schwartz, B. F. & Schwinning, S. Tree mortality after a hot drought: distinguishing density-dependent and -independent drivers and why it matters. Front. For. Glob. Change 2, 21 (2019).
    Google Scholar 
    Breshears, D. D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4, 266 (2013).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).
    Google Scholar 
    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).
    Google Scholar 
    Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Chang. 9, 948–953 (2019).
    Google Scholar 
    Dore, M. H. Climate change and changes in global precipitation patterns: what do we know? Environ. Int. 31, 1167–1181 (2005).
    Google Scholar 
    Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 31, e2020GL087820 (2020).
    Google Scholar 
    Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. New Phytol. 231, 32–39 (2021).
    Google Scholar 
    Adams, H. D. et al. Temperature response surfaces for mortality risk of tree species with future drought. Environ. Res. Lett. 12, 115014 (2017).
    Google Scholar 
    McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Chang. 6, 295–300 (2016).
    Google Scholar 
    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).
    Google Scholar 
    Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2020).
    Google Scholar 
    Long, S. P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ. 14, 729–739 (1991).
    Google Scholar 
    Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14, 1531–1542 (2008).
    Google Scholar 
    Baig, S., Medlyn, B. E., Mercado, L. & Zaehle, S. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob. Change Biol. 21, 4303–4319 (2015).
    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).
    Google Scholar 
    Belmecheri, S. et al. Precipitation alters the CO2 effect on water-use efficiency of temperate forests. Glob. Change Biol. 27, 1560–1571 (2021).
    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).
    Google Scholar 
    De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? New Phytol. 231, 2118–2124 (2021).
    Google Scholar 
    Martınez-Vilalta, J., Piñol, J. & Beven, K. A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol. Model. 155, 127–147 (2002).
    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).
    Google Scholar 
    McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).
    Google Scholar 
    Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017).
    Google Scholar 
    Fisher, R. et al. Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol. 187, 666–681 (2010).
    Google Scholar 
    McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel–experiment framework. New Phytol. 200, 304–321 (2013).
    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).
    Google Scholar 
    Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v. 1-Hydro). Geosci. Model Dev. 9, 4227–4255 (2016).
    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the community land model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).
    Google Scholar 
    Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 3, 30–36 (2013).
    Google Scholar 
    Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28 (2018).
    Google Scholar 
    Adams, H. D. et al. Ecohydrological consequences of drought- and infestation-triggered tree die-off: insights and hypotheses. Ecohydrology 5, 145–159 (2012).
    Google Scholar 
    Bearup, L. A., Maxwell, R. M., Clow, D. W. & McCray, J. E. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds. Nat. Clim. Chang. 4, 481–486 (2014).
    Google Scholar 
    Bennett, K. E. et al. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River. Hydrol. Earth Syst. Sci. 22, 709–725 (2018).
    Google Scholar 
    Lutz, J. A. & Halpern, C. B. Tree mortality during early forest development: a long-term study of rates, causes, and consequences. Ecol. Monogr. 76, 257–275 (2006).
    Google Scholar 
    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352 (2016).
    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
    Google Scholar 
    Waring, K. M. et al. Modeling the impacts of two bark beetle species under a warming climate in the southwestern USA: ecological and economic consequences. Environ. Manag. 44, 824–835 (2009).
    Google Scholar 
    Barigah, T. S. et al. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann. Bot. 112, 1431–1437 (2013).
    Google Scholar 
    Guadagno, C. R. et al. Dead or alive? Using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. Plant Physiol. 175, 223–234 (2017).
    Google Scholar 
    Hammond, W. M. et al. Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phytol. 223, 1834–1843 (2019).
    Google Scholar 
    Sapes, G. et al. Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality. Tree Physiol. 39, 1300–1312 (2019).
    Google Scholar 
    Mantova, M., Menezes-Silva, P. E., Badel, E., Cochard, H. & Torres-Ruiz, J. M. The interplay of hydraulic failure and cell vitality explains tree capacity to recover from drought. Physiol. Plant. 172, 247–257 (2021).
    Google Scholar 
    Kono, Y. et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun. Biol. 2, 8 (2019).
    Google Scholar 
    Preisler, Y. et al. Seeking the “point of no return” in the sequence of events leading to mortality of mature trees. Plant Cell Environ. 44, 1315–1328 (2020).
    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).
    Google Scholar 
    Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).
    Google Scholar 
    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Chang. 5, 669–672 (2015).
    Google Scholar 
    Stephenson, N. L. & van Mantgem, P. J. Forest turnover rates follow global and regional patterns of productivity. Ecol. Lett. 8, 524–531 (2005).
    Google Scholar 
    Zhu, K. C. et al. Dual impacts of climate change: forest migration and turnover through life history. Glob. Change Biol. 20, 251–264 (2014).
    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
    Google Scholar 
    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).
    Google Scholar 
    Hartmann, H. et al. Climate change risks to global forest health – emergence of unexpected events of elevated tree mortality world-wide. Annu. Rev. Plant Biol. https://doi.org/10.1146/annurev-arplant-102820-012804 (2022).Article 

    Google Scholar 
    Manion, P. D. Tree Disease Concepts (Prentice-Hall, 1981)Brodribb, T. J. Learning from a century of droughts. Nat. Ecol. Evol. 4, 1007–1008 (2020).
    Google Scholar 
    Anderegg, W. R. et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208, 674–683 (2015).
    Google Scholar 
    Huang, J. et al. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2019).
    Google Scholar 
    Martinez-Vilalta, J., Anderegg, W. R., Sapes, G. & Sala, A. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytol. 223, 22–32 (2019).
    Google Scholar 
    Cuneo, I. F., Knipfer, T., Brodersen, C. R. & McElrone, A. J. Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought. Plant Physiol. 172, 1669–1678 (2016).
    Google Scholar 
    Johnson, D. M. et al. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant Cell Environ. 41, 576–588 (2018).
    Google Scholar 
    Cochard, H. A new mechanism for tree mortality due to drought and heatwaves. Peer Community J. 1, e36 (2021).
    Google Scholar 
    Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytol. 221, 693–705 (2019).
    Google Scholar 
    Beckett, R. P. Pressure–volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Ann. Bot. 79, 145–152 (1997).
    Google Scholar 
    Ding, Y., Zhang, Y., Zheng, Q. S. & Tyree, M. T. Pressure–volume curves: revisiting the impact of negative turgor during cell collapse by literature review and simulations of cell micromechanics. New Phytol. 203, 378–387 (2014).
    Google Scholar 
    Sperry, J. S., Adler, F. R., Campbell, G. S. & Comstock, J. P. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ. 21, 347–359 (1998).
    Google Scholar 
    Rodriguez-Dominguez, C. M. & Brodribb, T. J. Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytol. 225, 126–134 (2020).
    Google Scholar 
    Carminati, A. & Javaux, M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25, 868–880 (2020).
    Google Scholar 
    Maseda, P. H. & Fernandez, R. J. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J. Exp. Bot. 57, 3963–3977 (2006).
    Google Scholar 
    Plaut, J. A. et al. Hydraulic limits preceding mortality in a piñon–juniper woodland under experimental drought. Plant Cell Environ. 35, 1601–1617 (2012).
    Google Scholar 
    Creek, D. et al. Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique. J. Exp. Bot. 71, 1151–1159 (2020).
    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).
    Google Scholar 
    Hammond, W. M. & Adams, H. D. Dying on time: traits influencing the dynamics of tree mortality risk from drought. Tree Physiol. 39, 906–909 (2019).
    Google Scholar 
    Körner, C. No need for pipes when the well is dry — a comment on hydraulic failure in trees. Tree Physiol. 39, 695–700 (2019).
    Google Scholar 
    Machado, R. et al. Where do leaf water leaks come from? Trade-offs underlying the variability in minimum conductance across tropical savanna species with contrasting growth strategies. New Phytol. 229, 1415–1430 (2021).
    Google Scholar 
    Burghardt, M. & Riederer, M. in Biology of the Plant Cuticle (eds Riederer, M. & Müller, C.) 292–311 (Blackwell, 2006).Billon, L. M. et al. The DroughtBox: a new tool for phenotyping residual branch conductance and its temperature dependence during drought. Plant Cell Environ. 43, 1584–1594 (2020).
    Google Scholar 
    Wolfe, B. T. Bark water vapour conductance is associated with drought performance in tropical trees. Biol. Lett. 16, 20200263 (2020).
    Google Scholar 
    Martín-Gómez, P., Serrano, L. & Ferrio, J. P. Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology. Tree Physiol. 37, 511–522 (2017).
    Google Scholar 
    Arend, M. et al. Rapid hydraulic collapse as cause of drought-induced mortality in conifers. Proc. Natl Acad. Sci. USA 118, e2025251118 (2021).
    Google Scholar 
    Wang, W. et al. Mortality predispositions of conifers across western USA. New Phytol. 229, 831–844 (2020).
    Google Scholar 
    Christiansen, E., Waring, R. H. & Berryman, A. A. Resistance of conifers to bark beetle attack: searching for general relationships. For. Ecol. Manag. 22, 89–106 (1987).
    Google Scholar 
    Bigler, C., Bräker, O. U., Bugmann, H., Dobbertin, M. & Rigling, A. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9, 330–343 (2006).
    Google Scholar 
    Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 197, 850–861 (2013).
    Google Scholar 
    Meinzer, F. C. et al. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant Cell Environ. 29, 105–114 (2006).
    Google Scholar 
    McDowell, N. G., Allen, C. D. & Marshall, L. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob. Change Biol. 16, 399–415 (2010).
    Google Scholar 
    Kane, J. M. & Kolb, T. E. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack. Oecologia 164, 601–609 (2010).
    Google Scholar 
    Ferrenberg, S., Kane, J. M. & Mitton, J. B. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines. Oecologia 174, 1283–1292 (2014).
    Google Scholar 
    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
    Google Scholar 
    Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M. & Gibon, Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).
    Google Scholar 
    Yu, S. Cellular and genetic responses of plants to sugar starvation. Plant Physiol. 121, 687–693 (1999).
    Google Scholar 
    Koster, K. L. & Leopold, A. C. Sugars and desiccation tolerance in seeds. Plant Physiol. 88, 829–832 (1988).
    Google Scholar 
    Sapes, G., Demaree, P., Lekberg, Y. & Sala, A. Plant carbohydrate depletion impairs water relations and spreads via ectomycorrhizal networks. New Phytol. 229, 3172–3183 (2021).
    Google Scholar 
    Hoekstra, F. A., Golovina, E. A. & Buitink, J. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6, 431–438 (2001).
    Google Scholar 
    Van den Ende, W. & Valluru, R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 60, 9–18 (2009).
    Google Scholar 
    Matros, A., Peshev, D., Peukert, M., Mock, H.-P. & Ende, W. Vden Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. Plant J. 82, 822–839 (2015).
    Google Scholar 
    Rolland, F., Baena-González, E. & Sheen, J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675–709 (2006).
    Google Scholar 
    Ramel, F., Sulmon, C., Bogard, M., Couée, I. & Gouesbet, G. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol. 9, 28 (2009).
    Google Scholar 
    Fine, P. V. A. et al. The growth–defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87, S150–S162 (2006).
    Google Scholar 
    Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 1267–1287 (2014).
    Google Scholar 
    Ouédraogo, D.-Y., Mortier, F., Gourlet-Fleury, S., Freycon, V. & Picard, N. Slow-growing species cope best with drought: evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa. J. Ecol. 101, 1459–1470 (2013).
    Google Scholar 
    de la Mata, R., Hood, S. & Sala, A. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa. Proc. Natl Acad. Sci. USA 114, 7391–7396 (2017).
    Google Scholar 
    Roskilly, B., Keeling, E., Hood, S., Giuggiola, A. & Sala, A. Conflicting functional effects of xylem pit structure relate to the growth-longevity trade-off in a conifer species. Proc. Natl Acad. Sci. USA 116, 15282–15287 (2019).
    Google Scholar 
    Snyder, K. A. & Williams, D. G. Defoliation alters water uptake by deep and shallow roots of Prosopis velutina (Velvet Mesquite). Funct. Ecol. 17, 363–374 (2003).
    Google Scholar 
    Eyles, A., Pinkard, E. A. & Mohammed, C. Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiol. 29, 753–764 (2009).
    Google Scholar 
    Hillabrand, R. M., Hacke, U. G. & Lieffers, V. J. Defoliation constrains xylem and phloem functionality. Tree Physiol. 39, 1099–1108 (2019).
    Google Scholar 
    Landhäusser, S. M. & Lieffers, V. J. Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees 26, 653–661 (2012).
    Google Scholar 
    Poyatos, R., Aguadé, D., Galiano, L., Mencuccini, M. & Martínez-Vilalta, J. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol. 200, 388–401 (2013).
    Google Scholar 
    Cardoso, A. A., Batz, T. A. & McAdam, S. A. Xylem embolism resistance determines leaf mortality during drought in Persea americana. Plant Physiol. 182, 547–554 (2020).
    Google Scholar 
    Mencuccini, M. et al. Leaf economics and plant hydraulics drive leaf:wood area ratios. New Phytol. 224, 1544–1556 (2019).
    Google Scholar 
    Cochard, H., Pimont, F., Ruffault, J. & Martin-St Paul, N. SurEau: a mechanistic model of plant water relations under extreme drought. Ann. Forest Sci. 78, 1–23 (2021).
    Google Scholar 
    Yin, M. C. & Blaxter, J. H. S. Temperature, salinity tolerance, and buoyancy during early development and starvation of Clyde and North Sea herring, cod, and flounder larvae. J. Exp. Mar. Biol. Ecol 107, 279–290 (1987).
    Google Scholar 
    Cahill, G. F. Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).
    Google Scholar 
    Yandi, I. & Altinok, I. Irreversible starvation using RNA/DNA on lab-grown larval anchovy, Engraulis encrasicolus, and evaluating starvation in the field-caught larval cohort. Fish. Res. 201, 32–37 (2018).
    Google Scholar 
    Smith, A. M. & Stitt, M. Coordination of carbon supply and plant growth. Plant Cell Environ. 30, 1126–1149 (2007).
    Google Scholar 
    Schädel, C., Richter, A., Blöchl, A. & Hoch, G. Hemicellulose concentration and composition in plant cell walls under extreme carbon source–sink imbalances. Physiol. Plant. 139, 241–255 (2010).
    Google Scholar 
    Tsamir-Rimon, M. et al. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. New Phytol. 229, 1398–1414 (2020).
    Google Scholar 
    McLoughlin, F. et al. Autophagy plays prominent roles in amino acid, nucleotide, and carbohydrate metabolism during fixed-carbon starvation in maize. Plant Cell 32, 2699–2724 (2020).
    Google Scholar 
    Quirk, J., McDowell, N. G., Leake, J. R., Hudson, P. J. & Beerling, D. J. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am. J. Bot. 100, 582–591 (2013).
    Google Scholar 
    Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).
    Google Scholar 
    Tomasella, M., Petrussa, E., Petruzzellis, F., Nardini, A. & Casolo, V. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. Int. J. Mol. Sci. 21, 144 (2020).
    Google Scholar 
    Gaylord, M. L. et al. Drought predisposes piñon–juniper woodlands to insect attacks and mortality. New Phytol. 198, 567–578 (2013).
    Google Scholar 
    Dickman, L. T., McDowell, N. G., Sevanto, S., Pangle, R. E. & Pockman, W. T. Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios. Plant Cell Environ. 38, 729–739 (2015).
    Google Scholar 
    Ruehr, N. K. et al. Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol. 184, 950–961 (2009).
    Google Scholar 
    Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J. & Hölttä, T. Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytol. 208, 396–409 (2015).
    Google Scholar 
    Hagedorn, F. et al. Recovery of trees from drought depends on belowground sink control. Nat. Plants 2, 16111 (2016).
    Google Scholar 
    Hesse, B. D., Goisser, M., Hartmann, H. & Grams, T. E. E. Repeated summer drought delays sugar export from the leaf and impairs phloem transport in mature beech. Tree Physiol. 39, 192–200 (2019).
    Google Scholar 
    Wiley, E., Hoch, G. & Landhäusser, S. M. Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress. J. Exp. Bot. 68, 5221–5232 (2017).
    Google Scholar 
    Weber, R. et al. Living on next to nothing: tree seedlings can survive weeks with very low carbohydrate concentrations. New Phytol. 218, 107–118 (2018).
    Google Scholar 
    Hasanuzzaman, M. & Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms (Springer, 2020)O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Chang. 4, 710–714 (2014).
    Google Scholar 
    Nardini, A. et al. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant Cell Environ. 39, 618–627 (2016).
    Google Scholar 
    Zinselmeier, C., Westgate, M. E., Schussler, J. R. & Jones, R. J. Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol. 107, 385–391 (1995).
    Google Scholar 
    Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63, 597–612 (2006).
    Google Scholar 
    Oliva, J., Stenlid, J. & Martínez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol. 203, 1028–1035 (2014).
    Google Scholar 
    Kolb, T. et al. Drought-mediated changes in tree physiological processes weaken tree defenses to bark beetle attack. J. Chem. Ecol. 45, 888–900 (2019).
    Google Scholar 
    Croize, L., Lieutier, F., Cochard, H. & Dreyer, E. Effects of drought stress and high density stem inoculations with Leptographium wingfieldii on hydraulic properties of young Scots pine trees. Tree Physiol. 21, 427–436 (2001).
    Google Scholar 
    Wullschleger, S. D., McLaughlin, S. B. & Ayres, M. P. High-resolution analysis of stem increment and sap flow for loblolly pine trees attacked by southern pine beetle. Can. J. For. Res. 34, 387–2393 (2004).
    Google Scholar 
    Hubbard, R. M., Rhoades, C. C., Elder, K. & Negron, J. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling. For. Ecol. Manag. 289, 312–317 (2013).
    Google Scholar 
    Manter, D. K. & Kavanagh, K. L. Stomatal regulation in Douglas fir following a fungal-mediated chronic reduction in leaf area. Trees 17, 485–491 (2003).
    Google Scholar 
    Lahr, E. L. & Sala, A. Sapwood stored resources decline in whitebark and lodgepole pines attacked by mountain pine beetles (Coleoptera: Curculionidae). Environ. Entomol. 45, 1463–1475 (2016).
    Google Scholar 
    Marler, T. E. & Cascasan, A. N. Carbohydrate depletion during lethal infestation of Aulacaspis yasumatsui on Cycas revoluta. Int. J. Plant Sci. 179, 497–504 (2018).
    Google Scholar 
    Hood, S. & Sala, A. Ponderosa pine resin defenses and growth: metrics matter. Tree Physiol. 35, 1223–1235 (2015).
    Google Scholar 
    Roth, M., Hussain, A., Cale, J. A. & Erbilgin, N. Successful colonization of lodgepole pine trees by mountain pine beetle increased monoterpene production and exhausted carbohydrate reserves. J. Chem. Ecol. 44, 209–214 (2018).
    Google Scholar 
    Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).
    Google Scholar 
    Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 4, 806–810 (2014).
    Google Scholar 
    Ryan, M. G., Sapes, G., Sala, A. & Hood, S. M. Tree physiology and bark beetles. New Phytol. 205, 955–957 (2015).
    Google Scholar 
    Huang, J. et al. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2020).
    Google Scholar 
    Goodsman, D. W., Lusebrink, I., Landhäusser, S. M., Erbilgin, N. & Lieffers, V. J. Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. New Phytol. 197, 586–594 (2013).
    Google Scholar 
    Wiley, E., Rogers, B. J., Hodgkinson, R. & Landhäusser, S. M. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack. New Phytol. 209, 550–562 (2016).
    Google Scholar 
    Netherer, S. et al. Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol. 205, 1128–1141 (2015).
    Google Scholar 
    Rissanen, K. et al. Drought effects on carbon allocation to resin defences and on resin dynamics in old-grown Scots pine. Environ. Exp. Bot. 185, 104410 (2021).
    Google Scholar 
    Gershenzon, J. Metabolic costs of terpenoid accumulation in higher plants. J. Chem. Ecol. 20, 1281–1328 (1994).
    Google Scholar 
    Navarro, L. et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 1, 650–655 (2008).
    Google Scholar 
    Fox, H. et al. Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiol. 38, 423–441 (2018).
    Google Scholar 
    Caretto, S., Linsalata, V., Colella, G., Mita, G. & Lattanzio, V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int. J. Mol. Sci. 16, 26378–26394 (2015).
    Google Scholar 
    Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 167, 353–376 (2005).
    Google Scholar 
    Suárez-Vidal, E. et al. Drought stress modifies early effective resistance and induced chemical defences of Aleppo pine against a chewing insect herbivore. Environ. Exp. Bot. 162, 550–559 (2019).
    Google Scholar 
    Hood, S., Sala, A., Heyerdahl, E. K. & Boutin, M. Low-severity fire increases tree defense against bark beetle attacks. Ecology 96, 1846–1855 (2015).
    Google Scholar 
    Zhao, S. & Erbilgin, N. Larger resin ducts are linked to the survival of lodgepole pine trees during mountain pine beetle outbreak. Front. Plant Sci. 10, 1459 (2019).
    Google Scholar 
    Kichas, N. E., Hood, S. M., Pederson, G. T., Everett, R. G. & McWethy, D. B. Whitebark pine (Pinus albicaulis) growth and defense in response to mountain pine beetle outbreaks. For. Ecol. Manag. 457, 117736 (2020).
    Google Scholar 
    Gaylord, M. L., Kolb, T. E. & McDowell, N. G. Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees. Tree Physiol. 35, 806–816 (2015).
    Google Scholar 
    Anderegg, W. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).
    Google Scholar 
    De Kauwe, M. G. et al. Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia. Glob. Change Biol. 26, 5716–5733 (2020).
    Google Scholar 
    Sperry, J. S. et al. The impact of rising CO2 and acclimation on the response of US forests to global warming. Proc. Natl Acad. Sci. USA 116, 25734–25744 (2019).
    Google Scholar 
    Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).
    Google Scholar 
    Klein, T. & Ramon, U. Stomatal sensitivity to CO2 diverges between angiosperm and gymnosperm tree species. Funct. Ecol. 33, 1411–1424 (2019).
    Google Scholar 
    Paudel, I. et al. Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environ. Exp. Bot. 148, 117–127 (2018).
    Google Scholar 
    Bobich, E. G., Barron-Gafford, G. A., Rascher, K. G. & Murthy, R. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. Tree Physiol. 30, 866–875 (2010).
    Google Scholar 
    Gimeno, T. E., McVicar, T. R., O’Grady, A. P., Tissue, D. T. & Ellsworth, D. S. Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Glob. Change Biol. 24, 3010–3024 (2018).
    Google Scholar 
    Nowak, R. S. et al. Elevated atmospheric CO2 does not conserve soil water in the mojave desert. Ecology 85, 93–99 (2004).
    Google Scholar 
    Schäfer, K. V., Oren, R., Lai, C. T. & Katul, G. G. Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Glob. Change Biol. 8, 895–911 (2002).
    Google Scholar 
    Novick, K. A., Katul, G. G., McCarthy, H. R. & Oren, R. Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility. Tree Physiol. 32, 752–763 (2012).
    Google Scholar 
    Li, X. M. et al. Temperature alters the response of hydraulic architecture to CO2 in cotton plants (Gossypium hirsutum). Environ. Exp. Bot. 172, 104004 (2020).
    Google Scholar 
    Li, W. et al. The sweet side of global change–dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiol. 38, 1706–1723 (2018).
    Google Scholar 
    Duan, H. et al. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ. 37, 1598–1613 (2014).
    Google Scholar 
    Duan, H. et al. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality. Tree Physiol. 38, 1138–1151 (2018).
    Google Scholar 
    Zavala, J. A., Nabity, P. D. & DeLucia, E. H. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 58, 79–97 (2013).
    Google Scholar 
    Kazan, K. Plant-biotic interactions under elevated CO2: a molecular perspective. Environ. Exp. Bot. 153, 249–261 (2018).
    Google Scholar 
    Gessler, A., Schaub, M. & McDowell, N. G. The role of nutrients in drought-induced tree mortality and recovery. New Phytol. 214, 513–520 (2017).
    Google Scholar 
    Mackay, D. S. et al. Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought. Water Resour. Res. 51, 6156–6176 (2015).
    Google Scholar 
    Mackay, D. S. et al. Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics. New Phytol. 225, 679–692 (2020).
    Google Scholar 
    Tai, X. et al. Plant hydraulic stress explained tree mortality and tree size explained beetle attack in a mixed conifer forest. J. Geophys. Res. Biogeosci. 124, 3555–3568 (2019).
    Google Scholar 
    Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 186, 274–281 (2010).
    Google Scholar 
    Limousin, J. M. et al. Regulation and acclimation of leaf gas exchange in a piñon–juniper woodland exposed to three different precipitation regimes. Plant Cell Environ. 36, 1812–1825 (2013).
    Google Scholar 
    Sorek, Y. et al. An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes. New Phytol. 229, 1955–1969 (2021).
    Google Scholar 
    Hudson, P. J. et al. Impacts of long-term precipitation manipulation on hydraulic architecture and xylem anatomy of piñon and juniper in Southwest USA. Plant Cell Environ. 41, 421–435 (2018).
    Google Scholar 
    Warren, J. M., Norby, R. J. & Wullschleger, S. D. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).
    Google Scholar 
    Matusick, G. et al. Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought. Environ. Res. Lett. 13, 095002 (2018).
    Google Scholar 
    Shirley, H. L. Lethal high temperatures for conifers, and the cooling effect of transpiration. J. Agric. Res. 53, 239–258 (1936).
    Google Scholar 
    Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).
    Google Scholar 
    Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).
    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).
    Google Scholar 
    Nakamura, T. et al. Tree hazards compounded by successive climate extremes after masting in a small endemic tree, Distylium lepidotum, on subtropical islands in Japan. Glob. Change Biol 27, 5094–5108 (2021).
    Google Scholar 
    Hummel, I. et al. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 154, 357–372 (2010).
    Google Scholar 
    Jamieson, M. A., Trowbridge, A. M., Raffa, K. F. & Lindroth, R. L. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 160, 1719–1727 (2012).
    Google Scholar 
    Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).
    Google Scholar 
    Netherer, S. et al. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest Sci. 94, 591–614 (2021).
    Google Scholar 
    Love, D. M. et al. Dependence of aspen stands on a subsurface water subsidy: implications for climate change impacts. Water Resour. Res. 55, 1833–1848 (2019).
    Google Scholar 
    McDowell, N. G. et al. Mechanisms of a coniferous woodland persistence under drought and heat. Environ. Res. Lett. 14, 045014 (2019).
    Google Scholar 
    Rozendaal, D. M. et al. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, e03052 (2020).
    Google Scholar 
    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).
    Google Scholar 
    CH2018 Project Team. CH2018 — climate scenarios for Switzerland. NCCS https://doi.org/10.18751/Climate/Scenarios/CH2018/1.0 (2018).Article 

    Google Scholar 
    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300 (1997).
    Google Scholar 
    McDowell, N. G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059 (2011).
    Google Scholar  More

  • in

    Up for crabs: making a home for red-clawed crustaceans in Taiwan

    Download PDF

    This picture was taken at night in the coastal community of Dakenggu in Yilan County, which is just southeast of Taipei in Taiwan. I’m on the left, working with two other researchers to measure the body size of a red-clawed crab (Chiromantes haematocheir).An old man from the local community told me that years ago, during the breeding season, you could barely cross the road because of all the crabs. He said nobody knows where they all went. They’re an important memory for the local people, and part of the culture here.Habitat loss — especially resulting from the widespread use of concrete — seems to be driving the decline. I’m working with local people to create rocky microhabitats and artificial wetlands for the red-clawed crabs to live in. They’re important scavengers — eating dead animals and other organic matter, breaking it down and playing a key part in the nutrient cycle.Small organisms need our help — they can’t stand up for themselves. But in Taiwan, a lot of people think a coastal villa is more important than a few crabs. Corporations want to build luxury developments in our national parks, and authorities often approve them. I’ve seen so many intact habitats destroyed or covered in concrete.Crabs caught my interest because they were frequent visitors to my dormitory. National Sun Yat-sen University in Kaohsiung sits in a coastal buffer zone between a mountain and the ocean, and land hermit crabs (Coenobita cavipes) have to scurry through it on their way to breed.After watching habitat after habitat destroyed by overdevelopment, I’ve realized that just doing the science is not enough. It doesn’t matter how many papers you publish: you need to connect with people through education and communication. That’s why I decided to do my PhD in social science. And it’s why I believe conservation will be my life’s work.

    Nature 603, 962 (2022)
    doi: https://doi.org/10.1038/d41586-022-00810-3

    Related Articles

    The ancient whale from my Egyptian home town

    A partridge in hand on the Spanish steppe

    ‘I have to use a torch and watch my step’: netting seabirds at night

    Subjects

    Careers

    Ecology

    Environmental sciences

    Latest on:

    Careers

    Afghanistan’s girls’ schools can — and must — stay open. There is no alternative
    Editorial 28 MAR 22

    The marine biologist whose photography pastime became a profession
    Career Column 25 MAR 22

    How the career path to principal investigator is narrowing
    Career News 24 MAR 22

    Ecology

    The marine biologist whose photography pastime became a profession
    Career Column 25 MAR 22

    Subaqueous foraging among carnivorous dinosaurs
    Article 23 MAR 22

    Where are Earth’s oldest trees? Far from prying eyes
    Research Highlight 22 MAR 22

    Environmental sciences

    The size of the land carbon sink in China
    Matters Arising 16 MAR 22

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Landmark treaty on plastic pollution must put scientific evidence front and centre
    Editorial 08 MAR 22

    Jobs

    Postdoctoral position in decision-making in aging and Alzheimer’s disease

    University of Minnesota (UMN)
    Minneapolis, MN, United States

    Postdoctoral Fellowship (Translational Cardiovascular Medicine)

    University of Alberta (U of A)
    Edmonton, Alberta, Canada

    Higher Scientific Officer – Protein production, purification and biophysics

    Institute of Cancer Research (ICR)
    London, United Kingdom

    POSTDOCTORAL FELLOWSHIPS on Neurobiology of Overgrowth syndromes

    Inserm-Université Paris Cité
    Paris, France More

  • in

    Snake-like limb loss in a Carboniferous amniote

    Caldwell, M. W. “Without a leg to stand on”: on the evolution and development of axial elongation and limblessness in tetrapods. Can. J. Earth Sci. 40, 573–588 (2003).
    Google Scholar 
    Bejder, L. & Hall, B. K. Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss. Evol. Dev. 4, 445–458 (2002).PubMed 

    Google Scholar 
    Gans, C. Locomotion and burrowing in limbless vertebrates. Nature 242, 414–415 (1973).
    Google Scholar 
    Gans, C. Tetrapod limblessness: evolution and functional corollaries. Am. Zool. 15, 455–467 (1975).
    Google Scholar 
    Camaiti, M., Evans, A. R., Hipsley, C. A. & Chapple, D. G. A farewell to arms and legs: a review of limb reduction in squamates. Biol. Rev. 96, 1035–1050 (2021).PubMed 

    Google Scholar 
    Brandley, M. C., Huelsenbeck, J. P. & Wiens, J. J. Rates and patterns in the evolution of snake‐like body form in squamate reptiles: evidence for repeated re‐evolution of lost digits and long‐term persistence of intermediate body forms. Evol. Int. J. Org. Evol. 62, 2042–2064 (2008).
    Google Scholar 
    Skinner, A., Lee, M. S. & Hutchinson, M. N. Rapid and repeated limb loss in a clade of scincid lizards. BMC Evol. Biol. 8, 310 (2008).Marjanović, D. & Laurin, M. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 6, e5565 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Woltering, J. M. et al. Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev. Biol. 332, 82–89 (2009).CAS 
    PubMed 

    Google Scholar 
    Cohn, M. J. & Tickle, C. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–479 (1999).CAS 
    PubMed 

    Google Scholar 
    Jaekel, O. Über die klassen der tetrapoden [About the classes of the tetrapods]. Zool. Anz. 34, 193–212 (1909).
    Google Scholar 
    Anderson J. S. in Major Transitions in Vertebrate Evolution (eds Anderson, J. S. & Sues, H.-D.) 182–227 (Indiana Univ. Press, 2007).Cope, E. D. Synopsis of the extinct Batrachia from the Coal Measures. Ohio Geol. Surv. 2, 349–411 (1875).
    Google Scholar 
    Farrell, Ú. Pyritization of soft tissues in the fossil record: an overview. Paleontol. Soc. Pap. 20, 35–58 (2014).
    Google Scholar 
    Mann, A. Cranial ornamentation of a large Brachydectes newberryi (Recumbirostra: Lysorophia) from Linton, Ohio. Vertebr. Anat. Morphol. Palaeontol. 6, 91–96 (2018).
    Google Scholar 
    Mann, A., Pardo, J. D. & Maddin, H. C. Infernovenator steenae, a new serpentine recumbirostran from the ‘Mazon Creek’ Lagerstätte further clarifies lysorophian origins. Zool. J. Linn. Soc. 187, 506–517 (2019).
    Google Scholar 
    Maisano, J. A. A survey of state of ossification in neonatal squamates. Herpetol. Monogr. 15, 135–157 (2001).Maisano, J. A. Terminal fusions of skeletal elements as indicators of maturity in squamates. J. Vertebr. Paleontol. 22, 268–275 (2002).
    Google Scholar 
    Maisano, J. A. Terminal fusions of skeletal elements as indicators of maturity in squamates. J. Vertebr. Paleontol. 22, 268–275 (2002).
    Google Scholar 
    Pardo, J. D. & Anderson, J. S. Cranial morphology of the Carboniferous–Permian tetrapod Brachydectes newberryi (Lepospondyli, Lysorophia): new data from µCT. PLoS ONE 11, e0161823 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Milner, A. R. Small temnospondyl amphibians from the Middle Pennsylvanian of Illinois. Paleontology 25, 635–664 (1982).
    Google Scholar 
    Godfrey, S. A diminutive temnospondyl amphibian from the Pennsylvanian of Illinois. Can. J. Earth Sci. 40, 507–514 (2003).
    Google Scholar 
    Mann, A. & Maddin, H. C. Diabloroter bolti, a short-bodied recumbirostran ‘microsaur’ from the Francis Creek Shale, Mazon Creek, Illinois. Zool. J. Linn. Soc. 187, 494–505 (2019).
    Google Scholar 
    Mann, A., McDaniel, E. J., McColville, E. R. & Maddin, H. C. Carbonodraco lundi gen et sp. nov., the oldest parareptile, from Linton, Ohio, and new insights into the early radiation of reptiles. R. Soc. Open Sci. 6, 191191 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mann, A. & Gee, B. M. Lissamphibian-like toepads in an exceptionally preserved amphibamiform from Mazon Creek. J. Vertebr. Paleontol. 39, e1727490 (2020).
    Google Scholar 
    Wellstead, C. F. Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians. Bull. Am. Mus. Nat. Hist. 209, 1–90 (1991).
    Google Scholar 
    Sallan, L. C. & Coates, M. I. The long-rostrumed elasmobranch Bandringa Zangerl, 1969, and taphonomy within a Carboniferous shark nursery. J. Vertebr. Paleontol. 34, 22–33 (2014).
    Google Scholar 
    Allison, P. A. & Briggs, D. E. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–530 (1993).
    Google Scholar 
    Briggs, D. E. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31, 275–301 (2003).CAS 

    Google Scholar 
    Rieppel, O. Studies on skeleton formation in reptiles. V. Patterns of ossification in the skeleton of Alligator mississippiensis Daudin (Reptilia, Crocodylia). Zool. J. Linn. Soc. 109, 301–325 (1993).
    Google Scholar 
    Sheil, C. A. Skeletal development of Macrochelys temminckii (Reptilia: Testudines: Chelydridae). J. Morphol. 263, 71–106 (2005).PubMed 

    Google Scholar 
    Roscito, J. G. & Rodrigues, M. T. Skeletal development in the fossorial gymnophthalmids Calyptommatus sinebrachiatus and Nothobachia ablephara. Zoology 115, 289–301 (2012).PubMed 

    Google Scholar 
    Boisvert, C. A. Vertebral development of modern salamanders provides insights into a unique event of their evolutionary history. J. Exp. Zool. B 312, 1–29 (2009).
    Google Scholar 
    Klembara, J. & Janiga, M. Variation in Discosauriscus austriacus (Makowsky, 1876) from the Lower Permian of the Boskovice Furrow (Czech Republic). Zool. J. Linn. Soc. 108, 247–270 (1993).
    Google Scholar 
    Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).CAS 
    PubMed 

    Google Scholar 
    Mann, A., Calthorpe, A. S. & Maddin, H. C. Joermungandr bolti, an exceptionally preserved ‘microsaur’ from the Mazon Creek Lagerstätte reveals patterns of integumentary evolution in Recumbirostra. R. Soc. Open Sci. 8, 210319 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Swofford, D. Phylogenetic analysis using parsimony (PAUP) v.4.0b10 (Sinauer Associates, 2002).Cohn, M. J. & Bright, P. E. Molecular control of vertebrate limb development, evolution and congenital malformations. Cell Tissue Res. 296, 3–17 (1999).CAS 
    PubMed 

    Google Scholar 
    Mizuhashi, K. et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563, 254–258 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchini, M. & Rolian, C. Artificial selection sheds light on developmental mechanisms of limb elongation. Evolution 72, 825–837 (2018).PubMed 

    Google Scholar 
    Rolian, C. Endochondral ossification and the evolution of limb proportions. WIREs Dev. Biol. 9, e373 (2020).Weir, E. C. et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc. Natl Acad. Sci. USA 93, 10240–10245 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Terpstra, L. et al. Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J. Cell Biol. 162, 139–148 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchini, M., Hernandez, E. S. & Rolian, C. Morphology and development of a novel murine skeletal dysplasia. PeerJ 7, e7180 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Shapiro, M. D., Hanken, J. & Rosenthal, N. Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis. J. Exp. Zool. B 297, 48–56 (2003).
    Google Scholar 
    Leal, F. & Cohn, M. J. Loss and re-emergence of legs in snakes by modular evolution of Sonic hedgehog and HOXD enhancers. Curr. Biol. 26, 2966–2973 (2016).CAS 
    PubMed 

    Google Scholar 
    Leal, F. & Cohn, M. J. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 56, e23077 (2018).Lande, R. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32, 73–92 (1978).PubMed 

    Google Scholar 
    Anderson, J. S. Revision of the aïstopod genus Phlegethontia (Tetrapoda: Lepospondyli). J. Paleontol. 76, 1029–1046 (2002).
    Google Scholar 
    Anderson, J. S. A new aïstopod (Tetrapoda: Lepospondyli) from Mazon Creek, Illinois. J. Vertebr. Paleontol. 23, 79–88 (2003).
    Google Scholar 
    Shapiro, M. D. Developmental morphology of limb reduction in Hemiergis (Squamata: Scincidae): chondrogenesis, osteogenesis, and heterochrony. J. Morphol. 254, 211–231 (2002).PubMed 

    Google Scholar 
    Herbst, E. C. & Hutchinson, J. R. New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 157–175 (2019).CAS 

    Google Scholar 
    Carroll, R. L. & Gaskill, P. The order Microsauria. Mem. Am. Philos. Soc. 126, 1–211 (1978).
    Google Scholar 
    Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M. J. & Jacobs, L. L. A fossil snake with limbs. Science 287, 2010–2012 (2000).CAS 
    PubMed 

    Google Scholar 
    Zaher, H., Apesteguia, S. & Scanferla, C. A. The anatomy of the Upper Cretaceous snake Najash rionegrina Apesteguía & Zaher, 2006, and the evolution of limblessness in snakes. Zool. J. Linn. Soc. 156, 801–826 (2009).
    Google Scholar 
    Jenkins, F. A., Walsh, D. M. & Carroll, R. L. Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bull. Mus. Comp. Zool. 158, 285–365 (2007).
    Google Scholar 
    Camp, C. L. Classification of the lizards. Bull. Am. Mus. Nat. Hist. 48, 289–480 (1923).
    Google Scholar 
    Essex, R. Studies in reptilian degeneration. Proc. Zool. Soc. Lond. 97, 879–945 (1927).
    Google Scholar 
    Sewertzoff, A. N. Studien über die reduktion der organe der wirbeltiere. Zool. Jahrb. Abt. Anat. Ontog. Tiere 53, 611–699 (1931).
    Google Scholar  More

  • in

    Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection

    Poirel, L. et al. Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 1087–1089 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, R. et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9, 1179 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Clark, N. C., Weigel, L. M., Patel, J. B. & Tenover, F. C. Comparison of Tn1546-like elements in vancomycin-resistant Staphylococcus aureus isolates from Michigan and Pennsylvania. Antimicrob. Agents Chemother. 49, 470–472 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Stokes, H. W. & Gillings, M. R. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 35, 790–819 (2011).CAS 

    Google Scholar 
    Ghaly, T. M. & Gillings, M. R. Mobile DNAs as ecologically and evolutionarily independent units of life. Trends Microbiol. 26, 904–912 (2018).CAS 

    Google Scholar 
    Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown-Jaque, M., Calero-Cáceres, W. & Muniesa, M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid https://doi.org/10.1016/j.plasmid.2015.01.001 (2015).Frantzeskakis, L. et al. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 19, 381 (2018).Scott, K. P. The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell. Mol. Life Sci. 59, 2071–2082 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pezzella, C., Ricci, A., DiGiannatale, E., Luzzi, I. & Carattoli, A. Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob. Agents Chemother. 48, 903–908 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. & Larsson, D. G. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 5, 648 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Imchen, M. & Kumavath, R. Shotgun metagenomics reveals a heterogeneous prokaryotic community and a wide array of antibiotic resistance genes in mangrove sediment. FEMS Microbiol. Ecol. 96, fiaa173 (2020).CAS 

    Google Scholar 
    Zhang, T., Zhang, X.-X. & Ye, L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS ONE 6, e26041 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, H. et al. Novel plasmid and its variant harboring both a blaNDM-1 gene and type IV secretion system in clinical isolates of Acinetobacter lwoffii. Antimicrob. Agents Chemother. 56, 1698–1702 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smet, A. et al. Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences. PLoS ONE 5, e11202 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Revilla, C. et al. Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids. Antimicrob. Agents Chemother. 52, 1472–1480 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poirel, L., Dortet, L., Bernabeu, S. & Nordmann, P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 55, 5403–5407 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toleman, M. A., Spencer, J., Jones, L. & Walsh, T. R. blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 2773–2776 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonnin, R. A., Poirel, L. & Nordmann, P. New Delhi metallo-β-lactamase-producing Acinetobacter baumannii: a novel paradigm for spreading antibiotic resistance genes. Future Microbiol. 9, 33–41 (2014).CAS 

    Google Scholar 
    Waterman, P. E. et al. Bacterial peritonitis due to Acinetobacter baumannii sequence type 25 with plasmid-borne New Delhi metallo-β-lactamase in Honduras. Antimicrob. Agents Chemother. 57, 4584–4586 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGann, P. et al. Detection of New Delhi metallo-β-lactamase (encoded by blaNDM-1) in Acinetobacter schindleri during routine surveillance. J. Clin. Microbiol. 51, 1942–1944 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, X. et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 8, 15784 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spanogiannopoulos, P., Waglechner, N., Koteva, K. & Wright, G. D. A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc. Natl Acad. Sci. USA 111, 7102–7107 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, J. et al. Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. Microb. Ecol. 65, 975–981 (2013).CAS 

    Google Scholar 
    D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Van Goethem, M. W. et al. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6, 40 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Mindlin, S., Soina, V. S., Petrova, M. A. & Gorlenko, Zh. M. Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments. Genetika 44, 36–44 (2008).CAS 

    Google Scholar 
    Cohen, S. N. Transposable genetic elements and plasmid evolution. Nature 263, 731–738 (1976).CAS 

    Google Scholar 
    Wright, G. D. Environmental and clinical antibiotic resistomes, same only different. Curr. Opin. Microbiol. 51, 57–63 (2019).CAS 

    Google Scholar 
    von Wintersdorff, C. J. et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7, 173 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rankin, D. J., Rocha, E. P. C. & Brown, S. P. What traits are carried on mobile genetic elements, and why? Heredity (Edinb) https://doi.org/10.1038/hdy.2010.24 (2011).Kottara, A., Hall, J. P., Harrison, E. & Brockhurst, M. A. Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol. Ecol. 94, fix172 (2018).
    Google Scholar 
    Hall, J. P., Wood, A. J., Harrison, E. & Brockhurst, M. A. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc. Natl Acad. Sci. USA 113, 8260–8265 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hall, J. P. J., Williams, D., Paterson, S., Harrison, E. & Brockhurst, M. A. Positive selection inhibits gene mobilisation and transfer in soil bacterial communities. Nat. Ecol. Evol. 1, 1348–1353 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Naumann, T. A. & Reznikoff, W. S. Tn5 transposase with an altered specificity for transposon ends. J. Bacteriol. 184, 233–240 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. et al. Increased plasmid copy number is essential for Yersinia T3SS function and virulence. Science 353, 492–495 (2016).CAS 

    Google Scholar 
    Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 578–588 (2009).CAS 

    Google Scholar 
    Dimitriu, T., Mathews, A. C. & Buckling, A. Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance. Proc. Natl Acad. Sci. USA 118, e2107818118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172, 6568–6572 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lichtenstein, C. & Brenner, S. Site-specific properties of Tn7 transposition into the E. coli chromosome. Mol. Gen. Genet. 183, 380–387 (1981).CAS 

    Google Scholar 
    Bethke, J. H. et al. Environmental and genetic determinants of plasmid mobility in pathogenic Escherichia coli. Sci. Adv. 6, eaax3173 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahillon, J. & Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev. 62, 725–774 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).CAS 

    Google Scholar 
    Seelke, R. W., Kline, B. C., Trawick, J. D. & Ritts, G. D. Genetic studies of F plasmid maintenance genes involved in copy number control, incompatability, and partitioning. Plasmid 7, 163–179 (1982).CAS 

    Google Scholar 
    Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Watve, M. M., Dahanukar, N. & Watve, M. G. Sociobiological control of plasmid copy number in bacteria. PLoS ONE 5, e9328 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Lehtinen, S. et al. Horizontal gene transfer rate is not the primary determinant of observed antibiotic resistance frequencies in Streptococcus pneumoniae. Sci. Adv. 6, eaaz6137 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ubeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).CAS 

    Google Scholar 
    Beaber, J. W., Hochhut, B. & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74 (2004).CAS 

    Google Scholar 
    al‐Masaudi, S. B., Day, M. & Russell, A. D. Effect of some antibiotics and biocides on plasmid transfer in Staphylococcus aureus. J. Appl. Bacteriol. 71, 239–243 (1991).
    Google Scholar 
    Nichols, B. P. & Guay, G. G. Gene amplification contributes to sulfonamide resistance in Escherichia coli. Antimicrob. Agents Chemother. 33, 2042–2048 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Normark, S., Edlund, T., Grundström, T., Bergström, S. & Wolf-Watz, H. Escherichia coli K-12 mutants hyperproducing chromosomal beta-lactamase by gene repetitions. J. Bacteriol. 132, 912–922 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zienkiewicz, M., Kern-Zdanowicz, I., Carattoli, A., Gniadkowski, M. & Cegłowski, P. Tandem multiplication of the IS 26-flanked amplicon with the blaSHV-5 gene within plasmid p1658/97. FEMS Microbiol. Lett. 341, 27–36 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matthews, P. R. & Stewart, P. R. Amplification of a section of chromosomal DNA in methicillin-resistant Staphylococcus aureus following growth in high concentrations of methicillin. J. Gen. Microbiol. 134, 1455–1464 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun, S., Berg, O. G., Roth, J. R. & Andersson, D. I. Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics 182, 1183–1195 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andersson, D. I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195 (2009).CAS 

    Google Scholar 
    Nicoloff, H., Perreten, V. & Levy, S. B. Increased genome instability in Escherichia coli lon mutants: relation to emergence of multiple-antibiotic-resistant (Mar) mutants caused by insertion sequence elements and large tandem genomic amplifications. Antimicrob. Agents Chemother. 51, 1293–1303 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertini, A. et al. Multicopy blaOXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 51, 2324–2328 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knapp, C. W. et al. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Environ. Sci. Technol. 42, 5348–5353 (2008).CAS 

    Google Scholar 
    San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1, 10 (2016).
    Google Scholar 
    Rodriguez-Beltran, J. et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat. Ecol. Evol. 2, 873–881 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 19, 347–359 (2021).
    Google Scholar 
    Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).CAS 

    Google Scholar 
    You, L., Hoonlor, A. & Yin, J. Modeling biological systems using Dynetica—a simulator of dynamic networks. Bioinformatics 19, 435–436 (2003).CAS 

    Google Scholar 
    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wingett, S. W. & Andrews, S. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blankenberg, D. et al. Manipulation of FASTQ data with Galaxy. Bioinformatics 26, 1783–1785 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Water shifts the balance of coexistence

    van der Putten, W. H. et al. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    Smith-Ramesh, L. M. & Reynolds, H. L. J. Veg. Sci. 28, 484–494 (2017).Article 

    Google Scholar 
    De Long, J. R., Fry, E. L., Veen, G. & Kardol, P. Funct. Ecol. 33, 118–128 (2019).Article 

    Google Scholar 
    Pugnaire, F. I. et al. Sci. Adv. 5, eaaz1834 (2019).CAS 
    Article 

    Google Scholar 
    Dudenhöffer, J.-H., Luecke, N. C. & Crawford, K. M. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01700-7 (2022).Article 

    Google Scholar 
    Bever, J. D., Westover, K. M. & Antonovics, J. J. Ecol. 85, 561–573 (1997).Article 

    Google Scholar 
    Crawford, K. M. et al. Ecol. Lett. 22, 1274–1284 (2019).Article 

    Google Scholar 
    Dudenhöffer, J., Ebeling, A., Klein, A., Wagg, C. & Farrer, E. J. Ecol. 106, 230–241 (2018).Article 

    Google Scholar 
    Kandlikar, G. S., Johnson, C. A., Yan, X., Kraft, N. J. B. & Levine, J. M. Ecol. Lett. 22, 1178–1191 (2019).PubMed 

    Google Scholar 
    Nguyen, N. H. et al. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Rudgers, J. A. et al. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).Article 

    Google Scholar 
    Ke, P.-J., Zee, P. C. & Fukami, T. New Phytol. 231, 1546–1558 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    An expert-curated global database of online newspaper articles on spiders and spider bites

    Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, FinlandStefano Mammola, Jagoba Malumbres-Olarte, Pedro Cardoso, Caroline S. Fukushima, Tuuli Korhonen, Marija Miličić & Joni A. SaarinenMolecular Ecology Group (MEG), Water Research Institute, National Research Council of Italy (CNR-IRSA), Largo Tonolli 50, 28922, Verbania Pallanza, ItalyStefano Mammola & Alejandro MartínezCE3C – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Angra do Heroísmo, Azores, PortugalJagoba Malumbres-OlarteAlbert Katz International School for Desert Studies, Ben-Gurion University of the Negev, Sede Boqer Campus, Beersheba, IsraelValeria ArabeskyBlaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beersheba, IsraelValeria Arabesky & Yael LubinColección Nacional de Arácnidos, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, MexicoDiego Alejandro Barrales-AlcaláEnvironmental Biology Division, Institute of Biological Sciences, College of Arts and Sciences and Museum of Natural History, University of the Philippines Los Banos, 4031, Los Baños, PhilippinesAimee Lynn Barrion-DupoCentro Universitario de Rivera, Universidad de la República, Montevideo, UruguayMarco Antonio BenamúLab. Ecotoxicología de Artrópodos Terrestres, Centro Univeritario de Rivera, Universidad de la República, Montevideo, UruguayMarco Antonio BenamúLaboratorio Ecología del Comportamiento, Instituto de Investigaciones Biológicas clemente Estable (IIBCE), Montevideo, UruguayMarco Antonio BenamúDitsong National Museum of Natural History, PO Box 4197, Pretoria, 0001, South AfricaTharina L. BirdDepartment of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South AfricaTharina L. BirdFreelance translator, Verbania Pallanza, ItalyMaria BogomolovaDepartment of Molecular Biology and Genetics, Democritus University of Thrace, Komotini, GreeceMaria ChatzakiDepartment of Life sciences, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung City, 402204, TaiwanRen-Chung Cheng & Tien-Ai ChuDepartment of Biology, Macelwane Hall, 3507 Laclede Avenue, Saint Louis University, St. Louis, MO, 63103, USALeticia M. Classen-RodríguezCroatian Biospeleological Society, Rooseveltov trg 6, Zagreb, CroatiaIva Čupić & Martina PavlekProgram Sarjana, Fakultas Biologi, Universitas Gadjah Mada, Yogyakarta, IndonesiaNaufal Urfi Dhiya’ulhaqInsectarium de Montréal, Espace pour la vie, 4101, rue Sherbrooke Est, Montréal, Québec, H1X 2B2, CanadaAndré-Philippe Drapeau PicardSerket, Arachnid Collection of Egypt (ACE), Cairo, EgyptHisham K. El-HennawyErzincan Binali Yıldırım University, Faculty of Science and Arts, Biology Department, 24002, Erzincan, TurkeyMert ElvericiThe National Natural History Collections, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, IsraelZeana Ganem & Efrat Gavish-RegevThe Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, IsraelZeana GanemBotswana International University of Science and Technology, Palapye, BotswanaNaledi T. GonnyeUMR CNRS 6553 Ecobio, Université de Rennes, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, FranceAxel Hacala & Julien PétillonDepartment of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South AfricaCharles R. Haddad & Zingisile MboDepartment of Zoology, University of Oxford, Oxford, OX1 3PS, United KingdomThomas HesselbergDepartment of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, SingaporeTammy Ai Tian HoDepartment of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 12121, ThailandThanakorn Into & Booppa PetcharadDept. of Life Science and Systems Biology, University of Torino, Via Accademia Albertina, 13 – 10123, Torino, ItalyMarco Isaia & Veronica NanniUnit of Conservation Biology, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, IndiaDharmaraj JayaramanNational Museum of Namibia, Windhoek, NamibiaNanguei Karuaera5A Sagar Sangeet, SBS Marg, Mumbai, 400005, IndiaRajashree Khalap & Kiran KhalapDepartment of Biological Sciences, Ajou University, Suwon, Republic of KoreaDongyoung KimResearch Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Ljubljana, SloveniaSimona Kralj-FišerUniversity of Greifswald, Zoological Institute and Museum, General and Systematic Zoology, Loitzerstrasse 26, 17489, Greifswald, GermanyHeidi Land, Shou-Wang Lin & Gabriele UhlDepartment of Natural Resource Sciences, McGill University, 21 111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, CanadaSarah Loboda & Catherine ScottDepartment of Biological Science, Macquarie University, Sydney, NSW, 2122, AustraliaElizabeth LoweMitrani Department of Desert Ecology, University in Midreshet Ben-Gurion, Midreshet Ben-Gurion, IsraelYael LubinBioSense Institute – Research Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Đinđića 1, 21000, Novi Sad, SerbiaMarija MiličićNational Museums of Kenya, Museum Hill, P.O. BOX 40658- 00100, Nairobi, KenyaGrace Mwende KiokoSchool for Advanced Studies IUSS, Science, Technology and Society Department, 25100, Pavia, ItalyVeronica NanniInstitute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, MalaysiaYusoff Norma-RashidDepartment of Animal and Environmental Biology, Federal University, Oye-Ekiti, Ekiti State, NigeriaDaniel NwankwoTe Aka Mātuatua School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New ZealandChristina J. PaintingIndependent researcher, Toronto, CanadaAleck PangMuseo Civico di Scienze Naturali “E. Caffi”, Piazza Cittadella, 10, I-24129, Bergamo, ItalyPaolo PantiniRuđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, CroatiaMartina PavlekBiodiversity Research Laboratory, Moreton Morrell, Warwickshire College University Centre, Warwickshire, United KingdomRichard PearceInstitute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South AfricaJulien PétillonDepartment of Entomology, University of Antananrivo, Antananarivo, MadagascarOnjaherizo Christian RaberahonaSchool of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United StatesLaura Segura-HernándezDepartment of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, CanadaLenka SentenskáNatural Sciences, Auckland War Memorial Museum, Parnell, Auckland, 1010, New ZealandLeilani WalkerTe Pūnaha Matatini, University of Auckland, Auckland, New ZealandLeilani WalkerMurang’a University of Technology, Department of Physical & Biological Sciences, P.O.Box 75-10200, Murang’a, KenyaCharles M. WaruiInstitute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22a, 76-200, Słupsk, PolandKonrad WiśniewskiZoological Museum, Biodiversity Unit, FI-20014, University of Turku, Turku, FinlandAlireza ZamaniDepartment of Psychology, University of Tennessee, Knoxville, Tennessee, USAAngela ChuangDepartment of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USAAngela ChuangConceptualization: SM, JM-O, CS, AC; Data collection & validation: all authors; Data management: SM, VN, AC; Data analysis & visualization (Figs. 2–5): SM; Summary illustration (Fig. 1): JM-O; Writing (first draft): SM; Writing, contributions: JM-O, CS, AC; All authors read the text, provided comments, suggestions, and corrections, and approved the final version. More