More stories

  • in

    Spatial and temporal evolution of ecological vulnerability based on vulnerability scoring diagram model in Shennongjia, China

    Spatial and temporal distribution of ecological vulnerabilityBased on the SPCA model, the temporal and spatial distribution of ecological vulnerability in Shennongjia is obtained, as shown in Fig. 3. From 1996 to 2018, the area of micro vulnerability areas continued to increase and occupied a dominant position. Moreover, their distribution pattern tended to be gradually integrated, indicating that the structure and function of the ecosystem in most areas of Shennongjia were relatively complete, and in a healthy and stable state. However, the ecological environment of the severely vulnerable areas in the northeast, south and southwest of Shennongjia is in a trend of continuous deterioration, and the risk of extreme vulnerability is gradually emerging. From the spatial distribution of ecological vulnerability in 2018, it can be seen that the extremely vulnerable areas have increased significantly, and exhibit a dense and continuous distribution trend in some areas, accompanied by the development of rapid urbanization and highway traffic construction. There are also high-risk ecological vulnerable zones and the extremely vulnerability areas.Figure 3Spatial and temporal distribution of ecological vulnerability in Shennongjia. Spatial and temporal distribution of ecological vulnerability for (a) 1996, (b) 2007, (c) 2018 in Shennongjia, China.Full size imageIt can be seen from the area proportion of different levels of vulnerable areas (Fig. 4) that the area proportion of micro and extremely vulnerable areas increased significantly. Specifically, the area proportion of micro vulnerable areas increased from 59.98% in 1996 to 71.02% in 2018, while the area proportion of extremely vulnerable areas increased from 1.23% in 1996 to 7.32% in 2018. This shows that the ecological vulnerability of Shennongjia exhibits a significant two-level differentiation trend.Figure 4Proportion of the area of vulnerable districts at all levels in Shennongjia.Full size imageDynamic change of ecological vulnerabilityDuring the study period, the areas with a positive fitting slope account for more than 90% of the total area of the study area, which indicates that the overall vulnerability of Shennongjia presents a downward trend. According to the natural discontinuity point method, the dynamic change results of ecological vulnerability in Shennongjia are divided into five levels (Fig. 5), in order to discern the spatial angle more intuitively and clearly. It can be seen that the ecological vulnerability of most regions exhibits a decreasing trend, while the ecological vulnerability of certain regions increases.Figure 5Dynamic changes of ecological vulnerability in Shennongjia. Changes in the ecological vulnerability of Shennongjia in different periods: (a) 1996–2007, (b) 2007–2018, (c) 1996–2018.Full size imageFrom 1996 to 2007, whether the spatial distribution trend of ecological vulnerability increased or decreased is not obvious. However, from 2007 to 2018, the areas with significantly increased ecological vulnerability were concentrated in Yangri and Songbai in the northeast and near the Hongping airport in Shennongjia in the midwest. During this same time period, in the areas around the main urban areas and along the roads that were seriously disturbed by human activities, ecological vulnerability also exhibited a decreasing trend.Change trend of comprehensive ecological vulnerability indexAnnual change of the comprehensive ecological vulnerability indexThe results of the comprehensive ecological vulnerability index of 1996, 2007, and 2018 are 2.77, 2.71, and 2.51, respectively. From the annual change of the ecological vulnerability index in Shennongjia (Fig. 6), it can be seen that the ecological vulnerability of Shennongjia showed a downward trend from 1996 to 2018, and the stability and health of the ecosystem were improved overall.Figure 6Annual change of the comprehensive ecological vulnerability index. CEVI, comprehensive ecological vulnerability index.Full size imageAmong them, the decline of ecological vulnerability is relatively small from 1996 to 2007, which may be ascribed to the preliminary implementation of restrictive policies, such as banning logging and returning farmland to forest, which reduced ecological exposure factors, such as illegal logging and deforestation. From 2007 to 2018, the comprehensive index of ecological vulnerability in Shennongjia decreased significantly, which is mainly due to the designation of national nature reserves and the implementation of various ecological protection projects36. While reducing the exposed ecological disturbance, it simultaneously markedly improved the adaptability of the ecosystem, and further reduced the overall ecological vulnerability of the region.Changes of the comprehensive ecological vulnerability Index in different townsAccording to the comprehensive index of ecological vulnerability of eight towns in the Shennongjia (Table 5, Fig. 7), the ecological vulnerability difference of each town is obvious. In 2018, the comprehensive index of ecological vulnerability of each town is lower than that in 1996 and 2007. The results show that the average value of CEVI is, from high to low, Yangri, Xiaguping, Songbai, Xinhua, Jiuhu, Hongping, Muyu, and Songluo. The maximum value of the CEVI appeared in Yangri in 1996, and the minimum value occurred in Songluo in 2018.Table 5 Comprehensive ecological vulnerability index of towns.Full size tableFigure 7Radar chart of the comprehensive ecological vulnerability index of towns.Full size imageDriving factors of spatial and temporal evolution of ecological vulnerabilityThe formation and evolution of ecological vulnerability in Shennongjia constitutes a dynamic process, which is the result of interactions of human and natural factors. Based on the principle of SPCA of ecological vulnerability, the transformed principal components are extracted, and the rotated factor load matrix is obtained to reflect the different effects of various factors on the evaluation results. Each principal component possesses a different ability to explain the original index factors, but it has similar rules in the first four principal components (Table 6). The cumulative contribution rate of the first four principal components in the three groups of data reached more than 80%, which can reflect the information of most factors, and thus it has good representativeness.Table 6 Principal component loading and score.Full size tableAmong the first principal component and the third principal component, the contribution of land-use type index (C9) is higher; in the second principal component, the contribution of population density (C1) is higher; among the fourth principal components, the contribution of vegetation coverage (C13) is higher. Moreover, the contribution of other factors in different years and main components is dissimilar.The influence of land-use type on ecological vulnerabilityWhether due to natural or human factors, the original properties of the ecosystem are altered by changing the surface cover. Therefore, land-use type is an important factor affecting regional ecological vulnerability. The difference of surface cover leads to the difference of ecological community, and then produces varied ecological environmental benefits. Forest land is the most important land-use type in the study area, and the ecological vulnerability of the distribution area is mainly micro degree and light. However, consider the important ecological value of the forest ecosystem, attention should be given to its vulnerability. The ecological vulnerability of the construction land is mainly severe and extreme, which is largely due to the expansion of construction land, which destroys the original ecological structure and ecological community. Furthermore, a large number of manmade patches replace natural patches in the construction land, and biodiversity decreases, leading to the decline of the stability of ecological structures and the increase of vulnerability.The influence of population density on ecological vulnerabilityPopulation density is one of the most direct exposure factors in the vulnerability of ecological environments. Population density is generally higher than that in high area, and it is also a region with a developed economy and high urbanization. In these areas, human activities are frequent, which usually impart a negative disturbance to the natural environment, including the rapid expansion of cultivated land and construction land area, as well as high discharge of production and domestic wastewater waste, which has caused great pressure on the ecological environment, leading to a significant increase in ecological vulnerability.The influence of vegetation cover on ecological vulnerabilityFrom 1996 to 2018, the vegetation coverage of the Shennongjia exhibited an overall upward trend, which is of positive significance to the reduction of the vulnerability of the ecosystem. Vegetation, as the main body of the land ecosystem, maintains the balance of ecological environment through interactions with climate, landform, and soil37. Extant literature shows that the change of vegetation coverage is an major factor of regional ecological environment change, and has a clear indication function for the change of regional ecological environment38. The spatial distribution trend of ecological vulnerability in the Shennongjia is markedly similar to that of vegetation coverage. The ecological vulnerability of regions with higher vegetation coverage is lower, exhibiting a significant negative correlation. In the Shennongjia, the change of vegetation coverage is also obviously influenced by human factors.Contribution of landscape pattern index to ecological vulnerabilityThe spatial distribution of each index in Shennongjia have been obtained from previous studies47. From the unary linear regression analysis, in the years of 1996, 2007 and 2018, the NP, LPI, AI, DIVISION and SHDI are all significantly correlated with the ecological vulnerability index (Fig. 8).Figure 8Scatter plot of linear regression of landscape pattern index and ecological vulnerability index. EVI, ecological vulnerability index.Full size imageIn the case of different independent variable combinations in 1996, 2007 and 2018, the multiple regression relationship between the independent variable and the dependent variable of each group is significantly correlated, and the multiple linear regression equation of the full model is obtained as follows:$$1996{:};;{text{ Y}} = 6.443 + 0.014{text{X}}_{1} + 0.006{text{X}}_{2} – 0.038{text{X}}_{3} – 0.066{text{X}}_{4} + 0.058{text{X}}_{5}$$$$2007{:};;{text{ Y}} = 4.497 + 0.016{text{X}}_{1} + 0.007{text{X}}_{2} + 0.793{text{X}}_{3} – 0.047{text{X}}_{4} – 0.305{text{X}}_{5}$$$$2018{:};;{text{ Y}} = – 1.980 + 0.037{text{X}}_{1} + 0.006{text{X}}_{2} + 0.703{text{X}}_{3} + 0.019{text{X}}_{4} – 0.123{text{X}}_{5}$$The contribution rate of landscape pattern index to ecological vulnerability in different years of 1996, 2007, and 2018 is shown in Table 7. The contribution of AI and NP to ecological vulnerability in 1996 was high; the contribution of NP and AI to ecological vulnerability was higher in 2007; and the NP in 2018 had the highest contribution to ecological vulnerability, reaching 95.77%.Table 7 Contribution of the landscape pattern index to the ecological vulnerability index.Full size tableBased on the analysis results from 1996 to 2018, the contribution of NP and AI to ecological vulnerability is relatively high. The main reason for this is that the forest coverage rate of Shennongjia is as high as 91%. Specifically, with the forest as the landscape matrix, the NP is small and the connectivity between patches is high, showing a trend of aggregation. The degree of landscape fragmentation is relatively low and decreases annually, and ecological vulnerability decreases with the decrease of the degree of landscape fragmentation, Therefore, the impact of NP and AI on ecological vulnerability is highly significant.The AI and ecological vulnerability index always exhibit a significant negative correlation in the study period. In the 1996 research results, the contribution of AI to ecological vulnerability is the most obvious. Combined with the spatial distribution of ecological vulnerability, it can be seen that most of the severe and extremely vulnerable areas are distributed in areas with low AI. Most of them are the distribution areas of artificial patches, such as rural living areas, airports, tourism centers, etc., which are obviously disturbed by human activities, resulting in low connectivity among various landscape types, which greatly reduces the aggregation degree of landscape and increases regional vulnerability.There is also a significant positive correlation between the NP and the ecological vulnerability index. This is especially the case in 2018, when the contribution of the NP to ecological vulnerability is as high as 95.77%, which is mainly attributable to the urbanization construction of Songbai town in Shennongjia. Combined with the land-use structure map, it can be seen that the number of construction land patches in the northeast region increased sharply. In this process, the renewal of patches aggravates the degree of landscape fragmentation and plays a key role in the aggravation of regional vulnerability risk.Although the impact of LPI, SHDI and DIVISION on ecological vulnerability always exists, the contribution is not very significant. Among them, SHDI contributed 10.38% in 2007, which was more sensitive to the unbalanced distribution of each patch type. In areas with high SHDI, landscape heterogeneity is high, the ecological pattern is unstable, and ecological vulnerability increases. More

  • in

    First titanosaur dinosaur nesting site from the Late Cretaceous of Brazil

    Carballido, J. L. et al. A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proc. R. Soc. B Biol. Sci. 284, 20171219 (2017).
    Google Scholar 
    Hechenleitner, E. M. et al. Two Late Cretaceous sauropods reveal titanosaurian dispersal across South America. Commun. Biol. 3, 622 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Otero, A., Carballido, J. L., Salgado, L., Canudo, I. & Garrido, A. C. Report of a giant titanosaur sauropod from the Upper Cretaceous of Neuquén Province, Argentina. Cretaceous Res. 122, 104754 (2021).
    Google Scholar 
    Sander, P. M. et al. Biology of the sauropod dinosaurs: The evolution of gigantism. Biol. Rev. 86, 117–155 (2011).PubMed 

    Google Scholar 
    Gorscak, E. & O’Connor, P. M. A new African titanosaurian sauropod dinosaur from the middle Cretaceous Galula Formation (Mtuka Member), Rukwa Rift Basin, southwestern Tanzania. PLoS One 14, e0211412 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poropat, S. F. et al. Second specimen of the Late Cretaceous Australian sauropod dinosaur Diamantinasaurus matildae provides new anatomical information on the skull and neck of early titanosaurs. Zool. J. Linn. Soc. 192, 610–674 (2021).
    Google Scholar 
    González Riga, B. J. et al. An overview of the appendicular skeletal anatomy of South American titanosaurian sauropods, with definition of a newly recognized clade. An. Acad. Bras. Ciênc. 91, e20180374 (2019).
    Google Scholar 
    Gorscak, E. & O’connor, P. M. Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history. Biol. Lett. 12, 20151047 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Pérez Moreno, A., Carballido, J. L., Otero, A., Salgado, L. & Calvo, J. O. The axial skeleton of Rinconsaurus caudamirus (Sauropoda: Titanosauria) from the Late Cretaceous of Patagonia, Argentina. Ameghiniana 59, 1–46 (2022).
    Google Scholar 
    Chiappe, L. M., Jackson, F., Coria, R. A. & Dingus, L. Nesting titanosaurs from Auca Mahuevo and adjacent sites. In The Sauropods: Evolution and Paleobiology (eds Curry Rogers, K. A. & Wilson, J. A.) 285–302 (University of California Press, 2005).
    Google Scholar 
    Hechenleitner, E. M., Grellet-Tinner, G. & Fiorelli, L. E. What do giant titanosaur dinosaurs and modern Australasian megapodes have in common?. PeerJ 3, e1341 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Cojan, I., Renard, M. & Emmanuel, L. Palaeoenvironmental reconstruction of dinosaur nesting sites based on a geochemical approach to eggshells and associated palaeosols (Maastrichtian, Provence Basin, France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 191, 111–138 (2003).
    Google Scholar 
    Grellet-Tinner, G., Codrea, V., Folie, A., Higa, A. & Smith, T. First evidence of reproductive adaptation to “island effect” of a dwarf Cretaceous Romanian titanosaur, with embryonic integument in ovo. PLoS One 7(3), e32051 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khosla, A. & Lucas, S. Late Cretaceous dinosaur eggs and eggshells of peninsular India. Top. Geobiol. 51, 1–295 (2020).
    Google Scholar 
    Vila, B., Galobart, A., Oms, O., Poza, B. & Bravo, A. M. Assessing the nesting strategies of Late Cretaceous titanosaurs: 3-D clutch geometry from a new megaloolithid egg site. Lethaia 43, 197–208 (2009).
    Google Scholar 
    Chiappe, L. M. et al. Sauropod dinosaur embryos from the Late Cretaceous of Patagonia. Nature 396, 258–261 (1998).ADS 
    CAS 

    Google Scholar 
    Salgado, L. et al. Upper Cretaceous dinosaur nesting sites of Río Negro (Salitral Ojo de Agua and Salinas de Trapalco-Salitral de Santa Rosa), Northern Patagonia, Argentina. Cretaceous Res. 28, 392–404 (2007).
    Google Scholar 
    Salgado, L., Magalhães Ribeiro, C. M., García, R. A. & Fernández, M. A. Late Cretaceous megaloolithid eggs from Salitral de Santa Rosa (Río Negro, Patagonia, Argentina): Inferences on the titanosaurian reproductive biology. Ameghiniana 46, 605–620 (2009).
    Google Scholar 
    Grellet-Tinner, G. & Fiorelli, L. E. A new Argentinean nesting site showing neosauropod dinosaur reproduction in a Cretaceous hydrothermal environment. Nat. Commun. 1, 32 (2010).ADS 
    PubMed 

    Google Scholar 
    Hechenleitner, E. M. et al. A new Upper Cretaceous titanosaur nesting site from La Rioja (NW Argentina), with implications for titanosaur nesting strategies. Palaeontology 59, 433–446 (2016).
    Google Scholar 
    Kundrát, M. et al. Specialized craniofacial anatomy of a titanosaurian embryo from Argentina. Curr. Biol. 30, 4263–4269 (2020).PubMed 

    Google Scholar 
    Chiappe, L. M., Salgado, L. & Coria, R. A. Embryonic skulls of titanosaur sauropod dinosaurs. Science 293, 2444–2446 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Grellet-Tinner, G., Chiappe, L. M., Norell, M. & Bottjer, D. Dinosaur eggs and nesting behaviors: A paleobiological investigation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 294–321 (2006).
    Google Scholar 
    Coria, R. A. & Chiappe, L. M. Embryonic skin from Late Cretaceous sauropods (Dinosauria) of Auca Mahuevo, Patagonia, Argentina. J. Paleontol. 81, 1528–1532 (2007).
    Google Scholar 
    Leuzinger, L. et al. Life and reproduction of titanosaurians: Isotopic hallmark of mid-palaeolatitude eggshells and its significance for body temperature, diet, and nesting. Chem. Geol. 583, 120452 (2021).ADS 
    CAS 

    Google Scholar 
    Faccio, G. Dinosaurian eggs from the upper Cretaceous of Uruguay. In Dinosaur Eggs and Babies (eds Carpenter, K. et al.) 47–53 (Cambridge University Press, 1994).
    Google Scholar 
    Vianey-Liaud, M., Hirsch, K., Sahni, A. & Sigé, B. Late Cretaceous Peruvian eggshells and their relationships with Laurasian and Eastern Gondwanian material. Geobios 30, 75–90 (1997).
    Google Scholar 
    Magalhães Ribeiro, C. M. Microstructural analysis of dinosaur eggshells from Bauru Basin (Late Cretaceous), Minas Gerais, Brasil. In First International Symposium on Dinosaur Eggs and Babies (eds Bravo, A. M. & Reyes, T.) 117–122 (Isona I Conca Dellà Catalonia, 2000).
    Google Scholar 
    Magalhães Ribeiro, C. M. Ovo e fragmentos de cascas de ovos de dinossauros, provenientes de região de Peirópolis, Uberaba, Minas Gerais. Arq. Mus. Nac. 60, 223–228 (2002).
    Google Scholar 
    Grellet-Tinner, G. & Zaher, H. Taxonomic identification of the Megaloolithidae egg and eggshells from Cretaceous Bauru Basin (Minas Gerais, Brazil): Comparison with the Auca Mahuevo (Argentina) titanosaurid eggs. Papéis Avulsos Zool. 47, 105–112 (2007).
    Google Scholar 
    Martinelli, A. G. & Teixeira, V. P. A. The Late Cretaceous vertebrate record from the Bauru Group in the Triângulo Mineiro, southeastern Brazil. Bol. Geol. Minero 126, 129–158 (2015).
    Google Scholar 
    Soares, M. V. T. et al. Sedimentology of a distributive fluvial system: The Serra da Galga Formation, a new lithostratigraphic unit (Upper Cretaceous, Bauru Basin, Brazil). Geol. J. 56, 951–975 (2021).
    Google Scholar 
    Soares, M. V. T. et al. Landscape and depositional controls on palaeosols of a distributive fluvial system (Upper Cretaceous, Brazil). Sedim. Geol. 409, 105774 (2020).
    Google Scholar 
    Martinelli, A. G. et al. Palaeoecological implications of an Upper Cretaceous tetrapod burrow (Bauru Basin; Peirópolis, Minas Gerais, Brazil). Palaeogeogr. Palaeoclimatol. Palaeoecol. 528, 147–159 (2019).
    Google Scholar 
    Grellet-Tinner, G., Chiappe, L. M. & Coria, R. A. Eggs of titanosaurid sauropods from the Upper Cretaceous of Auca Mahuevo (Argentina). Can. J. Earth Sci. 41, 949–960 (2004).ADS 

    Google Scholar 
    Wilson, J. A., Mohabey, D. M., Peters, S. E. & Head, J. J. Predation upon hatchling dinosaurs by a new snake from the Late Cretaceous of India. PLoS Biol. 8, e1000322 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Garcia, G. & Vianey-Liaud, M. Nouvelles données sur les coquilles d’œufs de dinosaures Megaloolithidae du Sud de la France: Systématique et variabilité intraspécifique. C. R. Acad. Sci. A. 332, 185–191 (2001).
    Google Scholar 
    Vianey-Liaud, M., Khosla, A. & Garcia, G. Relationships between European and Indian dinosaur eggs and eggshells of the oofamily Megaloolithidae. J. Vertebr. Paleontol. 23, 575–585 (2003).
    Google Scholar 
    Campos, D. A., Kellner, A. W. A., Bertini, R. J. & Santucci, R. M. On a titanosaurid (Dinosauria, Sauropoda) vertebral column from the Bauru Group, Late Cretaceous of Brazil. Arq. Mus. Nac. 63, 565–593 (2005).
    Google Scholar 
    Kellner, A. W. A., Campos, D. A. & Trotta, M. N. F. Description of a titanosaurid caudal series from the Bauru Group, Late Cretaceous of Brazil. Arq. Mus. Nac. 63, 529–564 (2005).
    Google Scholar 
    Machado, E. B., Avilla, L. S., Nava, W. R., Campos, D. A. & Kellner, A. W. A. A new titanosaur sauropod from the Late Cretaceous of Brazil. Zootaxa 3701, 301–321 (2013).PubMed 

    Google Scholar 
    Silva Junior, J. C. G. et al. Reassessment of Aeolosaurus maximus, a titanosaur dinosaur from the Late Cretaceous of Southeastern Brazil. Hist. Biol. 34, 402–411 (2022).
    Google Scholar 
    Bandeira, K. L. N. et al. A new giant Titanosauria (Dinosauria: Sauropoda) from the Late Cretaceous Bauru Group, Brazil. PLoS One 11, e0163373 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Pearce, J. M. Philopatry: A return to origins. Auk 124, 1085–1087 (2007).
    Google Scholar 
    Kokko, H. & López-Sepulcre, A. From individual dispersal to species ranges: Perspectives for a changing world. Science 313, 789–791 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Basilici, G., Hechenleitner, E. M., Fiorelli, L. E., Dal Bó, P. F. & Mountney, N. P. Preservation of titanosaur egg clutches in Upper Cretaceous cumulative palaeosols (Los Llanos Formation, La Rioja, Argentina). Palaeogeogr. Palaeoclimatol. Palaeoecol. 482, 83–102 (2017).
    Google Scholar 
    Mueller-Töwe, I. J., Sander, P. M., Schüller, H. & Thies, D. Hatching and infilling of dinosaur eggs as revealed by computed tomography. Palaeontogr. Abt. A 267, 119–168 (2002).
    Google Scholar 
    Paganelli, C. V. The physics of gas exchange across the avian eggshell. Am. Zool. 20, 329–338 (1980).
    Google Scholar 
    Grellet-Tinner, G., Fiorelli, L. E. & Salvador, R. B. Water vapor conductance of the Lower Cretaceous dinosaurian eggs from Sanagasta, La Rioja, Argentina: Paleobiological and paleoecological implications for South American faveoloolithid and megaloolithid eggs. Palaios 27, 35–47 (2012).ADS 

    Google Scholar 
    Grellet-Tinner, G. Phylogenetic interpretation of eggs and eggshells: Implications for phylogeny of Palaeognathae. Alcheringa 30, 141–182 (2006).
    Google Scholar 
    Mikhailov, K. E., Bray, E. S. & Hirsch, K. F. Parataxonomy of fossil egg remains (Veterovata): Principles and applications. J. Vertebr. Paleontol. 16, 763–769 (1996).
    Google Scholar 
    Nys, Y., Gautron, J., Garcia-Ruiz, J. M. & Hincke, M. T. Avian eggshell mineralization: Biochemical and functional characterization of matrix proteins. C. R. Palevol 3, 549–562 (2004).
    Google Scholar 
    Fernández, M. S., Passalacqua, K., Arias, J. I. & Arias, J. L. Partial biomimetic reconstitution of avian eggshell formation. J. Struct. Biol. 148, 1–10 (2004).PubMed 

    Google Scholar 
    Arias, J. L. & Fernández, M. S. Biomimetic processes through the study of mineralized shells. Mater. Charact. 50, 189–195 (2003).CAS 

    Google Scholar 
    Arias, J. L., Mann, K., Nys, Y., Garcia Ruiz, J. M. & Fernández, M. S. Eggshell growth and matrix macromolecules. In Handbook of Biomineralization (ed. Baeuerlein, E.) 309–328 (Wiley, 2007).
    Google Scholar 
    Chien, Y.-C., Hincke, M. T., Vali, H. & Mckee, M. D. Ultrastructural matrix–mineral relationships in avian eggshell, and effects of osteopontin on calcite growth in vitro. J. Struct. Biol. 163, 84–99 (2008).CAS 
    PubMed 

    Google Scholar 
    Hincke, M. T. et al. The eggshell: Structure, composition and mineralization. Front. Biosci. 17, 1266–1280 (2012).CAS 

    Google Scholar 
    Stapane, L. et al. Avian eggshell formation reveals a new paradigm for vertebrate mineralization via vesicular amorphous calcium carbonate. J. Biol. Chem. 295, 15853–15869 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Norell, M. A. et al. A theropod dinosaur embryo and the affinities of the Flaming Cliffs dinosaur eggs. Science 266, 779–782 (1994).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Araújo, R. et al. Filling the gaps of dinosaur eggshell phylogeny: Late Jurassic Theropod clutch with embryos from Portugal. Sci. Rep. 3, 1924 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xing, L. et al. An exquisitely preserved in-ovo theropod dinosaur embryo sheds light on avian-like prehatching postures. iScience 103516, 24 (2021).
    Google Scholar 
    Sato, T., Cheng, Y.-N., Wu, X.-C., Zelenitsky, D. K. & Hsiao, Y.-F. A pair of shelled eggs inside a female dinosaur. Science 308, 375 (2005).CAS 
    PubMed 

    Google Scholar 
    Norell, M. A., Clark, J. M. & Chiappe, L. M. A nesting dinosaur. Nature 378, 774–776 (1995).ADS 
    CAS 

    Google Scholar 
    Dong, Z. M. & Currie, P. J. On the discovery of an oviraptorid skeleton on a nest of eggs at Bayan Mandahu, Inner Mongolia, People’s Republic of China. Can. J. Earth Sci. 33, 631–636 (1996).ADS 

    Google Scholar  More

  • in

    Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake

    Zhao, S. et al. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22, 4609 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acosta-Motos, J. R. et al. Plant responses to salt stress: Adaptive mechanisms. Agronomy-Basel 7, 18 (2017).
    Google Scholar 
    Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).CAS 
    PubMed 

    Google Scholar 
    Wu, H. H. Plant salt tolerance and Na+ sensing and transport. Crop J. 6, 215–225 (2018).
    Google Scholar 
    Ali, M. et al. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol. Biochem. 158, 208–218 (2021).CAS 
    PubMed 

    Google Scholar 
    Javaid, T., Farooq, M. A., Akhtar, J., Saqib, Z. A. & Anwar-ul-Haq, M. Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl- and mineral ions. Plant Physiol. Biochem. 141, 291–299 (2019).CAS 
    PubMed 

    Google Scholar 
    Zelm, E. V., Zhang, Y. X. & Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71, 403–433 (2020).PubMed 

    Google Scholar 
    Kumar, P. et al. Potassium: A key modulator for cell homeostasis. J. Biotechnol. 324, 198–210 (2020).CAS 
    PubMed 

    Google Scholar 
    Ahmad, P., Ahanger, M. A., Alam, P., Alyemeni, M. N. & Ashraf, M. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J. Plant Growth Regul. 38, 1–13 (2018).
    Google Scholar 
    Chiappero, J. et al. Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Ind. Crops Prod. 167, 113541 (2021).CAS 

    Google Scholar 
    Conceicao, S. S. et al. Silicon modulates the activity of antioxidant enzymes and nitrogen compounds in sunflower plants under salt stress. Arch. Agron. Soil Sci. 65, 1237–1247 (2019).CAS 

    Google Scholar 
    Etesami, H. & Jeong, B. R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 147, 881–896 (2018).CAS 
    PubMed 

    Google Scholar 
    Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 641–664 (1999).CAS 
    PubMed 

    Google Scholar 
    Epstein, E. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. U S A 91, 11–17 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jadhao, K. R., Bansal, A. & Rout, G. R. Silicon amendment induces synergistic plant defense mechanism against pink stem borer (Sesamia inferens Walker.) in finger millet (Eleusine coracana Gaertn.). Sci. Rep. 10, 15 (2020).
    Google Scholar 
    Li, Z. C. et al. Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agron. Sustain. Dev. 38, 19 (2018).CAS 

    Google Scholar 
    Yan, G. C. et al. Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Front. Plant Sci. 11, 12 (2020).
    Google Scholar 
    Farouk, S., Elhindi, K. M. & Alotaibi, M. A. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol. Environ. Saf. 206, 11 (2020).
    Google Scholar 
    Yin, J. L. et al. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicol. Environ. Saf. 169, 8–17 (2019).CAS 
    PubMed 

    Google Scholar 
    Hurtado, A. C. et al. Different methods of silicon application attenuate salt stress in sorghum and sunflower by modifying the antioxidative defense mechanism. Ecotoxicol. Environ. Saf. 203, 11 (2020).
    Google Scholar 
    Gaur, S. et al. Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicol. Environ. Saf. 202, 12 (2020).
    Google Scholar 
    Vandegeer, R. K. et al. Silicon deposition on guard cells increases stomatal sensitivity as mediated by K(+)efflux and consequently reduces stomatal conductance. Physiol. Plant 171, 358–370 (2021).CAS 
    PubMed 

    Google Scholar 
    Lina, et al. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.. Plant Cell Environ. 39, 245–258 (2016).
    Google Scholar 
    Hassanvand, F., Nejad, A. R. & Fanourakis, D. Morphological and physiological components mediating the silicon-induced enhancement of geranium essential oil yield under saline conditions. Ind. Crops Prod. 134, 19–25 (2019).CAS 

    Google Scholar 
    Altuntas, O., Dasgan, H. Y. & Akhoundnejad, Y. Silicon-induced salinity tolerance improves photosynthesis, leaf water status, membrane stability, and growth in pepper (Capsicum annuum L.). HortScience 53, 1820–1826 (2018).CAS 

    Google Scholar 
    Coskun, D. et al. The controversies of silicon’s role in plant biology. New Phytol. 221, 67–85 (2019).PubMed 

    Google Scholar 
    Jiang, M. Y. et al. An “essential herbal medicine”-licorice: A review of phytochemicals and its effects in combination preparations. J. Ethnopharmacol. 249, 14 (2020).
    Google Scholar 
    Zhang, X. Y. et al. Inhibition effect of glycyrrhiza polysaccharide (GCP) on tumor growth through regulation of the gut microbiota composition. J. Pharmacol. Sci. 137, 324–332 (2018).CAS 
    PubMed 

    Google Scholar 
    Baltina, L. A. et al. Glycyrrhetinic acid derivatives as Zika virus inhibitors: Synthesis and antiviral activity in vitro. Bioorg. Med. Chem. 41, 116204 (2021).CAS 
    PubMed 

    Google Scholar 
    Zhao, Z. Y. et al. Glycyrrhizic ccid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment. ACS Appl. Mater. Interfaces 13, 20995–21006 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu, J. H., Lv, X., Wu, L. & Li, X. Y. Germination responses of three medicinal licorices to saline environments and their suitable ecological regions. Acta Pratacul. Sin. 22, 198–205 (2013).
    Google Scholar 
    Geng, G. Q. & Xie, X. R. Effect of drought and salt stress on the physiological and biochemical characteristics of Glycyrrhiza uralensis. Pratacult. Sci. 35, 113–120 (2018).
    Google Scholar 
    Cui, J. J., Zhang, X. H., Li, Y. T., Zhou, D. & Zhang, E. H. Effect of silicon addition on seedling morphological and physiological indicators of Glycyrrhiza uralensis under salt stress. Acta Pratacul. Sin. 24, 214–220 (2015).
    Google Scholar 
    Zhang, W. J. et al. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis plants by improving photosynthesis and water status. Biol. Plant. 64, 302–313 (2020).CAS 

    Google Scholar 
    Zhang, W. J. et al. Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Prot. 107, 1–11 (2018).
    Google Scholar 
    Chen, D. Q. et al. Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci. Rep. 6, 14 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Cui, J. J., Zhang, E. H., Zhang, X. H. & Wang, Q. Silicon alleviates salinity stress in licorice (Glycyrrhiza uralensis) by regulating carbon and nitrogen metabolism. Sci. Rep. 11, 12 (2021).
    Google Scholar 
    Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis 11, 591–592 (1983).CAS 

    Google Scholar 
    Yan, K., Wu, C. W., Zhang, L. H. & Chen, X. B. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Front. Plant Sci. 6, 9 (2015).
    Google Scholar 
    Li, H. S. Principles and Techniques of Plant Physiological and Biochemical Experiments (Higher Education Press, 2000).
    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 

    Google Scholar 
    Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Ann. Bot. 78, 389–398 (1996).CAS 

    Google Scholar 
    Havir, E. A. & Mchale, N. A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 84, 450–455 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rizwan, M. et al. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ. Sci. Pollut. Res. 22, 15416–15431 (2015).CAS 

    Google Scholar 
    Al-Huqail, A. A., Alqarawi, A. A., Hashem, A., Malik, J. A. & Abd Allah, E. F. Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth. Saudi J. Biol. Sci. 26, 1856–1864 (2019).CAS 
    PubMed 

    Google Scholar 
    Hurtado, A. C. et al. Silicon application induces changes C:N: P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress. Saudi J. Biol. Sci. 27, 3711–3719 (2020).
    Google Scholar 
    Zhang, X. H., Zhang, W. J., Lang, D. Y., Cui, J. J. & Li, Y. T. Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Environ. Sci. Pollut. Res. 25, 25916–25932 (2018).CAS 

    Google Scholar 
    Liang, W. J., Ma, X. L., Wan, P. & Liu, L. Y. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 495, 286–291 (2018).CAS 
    PubMed 

    Google Scholar 
    Tester, M. & Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503–527 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, W. U. D. et al. Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants. Photosynthetica 56, 1047–1057 (2018).CAS 

    Google Scholar 
    Zahoor, R. et al. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ. Exp. Bot. 137, 73–83 (2017).CAS 

    Google Scholar 
    Hurtado, A. C. et al. Silicon alleviates sodium toxicity in sorghum and sunflower plants by enhancing ionic homeostasis in roots and shoots and increasing dry matter accumulation. SILICON 13, 475–486 (2021).CAS 

    Google Scholar 
    Yan, G. C. et al. Silicon alleviates salt stress-induced potassium deficiency by promoting potassium uptake and translocation in rice (Oryza sativa L.). J. Plant Physiol. 258, 7 (2021).
    Google Scholar 
    Dhiman, P. et al. Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiol. Biochem. 162, 110–123 (2021).CAS 
    PubMed 

    Google Scholar 
    Bosnic, P., Bosnic, D., Jasnic, J. & Nikolic, M. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environ. Exp. Bot. 155, 681–687 (2018).CAS 

    Google Scholar 
    Alamri, S. et al. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol. Biochem. 157, 47–59 (2020).CAS 
    PubMed 

    Google Scholar 
    Ahmad, P. et al. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front. Plant Sci. 7, 1–11 (2016).
    Google Scholar 
    Zhu, Y. X. et al. Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol. Biochem. 156, 209–220 (2020).CAS 
    PubMed 

    Google Scholar  More

  • in

    Improving biodiversity protection through artificial intelligence

    A biodiversity simulation frameworkWe have developed a simulation framework modelling biodiversity loss to optimize and validate conservation policies (in this context, decisions about data gathering and area protection across a landscape) using an RL algorithm. We implemented a spatially explicit individual-based simulation to assess future biodiversity changes based on natural processes of mortality, replacement and dispersal. Our framework also incorporates anthropogenic processes such as habitat modifications, selective removal of a species, rapid climate change and existing conservation efforts. The simulation can include thousands of species and millions of individuals and track population sizes and species distributions and how they are affected by anthropogenic activity and climate change (for a detailed description of the model and its parameters see Supplementary Methods and Supplementary Table 1).In our model, anthropogenic disturbance has the effect of altering the natural mortality rates on a species-specific level, which depends on the sensitivity of the species. It also affects the total number of individuals (the carrying capacity) of any species that can inhabit a spatial unit. Because sensitivity to disturbance differs among species, the relative abundance of species in each cell changes after adding disturbance and upon reaching the new equilibrium. The effect of climate change is modelled as locally affecting the mortality of individuals based on species-specific climatic tolerances. As a result, more tolerant or warmer-adapted species will tend to replace sensitive species in a warming environment, thus inducing range shifts, contraction or expansion across species depending on their climatic tolerance and dispersal ability.We use time-forward simulations of biodiversity in time and space, with increasing anthropogenic disturbance through time, to optimize conservation policies and assess their performance. Along with a representation of the natural and anthropogenic evolution of the system, our framework includes an agent (that is, the policy maker) taking two types of actions: (1) monitoring, which provides information about the current state of biodiversity of the system, and (2) protecting, which uses that information to select areas for protection from anthropogenic disturbance. The monitoring policy defines the level of detail and temporal resolution of biodiversity surveys. At a minimal level, these include species lists for each cell, whereas more detailed surveys provide counts of population size for each species. The protection policy is informed by the results of monitoring and selects protected areas in which further anthropogenic disturbance is maintained at an arbitrarily low value (Fig. 1). Because the total number of areas that can be protected is limited by a finite budget, we use an RL algorithm42 to optimize how to perform the protecting actions based on the information provided by monitoring, such that it minimizes species loss or other criteria depending on the policy.We provide a full description of the simulation system in the Supplementary Methods. In the sections below we present the optimization algorithm, describe the experiments carried out to validate our framework and demonstrate its use with an empirical dataset.Conservation planning within a reinforcement learning frameworkIn our model we use RL to optimize a conservation policy under a predefined policy objective (for example, to minimize the loss of biodiversity or maximize the extent of protected area). The CAPTAIN framework includes a space of actions, namely monitoring and protecting, that are optimized to maximize a reward R. The reward defines the optimality criterion of the simulation and can be quantified as the cumulative value of species that do not go extinct throughout the timeframe evaluated in the simulation. If the value is set equal across all species, the RL algorithm will minimize overall species extinctions. However, different definitions of value can be used to minimize loss based on evolutionary distinctiveness of species (for example, minimizing phylogenetic diversity loss), or their ecosystem or economic value. Alternatively, the reward can be set equal to the amount of protected area, in which case the RL algorithm maximizes the number of cells protected from disturbance, regardless of which species occur there. The amount of area that can be protected through the protecting action is determined by a budget Bt and by the cost of protection ({C}_{t}^{c}), which can vary across cells c and through time t.The granularity of monitoring and protecting actions is based on spatial units that may include one or more cells and which we define as the protection units. In our system, protection units are adjacent, non-overlapping areas of equal size (Fig. 1) that can be protected at a cost that cumulates the costs of all cells included in the unit.The monitoring action collects information within each protection unit about the state of the system St, which includes species abundances and geographic distribution:$${S}_{t}={{{{H}}}_{{{t}}},{{{D}}}_{{{t}}},{{{F}}}_{{{t}}},{{{T}}}_{{{t}}},{{{C}}}_{{{t}}},{{{P}}}_{{{t}}},{B}_{t}}$$
    (1)
    where Ht is the matrix with the number of individuals across species and cells, Dt and Ft are matrices describing anthropogenic disturbance on the system, Tt is a matrix quantifying climate, Ct is the cost matrix, Pt is the current protection matrix and Bt is the available budget (for more details see Supplementary Methods and Supplementary Table 1). We define as feature extraction the result of a function X(St), which returns for each protection unit a set of features summarizing the state of the system in the unit. The number and selection of features (Supplementary Methods and Supplementary Table 2) depends on the monitoring policy πX, which is decided a priori in the simulation. A predefined monitoring policy also determines the temporal frequency of this action throughout the simulation, for example, only at the first time step or repeated at each time step. The features extracted for each unit represent the input upon which a protecting action can take place, if the budget allows for it, following a protection policy πY. These features (listed in Supplementary Table 2) include the number of species that are not already protected in other units, the number of rare species and the cost of the unit relative to the remaining budget. Different subsets of these features are used depending on the monitoring policy and on the optimality criterion of the protection policy πY.We do not assume species-specific sensitivities to disturbance (parameters ds, fs in Supplementary Table 1 and Supplementary Methods) to be known features, because a precise estimation of these parameters in an empirical case would require targeted experiments, which we consider unfeasible across a large number of species. Instead, species-specific sensitivities can be learned from the system through the observation of changes in the relative abundances of species (x3 in Supplementary Table 2). The features tested across different policies are specified in the subsection Experiments below and in the Supplementary Methods.The protecting action selects a protection unit and resets the disturbance in the included cells to an arbitrarily low level. A protected unit is also immune from future anthropogenic disturbance increases, but protection does not prevent climate change in the unit. The model can include a buffer area along the perimeter of a protected unit, in which the level of protection is lower than in the centre, to mimic the generally negative edge effects in protected areas (for example, higher vulnerability to extreme weather). Although protecting a disturbed area theoretically allows it to return to its initial biodiversity levels, population growth and species composition of the protected area will still be controlled by the death–replacement–dispersal processes described above, as well as by the state of neighbouring areas. Thus, protecting an area that has already undergone biodiversity loss may not result in the restoration of its original biodiversity levels.The protecting action has a cost determined by the cumulative cost of all cells in the selected protection unit. The cost of protection can be set equal across all cells and constant through time. Alternatively, it can be defined as a function of the current level of anthropogenic disturbance in the cell. The cost of each protecting action is taken from a predetermined finite budget and a unit can be protected only if the remaining budget allows it.Policy definition and optimization algorithmWe frame the optimization problem as a stochastic control problem where the state of the system St evolves through time as described in the section above (see also Supplementary Methods), but it is also influenced by a set of discrete actions determined by the protection policy πY. The protection policy is a probabilistic policy: for a given set of policy parameters and an input state, the policy outputs an array of probabilities associated with all possible protecting actions. While optimizing the model, we extract actions according to the probabilities produced by the policy to make sure that we explore the space of actions. When we run experiments with a fixed policy instead, we choose the action with highest probability. The input state is transformed by the feature extraction function X(St) defined by the monitoring policy, and the features are mapped to a probability through a neural network with the architecture described below.In our simulations, we fix monitoring policy πX, thus predefining the frequency of monitoring (for example, at each time step or only at the first time step) and the amount of information produced by X(St), and we optimize πY, which determines how to best use the available budget to maximize the reward. Each action A has a cost, defined by the function Cost(A, St), which here we set to zero for the monitoring action (X) across all monitoring policies. The cost of the protecting action (Y) is instead set to the cumulative cost of all cells in the selected protection unit. In the simulations presented here, unless otherwise specified, the protection policy can only add one protected unit at each time step, if the budget allows, that is if Cost(Y, St)  More

  • in

    Divergence in life-history traits among three adjoining populations of the sea snake Emydocephalus annulatus (Hydrophiinae, Elapidae)

    Andersson, M. Sexual selection (Princeton University Press, 2019).
    Google Scholar 
    Davy, A. J. & Smith, H. Life-history variation and environment. In Plant Population Ecology (eds Davy, A. J., Hutchings, M. J. & Watkinson, A. R.) 1–22. 28th Symposium of the British Ecological Society, Sussex, 1987 (Blackwell, 1988).Wilson, K. L., De Gisi, J., Cahill, C. L., Barker, O. E. & Post, J. R. Life-history variation along environmental and harvest clines of a northern freshwater fish: plasticity and adaptation. J. Anim. Ecol. 88, 717–733 (2019).PubMed 

    Google Scholar 
    Laiolo, P. & Obeso, J. R. Life-history responses to the altitudinal gradient. In High Mountain Conservation in a Changing World (eds Catalan, J. et al.) 253–283 (Springer, 2017).
    Google Scholar 
    Schwarz, R. & Meiri, S. The fast-slow life-history continuum in insular lizards: a comparison between species with invariant and variable clutch sizes. J. Biogeogr. 44, 2808–2815 (2017).
    Google Scholar 
    Holm, S. et al. Size-related life-history traits in geometrid moths: a comparison of a temperate and a tropical community. Ecol. Entomol. 44, 711–716 (2019).
    Google Scholar 
    Ferguson, G. W. & Fox, S. F. Annual variation of survival advantage of large juvenile side-blotched lizards, Uta stansburiana: Its causes and evolutionary significance. Evolution 38, 342–349 (1984).PubMed 

    Google Scholar 
    Madsen, T., Ujvari, B., Shine, R. & Olsson, M. Rain, rats and pythons: Climate-driven population dynamics of predators and prey in tropical Australia. Austral Ecol. 31, 30–37 (2006).
    Google Scholar 
    Brown, G. P. & Shine, R. Rain, prey and predators: climatically driven shifts in frog abundance modify reproductive allometry in a tropical snake. Oecologia 154, 361–368 (2007).ADS 
    PubMed 

    Google Scholar 
    James, C. & Shine, R. Life-history strategies of Australian lizards: a comparison between the tropics and the temperate zone. Oecologia 75, 307–316 (1988).ADS 
    PubMed 

    Google Scholar 
    Mesquita, D. O. et al. Life-history patterns of lizards of the world. Am. Nat. 187, 689–705 (2016).PubMed 

    Google Scholar 
    Meiri, S. et al. The global diversity and distribution of lizard clutch sizes. Glob. Ecol. Biogeogr. 29, 1515–1530 (2020).
    Google Scholar 
    Andrews, R. M. Growth rate in island and mainland anoline lizards. Copeia 1976, 477–482 (1976).
    Google Scholar 
    Jessop, T. S. et al. Maximum body size among insular Komodo dragon populations covaries with large prey density. Oikos 112, 422–429 (2006).
    Google Scholar 
    Van Buskirk, J. & Crowder, L. B. Life-history variation in marine turtles. Copeia 1994, 66–81 (1994).
    Google Scholar 
    Broderick, A. C., Godley, B. J. & Hays, G. C. Trophic status drives interannual variability in nesting numbers of marine turtles. Proc. R. Soc. B 268, 1481–1487 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Broderick, A. C., Glen, F., Godley, B. J. & Hays, G. C. Variation in reproductive output of marine turtles. J. Exp. Mar. Biol. Ecol. 288, 95–109 (2003).
    Google Scholar 
    Pike, D. A. Climate influences the global distribution of sea turtle nesting. Glob. Ecol. Biogeogr. 22, 555–566 (2013).
    Google Scholar 
    Ujvari, B., Shine, R., Luiselli, L. & Madsen, T. Climate-induced reaction norms for life-history traits in pythons. Ecology 92, 1858–1864 (2011).PubMed 

    Google Scholar 
    Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Life history traits of the sea snake Emydocephalus annulatus, based on a 17-yr study. Coral Reefs 39, 1407–1414 (2020).
    Google Scholar 
    Shine, R., Brown, G. P. & Goiran, C. Population dynamics of the sea snake Emydocephalus annulatus (Elapidae, Hydrophiinae). Sci. Rep. 11, 20701 (2021). ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).ADS 

    Google Scholar 
    Ineich, I. & Laboute, P. Les Serpents Marins de Nouvelle-Calédonie (IRD éditions, 2002).Udyawer, V., Goiran, C. & Shine, R. Peaceful coexistence between people and deadly wildlife: Why are recreational users of the ocean so rarely bitten by sea snakes? People Nat. 3, 335–346 (2021).
    Google Scholar 
    Goiran, C., Brown, G. P. & Shine, R. The behaviour of sea snakes (Emydocephalus annulatus) shifts with the tides. Sci. Rep. 10, 1–8 (2020).
    Google Scholar 
    Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Shine, R., Goiran, C., Shine, T., Fauvel, T. & Brischoux, F. Phenotypic divergence between seasnake (Emydocephalus annulatus) populations from adjacent bays of the New Caledonian lagoon. Biol. J. Linn. Soc. 107, 824–832 (2012).
    Google Scholar 
    Avolio, C., Shine, R. & Pile, A. J. The adaptive significance of sexually dimorphic scale rugosity in sea snakes. Am. Nat. 167, 728–738 (2006).PubMed 

    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
    Google Scholar 
    Russell, B. C., Anderson, G. R. V. & Talbot, F. H. Seasonality and recruitment of coral reef fishes. Mar. Freshw. Res. 28, 521–528 (1977).
    Google Scholar 
    Shine, R., Bonnet, X., Elphick, M. J. & Barrott, E. G. A novel foraging mode in snakes: browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Funct. Ecol. 18, 16–24 (2004).
    Google Scholar 
    Calow, P. Adaptive aspects of energy allocation. In Fish Energetics (eds Tytler, P. & Calow, P.) 13–31 (Springer, 1985).
    Google Scholar 
    Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189 (2002).
    Google Scholar 
    Bronikowski, A. M. Experimental evidence for the adaptive evolution of growth rate in the garter snake Thamnophis elegans. Evolution 54, 1760–1767 (2000).CAS 
    PubMed 

    Google Scholar 
    Cook, T. R., Bonnet, X., Fauvel, T., Shine, R. & Brischoux, F. Foraging behaviour and energy budgets of sea snakes from New Caledonia: Insights from implanted data-loggers. J. Zool. 298, 82–93 (2016).
    Google Scholar 
    Bonnet, X., Brischoux, F., Briand, M. & Shine, R. Plasticity matches phenotype to local conditions despite genetic homogeneity across 13 snake populations. Proc. R. Soc. B 288, 20202916 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Lukoschek, V., Waycott, M. & Marsh, H. Phylogeography of the olive sea snake, Aipysurus laevis (Hydrophiinae) indicates Pleistocene range expansion around northern Australia but low contemporary gene flow. Mol. Ecol. 16, 3406–3422 (2007).CAS 
    PubMed 

    Google Scholar 
    Nitschke, C. R., Hourston, M., Udyawer, V. & Sanders, K. L. Rates of population differentiation and speciation are decoupled in sea snakes. Biol. Lett. 14, 20180563 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Heatwole, H., Grech, A., Monahan, J. F., King, S. & Marsh, H. Thermal biology of sea snakes and sea kraits. Integr. Comp. Biol. 52, 257–273 (2012).PubMed 

    Google Scholar 
    Brischoux, F., Rolland, V., Bonnet, X., Caillaud, M. & Shine, R. Effects of oceanic salinity on body condition in sea snakes. Integr. Comp. Biol. 52, 235–244 (2012).PubMed 

    Google Scholar 
    Bonnet, X. et al. Spatial variation in age structure among populations of a colonial marine snake: the influence of ectothermy. J. Anim. Ecol. 84, 925–933 (2015).PubMed 

    Google Scholar 
    Heatwole, H. Sea Snakes 2nd edn. (Krieger Publishing, 1999).
    Google Scholar 
    Blouin-Demers, G. & Weatherhead, P. J. Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology 82, 3025–3043 (2001).
    Google Scholar 
    Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of sea snakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).
    Google Scholar 
    Lowe, J. R. et al. Regional versus latitudinal variation in the life-history traits and demographic rates of a reef fish, Centropyge bispinosa, in the Coral Sea and Great Barrier Reef Marine Parks, Australia. J. Fish Biol. 99, 1602–1612. https://doi.org/10.1111/jfb.14865 (2021).PubMed 

    Google Scholar 
    Gust, N., Choat, J. & Ackerman, J. Demographic plasticity in tropical reef fishes. Mar. Biol. 140, 1039–1051 (2002).
    Google Scholar 
    Kingsford, M. J., Welch, D. & O’Callaghan, M. Latitudinal and cross-shelf patterns of size, age, growth, and mortality of a tropical damselfish Acanthochromis polyacanthus on the Great Barrier Reef. Diversity 11, 67 (2019).
    Google Scholar  More

  • in

    Aggressiveness, ADHD-like behaviour, and environment influence repetitive behaviour in dogs

    Mason, G. J. Stereotypies: A critical review. Anim. Behav. 41, 1015–1037 (1991).
    Google Scholar 
    Cussen, V. A. & Mench, J. A. The relationship between personality dimensions and resiliency to environmental stress in orange-winged Amazon parrots (Amazona amazonica), as indicated by the development of abnormal behaviors. PLoS ONE 10, 1–11 (2015).
    Google Scholar 
    Clubb, R. & Mason, G. Captivity effects on wide-ranging carnivores. Nature 425, 473–474 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shepherdson, D., Lewis, K. D., Carlstead, K., Bauman, J. & Perrin, N. Individual and environmental factors associated with stereotypic behavior and fecal glucocorticoid metabolite levels in zoo housed polar bears. Appl. Anim. Behav. Sci. 147, 268–277 (2013).
    Google Scholar 
    Miller, L. J., Bettinger, T. & Mellen, J. The reduction of stereotypic pacing in tigers (Panthera tigris) by obstructing the view of neighbouring individuals. Anim. Welf. 17, 255–258 (2008).CAS 

    Google Scholar 
    Bachmann, I., Bernasconi, P., Herrmann, R., Weishaupt, M. A. & Stauffacher, M. Behavioural and physiological responses to an acute stressor in crib-biting and control horses. Appl. Anim. Behav. Sci. 82, 297–311 (2003).
    Google Scholar 
    Ahola, M. K., Vapalahti, K. & Lohi, H. Early weaning increases aggression and stereotypic behaviour in cats. Sci. Rep. 7, 10412 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salonen, M. et al. Prevalence, comorbidity, and breed differences in canine anxiety in 13,700 Finnish pet dogs. Sci. Rep. 10, 2962 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garner, J. P. Stereotypies and other abnormal repetitive behaviors: Potential impact on validity, reliability, and replicability of scientific outcomes. ILAR J. 46, 106–117 (2005).CAS 
    PubMed 

    Google Scholar 
    Tynes, V. V. & Sinn, L. Abnormal repetitive behaviors in dogs and cats. A guide for practitioners. Vet. Clin. North Am. Small Anim. Pract. 44, 543–564 (2014).PubMed 

    Google Scholar 
    Luescher, A. U. Diagnosis and management of compulsive disorders in dogs and cats. Vet. Clin. North Am. Small Anim. Pract. 33, 253–267 (2003).PubMed 

    Google Scholar 
    Mason, G., Clubb, R., Latham, N. & Vickery, S. Why and how should we use environmental enrichment to tackle stereotypic behaviour?. Appl. Anim. Behav. Sci. 102, 163–188 (2007).
    Google Scholar 
    Overall, K. L. & Dunham, A. E. Clinical features and outcome in dogs and cats with obsessive-compulsive disorder: 126 Cases (1989–2000). J. Am. Vet. Med. Assoc. 221, 1445–1452 (2002).PubMed 

    Google Scholar 
    Tiira, K. et al. Environmental effects on compulsive tail chasing in dogs. PLoS One 7, e41684 (2012).Mason, G. & Rushen, J. Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare 2nd edn. (CABI Publishing, 2006).
    Google Scholar 
    Moon-Fanelli, A. A., Dodman, N. H., Famula, T. R. & Cottam, N. Characteristics of compulsive tail chasing and associated risk factors in Bull Terriers. J. Am. Vet. Med. Assoc. 238, 883–889 (2011).PubMed 

    Google Scholar 
    Hewson, C. J., Luescher, U. A. & Ball, R. O. Measuring change in the behavioural severity of canine compulsive disorder: The construct validity of categories of change derived from two rating scales. Appl. Anim. Behav. Sci. 60, 55–68 (1998).
    Google Scholar 
    Vandeleest, J. J., McCowan, B. & Capitanio, J. P. Early rearing interacts with temperament and housing to influence the risk for motor stereotypy in rhesus monkeys (Macaca mulatta). Appl. Anim. Behav. Sci. 132, 81–89 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Tang, R. et al. Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biol. 15, 25 (2014).
    Google Scholar 
    Dodman, N. H. et al. A canine chromosome 7 locus confers compulsive disorder susceptibility. Mol. Psychiatry 15, 8–10 (2010).CAS 
    PubMed 

    Google Scholar 
    Jeppesen, L. L., Heller, K. E. & Bildsøe, M. Stereotypies in female farm mink (Mustela vison) may be genetically transmitted and associated with higher fertility due to effects on body weight. Appl. Anim. Behav. Sci. 86, 137–143 (2004).
    Google Scholar 
    Noh, H. J. et al. Integrating evolutionary and regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder. Nat. Commun. 8, 1–13 (2017).CAS 

    Google Scholar 
    Koran, L. M. Quality of life in obsessive-compulsive disorder. Psychiatr. Clin. North Am. 23, 509–517 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Murray, C. J. & Lopez, A. D. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020 (Harvard School of Public Health, 1996).
    Google Scholar 
    Calzà, J. et al. Altered cortico-striatal functional connectivity during resting state in obsessive-compulsive disorder. Front. Psychiatry 10, 319 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Brem, S., Grünblatt, E., Drechsler, R., Riederer, P. & Walitza, S. The neurobiological link between OCD and ADHD. ADHD Atten. Deficit Hyperact. Disord. 6, 175–202 (2014).
    Google Scholar 
    Stein, D. J., Dodman, N. H., Borchelt, P. & Hollander, E. Behavioral disorders in veterinary practice: Relevance to psychiatry. Compr. Psychiatry 35, 275–285 (1994).CAS 
    PubMed 

    Google Scholar 
    Overall, K. L. Natural animal models of human psychiatric conditions: Assessment of mechanism and validity. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 24, 727–776 (2000).CAS 

    Google Scholar 
    Flament, M. F. et al. Obsessive compulsive disorder in adolescence: An epidemiological study. J. Am. Acad. Child Adolesc. Psychiatry 27, 764–771 (1988).CAS 
    PubMed 

    Google Scholar 
    Nestadt, G. et al. A family study of obsessive-compulsive disorder. Arch. Gen. Psychiatry 57, 358–363 (2000).CAS 
    PubMed 

    Google Scholar 
    Protopopova, A., Hall, N. J. & Wynne, C. D. L. Association between increased behavioral persistence and stereotypy in the pet dog. Behav. Processes 106, 77–81 (2014).PubMed 

    Google Scholar 
    Valerius, G., Lumpp, A., Kuelz, A. K., Freyer, T. & Voderholzer, U. Reversal learning as a neuropsychological indicator for the neuropathology of obsessive compulsive disorder? A behavioral study. J. Neuropsychiatry Clin. Neurosci. 20, 210–218 (2008).PubMed 

    Google Scholar 
    Snyder, H. R., Kaiser, R. H., Warren, S. L. & Heller, W. Obsessive-compulsive disorder is associated with broad impairments in executive function: A meta-analysis. Clin. Psychol. Sci. 3, 301–330 (2015).PubMed 

    Google Scholar 
    Ogata, N. et al. Brain structural abnormalities in Doberman pinschers with canine compulsive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 45, 1–6 (2013).
    Google Scholar 
    Norman, L. J. et al. Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: A comparative meta-analysis. JAMA Psychiat. 73, 815–825 (2016).
    Google Scholar 
    Yalcin, E., Ilcol, Y. O. & Batmaz, H. Serum lipid concentrations in dogs with tail chasing. J. Small Anim. Pract. 50, 133–135 (2009).CAS 
    PubMed 

    Google Scholar 
    Vermeire, S. et al. Serotonin 2A receptor, serotonin transporter and dopamine transporter alterations in dogs with compulsive behaviour as a promising model for human obsessive-compulsive disorder. Psychiatry Res. 201, 78–87 (2012).CAS 
    PubMed 

    Google Scholar 
    Moon-Fanelli, A. A. & Dodman, N. H. Description and development of compulsive tail chasing in terriers and response to clomipramine treatment. J. Am. Vet. Med. Assoc. 212, 1252–1257 (1998).CAS 
    PubMed 

    Google Scholar 
    Irimajiri, M. et al. Randomized, controlled clinical trial of the efficacy of fluoxetine for treatment of compulsive disorders in dogs. J. Am. Vet. Med. Assoc. 235, 705–709 (2009).CAS 
    PubMed 

    Google Scholar 
    Walsh, B. R. A critical review of the evidence for the equivalence of canine and human compulsions. Appl. Anim. Behav. Sci. 234, 105166 (2021).
    Google Scholar 
    Wright, H. F., Mills, D. S. & Pollux, P. M. J. Development and validation of a psychometric tool for assessing impulsivity in the domestic dog (Canis familiaris). Int. J. Comp. Psychol. 24, 210–225 (2011).
    Google Scholar 
    Dinwoodie, I. R., Dwyer, B., Zottola, V., Gleason, D. & Dodman, N. H. Demographics and comorbidity of behavior problems in dogs. J. Vet. Behav. 32, 62–71 (2019).
    Google Scholar 
    Sulkama, S. et al. Canine hyperactivity, impulsivity, and inattention share similar demographic risk factors and behavioural comorbidities with human ADHD. Transl. Psychiatry 11, 501 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Kooij, J. J. S. et al. Updated European Consensus Statement on diagnosis and treatment of adult ADHD. Eur. Psychiatry 56, 14–34 (2019).CAS 
    PubMed 

    Google Scholar 
    Nakao, T., Okada, K. & Kanba, S. Neurobiological model of obsessive-compulsive disorder: Evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin. Neurosci. 68, 587–605 (2014).PubMed 

    Google Scholar 
    Milad, M. R. & Rauch, S. L. Obsessive-compulsive disorder: Beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 16, 43–51 (2012).PubMed 

    Google Scholar 
    Hollander, E. Managing aggressive behavior in patients with obsessive-compulsive disorder and borderline personality disorder. J. Clin. Psychiatry 60, 38–44 (1999).PubMed 

    Google Scholar 
    Marsden, M. D. & Wood-Gush, D. G. M. The use of space by group-housed sheep. Appl. Anim. Behav. Sci. 15, 178 (1986).
    Google Scholar 
    Burn, C. C. A vicious cycle: A cross-sectional study of canine tail-chasing and human responses to it, using a free video-sharing website. PLoS ONE 6, e26553 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stubbs, B. et al. An examination of the anxiolytic effects of exercise for people with anxiety and stress-related disorders: A meta-analysis. Psychiatry Res. 249, 102–108 (2017).PubMed 

    Google Scholar 
    Schneider, B. M., Dodman, N. H. & Maranda, L. Use of memantine in treatment of canine compulsive disorders. J. Vet. Behav. Clin. Appl. Res. 4, 118–126 (2009).
    Google Scholar 
    Mihevc, S. P. & Majdic, G. Canine cognitive dysfunction and Alzheimer’s disease-two facets of the same disease?. Front. Neurosci. 13, 604 (2019).
    Google Scholar 
    Delorme, R. et al. Admixture analysis of age at onset in obsessive-compulsive disorder. Psychol. Med. 35, 237–243 (2005).PubMed 

    Google Scholar 
    Flaisher-Grinberg, S. et al. Ovarian hormones modulate ‘compulsive’ lever-pressing in female rats. Horm. Behav. 55, 356–365 (2009).CAS 
    PubMed 

    Google Scholar 
    Fernández-Guasti, A., Agrati, D., Reyes, R. & Ferreira, A. Ovarian steroids counteract serotonergic drugs actions in an animal model of obsessive-compulsive disorder. Psychoneuroendocrinology 31, 924–934 (2006).PubMed 

    Google Scholar 
    Col, R., Day, C. & Phillips, C. J. C. An epidemiological analysis of dog behavior problems presented to an Australian behavior clinic, with associated risk factors. J. Vet. Behav. Clin. Appl. Res. 15, 1–11 (2016).
    Google Scholar 
    Rusbridge, C. Neurological diseases of the Cavalier King Charles spaniel. J. Small Anim. Pract. 46, 265–272 (2005).CAS 
    PubMed 

    Google Scholar 
    Wrzosek, M., Płonek, M., Nicpoń, J., Cizinauskas, S. & Pakozdy, A. Retrospective multicenter evaluation of the ‘fly-catching syndrome’ in 24 dogs: EEG, BAER, MRI, CSF findings and response to antiepileptic and antidepressant treatment. Epilepsy Behav. 53, 184–189 (2015).PubMed 

    Google Scholar 
    Cao, X. et al. Balancing selection on CDH2 may be related to the behavioral features of the Belgian malinois. PLoS ONE 9, e110075 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moon-Fanelli, A. A., Dodman, N. H. & Cottam, N. Blanket and flank sucking in Doberman Pinschers. J. Am. Vet. Med. Assoc. 231, 907–912 (2007).PubMed 

    Google Scholar 
    Tiira, K. & Lohi, H. Reliability and validity of a questionnaire survey in canine anxiety research. Appl. Anim. Behav. Sci. 155, 82–92 (2014).
    Google Scholar 
    Puurunen, J. et al. Inadequate socialisation, inactivity, and urban living environment are associated with social fearfulness in pet dogs. Sci. Rep. 10, 3527 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hakanen, E. et al. Active and social life is associated with lower non-social fearfulness in pet dogs. Sci. Rep. 10, 1–13 (2020).
    Google Scholar 
    Mikkola, S. et al. Aggressive behaviour is affected by demographic, environmental and behavioural factors in purebred dogs. Sci. Rep. 11, 9433 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hejjas, K. et al. Association of polymorphisms in the dopamine D4 receptor gene and the activity-impulsivity endophenotype in dogs. Anim. Genet. 38, 629–633 (2007).CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2019).Hastie, T. gam: Generalized Additive Models. (2018).Robinson, D. & Hayes, A. broom: Convert Statistical Analysis Objects into Tidy Tibbles. https://cran.r-project.org/package=broom (2018).Wickham, H., François, R., Lionel, H. & Müller, K. dplyr: A Grammar of Data Manipulation. https://cran.r-project.org/package=dplyr (2019).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications, 2011).
    Google Scholar 
    Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
    Google Scholar 
    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. https://cran.r-project.org/package=emmeans (2019).Fox, J. Effect Displays in R for Generalised Linear Models. J. Stat. Softw. 8, 1–27 (2003).
    Google Scholar 
    Goto, A., Arata, S., Kiyokawa, Y., Takeuchi, Y. & Mori, Y. Risk factors for canine tail chasing behaviour in Japan. Vet. J. 192, 445–448 (2012).PubMed 

    Google Scholar  More

  • in

    Electromagnetic sensing and infiltration measurements to evaluate turfgrass salinity and reclamation

    Corwin, D. L. & Lesch, S. M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 46, 11–43 (2005).
    Google Scholar 
    Akramkhanov, A., Lamers, J. P. A. & Martius, C. Conversion factors to estimate soil salinity based on electrical conductivity for soils in Khorezm region, Uzbekistan. In Sustainable Management of Saline Waters and Salt-Affected Soils for Agriculture (ed. Qadir, S. et al.) 19–25 (Syria, 2009).Boettinger, J. L., Doolittle, J. A., West, N. E., Bork, E. W. & Schupp, E. W. Nondestructive assessment of rangeland soil depth to petrocalcic horizon using electromagnetic induction. Arid. Land Res. Manag. 11, 372–390 (1997).
    Google Scholar 
    Herrero, J., Ba, A. A. & Aragues, R. Soil salinity and its distribution determined by soil sampling and electromagnetic techniques. Soil Use Manag. 19, 119–126 (2003).
    Google Scholar 
    Corwin, D. L. Past, present, and future trends in soil electrical conductivity measurements using geophysical methods. In Handbook of Agricultural Geophysics (eds. Allred, B. J., Daniels, J. J. & Ehsani, M. R.) 17–44 (Boca Raton, 2008).Triantafillou, J., Lesch, S. M., La Lau, K. & Buchanan, S. M. Field level digital mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model. Aust. J. Soil Res. 47, 651–663 (2009).
    Google Scholar 
    Lardo, E., Arous, A., Palese, A. M., Nuzzo, V. & Celano, G. Electromagnetic induction: A support tool for the evaluation of soil CO2 emissions and soil organic carbon content in olive orchards under semi-arid conditions. Geoderma 264, 188–194 (2016).ADS 
    CAS 

    Google Scholar 
    Yao, R. J. et al. Geostatistical monitoring of soil salinity for precision management using proximally sensed electromagnetic induction (EMI) method. Environ. Earth Sci. 75(20), 1362. https://doi.org/10.1007/s12665-016-6179-z (2016).CAS 

    Google Scholar 
    Corwin, D. L. & Lesch, S. M. Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling. J. Environ. Eng. Geophys. 18(1), 1–25 (2013).
    Google Scholar 
    Heil, K. & Schmidhalter, U. The application of EM38: Determination of soil parameters, selection of soil sampling points and use in agriculture and archaeology. Sensors. 17, 2540 (2017).ADS 
    PubMed Central 

    Google Scholar 
    Rhoades, J. D., Corwin, D. L. & Lesch, S. M. Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation. In Assessment of Non-point Source Pollution in the Vadose Zone (eds. Corwin, D. L., Loague, K. & Ellsworth, T. R.) 197–215 (Geophysical Monogram, 1999).Sadler, E. J., Camp, C. R. & Evans, R. G. New and future technology. In Irrigation of Agricultural Crops (eds. Steward, B. A. & Nelson, D. R.) 609–626 (Agronomy Monograph, 2007).Carrow, R. N., Krum, J. M., Flitcroft, I. & Cline, V. Precision turfgrass management: Challenges and field application for mapping turfgrass soil and stress. Precis. Agric. 11, 115–134 (2010).
    Google Scholar 
    Devitt, D. A., Lockett, M. & Bird, B. M. Spatial and temporal distribution of salts on fairways and greens irrigated with reuse water. Agronomy 99, 692–700 (2007).
    Google Scholar 
    Corwin D.L., Lesch S.M. & Lobell D.B. Laboratory and field measurements. In Agricultural Salinity Assessment and Management (eds. Wallender, W. W. & Tanji, K. K.) (2012).Lesch, S. M., Rhoades, J. D., Corwin, D. L., Robinson, D. A. & Suárez, D. L. ESAP-RSSD version 2.30R. User manual and tutorial guide. Res. Report 148 in USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2002).Lesch, S. M., Rhoades, J. D., Corwin, D. L., Robinson, D. A. & Suárez, D. L. ESAP-SaltMapper version 2.30R. User manual and tutorial guide. Res. Report 149 USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2002).Lesch, S. M., Rhoades, J. D. & Corwin, D. L. ESAP-95 Version 2.01R: User manual and tutorial guide. Res. Rep. 146. USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2000).Lesch, S. M., Strauss, D. J. & Rhoades, J. D. Spatial prediction of soil salinity using electromagnetic induction techniques: 1. Statistical prediction models: A comparison of multiple linear regression and cokriging. Water Resour. Res. 31, 373–386 (1995).ADS 

    Google Scholar 
    Amezketa, E. Soil salinity assessment using directed soil sampling from a geophysical survey with electromagnetic technology: A case study. Span. J. Agric. Res. 5(1), 91–101 (2007).
    Google Scholar 
    Grieve C. M., Grattan, S. R. & Mass, E. V. Plant salt tolerance. In Agricultural Salinity Assessment and Management (eds. Walender W. W. & Tanji K.K.) (ASCE, 2012).Shahba, M. Interaction effects of salinity and mowing on performance and physiology of bermudagrass cultivars. Crop Sci. 50, 2620–2631 (2010).
    Google Scholar 
    Marcum, K. B. & Pessarakli, M. Salinity tolerance and salt gland excretion efficiency of bermudagrass turf cultivars. Crop Sci. 46, 2571–2574 (2006).
    Google Scholar 
    Xiang, M., Moss, J. Q., Martin, D. L., Su, K. & Dunn, B. L. Evaluating the salinity tolerance of clonal-type bermudagrass cultivars and an experimental selection. Hortic. Sci. 51(1), 185–191 (2017).
    Google Scholar 
    Ganjegunte, G. K. et al. Soil salinity of an urban park after long term irrigation with saline ground water. Agronomy 109, 3011–3018 (2017).CAS 

    Google Scholar 
    Keren, R. & Miyamoto, S. Reclamation of saline, sodic and boron affected soils. In Agricultural Salinity Assessment and Management (eds. Walender W. W. & Tanji K. K.) (ASCE, 2012).Thomas, G. W. & Phillips, R. E. Consequences of water-movement in macropores. J. Environ. Qual. 8, 149–152 (1979).
    Google Scholar 
    White, R. E. The influence of macropores on the transport of dissolved and suspended matter through soil. In Advances in Soil Science (ed. Stewart, B. A.) 95–120 (Springer, 1985).Workman, S. & Skaggs, R. PREFLO: A water management model capable of simulating preferential flow. Trans. ASAE. 33, 1939–1948 (1990).
    Google Scholar 
    Huang, B., Duncan, R. R. & Carrow, R. N. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: II. Root aspects. Crop Sci. 7(6), 863–1869 (1997).
    Google Scholar 
    Liu, X. H. & Huang, B. R. Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism. Crop Sci. 42, 466–472 (2002).CAS 

    Google Scholar  More

  • in

    Integrating remote sensing with ecology and evolution to advance biodiversity conservation

    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).PubMed 

    Google Scholar 
    Soto-Navarro, C. A. et al. Towards a multidimensional biodiversity index for national application. Nat. Sustain. 4, 933–942 (2021).Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).PubMed 

    Google Scholar 
    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Girardello, M. et al. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep. 9, 5636 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS 
    PubMed 

    Google Scholar 
    Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).
    Google Scholar 
    Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv. 2, 132–140 (2016).
    Google Scholar 
    O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015).
    Google Scholar 
    Skidmore, A. K. et al. Environmental science: agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).CAS 
    PubMed 

    Google Scholar 
    Reddy, C. S. et al. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: technological advancement and potentials. Biodivers. Conserv. 30, 1–14 (2021).
    Google Scholar 
    Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017).
    Google Scholar 
    Luque, S., Pettorelli, N., Vihervaara, P. & Wegmann, M. Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets. Methods Ecol. Evol. 9, 1784–1786 (2018).
    Google Scholar 
    Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3, 401–411 (1994).CAS 

    Google Scholar 
    Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19, 497–503 (2004).PubMed 

    Google Scholar 
    Czyż, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol. 10, 7419–7430 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Guillén-Escribà, C. et al. Remotely sensed between-individual functional trait variation in a temperate forest. Ecol. Evol. 11, 10834–10867 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 

    Google Scholar 
    Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol. 195, 752–765 (2012).PubMed 

    Google Scholar 
    Wang, Z. et al. Foliar functional traits from imaging spectroscopy across biomes in the eastern North America. New Phytol. 228, 494–511 (2020).PubMed 

    Google Scholar 
    Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908–1920 (2008).CAS 
    PubMed 

    Google Scholar 
    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).
    Google Scholar 
    Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA 117, 33317–33324 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).PubMed 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integr. Zool. 13, 355–371 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, C. R. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171, 726–742 (2008).PubMed 

    Google Scholar 
    Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).PubMed 

    Google Scholar 
    Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl Acad. Sci. USA 103, 632–636 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Google Scholar 
    Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ. 19, 30–38 (2021).
    Google Scholar 
    Cavender-Bares, J. et al. BII-Implementation: the causes and consequences of plant biodiversity across scales in a rapidly changing world. Res. Ideas Outcomes 7, e63850 (2021).
    Google Scholar 
    Hwang, D. et al. A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA 102, 17296–17301 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Malley, M. A. & Soyer, O. S. The roles of integration in molecular systems biology. Stud. Hist. Philos. Sci. C 43, 58–68 (2012).
    Google Scholar 
    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).von Humboldt, A. & Bonpland, A. Essai sur la Géographie des Plantes, Accompagné d’un Tableau Physique des Régions Equinoxiales (Levrault & Schoell, 1807).Darwin, C. On the Origin of Species by Means of Natural Selection 6th edn (with corrections and additions to 1872) (John Murray, 1888).Braun, E. L. Deciduous Forests of Eastern North America (Hafner Publishing Company, 1967).Slik, J. W. F. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA 115, 1837 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).PubMed 

    Google Scholar 
    Cavender-Bares, J., Ackerly, D., Hobbie, S. & Townsend, P. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst. 47, 433–462 (2016).
    Google Scholar 
    Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A. & Jordan, G. J. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).CAS 
    PubMed 

    Google Scholar 
    Forrestel, E. J., Donoghue, M. J. & Smith, M. D. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytol. 203, 1000–1011 (2014).PubMed 

    Google Scholar 
    Auler, A. S. & Smart, P. L. Late quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat. Res. 55, 159–167 (2001).CAS 

    Google Scholar 
    Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013).PubMed 

    Google Scholar 
    Ledru, M.-P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 239–257 (1996).
    Google Scholar 
    Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–375 (2005).CAS 
    PubMed 

    Google Scholar 
    Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).CAS 
    PubMed 

    Google Scholar 
    Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).
    Google Scholar 
    Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E. & Wessman, C. A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 113, S78–S91 (2009).
    Google Scholar 
    Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37, 711–719 (2014).
    Google Scholar 
    Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789 (2009).CAS 
    PubMed 

    Google Scholar 
    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carnaval, A. C. et al. Prediction of phylogeographic endemism in an environmentally complex biome. Proc. R. Soc. B 281, 20141461 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Forest, F., Crandall, K. A., Chase, M. W. & Faith, D. P. Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos. Trans. R. Soc. Lond. B 370, 20140002 (2015).
    Google Scholar 
    Faith, D. P. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos. Trans. R. Soc. Lond. B 370, 20140011 (2015).
    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
    Google Scholar 
    Lavorel, S. et al. Assessing functional diversity in the field—methodology matters! Funct. Ecol. 22, 134–147 (2008).
    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).
    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 

    Google Scholar 
    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dahlin, K. M., Asner, G. P. & Field, C. B. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc. Natl Acad. Sci. USA 110, 6895–6900 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).PubMed 

    Google Scholar 
    Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ 4, e2615v2612 (2016).
    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 

    Google Scholar 
    Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158, 15–27 (2015).
    Google Scholar 
    Fajardo, A. & Siefert, A. Phenological variation of leaf functional traits within species. Oecologia 180, 951–959 (2016).PubMed 

    Google Scholar 
    Townsend, P. A., Foster, J. R., Chastain, R. A. Jr. & Currie, W. S. Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. Geosci. Remote Sens. IEEE Trans. 41, 1347–1354 (2003).
    Google Scholar 
    Féret, J. B., Gitelson, A. A., Noble, S. D. & Jacquemoud, S. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193, 204–215 (2017).
    Google Scholar 
    Berger, K. et al. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 92, 102174 (2020).
    Google Scholar 
    Jacquemoud, S. & Ustin, S. Leaf Optical Properties (Cambridge Univ. Press, 2019).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/zenodo.3261807 (2016).Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20 (2010).
    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).CAS 
    PubMed 

    Google Scholar 
    Peterson, G., Allen, C. & Holling, C. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).
    Google Scholar 
    MacDougall, A. S., McCann, K. S., Gellner, G. & Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494, 86–89 (2013).CAS 
    PubMed 

    Google Scholar 
    Duncan, B. N. et al. Space‐based observations for understanding changes in the Arctic‐Boreal Zone. Rev. Geophys. 58, e2019RG000652 (2020).
    Google Scholar 
    Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A. & Tesler, N. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. CATENA 71, 76–83 (2007).
    Google Scholar 
    Meng, Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 57, 101064 (2020).
    Google Scholar 
    Wilson, A. M., Latimer, A. M. & Silander, J. A. Climatic controls on ecosystem resilience: postfire regeneration in the Cape Floristic Region of South Africa. Proc. Natl Acad. Sci. USA 112, 9058 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, Z. et al. Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes. J. Hydrol. 543, 818–831 (2016).Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol. 53, 625–635 (2016).
    Google Scholar 
    Lausch, A. et al. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 9, 1799–1809 (2018).
    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    PubMed 

    Google Scholar 
    Faruk, A., Belabut, D., Ahmad, N., Knell, R. J. & Garner, T. W. J. Effects of oil-palm plantations on diversity of tropical anurans. Conserv. Biol. 27, 615–624 (2013).PubMed 

    Google Scholar 
    Yue, S., Brodie, J. F., Zipkin, E. F. & Bernard, H. Oil palm plantations fail to support mammal diversity. Ecol. Appl. 25, 2285–2292 (2015).PubMed 

    Google Scholar 
    Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. Camb. Philos. Soc. 92, 1539–1569 (2017).PubMed 

    Google Scholar 
    Slingsby, J. A., Moncrieff, G. R. & Wilson, A. M. Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics. ISPRS J. Photogramm. Remote Sens. 166, 15–25 (2020).
    Google Scholar 
    Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol. 22, 1421–1432 (2016).
    Google Scholar 
    van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 

    Google Scholar 
    Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).PubMed 

    Google Scholar 
    Schweiger, A. K. et al. Coupling spectral and resource-use complementarity in experimental grassland and forest communities. Proc. R. Soc. B 288, 20211290 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).PubMed 

    Google Scholar 
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).CAS 
    PubMed 

    Google Scholar 
    Isbell, F., Tilman, D., Reich, P. B. & Clark, A. T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol. 3, 1533–1538 (2019).PubMed 

    Google Scholar 
    Walters, M. & Scholes, R. The GEO Handbook on Biodiversity Observation Networks (Springer, 2017).Kühl, H. S. et al. Effective biodiversity monitoring needs a culture of integration. One Earth 3, 462–474 (2020).
    Google Scholar 
    Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395–408 (2015).
    Google Scholar 
    Thompson, B. K., Olden, J. D. & Converse, S. J. Mechanistic invasive species management models and their application in conservation. Conserv. Sci. Pract. 3, e533 (2021).
    Google Scholar 
    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).CAS 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52–64 (2016).
    Google Scholar 
    Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Change Biol. 27, 136–150 (2021).
    Google Scholar 
    Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273–284 (2021).PubMed 

    Google Scholar 
    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Ann. Rev. Environ. Res. 39, 125–159 (2014).Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).CAS 

    Google Scholar 
    Verburg, P. H., Erb, K.-H., Mertz, O. & Espindola, G. Land system science: between global challenges and local realities. Curr. Opin. Environ. Sustain. 5, 433–437 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).
    Google Scholar 
    Burke, M., Driscoll, A., Lobell, D. B. & Ermon, S. Using satellite imagery to understand and promote sustainable development. Science 371, eabe8628 (2021).CAS 
    PubMed 

    Google Scholar 
    Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).Trounstine, J. The geography of inequality: how land use regulation produces segregation. Am. Political Sci. Rev. 114, 443–455 (2020).
    Google Scholar 
    Su, S., Pi, J., Xie, H., Cai, Z. & Weng, M. Community deprivation, walkability, and public health: highlighting the social inequalities in land use planning for health promotion. Land Use Policy 67, 315–326 (2017).
    Google Scholar 
    Coomes, O. T., Takasaki, Y. & Rhemtulla, J. M. Forests as landscapes of social inequality tropical forest cover and land distribution among shifting cultivators. Ecol. Soc. 21, 20 (2016).Watmough, G. R. et al. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl Acad. Sci. USA 116, 1213 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verburg, P. H. et al. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).
    Google Scholar 
    Bickenbach, F., Bode, E., Nunnenkamp, P. & Söder, M. Night lights and regional GDP. Rev. World Econ. 152, 425–447 (2016).
    Google Scholar 
    Mayer, A. et al. Applying the human appropriation of net primary production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosyst. Serv. 51, 101344 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. Urban Green Space Analysis on UBC Vancouver Campus: Integrating Virtual Gaming Technology to Map Cultural Use and Biodiversity Value of Urban Green Space (Univ. British Columbia, 2021).Ghaffarian, S., Roy, D., Filatova, T. & Kerle, N. Agent-based modelling of post-disaster recovery with remote sensing data. Int. J. Disaster Risk Reduct. 60, 102285 (2021).
    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed 

    Google Scholar 
    Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).
    Google Scholar 
    Mirza, M. U., Xu, C., Bavel, B. V., van Nes, E. H. & Scheffer, M. Global inequality remotely sensed. Proc. Natl Acad. Sci. USA 118, e1919913118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kavvada, A. et al. Towards delivering on the Sustainable Development Goals using Earth observations. Remote Sens. Environ. 247, 111930 (2020).
    Google Scholar 
    Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).
    Google Scholar 
    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 992 (2009).
    Google Scholar 
    Madritch, M. D. et al. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philos. Trans. R. Soc. B 369, 20130194 (2014).
    Google Scholar 
    Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).PubMed 

    Google Scholar 
    Cline, L. C. et al. Resource availability underlies the plant–fungal diversity relationship in a grassland ecosystem. Ecology 99, 204–216 (2018).PubMed 

    Google Scholar 
    Wardle, D. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).CAS 
    PubMed 

    Google Scholar 
    Meier, C. L. & Bowman, W. D. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA 105, 19780–19785 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gold, K. M. et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sens. 12, 286 (2020).Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 24, 1651–1669 (2014).
    Google Scholar 
    Fisher, J. B., Perakalapudi, N. V., Turner, B. L., Schimel, D. S. & Cusack, D. F. Sci. Rep. 10, 6725 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed 

    Google Scholar 
    Meireles, J. E., O’Meara, B. & Cavender-Bares, J. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 155–172 (Springer, 2020).Kothari, S. et al. Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica 56, 455–467 (2018).CAS 

    Google Scholar 
    Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make “functional types” more functional. Glob. Change Biol., https://doi.org/10.1111/gcb.16040 (2022).Cavender-Bares, J. M. et al. Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecol. Monogr., https://doi.org/10.1002/ecm.1488 (2021).Niemann, K. O., Quinn, G., Stephen, R., Visintini, F. & Parton, D. Hyperspectral remote sensing of mountain pine beetle with an emphasis on previsual assessment. Can. J. Remote Sens. 41, 191–202 (2015).
    Google Scholar 
    Chu, H. et al. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems 5, e00803–e00819 (2020).King, G. M. Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol. 19, 75–84 (2011).CAS 
    PubMed 

    Google Scholar 
    Singh, A. K., Sisodia, A., Sisodia, V. & Padhi, M. in New and Future Developments in Microbial Biotechnology and Bioengineering (eds. Singh, J. S. & Singh, D. P.) 57–68 (Elsevier, 2019).Eviner, V. T. Plant traits that influence ecosystem processes vary independently among species. Ecology 85, 2215–2229 (2004).
    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 

    Google Scholar 
    Paneque-Gálvez, J. et al. High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon. Ambio 47, 908–923 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hilbert, M. The bad news is that the digital access divide is here to stay: domestically installed bandwidths among 172 countries for 1986–2014. Telecommun. Policy 40, 567–581 (2016).
    Google Scholar 
    Prados, A. I. et al. Impact of the ARSET program on use of remote-sensing data. ISPRS Int. J. Geo-Inf. 8, 261 (2019).Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
    Google Scholar 
    Chase, A. S. Z., Chase, D. & Chase, A. Ethics, new colonialism, and lidar data: a decade of lidar in Maya archaeology. J. Comput. Appl. Archaeol. 3, 51–62 (2020).
    Google Scholar 
    Carrino, T. A., Crósta, A. P., Toledo, C. L. B. & Silva, A. M. Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf. 64, 287–300 (2018).
    Google Scholar 
    Scafutto, R. D. P. M., de Souza Filho, C. R. & de Oliveira, W. J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens. 128, 146–157 (2017).
    Google Scholar 
    Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).CAS 
    PubMed 

    Google Scholar 
    Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 10, 1 (2021).Randin, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 239, 111626 (2020).
    Google Scholar 
    Geller, G. N. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender Bares, J. et al.) 519–526 (Springer, 2020).Asner, G. P. & Martin, R. E. Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219 (2016).
    Google Scholar 
    Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett. 15, 115006 (2020).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Green, R. O. et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998).
    Google Scholar 
    Hook, S. & Fisher, J. ECO3ETPTJPL v001 ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70 m https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001 (LP DAAC, accessed 8 December 2021).Turner, A. J. et al. A double peak in the seasonality of California’s photosynthesis as observed from space. Biogeosciences 17, 405–422 (2020).CAS 

    Google Scholar 
    Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ. 222, 204–214 (2019).
    Google Scholar 
    Crameri, F. Scientific colour-maps. Zenodo https://doi.org/10.5281/zenodo.1287763 (2018).Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing 11, 2563 (2019).Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).PubMed 

    Google Scholar 
    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).Boonman, C. C. F. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034–1051 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lausch, A. et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic. 70, 317–339 (2016).
    Google Scholar 
    Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Inform. 5, 318–329 (2010).
    Google Scholar 
    Schneider, F. D., Ferraz, A. & Schimel, D. Watching Earth’s interconnected systems at work. Eos, https://doi.org/10.1029/2019EO136205 (2019).Laliberté, E., Schweiger, A. K. & Legendre, P. Partitioning plant spectral diversity into alpha and beta components. Ecol. Lett. 23, 370–380 (2020).PubMed 

    Google Scholar 
    Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).
    Google Scholar 
    Féret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl. 24, 1289–1296 (2014).PubMed 

    Google Scholar 
    Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).
    Google Scholar 
    Omasa, K., Hosoi, F. & Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot. 58, 881–898 (2007).CAS 
    PubMed 

    Google Scholar 
    Bae, S. et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 10, 4757 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evol. 1, 0194 (2017).Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).
    Google Scholar 
    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    PubMed 

    Google Scholar 
    Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).PubMed 

    Google Scholar 
    Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).PubMed 

    Google Scholar 
    Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).PubMed 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).PubMed 

    Google Scholar 
    Fretwell, P. T. & Trathan, P. N. Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr. 18, 543–552 (2009).
    Google Scholar 
    Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681–691 (2014).PubMed 

    Google Scholar 
    Paz, A. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 255–266 (Springer International Publishing, 2020).Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 11, 16448 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Papeş, M., Tupayachi, R., Martínez, P., Peterson, A. T. & Powell, G. V. N. Using hyperspectral satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon Basin. J. Veg. Sci. 21, 342–354 (2010).
    Google Scholar 
    Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 221, 405–416 (2019).
    Google Scholar  More