More stories

  • in

    Coral calcification mechanisms in a warming ocean and the interactive effects of temperature and light

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
    Google Scholar 
    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377(2017).Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. R. Soc. B Biol. Sci. 285, 20181 (2018).
    Google Scholar 
    Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One 8, e75049 (2013).CAS 

    Google Scholar 
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).Heron, S. F., Maynard, J. A., Van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985-2012. Sci. Rep. 6, 38402, 1–14 (2016).
    Google Scholar 
    Marshall, A. T. & Clode, P. Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs. 23, 218–224 (2004).
    Google Scholar 
    Jokiel, P. L. & Coles, S. L. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 208, 201–208 (1977).
    Google Scholar 
    Rodolfo-Metalpa, R., Huot, Y. & Ferrier-Pagès, C. Photosynthetic response of the Mediterranean zooxanthellate coral Cladocora caespitosa to the natural range of light and temperature. J. Exp. Biol. 211, 1579–1586 (2008).CAS 

    Google Scholar 
    Cohen, A. L. & McConnaughey, T. A. Geochemical perspectives on coral mineralization. Rev. Mineral. Geochemistry 54, 151–187 (2003).CAS 

    Google Scholar 
    McCulloch, M. T., Falter, J. L., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat. Clim. Chang. 2, 1–5 (2012).
    Google Scholar 
    Venn, A. A., Tambutté, É., Holcomb, M., Allemand, D. & Tambutté, S. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS One 6, e20013 (2011).CAS 

    Google Scholar 
    Cai, W.-J. et al. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat. Commun. 7, 11144 (2016).CAS 

    Google Scholar 
    Al-Horani, F. A., Al-Moghrabi, S. M. & de Beer, D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419–426 (2003).CAS 

    Google Scholar 
    Holcomb, M. et al. Coral calcifying fluid pH dictates response to ocean acidification. Sci. Rep. 4, 5207 (2014).CAS 

    Google Scholar 
    Holcomb, M., DeCarlo, T. M., Gaetani, G. A. & McCulloch, M. T. Factors affecting B/Ca ratios in synthetic aragonite. Chem. Geol. 437, 67–76 (2016).CAS 

    Google Scholar 
    McCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M. & Trotter, J. A. Coral calcification in a changing World: the interactive dynamics of pH and DIC up-regulation. Nat. Commun. 8, 15686 (2017).Tambutté, S. et al. Calcein labelling and electrophysiology: insights on coral tissue permeability and calcification. Proc. R. Soc. B 279, 19–27 (2012).
    Google Scholar 
    Trotter, J. et al. Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy. Earth Planet. Sci. Lett. 303, 163–173 (2011).CAS 

    Google Scholar 
    Schoepf, V., Jury, C. P., Toonen, R. & McCulloch, M. Coral calcification mechanisms facilitate adaptive response to ocean acidification. Proc. R. Soc. B 284, 2117 (2017).
    Google Scholar 
    Comeau, S., Cornwall, C. E. & McCulloch, M. T. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification. Sci. Rep. 7, 7573 (2017).CAS 

    Google Scholar 
    Schoepf, V., D’Olivo, J. P., Rigal, C., Jung, E. M. U. & Mcculloch, M. T. Heat stress differentially impacts key calcification mechanisms in reef-building corals. Coral Reefs. https://doi.org/10.1007/s00338-020-02038-x (2021).Article 

    Google Scholar 
    Schoepf, V. et al. Short-term coral bleaching is not recorded by skeletal boron isotopes. PLoS One 9, e112011 (2014).
    Google Scholar 
    D’Olivo, J. P. & McCulloch, M. T. Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress. Sci. Rep. 7, 2207 (2017).
    Google Scholar 
    Dishon, G. et al. A novel paleo-bleaching proxy using boron isotopes and high-resolution laser ablation to reconstruct coral bleaching events. Biogeosciences 12, 5677–5687 (2015).
    Google Scholar 
    Guillermic, M. et al. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. Sci. Adv. 7, 20172117(2021).Ross, C. L., Falter, J. L. & McCulloch, M. T. Active modulation of the calcifying fluid carbonate chemistry (δ11B, B/Ca) and seasonally invariant coral calcification at sub-tropical limits. Sci. Rep. 7, 1–11 (2017). 13830.
    Google Scholar 
    D’Olivo, J. P., Ellwood, G., Decarlo, T. M. & Mcculloch, M. T. Deconvolving the long-term impacts of ocean acidification and warming on coral biomineralisation. Earth Planet. Sci. Lett. 526, 115785 (2019).
    Google Scholar 
    Ross, C. L., DeCarlo, T. M. & McCulloch, M. T. Environmental and physiochemical controls on coral calcification along a latitudinal temperature gradient in Western Australia. Glob. Chang. Biol. 25, 431–447 (2019).
    Google Scholar 
    Guo, W. Seawater temperature and buffering capacity modulate coral calcifying pH. Sci. Rep. 9, 1–13 (2019).
    Google Scholar 
    Reynaud, S., Ferrier-Pagès, C., Boisson, F., Allemand, D. & Fairbanks, R. G. Effect of light and temperature on calcification and strontium uptake in the scleractinian coral Acropora verweyi. Mar. Ecol. Prog. Ser. 279, 105–112 (2004).CAS 

    Google Scholar 
    Dissard, D. et al. Light and temperature effects on δ11B and B/Ca ratios of the zooxanthellate coral Acropora sp.: results from culturing experiments. Biogeosciences 9, 4589–4605 (2012).CAS 

    Google Scholar 
    Hönisch, B. et al. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim. Cosmochim. Acta 68, 3675–3685 (2004).
    Google Scholar 
    Comeau, S. et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Reports 9, 1–12 (2019). 2019 91.
    Google Scholar 
    DeCarlo, T. M., Ross, C. L. & McCulloch, M. T. Diurnal cycles of coral calcifying fluid aragonite saturation state. Mar. Biol. 166, 1–6 (2019).CAS 

    Google Scholar 
    Ross, C. L., Schoepf, V., DeCarlo, T. M. & McCulloch, M. T. Mechanisms and seasonal drivers of calcification in the temperate coral Turbinaria reniformis at its latitudinal limits. Proc. R. Soc. B 285, 20180 (2018).
    Google Scholar 
    Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74, 4988–5001 (2010).CAS 

    Google Scholar 
    Coles, S. L. & Jokiel, P. L. Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar. Biol. 43, 209–216 (1977).CAS 

    Google Scholar 
    Gattuso, J.-P., Allemand, D. & Frankignoulle, M. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am. Zool. 39, 160–183 (1999).CAS 

    Google Scholar 
    Kajiwara, K., Nagai, A., Ueno, S. & Yokochi, H. Examination of the effect of temperature, light intensity and zooxanthellae concentration on calcification and photosynthesis of scleractinian coral Acropora pulchra. J. Sch. Mar. Sci. Technol. Tokai Univ. 40, 95–103 (1995).
    Google Scholar 
    Reynaud, S. et al. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang. Biol. 9, 1660–1668 (2003).
    Google Scholar 
    Furla, P., Galgani, I., Durand, I. & Allemand, D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445–3457 (2000).CAS 

    Google Scholar 
    Zoccola, D. et al. Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci. Rep. 5, 9983 (2015).CAS 

    Google Scholar 
    Allison, N. et al. Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat. Commun. 5, 5741 (2014).CAS 

    Google Scholar 
    Vajed Samiei, J. et al. Variation in calcification rate of Acropora downingi relative to seasonal changes in environmental conditions in the northeastern Persian Gulf. Coral Reefs. https://doi.org/10.1007/s00338-016-1464-6 (2016).Article 

    Google Scholar 
    Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs. 32, 987–997 (2013).
    Google Scholar 
    Courtney, T. A. et al. Environmental controls on modern scleractinian coral and reef-scale calcification. Sci. Adv. 3, e170135 (2017).
    Google Scholar 
    Burton, E. A. & Walter, L. M. Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control? Geology 15, 111 (1987).CAS 

    Google Scholar 
    Lough, J. M. & Barnes, D. Environmental controls on growth of the massive coral Porites. J. Exp. Mar. Bio. Ecol. 245, 225–243 (2000).CAS 

    Google Scholar 
    Fitt, W. K., Brown, B., Warner, M. E. & Dunne, R. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs. 20, 51–65 (2001).
    Google Scholar 
    Fisher, R., Bessell-Browne, P. & Jones, R. Synergistic and antagonistic impacts of suspended sediments and thermal stress on corals. Nat. Commun. 10, 1–9 (2019).CAS 

    Google Scholar 
    Teixeira, C. D. et al. Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs. 38, 801–813 (2019).
    Google Scholar 
    Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719 (2017).
    Google Scholar 
    Ulstrup, K. E., Kühl, M., van Oppen, M. J. H., Cooper, T. F. & Ralph, P. J. Variation in photosynthesis and respiration in geographically distinct populations of two reef-building coral species. Aquat. Biol. 12, 241–248 (2011).
    Google Scholar 
    Lough, J. M. & Cantin, N. E. Perspectives on massive coral growth rates in a changing ocean. Biol. Bull. 226, 187–202 (2014).
    Google Scholar 
    Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).
    Google Scholar 
    Veron, J. E. N. Corals of the world. Townsville, Australia (Australian Institute of Marine Science, 2000).Foster, T., Short, J., Falter, J. L., Ross, C. & McCulloch, M. T. Reduced calcification in Western Australian corals during anomalously high summer water temperatures. J. Exp. Mar. Bio. Ecol. 461, 133–143 (2014).CAS 

    Google Scholar 
    Ross, C. L., Falter, J. L., Schoepf, V. & McCulloch, M. T. Perennial growth of hermatypic corals at Rottnest Island, Western Australia (32°S). PeerJ 3, e781 (2015).
    Google Scholar 
    McCulloch, M. T., Holcomb, M., Rankenburg, K. & Trotter, J. A. Rapid, high-precision measurements of boron isotopic compositions in marine carbonates. Rapid Commun. Mass Spectrom. RCM 28, 2704–2712 (2014).CAS 

    Google Scholar 
    Okai, T., Suzuki, A., Kawahata, H., Terashima, S. & Imai, N. Preparation of a new Geological Survey of Japan geochemical reference material: Coral JCp-1. Geostand. Newsl 26, 95–99 (2002).CAS 

    Google Scholar 
    Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Part A. Oceanogr. Res. Pap. 37, 755–766 (1990).CAS 

    Google Scholar 
    McCulloch, M. T. et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).CAS 

    Google Scholar 
    Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2015). More

  • in

    Phage-encoded ribosomal protein S21 expression is linked to late-stage phage replication

    Discovery of closely related phage sequences with the conserved genetic context of bS21Multiple phage-related sequences with a conserved genomic context were detected from several freshwater metagenome-assembled datasets (see Methods). Genes for bS21, TerL, PVP, prohead core scaffolding, and protease protein (hereafter prohead protease for short), and MCP are encoded in the genomic region. BLASTp search of the TerL sequences against the ggKbase sequences (ggkbase.berkeley.edu) obtained a total of 47 unique scaffolds with the conserved genomic region (Supplementary Table 1). Two related phages were included as outgroups for comparative analyses. The corresponding samples were collected from freshwater lakes or reservoirs (one from a wastewater treatment plant), and all but three were from the oxic layer (see Methods for details).General features of manually curated genomesAll the 49 phage sequences were manually curated to fill scaffolding gaps and fix the assembly errors, and nine of them (including one outgroup phage) were curated to completion (circular and no gaps or local assembly errors) (Supplementary Table 1). A total of 14 related phage genomes from IMG/VR were also included for further analyses. The eight bS21-encoding complete genomes had genome lengths of 293–331 kbp, GC contents of 31.0–33.7% and encoded 350–413 protein-coding genes (coding density, 91.1–94.9%), with 5–25 (average 17) tRNA genes. No alternative coding signal (i.e., stop codon reassignment) was detected in any genome. In comparison, the outgroup complete genome has a size of 308 kbp (450 protein-coding genes, 6 tRNAs, 94.7% coding density) and GC content of 27.3%.Genomic context of bS21 in phagesGenomic context analyses for bS21 genes showed a highly conserved gene architecture across phage genomes in proximity to the region encoding bS21 (see Fig. 1a for example). Specifically, we found that bS21 was consistently located in between two hypothetical protein families (positions 1 and –1 in Fig. 1b and Supplementary Table 2), with core structural proteins—including the TerL, PVP, prohead protease, and MCP—generally located within five genes in both the upstream and downstream DNA. Other hypothetical proteins were also consistently found in this region, although their positions were more variable upstream (positions –4 through –10, Fig. 1b). Importantly, the bS21 gene was consistently encoded in the reverse strand relative to the conserved hypothetical and structural protein genes (Fig. 1a and Supplementary Fig. 1).Fig. 1: Genetic context of the genes encoding bS21 in the phage genomes.a Examples of genetic context of phage genomes with and without bS21. The annotation of protein-coding genes is the same as indicated in b by different colors. Those in white are genes not shown in subfigure (b). b Summary of genetic context of all phage genomes encoding bS21. The relative position of genes near the bS21 gene is shown, and the size of circles indicates the number of phages with a gene belonging to a given protein family (annotation shown on right) at that relative position. Only the 12 most frequent families are shown. The details of the genetic context are shown in Supplementary Fig. 1.Full size imagePhylogeny of bS21-encoding phagesPhylogenetic analyses based on TerL suggested the phages belonging to several groups, we thus assigned them to clades a–e (Fig. 2 and Supplementary Table 1). Most of the phages belong to clades c, d, and e, and they have a broader environmental distribution than clades a and b. Interestingly, we found that some phages within a single clade were from distant sampling sites. Closer inspection indicated they also shared large genomic fragments with high similarity (82–98% for nucleotide sequences; Supplementary Fig. 2). Comparative genome-wide analyses of the complete genomes from the same site but sampled at different time points showed sequence variations in some genes (Supplementary Fig. 3).Fig. 2: The phylogeny of bS21 phages based on the large terminal (TerL) protein sequences.Two closely related phages without bS21 encoded were included as outgroups (shown at the top of the tree). The genomes are assigned to five clades (a, b, c, d, and e) based on the topology of the phylogenetic tree. The numbers in the brackets following the scaffold names indicate the total counts of the same scaffold detected from the corresponding sampling sites. The genomes that were manually curated to completion (circular and no gap) are indicated by squares, and the genome sizes are shown in brackets.Full size imageTerL phylogeny, constructed using sequences from this study and NCBI RefSeq sequences, indicated the most closely related classified phages belong to Caudovirales of either the Myoviridae or Ackermannviridae (Supplementary Fig. 4). A phage baseplate assembly protein was encoded in most curated genomes. This is an important building block for members of Siphoviridae and Myoviridae [8], so we concluded that the bS21-encoding phages are myoviruses.Predicted bacterial hosts of bS21-encoding phagesTo predict host-phage relationships we first used CRISPR-Cas spacers targeting. While none of the 16.5k unique spacers from the relevant metagenomes targeted any of the curated phage genomes from the same sampling sites, a single cross-site target was detected. Specifically, MIW1_072018_0_1um_scaffold_78 was targeted by a spacer (24 nt and no mismatch) from a MIW2 Flavobacterium genome (affiliation: Bacteroidetes, Flavobacteria). We then predicted the bacterial hosts based on the bacterial taxonomic affiliations of the phage gene inventories as previously described [2] (Supplementary Table 3). The results indicated that all of the phages infect members of Bacteroidetes, which were detected in 43 out of 45 samples (Fig. 3 and Supplementary Table 4). The two metagenomic samples without Bacteroidetes identified were both collected via filtering through 0.2 μm and onto 0.1 μm pore size filters. Bacteroidetes were detected in both of the corresponding 0.2 μm fraction samples (Fig. 3).Fig. 3: The relative abundance of the Bacteroidetes classes in all the analyzed samples in this study.The microbial communities were profiled based on ribosomal protein S3 (rpS3) assigned to the Bacteroidetes classes. The sampling sites were indicated by colored names, and the filter sizes used during sampling are shown by circles. The three pairs of filter samples are indicated by colored stars.Full size imageWe profiled the co-detection of phage clades and Bacteroidetes classes to test for specific connections (Supplementary Fig. 5). However, this was uninformative because most samples contained more than one class. However, phages from clades a and b are unlikely to infect class Bacteroidia members, as they did not co-occur in any sample.Comparison of bacterial and phage-encoded bS21Phylogenetic analyses revealed that bS21 protein sequences from phages (this study) and the bacterial bS21 sequences (from the corresponding samples and NCBI RefSeq) clustered separately (Supplementary Fig. 6). The bacterial bS21 sequences that are most similar to phage bS21 were from Bacteroidetes, mostly from the Flavobacteriia class (Supplementary Table 5). We aligned and compared the Bacteroidetes and phage bS21 sequences and mapped the divergent and non-divergent residues to the model of the ribosome of Flavobacterium johnsoniae (Fig. 4a). Multiple divergent positions are located at the beginning of the bS21 sequences and four residues (Arg21, Phe23, Asp25, and Thr28) were significantly divergent (Fig. 4b).Fig. 4: Conservation and differences between phage and bacterial bS21.a Location of bS21 (blue) within the 16S rRNA (green) and the ASD (magenta) of the F. johnsoniae ribosome (PDB ID: 7JIL) [9]. bS21 is in the neck region of the 16S rRNA, interacting closely with the 3’ end of the 16S rRNA, where the ASD is located. The 16S rRNA is shown from the subunit interface direction. b Zebra2 divergency results from an alignment of phage and bacterial bS21 sequences mapped on F. johnsoniae bS21. Divergent positions between phage and bacterial bS21 are shown with red. c Zebra2 conservation results from the same alignment as in (b) mapped on F. johnsoniae bS21 with conserved residues shown in yellow. The stacking interaction between Tyr54 and Adenine 1534 is indicated. d The sequence logo and consensus sequences of phage and bacterial bS21 alignments and the corresponding position of Tyr54 in F. johnsoniae bS21 in the alignment are highlighted. The C-terminal parts are highlighted with gray backgrounds.Full size imageBacteroidetes usually lack the SD sequences. It was recently reported that the bS21 Tyr54 (numbering in F. johnsoniae) is an important residue for blocking the ASD in the 16S rRNA within the ribosome [9]. Our analyses predict that all the analyzed bacterial and phage bS21 in this study have an amino acid with an aromatic ring (often Tyr54 but in a few cases His54, and in one case Phe54) at the position of Tyr54 in F. johnsoniae (Fig. 4c, d and Supplementary Fig. 6). This conservation of the aromatic property in phage bS21 should ensure stacking interaction with Adenine 1534 (numbering in F. johnsoniae 16S) from the ASD. In that way, phage bS21 mimics Bacteroidetes bS21 in the region where it binds the ribosome but differs from it in the region where the mRNA would bind.In contrast, the C-terminal regions of both the bacterial and phage bS21 sets were highly divergent (Fig. 4d). However, the phage C-terminal regions are generally conserved within the clades defined based on TerL phylogeny (Fig. 2 and Supplementary Fig. 7).Metabolic potentials of bS21-encoding phagesFunctional annotation of the predicted protein-coding genes revealed that in addition to bS21, these phages carry other genes related to protein production and stability (Supplementary Table 6). Examples include protein folding chaperones and Clp protease, suggesting the importance of controlling the proteostasis network of the cell. Interestingly, we also identified many genes involved in sugar-related chemistry and polysaccharide biosynthesis. Many of these genes were predicted to perform chemical transformations related to the biosynthesis of lipopolysaccharide, a major component of the Gram-negative bacterial outer membrane. We interpret this as a potential mechanism to remodel the cell surface and prevent superinfection by competitor phages, a strategy common to the phage lysogenic cycle. These phages lack detectable integration machinery (no gene for integrase or resolvase was detected), suggesting the possibility of a non-integrative long-term infection state such as pseudolysogeny [10].Clustering analyses of 22 phages with a minimum genome size of 100 kbp (including the two outgroup genomes) based on the presence/absence of protein families indicated they shared a total of 16 protein families (Supplementary Fig. 8 and Supplementary Table 7). Phosphate starvation-inducible protein PhoH (“fam582”) was the only predicted protein detected in all 22 phages (excluding the shared predicted proteins in the conserved rpS21-encoding region described above). Other common protein families include those related to DNA replication (e.g., DNA primase/helicase, DNA polymerase, HNH endonuclease, thymidylate synthase (EC:2.1.1.45), deoxyuridine 5’-triphosphate nucleotidohydrolase (EC:3.6.1.23)), those associated with virion assembly (e.g., a phage tail sheath protein, phage baseplate assembly protein W), and those for other functions (e.g., chaperone ATPase, alpha-amylase, DegT/DnrJ/EryC1/StrS aminotransferase).Temporal and spatial distribution and activity of bS21-encoding phages in Lake RotseeTo reveal the spatial and temporal distribution of the bS21-encoding phages, we focused on the Lake Rotsee data and profiled phage occurrence based on the sequencing coverage in the metagenomic datasets. The Lake Rotsee samples were collected from the oxic (7 samples) and anoxic (3 samples) layers of the water column. The bS21-encoding phages were readily detected in oxic samples, especially in the under-ice samples when the whole water column was oxic (Fig. 5a).Fig. 5: The spatial and temporal distribution and activity of bS21 phages at Lake Rotsee.a The sequencing coverage of each phage genome in each metagenomic dataset is shown in the heatmaps. The phages are phylogenetically clustered based on their TerL protein sequences (bootstraps shown in numbers), the colored backgrounds are the same as shown in Fig. 2 for different clades. The sampling time points and depths are shown on the left, and the oxygen conditions are indicated by colored circles on the right. Two replicates were sequenced from the 15 m sample collected in 2018. b The percentage of mapped RNA reads to the phage genomes in the corresponding samples (rows labeled in (a)). The mapped RNA reads had a minimum similarity of 98% to the phage genomes. No RNA data were generated for the three samples collected on October 10, 2017. See the figure legend for each genome in the upper right, the circular genomes have names in bold font.Full size imageRotsee Lake RNA reads were mapped to the phage genomes curated from this site to reveal the transcriptional activities of bS21-encoding phages (Fig. 5b). In general, the phages were likely to be most transcriptionally active in the oxic water columns. A total of 736 genes were transcribed in at least one sample (Supplementary Table 8), those for MCP, an AAA ATPase, tail sheath protein, bS21, FKBP-type peptidyl-prolyl cis-trans isomerase, and a methyltransferase FkbM domain protein are among the top 100 most highly transcribed. The high transcriptional activities of MCP in five phages indicated they were in the late stage of replication at the time of sampling.The transcriptional behavior of phage bS21 genesTo seek evidence of a transcriptional relationship involving bS21 and other genes we focused on the three phages that were most active based on the transcriptional level of their 19 shared single-copy genes (Fig. 6a). bS21 had very similar (but slightly lower) transcriptional activities as a neighboring gene (hereafter, bS21_CN gene) encoded on the opposite strand. The bS21_CN gene encodes a hypothetical protein (protein family: fam498) and was not detected in the two outgroup phages without bS21 (Supplementary Table 6). Interestingly, a comparison of the phylogenies of bS21 and bS21_CN showed a very similar evolutionary pattern (Supplementary Fig. 9), likely suggesting their potential functional relationship in the bS21-encoding phages.Fig. 6: The transcription levels of bS21 and core structural protein genes.a The normalized transcriptional level (NTL) of shared single-copy protein families of three phages (indicated by arrows in Fig. 5b) with ≥1000 RNA reads mapped. Two families (including MCP) are listed on a different scale due to their much higher transcription levels. Refer to Fig. 5 for shape symbols that designate phage genomes and samples. b Examples of RNA mapping profiles indicating the co-transcription of some genes neighboring bS21. Hypothetical protein genes are shown in white.Full size imageInspection of the RNA reads mapping profiles indicated that the conserved region encoding bS21 and core structural proteins was not transcribed as an operon, whereas bS21 and bS21_CN, MCP and its upstream hypothetical protein gene, and prohead protease and its downstream hypothetical protein gene may each be transcribed together (Fig. 6b). Given the observed RNA expression patterns, we conclude that the phage-encoded bS21 genes were actively transcribed during late-stage replication, along with other core structural proteins.Genomic context of bS21 genes in published phage genomesTo determine whether the phage bS21 genes are generally co-located with those for core structural proteins in diverse phages, we profiled the genomic context of bS21 in 900 published bS21-encoding phages [2, 11] (Supplementary Table 9). Functional annotations were performed for the upstream and downstream ten genes of the bS21 genes using pVOG (Supplementary Table 10). Of the 20 most abundant pVOGs, 6 were related to core structural assembly (Fig. 7a), i.e., prohead protease (n = 310), MCP (n = 154), PVP (n = 120), TerL (n = 78), neck protein (n = 70), and a tail sheath protein (n = 29). A total of 388 genomes contained at least one of these genes within ten genes of bS21, and eight had all of these six core structural proteins in close proximity. Three pVOGs were related to DNA processing, i.e., an exonuclease (n = 37), an endonuclease (n = 32), DNA helicase (n = 30). Other pVOGs included Hsp20 heat shock protein (n = 127), two ATP-dependent CLP proteases (n = 50 and 47, respectively), and lysozyme (for lysis; n = 29). Interestingly, the prohead protease and the MCP pVOG genes are very close to the bS21 gene (generally 2–4 genes; Fig. 7b), as in the bS21-encoding phage genomes analyzed in this study (2–6 genes away; Fig. 1 and Supplementary Fig. 1).Fig. 7: Neighboring genes within 10 genes of bS21 in published bS21-encoding phage genomes.a The annotation and corresponding functional category (if assigned) of the 20 most commonly detected pVOG genes and their predicted functions are shown on the left, the total number of genomes with the gene are shown on the right. b The distribution of the distance of each gene to bS21 in the genomes. The position of genes next to bS21 (thus distance = 1) is highlighted using a red dashed line. The average distance of each gene to bS21 is shown on the left. c The predicted hosts of bS21-encoding phages with the top 4 most abundant genes detected within 10 genes of bS21. The total count of hosts is shown on the right.Full size imageWe respectively predicted the hosts of the bS21-encoding phages with the four most dominant pVOGs within ten genes of bS21 (Fig. 7c and Supplementary Table 11). The bacterial hosts are diverse and include Proteobacteria, Bacteroidetes, and Firmicutes. More

  • in

    Cross-biome antibiotic resistance decays after millions of years of soil development

    Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome. 2018;6:40.Article 

    Google Scholar 
    D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science. 2006;311:374–7.Article 

    Google Scholar 
    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8:251–9.CAS 
    Article 

    Google Scholar 
    Martinez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol. 2015;13:116–23.CAS 
    Article 

    Google Scholar 
    Genilloud O. Actinomycetes: still a source of novel antibiotics. Nat Prod Rep. 2017;34:1203–32.CAS 
    Article 

    Google Scholar 
    Ochoa-Hueso R, Plaza C, Moreno-Jimenez E, Delgado-Baquerizo M. Soil element coupling is driven by ecological context and atomic mass. Ecol Lett. 2021;24:319–26.Article 

    Google Scholar 
    Wardle DA, Walker LR, Bardgett RD. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science. 2004;305:509–13.CAS 
    Article 

    Google Scholar 
    Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology. 1995;76:1407–24.Article 

    Google Scholar 
    Walker LR, Wardle DA, Bardgett RD, Clarkson BD. The use of chronosequences in studies of ecological succession and soil development. J Ecol. 2010;98:725–36.Article 

    Google Scholar 
    Delgado-Baquerizo M, Reich PB, Bardgett RD, Eldridge DJ, Lambers H, Wardle DA, et al. The influence of soil age on ecosystem structure and function across biomes. Nat Commun. 2020;11:4721.CAS 
    Article 

    Google Scholar 
    Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260–71.CAS 
    Article 

    Google Scholar 
    Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.CAS 
    Article 

    Google Scholar 
    Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.CAS 
    Article 

    Google Scholar 
    Li J, Cao J, Zhu YG, Chen QL, Shen F, Wu Y, et al. Global survey of antibiotic resistance genes in air. Environ Sci Technol. 2018;52:10975–84.CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge DJ, et al. Changes in belowground biodiversity during ecosystem development. Proc Natl Acad Sci USA. 2019;116:6891–6.CAS 
    Article 

    Google Scholar 
    Ortiz-Álvarez R, Fierer N, de Los Ríos A, Casamayor EO, Barberán A. Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. ISME J. 2018;12:1658–67.Article 

    Google Scholar 
    Shen J, Li Z-M, Hu H, Zeng J, Zhang L-M, He J, et al. Distribution and succession feature of antibiotic resistance genes along a soil development chronosequence in Urumqi No. 1 Glacier of China. Front Microbiol. 2019;10:1569.Article 

    Google Scholar 
    Drenovsky RE, Vo D, Graham KJ, Scow KM. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Micro Ecol. 2004;48:424–30.CAS 
    Article 

    Google Scholar 
    Bastida F, Eldridge DJ, Garcia C, Kenny Png G, Bardgett RD, Delgado-Baquerizo M. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes. ISME J. 2021;15:2081–91.CAS 
    Article 

    Google Scholar  More

  • in

    Accumulation-depuration data collection in support of toxicokinetic modelling

    Storage and displayAll collected datasets (directly downloadable as tabular files), the bibtex file with all references, all reports and all kinetic bioaccumulation metric estimates are publicly available on Zenodo17. An rmarkdown file18,19 was created to build the overview table with information collected from the name of the dataset and from the dataset itself (e.g., column headers, number of data, number of replicates), as well as from the bibtex file. The R package DT was additionally used20 to combine all collected information in a user-friendly manner including a convenient search tool, and the rmarkdown file was finally compiled19 in HTML format for display to the user in packs of 10 lines by default. In such a way, each new dataset added into the repository will compile the rmarkdown file automatically for update.In parallel, the database can also be accessed directly via http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/data/database/TK_database.html, or from MOSAICbioacc clicking on the “More scientific TK data” button. An example of the output of the overview table is shown in Fig. 2, while the full table is provided in the supplementary information (Table S2). The collected raw TK data of the database consist in the time-course of several types of chemical substances bioaccumulated in various species via different exposure routes.Fig. 2Screenshot of the first page of the overview table of the database available from MOSAICbioacc.Full size imageDatasets overviewEach dataset is summarized by:

    the file name (raw data directly downloadable by clicking on the file name, in text or CSV format),

    the genus of the tested organism,

    the category of the organism (e.g., aquatic, terrestrial, etc.),

    the tested chemical substance,

    the duration of the accumulation phase,

    the tested exposure routes (e.g., water, sediment, food, pore water),

    the total number of observations in the dataset (plus the number of replicate(s) in brackets),

    the kinetic bioaccumulation metric median value with its 95% uncertainty interval,

    the report which contains all the outputs from MOSAICbioacc (in PDF format),

    the link to the reference or the source of the data,

    some additional comments (e.g., lipid fraction, growth, biotransformation, if exposure was done for chemical mixtures or not, if total radioactivity was used or not, etc.).

    A summary of all datasets is presented in Table 1. Genus were separated in 12 categories: aquatic invertebrates (n = 105), fish (n = 42), insects (n = 17), aquatic worms (n = 10), terrestrial worms (n = 16), seawater sponges (n = 2), seawater plants (n = 1), aquatic algae (n = 1), terrestrial invertebrates (n = 1), vertebrates other than fish (n = 4), marine invertebrates (n = 8), and heterotrichea (n = 4). The most represented genus in the database are Gammarus (aquatic invertebrate, n = 43) and Daphnia (aquatic invertebrate, n = 27), followed by Oncorhynchus (fish, n = 15), genus that are classically used in ecotoxicological experiments. Recommended genus by OECD guidelines for bioaccumulation tests are Eisenia and Enchytraeus for terrestrial organisms (OECD 317)21, and Tubifex or Lumbriculus for aquatic invertebrates exposed to sediment (OECD 315)22; some datasets for these specific species are available in the database (n = 24).Table 1 Summary of the collected TK datasets.Full size tableChemical substances were divided in 10 classes following at the best the nomenclature used in Standartox23: pesticides (n = 71), hydrocarbons (n = 37), metals (n = 20), nanoparticules (n = 23), polychlorobiphenyls (PCB, n = 22), flame retardants (brominated or chlorinated, n = 8), pharmaceutical products (n = 14), PFAS (n = 7), octyphenol (n = 2) and other (n = 7). Among all datasets, the majority of bioaccumulation tests were performed via spiked water (n = 137). Besides, 34 datasets account for biotransformation processes, considering from 1 to 8 metabolites.According to ECHA (2017)2, BCF below 1,000 means that the chemical substance is not bioaccumulative, whereas one ranging between 1,000 and 5,000 corresponds to a bioaccumulative chemical substance: low bioaccumulative if BCF ∈]1,000; 2,000]; mid-bioaccumulative if BCF ∈]2,000; 5,000]. If BCF is >5000, the chemical substance is classified as very bioaccumulative. These ranges are reported in Table 1, where BCF median estimates are >5000 for 25 datasets, indicating a very bioaccumulative capacity of the corresponding chemical substances for the corresponding genus. Concerning BSAF and BMF estimates, their value must be compared to threshold 1. A median BSAF estimate >1 indicates that the corresponding chemical substance can bioaccumulate from soil or sediment into organisms at the base of the non-aquatic food chain24,25; a median BMF estimate >1 indicates that the corresponding chemical substance can biomagnify in the trophic relationship under consideration26. In the database, 16 datasets in 36 led to BSAF >1, for genus Eisenia (n = 2), Enchytraeus (n = 6), Gallus (n = 1), Lumbriculus (n = 2), Metaphire (n = 2), Physa (n = 1), Radix (n = 2)), while 8 datasets in 38 led to BMF >1, for genus Gallus (n = 1), Oncorhynchus (n = 5) and Perca (n = 2). On an ecotoxicological point of view, the highest BCF estimates were obtained for genus Culex and Sialis exposed to chlorpyrifos due to a very low estimate of the elimination rate, for genus Gammarus and Calanus exposed to hydrocarbons, and several aquatic invertebrates exposed to pesticides, especially chlorpyrifos (n = 4), attesting to the potential high bioaccumulation capacity and high risk of toxicity associated with this chemical substance for aquatic organisms. Overall, aquatic invertebrates seem to be the most sensitive category of organisms in terms of bioaccumulation of chemical substances representing 20 in the 25 datasets with a BCF estimates >5000. More

  • in

    Growth-stage-related shifts in diatom endometabolome composition set the stage for bacterial heterotrophy

    Co-culture dynamicsThis study was designed to enhance understanding of metabolite release and utilization across bloom stages in a simple community of phytoplankton and heterotrophic bacteria. The synthetic community was established with the diatom T. pseudonana and the bacterial strains R. pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and P. dokdonensis MED152. These bacterial strains have high genetic similarity to isolates from phytoplankton cultures [14] and represent taxa that are common in phytoplankton blooms. Metabolites derived from the diatom were the sole source of carbon available for the bacteria, since no organic substrates were added. In addition, none of the bacteria can assimilate nitrate, and usable nitrogen was only available as diatom or bacterial extracellular products. The diatom had its highest specific growth rate of 1.65 d−1 during days 0–3, after which the rate declined (Fig. 1A). The total abundance of heterotrophic bacteria increased steadily but there was a succession that favored P. dokdonensis through day 15, and then R. pomeroyi by day 20; Stenotrophomonas disappeared from the model system by day 3 (Fig. 1B). The presence of bacteria did not affect the growth of diatoms based on comparisons of abundance in co-cultures versus axenic cultures at day 15 (Fig. 1A), as has been found previously [14, 26]. Inorganic nutrients were not limiting ( >5 μM at day 15; Table S1).Fig. 1: Time course of microbial abundances.A Cell abundance based on flow cytometric analysis for co-cultures (5 time points) and axenic cultures (day 15 only) (n = 3). The intensive sampling dates for the early and late bloom comparisons are marked with gray boxes. B Mean relative abundance of bacterial species is based on CFUs (n = 3). The day 0 samples were collected 8 h after inoculation.Full size imageDiatom endometabolite shiftsAnalyses focused on the day 3 (early bloom) and day 15 (late bloom) co-culture time points, for which a complete set of metabolomic and transcriptomic data were collected. Twenty-two diatom endometabolites that were annotated with high confidence by NMR analysis (Table S2) and quantified after normalizing to diatom cell number revealed that endometabolome composition differed substantially between bloom stages. Metabolites with significantly different cellular concentrations included nine compounds that were higher in intracellular concentration during the late bloom; these were arginine, valine, lysine, DHPS, glycerol-3-phosphate, phosphorylcholine, DMSP, glycine betaine, and homarine (T-test; P  More

  • in

    Viral diversity is linked to bacterial community composition in alpine stream biofilms

    Viral-like particle abundanceThe 10 sampling sites were equidistantly (average distance: 1.6 km) distributed between 1689 and 717 m above sea level in a 95.7 km2, pristine catchment and covered a flow-connected distance of 14.3 km (Fig. 1, Methods).Fig. 1: No evidence for a downstream accumulation of VLPs.Viral-like particles (VLP) were purified from 10 sites sampled during four seasons along an altitudinal gradient in an alpine stream (Vièze, Switzerland) (a). Neither VLP abundance (b) nor Virus-to-Prokaryote Ratios (VPR; (c)) showed pronounced spatial or temporal trends.Full size imageViral-like particle (VLP) counts normalized to areal coverage of the stream biofilm ranged from 2.8 × 109 to 3.4 × 1010 VLP m−2. On average, VLP abundance was highest in summer with 1.87 ± 0.75 × 1010 VLP m−2; however, there were no statistically significant seasonal differences in VLP abundance (repeated-measures ANOVA, F = 0.87, p = 0.47). VLP numbers did not exhibit a continuous spatial tendency, except during fall when VLP numbers increased significantly with downstream distance (r = 0.81, p 0.7 and/or pident >0.4). Indeed, 90 of the 203 putative viral depolymerases showed significant sequence similarity with 198 vOTU sequences (i.e., 6% of the overall vOTU diversity). We were able to obtain taxonomic classification for 80 of these 198 vOTUs, and found that all large Caudovirales families were represented (i.e., Myoviridae, n = 31, Siphoviridae, n = 17, Podoviridae, n = 15, Autographiviridae, n = 13, Ackermannviridae, n = 2, and Herelleviridae, n = 1). This suggests that depolymerase activity may be widespread among viruses infecting bacteria in stream biofilms. Although both the number of potential depolymerases included in our database and the number of classified vOTUs was limited, we observed that depolymerase-harboring Myoviridae vOTUs corresponded the expectation based on the overall relative abundance of Myoviridae, pointing toward the importance of dispersal for this important viral family. Siphoviridae, in contrast, were relatively underrepresented among depolymerase-harboring vOTUs. In combination with neutral model predictions, this may point towards a fundamental difference between Siphoviridae and Myoviridae in infecting stream biofilm bacteria. While Myoviridae may rather rely on efficiently spreading across distant biofilm patches facilitated by an ability to decompose the EPS matrix, many members of Siphoviridae seem to lack this ability.To investigate our second hypothesis, that lysogeny might be a successful viral life cycle strategy to spread locally within biofilm patches, we used BACPHLIP [36]. BACPHLIP predicted with high probability ( >75%) a lysogenic life cycle for 58 out of 256 complete viral genomes and a lytic life cycle for 177 viral genomes. For the remaining 21 complete viral genomes in our dataset, BACPHLIP did not result in sufficiently high prediction probability (i.e., More

  • in

    Native range estimates for red-listed vascular plants

    Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Biodiversity Synthesis. (World Resources Institute, 2005).Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).
    Google Scholar 
    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).
    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science (80-.). 353, 288–291 (2016).ADS 
    CAS 

    Google Scholar 
    Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations. Transforming our World: the 2030 Agenda for Sustainable Development. A/RES/70/1 (United Nations, 2015).Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science (80-.). 366, eaax3100 (2019).Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science (80-.). 344, 1109–1113 (2014).ADS 
    CAS 

    Google Scholar 
    Chaudhary, A. & Brooks, T. M. National Consumption and Global Trade Impacts on Biodiversity. World Dev. 121, 178–187 (2019).
    Google Scholar 
    Pereira, H. M., Ziv, G. & Miranda, M. Countryside Species-Area Relationship as a Valid Alternative to the Matrix-Calibrated Species-Area Model. Conserv. Biol. 28, 874–876 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lomolino, M. V & Heaney, L. R. Frontiers of Biogeography: New Directions in the Geography of Nature. (Sinauer Associates Inc. Publishers, 2004).World Wildlife Fund. WildFinder: Online database of species distributions. http://www.worldwildlife.org/WildFinder (2006).BirdLife International. IUCN Red List for birds. http://www.birdlife.org (2019).IUCN. The IUCN Red List of Threatened Species. Version 2021-1 https://www.iucnredlist.org (2021).Curran, M. et al. Toward Meaningful End Points of Biodiversity in Life Cycle Assessment. Environ. Sci. Technol. 45, 70–79 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woods, J. S. et al. Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward. Int. J. Life Cycle Assess. 23, 1995–2006 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop.). 36, 1058–1069 (2013).
    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (Cop.). 43, 1261–1277 (2020).
    Google Scholar 
    Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographical Scheme for Recording Plant Distributions. International Working Group on Taxonomic Databases (TDWG) https://www.tdwg.org/standards/wgsrpd/ (2001).GBIF. The Global Biodiversity Information Facility: What is GBIF? https://www.gbif.org/what-is-gbif (2021).Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.0). http://biodiversityinformatics.amnh.org/open_source/maxent/ (2016).Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. Proc. Twenty-first Int. Conf. Mach. Learn. 655–662 (2004).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography (Cop.). 40, 887–893 (2017).
    Google Scholar 
    Reddy, S. & Dávalos, L. M. Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr. 30, 1719–1727 (2003).
    Google Scholar 
    Hortal, J., Jiménez-Valverde, A., Gómez, J. F., Lobo, J. M. & Baselga, A. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117, 847–858 (2008).
    Google Scholar 
    Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Linn. Soc. 115, 522–531 (2015).
    Google Scholar 
    Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140 (2011).
    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
    Google Scholar 
    ter Steege, H. et al. Hyperdominance in the Amazonian Tree Flora. Science (80-.). 342, 1243092 (2013).
    Google Scholar 
    Kuipers, K. J. J., Hellweg, S. & Verones, F. Potential Consequences of Regional Species Loss for Global Species Richness: A Quantitative Approach for Estimating Global Extinction Probabilities. Environ. Sci. Technol. 53, 4728–4738 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gade, A. L., Hauschild, M. Z. & Laurent, A. Globally differentiated effect factors for characterising terrestrial acidification in life cycle impact assessment. Sci. Total Environ. 761, 143280 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Géron, C. et al. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biol. Invasions 23, 1765–1779 (2021).
    Google Scholar 
    Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).PubMed 

    Google Scholar 
    Bachman, S., Moat, J., Hill, A., de la Torre, J. & Scott, B. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. Zookeys 150, 117–126 (2011).
    Google Scholar 
    Cardoso, P. red – an R package to facilitate species red list assessments according to the IUCN criteria. Biodivers. Data J. 5, e20530 (2017).
    Google Scholar 
    Lee, C. K. F., Keith, D. A., Nicholson, E. & Murray, N. J. Redlistr: tools for the IUCN Red Lists of ecosystems and threatened species in R. Ecography (Cop.). 42, 1050–1055 (2019).
    Google Scholar 
    Bachman, S., Walker, B., Barrios, S., Copeland, A. & Moat, J. Rapid Least Concern: towards automating Red List assessments. Biodivers. Data J. 8 (2020).POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/ (2021).Chamberlain, S. et al. taxize: Taxonomic information from around the web. R package version 0.9.98. https://github.com/ropensci/taxize (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.r-project.org/ (2021).ITIS. Integrated Taxonomic Information System. https://www.itis.gov/ (2021).Wickham, H. rvest: Easily Harvest (Scrape) Web Pages. R package version 0.3.5. https://cran.r-project.org/package=rvest (2019).Desmet, P. & Page, R. WGSRPD. GitHub repository https://github.com/tdwg/wgsrpd (2018).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0. https://cran.r-project.org/package=rgbif (2021).GBIF. GBIF Occurrence Download. https://doi.org/10.15468/dl.uvd56q (2021).Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E. & Knutti, R. Climate change now detectable from any single day of weather at global scale. Nat. Clim. Chang. 10, 35–41 (2020).ADS 

    Google Scholar 
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. https://cran.r-project.org/package=raster (2019).Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop.). 29, 773–785 (2006).
    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).
    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop.). 31, 161–175 (2008).
    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    Anderson, R. P. & Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37, 1378–1393 (2010).
    Google Scholar 
    Själander, M., Jahre, M., Tufte, G. & Reissmann, N. EPIC: An Energy-Efficient, High-Performance GPGPU Computing Research Infrastructure. arXiv 1–4 (2019).Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.1-4. https://cran.r-project.org/package=dismo (2017).Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad, Dataset https://doi.org/10.5061/dryad.kd1d4 (2018).ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2017).Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography (Cop.). 38, 541–545 (2015).
    Google Scholar 
    Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. in 2nd International Symposium on Information Theory (eds. Petrov, B. N. & Csaki, F.) 267–281 (Akademia Kiado, 1973).Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).MathSciNet 
    MATH 

    Google Scholar 
    Sugiura, N. Further analysts of the data by akaike’ s information criterion and the finite corrections. Commun. Stat. – Theory Methods 7, 13–26 (1978).MATH 

    Google Scholar 
    Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17 (2013).
    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).PubMed 

    Google Scholar 
    Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37, 17 (1950).MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Borgelt, J., Sicacha-Parada, J., Skarpaas, O. & Verones, F. Native range estimates for red-listed vascular plants. Dryad, Dataset https://doi.org/10.5061/dryad.qbzkh18h9 (2022).Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940–3941 (2005).CAS 
    PubMed 

    Google Scholar 
    Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics 31, 2595–2597 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression. The Statistician 45 (Wiley, 2013).Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
    Google Scholar 
    Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision‐recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10, 565–577 (2019).
    Google Scholar 
    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed 

    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Br. 12, 662–666 (2017).
    Google Scholar 
    Rivers, M. C. Laburnum anagyroides. The IUCN Red List of Threatened Species 2017: e.T79919483A79919650 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T79919483A79919650.en (2017).Botanic Gardens Conservation International Group & IUCN SSC Global Tree Specialist. Terminalia macrostachya. The IUCN Red List of Threatened Species 2019: e.T150118895A150118897 https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T150118895A150118897.en (2019).Heil, K., Terry, M. & Corral-Díaz, R. Mammillaria grahamii (amended version of 2013 assessment). The IUCN Red List of Threatened Species 2017: e.T152723A121546147 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T152723A121546147.en (2017).Brooker, M. & Kleinig, D. Field Guide to Eucalypts. (Bloomings Books, 2006).Koopman, M. M. A synopsis of the Malagasy endemic genus Megistostegium Hochr. (Hibisceae, Malvaceae). Adansonia 33, 101–113 (2011).
    Google Scholar 
    World Conservation Monitoring Centre. Memecylon elegantulum. The IUCN Red List of Threatened Species 1998: e.T32597A9713234 https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32597A9713234.en (1998).Landrum, L. R. A revision of the Psidium salutare complex (Myrtaceae). SIDA, Contrib. to Bot. 20, 1449–1469 (2003).
    Google Scholar 
    Tropical Plants Database. Ken Fern. tropical.theferns.info https://tropical.theferns.info/viewtropical.php?id=Psidium+salutare (2021).Bernal, R., Gradstein, S. R. & Celis, M. Siparuna conica S.S.Renner & Hausner. Catálogo de plantas y líquenes de Colombia http://catalogoplantasdecolombia.unal.edu.co (2015).Renner, S. S. & Hausner, G. New Species of Siparuna (Monimiaceae) II. Seven New Species from Ecuador and Colombia. Missouri Bot. Gard. Press 6, 103–116 (1996).
    Google Scholar 
    Melendo, M., Giménez, E., Cano, E., Mercado, F. G. & Valle, F. The endemic flora in the south of the Iberian Peninsula: taxonomic composition, biological spectrum, pollination, reproductive mode and dispersal. Flora – Morphol. Distrib. Funct. Ecol. Plants 198, 260–276 (2003).
    Google Scholar 
    Chari, L. D., Martin, G. D., Steenhuisen, S.-L., Adams, L. D. & Clark, V. R. Biology of Invasive Plants 1. Pyracantha angustifolia (Franch.) C.K. Schneid. Invasive Plant Sci. Manag. 13, 120–142 (2020).
    Google Scholar 
    Sasidharan, N. Amomum pterocarpum Thwaites. India Biodiversity Portal https://indiabiodiversity.org/species/show/258864#habitat-and-distribution (2013).Contu, S. Amomum pterocarpum. The IUCN Red List of Threatened Species 2013: e.T44393013A44450020 https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T44393013A44450020.en (2013).Babyrose Devi, N., Das, A. & Singh, P. Amomum Pterocarpum (Zingiberaceae): a new record in the flora of Manipur. Int. J. Adv. Res. 6, 546–549 (2018).
    Google Scholar 
    Jetz, W., Sekercioglu, C. H. & Watson, J. E. M. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–9 (2008).PubMed 

    Google Scholar 
    Gibbs, D. & Khela, S. Magnolia pugana. The IUCN Red List of Threatened Species 2014: e.T194806A2363344 https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T194806A2363344.en (2014).Sayer, C. Vallesia glabra. The IUCN Red List of Threatened Species 2015: e.T62543A72668627 https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T62543A72668627.en (2015).Sánchez Gómez, P., Stevens, D., Fennane, M., Gardner, M. & Thomas, P. Tetraclinis articulata. The IUCN Red List of Threatened Species 2011: e.T30318A9534227 https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T30318A9534227.en (2011).Article 

    Google Scholar 
    Stritch, L., Roy, S., Shaw, K. & Wilson, B. Corylus cornuta (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T194448A115337731 https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T194448A2336319.en (2016).Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 
    Rivers, M. C. Cotoneaster cambricus. The IUCN Red List of Threatened Species 2017: e.T102827479A102827485 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T102827479A102827485.en (2017).RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/package=rgdal (2019).Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 0.9-5. https://cran.r-project.org/package=maptools/ (2019).Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). R package version 0.5-1. https://cran.r-project.org/package=rgeos (2019).Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R. (Springer New York, 2013).Phillips, S. J. & Elith, J. POC plots: calibrating species distribution models with presence-only data. Ecology 91, 2476–2484 (2010).PubMed 

    Google Scholar 
    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104, 13384–13389 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).PubMed 

    Google Scholar  More

  • in

    Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit

    van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).
    Google Scholar 
    Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467–471 (2011).
    Google Scholar 
    Brienen, R. J. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
    Google Scholar 
    Klein, T., Cahanovitc, R., Sprintsin, M., Herr, N. & Schiller, G. A nation-wide analysis of tree mortality under climate change: forest loss and its causes in Israel 1948–2017. For. Ecol. Manag. 432, 840–849 (2019).
    Google Scholar 
    Yu, K. et al. Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proc. Natl Acad. Sci. USA 116, 24662–24667 (2019).
    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
    Google Scholar 
    Kharuk, V. I. et al. Climate-driven conifer mortality in Siberia. Glob. Ecol. Biogeogr. 30, 543–556 (2021).
    Google Scholar 
    Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).
    Google Scholar 
    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. & Nepstad, D. The 2010 amazon drought. Science 331, 554 (2011).
    Google Scholar 
    Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).
    Google Scholar 
    Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).
    Google Scholar 
    Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).
    Google Scholar 
    Kannenberg, S. A., Driscoll, A. W., Malesky, D. & Anderegg, W. R. Rapid and surprising dieback of Utah juniper in the southwestern USA due to acute drought stress. For. Ecol. Manag. 480, 118639 (2021).
    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).
    Google Scholar 
    Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26, 3122–3133 (2020).
    Google Scholar 
    Werner, W. L. Canopy dieback in the upper montane rain forests of Sri Lanka. GeoJournal 17, 245–248 (1988).
    Google Scholar 
    Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).
    Google Scholar 
    Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
    Google Scholar 
    Werner, R. A. & Holsten, E. H. Mortality of white spruce during a spruce beetle outbreak on the Kenai Peninsula in Alaska. Can. J. For. Res. 13, 96–101 (1983).
    Google Scholar 
    Suarez, M. L., Ghermandi, L. & Kitzberger, T. Factors predisposing episodic drought-induced tree mortality in Nothofagus: site, climatic sensitivity and growth trends. J. Ecol. 92, 954–966 (2004).
    Google Scholar 
    Swemmer, A. M. Locally high, but regionally low: the impact of the 2014–2016 drought on the trees of semi-arid savannas, South Africa. Afr. J. Range Forage Sci. 37, 31–42 (2020).
    Google Scholar 
    Michaelian, M., Hogg, E. H., Hall, R. J. & Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Chang Biol. 17, 2084–2094 (2011).
    Google Scholar 
    Kharuk, V. I. et al. Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed, Siberia. For. Ecol. Manag. 384, 191–199 (2017).
    Google Scholar 
    Kharuk, V. I., Ranson, K. J., Oskorbin, P. A., Im, S. T. & Dvinskaya, M. L. Climate induced birch mortality in Trans-Baikal lake region, Siberia. For. Ecol. Manag. 289, 385–392 (2013).
    Google Scholar 
    Crouchet, S. E., Jensen, J., Schwartz, B. F. & Schwinning, S. Tree mortality after a hot drought: distinguishing density-dependent and -independent drivers and why it matters. Front. For. Glob. Change 2, 21 (2019).
    Google Scholar 
    Breshears, D. D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4, 266 (2013).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).
    Google Scholar 
    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).
    Google Scholar 
    Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Chang. 9, 948–953 (2019).
    Google Scholar 
    Dore, M. H. Climate change and changes in global precipitation patterns: what do we know? Environ. Int. 31, 1167–1181 (2005).
    Google Scholar 
    Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 31, e2020GL087820 (2020).
    Google Scholar 
    Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. New Phytol. 231, 32–39 (2021).
    Google Scholar 
    Adams, H. D. et al. Temperature response surfaces for mortality risk of tree species with future drought. Environ. Res. Lett. 12, 115014 (2017).
    Google Scholar 
    McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Chang. 6, 295–300 (2016).
    Google Scholar 
    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).
    Google Scholar 
    Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2020).
    Google Scholar 
    Long, S. P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ. 14, 729–739 (1991).
    Google Scholar 
    Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14, 1531–1542 (2008).
    Google Scholar 
    Baig, S., Medlyn, B. E., Mercado, L. & Zaehle, S. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob. Change Biol. 21, 4303–4319 (2015).
    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).
    Google Scholar 
    Belmecheri, S. et al. Precipitation alters the CO2 effect on water-use efficiency of temperate forests. Glob. Change Biol. 27, 1560–1571 (2021).
    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).
    Google Scholar 
    De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? New Phytol. 231, 2118–2124 (2021).
    Google Scholar 
    Martınez-Vilalta, J., Piñol, J. & Beven, K. A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol. Model. 155, 127–147 (2002).
    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).
    Google Scholar 
    McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).
    Google Scholar 
    Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017).
    Google Scholar 
    Fisher, R. et al. Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol. 187, 666–681 (2010).
    Google Scholar 
    McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel–experiment framework. New Phytol. 200, 304–321 (2013).
    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).
    Google Scholar 
    Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v. 1-Hydro). Geosci. Model Dev. 9, 4227–4255 (2016).
    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the community land model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).
    Google Scholar 
    Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 3, 30–36 (2013).
    Google Scholar 
    Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28 (2018).
    Google Scholar 
    Adams, H. D. et al. Ecohydrological consequences of drought- and infestation-triggered tree die-off: insights and hypotheses. Ecohydrology 5, 145–159 (2012).
    Google Scholar 
    Bearup, L. A., Maxwell, R. M., Clow, D. W. & McCray, J. E. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds. Nat. Clim. Chang. 4, 481–486 (2014).
    Google Scholar 
    Bennett, K. E. et al. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River. Hydrol. Earth Syst. Sci. 22, 709–725 (2018).
    Google Scholar 
    Lutz, J. A. & Halpern, C. B. Tree mortality during early forest development: a long-term study of rates, causes, and consequences. Ecol. Monogr. 76, 257–275 (2006).
    Google Scholar 
    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352 (2016).
    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
    Google Scholar 
    Waring, K. M. et al. Modeling the impacts of two bark beetle species under a warming climate in the southwestern USA: ecological and economic consequences. Environ. Manag. 44, 824–835 (2009).
    Google Scholar 
    Barigah, T. S. et al. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann. Bot. 112, 1431–1437 (2013).
    Google Scholar 
    Guadagno, C. R. et al. Dead or alive? Using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. Plant Physiol. 175, 223–234 (2017).
    Google Scholar 
    Hammond, W. M. et al. Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phytol. 223, 1834–1843 (2019).
    Google Scholar 
    Sapes, G. et al. Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality. Tree Physiol. 39, 1300–1312 (2019).
    Google Scholar 
    Mantova, M., Menezes-Silva, P. E., Badel, E., Cochard, H. & Torres-Ruiz, J. M. The interplay of hydraulic failure and cell vitality explains tree capacity to recover from drought. Physiol. Plant. 172, 247–257 (2021).
    Google Scholar 
    Kono, Y. et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun. Biol. 2, 8 (2019).
    Google Scholar 
    Preisler, Y. et al. Seeking the “point of no return” in the sequence of events leading to mortality of mature trees. Plant Cell Environ. 44, 1315–1328 (2020).
    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).
    Google Scholar 
    Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).
    Google Scholar 
    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Chang. 5, 669–672 (2015).
    Google Scholar 
    Stephenson, N. L. & van Mantgem, P. J. Forest turnover rates follow global and regional patterns of productivity. Ecol. Lett. 8, 524–531 (2005).
    Google Scholar 
    Zhu, K. C. et al. Dual impacts of climate change: forest migration and turnover through life history. Glob. Change Biol. 20, 251–264 (2014).
    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
    Google Scholar 
    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).
    Google Scholar 
    Hartmann, H. et al. Climate change risks to global forest health – emergence of unexpected events of elevated tree mortality world-wide. Annu. Rev. Plant Biol. https://doi.org/10.1146/annurev-arplant-102820-012804 (2022).Article 

    Google Scholar 
    Manion, P. D. Tree Disease Concepts (Prentice-Hall, 1981)Brodribb, T. J. Learning from a century of droughts. Nat. Ecol. Evol. 4, 1007–1008 (2020).
    Google Scholar 
    Anderegg, W. R. et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208, 674–683 (2015).
    Google Scholar 
    Huang, J. et al. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2019).
    Google Scholar 
    Martinez-Vilalta, J., Anderegg, W. R., Sapes, G. & Sala, A. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytol. 223, 22–32 (2019).
    Google Scholar 
    Cuneo, I. F., Knipfer, T., Brodersen, C. R. & McElrone, A. J. Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought. Plant Physiol. 172, 1669–1678 (2016).
    Google Scholar 
    Johnson, D. M. et al. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant Cell Environ. 41, 576–588 (2018).
    Google Scholar 
    Cochard, H. A new mechanism for tree mortality due to drought and heatwaves. Peer Community J. 1, e36 (2021).
    Google Scholar 
    Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytol. 221, 693–705 (2019).
    Google Scholar 
    Beckett, R. P. Pressure–volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Ann. Bot. 79, 145–152 (1997).
    Google Scholar 
    Ding, Y., Zhang, Y., Zheng, Q. S. & Tyree, M. T. Pressure–volume curves: revisiting the impact of negative turgor during cell collapse by literature review and simulations of cell micromechanics. New Phytol. 203, 378–387 (2014).
    Google Scholar 
    Sperry, J. S., Adler, F. R., Campbell, G. S. & Comstock, J. P. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ. 21, 347–359 (1998).
    Google Scholar 
    Rodriguez-Dominguez, C. M. & Brodribb, T. J. Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytol. 225, 126–134 (2020).
    Google Scholar 
    Carminati, A. & Javaux, M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25, 868–880 (2020).
    Google Scholar 
    Maseda, P. H. & Fernandez, R. J. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J. Exp. Bot. 57, 3963–3977 (2006).
    Google Scholar 
    Plaut, J. A. et al. Hydraulic limits preceding mortality in a piñon–juniper woodland under experimental drought. Plant Cell Environ. 35, 1601–1617 (2012).
    Google Scholar 
    Creek, D. et al. Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique. J. Exp. Bot. 71, 1151–1159 (2020).
    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).
    Google Scholar 
    Hammond, W. M. & Adams, H. D. Dying on time: traits influencing the dynamics of tree mortality risk from drought. Tree Physiol. 39, 906–909 (2019).
    Google Scholar 
    Körner, C. No need for pipes when the well is dry — a comment on hydraulic failure in trees. Tree Physiol. 39, 695–700 (2019).
    Google Scholar 
    Machado, R. et al. Where do leaf water leaks come from? Trade-offs underlying the variability in minimum conductance across tropical savanna species with contrasting growth strategies. New Phytol. 229, 1415–1430 (2021).
    Google Scholar 
    Burghardt, M. & Riederer, M. in Biology of the Plant Cuticle (eds Riederer, M. & Müller, C.) 292–311 (Blackwell, 2006).Billon, L. M. et al. The DroughtBox: a new tool for phenotyping residual branch conductance and its temperature dependence during drought. Plant Cell Environ. 43, 1584–1594 (2020).
    Google Scholar 
    Wolfe, B. T. Bark water vapour conductance is associated with drought performance in tropical trees. Biol. Lett. 16, 20200263 (2020).
    Google Scholar 
    Martín-Gómez, P., Serrano, L. & Ferrio, J. P. Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology. Tree Physiol. 37, 511–522 (2017).
    Google Scholar 
    Arend, M. et al. Rapid hydraulic collapse as cause of drought-induced mortality in conifers. Proc. Natl Acad. Sci. USA 118, e2025251118 (2021).
    Google Scholar 
    Wang, W. et al. Mortality predispositions of conifers across western USA. New Phytol. 229, 831–844 (2020).
    Google Scholar 
    Christiansen, E., Waring, R. H. & Berryman, A. A. Resistance of conifers to bark beetle attack: searching for general relationships. For. Ecol. Manag. 22, 89–106 (1987).
    Google Scholar 
    Bigler, C., Bräker, O. U., Bugmann, H., Dobbertin, M. & Rigling, A. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9, 330–343 (2006).
    Google Scholar 
    Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 197, 850–861 (2013).
    Google Scholar 
    Meinzer, F. C. et al. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant Cell Environ. 29, 105–114 (2006).
    Google Scholar 
    McDowell, N. G., Allen, C. D. & Marshall, L. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob. Change Biol. 16, 399–415 (2010).
    Google Scholar 
    Kane, J. M. & Kolb, T. E. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack. Oecologia 164, 601–609 (2010).
    Google Scholar 
    Ferrenberg, S., Kane, J. M. & Mitton, J. B. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines. Oecologia 174, 1283–1292 (2014).
    Google Scholar 
    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
    Google Scholar 
    Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M. & Gibon, Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).
    Google Scholar 
    Yu, S. Cellular and genetic responses of plants to sugar starvation. Plant Physiol. 121, 687–693 (1999).
    Google Scholar 
    Koster, K. L. & Leopold, A. C. Sugars and desiccation tolerance in seeds. Plant Physiol. 88, 829–832 (1988).
    Google Scholar 
    Sapes, G., Demaree, P., Lekberg, Y. & Sala, A. Plant carbohydrate depletion impairs water relations and spreads via ectomycorrhizal networks. New Phytol. 229, 3172–3183 (2021).
    Google Scholar 
    Hoekstra, F. A., Golovina, E. A. & Buitink, J. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6, 431–438 (2001).
    Google Scholar 
    Van den Ende, W. & Valluru, R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 60, 9–18 (2009).
    Google Scholar 
    Matros, A., Peshev, D., Peukert, M., Mock, H.-P. & Ende, W. Vden Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. Plant J. 82, 822–839 (2015).
    Google Scholar 
    Rolland, F., Baena-González, E. & Sheen, J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675–709 (2006).
    Google Scholar 
    Ramel, F., Sulmon, C., Bogard, M., Couée, I. & Gouesbet, G. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol. 9, 28 (2009).
    Google Scholar 
    Fine, P. V. A. et al. The growth–defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87, S150–S162 (2006).
    Google Scholar 
    Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 1267–1287 (2014).
    Google Scholar 
    Ouédraogo, D.-Y., Mortier, F., Gourlet-Fleury, S., Freycon, V. & Picard, N. Slow-growing species cope best with drought: evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa. J. Ecol. 101, 1459–1470 (2013).
    Google Scholar 
    de la Mata, R., Hood, S. & Sala, A. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa. Proc. Natl Acad. Sci. USA 114, 7391–7396 (2017).
    Google Scholar 
    Roskilly, B., Keeling, E., Hood, S., Giuggiola, A. & Sala, A. Conflicting functional effects of xylem pit structure relate to the growth-longevity trade-off in a conifer species. Proc. Natl Acad. Sci. USA 116, 15282–15287 (2019).
    Google Scholar 
    Snyder, K. A. & Williams, D. G. Defoliation alters water uptake by deep and shallow roots of Prosopis velutina (Velvet Mesquite). Funct. Ecol. 17, 363–374 (2003).
    Google Scholar 
    Eyles, A., Pinkard, E. A. & Mohammed, C. Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiol. 29, 753–764 (2009).
    Google Scholar 
    Hillabrand, R. M., Hacke, U. G. & Lieffers, V. J. Defoliation constrains xylem and phloem functionality. Tree Physiol. 39, 1099–1108 (2019).
    Google Scholar 
    Landhäusser, S. M. & Lieffers, V. J. Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees 26, 653–661 (2012).
    Google Scholar 
    Poyatos, R., Aguadé, D., Galiano, L., Mencuccini, M. & Martínez-Vilalta, J. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol. 200, 388–401 (2013).
    Google Scholar 
    Cardoso, A. A., Batz, T. A. & McAdam, S. A. Xylem embolism resistance determines leaf mortality during drought in Persea americana. Plant Physiol. 182, 547–554 (2020).
    Google Scholar 
    Mencuccini, M. et al. Leaf economics and plant hydraulics drive leaf:wood area ratios. New Phytol. 224, 1544–1556 (2019).
    Google Scholar 
    Cochard, H., Pimont, F., Ruffault, J. & Martin-St Paul, N. SurEau: a mechanistic model of plant water relations under extreme drought. Ann. Forest Sci. 78, 1–23 (2021).
    Google Scholar 
    Yin, M. C. & Blaxter, J. H. S. Temperature, salinity tolerance, and buoyancy during early development and starvation of Clyde and North Sea herring, cod, and flounder larvae. J. Exp. Mar. Biol. Ecol 107, 279–290 (1987).
    Google Scholar 
    Cahill, G. F. Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).
    Google Scholar 
    Yandi, I. & Altinok, I. Irreversible starvation using RNA/DNA on lab-grown larval anchovy, Engraulis encrasicolus, and evaluating starvation in the field-caught larval cohort. Fish. Res. 201, 32–37 (2018).
    Google Scholar 
    Smith, A. M. & Stitt, M. Coordination of carbon supply and plant growth. Plant Cell Environ. 30, 1126–1149 (2007).
    Google Scholar 
    Schädel, C., Richter, A., Blöchl, A. & Hoch, G. Hemicellulose concentration and composition in plant cell walls under extreme carbon source–sink imbalances. Physiol. Plant. 139, 241–255 (2010).
    Google Scholar 
    Tsamir-Rimon, M. et al. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. New Phytol. 229, 1398–1414 (2020).
    Google Scholar 
    McLoughlin, F. et al. Autophagy plays prominent roles in amino acid, nucleotide, and carbohydrate metabolism during fixed-carbon starvation in maize. Plant Cell 32, 2699–2724 (2020).
    Google Scholar 
    Quirk, J., McDowell, N. G., Leake, J. R., Hudson, P. J. & Beerling, D. J. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am. J. Bot. 100, 582–591 (2013).
    Google Scholar 
    Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).
    Google Scholar 
    Tomasella, M., Petrussa, E., Petruzzellis, F., Nardini, A. & Casolo, V. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. Int. J. Mol. Sci. 21, 144 (2020).
    Google Scholar 
    Gaylord, M. L. et al. Drought predisposes piñon–juniper woodlands to insect attacks and mortality. New Phytol. 198, 567–578 (2013).
    Google Scholar 
    Dickman, L. T., McDowell, N. G., Sevanto, S., Pangle, R. E. & Pockman, W. T. Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios. Plant Cell Environ. 38, 729–739 (2015).
    Google Scholar 
    Ruehr, N. K. et al. Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol. 184, 950–961 (2009).
    Google Scholar 
    Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J. & Hölttä, T. Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytol. 208, 396–409 (2015).
    Google Scholar 
    Hagedorn, F. et al. Recovery of trees from drought depends on belowground sink control. Nat. Plants 2, 16111 (2016).
    Google Scholar 
    Hesse, B. D., Goisser, M., Hartmann, H. & Grams, T. E. E. Repeated summer drought delays sugar export from the leaf and impairs phloem transport in mature beech. Tree Physiol. 39, 192–200 (2019).
    Google Scholar 
    Wiley, E., Hoch, G. & Landhäusser, S. M. Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress. J. Exp. Bot. 68, 5221–5232 (2017).
    Google Scholar 
    Weber, R. et al. Living on next to nothing: tree seedlings can survive weeks with very low carbohydrate concentrations. New Phytol. 218, 107–118 (2018).
    Google Scholar 
    Hasanuzzaman, M. & Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms (Springer, 2020)O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Chang. 4, 710–714 (2014).
    Google Scholar 
    Nardini, A. et al. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant Cell Environ. 39, 618–627 (2016).
    Google Scholar 
    Zinselmeier, C., Westgate, M. E., Schussler, J. R. & Jones, R. J. Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol. 107, 385–391 (1995).
    Google Scholar 
    Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63, 597–612 (2006).
    Google Scholar 
    Oliva, J., Stenlid, J. & Martínez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol. 203, 1028–1035 (2014).
    Google Scholar 
    Kolb, T. et al. Drought-mediated changes in tree physiological processes weaken tree defenses to bark beetle attack. J. Chem. Ecol. 45, 888–900 (2019).
    Google Scholar 
    Croize, L., Lieutier, F., Cochard, H. & Dreyer, E. Effects of drought stress and high density stem inoculations with Leptographium wingfieldii on hydraulic properties of young Scots pine trees. Tree Physiol. 21, 427–436 (2001).
    Google Scholar 
    Wullschleger, S. D., McLaughlin, S. B. & Ayres, M. P. High-resolution analysis of stem increment and sap flow for loblolly pine trees attacked by southern pine beetle. Can. J. For. Res. 34, 387–2393 (2004).
    Google Scholar 
    Hubbard, R. M., Rhoades, C. C., Elder, K. & Negron, J. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling. For. Ecol. Manag. 289, 312–317 (2013).
    Google Scholar 
    Manter, D. K. & Kavanagh, K. L. Stomatal regulation in Douglas fir following a fungal-mediated chronic reduction in leaf area. Trees 17, 485–491 (2003).
    Google Scholar 
    Lahr, E. L. & Sala, A. Sapwood stored resources decline in whitebark and lodgepole pines attacked by mountain pine beetles (Coleoptera: Curculionidae). Environ. Entomol. 45, 1463–1475 (2016).
    Google Scholar 
    Marler, T. E. & Cascasan, A. N. Carbohydrate depletion during lethal infestation of Aulacaspis yasumatsui on Cycas revoluta. Int. J. Plant Sci. 179, 497–504 (2018).
    Google Scholar 
    Hood, S. & Sala, A. Ponderosa pine resin defenses and growth: metrics matter. Tree Physiol. 35, 1223–1235 (2015).
    Google Scholar 
    Roth, M., Hussain, A., Cale, J. A. & Erbilgin, N. Successful colonization of lodgepole pine trees by mountain pine beetle increased monoterpene production and exhausted carbohydrate reserves. J. Chem. Ecol. 44, 209–214 (2018).
    Google Scholar 
    Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).
    Google Scholar 
    Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 4, 806–810 (2014).
    Google Scholar 
    Ryan, M. G., Sapes, G., Sala, A. & Hood, S. M. Tree physiology and bark beetles. New Phytol. 205, 955–957 (2015).
    Google Scholar 
    Huang, J. et al. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2020).
    Google Scholar 
    Goodsman, D. W., Lusebrink, I., Landhäusser, S. M., Erbilgin, N. & Lieffers, V. J. Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. New Phytol. 197, 586–594 (2013).
    Google Scholar 
    Wiley, E., Rogers, B. J., Hodgkinson, R. & Landhäusser, S. M. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack. New Phytol. 209, 550–562 (2016).
    Google Scholar 
    Netherer, S. et al. Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol. 205, 1128–1141 (2015).
    Google Scholar 
    Rissanen, K. et al. Drought effects on carbon allocation to resin defences and on resin dynamics in old-grown Scots pine. Environ. Exp. Bot. 185, 104410 (2021).
    Google Scholar 
    Gershenzon, J. Metabolic costs of terpenoid accumulation in higher plants. J. Chem. Ecol. 20, 1281–1328 (1994).
    Google Scholar 
    Navarro, L. et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 1, 650–655 (2008).
    Google Scholar 
    Fox, H. et al. Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiol. 38, 423–441 (2018).
    Google Scholar 
    Caretto, S., Linsalata, V., Colella, G., Mita, G. & Lattanzio, V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int. J. Mol. Sci. 16, 26378–26394 (2015).
    Google Scholar 
    Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 167, 353–376 (2005).
    Google Scholar 
    Suárez-Vidal, E. et al. Drought stress modifies early effective resistance and induced chemical defences of Aleppo pine against a chewing insect herbivore. Environ. Exp. Bot. 162, 550–559 (2019).
    Google Scholar 
    Hood, S., Sala, A., Heyerdahl, E. K. & Boutin, M. Low-severity fire increases tree defense against bark beetle attacks. Ecology 96, 1846–1855 (2015).
    Google Scholar 
    Zhao, S. & Erbilgin, N. Larger resin ducts are linked to the survival of lodgepole pine trees during mountain pine beetle outbreak. Front. Plant Sci. 10, 1459 (2019).
    Google Scholar 
    Kichas, N. E., Hood, S. M., Pederson, G. T., Everett, R. G. & McWethy, D. B. Whitebark pine (Pinus albicaulis) growth and defense in response to mountain pine beetle outbreaks. For. Ecol. Manag. 457, 117736 (2020).
    Google Scholar 
    Gaylord, M. L., Kolb, T. E. & McDowell, N. G. Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees. Tree Physiol. 35, 806–816 (2015).
    Google Scholar 
    Anderegg, W. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).
    Google Scholar 
    De Kauwe, M. G. et al. Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia. Glob. Change Biol. 26, 5716–5733 (2020).
    Google Scholar 
    Sperry, J. S. et al. The impact of rising CO2 and acclimation on the response of US forests to global warming. Proc. Natl Acad. Sci. USA 116, 25734–25744 (2019).
    Google Scholar 
    Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).
    Google Scholar 
    Klein, T. & Ramon, U. Stomatal sensitivity to CO2 diverges between angiosperm and gymnosperm tree species. Funct. Ecol. 33, 1411–1424 (2019).
    Google Scholar 
    Paudel, I. et al. Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environ. Exp. Bot. 148, 117–127 (2018).
    Google Scholar 
    Bobich, E. G., Barron-Gafford, G. A., Rascher, K. G. & Murthy, R. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. Tree Physiol. 30, 866–875 (2010).
    Google Scholar 
    Gimeno, T. E., McVicar, T. R., O’Grady, A. P., Tissue, D. T. & Ellsworth, D. S. Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Glob. Change Biol. 24, 3010–3024 (2018).
    Google Scholar 
    Nowak, R. S. et al. Elevated atmospheric CO2 does not conserve soil water in the mojave desert. Ecology 85, 93–99 (2004).
    Google Scholar 
    Schäfer, K. V., Oren, R., Lai, C. T. & Katul, G. G. Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Glob. Change Biol. 8, 895–911 (2002).
    Google Scholar 
    Novick, K. A., Katul, G. G., McCarthy, H. R. & Oren, R. Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility. Tree Physiol. 32, 752–763 (2012).
    Google Scholar 
    Li, X. M. et al. Temperature alters the response of hydraulic architecture to CO2 in cotton plants (Gossypium hirsutum). Environ. Exp. Bot. 172, 104004 (2020).
    Google Scholar 
    Li, W. et al. The sweet side of global change–dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiol. 38, 1706–1723 (2018).
    Google Scholar 
    Duan, H. et al. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ. 37, 1598–1613 (2014).
    Google Scholar 
    Duan, H. et al. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality. Tree Physiol. 38, 1138–1151 (2018).
    Google Scholar 
    Zavala, J. A., Nabity, P. D. & DeLucia, E. H. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 58, 79–97 (2013).
    Google Scholar 
    Kazan, K. Plant-biotic interactions under elevated CO2: a molecular perspective. Environ. Exp. Bot. 153, 249–261 (2018).
    Google Scholar 
    Gessler, A., Schaub, M. & McDowell, N. G. The role of nutrients in drought-induced tree mortality and recovery. New Phytol. 214, 513–520 (2017).
    Google Scholar 
    Mackay, D. S. et al. Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought. Water Resour. Res. 51, 6156–6176 (2015).
    Google Scholar 
    Mackay, D. S. et al. Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics. New Phytol. 225, 679–692 (2020).
    Google Scholar 
    Tai, X. et al. Plant hydraulic stress explained tree mortality and tree size explained beetle attack in a mixed conifer forest. J. Geophys. Res. Biogeosci. 124, 3555–3568 (2019).
    Google Scholar 
    Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 186, 274–281 (2010).
    Google Scholar 
    Limousin, J. M. et al. Regulation and acclimation of leaf gas exchange in a piñon–juniper woodland exposed to three different precipitation regimes. Plant Cell Environ. 36, 1812–1825 (2013).
    Google Scholar 
    Sorek, Y. et al. An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes. New Phytol. 229, 1955–1969 (2021).
    Google Scholar 
    Hudson, P. J. et al. Impacts of long-term precipitation manipulation on hydraulic architecture and xylem anatomy of piñon and juniper in Southwest USA. Plant Cell Environ. 41, 421–435 (2018).
    Google Scholar 
    Warren, J. M., Norby, R. J. & Wullschleger, S. D. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).
    Google Scholar 
    Matusick, G. et al. Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought. Environ. Res. Lett. 13, 095002 (2018).
    Google Scholar 
    Shirley, H. L. Lethal high temperatures for conifers, and the cooling effect of transpiration. J. Agric. Res. 53, 239–258 (1936).
    Google Scholar 
    Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).
    Google Scholar 
    Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).
    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).
    Google Scholar 
    Nakamura, T. et al. Tree hazards compounded by successive climate extremes after masting in a small endemic tree, Distylium lepidotum, on subtropical islands in Japan. Glob. Change Biol 27, 5094–5108 (2021).
    Google Scholar 
    Hummel, I. et al. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 154, 357–372 (2010).
    Google Scholar 
    Jamieson, M. A., Trowbridge, A. M., Raffa, K. F. & Lindroth, R. L. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 160, 1719–1727 (2012).
    Google Scholar 
    Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).
    Google Scholar 
    Netherer, S. et al. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest Sci. 94, 591–614 (2021).
    Google Scholar 
    Love, D. M. et al. Dependence of aspen stands on a subsurface water subsidy: implications for climate change impacts. Water Resour. Res. 55, 1833–1848 (2019).
    Google Scholar 
    McDowell, N. G. et al. Mechanisms of a coniferous woodland persistence under drought and heat. Environ. Res. Lett. 14, 045014 (2019).
    Google Scholar 
    Rozendaal, D. M. et al. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, e03052 (2020).
    Google Scholar 
    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).
    Google Scholar 
    CH2018 Project Team. CH2018 — climate scenarios for Switzerland. NCCS https://doi.org/10.18751/Climate/Scenarios/CH2018/1.0 (2018).Article 

    Google Scholar 
    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300 (1997).
    Google Scholar 
    McDowell, N. G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059 (2011).
    Google Scholar  More