Changes in precipitation patterns can destabilize plant species coexistence via changes in plant–soil feedback
Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).CAS
PubMed
Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed
PubMed Central
Google Scholar
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS
PubMed
Google Scholar
Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).CAS
PubMed
Google Scholar
Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Change 10, 965–970 (2020).CAS
Google Scholar
Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).PubMed
Google Scholar
Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).CAS
PubMed
Google Scholar
Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland responses to changing climate. Science 315, 640–642 (2007).CAS
PubMed
Google Scholar
van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Proc. R. Soc. B 365, 2025–2034 (2010).
Google Scholar
Gaüzère, P., Iversen, L. L., Barnagaud, J.-Y., Svenning, J.-C. & Blonder, B. Empirical predictability of community responses to climate change. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00186 (2018).Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).CAS
PubMed
Google Scholar
Bennett, J. A. et al. Plant–soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).CAS
PubMed
Google Scholar
Teste, F. P. et al. Plant–soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355, 173–176 (2017).CAS
PubMed
Google Scholar
Kardol, P., Bezemer, T. M. & van der Putten, W. H. Temporal variation in plant–soil feedback controls succession. Ecol. Lett. 9, 1080–1088 (2006).PubMed
Google Scholar
van der Putten, W. H., van Dijk, C. & Peters, B. A. M. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362, 53–56 (1993).
Google Scholar
Bever, J. D. Feedback between plants and their soil communities in an old field community. Ecology 75, 1965–1977 (1994).
Google Scholar
Bever, J. D., Westover, K. M. & Antonovics, J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 85, 561–573 (1997).
Google Scholar
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Google Scholar
Bever, J. D. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol. 157, 465–473 (2003).PubMed
Google Scholar
Revilla, T. A., Veen, G. F., Eppinga, M. B. & Weissig, F. J. Plant–soil feedbacks and the coexistence of competing plants. Theor. Ecol. 6, 99–113 (2013).
Google Scholar
Molofsky, J. & Bever, J. D. A novel theory to explain species diversity in landscapes: positive frequency dependence and habitat suitability. Proc. R. Soc. B 269, 2389–2393 (2002).PubMed
PubMed Central
Google Scholar
Ke, P. J. & Wan, J. Effects of soil microbes on plant competition: a perspective from modern coexistence theory. Ecol. Monogr. 90, e01391 (2020).
Google Scholar
Mack, K. M. L. & Bever, J. D. Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local. J. Ecol. 102, 1195–1201 (2014).PubMed
PubMed Central
Google Scholar
Bauer, J. T., Mack, K. M. L. & Bever, J. D. Plant–soil feedbacks as drivers of succession: evidence from remnant and restored tallgrass prairies. Ecosphere 6, art158 (2015).
Google Scholar
Kulmatiski, A., Beard, K. H., Grenzer, J., Forero, L. & Heavilin, J. Using plant–soil feedbacks to predict plant biomass in diverse communities. Ecology 97, 2064–2073 (2016).PubMed
Google Scholar
Reinhart, K. O. et al. Globally, plant–soil feedbacks are weak predictors of plant abundance. Ecol. Evol. 11, 1756–1768 (2021).PubMed
PubMed Central
Google Scholar
Casper, B. B. & Castelli, J. P. Evaluating plant–soil feedback together with competition in a serpentine grassland. Ecol. Lett. 10, 394–400 (2007).PubMed
Google Scholar
Shannon, S., Flory, S. L. & Reynolds, H. Competitive context alters plant–soil feedback in an experimental woodland community. Oecologia 169, 235–243 (2012).PubMed
Google Scholar
Lekberg, Y. et al. Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).PubMed
Google Scholar
Kostenko, O., van de Voorde, T. F. J., Mulder, P. P. J., van der Putten, W. H. & Bezemer, M. T. Legacy effects of aboveground–belowground interactions. Ecol. Lett. 15, 813–821 (2012).PubMed
Google Scholar
Bezemer, M. T. et al. Above- and below-ground herbivory effects on below-ground plant–fungus interactions and plant–soil feedback responses. J. Ecol. 101, 325–333 (2013).
Google Scholar
Classen, A. T. et al. Direct and indirect effects of climate change on soil microbial and soil microbial–plant interactions: what lies ahead? Ecosphere 6, art130 (2015).
Google Scholar
McCarthy-Neumann, S. & Kobe, R. K. Site soil-fertility and light availability influence plant–soil feedback. Front. Ecol. Evol. 7, 383 (2019).
Google Scholar
Smith-Ramesh, L. M. & Reynolds, H. L. The next frontier of plant–soil feedback research: unraveling context dependence across biotic and abiotic gradients. J. Veg. Sci. 28, 484–494 (2017).
Google Scholar
Crawford, K. M. et al. When and where plant–soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22, 1274–1284 (2019).PubMed
Google Scholar
de Long, J. R., Fry, E. L., Veen, G. F. & Kardol, P. Why are plant–soil feedbacks so unpredictable, and what to do about it? Funct. Ecol. 33, 118–128 (2019).
Google Scholar
Beals, K. K. et al. Predicting plant–soil feedback in the field: meta-analysis reveals that competition and environmental stress differentially influence PSF. Front. Ecol. Evol. 8, 191 (2020).
Google Scholar
van der Putten, W. H., Bradford, M. A., Brinkman, P. E., van de Voorde, T. F. J. & Veen, G. F. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).
Google Scholar
Pugnaire, F. I. et al. Climate change effects on plant–soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 5, eaaz1834 (2019).CAS
PubMed
PubMed Central
Google Scholar
Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).
Google Scholar
Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).PubMed
PubMed Central
Google Scholar
Fierer, N., Schimel, J. P. & Holden, P. A. Influence of drying–rewetting frequency on soil bacterial community structure. Microb. Ecol. 45, 63–71 (2003).CAS
PubMed
Google Scholar
Drenovsky, R. E., Vo, D., Graham, K. J. & Scow, K. M. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48, 424–430 (2004).CAS
PubMed
Google Scholar
Brockett, B. F., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44, 9–20 (2012).CAS
Google Scholar
Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2012).PubMed
Google Scholar
de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).PubMed
PubMed Central
Google Scholar
de Oliveira, T. B. et al. Fungal communities differentially respond to warming and drought in tropical grassland soil. Mol. Ecol. 29, 1550–1559 (2020).PubMed
Google Scholar
Eastburn, D. M., McElrone, A. J. & Bilgin, D. D. Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathol. 60, 54–69 (2011).
Google Scholar
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).PubMed
Google Scholar
Cavagnaro, T. R. Soil moisture legacy effects: impacts on soil nutrients, plants and mycorrhizal responsiveness. Soil Biol. Biochem. 95, 173–179 (2016).CAS
Google Scholar
Crawford, K. M. & Hawkes, C. V. Soil precipitation legacies influence intraspecific plant–soil feedback. Ecology 101, e03142 (2020).PubMed
Google Scholar
Fry, E. L. et al. Drought neutralises plant–soil feedback of two mesic grassland forbs. Oecologia 186, 1113–1125 (2018).PubMed
PubMed Central
Google Scholar
Snyder, A. E. & Harmon-Threatt, A. N. Reduced water-availability lowers the strength of negative plant–soil feedbacks of two Asclepias species. Oecologia 190, 425–432 (2019).PubMed
Google Scholar
Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant–soil feedbacks: a meta-analytical review. Ecol. Lett. 11, 980–992 (2008).PubMed
Google Scholar
Brinkman, P. E., van der Putten, W. H., Bakker, E.-J. & Verhoeven, K. J. Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. J. Ecol. 98, 1063–1073 (2010).
Google Scholar
Bever, J. D. Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc. R. Soc. B 269, 2595–2601 (2002).PubMed
PubMed Central
Google Scholar
Castelli, J. P. & Casper, B. B. Intraspecific AM fungal variation contributes to plant–fungal feedback in a serpentine grassland. Ecology 84, 323–336 (2003).
Google Scholar
Mangan, S. A., Herre, E. A. & Bever, J. D. Specificity between neotropical tree seedlings and their fungal mutualists leads to plant–soil feedback. Ecology 91, 2594–2603 (2010).PubMed
Google Scholar
Bever, J. D., Mangan, S. A. & Alexander, H. M. Maintenance of plant species diversity by pathogens. Annu. Rev. Ecol. Evol. Syst. 46, 305–325 (2015).
Google Scholar
Gilbert, G. S. & Parker, I. M. The evolutionary ecology of plant disease: a phylogenetic perspective. Annu. Rev. Phytopathol. 54, 549–578 (2016).CAS
PubMed
Google Scholar
Milici, V. R., Dalui, D., Mickley, J. G. & Bagchi, R. Responses of plant–pathogen interactions to precipitation: implications for tropical tree richness in a changing world. J. Ecol. 108, 1800–1809 (2020).
Google Scholar
Kaisermann, A., de Vries, F. T., Griffiths, R. I. & Bardgett, R. D. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytol. 215, 1413–1424 (2017).CAS
PubMed
Google Scholar
Revillini, D., Gehring, C. A. & Johnson, N. C. The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Funct. Ecol. 30, 1086–1098 (2016).
Google Scholar
Ji, B. & Bever, J. D. Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere 7, e01256 (2016).
Google Scholar
Rubin, R. L., van Groenigen, K. J. & Hungate, B. A. Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil 416, 309–323 (2017).CAS
Google Scholar
Brinkman, E. P., Duyts, H., Karssen, G., van der Stoel, C. D. & van der Putten, W. H. Plant-feeding nematodes in coastal sand dunes: occurrence, host specificity and effects on plant growth. Plant Soil 397, 17–30 (2015).CAS
Google Scholar
Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010).PubMed
Google Scholar
Chase, J. M. Community assembly: when should history matter? Oecologia 136, 489–498 (2003).PubMed
Google Scholar
Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
Google Scholar
Reinhart, K. O. & Rinella, M. J. A common soil handling technique can generate incorrect estimates of soil biota effects on plants. New Phytol. 210, 786–789 (2016).PubMed
Google Scholar
Mehlich, A. Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409–1416 (1984).CAS
Google Scholar
Rhoades, J. D. in Methods of Soil Analysis: Part 2 (eds Page, A. L. et al.) Ch. 10 (American Society of Agronomy and Soil Science Society of America, 1982).Schofield, R. K. & Taylor, A. W. The measurement of soil pH. Soil Sci. Soc. Am. Proc. 19, 164–167 (1955).CAS
Google Scholar
Keeney, D. R. in Methods of Soil Analysis: Part 2 (eds Page, A. L. et al.) Ch. 35 (American Society of Agronomy and Soil Science Society of America, 1982).Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS
PubMed
PubMed Central
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS
PubMed
PubMed Central
Google Scholar
Pauvert, C. et al. Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. 41, 23–33 (2019).
Google Scholar
Abarenkov, K. et al UNITE QIIME Release for Fungi. Version 04.02.2020 (UNITE Community, 2020).Francioli, D., van Ruijven, J., Bakker, L. & Mommer, L. Drivers of total and pathogenic soil-borne fungal communities in grassland plant species. Fungal Ecol. 48, 100987 (2020).
Google Scholar
Nhu, H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
Google Scholar
Brooks, M. B. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Lou, J. Entropy and diversity. Oikos 113, 363–375 (2006).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package. R version 2.5–7 https://CRAN.R-project.org/package=vegan (2020).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2020).
Google Scholar
Wilensky, U. NetLogo http://ccl.northwestern.edu/netlogo (1999).Salecker, J., Sciaini, M., Meyer, K. M. & Wiegand, K. The NLRX R package: a next-generation framework for reproducible NetLogo model analyses. Methods Ecol. Evol. 10, 1854–1863 (2019).
Google Scholar
Wickham et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More