More stories

  • in

    A hierarchical inventory of the world’s mountains for global comparative mountain science

    The generation of this map of the world’s mountains consisted of five steps (Fig. 1): (i) the identification and hierarchisation of named mountain ranges and the recording of range-specific information; (ii) the manual digitization of the ranges’ general shape; (iii) the definition of mountainous terrain (and the inventory’s outer borders) using a DEM-based algorithm; (iv) the automatic refinement of the digitized and named ranges’ inner borders; and (v) the preparation of the final layers. The resulting products consist of a refined mountain definition (GMBA Definition v2.0), two versions of the inventory (GMBA Inventory v2.0_standard & GMBA Inventory v2.0_broad), and a set of tools to work with the inventories.Step i: Identification and hierarchisation of mountain rangesIn a first step, we identified mountain ranges worldwide. To do so we adopted the mountain ranges identified in the GMBA Inventory v1.410,14 and searched existing resources in any languages for other named ranges not yet included. The ranges added could either be adjacent to, included in (child range or subrange) or including (parent range or mountain system) mountain ranges of the GMBA Inventory v1.4. The resources used for our searches included world atlases (e.g. The Times Comprehensive Atlas of the World19, Knaurs grosser Weltatlas20, Pergamon World Atlas21); topographic maps (e.g. http://legacy.lib.utexas.edu/maps/imw/, http://legacy.lib.utexas.edu/maps/onc/, https://maps.lib.utexas.edu/maps/tpc/, www.topomap.co.nz, https://norgeskart.no, www.ign.es/iberpix/visor/); encyclopaedias (www.wikipedia.org; www.britannica.com); online gazetteers and reference sites (e.g. www.wikidata.org, www.geonames.org (GeoNames), www.mindat.org); mountain classification systems (e.g. the International Standardized Mountain Subdivision of the Alps or SOIUSA for the Alps22, Alpenvereinseinteilung der Ostalpen23, Classification of the Himalaya24, www.peakbagger.com/rangindx.aspx (PEMRACS), www.carpathian-research-network.eu/ogulist, http://www.sopsr.sk/symfony-bioregio/lkpcarporog, www.dinarskogorje.com, https://bivouac.com/, https://climbnz.org.nz/); and national or regional landscape, geomorphological, or physiographic maps and publications4,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42. The full list of the consulted sources and references is available on GitHub at https://www.github.com/GMBA-biodiversity/Inventory (GMBA Mountain Inventory v2.0 References.pdf).All identified mountain ranges were recorded in a Microsoft Access relational database (“Mountain database”, see below) and given a name, a unique 5-digit identifier (GMBA_V2_ID), and the corresponding Wikidata unique resource identifier (URI), when available. This URI gives access to a range’s name as well as to its Wikipedia page URL in all available languages and lists other identifiers for given mountain ranges in a variety of other repositories such as GeoNames or PEMRACS. The primary mountain range names were based on the resources used for range identification and were preferably recorded in English. Names used nationally, locally, as well as/or by indigenous people and local communities were extracted from Wikidata and recorded in a separate attribute field.In the process of cataloguing, we attributed a parent range to each of the mapped mountain ranges. Information about parent ranges is included in PEMRACS, often also in Wikidata as a property that can be extracted though a SPARQL query, in the corresponding Wikipedia pages description, and in regional hierarchical mountain classifications that exist for the European Alps (SOIUSA), the Carpathians, and the Dinaric Alps. When no such information was available, we relied on other sources of information that we found either using a general web search (leading to specific papers, reports, or web pages on mountain ranges) or by consulting (online) topographical maps and atlases at different scales. The information about parent ranges was used to construct a hierarchy of up to 10 levels using a recursive SQL query (see Step v). The result of this step was a relational database with a hierarchy of mountain systems and (sub-) ranges (Fig. 1, “Mountain database”).Step ii: Digitization of the mountain rangesIn a second step, we digitized all identified ‘childless’ mountain ranges (i.e. smallest mapping units, called ‘Basic’ as opposed to ‘Aggregated’ in the database) in one vector GIS layer. To do so, we used the Google Maps Terrain layers (Google, n.d.) as background and the WHYMAP named rivers layer42 as spatial reference since descriptions of mountain range areal extension is often given with reference to major rivers. The digitization, which was done in QGIS43 using the WGS 84 / Pseudo-Mercator (EPSG 3857) coordinate reference system, consisted in the drawing of shapes (polygons) that roughly followed the core area of each mountain range. In general, the approximate shape and extent of the mountain ranges we digitized could be distinguished based on the terrain structure as represented by the shaded relief background that corresponded to the placement and orientation of the range’s name label on a topographical map, atlas or other resource. As the exact placement and orientation of mountain range labels in each specific source can be influenced by cartographic considerations (e.g. avoiding overlaps with other features), the final approximation of the mountain range was obtained by consulting a variety of sources for each mountain range. Occasionally, the mountain terrain’s geomorphological characteristics strongly hampered the accuracy of our visual identification of mountain subranges within larger systems. This was particularly the case in old, eroded massifs such as the Brazilian Highlands or the highlands of Madagascar, where individual mountain ranges are not separated by deep well-defined valleys and have a very complex topography. In these cases, we referred to available topographical descriptions of range extent and to the river layer (see above). Other complex regions included Borneo and the Angolan Highlands, whereas subranges in mountain systems such as the European Alps, the Himalayas, and the North American Cordillera were comparatively easy to map. Moreover, the density of currently available mountain toponymical information varied quite strongly between regions. Accordingly, regional variation in the size of the smallest mountain range map units can be considerable. The result of this step was a (manually) digitized vector layer of named mountain ranges shapes (Fig. 1, “Manual mountain shapes”).Step iii: Definition of mountainous terrainIn a third step, we defined mountainous terrain (GMBA Definition v2.0). To distinguish mountainous from non-mountainous terrain, we developed a simple algorithm which we implemented in ArcMap 10.7.144. This algorithm is based on ruggedness (defined as highest minus lowest elevation in meter) within eight circular neighbourhood analysis windows (NAWs) of different sizes (from 1 pixel (≈ 250 m) to 20 (≈ 5 km) around each point, Fig. 2c) combined with empirically derived thresholds for each NAW (Fig. 2). The decision to use multiple NAW sizes was made because calculating ruggedness based on only a small or a large NAW comes at the risk of identifying the many local irregularities typically occurring in flat or rolling terrain as mountainous or of including extensive flat ‘skirts’ through the smoothing and generalization of large NAWs3. Accordingly, our approach ensures that any point in the landscape classified as mountainous showed some level of ruggedness not only at one but across scales. This also resulted in a smooth and homogeneous delineation of mountainous terrain, very suitable for our mapping purpose.Fig. 2Elevation range thresholds for the eight neighbourhood analysis windows (NAW) and their contribution to calculations of the GMBA Definition v2.0. (a) distribution of elevation range values (ruggedness) for NAWs (numbered I to VIII) in mountain regions as defined by the geometric intersection of K1, K2 and K3. (b): plot of the minimum elevation range versus the area of the NAW (n = 920). (c) NAWs and their corresponding threshold values. (d) percent overlap between GMBA Definition v2.0 (intersection of eight NAW-threshold pairs) and area defined by each individual NAW-threshold pair. (e) percent eliminated by each NAW-threshold pair (I to VIII) from the mountain area defined by the other 7 NAW-threshold combinations. Highlighted bars in the two graphs represent the combination of three NAW-threshold pairs that results in the highest overlap with the GMBA Definition v2.0.Full size imageWe used the median value of the 7.5 arc second GMTED2010 DEM45 as our source map. To reduce the latitudinal distortion of the raster, and thus the shape and area of the NAWs, we divided the global DEM into three raster layers corresponding to three latitudinal zones (84° N to 30° N, 30° N to 30° S and 30° S to 56° S) excluding ice-covered Antarctica and projected the two high latitude zones to Lambert Azimuthal Equal Area and the equatorial zone to WGS 1984 Cylindrical Equal Area. We used these reprojected DEM layers to produce eight ruggedness layers, each using one of the eight NAWs.To determine the threshold values of our algorithm, we selected 1000 random points within the area defined by the geometric intersection (Fig. 1b) of the three commonly applied mountain definitions, i.e. the definitions by UNEP-WCMC46, GMBA15, and USGS3. These layers (referred to as K1, K2, and K3, respectively by Sayre and co-authors12) were obtained from the Global Mountain Explorer47. We eliminated 80 clearly misclassified points (i.e., points that fell within lakes, oceans, or clearly flat areas according to the shaded relief map we used as a background) and used the remaining 920 to sample the eight ruggedness layers. For each of the 8 layers, we retained the lowest of the 920 ruggedness values as the threshold for the layer’s specific NAW (Fig. 2c). The eight threshold values were then used to reclassify each of the eight layers by attributing the value 1 to all cells with a ruggedness value higher than or equal to the corresponding threshold and the value 0 to all other cells. Finally, we performed a geometric intersection (see Fig. 1b) of the eight reclassified layers to derive the new mountain definition.After these calculations, we reprojected the three raster layers to WGS84 and combined them through mosaic to new raster. To eliminate isolated cells and jagged borders, we then generalized the resulting raster map by passing a majority filter (3 × 3 pixels, majority threshold) three times. This layer corresponds to the GMBA Definition v2.0.The resulting mountain definition (GMBA Definition v2.0) distinguishes itself from previous ones because of the empirically derived thresholds method used to develop it and the use of eight NAWs. In line with the previous GMBA definition, it relies entirely on the ruggedness values within NAWs. The GMBA Definition v2.0 was used to determine the outer delineation of this inventory’s mountainous terrain. As expected, it includes neither the wide ‘skirts’ of flat or undulating land around mountain ranges nor the topographical irregularities that are both typically included when other approaches are applied. It also successfully excludes extensive areas of rolling non-mountainous terrain such as the 52,000 km2 Badain Jaran Desert sand dunes in China. However, this mountain definition is conservative and only includes the highest, most rugged cores of low mountain systems, as for example in the Central Uplands of Germany, and therefore excludes some lower hill areas still considered by some as mountains.As a further step towards generalization, we considered that small ( More

  • in

    Reduced bacterial mortality and enhanced viral productivity during sinking in the ocean

    Volk T, Hoffert MI. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS. (eds). The carbon cycle and atmospheric CO2: Natural variations archean to present. American Geophysical Union, Geophysical Monograph, Washington, DC: 1985. p. 32:99–110.Scharek R, Tupas LM, Karl DM. Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA. Mar Ecol-Prog Ser. 1999;182:55–67.
    Google Scholar 
    Simon M, Grossart H, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Micro Ecol. 2002;28:175–211.
    Google Scholar 
    Siegenthaler U, Sarmiento JL. Atmospheric carbon dioxide and the ocean. Nature. 1993;365:119–25.CAS 

    Google Scholar 
    Ducklow H, Steinberg DK. Upper ocean carbon export and the biological pump. Oceanography. 2001;14:50–58.
    Google Scholar 
    Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol. 2010;8:593–9.CAS 
    PubMed 

    Google Scholar 
    DeLong EF, Franks DG, Alldredge AL. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr. 1993;38:924–34.
    Google Scholar 
    Allen AE, Allen LZ, McCrow JP. Lineage specific gene family enrichment at the microscale in marine systems. Curr Opin Microbiol. 2013;16:605–17.CAS 
    PubMed 

    Google Scholar 
    D’Ambrosio L, Ziervogel K, MacGregor B, Teske A, Arnosti C. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J. 2014;8:2167–79.PubMed 
    PubMed Central 

    Google Scholar 
    Martin JH, Knauer GA, Karl DM, Broenkow WW. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res Part I-Oceanogr Res Pap. 1987;34:267–85.CAS 

    Google Scholar 
    Buesseler KO. The decoupling of production and particulate export in the surface ocean. Glob Biogeochem Cycle. 1998;12:297–310.CAS 

    Google Scholar 
    Schlitzer R. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. In: Kasibhata P, editor. Inverse Methods in Global biogeochemical Cycles. Washington, DC: American Geophysical Union; 2000. p. 114:107–24.Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol Oceanogr. 2008;53:1327–38.
    Google Scholar 
    Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.CAS 

    Google Scholar 
    Herndl GJ, Reinthaler T. Microbial control of the dark end of the biological pump. Nat Geosci. 2013;6:718–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergh Ø, Borsheim KY, Bratbak G, Heldal M. High abundance of viruses found in aquatic environments. Nature. 1989;340:467–8.CAS 
    PubMed 

    Google Scholar 
    Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.CAS 
    PubMed 

    Google Scholar 
    Zhang R, Wei W, Cai L. The fate and biogeochemical cycling of viral elements. Nat Rev Microbiol. 2014;12:850–1.CAS 
    PubMed 

    Google Scholar 
    Middelboe M, Lyck PG. Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat Micro Ecol. 2002;27:187–94.
    Google Scholar 
    Weinbauer MG, Brettar I, Hofle MG. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr. 2003;48:1457–65.
    Google Scholar 
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    Jover LF, Effler TC, Buchan A, Wilhelm SW, Weitz JS. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol. 2014;12:519–28.CAS 
    PubMed 

    Google Scholar 
    Bongiorni L, Magagnini M, Armeni M, Noble R, Danovaro R. Viral production, decay rates, and life strategies along a trophic gradient in the North Adriatic Sea. Appl Environ Microbiol. 2005;71:6644–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinbauer MG, Bettarel Y, Cattaneo R, Luef B, Maier C, Motegi C, et al. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research. Aquat Micro Ecol. 2009;57:321–41.CAS 

    Google Scholar 
    Tian Y, Cai L, Xu Y, Luo T, Zhao Z, Wang Q, et al. Stability and infectivity of allochthonous viruses in deep sea: A long-term high pressure simulation experiment. Deep-Sea Res Part I-Oceanogr Res Pap. 2020;161:103302.
    Google Scholar 
    Lara E, Vaqué D, Sà EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.PubMed 
    PubMed Central 

    Google Scholar 
    Zhang R, Li Y, Yan W, Wang Y, Cai L, Luo T, et al. Viral control of biomass and diversity of bacterioplankton in the deep sea. Commun Biol. 2020;3:256.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woźniak SB, Stramski D, Stramska M, Reynolds RA, Wright VM, Miksic EY, et al. Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California. J Geophys Res. 2010;115:C08027.
    Google Scholar 
    White AE, Letelier RM, Whitmire AL, Barone B, Bidigare RR, Church MJ, et al. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA). J Geophys Res-Oceans. 2015;120:7381–99.PubMed 
    PubMed Central 

    Google Scholar 
    Vaulot D, Courties C, Partensky F. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytom Part A. 1989;10:629–35.CAS 

    Google Scholar 
    Chen X, Liu H, Weinbauer M, Chen B, Jiao N. Viral dynamics in the surface water of the western South China Sea in summer 2007. Aquat Micro Ecol. 2011;63:145–60.
    Google Scholar 
    Wei W, Zhang R, Peng L, Liang Y, Jiao N. Effects of temperature and photosynthetically active radiation on virioplankton decay in the western Pacific Ocean. Sci Rep. 2018;8:1525–34.PubMed 
    PubMed Central 

    Google Scholar 
    Marie D, Partensky F, Vaulot D, Brussaard C. Numeration of phytoplankton, bacteria and viruses in marine samples. Curr Protoc Cytom. 1999;11:1–15.
    Google Scholar 
    Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol. 1999;65:45–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brussaard CP. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilhelm SW, Brigden SM, Suttle CA. A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Micro Ecol. 2002;43:168–73.CAS 

    Google Scholar 
    Weinbauer MG, Rowe JM, Wilhelm SW. Determining rates of virus production in aquatic systems by the virus reduction approach. In: Wilhelm SW, Weinbauer MG, Suttle CA. (eds). Manual of Aquatic Viral Ecology. American Society of Limnology and Oceanography Inc., Waco, TX: 2010. p. 1–8.Chen X, Wei W, Wang J, Li H, Sun J, Ma R, et al. Tide driven microbial dynamics through virus-host interactions in the estuarine ecosystem. Water Res. 2019;160:118–29.CAS 
    PubMed 

    Google Scholar 
    Luef B, Luef F, Peduzzi P. Online program ‘vipcal’ for calculating lytic viral production and lysogenic cells based on a viral reduction approach. Environ Microbiol Rep. 2009;1:78–85.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Winget DM, Helton RR, Williamson KE, Bench SR, Williamson SJ. Repeating patterns of virioplankton production within an estuarine ecosystem. Proc Natl Acad Sci USA. 2011;108:11506–11.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei W, Wang N, Cai L, Zhang C, Jiao N, Zhang R. Impacts of freshwater and seawater mixing on the production and decay of virioplankton in a subtropical estuary. Micro Ecol. 2019;78:843–54.CAS 

    Google Scholar 
    Noble RT, Fuhrman JA. Virus decay and its causes in coastal waters. Appl Environ Microbiol. 1997;63:77–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suttle CA, Chen F. Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol. 1992;58:3721–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rowe JM, Saxton MA, Cottrell MT, DeBruyn JM, Berg GM, Kirchman DL, et al. Constraints on viral production in the Sargasso Sea and North Atlantic. Aquat Micro Ecol. 2008;52:233–44.
    Google Scholar 
    Evans C, Pearce I, Brussaard CP. Viral-mediated lysis of microbes and carbon release in the sub-Antarctic and Polar Frontal zones of the Australian Southern Ocean. Environ Microbiol. 2009;11:2924–34.CAS 
    PubMed 

    Google Scholar 
    De Corte D, Sintes E, Winter C, Yokokawa T, Reinthaler T, Herndl GJ. Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME J. 2010;4:1431–42.PubMed 

    Google Scholar 
    Li Y, Lou T, Sun J, Cai L, Liang Y, Jiao N, et al. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean. Biogeosciences. 2014;11:2531–42.
    Google Scholar 
    Liang Y, Zhang Y, Zhang Y, Luo T, Rivkin R, Jiao N. Distributions and relationships of virio- and picoplankton in the epi-, meso- and bathypelagic zones of the Western Pacific Ocean. FEMS Microbiol Ecol. 2017;93:fiw238.PubMed 

    Google Scholar 
    Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64:69–114.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parikka KJ, Le Romancer M, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems. Biol Rev. 2016;92:1081–1100.PubMed 

    Google Scholar 
    Parada V, Herndl GJ, Weinbauer MG. Viral burst size of heterotrophic prokaryotes in aquatic systems. J Mar Biol Assoc UK. 2006;86:613–21.
    Google Scholar 
    Yuan D. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceano Sin. 2002;21:187–202.
    Google Scholar 
    Tian J, Yang Q, Zhao W. Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr. 2009;39:3191–203.
    Google Scholar 
    Alford MH, Lien R, Simmons H, Klymak J, Ramp S, Yang YJ, et al. Speed and evolution of nonlinear internal waves transiting the South China Sea. J Phys Oceanogr. 2010;40:1338–55.
    Google Scholar 
    Parada V, Sintes E, Van Aken HM, Weinbauer MG, Herndl GJ. Viral abundance, decay, and diversity in the meso- and bathypelagic waters of the north atlantic. Appl Environ Microbiol. 2007;73:4429–38.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Corte D, Sintes E, Yokokawa T, Reinthaler T, Herndl GJ. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect. ISME J. 2012;6:1566–77.PubMed 
    PubMed Central 

    Google Scholar 
    Zachary A. An ecological study of bacteriophages of Vibrio natriegens. Appl Environ Microbiol. 1978;24:321–4.CAS 

    Google Scholar 
    Motegi C, Nagata T. Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific. Aquat Micro Ecol. 2007;48:27.
    Google Scholar 
    Bratbak G, Egge JK, Heldal M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol-Prog Ser. 1993;93:39–48.
    Google Scholar 
    Motegi C, Kaiser K, Benner R, Weinbauer MG. Effect of P-limitation on prokaryotic and viral production in surface waters of the Northwestern Mediterranean Sea. J Plankton Res. 2015;37:16–20.CAS 

    Google Scholar 
    Hewson I, O’Neil JM, Fuhrman JA, Dennison WC. Virus-like particle distribution and abundance in sediments and overmaying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr. 2001;46:1734–46.
    Google Scholar 
    Wilson WH, Mann NH. Lysogenic and lytic viral production in marine microbial communities. Aquat Micro Ecol. 1997;13:95–100.
    Google Scholar 
    Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.CAS 
    PubMed 

    Google Scholar 
    Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H. Phage-host interaction: an ecological perspective. J Bacteriol. 2004;186:3677–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.CAS 
    PubMed 

    Google Scholar 
    Williamson SJ, Paul JH. Nutrient stimulation of lytic phage production in bacterial populations of the Gulf of Mexico. Aquat Micro Ecol. 2004;36:9–17.
    Google Scholar 
    Williamson SJ, Paul JH. Environmental factors that influence the transition from lysogenic to lytic existence in the ϕHSIC/Listonella pelagia marine phage–host system. Micro Ecol. 2006;52:217–25.CAS 

    Google Scholar 
    Cissoko M, Desnues A, Bouvy M, Sime-Ngando T, Verling E, Bettarel Y. Effects of freshwater and seawater mixing on virio- and bacterioplankton in a tropical estuary. Freshw Biol. 2008;53:1154–62.
    Google Scholar 
    Bettarel Y, Bouvier T, Agis M, Bouvier C, Van Chu T, Combe M, et al. Viral distribution and life strategies in the Bach Dang Estuary, Vietnam. Micro Ecol. 2011;62:143–54.
    Google Scholar 
    Shkilnyj P, Koudelka GB. Effect of salt shock on stability of λimm434 lysogens. J Bacteriol. 2007;189:3115–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuomi P, Fagerbakke KM, Bratbak G, Heldal M. Nutritional enrichment of a microbial community: the effects on activity, elemental composition, community structure and virus production. FEMS Microbiol Ecol. 1995;16:23–134.
    Google Scholar 
    Dell’Anno A, Corinaldesi C, Danovaro R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci USA. 2015;112:E2014–E2019.PubMed 
    PubMed Central 

    Google Scholar 
    Mojica KD, Brussaard CP. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol Ecol. 2014;89:495–515.CAS 
    PubMed 

    Google Scholar 
    Zweifel UL. Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga. Estuar Coast Shelf Sci. 1999;48:357–70.CAS 

    Google Scholar 
    Pomeroy LR, Wiebe WJ. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Micro Ecol. 2001;23:187–204.
    Google Scholar 
    Ploug H, Grossart H, Azam F, Jørgensen BB. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean. Mar Ecol-Prog Ser. 1999;179:1–11.CAS 

    Google Scholar 
    Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nature. 2007;5:782–91.CAS 

    Google Scholar 
    De Corte D, Sintes E, Yokokawa T, Lekunberri I, Herndl GJ. Large-scale distribution of microbial and viral populations in the South Atlantic Ocean. Environ Microbiol Rep. 2016;8:305–15.PubMed 
    PubMed Central 

    Google Scholar 
    Yang YH, Yokokawa T, Motegi C, Nagata T. Large-scale distribution of viruses in deep waters of the Pacific and Southern Oceans. Aquat Micro Ecol. 2014;71:193–202.
    Google Scholar 
    Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.PubMed 
    PubMed Central 

    Google Scholar 
    Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L, López-Pérez M, et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 2019;13:232–6.CAS 
    PubMed 

    Google Scholar 
    Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.CAS 
    PubMed 

    Google Scholar 
    Peduzzi P, Weinbauer M. Effect of concentrating the virus-rich 2–200 nm size fraction of seawater on the formation of algal flocs (marine snow). Limnol Oceanogr. 1993;38:1562–5.
    Google Scholar 
    Uitz J, Stramski D, Baudoux A, Reynolds RA, Wright VM, Dubranna J, et al. Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria. Limnol Oceanogr. 2010;55:2317–30.
    Google Scholar 
    Sullivan MB, Weitz JS, Wilhelm SW. Viral ecology comes of age. Environ Microbiol Rep. 2017;9:33–35.PubMed 

    Google Scholar 
    Laber CP, Hunter JE, Carvalho F, Collins JR, Hunter EJ, Schieler BM, et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat Microbiol. 2018;3:537–47.CAS 
    PubMed 

    Google Scholar 
    Kranzler CF, Brzezinski MA, Cohen NR, Lampe RH, Maniscalco M, Till CP, et al. Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nat Geosci. 2021;4:231–7.
    Google Scholar 
    Hewson I, Fuhrman JA. Viriobenthos production and virioplankton sorptive scavenging by suspended sediment particles in coastal and pelagic waters. Micro Ecol. 2003;46:337–47.CAS 

    Google Scholar  More

  • in

    Life, death and cyanobacterial biogeography

    Flores, C. O. et al. Proc. Natl Acad. Sci. USA 108, 288–297 (2011).Article 

    Google Scholar 
    Carlson, M. C. G. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01088-x (2022).Article 

    Google Scholar 
    Flombaum, P. et al. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).CAS 
    Article 

    Google Scholar 
    Coleman, M. L. & Chisholm, S. W. Trends Microbiol. 15, 398–407 (2007).CAS 
    Article 

    Google Scholar 
    Johnson, Z. I. et al. Science 311, 1737–1740 (2006).CAS 
    Article 

    Google Scholar 
    Martiny, A. C. et al. PLoS ONE 11, e0168291 (2016).Article 

    Google Scholar 
    Wilhelm, S. W. & Suttle, C. A. Bioscience 49, 781–788 (1999).Article 

    Google Scholar 
    Follett, C. L. et al. Proc. Natl Acad. Sci. USA 119, e2110993118 (2022).CAS 
    Article 

    Google Scholar 
    Mojica, K. D. A. et al. ISME J. 10, 500–513 (2016).CAS 
    Article 

    Google Scholar 
    Mruwat, N. et al. ISME J. 15, 41–54 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Tropical forests have big climate benefits beyond carbon storage

    NEWS
    01 April 2022

    Tropical forests have big climate benefits beyond carbon storage

    Study finds that trees cool the planet by one-third of a degree through biophysical mechanisms such as humidifying the air.

    Freda Kreier

    Freda Kreier

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Tropical forests create cloud cover that reflects sunlight and cools the air.Credit: Thomas Marent/Minden Pictures

    Tropical forests have a crucial role in cooling Earth’s surface by extracting carbon dioxide from the air. But only two-thirds of their cooling power comes from their ability to suck in CO2 and store it, according to a study1. The other one-third comes from their ability to create clouds, humidify the air and release cooling chemicals.
    How much can forests fight climate change?
    This is a larger contribution than expected for these ‘biophysical effects’ says Bronson Griscom, a forest climate scientist at the non-profit environmental organization Conservation International, headquartered in Arlington, Virginia. “For a while now, we’ve assumed that carbon dioxide alone is telling us essentially all we need to know about forest–climate interactions,” he says. But this study confirms that tropical forests have other significant ways of plugging into the climate system, he says.The analysis, published in Frontiers in Forests and Global Change on 24 March1, could enable scientists to improve their climate models, while helping governments to devise better conservation and climate strategies.The findings underscore growing concerns about rampant deforestation across the tropics. Scientists warn that one-third of the world’s tropical forests have been mown down in the past few centuries, and another one-third has been degraded by logging and development. This, when combined with climate change, could transform vast swathes of forest into grasslands2.“This study gives us even more reasons why tropical deforestation is bad for the climate,” says Nancy Harris, forest-research director at the World Resources Institute in Washington DC.More than a carbon spongeForests are major players in the global carbon cycle because they soak up CO2 from the atmosphere as they grow. Tropical forests, in particular, store around one-quarter of all terrestrial carbon on the planet, making them “centrepieces for climate policy” in their home countries, Griscom says.
    Tropical forests may be carbon sources, not sinks
    “There’s clear evidence that the tropics are producing excellent climate benefits for the entire planet,” says Deborah Lawrence, an environmental scientist at the University of Virginia in Charlottesville and a co-author of the latest study. She and her colleagues analysed the cooling capacity of forests around the globe, in particular considering biophysical effects alongside carbon storage. Tropical forests, they found, can cool Earth by a whole 1 °C — and biophysical effects contribute significantly.Although scientists knew about these effects, they hadn’t understood to what extent the various factors counter global warming.Trees in the tropics provide shade, but they also act as giant humidifiers by pulling water from the ground and emitting it from their leaves, which helps to cool the surrounding area in a way similar to sweating, Griscom says.“If you go into a forest, it immediately is a considerably cooler environment,” he says.This transpiration, in turn, creates the right conditions for clouds, which like snow and ice in the Arctic, can reflect sunlight higher into the atmosphere and further cool the surroundings. Trees also release organic compounds — for example, pine-scented terpenes — that react with other chemicals in the atmosphere to sometimes create a net cooling effect.Locally coolTo quantify these effects, Lawrence and her colleagues compared how the various effects of forests around the world feed into the climate system, breaking down their contributions in bands of ten degrees of latitude. When they considered only the biophysical effects, the researchers found that the world’s forests collectively cool the surface of the planet by around 0.5 °C.
    When will the Amazon hit a tipping point?
    Tropical forests are responsible for most of that cooling. But this band of trees across Latin America, Central Africa and southeast Asia is under increasing pressure from climate change and deforestation. Both of these human-caused impacts can lead rainforests to dry out, says Christopher Boulton, a geographer at the University of Exeter, UK. Last month, he and his colleagues published a review2 of nearly 30 years’ worth of satellite images of the Amazon, the largest rainforest in the world. By measuring the biomass of the vegetation in the images, the team discovered that three-quarters of the Amazon is losing resilience — the ability to recover from an extreme weather event such as a drought.Threats to tropical rainforests are dangerous not only for the global climate, but also for communities that neighbour the forests, Lawrence says. She and her colleagues found that the cooling caused by biophysical effects was especially significant locally. Having a rainforest nearby can help to protect an area’s agriculture and cities from heatwaves, Lawrence says. “Every tenth of a degree matters in limiting extreme weather. And where you have forests, the extremes are minimized.”Governments across the tropics have struggled to conserve their forests despite more than two decades of global campaigns to halt deforestation, promote sustainable development and protect the climate. Lawrence says that her team’s findings make it clear that protecting forests is a matter of self-interest, and has immediate benefits for local communities.

    doi: https://doi.org/10.1038/d41586-022-00934-6

    ReferencesLawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2022.756115 (2022).Article 

    Google Scholar 
    Boulton, C. A., Lenton, T. M. & Boers, N. Nature Clim. Change 12, 271–278 (2022).Article 

    Google Scholar 
    Download references

    Related Articles

    How much can forests fight climate change?

    When will the Amazon hit a tipping point?

    Tropical forests may be carbon sources, not sinks

    Illegal mining in the Amazon hits record high amid Indigenous protests

    Subjects

    Climate sciences

    Climate change

    Conservation biology

    Latest on:

    Climate sciences

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    From the archive: fishy business in 1972 and 1922
    News & Views 29 MAR 22

    Climate change

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    The race to upcycle CO2 into fuels, concrete and more
    News Feature 29 MAR 22

    Jobs

    Postdoctoral Fellow in Electrochemical CO2 reduction

    The University of British Columbia (UBC)
    Kelowna, Canada

    Staff Member in Project Coordination (for 19 h/week)

    Jülich Research Centre (FZJ)
    Erlangen-Nürnberg, Germany

    Student assistant IT administration (m/f/d)

    Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research (AWI)
    Potsdam, Germany

    Physicist (postdoctoral researcher) (all genders) in the field of Theoretical Astrophysics

    Helmholtz Centre for Heavy Ion Research GmbH (GSI)
    Darmstadt, Germany More

  • in

    Direct and latent effects of ocean acidification on the transition of a sea urchin from planktonic larva to benthic juvenile

    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 

    Google Scholar 
    Intergovernmental Panel on Climate Change. Climate Change 2013: 5th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
    Google Scholar 
    Torres, O., Kwiatkowski, L., Sutton, A. J., Dorey, N. & Orr, J. C. Characterizing mean and extreme diurnal variability of ocean CO2 system variables across marine environments. Geophys. Res. Lett. 48, 2 (2021).
    Google Scholar 
    Dorey, N., Lançon, P., Thorndyke, M. & Dupont, S. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob. Change Biol. 19, 3355–3367 (2013).
    Google Scholar 
    Hauri, C. et al. Spatiotemporal variability and long-term trends of ocean acidification in the California current system. Biogeosci. Discuss. 9, 10371–10428 (2012).ADS 

    Google Scholar 
    Dupont, S. & Pörtner, H.-O. A snapshot into ocean acidification research. Mar. Biol. 160, 1765–1771 (2013).CAS 

    Google Scholar 
    Dupont, S. & Thorndyke, M. Chapter: Direct impacts of near-future ocean acidification on sea urchins. in Climate Change Perspective from the Atlantic: Past, Present and Future (eds. Fernández-Palacios, J. et al.) 461–485 (2013).Byrne, M. & Hernández, J. C. Chapter 16: Sea urchins in a high CO2 world: Impacts of climate warming and ocean acidification across life history stages. in Developments in Aquaculture and Fisheries Science vol. 43 281–297 (Elsevier, 2020).Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).PubMed 

    Google Scholar 
    L. Kelley, A., J. Lunden, J., 1 Ocean Acidification Research Center, College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, Fairbanks, AK, 99775, USA, & 2 Haverford College, Haverford, PA, 19041, USA. Meta-analysis identifies metabolic sensitivities to ocean acidification. AIMS Environ. Sci. 4, 709–729 (2017).Stumpp, M. et al. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc. Natl. Acad. Sci. U. S. A. 109, 18192–18197 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stumpp, M. et al. Digestion in sea urchin larvae impaired under ocean acidification. Nat. Clim. Change 3, 1044–1049 (2013).ADS 
    CAS 

    Google Scholar 
    Runcie, D. E. et al. Genomic characterization of the evolutionary potential of the sea urchin Strongylocentrotus droebachiensis facing ocean acidification. Genome Biol. Evol. 8, 272 (2017).
    Google Scholar 
    Sewell, M. Utilization of lipids during early development of the sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 304, 133–142 (2005).ADS 
    CAS 

    Google Scholar 
    Lucas, M. I., Walker, G., Holland, D. L. & Crisp, D. J. An energy budget for the free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Mar. Biol. 55, 221–229 (1979).
    Google Scholar 
    Shilling, F. M., Hoegh-Guldberg, O. & Manahan, D. T. Sources of energy for increased metabolic demand during metamorphosis of the abalone Haliotis rufescens (Mollusca). Biol. Bull. 191, 402–412 (1996).CAS 
    PubMed 

    Google Scholar 
    Meidel, S. K. & Scheibling, R. E. Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 134, 155–166 (1999).
    Google Scholar 
    Pearce, C. M. & Scheibling, R. E. Induction of metamorphosis of larvae of the green sea urchin, Strongylocentrotus droebachiensis by coralline red algae. Biol. Bull. 179, 304–311 (1990).CAS 
    PubMed 

    Google Scholar 
    Gosselin, P. & Jangoux, M. From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata, Echinoida). Zoomorphology 118, 31–43 (1998).
    Google Scholar 
    Hinegardner, R. T. Growth and development of the laboratory cultured sea urchin. Biol. Bull. 137, 465–475 (1969).CAS 
    PubMed 

    Google Scholar 
    Strathmann, R. R. Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. Exp. Biol. Ecol. 34, 23–27 (1978).
    Google Scholar 
    Byrne, M. et al. Unshelled abalone and corrupted urchins: Development of marine calcifiers in a changing ocean. Proc. Biol. Sci. 278, 2376–2383 (2011).PubMed 

    Google Scholar 
    Dupont, S., Dorey, N., Stumpp, M., Melzner, F. & Thorndyke, M. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 160, 1835–1843 (2013).CAS 

    Google Scholar 
    Uthicke, S. et al. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS ONE 8, e82938 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dupont, S., Lundve, B. & Thorndyke, M. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J. Exp. Zool. Mol. Dev. Evol. 314, 382–389 (2010).
    Google Scholar 
    Lim, Y.-K., Dang, X. & Thiyagarajan, V. Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification. Sci. Total Environ. 782, 146704 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hettinger, A. et al. Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93, 2758–2768 (2012).PubMed 

    Google Scholar 
    Hettinger, A. et al. Larval carry-over effects from ocean acidification persist in the natural environment. Glob. Change Biol. https://doi.org/10.1111/gcb.12307 (2013).Article 

    Google Scholar 
    Albright, R. & Langdon, C. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob. Change Biol. 17, 2478–2487 (2011).ADS 

    Google Scholar 
    Yuan, X. et al. Elevated CO2 delays the early development of scleractinian coral Acropora gemmifera. Sci. Rep. 8, 2787 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maboloc, E. A. & Chan, K. Y. K. Parental whole life cycle exposure modulates progeny responses to ocean acidification in slipper limpets. Glob. Change Biol. 2, 15647. https://doi.org/10.1111/gcb.15647 (2021).Article 

    Google Scholar 
    Mos, B., Byrne, M. & Dworjanyn, S. A. Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification. Aquaculture 528, 735618 (2020).CAS 

    Google Scholar 
    Harianto, J., Aldridge, J., Torres Gabarda, S. A., Grainger, R. J. & Byrne, M. Impacts of acclimation in warm-low pH conditions on the physiology of the sea urchin Heliocidaris erythrogramma and carryover effects for juvenile offspring. Front. Mar. Sci. 7, 588938 (2021).
    Google Scholar 
    Houlihan, E. P., Espinel-Velasco, N., Cornwall, C. E., Pilditch, C. A. & Lamare, M. D. Diffusive boundary layers and ocean acidification: Implications for sea urchin settlement and growth. Front. Mar. Sci. 7, 577562 (2020).
    Google Scholar 
    Norderhaug, K. M. & Christie, H. C. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Mar. Biol. Res. 5, 515–528 (2009).
    Google Scholar 
    Dickson, A., Sabine, C. L. & Christian, J. R. Guide to best practices for ocean CO2 measurements. (PICES Special Publication 3;191 pp, 2007).Lavigne, H. & Gattuso, J.-P. seacarb: seawater carbonate chemistry with R. R package version 2.4. http://CRAN.R-project.org/package=seacarb. (2011).R Core Team. R: A language and environment for statistical computing. R: A language and environment for statistical computing (2017).Guillard, R. R. L. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).CAS 
    PubMed 

    Google Scholar 
    Stumpp, M., Wren, J., Melzner, F., Thorndyke, M. & Dupont, S. CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay. Comp. Biochem. Physiol. Mol. Integr. Physiol. 160, 331–340 (2011).CAS 

    Google Scholar 
    His, E., Heyvang, I., Geffard, O. & De Montaudouin, X. A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for toxicological studies. Water Res. 33, 1706–1718 (1999).CAS 

    Google Scholar 
    U. S. National Institutes of Health, Bethesda, Maryland, U. ImageJ, Rasband, W.S., http://imagej.nih.gov/ij/.Smith, M. M., Cruz Smith, L., Cameron, R. A. & Urry, L. The larval stages of the sea urchin, Strongylocentrotus purpuratus. J. Morphol. 269, 713–733 (2008).PubMed 

    Google Scholar 
    Kahm, M., Hasenbrink, G., Lichtenberg-Frate, H., Ludwig, J. & Kschischo, M. grofit: Fitting Biological Growth Curves with R. J. Stat. Softw., 33(7), 1–21. URL http://www.jstatsoft.org/v33/i07/. (2010).Pinheiro, J., Bates, D., & R-core. Package ‘nlme’: Linear and Nonlinear Mixed Effects Models. Cran-R (2018).Pan, T.-C.F., Applebaum, S. L. & Manahan, D. T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl. Acad. Sci. U. S. A. 112, 4696–4701 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jager, T., Ravagnan, E. & Dupont, S. Near-future ocean acidification impacts maintenance costs in sea-urchin larvae: Identification of stress factors and tipping points using a DEB modelling approach. J. Exp. Mar. Biol. Ecol. 474, 11–17 (2016).
    Google Scholar 
    Hoegh-Guldberg, O. & Emlet, R. B. Energy use during the development of a lecithotrophic and a planktotrophic echinoid. Biol. Bull. 192, 27–40 (1997).CAS 
    PubMed 

    Google Scholar 
    Vaïtilingon, D. et al. Effects of delayed metamorphosis and food rations on the perimetamorphic events in the echinoid Paracentrotus lividus (Lamarck, 1816) (Echinodermata). J. Exp. Mar. Biol. Ecol. 262, 41–60 (2001).
    Google Scholar 
    García, E., Clemente, S. & Hernández, J. C. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. Mar. Environ. Res. 110, 61–68 (2015).PubMed 

    Google Scholar 
    Wangensteen, O. S., Dupont, S., Casties, I., Turon, X. & Palacín, C. Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J. Exp. Mar. Biol. Ecol. 449, 304–311 (2013).
    Google Scholar 
    García, E., Clemente, S. & Hernández, J. C. Effects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement. Mar. Environ. Res. 139, 11–18 (2018).PubMed 

    Google Scholar 
    Marshall, D. J. & Keough, M. J. Variation in the dispersal potential of non-feeding invertebrate larvae: The desperate larva hypothesis and larval size. Mar. Ecol. Prog. Ser. 255, 145–153 (2003).ADS 

    Google Scholar 
    Huggett, M. J., Williamson, J. E., de Nys, R., Kjelleberg, S. & Steinberg, P. D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149, 604–619 (2006).ADS 
    PubMed 

    Google Scholar 
    Espinel-Velasco, N., Agüera, A. & Lamare, M. Sea urchin larvae show resilience to ocean acidification at the time of settlement and metamorphosis. Mar. Environ. Res. 159, 104977 (2020).CAS 
    PubMed 

    Google Scholar 
    Lamare, M. & Barker, M. Settlement and recruitment of the New Zealand sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 218, 153–166 (2001).ADS 

    Google Scholar 
    Martin, S. et al. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J. Exp. Biol. 214, 1357–1368 (2011).CAS 
    PubMed 

    Google Scholar 
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).
    Google Scholar 
    Espinel-Velasco, N. et al. Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: a review. Mar. Ecol. Prog. Ser. 606, 237–257 (2018).ADS 

    Google Scholar 
    Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar. Pollut. Bull. 64, 1519–1528 (2012).CAS 
    PubMed 

    Google Scholar 
    Gaylord, B. et al. Ocean acidification through the lens of ecological theory. Ecology 96, 3–15 (2015).PubMed 

    Google Scholar  More

  • in

    Small brains predisposed Late Quaternary mammals to extinction

    Martin, P. S. & Klein, R. G. Quaternary extinctions: a prehistoric revolution. (University of Arizona Press, 1984).Waguespack, N. M. & Surovell, T. A. Clovis hunting strategies, or how to make out on plentiful resources. Am. Antiq. 68, 333–352 (2003).
    Google Scholar 
    Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. Proc. Natl. Acad. Sci. 113, 886–891 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Martin, P. S. Prehistoric overkill: the global model. In Quaternary extinctions: a prehistoric revolution (eds. Martin, P. S. & Klein, R. G.) 355–403 (University of Arizona Press, 1984).Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quatern. Int. 217, 10–29 (2010).
    Google Scholar 
    Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc. Natl. Acad. Sci. 109, 4527–4531 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).
    Google Scholar 
    Wolfe, A. L. & Broughton, J. M. A foraging theory perspective on the associational critique of North American Pleistocene overkill. J. Archaeol. Sci. 119, 105162 (2020).
    Google Scholar 
    Berger, J., Swenson, J. E. & Persson, I. L. Recolonizing carnivores and naïve prey: Conservation lessons from pleistocene extinctions. Science 291, 1036–1039 (2001).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Brook, B. W. & Bowman, D. M. J. S. The uncertain blitzkrieg of Pleistocene megafauna. J. Biogeogr. 31, 517–523 (2004).
    Google Scholar 
    Johnson, C. N. Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc. R. Soc. London. Ser. B Biol. Sci. 269, 2221–2227 (2002).CAS 

    Google Scholar 
    Bourgon, N. et al. Trophic ecology of a Late Pleistocene early modern human from tropical Southeast Asia inferred from zinc isotopes. J. Hum. Evol. 161, 103075 (2021).PubMed 

    Google Scholar 
    Meltzer, D. J. Overkill, glacial history, and the extinction of North America’s Ice Age megafauna. Proc. Natl. Acad. Sci. 117, 28555–28563 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 965 (2021).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: State of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).
    Google Scholar 
    Cardillo, M. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Meiri, S. & Liang, T. Rensch’s rule—Definitions and statistics. Glob. Ecol. Biogeogr. 30, 573–577 (2021).
    Google Scholar 
    Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, 20160342 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Alroy, J. A multispecies overkill simulation of the end-pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Smaers, J. B. et al. The evolution of mammalian brain size. Sci. Adv. 7, 1–12 (2021).
    Google Scholar 
    Jerison, H. J. Evolution of the Brain and Intelligence (Academic Press, 1973). https://doi.org/10.2307/4512058.Book 

    Google Scholar 
    Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172, S63–S71 (2008).PubMed 

    Google Scholar 
    Møller, A. P. & Erritzøe, J. Brain size in birds is related to traffic accidents. R. Soc. Open Sci. 4, 161040 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).
    Google Scholar 
    Budd, G. E. & Jensen, S. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biol. Rev. 92, 446–473 (2017).PubMed 

    Google Scholar 
    Benoit, J. et al. Brain evolution in Proboscidea (Mammalia, Afrotheria) across the Cenozoic. Sci. Rep. 9, 9323 (2019).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Møller, A. P. & Erritzøe, J. Brain size and the risk of getting shot. Biol. Lett. 12, 20160647 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Di Febbraro, M. et al. Does the jack of all trades fare best? Survival and niche width in Late Pleistocene megafauna. J. Biogeogr. 44, 2828–2838 (2017).
    Google Scholar 
    Morris, S. D., Kearney, M. R., Johnson, C. N. & Brook, B. W. Too hot for the devil? Did climate change cause the mid-Holocene extinction of the Tasmanian devil Sacrophilus harrisii from mainland Australia? Ecography 2022, (2022).Fillios, M., Crowther, M. S. & Letnic, M. The impact of the dingo on the thylacine in Holocene Australia. World Archaeol. 44, 118–134 (2012).
    Google Scholar 
    González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).PubMed 

    Google Scholar 
    Barton, R. A. & Capellini, I. Maternal investment, life histories, and the costs of brain growth in mammals. Proc. Natl. Acad. Sci. U.S.A. 108, 6169–6174 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Abelson, E. S. Brain size is correlated with endangerment status in mammals. Proc. R. Soc. B Biol. Sci. 283, 20152772 (2016).
    Google Scholar 
    Gonzalez-Voyer, A., González-Suárez, M., Vilà, C. & Revilla, E. Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution (N.Y.) 70, 1364–1375 (2016).
    Google Scholar 
    Ives, A. R. & Helmus, M. R. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 81, 511–525 (2011).
    Google Scholar 
    Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).
    Google Scholar 
    Billet, G. Phylogeny of the Notoungulata (Mammalia) based on cranial and dental characters. J. Syst. Palaeontol. 9, 481–497 (2011).
    Google Scholar 
    Shultz, S., Bradbury, R. B., Evans, K. L., Gregory, R. D. & Blackburn, T. M. Brain size and resource specialization predict long-term population trends in British birds. Proc. R. Soc. B Biol. Sci. 272, 2305–2311 (2005).
    Google Scholar 
    Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).PubMed 

    Google Scholar 
    Abelson, E. S. Big brains reduce extinction risk in Carnivora. Oecologia 191, 721–729 (2019).PubMed 
    ADS 

    Google Scholar 
    Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proceedings of the National Academy of Sciences 117, 7871–7878 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shultz, S. & Dunbar, R. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proceedings of the National Academy of Sciences 107, 21582–21586 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gould, S. J. & Vrba, E. S. Exaptation—A missing term in the science of form. Paleobiology 8, 4–15 (1982).
    Google Scholar 
    Wroe, S. et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl. Acad. Sci. U.S.A. 110, 8777–8781 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the Causes of Late Pleistocene Extinctions on the Continents. Science 306, 70–75 (2004).Article 
    PubMed 

    Google Scholar 
    Profico, A., Buzi, C., Melchionna, M., Veneziano, A. & Raia, P. Endomaker, a new algorithm for fully automatic extraction of cranial endocasts and the calculation of their volumes. Am. J. Phys. Anthropol. 172, 511–515 (2020).PubMed 

    Google Scholar 
    Damuth, J. & Macfadden, B. J. Body Size in Mammalian Paleobiology: Estimation and Biological Implications (Cambridge University Press, 1990).
    Google Scholar 
    Zagwijn, W. H. The beginning of the Ice Age in Europe and its major subdivisions. Quatern. Sci. Rev. 11, 583–591 (1992).ADS 

    Google Scholar 
    Hearty, P. J., Hollin, J. T., Neumann, A. C., O’Leary, M. J. & McCulloch, M. Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quatern. Sci. Rev. 26, 2090–2112 (2007).ADS 

    Google Scholar 
    Ashwell, K. W. S., Hardman, C. D. & Musser, A. M. Brain and behaviour of living and extinct echidnas. Zoology 117, 349–361 (2014).PubMed 

    Google Scholar 
    Castiglione, S. et al. The influence of domestication, insularity and sociality on the tempo and mode of brain size evolution in mammals. Biol. J. Linn. Soc. 132, 221–231 (2021).
    Google Scholar 
    Wilkins, A. S., Wrangham, R. W. & Tecumseh Fitch, W. The ‘domestication syndrome’ in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Sayol, F., Steinbauer, M. J., Blackburn, T. M., Antonelli, A. & Faurby, S. Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. Sci. Adv. 6, eabb6095 (2020).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Fromm, A., Meiri, S. & McGuire, J. Big, flightless, insular and dead: Characterising the extinct birds of the Quaternary. J. Biogeogr. 48(9), 2350–2359. https://doi.org/10.1111/jbi.14206 (2021).Article 

    Google Scholar 
    Meiri, S., Dayan, T. & Simberloff, D. The generality of the island rule reexamined. J. Biogeogr. 33, 1571–1577 (2006).
    Google Scholar 
    Larramendi, A. & Palombo, M. R. Body Size, Structure, Biology and Encephalization Quotient of Palaeoloxodon ex gr. P. falconeri from Spinagallo Cave (Hyblean plateau, Sicily). Hystrix, the Italian Journal of Mammalogy 26, 102–109 (2015).Article 

    Google Scholar 
    Slavenko, A., Tallowin, O. J. S., Itescu, Y., Raia, P. & Meiri, S. Late Quaternary reptile extinctions: Size matters, insularity dominates. Glob. Ecol. Biogeogr. 25, 1308–1320 (2016).
    Google Scholar 
    Tracy, C. R. & George, T. L. On the determinants of extinction. Am. Nat. 139, 102–122 (1992).
    Google Scholar 
    Manne, L. L., Brooks, T. M. & Pimm, S. L. Relative risk of extinction of passerine birds on continents and islands. Nature 399, 258–261 (1999).CAS 
    ADS 

    Google Scholar 
    Turvey, S. T. In the shadow of the megafauna: prehistoric mammal and bird extinctions across the Holocene. in Holocene Extinctions 17–40 (Oxford University Press, 2009). https://doi.org/10.1093/acprof:oso/9780199535095.003.0002Ebinger, P. A cytoarchitectonic volumetric comparison of brains in wild and domestic sheep. Zeitschrift für Anat. und Entwicklungsgeschichte 144, 267–302 (1974).CAS 

    Google Scholar 
    Röhrs, M. & Ebinger, P. Welche quantitativen beziehungen bestehen bei säugetieren zwischen schädelkapazität und hirnvolumen? Mammalian Biology 66, 102–110 (2001).Köhler, M. & Moyà-Solà, S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain Behav. Evol. 63, 125–140 (2004).PubMed 

    Google Scholar 
    de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot. 50, 349–357 (2015).
    Google Scholar 
    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 Package. October (2007).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Raia, P. & Meiri, S. The tempo and mode of evolution: Body sizes of island mammals. Evolution 65, 1927–1934 (2011).

    Google Scholar 
    Montgomery, S. H. et al. The evolutionary history of cetacean brain and body size. Evolution 67, 3339–3353 (2013).
    PubMed 

    Google Scholar 
    Li, D., Dinnage, R., Nell, L. A., Helmus, M. R. & Ives, A. R. phyr: An r package for phylogenetic species-distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).
    Google Scholar 
    Melchionna, M. et al. Macroevolutionary trends of brain mass in Primates. Biological Journal of the Linnean Society 129, 14–25 (2020).Article 

    Google Scholar 
    Serio, C. et al. Macroevolution of toothed whales exceptional relative brain size. Evol. Biol. 46, 332–342 (2019).
    Google Scholar 
    Wickham, H. et al. Welcome to the Tidyverse. Journal of Open Source Software 4, 1686 (2019).Barton, K. Package ‘MuMIn’ Title Multi-Model Inference. CRAN-R (2018). More

  • in

    Spatio-temporal inhabitation of settlements by Hystrix cristata L., 1758

    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and evolution of mating systems. Science 197(4300), 215–223 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Lagos, V. O., Bozinovic, F. & Contreras, L. C. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: Thermoregulatory constraints or predation risk? J. Mammal. 76(3), 900–905 (1995).Article 

    Google Scholar 
    Lagos, V. O., Contreras, L. C., Meserve, P. L., Gutiérrez, J. R. & Jaksic, F. M. Effects of predation risk on space use by small mammals: A field experiment with a neotropical rodent. Oikos 74, 259–264 (1995).Article 

    Google Scholar 
    Schradin, C. & Pillay, N. Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability. Behav. Ecol. 17(3), 452–458. https://doi.org/10.1093/beheco/arj047 (2006).Article 

    Google Scholar 
    Hayes, L. D., Chesh, A. S. & Ebensperger, L. A. Ecological predictors of range areas and use of burrow systems in the diurnal rodent, Octodon degus. Ethology 113, 155–165. https://doi.org/10.1111/j.1439-0310.2006.01305.x (2007).Article 

    Google Scholar 
    Brivio, F. et al. Forecasting the response to global warming in a heat-sensitive species. Sc. Rep. 9, 3048. https://doi.org/10.1038/s41598-019-39450-5 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Santamaría, A. E., Olea, P. P., Vinuela, J. & Garcia, J. T. Spatial and seasonal variation in occupation and abundance of common vole burrows in highly disturbed agricultural ecosystems. Eur. J. Wildl. Res. 65, 52. https://doi.org/10.1007/s10344-019-1286-2 (2019).Article 

    Google Scholar 
    Kinlaw, A. A review of burrowing by semi-fossorial vertebrates in arid environments. J. Arid Environ. 41, 127–145 (1999).ADS 
    Article 

    Google Scholar 
    Daly, M., Beherends, P. R. & Wilson, M. I. Activity patterns of kangaroo rats—Granivores in a desert habitat. In Activity Patterns in Small Mammals: An Ecological Approach (eds Halle, S. & Stenseth, N. C.) 145–158 (Springer, 2000).Chapter 

    Google Scholar 
    Mackin-Rogalska, R., Adamczewska-Andrzejewska, K. & Nabaglo, L. Common vole numbers in relation to the utilization of burrow system. Acta Theriol. 31(2), 17–44 (1986).Article 

    Google Scholar 
    Powell, R. A. & Fried, J. J. Helping by juvenile pine voles (Microtus pinetorum), growth and survival of younger siblings, and the evolution of pine vole sociality. Behav. Ecol. 3, 325–333 (1992).Article 

    Google Scholar 
    Randall, J. A., Rogovin, K., Parker, P. G. & Eimes, J. A. Flexible social structure of a desert rodent, Rhombomys opimus: Philopatry, kinship, and ecological constraints. Behav. Ecol. 16, 961–973 (2005).Article 

    Google Scholar 
    Ebensperger, L. A. et al. Burrow limitations and group living in the communally rearing rodent, Octodon degus. J. Mammal. 92(1), 21–30 (2011).Article 

    Google Scholar 
    Santini, L. The habits and influence on the environment of the old world porcupine Hystrix cristata L. in the northernmost part of its range. In Proc. 9th Vertebrate Pest Conference, Vol. 34, 149–153 (1980).Felicioli, A., Grazzini, A. & Santini, L. The mounting and copulation behaviour of the crested porcupine Hystrix cristata. Ital. J. Zool. 64, 155–161 (1997).Article 

    Google Scholar 
    Felicioli, A., Grazzini, A. & Santini, L. The mounting behaviour of a pair of crested porcupine H. cristata L.. Mammalia 61(1), 123–126 (1997).
    Google Scholar 
    Felicioli, A. Analisi spazio-temporale dell’attività motoria in Hystrix cristata L. Dissertation, University of Pisa (1991).Felicioli, A. & Santini, L. Burrow entrance-hole orientation and first emergence time in the crested porcupine Hystrix cristata L.: Space-time dependence on sunset. Pol. Ecol. Stud. 20(3–4), 317–321 (1994).
    Google Scholar 
    Mori, E., Nourisson, D. H., Lovari, S., Romeo, G. & Sforzi, A. Self-defence may not be enough: Moonlight avoidance in a large, spiny rodent. J. Zool. 294, 31–40 (2014).Article 

    Google Scholar 
    Corsini, M. T., Lovari, S. & Sonnino, S. Temporal activity patterns of crested porcupine Hystrix cristata. J. Zool. Lond. 236, 43–54 (1995).Article 

    Google Scholar 
    Coppola, F., Vecchio, G. & Felicioli, A. Diurnal motor activity and “sunbathing” behaviour in crested porcupine (Hystrix cristata L., 1758). Sci. Rep. 9, 14283 (2019).ADS 
    Article 

    Google Scholar 
    Pigozzi, G. Crested porcupines (Hystrix cristata) within badger setts (Meles meles) in the Maremma Natural Park, Italy. Saugetierk. Mitt. 33, 261–263 (1986).
    Google Scholar 
    Coppola, F. & Felicioli, A. Reproductive behaviour in free-ranging crested-porcupine Hystrix cristata L., 1758. Sci. Rep. 11, 20142. https://doi.org/10.1038/s41598-021-99819-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Monetti, L., Massolo, A., Sforzi, A. & Lovari, S. Site selection and fidelity by crested porcupines for denning. Ethol. Ecol. Evol. 17, 149–159 (2005).Article 

    Google Scholar 
    Coppola, F., Dari, C., Vecchio, G., Scarselli, D. & Felicioli, A. Co-habitation of settlements among Crested Porcupines (Hystrix cristata), Red Foxes (Vulpes vulpes) and European Badgers (Meles meles). Curr. Sci. 119(5), 817–822 (2020).Article 

    Google Scholar 
    De Villiers, M. S., Van Aarde, R. J. & Dott, H. M. Habitat utilization by the Cape porcupine Hystrix africaeaustralis in a savanna ecosystem. J. Zool. Lond. 232, 539–549 (1994).Article 

    Google Scholar 
    Corbet, N. U. & de Aarde, R. J. Social organization and space use in the Cape porcupine in a Southern African savanna. Afr. J. Ecol. 34, 1–14 (1996).Article 

    Google Scholar 
    Massolo, A., Dani, F. R. & Bella, N. Sexual and individual cues in the peri-anal gland secretum of crested porcupines (Hystrix cristata). Mamm. Biol. 74, 488–496 (2009).Article 

    Google Scholar 
    Mori, E. & Lovari, S. Sexual size monomorphism in the crested porcupine (Hystrix cristata). Mamm. Biol. 79, 157–160 (2014).Article 

    Google Scholar 
    Mori, E. et al. Patterns of spatial overlap in a monogamous large rodent, the crested porcupine. Behav. Process. 107, 112–118 (2014).Article 

    Google Scholar 
    Mukherjee, A., Pilakandy, R., Kumara, H. N., Manchi, S. S. & Bhupathy, S. Burrow characteristics and its importance in occupancy of burrow dwelling vertebrates in Semiarid area of Keoladeo National Park, Rajasthan, India. J. Arid Environ. 141, 7–15 (2017).ADS 
    Article 

    Google Scholar 
    Mukherjee, A., Pal, A., Velankar, A. D., Kumara, H. N. & Bhupathy, S. Stay awhile in my burrow! Interspecific associations of vertebrates to Indian crested porcupine burrows. Ethol. Ecol. Evol. 3(4), 313–328 (2019).Article 

    Google Scholar 
    Fernandez, N. & Palomares, F. The selection of breeding dens by the endangered Iberian lynx (Lynx pardinus): Implications for its conservation. Biol. Conserv. 94, 51–61 (2000).Article 

    Google Scholar 
    Ross, S., Kamnitzer, R., Munkhtsog, B. & Harris, S. Den-site selection is critical for Pallas’s cats (Otocolobus manul). Can. J. Zool. 88(9), 905–913. https://doi.org/10.1139/Z10-056 (2010).Article 

    Google Scholar 
    Libal, N. S., Belant, J. L., Leopold, B. D., Wang, G. & Owen, A. Despotism and risk of infanticide influence grizzly bear den-site selection. PLoS ONE 6(9), e24133. https://doi.org/10.1371/journal.pone.0024133 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbroch, L. M., Lendrum, P. E. & Quigley, H. Cougar den site selection in the Southern Yellowstone ecosystem. Mamm. Res. 60, 89–96. https://doi.org/10.1007/s13364-015-0212-6 (2015).Article 

    Google Scholar 
    Solomon, N. G., Christiansen, A. M., Kirk Lin, Y. & Hayes, L. D. Factors affecting nest location of prairie voles (Microtus ochrogaster). J. Mammal. 86(3), 555–560 (2005).Article 

    Google Scholar 
    Pereoglou, F. et al. Refuge site selection by the eastern chestnut mouse in recently burnt heath. Wildl. Res. 38(4), 290–298. https://doi.org/10.1071/WR11007 (2011).Article 

    Google Scholar 
    Grazzini, M. T. Comportamento riproduttivo e accrescimento post-natale in Hystrix cristata L. (Rodentia, Hystricidae). Dissertation, University of Pisa (1992).Capizzi, D. & Santini, L. Hystrix cristata Linnaeus, 1758. In Fauna d’Italia, Mammalia II: Erinaceomorpha, Soricomorpha, Lagomorpha, Rodentia (eds Amori, G. et al.) 695–706 (Edizione Calderini de il Sole 24 Ore, 2008).
    Google Scholar 
    Coppola, F. New knowledge tools for crested porcupine (Hystrix cristata L., 1758) management in the wild: First census model, new behavioural ecology aspects and preliminary investigation on health status. University of Pisa, PhD thesis (2021).Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book 

    Google Scholar 
    Wood, S. N. A simple test for random effects in regression models. Biometrika 100, 1005–1010 (2013).MathSciNet 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 

    Google Scholar  More

  • in

    Funding battles stymie ambitious plan to protect global biodiversity

    NEWS
    31 March 2022

    Funding battles stymie ambitious plan to protect global biodiversity

    Researchers are disappointed with the progress — but haven’t lost hope.

    Natasha Gilbert

    Natasha Gilbert

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Animals such as this orangutan in Indonesia are endangered because of illegal deforestation.Credit: Jami Tarris/Future Publishing via Getty

    Scientists are frustrated with countries’ progress towards inking a new deal to protect the natural world. Government officials from around the globe met in Geneva, Switzerland, on 14–29 March to find common ground on a draft of the deal, known as the post-2020 global biodiversity framework, but discussions stalled, mostly over financing. Negotiators say they will now have to meet again before a highly anticipated United Nations biodiversity summit later this year, where the deal was to be signed.The framework so far sets out 4 broad goals, including slowing species extinction, and 21 mostly quantitative targets, such as protecting at least 30% of the world’s land and seas. It is part of an international treaty known as the UN Convention on Biological Diversity, and aims to address the global biodiversity crisis, which could see one million plant and animal species go extinct in the next few decades because of factors such as climate change, human activity and disease.
    China takes centre stage in global biodiversity push
    The COVID-19 pandemic has already slowed discussions of the deal. Over the past two years, countries’ negotiators met only virtually; the Geneva meeting was the first in-person gathering since the pandemic began. When it ended, Basile van Havre, one of the chairs of the framework negotiations working group, said that because negotiators couldn’t agree on goals, additional discussions will need to take place in June in Nairobi. The convention’s pivotal summit — its Conference of the Parties (COP15) — is expected to be held in Kunming, China, in August and September, but no firm date has been set.Anne Larigauderie, executive secretary of the Intergovernmental Platform on Biodiversity and Ecosystem Services in Bonn, Germany, who attended the Geneva gathering, told Nature: “We are leaving the meeting with no quantitative elements. I was hoping for more progress.”Robert Watson, a retired environmental scientist at the University of East Anglia, UK, says the quantitative targets are crucial to conserving biodiversity and monitoring progress towards that goal. He calls on governments to “bite the bullet and negotiate an appropriate deal that both protects and restores biodiversity”.Finance fightMany who were at the meeting say that disagreements over funding for biodiversity conservation were the main hold-up to negotiations. For example, the draft deal proposed that US$10 billion of funding per year should flow from developed nations to low- and middle-income countries to help them to implement the biodiversity framework. But many think this is not enough. A group of conservation organizations has called for at least $60 billion per year to flow to poorer nations.
    Biodiversity moves beyond counting species
    The consumption habits of wealthy nations are among the key drivers of biodiversity loss. And poorer nations are often home to areas rich in biodiversity, but have fewer means to conserve them.“The most challenging aspect is the amount of financing that wealthy nations are committing to developing nations,” says Brian O’Donnell, director of the Campaign for Nature in Washington DC, a partnership of private charities and conservation organizations advocating a deal to safeguard biodiversity. “Nations need to up their level of financing to get progress in the COP.”Other nations, particularly low-income ones, probably don’t want to agree “unless they have assurances of resources to allow them to implement the new framework”, Larigauderie says.Countries including Argentina and Brazil are largely responsible for stalling the deal, several sources close to the negotiations told Nature. They asked to remain anonymous because the negotiations are confidential.
    The world’s species are playing musical chairs: how will it end?
    No agreement could be reached even on targets with broad international support, such as protecting at least 30% of the world’s land and seas by 2030. O’Donnell says that just one country blocked agreement on this target, questioning its scientific basis.Van Havre downplayed the lack of progress, saying that the brinksmanship at the meeting was part of a “normal negotiating process”. He told reporters: “We are happy with the progress made.” Further delays ‘unacceptable’A bright spot in the negotiations, van Havre said, was a last-minute “major step forward” in discussions on how to fairly and equitably share the benefits of digital sequence information (DSI). DSI consists of genetic data collected from plants, animals and other organisms.
    Why deforestation and extinctions make pandemics more likely
    When pressed, however, van Havre admitted that the progress was simply an agreement between countries to continue discussing a way forward.Thomas Brooks, chief scientist at the International Union for Conservation of Nature in Gland, Switzerland, says that DSI discussions have actually been fraught. Communities from biodiverse-rich regions where genetic material is collected have little control over the commercialization of the data that come from it, and no way to recoup financial and other benefits, he explains.Like biodiversity financing, DSI rights could hold up negotiations on the overall framework. Low-income countries want a fair and equitable share of the benefits from genetic material that originates in their lands, but rich nations don’t want unnecessary barriers to sharing the information.“We are a long way from a watershed moment, and there remain genuine disagreements,” Brooks says. However, he is optimistic that progress will eventually be made.
    The biodiversity leader who is fighting for nature amid a pandemic
    Some conservation organizations take hope from new provisional language in the deal that calls for halting all human-caused species extinctions. The previous draft of the deal proposed only a reduction in the rate and risk of extinctions, says Paul Todd, an environmental lawyer at the Natural Resources Defense Council, a non-profit group based in New York City.Given how much work governments must do to reach agreement on the deal, Watson says the extra Nairobi meeting is a “logical” move. But he warns: “Any further delay would be unacceptable.”“This isn’t even the hard work,” Todd says. “Implementing the deal will be the real work.”

    doi: https://doi.org/10.1038/d41586-022-00916-8

    Related Articles

    China takes centre stage in global biodiversity push

    The biodiversity leader who is fighting for nature amid a pandemic

    Why deforestation and extinctions make pandemics more likely

    Biodiversity moves beyond counting species

    The battle for the soul of biodiversity

    The world’s species are playing musical chairs: how will it end?

    Subjects

    Biodiversity

    Conservation biology

    Climate change

    Latest on:

    Biodiversity

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Africa: sequence 100,000 species to safeguard biodiversity
    Comment 15 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    Climate change

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    The race to upcycle CO2 into fuels, concrete and more
    News Feature 29 MAR 22

    Biden bids again to boost science spending — but faces long odds
    News 28 MAR 22

    Jobs

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Research Group Leader on Robustness and Decision Making in Cells and Tissues

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Research Group Leader on Physical Measurement and Manipulation of Living Systems

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany More