More stories

  • in

    Electromagnetic sensing and infiltration measurements to evaluate turfgrass salinity and reclamation

    Corwin, D. L. & Lesch, S. M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 46, 11–43 (2005).
    Google Scholar 
    Akramkhanov, A., Lamers, J. P. A. & Martius, C. Conversion factors to estimate soil salinity based on electrical conductivity for soils in Khorezm region, Uzbekistan. In Sustainable Management of Saline Waters and Salt-Affected Soils for Agriculture (ed. Qadir, S. et al.) 19–25 (Syria, 2009).Boettinger, J. L., Doolittle, J. A., West, N. E., Bork, E. W. & Schupp, E. W. Nondestructive assessment of rangeland soil depth to petrocalcic horizon using electromagnetic induction. Arid. Land Res. Manag. 11, 372–390 (1997).
    Google Scholar 
    Herrero, J., Ba, A. A. & Aragues, R. Soil salinity and its distribution determined by soil sampling and electromagnetic techniques. Soil Use Manag. 19, 119–126 (2003).
    Google Scholar 
    Corwin, D. L. Past, present, and future trends in soil electrical conductivity measurements using geophysical methods. In Handbook of Agricultural Geophysics (eds. Allred, B. J., Daniels, J. J. & Ehsani, M. R.) 17–44 (Boca Raton, 2008).Triantafillou, J., Lesch, S. M., La Lau, K. & Buchanan, S. M. Field level digital mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model. Aust. J. Soil Res. 47, 651–663 (2009).
    Google Scholar 
    Lardo, E., Arous, A., Palese, A. M., Nuzzo, V. & Celano, G. Electromagnetic induction: A support tool for the evaluation of soil CO2 emissions and soil organic carbon content in olive orchards under semi-arid conditions. Geoderma 264, 188–194 (2016).ADS 
    CAS 

    Google Scholar 
    Yao, R. J. et al. Geostatistical monitoring of soil salinity for precision management using proximally sensed electromagnetic induction (EMI) method. Environ. Earth Sci. 75(20), 1362. https://doi.org/10.1007/s12665-016-6179-z (2016).CAS 

    Google Scholar 
    Corwin, D. L. & Lesch, S. M. Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling. J. Environ. Eng. Geophys. 18(1), 1–25 (2013).
    Google Scholar 
    Heil, K. & Schmidhalter, U. The application of EM38: Determination of soil parameters, selection of soil sampling points and use in agriculture and archaeology. Sensors. 17, 2540 (2017).ADS 
    PubMed Central 

    Google Scholar 
    Rhoades, J. D., Corwin, D. L. & Lesch, S. M. Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation. In Assessment of Non-point Source Pollution in the Vadose Zone (eds. Corwin, D. L., Loague, K. & Ellsworth, T. R.) 197–215 (Geophysical Monogram, 1999).Sadler, E. J., Camp, C. R. & Evans, R. G. New and future technology. In Irrigation of Agricultural Crops (eds. Steward, B. A. & Nelson, D. R.) 609–626 (Agronomy Monograph, 2007).Carrow, R. N., Krum, J. M., Flitcroft, I. & Cline, V. Precision turfgrass management: Challenges and field application for mapping turfgrass soil and stress. Precis. Agric. 11, 115–134 (2010).
    Google Scholar 
    Devitt, D. A., Lockett, M. & Bird, B. M. Spatial and temporal distribution of salts on fairways and greens irrigated with reuse water. Agronomy 99, 692–700 (2007).
    Google Scholar 
    Corwin D.L., Lesch S.M. & Lobell D.B. Laboratory and field measurements. In Agricultural Salinity Assessment and Management (eds. Wallender, W. W. & Tanji, K. K.) (2012).Lesch, S. M., Rhoades, J. D., Corwin, D. L., Robinson, D. A. & Suárez, D. L. ESAP-RSSD version 2.30R. User manual and tutorial guide. Res. Report 148 in USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2002).Lesch, S. M., Rhoades, J. D., Corwin, D. L., Robinson, D. A. & Suárez, D. L. ESAP-SaltMapper version 2.30R. User manual and tutorial guide. Res. Report 149 USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2002).Lesch, S. M., Rhoades, J. D. & Corwin, D. L. ESAP-95 Version 2.01R: User manual and tutorial guide. Res. Rep. 146. USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2000).Lesch, S. M., Strauss, D. J. & Rhoades, J. D. Spatial prediction of soil salinity using electromagnetic induction techniques: 1. Statistical prediction models: A comparison of multiple linear regression and cokriging. Water Resour. Res. 31, 373–386 (1995).ADS 

    Google Scholar 
    Amezketa, E. Soil salinity assessment using directed soil sampling from a geophysical survey with electromagnetic technology: A case study. Span. J. Agric. Res. 5(1), 91–101 (2007).
    Google Scholar 
    Grieve C. M., Grattan, S. R. & Mass, E. V. Plant salt tolerance. In Agricultural Salinity Assessment and Management (eds. Walender W. W. & Tanji K.K.) (ASCE, 2012).Shahba, M. Interaction effects of salinity and mowing on performance and physiology of bermudagrass cultivars. Crop Sci. 50, 2620–2631 (2010).
    Google Scholar 
    Marcum, K. B. & Pessarakli, M. Salinity tolerance and salt gland excretion efficiency of bermudagrass turf cultivars. Crop Sci. 46, 2571–2574 (2006).
    Google Scholar 
    Xiang, M., Moss, J. Q., Martin, D. L., Su, K. & Dunn, B. L. Evaluating the salinity tolerance of clonal-type bermudagrass cultivars and an experimental selection. Hortic. Sci. 51(1), 185–191 (2017).
    Google Scholar 
    Ganjegunte, G. K. et al. Soil salinity of an urban park after long term irrigation with saline ground water. Agronomy 109, 3011–3018 (2017).CAS 

    Google Scholar 
    Keren, R. & Miyamoto, S. Reclamation of saline, sodic and boron affected soils. In Agricultural Salinity Assessment and Management (eds. Walender W. W. & Tanji K. K.) (ASCE, 2012).Thomas, G. W. & Phillips, R. E. Consequences of water-movement in macropores. J. Environ. Qual. 8, 149–152 (1979).
    Google Scholar 
    White, R. E. The influence of macropores on the transport of dissolved and suspended matter through soil. In Advances in Soil Science (ed. Stewart, B. A.) 95–120 (Springer, 1985).Workman, S. & Skaggs, R. PREFLO: A water management model capable of simulating preferential flow. Trans. ASAE. 33, 1939–1948 (1990).
    Google Scholar 
    Huang, B., Duncan, R. R. & Carrow, R. N. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: II. Root aspects. Crop Sci. 7(6), 863–1869 (1997).
    Google Scholar 
    Liu, X. H. & Huang, B. R. Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism. Crop Sci. 42, 466–472 (2002).CAS 

    Google Scholar  More

  • in

    Tracing the invasion of a leaf-mining moth in the Palearctic through DNA barcoding of historical herbaria

    Detection of archival Phyllonorycter mines in historical herbariaOnly 1.5% (225 out of 15,009) of herbarium specimens of Tilia spp. examined from the Palearctic contained Ph. issikii leaf mines. These 225 herbarium specimens occurred in 185 geographical locations across the Palearctic, with the westernmost point in Germany (Hessen; the herbarium specimen dated by 2004) to the most eastern locations in Japan (on the island of Hokkaido; 1885–1974) (Fig. 1).Figure 1The localities where herbarium specimens of Tilia spp. carrying Phyllonorycter mines were collected in the Palearctic in the last 253 years. The dotted line divides Ph. issikii range to native (below the line) and invaded (above the line). The map was generated using ArcGIS 9.3 (Release 9.3. New York St., Redlands, CA. Environmental Systems Research Institute, http://www.esri.com/software/arcgis/eval-help/arcgis-93).Full size imageMost specimens with leaf mines (90%; 203/225) originated from Eastern Palearctic, in particular from the Russian Far East (RFE) (67.5%, 137/203) (Fig. 2a). In some cases, leaves were severely attacked, carrying up to 12 mines per leaf (as documented in the Russian Far East in 1930s–1960s). On the other hand, we found only 22 herbarium specimens with mines (10%; 22/225) from the putative invaded region in Western Palearctic, with the majority of herbarium specimens with mines (7% 15/225) from European Russia (Fig. 2b).Figure 2The presence of Phyllonorycter issikii mines in the herbarium specimens collected in the putative native (a) and invaded (b) ranges over the past 253 years (1764–2016). The number of herbarium specimens with and without mines and the percentage of the specimens with mines in each region or country from all herbarium specimens examined in a region or country (in brackets) are given next to each graph. The total number of herbarium specimens, including those with and without mines, is given for Eastern (a) and Western Palearctic (b) separately and altogether (a + b).Full size imageThe average number of leaf mines per herbarium specimen found in native (5.68 ± 0.77) and invaded regions (6.09 ± 1.70) was not significantly different (Mann–Whitney U-test: U = 20,145; Z = 0.43; p = 0.43). However, the infestation rate by Ph. issikii, i.e. percentage of leaves with mines per herbarium specimen was statistically higher in the West than in the East: 35% ± 8.19 versus 23% ± 1.94 (Mann–Whitney U-test: U = 1339; Z = 2.30; p = 0.02).Leaf mines from the East were significantly older than those from the West (Mann–Whitney U-test: U = 81; Z =  − 4.4; p  400 bp) were obtained for 71 archival specimens that were between 7 and 162 years old (Fig. 4, the points in dashed frame) (Table S4). Nine of these 71 specimens were over one century old (106–162-year-old): eight originated from the Palearctic and one from the Nearctic (Fig. 4, the points in gray cloud).In the Palearctic, the oldest successfully DNA barcoded Ph. issikii specimen (obtained sequence length 408 bp) was a 162-year-old larva dissected from the leaf mine on Tilia amurensis from the RFE (village Busse, Amur Oblast, the year 1859), sequence ID LMINH119-19 (Fig. 5, Table S5). In the Nearctic, the oldest sequenced specimen (obtained sequence length 658 bp) was 127-year-old larva of Ph. tiliacella on T. americana from USA, Pennsylvania (Fig. 5, Table S5).Figure 5A maximum likelihood tree of 81 COI sequences of Phyllonorycter spp. Overall, 71 archival sequenced specimens were dissected from herbaria collected in the Palearctic and the Nearctic in 1859–2014 and ten specimens (highlighted in blue) originated from the modern range20. The tree was generated with the K2P nucleotide substitution model and bootstrap method (2500 iterations), p  More

  • in

    Integrating remote sensing with ecology and evolution to advance biodiversity conservation

    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).PubMed 

    Google Scholar 
    Soto-Navarro, C. A. et al. Towards a multidimensional biodiversity index for national application. Nat. Sustain. 4, 933–942 (2021).Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).PubMed 

    Google Scholar 
    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Girardello, M. et al. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep. 9, 5636 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS 
    PubMed 

    Google Scholar 
    Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).
    Google Scholar 
    Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv. 2, 132–140 (2016).
    Google Scholar 
    O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015).
    Google Scholar 
    Skidmore, A. K. et al. Environmental science: agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).CAS 
    PubMed 

    Google Scholar 
    Reddy, C. S. et al. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: technological advancement and potentials. Biodivers. Conserv. 30, 1–14 (2021).
    Google Scholar 
    Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017).
    Google Scholar 
    Luque, S., Pettorelli, N., Vihervaara, P. & Wegmann, M. Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets. Methods Ecol. Evol. 9, 1784–1786 (2018).
    Google Scholar 
    Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3, 401–411 (1994).CAS 

    Google Scholar 
    Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19, 497–503 (2004).PubMed 

    Google Scholar 
    Czyż, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol. 10, 7419–7430 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Guillén-Escribà, C. et al. Remotely sensed between-individual functional trait variation in a temperate forest. Ecol. Evol. 11, 10834–10867 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 

    Google Scholar 
    Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol. 195, 752–765 (2012).PubMed 

    Google Scholar 
    Wang, Z. et al. Foliar functional traits from imaging spectroscopy across biomes in the eastern North America. New Phytol. 228, 494–511 (2020).PubMed 

    Google Scholar 
    Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908–1920 (2008).CAS 
    PubMed 

    Google Scholar 
    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).
    Google Scholar 
    Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA 117, 33317–33324 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).PubMed 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integr. Zool. 13, 355–371 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, C. R. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171, 726–742 (2008).PubMed 

    Google Scholar 
    Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).PubMed 

    Google Scholar 
    Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl Acad. Sci. USA 103, 632–636 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Google Scholar 
    Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ. 19, 30–38 (2021).
    Google Scholar 
    Cavender-Bares, J. et al. BII-Implementation: the causes and consequences of plant biodiversity across scales in a rapidly changing world. Res. Ideas Outcomes 7, e63850 (2021).
    Google Scholar 
    Hwang, D. et al. A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA 102, 17296–17301 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Malley, M. A. & Soyer, O. S. The roles of integration in molecular systems biology. Stud. Hist. Philos. Sci. C 43, 58–68 (2012).
    Google Scholar 
    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).von Humboldt, A. & Bonpland, A. Essai sur la Géographie des Plantes, Accompagné d’un Tableau Physique des Régions Equinoxiales (Levrault & Schoell, 1807).Darwin, C. On the Origin of Species by Means of Natural Selection 6th edn (with corrections and additions to 1872) (John Murray, 1888).Braun, E. L. Deciduous Forests of Eastern North America (Hafner Publishing Company, 1967).Slik, J. W. F. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA 115, 1837 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).PubMed 

    Google Scholar 
    Cavender-Bares, J., Ackerly, D., Hobbie, S. & Townsend, P. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst. 47, 433–462 (2016).
    Google Scholar 
    Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A. & Jordan, G. J. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).CAS 
    PubMed 

    Google Scholar 
    Forrestel, E. J., Donoghue, M. J. & Smith, M. D. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytol. 203, 1000–1011 (2014).PubMed 

    Google Scholar 
    Auler, A. S. & Smart, P. L. Late quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat. Res. 55, 159–167 (2001).CAS 

    Google Scholar 
    Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013).PubMed 

    Google Scholar 
    Ledru, M.-P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 239–257 (1996).
    Google Scholar 
    Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–375 (2005).CAS 
    PubMed 

    Google Scholar 
    Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).CAS 
    PubMed 

    Google Scholar 
    Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).
    Google Scholar 
    Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E. & Wessman, C. A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 113, S78–S91 (2009).
    Google Scholar 
    Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37, 711–719 (2014).
    Google Scholar 
    Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789 (2009).CAS 
    PubMed 

    Google Scholar 
    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carnaval, A. C. et al. Prediction of phylogeographic endemism in an environmentally complex biome. Proc. R. Soc. B 281, 20141461 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Forest, F., Crandall, K. A., Chase, M. W. & Faith, D. P. Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos. Trans. R. Soc. Lond. B 370, 20140002 (2015).
    Google Scholar 
    Faith, D. P. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos. Trans. R. Soc. Lond. B 370, 20140011 (2015).
    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
    Google Scholar 
    Lavorel, S. et al. Assessing functional diversity in the field—methodology matters! Funct. Ecol. 22, 134–147 (2008).
    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).
    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 

    Google Scholar 
    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dahlin, K. M., Asner, G. P. & Field, C. B. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc. Natl Acad. Sci. USA 110, 6895–6900 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).PubMed 

    Google Scholar 
    Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ 4, e2615v2612 (2016).
    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 

    Google Scholar 
    Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158, 15–27 (2015).
    Google Scholar 
    Fajardo, A. & Siefert, A. Phenological variation of leaf functional traits within species. Oecologia 180, 951–959 (2016).PubMed 

    Google Scholar 
    Townsend, P. A., Foster, J. R., Chastain, R. A. Jr. & Currie, W. S. Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. Geosci. Remote Sens. IEEE Trans. 41, 1347–1354 (2003).
    Google Scholar 
    Féret, J. B., Gitelson, A. A., Noble, S. D. & Jacquemoud, S. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193, 204–215 (2017).
    Google Scholar 
    Berger, K. et al. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 92, 102174 (2020).
    Google Scholar 
    Jacquemoud, S. & Ustin, S. Leaf Optical Properties (Cambridge Univ. Press, 2019).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/zenodo.3261807 (2016).Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20 (2010).
    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).CAS 
    PubMed 

    Google Scholar 
    Peterson, G., Allen, C. & Holling, C. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).
    Google Scholar 
    MacDougall, A. S., McCann, K. S., Gellner, G. & Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494, 86–89 (2013).CAS 
    PubMed 

    Google Scholar 
    Duncan, B. N. et al. Space‐based observations for understanding changes in the Arctic‐Boreal Zone. Rev. Geophys. 58, e2019RG000652 (2020).
    Google Scholar 
    Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A. & Tesler, N. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. CATENA 71, 76–83 (2007).
    Google Scholar 
    Meng, Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 57, 101064 (2020).
    Google Scholar 
    Wilson, A. M., Latimer, A. M. & Silander, J. A. Climatic controls on ecosystem resilience: postfire regeneration in the Cape Floristic Region of South Africa. Proc. Natl Acad. Sci. USA 112, 9058 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, Z. et al. Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes. J. Hydrol. 543, 818–831 (2016).Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol. 53, 625–635 (2016).
    Google Scholar 
    Lausch, A. et al. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 9, 1799–1809 (2018).
    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    PubMed 

    Google Scholar 
    Faruk, A., Belabut, D., Ahmad, N., Knell, R. J. & Garner, T. W. J. Effects of oil-palm plantations on diversity of tropical anurans. Conserv. Biol. 27, 615–624 (2013).PubMed 

    Google Scholar 
    Yue, S., Brodie, J. F., Zipkin, E. F. & Bernard, H. Oil palm plantations fail to support mammal diversity. Ecol. Appl. 25, 2285–2292 (2015).PubMed 

    Google Scholar 
    Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. Camb. Philos. Soc. 92, 1539–1569 (2017).PubMed 

    Google Scholar 
    Slingsby, J. A., Moncrieff, G. R. & Wilson, A. M. Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics. ISPRS J. Photogramm. Remote Sens. 166, 15–25 (2020).
    Google Scholar 
    Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol. 22, 1421–1432 (2016).
    Google Scholar 
    van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 

    Google Scholar 
    Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).PubMed 

    Google Scholar 
    Schweiger, A. K. et al. Coupling spectral and resource-use complementarity in experimental grassland and forest communities. Proc. R. Soc. B 288, 20211290 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).PubMed 

    Google Scholar 
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).CAS 
    PubMed 

    Google Scholar 
    Isbell, F., Tilman, D., Reich, P. B. & Clark, A. T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol. 3, 1533–1538 (2019).PubMed 

    Google Scholar 
    Walters, M. & Scholes, R. The GEO Handbook on Biodiversity Observation Networks (Springer, 2017).Kühl, H. S. et al. Effective biodiversity monitoring needs a culture of integration. One Earth 3, 462–474 (2020).
    Google Scholar 
    Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395–408 (2015).
    Google Scholar 
    Thompson, B. K., Olden, J. D. & Converse, S. J. Mechanistic invasive species management models and their application in conservation. Conserv. Sci. Pract. 3, e533 (2021).
    Google Scholar 
    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).CAS 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52–64 (2016).
    Google Scholar 
    Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Change Biol. 27, 136–150 (2021).
    Google Scholar 
    Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273–284 (2021).PubMed 

    Google Scholar 
    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Ann. Rev. Environ. Res. 39, 125–159 (2014).Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).CAS 

    Google Scholar 
    Verburg, P. H., Erb, K.-H., Mertz, O. & Espindola, G. Land system science: between global challenges and local realities. Curr. Opin. Environ. Sustain. 5, 433–437 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).
    Google Scholar 
    Burke, M., Driscoll, A., Lobell, D. B. & Ermon, S. Using satellite imagery to understand and promote sustainable development. Science 371, eabe8628 (2021).CAS 
    PubMed 

    Google Scholar 
    Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).Trounstine, J. The geography of inequality: how land use regulation produces segregation. Am. Political Sci. Rev. 114, 443–455 (2020).
    Google Scholar 
    Su, S., Pi, J., Xie, H., Cai, Z. & Weng, M. Community deprivation, walkability, and public health: highlighting the social inequalities in land use planning for health promotion. Land Use Policy 67, 315–326 (2017).
    Google Scholar 
    Coomes, O. T., Takasaki, Y. & Rhemtulla, J. M. Forests as landscapes of social inequality tropical forest cover and land distribution among shifting cultivators. Ecol. Soc. 21, 20 (2016).Watmough, G. R. et al. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl Acad. Sci. USA 116, 1213 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verburg, P. H. et al. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).
    Google Scholar 
    Bickenbach, F., Bode, E., Nunnenkamp, P. & Söder, M. Night lights and regional GDP. Rev. World Econ. 152, 425–447 (2016).
    Google Scholar 
    Mayer, A. et al. Applying the human appropriation of net primary production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosyst. Serv. 51, 101344 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. Urban Green Space Analysis on UBC Vancouver Campus: Integrating Virtual Gaming Technology to Map Cultural Use and Biodiversity Value of Urban Green Space (Univ. British Columbia, 2021).Ghaffarian, S., Roy, D., Filatova, T. & Kerle, N. Agent-based modelling of post-disaster recovery with remote sensing data. Int. J. Disaster Risk Reduct. 60, 102285 (2021).
    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed 

    Google Scholar 
    Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).
    Google Scholar 
    Mirza, M. U., Xu, C., Bavel, B. V., van Nes, E. H. & Scheffer, M. Global inequality remotely sensed. Proc. Natl Acad. Sci. USA 118, e1919913118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kavvada, A. et al. Towards delivering on the Sustainable Development Goals using Earth observations. Remote Sens. Environ. 247, 111930 (2020).
    Google Scholar 
    Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).
    Google Scholar 
    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 992 (2009).
    Google Scholar 
    Madritch, M. D. et al. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philos. Trans. R. Soc. B 369, 20130194 (2014).
    Google Scholar 
    Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).PubMed 

    Google Scholar 
    Cline, L. C. et al. Resource availability underlies the plant–fungal diversity relationship in a grassland ecosystem. Ecology 99, 204–216 (2018).PubMed 

    Google Scholar 
    Wardle, D. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).CAS 
    PubMed 

    Google Scholar 
    Meier, C. L. & Bowman, W. D. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA 105, 19780–19785 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gold, K. M. et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sens. 12, 286 (2020).Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 24, 1651–1669 (2014).
    Google Scholar 
    Fisher, J. B., Perakalapudi, N. V., Turner, B. L., Schimel, D. S. & Cusack, D. F. Sci. Rep. 10, 6725 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed 

    Google Scholar 
    Meireles, J. E., O’Meara, B. & Cavender-Bares, J. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 155–172 (Springer, 2020).Kothari, S. et al. Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica 56, 455–467 (2018).CAS 

    Google Scholar 
    Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make “functional types” more functional. Glob. Change Biol., https://doi.org/10.1111/gcb.16040 (2022).Cavender-Bares, J. M. et al. Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecol. Monogr., https://doi.org/10.1002/ecm.1488 (2021).Niemann, K. O., Quinn, G., Stephen, R., Visintini, F. & Parton, D. Hyperspectral remote sensing of mountain pine beetle with an emphasis on previsual assessment. Can. J. Remote Sens. 41, 191–202 (2015).
    Google Scholar 
    Chu, H. et al. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems 5, e00803–e00819 (2020).King, G. M. Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol. 19, 75–84 (2011).CAS 
    PubMed 

    Google Scholar 
    Singh, A. K., Sisodia, A., Sisodia, V. & Padhi, M. in New and Future Developments in Microbial Biotechnology and Bioengineering (eds. Singh, J. S. & Singh, D. P.) 57–68 (Elsevier, 2019).Eviner, V. T. Plant traits that influence ecosystem processes vary independently among species. Ecology 85, 2215–2229 (2004).
    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 

    Google Scholar 
    Paneque-Gálvez, J. et al. High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon. Ambio 47, 908–923 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hilbert, M. The bad news is that the digital access divide is here to stay: domestically installed bandwidths among 172 countries for 1986–2014. Telecommun. Policy 40, 567–581 (2016).
    Google Scholar 
    Prados, A. I. et al. Impact of the ARSET program on use of remote-sensing data. ISPRS Int. J. Geo-Inf. 8, 261 (2019).Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
    Google Scholar 
    Chase, A. S. Z., Chase, D. & Chase, A. Ethics, new colonialism, and lidar data: a decade of lidar in Maya archaeology. J. Comput. Appl. Archaeol. 3, 51–62 (2020).
    Google Scholar 
    Carrino, T. A., Crósta, A. P., Toledo, C. L. B. & Silva, A. M. Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf. 64, 287–300 (2018).
    Google Scholar 
    Scafutto, R. D. P. M., de Souza Filho, C. R. & de Oliveira, W. J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens. 128, 146–157 (2017).
    Google Scholar 
    Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).CAS 
    PubMed 

    Google Scholar 
    Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 10, 1 (2021).Randin, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 239, 111626 (2020).
    Google Scholar 
    Geller, G. N. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender Bares, J. et al.) 519–526 (Springer, 2020).Asner, G. P. & Martin, R. E. Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219 (2016).
    Google Scholar 
    Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett. 15, 115006 (2020).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Green, R. O. et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998).
    Google Scholar 
    Hook, S. & Fisher, J. ECO3ETPTJPL v001 ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70 m https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001 (LP DAAC, accessed 8 December 2021).Turner, A. J. et al. A double peak in the seasonality of California’s photosynthesis as observed from space. Biogeosciences 17, 405–422 (2020).CAS 

    Google Scholar 
    Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ. 222, 204–214 (2019).
    Google Scholar 
    Crameri, F. Scientific colour-maps. Zenodo https://doi.org/10.5281/zenodo.1287763 (2018).Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing 11, 2563 (2019).Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).PubMed 

    Google Scholar 
    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).Boonman, C. C. F. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034–1051 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lausch, A. et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic. 70, 317–339 (2016).
    Google Scholar 
    Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Inform. 5, 318–329 (2010).
    Google Scholar 
    Schneider, F. D., Ferraz, A. & Schimel, D. Watching Earth’s interconnected systems at work. Eos, https://doi.org/10.1029/2019EO136205 (2019).Laliberté, E., Schweiger, A. K. & Legendre, P. Partitioning plant spectral diversity into alpha and beta components. Ecol. Lett. 23, 370–380 (2020).PubMed 

    Google Scholar 
    Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).
    Google Scholar 
    Féret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl. 24, 1289–1296 (2014).PubMed 

    Google Scholar 
    Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).
    Google Scholar 
    Omasa, K., Hosoi, F. & Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot. 58, 881–898 (2007).CAS 
    PubMed 

    Google Scholar 
    Bae, S. et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 10, 4757 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evol. 1, 0194 (2017).Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).
    Google Scholar 
    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    PubMed 

    Google Scholar 
    Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).PubMed 

    Google Scholar 
    Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).PubMed 

    Google Scholar 
    Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).PubMed 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).PubMed 

    Google Scholar 
    Fretwell, P. T. & Trathan, P. N. Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr. 18, 543–552 (2009).
    Google Scholar 
    Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681–691 (2014).PubMed 

    Google Scholar 
    Paz, A. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 255–266 (Springer International Publishing, 2020).Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 11, 16448 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Papeş, M., Tupayachi, R., Martínez, P., Peterson, A. T. & Powell, G. V. N. Using hyperspectral satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon Basin. J. Veg. Sci. 21, 342–354 (2010).
    Google Scholar 
    Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 221, 405–416 (2019).
    Google Scholar  More

  • in

    Southeast Asia must narrow down the yield gap to continue to be a major rice bowl

    OECD–FAO Agricultural Outlook 2017-2026 (OECD, 2017).Frenken, K. Irrigation in Southern and Eastern Asia in Figures—AQUASTAT Survey 2011 (FAO, 2012).FAOSTAT Production Data (FAO, accessed 2 May 2021); www.fao.org/faostat/en/#dataDawe, D., Jaffee, S. & Santos, N. Rice in the Shadow of Skyscrapers: Policy Choices in a Dynamic East and Southeast Asian Setting (FAO, 2014).Baldwin, K., Childs, N., Dyck, J. & Hansen, J. Southeast Asia’s Rice Surplus. Outlook No. RCS-121-01 (USDA, 2012).World Population Prospects (Department of Economic and Social Affairs, Population Division, UN, 2019).Rejesus, R. M., Mohanty, S. & Balagtas, J. V. Forecasting Global Rice Consumption (North Carolina State Univ., 2012).Clarete, R. L., Adriano, L. & Esteban A. Rice Trade and Price Volatility: Implications on ASEAN and Global Food Security (Asian Development Bank, 2013).Pandey, S. et al. Rice in the Global Economy: Strategic Research and Policy Issues for Food Security (International Rice Research Institute, 2010).Robinson, S. et al. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description for Version 3, IFPRI Discussion Paper 1483 (International Food Policy Research Institute, 2015).d’Amour, C. B. et al. Future urban land expansion and implications for global croplands. Proc. Natl Acad. Sci. USA 114, 8939–8944 (2017).
    Google Scholar 
    de Fraiture, C. et al. Trends and Transitions in Asian Irrigation: What are the Prospects for the Future? IWMI-FAO Workshop on Asian Irrigation (FAO Regional Office for Asia and the Pacific, 2009)Global Rice Science Partnership. Rice Almanac 4th edn (International Rice Research Institute, 2013).Ladha, J. K. et al. Steady agronomic and genetic interventions are essential for sustaining productivity in intensive rice cropping. Proc. Natl Acad. Sci. USA 118, e2110807118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mutert, E. & Fairhurst, T. H. Developments in rice production in Southeast Asia. Better Crops Int. 15, 12–17 (2002).
    Google Scholar 
    Dawe, D. C., Piedad, M. & Cheryll B. C. Why Does the Philippines Import Rice?: Meeting the Challenge of Trade Liberalization (International Rice Research Institute, 2006).van Ittersum, M. K. et al. Can Sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179 (2009).
    Google Scholar 
    Agus, F. et al. Yield gaps in intensive rice–maize cropping sequences in the humid tropics of Indonesia. Field Crops Res. 237, 12–22 (2019).
    Google Scholar 
    Cosslett, T. L. & Cosslett, P. D. Rice Trade of the Mainland Southeast Asian Countries: Cambodia, Laos, Thailand, and Vietnam. Sustainable Development of Rice and Water Resources in Mainland Southeast Asia and Mekong River Basin (Springer, 2018).Tran, U. T. & Kajisa, K. The impact of Green Revolution on rice production in Vietnam. Dev. Econ. 44, 167–189 (2006).
    Google Scholar 
    Dobermann, A., Witt, C. & Dawe, D. Increasing Productivity of Intensive Rice Systems Through Site-Specific Nutrient Management (Science Publishers Inc. and International Rice Research Institute, 2004).Hoang, H. K. & Meyers, W. H. Price stabilization and impacts of trade liberalization in the Southeast Asian rice market. Food Policy 57, 26–39 (2015).
    Google Scholar 
    Clapp, J. Food self-sufficiency: making sense of it, and when it makes sense. Food Policy 66, 88–96 (2017).
    Google Scholar 
    Buresh, R. J., Correa, T. Q. Jr, Pabuayon, I. L. B., Laureles, E. V. & Choi, I. R. Yield of irrigated rice affected by asymptomatic disease in a long-term intensive monocropping experiment. Field Crops Res. 265, 108121 (2021).
    Google Scholar 
    Dawe, D. & Timmer, C. P. Why stable food prices are a good thing: lessons from stabilizing rice prices in Asia. Glob. Food Secur. 1, 127–133 (2012).
    Google Scholar 
    Deng, N. et al. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 10, 1725 (2019).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Ray, D. K. et al. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).PubMed 
    ADS 

    Google Scholar 
    Stuart, A. M. et al. Yield gaps in rice-based farming systems: insights from local studies and prospects for future analysis. Field Crops Res. 194, 43–56 (2016).
    Google Scholar 
    Affholder, F., Poeydebat, C., Corbeels, M., Scopel, E. & Tittonell, P. The yield gap of major food crops in family agriculture in the tropics: assessment and analysis through field surveys and modelling. Field Crops Res. 143, 106–118 (2013).
    Google Scholar 
    Boling, A. A., Bouman, B. A., Tuong, T. P., Konboon, Y. & Harnpichitvitaya, D. Yield gap analysis and the effect of nitrogen and water on photoperiod-sensitive Jasmine rice in north-east Thailand. NJAS-Wagen. J. Life Sci. 58, 11–19 (2011).
    Google Scholar 
    van Oort, P. A. et al. Can yield gap analysis be used to inform R&D prioritisation? Glob. Food Sec. 12, 109–118 (2017).
    Google Scholar 
    Rattalino Edreira, J. I. et al. Spatial frameworks for robust estimation of yield gaps. Nat. Food 2, 773–779 (2021).
    Google Scholar 
    Grassini, P. et al. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Res. 177, 49–63 (2015).
    Google Scholar 
    Redfern, S. K., Azzu, N. & Binamira, J. S. Rice in Southeast Asia: Facing Risks and Vulnerabilities to Respond to Climate Change. Building Resilience for Adaptation to Climate Change in the Agriculture Sector (FAO, 2012).Angulo, C., Becker, M. & Wassmann, R. Yield gap analysis and assessment of climate-induced yield trends of irrigated rice in selected provinces of the Philippines. J. Agric. Rural Dev. Trop. Subtrop. 113, 61–68 (2012).
    Google Scholar 
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Gitz, V., Meybeck, A., Lipper, L., Young, C. D. & Braatz, S. Climate Change and Food Security: Risks and Responses (FAO, 2016).Collins, M. et al. in IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).ADS 

    Google Scholar 
    Pastor, A. V. et al. The global nexus of food–trade–water sustaining environmental flows by 2050. Nat. Sustain. 2, 499–507 (2019).
    Google Scholar 
    Kropff, M. J., Cassman, K. G., Peng, S., Matthews, R. B. & Setter, T. L. Quantitative Understanding of Yield Potential. Breaking the Yield Barrier (International Rice Research Institute, 1994).Matthews, R. B., Kropff, M. J., Bachelet, D. & van Laar, H. H. Modeling the Impact of Climate Change on Rice Production in Asia (CAB International and International Rice Research Institute, 1995).Mitchell P. L., Sheehy J. E. & Woodward F. I. Potential Yields and the Efficiency of Radiation Use in Rice. IRRI Discussion Paper Series 32 (International Rice Research Institute, 1998).Devkota, K. P. et al. Economic and environmental indicators of sustainable rice cultivation: a comparison across intensive irrigated rice cropping systems in six Asian countries. Ecol. Indic. 105, 199–214 (2019).CAS 

    Google Scholar 
    Peng, S. et al. The importance of maintenance breeding: a case study of the first miracle rice variety—IR8. Field Crops Res. 119, 342–347 (2010).ADS 

    Google Scholar 
    Peng, S., Cassman, K. G., Virmani, S. S., Sheehy, J. & Khush, G. S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci. 39, 1552–1559 (1999).
    Google Scholar 
    Kupkanchanakul, T. Bridging the Rice Yield Gap in Thailand. Bridging the Rice Yield Gap in the Asia-Pacific Region (FAO Regional Office for Asia and the Pacific, 2000).Monkham, T. et al. On-farm multi-location evaluation of occurrence of drought types and rice genotypes selected from controlled-water on-station experiments in northeast Thailand. Field Crops Res. 220, 27–36 (2018).
    Google Scholar 
    Naklang, K., Shu, F. & Nathabut, K. Growth of rice cultivars by direct seeding and transplanting under upland and lowland conditions. Field Crops Res. 48, 115–123 (1996).
    Google Scholar 
    Espe, M. B. et al. Rice yield improvements through plant breeding are offset by inherent yield declines over time. Field Crops Res. 222, 59–65 (2018).
    Google Scholar 
    Ermakova, M., Danila, F. R., Furbank, R. T. & von Caemmerer, S. On the road to C4 rice: advances and perspectives. Plant J. 101, 940–950 (2020).CAS 
    PubMed 

    Google Scholar 
    Hari Prasad, A. S., Viraktamath, B. C. & Mohapatra, T. Hybrid Rice Development in Asia: Assessment of Limitations and Potential (FAO Regional Office for Asia and the Pacific, 2014).Report on the Regional Expert Consultation on Hybrid Rice Development in Asia Under FAO–China South–South Cooperation: Constraints and Opportunities (FAO Regional Office for Asia and the Pacific, 2016).Xie, F. & Peng, S. History and prospects of hybrid rice development outside of China. Sci. Bull. 35, 3858–3868 (2016).
    Google Scholar 
    Gummert, M. et al. Assessment of post-harvest losses and carbon footprint in intensive lowland rice production in Myanmar. Sci. Rep. 10, 1–13 (2020).
    Google Scholar 
    A Regional Rice Strategy for Sustainable Food Security in Asia and the Pacific (FAO Regional Office for Asia and the Pacific, 2014).Laborte, A. G. et al. Rice yields and yield gaps in Southeast Asia: past trends and future outlook. Eur. J. Agron. 36, 9–20 (2012).
    Google Scholar 
    Chivenge, P., Saito, K., Bunquin, M. A., Sharma, S. & Dobermann, A. Co-benefits of nutrient management tailored to smallholder agriculture. Glob. Food Sec. 30, 100570 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, M. B. Ecological approaches and the development of “truly integrated” pest management. Proc. Natl Acad. Sci. USA 96, 5944–5951 (1999).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Adoption of Technologies for Sustainable Farming Systems. Wageningen Workshop Proceeding (OECD, 2001).OECD–FAO Agricultural Outlook 2021–2030 (OECD, 2021).Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).
    Google Scholar 
    Mortensen, D. A. & Smith, R. G. Confronting barriers to cropping system diversification. Front. Sustain. Food Syst. 4, 564197 (2020).
    Google Scholar 
    van Bussel, L. G. et al. From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Res. 177, 98–108 (2015).
    Google Scholar 
    van Wart, J. et al. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Res. 143, 44–55 (2013).
    Google Scholar 
    Bouman, B. A. M. et al. ORYZA2000: Modeling Lowland Rice (International Rice Research Institute, 2001).POWER Data Methodology (NASA, accessed 25 June 2020); https://power.larc.nasa.gov/docs/van Wart, J. et al. Creating long-term weather data from thin air for crop simulation modeling. Agric. For. Meteorol. 209, 49–58 (2015).ADS 

    Google Scholar 
    van Ittersum, M. K. et al. Yield gap analysis with local to global relevance—a review. Field Crops Res. 143, 4–17 (2013).
    Google Scholar 
    Khunthasuvon, S. et al. Lowland rice improvement in northern and northeast Thailand: 1. effects of fertiliser application and irrigation. Field Crops Res. 59, 99–108 (1998).
    Google Scholar 
    Naklang, K., Harnpichitvitaya, D., Amarante, S. T., Wade, L. J. & Haefele, S. M. Internal efficiency, nutrient uptake, and the relation to field water resources in rainfed lowland rice of northeast Thailand. Plant Soil 286, 193–208 (2006).CAS 

    Google Scholar 
    Roy, R. N., Finck, A., Blair, G. J. & Tandon, H. L. S. Plant Nutrition for Food Security—A Guide for Integrated Nutrient Management (FAO, 2006).White, P. F., Oberthür, T. & Sovuthy, P. The Soils Used for Rice Production in Cambodia: A Manual for Their Identification and Management (International Rice Research Institute, 1997).Agustiani, N. et al. Simulating rice and maize yield potential in the humid tropical environment of Indonesia. Eur. J. Agron. 101, 10–19 (2018).
    Google Scholar 
    Espe, M. B. et al. Yield gap analysis of US rice production systems shows opportunities for improvement. Field Crops Res. 196, 276–283 (2016).
    Google Scholar 
    Yuan, S., Peng, S. & Li, T. Evaluation and application of the ORYZA rice model under different crop managements with high-yielding rice cultivars in central China. Field Crops Res. 212, 115–125 (2017).
    Google Scholar 
    Li, T. et al. From ORYZA2000 to ORYZA (v3): an improved simulation model for rice in drought and nitrogen-deficient environments. Agric. For. Meteorol. 237, 246–256 (2017).PubMed 
    ADS 

    Google Scholar 
    Bouman, B. A. M. Developing a System of Temperate and Tropical Aerobic Rice in Asia (STAR), CPWF Project Report (CGIAR Challenge Program on Water and Food, 2008).Regional: Development and Dissemination of Climate-Resilient Rice Varieties for Water-Short Areas of South Asia and Southeast Asia (Asian Development Bank, 2016).Nguyen, V. N. & Tran, D. V. Rice in Producing Countries, FAO Rice Information (FAO, Rome, Italy, 2002).Li, T. et al. Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Res. 149, 312–321 (2013).
    Google Scholar 
    Samson, B. K., Hasan, M. & Wade, L. J. Penetration of hardpans by rice lines in the rainfed lowlands. Field Crops Res. 76, 175–188 (2002).
    Google Scholar 
    Haefele, S. M. et al. Factors affecting rice yield and fertilizer response in rainfed lowlands of northeast Thailand. Field Crops Res. 98, 39–51 (2006).
    Google Scholar 
    Boling, A. A. et al. The effect of toposequence position on soil properties, hydrology, and yield of rainfed lowland rice in Southeast Asia. Field Crops Res. 106, 22–33 (2008).
    Google Scholar 
    Foreign Agricultural Service (USDA, accessed 2 May 2021); https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQueryBalié, J. & Valera, H. G. Domestic and international impacts of the rice trade policy reform in the Philippines. Food Policy 92, 101876 (2020).
    Google Scholar 
    Koizumi, T., Gay, S. H. & Furuhashi, G. Reviewing Indica and Japonica Rice Market Developments (OECD, 2021).Standard Country or Area Codes for Statistical Use (M49) (United Nations Statistical Division, 1999).Rega, C., Helming, J. & Paracchini, M. L. Environmentalism and localism in agricultural and land-use policies can maintain food production while supporting biodiversity. Findings from simulations of contrasting scenarios in the EU. Land Use Policy 87, 103986 (2019).
    Google Scholar 
    Zhou, Y. & Staatz, J. Projected demand and supply for various foods in West Africa: implications for investments and food policy. Food Policy 61, 198–212 (2016).
    Google Scholar 
    Yuan, S. et al. Sustainable intensification for a larger global rice bowl. Nat. Commun. 12, 7163 (2021).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Andrade, J. F. et al. Impact of Urbanization trends on production of key staple crops. Ambio https://doi.org/10.1007/s13280-021-01674-z (2021). More

  • in

    Long-distance, synchronized and directional fall movements suggest migration in Arctic hares on Ellesmere Island (Canada)

    Jeltsch, F. et al. Integrating movement ecology with biodiversity research—Exploring new avenues to address spatiotemporal biodiversity dynamics. Mov. Ecol. 1, 6 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Dingle, H. Migration: The Biology of Life on the Move Migration (Oxford University Press, 2014).Joly, K. et al. Longest terrestrial migrations and movements around the world. Sci. Rep. 9, 15333 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).
    Google Scholar 
    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 

    Google Scholar 
    Nifong, J. C., Layman, C. A. & Silliman, B. R. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator. J. Anim. Ecol. 84, 35–48 (2015).PubMed 

    Google Scholar 
    Giroux, M.-A. et al. Benefiting from a migratory prey: Spatio-temporal patterns in allochthonous subsidization of an arctic predator. J. Anim. Ecol. 81, 533–542 (2012).PubMed 

    Google Scholar 
    Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 155 (2016).
    Google Scholar 
    Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: Individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2011).PubMed 

    Google Scholar 
    Teitelbaum, C. S. & Mueller, T. Beyond migration: Causes and consequences of nomadic animal movements. Trends Ecol. Evol. 34, 569–581 (2019).PubMed 

    Google Scholar 
    Berg, J. E., Hebblewhite, M., St. Clair, C. C. & Merrill, E. H. Prevalence and mechanisms of partial migration in ungulates. Front. Ecol. Evol. 7, 325 (2019).
    Google Scholar 
    Avgar, T., Street, G. & Fryxell, J. M. On the adaptive benefits of mammal migration. Can. J. Zool. 92, 481–490 (2014).
    Google Scholar 
    Barbour, M. G. & Billings, W. D. North American Terrestrial Vegetation (Cambridge University Press, 2000).
    Google Scholar 
    Smith, S. L., Throop, J. & Lewkowicz, A. G. Recent changes in climate and permafrost temperatures at forested and polar desert sites in northern Canada. Can. J. Earth Sci. 49, 914–924 (2012).ADS 

    Google Scholar 
    Lévesque, E. Plant Distribution and Colonization in Extreme Polar Deserts, Ellesmere Island, Canada (University of Toronto, 1997).
    Google Scholar 
    Bliss, L. C., Svoboda, J. & Bliss, D. I. Polar deserts, their plant cover and plant production in the Canadian High Arctic. Holarctic Ecol. 7, 305–324 (1984).
    Google Scholar 
    Berteaux, D. et al. Effects of changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arctic Sci. 3, 65–90 (2017).
    Google Scholar 
    Duchesne, D., Gauthier, G. & Berteaux, D. Habitat selection, reproduction and predation of wintering lemmings in the Arctic. Oecologia 167, 967–980 (2011).ADS 
    PubMed 

    Google Scholar 
    Fuglei, E., Blanchet, M.-A., Unander, S., Ims, R. A. & Pedersen, Å. Ø. Hidden in the darkness of the Polar night: A first glimpse into winter migration of the Svalbard rock ptarmigan. Wildl. Biol. 2017, SP1 (2017).
    Google Scholar 
    Schmidt, N. M. et al. Ungulate movement in an extreme seasonal environment: Year-round movement patterns of high-arctic muskoxen. Wildl. Biol. 22, 253–267 (2016).
    Google Scholar 
    Berteaux, D. & Lai, S. Walking on water: Terrestrial mammal migrations in the warming Arctic. Anim. Migr. 8, 65–73 (2021).
    Google Scholar 
    Gnanadesikan, G. E., Pearse, W. D. & Shaw, A. K. Evolution of mammalian migrations for refuge, breeding, and food. Ecol. Evol. 7, 5891–5900 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Best, T. L. & Henry, T. H. Lepus arcticus. Mamm. Species 1–9 (1994).Dalerum, F. et al. Exploring the diet of arctic wolves (Canis lupus arctos) at their northern range limit. Can. J. Zool. 96, 277–281 (2018).
    Google Scholar 
    Mech, L. D. Annual arctic wolf pack size related to arctic hare numbers. Arctic 60, 309–311 (2007).
    Google Scholar 
    Small, R. J., Keith, L. B. & Barta, R. M. Demographic responses of Arctic hares Lepus arcticus placed on two predominantly forested islands in Newfoundland. Ecography 15, 161–165 (1992).
    Google Scholar 
    Small, R. J., Keith, L. B. & Barta, R. M. Dispersion of introduced arctic hares (Lepus arcticus) on islands off Newfoundland’s south coast. Can. J. Zool. 69, 2618–2623 (1991).
    Google Scholar 
    Hearn, B. J., Keith, L. B. & Rongstad, O. J. Demography and ecology of the arctic hare (Lepus arcticus) in southwestern Newfoundland. Can. J. Zool. 65, 852–861 (1987).
    Google Scholar 
    Harper, F. The Mammals of Keewatin Vol. 12 (Miscellaneaous Publications, Museum of Natural History, University of Kansas, 1956).
    Google Scholar 
    Dalerum, F. et al. Spatial variation in Arctic hare (Lepus arcticus) populations around the Hall Basin. Polar Biol. 40, 2113–2118 (2017).
    Google Scholar 
    Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150 (2018).
    Google Scholar 
    CAFF. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri (2013).Desjardins, É. et al. Survey of the vascular plants of Alert (Ellesmere Island, Canada), a polar desert at the northern tip of the Americas. CheckList 17, 181–225 (2021).
    Google Scholar 
    Keith, L. B., Meslow, E. C. & Rongstad, O. J. Techniques for snowshoe hare population studies. J. Wildl. Manag. 32, 801–812 (1968).
    Google Scholar 
    Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 370, 712–715 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wikelski, M., Davidson, S. C. & Kays, R. Movebank: Archive, analysis and sharing of animal movement data. Hosted by the Max Planck Institute of Animal Behavior. http://www.movebank.org (2021).Berteaux, D. Data from: Study ‘Arctic hare Alert—Argos tracking’. MoveBank Data Repository https://doi.org/10.5441/001/1.d5d912c4 (2021).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).Christin, S., St-Laurent, M.-H. & Berteaux, D. Evaluation of Argos telemetry accuracy in the High-Arctic and implications for the estimation of home-range size. PLoS One 10, e0141999 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    QGIS Association. QGIS Geographic Information System (2021).Harris, S. et al. Home-range analysis using radio-tracking data? A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123 (1990).
    Google Scholar 
    Le Corre, M., Dussault, C. & Côté, S. D. Detecting changes in the annual movements of terrestrial migratory species: Using the first-passage time to document the spring migration of caribou. Mov. Ecol. 2, 19 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Nicholson, K. L., Arthur, S. M., Horne, J. S., Garton, E. O. & Vecchio, P. A. D. Modeling caribou movements: Seasonal ranges and migration routes of the central Arctic herd. PLoS One 11, e0150333 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Nelson, M. E., Mech, L. D. & Frame, P. F. Tracking of white-tailed deer migration by global positioning system. J. Mammal. 85, 505–510 (2004).
    Google Scholar 
    Singh, N. J. & Ericsson, G. Changing motivations during migration: Linking movement speed to reproductive status in a migratory large mammal. Biol. Lett. 10, 20140379 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Jakes, A. F. et al. Classifying the migration behaviors of pronghorn on their northern range. J. Wildl. Manag. 82, 1229–1242 (2018).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. (2015).Duong, T. ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007).
    Google Scholar 
    Gitzen, R. A., Millspaugh, J. J. & Kernohan, B. J. Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J. Wildl. Manag. 70, 1334–1344 (2006).
    Google Scholar 
    Austin, R. E. et al. Patterns of at-sea behaviour at a hybrid zone between two threatened seabirds. Sci. Rep. 9, 14720 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gillis, E. A. & Krebs, C. J. Natal dispersal of snowshoe hares during a cyclic population increase. J. Mammal. 80, 933–939 (1999).
    Google Scholar 
    Dahl, F. & Willebrand, T. Natal dispersal, adult home ranges and site fidelity of mountain hares (Lepus timidus) in the boreal forest of Sweden. Wildl. Biol. 11, 309–317 (2005).
    Google Scholar 
    Angerbjörn, A. & Flux, J. E. C. Lepus timidus. Mamm. Species 495, 1–11 (1995).
    Google Scholar 
    Smith, G. W., Stoddart, L. C. & Knowlton, F. F. Long-distance movements of black-tailed jackrabbits. J. Wildl. Manag. 66, 463 (2002).
    Google Scholar 
    Cote, J. et al. Behavioural synchronization of large-scale animal movements—Disperse alone, but migrate together?. Biol. Rev. 92, 1275–1296 (2017).PubMed 

    Google Scholar 
    Bauer, S., McNamara, J. M. & Barta, Z. Environmental variability, reliability of information and the timing of migration. Proc. R. Soc. B 287, 20200622 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Couzin, I. D. Collective animal migration. Curr. Biol. 28, R976–R980 (2018).CAS 
    PubMed 

    Google Scholar 
    Lai, S. et al. Unsuspected mobility of Arctic hares revealed by longest journey ever recorded in a lagomorph. Ecology 103(3), e3620 https://doi.org/10.1002/ecy.3620 (2022).PubMed 

    Google Scholar 
    Abrahms, B. et al. Suite of simple metrics reveals common movement syndromes across vertebrate taxa. Mov. Ecol. 5, 12 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).
    Google Scholar 
    Singh, N. J., Börger, L., Dettki, H., Bunnefeld, N. & Ericsson, G. From migration to nomadism: Movement variability in a northern ungulate across its latitudinal range. Ecol. Appl. 22, 2007–2020 (2012).PubMed 

    Google Scholar 
    Bastille-Rousseau, G. et al. Flexible characterization of animal movement pattern using net squared displacement and a latent state model. Mov. Ecol. 4, 15 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—From individual behaviors to population distributions. Oikos 117, 654–664 (2008).
    Google Scholar 
    Krebs, C. J., Boonstra, R. & Boutin, S. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America. J. Anim. Ecol. 87, 87–100 (2018).PubMed 

    Google Scholar 
    Reid, N. & Harrison, A. Post-release GPS tracking of hand-reared Irish hare Lepus timidus hibernicus leverets, Slemish, Co. Antrim, Northern Ireland. J. Wildl. Rehabil. 31, 25 (2011).
    Google Scholar 
    Weterings, M. J. A. et al. Strong reactive movement response of the medium-sized European hare to elevated predation risk in short vegetation. Anim. Behav. 115, 107–114 (2016).
    Google Scholar 
    Krebs, C. J., Boutin, S. & Boonstra, R. Ecosystem Dynamics of the Boreal Forest: The Kluane Project (Oxford University Press, 2001).
    Google Scholar 
    Feierabend, D. & Kielland, K. Movements, activity patterns, and habitat use of snowshoe hares (Lepus americanus) in interior Alaska. J. Mammal. 95, 525–533 (2014).
    Google Scholar 
    Levänen, R., Pohjoismäki, J. L. O. & Kunnasranta, M. Home ranges of semi-urban brown hares (Lepus europaeus) and mountain hares (Lepus timidus) at northern latitudes. Ann. Zool. Fenn. 56, 107–120 (2019).
    Google Scholar 
    Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. U.S.A. 105, 19052–19059 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed 

    Google Scholar 
    France, R. L. The Lake Hazen trough: A late winter oasis in a polar desert. Biol. Conserv. 63, 149–151 (1993).
    Google Scholar 
    Jenkins, D. A., Campbell, M., Hope, G., Goorts, J. & McLoughlin, P. Recent trends in abundance of Peary caribou (Rangifer tarandus pearyi) and muskoxen (Ovibos moschatus) in the Canadian Arctic Archipelago, Nunavut 233.Mech, L. Proportion of calves and adult muskoxen, Ovibos moschatus killed by gray wolves, Canis lupus, in July on Ellesmere Island (USGS Northern Prairie Wildlife Research Center, 2010).
    Google Scholar 
    Gunn, A., Miller, F., Barry, S. & Buchan, A. A near-total decline in caribou on Prince of Wales, Somerset, and Russell Islands, Canadian Arctic. Arctic 59, 1–13 (2006).
    Google Scholar 
    Edwards, J. Diet shifts in moose due to predator avoidance. Oecologia 60, 185–189 (1983).ADS 
    PubMed 

    Google Scholar 
    Gustine, D. D., Parker, K. L., Lay, R. J., Gillingham, M. P. & Heard, D. C. Calf survival of woodland caribou in a multi-predator ecosystem. Wildl. Monogr. 165, 1–32 (2006).
    Google Scholar 
    Klein, D. & Bay, C. Diet selection by vertebrate herbivores in the High Arctic of Greenland. Ecography 14, 152–155 (1991).
    Google Scholar 
    Parks Canada. Resource Description and Analysis—Ellesmere Island National Park Reserve Vol. 1 (Natural Resource Conservation Section, Parks Canada, Department of Canadian Heritage, 1994).
    Google Scholar 
    Parks Canada. Quttinirpaaq National Park of Canada: Management plan 76. https://www.pc.gc.ca/en/pn-np/nu/quttinirpaaq/info/index/gestion-management-2009 (2009).Winkler, D. W. et al. Cues, strategies, and outcomes: How migrating vertebrates track environmental change. Mov. Ecol. 2, 10 (2014).
    Google Scholar 
    Robinson, R. et al. Travelling through a warming world: Climate change and migratory species. Endang. Species Res. 7, 87–99 (2009).ADS 

    Google Scholar  More

  • in

    Assessment of global health risk of antibiotic resistance genes

    Global patterns of ARG distributionWe used a set of 4572 metagenomic samples to illustrate the global patterns of ARG distribution (Supplementary Data 1). These samples were collected from six types of habitats: air, aquatic, terrestrial, engineered, humans and other hosts (Fig. 1a and Supplementary Data 1). From these samples, we identified a total of 2561 ARGs that conferred resistance to 24 drug classes of antibiotics based on the Comprehensive Antibiotic Research Database (CARD). Of these, 2401 were genes conferring resistance to only one drug class, and 160 conferred resistances to multiple drug classes (Supplementary Data 2). Twenty-five ARGs were found in more than 75% samples, however, the frequency of most ARGs (2313/2561) were More

  • in

    Effects of plastic mulching on soil CO2 efflux in a cotton field in northwestern China

    Site descriptionIn 2012, a field experiment was conducted in the Aksu National Experimental Station of Oasis Farmland Ecosystem27 (40°37′ N, 80°45′ E, altitude 1028 m) (Fig. 1), located in the west of Tarim River Basin in Xinjiang Province, China. The experimental area had a typical temperate arid climate. During the study period (May to October), the average minimum and maximum temperatures varied between 16.7 and 34.8 ℃ respectively.Figure 1Location of the Aksu National Experimental Station of Oasis Farmland Ecosystem (the map was created by software: QGIS Version 3.16.15 LTR: URL, https://www.qgis.org/en/site/).Full size imageThe cotton fields where the experiment conducted were public land, belong to Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China. With the permissions of Xinjiang Institute of Ecology and Geography, we conducted experiments in the cotton field of the Aksu National Experimental Station of Oasis Farmland Ecosystem.Experimental designTwo treatments, each 10 m × 10 m in size, were established on one of cotton fields at the Aksu National Experimental Station of Oasis Farmland Ecosystem on April 5, 2012.One treatment planting cotton with TC method, the other with MC method. For the MC method, a high-density and air-tight transparent polythene film (0.01–0.02 mm thick, 1.25 m wide) was placed over the soil surface before sowing. Small holes (0.02 m × 0.02 m, at 0.1 m intervals within a row) in the plastic film were made to place cotton seeds. Four rows were sown on each strip of plastic film. For the TC treatment, the plants were sown as that for the MC treatment. The planting density (266 667plant ha−1) and irrigation pattern (frequency and volume of irrigation) for the TC method were entirely consistent with those for the MC method.Half-hourly measurements of soil CO2 efflux, soil temperature and moisture were made on 6 June 2012. The whole experiment was completed on 4 November 2012. According to irrigation, the whole experiment can be divided into three stages: stage before irrigation (from 6 to 24 June), during irrigation (from 25 June to 10 October) and irrigation stop stage (from 11October to 4 November). During the irrigation period, we conducted seven times of irrigation (once in two week). The water-soluble compound fertilizer (N + P2O5 + K2O ≥ 51%) was used for fertilization in the experimental field, and the application rate was 30 g m−2. We dissolved water-soluble compound fertilizer in water and sprayed into the field by sprayer. During the irrigation period, the fertilizer was applied for 5 times.The cottonseeds we used in this study comply with the provisions of the regulations of the People’s Republic of China on Seed Administration and the detailed rules for the implementation of crop seeds. The fertilization we used in this study comply with the provisions of the People’s Republic of China on Chemical fertilizer standard. All the experiments we conducted in the cotton field of Aksu oasis farmland ecosystem National Experimental Station met the provisions of the agricultural law of the People’s Republic of China. We also carried out the experiment of this study under the guidance of the provisions of the measures for the administration of national field scientific observation and research stations.Field measurement of soil CO2 concentrationSolid-state CO2 sensors (GMM221 and GMM222, Vaisala, Finland) were installed in the midpoint of each treatment to measure soil CO2 concentration. A cable connected each soil probe with a transimitter body placed on the ground. The transimitter sent output signals from the probe to a data logger (CR1000, Campbell Scientific Inc., Logan, UT, USA) and to an optional LCC display on the transmitter.In each treatment, four CO2 concentration sensors were buried at depths of 0 cm, 5 cm, 10 cm and 15 cm. Soil CO2 concentrations were recorded once in 30 min. The measurement of soil CO2 concentrations were conducted from 6 June 2012 to 4 November 2012.On 8 November, these sensors were excavated and recalibrated in the laboratory. We found no change in the slope or offset.Environmental and soil CO2 efflux measurementsThe soil water content and temperature at the same soil depth with solid-state CO2 sensors were measured on the cotton fields at the Aksu National Experimental Station of Oasis Farmland Ecosystem27,28, respectively. Soil volumetric water content and soil temperature were measured using soil moisture probes (pF-Meter, EcoTech GmbH, Bonn, Germany)26 and temperature probes (PT100,Heraeus Sensor Technology, Kleinostheim, Germany)26, respectively.Bulk density was determined by core method29. Briefly, a cylindrical metal sampler (volume of 100cm3) was inserted into the soil and carefully removed to preserve the sample. The sample was oven-dried at 105 °C and weighed. The ratio between dry weight of the soil sample and the cylinder volume was applied to provide the bulk density.Half-hourly soil CO2 efflux measurements were conducted using a closed dynamic chamber method26 (CIRAS-1 PP Systems, Hitchin, UK) on the TC treatment, beginning on 6 June 2012. A chamber, with a diameter of 9.96 cm and a volume of 1, 170 cm3 was inserted into the soil at depth of 3 cm. Soil CO2 concentrations were measured by infrared gas analyzer. The collecting of CO2 from each sampling point took 120 s to get reliable estimates of soil CO2 efflux.Data analysisIn order to calculate CO2 efflux in soil, Fick’s first law of diffusion was used:$$F_{i} = – D_{s} frac{dc}{{dz}}$$
    (1)
    where Fi is the CO2 efflux at depth zi, Ds the CO2 diffusion coefficient in the soil, and dc / dz the vertical soil CO2 gradient. In this study, the vertical CO2 gradient (dC/dz) was approximately a constant at different depths of soil in our site for the field conditions experienced in the TC treatment during study period. However, a quadratic function of depth to concentrations fitted to soil CO2 concentration gradients in the MC treatment.Ds can be estimated as$$D_{s} = xi D_{a}$$
    (2)
    where ξ is the gas tortuosity factor and Da is the CO2 diffusion coefficient in free air. The effect of temperature and pressure on Da is given by$$D_{a} = D_{a} 0left( {frac{T}{293.15}} right)^{1.75} left( {frac{P}{101.3}} right)$$
    (3)
    where T is the temperature (K), P the air pressure (kPa), Dao a reference value of Da at 20 °C (293.15 K) and 101.3 kPa, and is given as 14.7 mm2 s–130 .There are several empirical models in the literature for computing ξ31. We used the Millington–Quirk model32:$$xi = frac{{alpha^{10/3} }}{{phi^{2} }}$$
    (4)
    where a is the volumetric air content (air-filled porosity), Φ is the porosity. Note,$$phi = alpha + theta = 1 – frac{{rho_{b} }}{{rho_{m} }}$$
    (5)
    where ρb is the bulk density, and ρm is the particle density for the mineral soil.Soil surface CO2 efflux was calculated using the CO2 gradient flux method based on CO2 concentrations within the soil profile1. Briefly, the flux of CO2 between any two layers in the soil profile was calculated using the Moldrup model33.In order to determine soil CO2 storage, the equation for CO2 was performed.$${S}_{C{O}_{2}}=frac{partial (aC)}{partial t}$$
    (6)
    where C (ppm) is the concentration of CO2 within the soil pores, (a) is the aerial porosity of the soil layer, D is the molecular diffusivity of CO2 with the soil, and S(µmol m−3 s−1)is the source strength in the soil layer at depth.We determined temperature responses for soil CO2 efflux using the van’t Hoff equation34 (Eq. 7);$$R = R0e^{BT}$$
    (7)
    where R is soil CO2 efflux, T is soil temperature (°C) at 10 cm depth, and R0 is the soil respiration rate at a reference temperature of 0 °C (µmol m−3 s−1).The Q10 value for Eq. (8) was calculated according to definition as:$$Q_{{{1}0}} = R_{{{text{T}} + {1}0}} /R_{{text{T}}} = {text{ e}}^{{{1}0{text{B}}}}$$
    (8)
    where RT and RT+10 are Rr or Rd rates at temperature T and T + 10, respectively. The Q10 value is independent of temperature in Eq. (8). More

  • in

    Rush or relax: migration tactics of a nocturnal insectivore in response to ecological barriers

    Alves, J. A. et al. Costs, benefits, and fitness consequences of different migratory strategies. Ecology 94(1), 11–17 (2013).PubMed 

    Google Scholar 
    Alexander, R. M. When is migration worthwhile for animals that walk, swim or fly?. J. Avian Biol. 29(4), 387–394 (1998).
    Google Scholar 
    Wikelski, M. et al. Costs of migration in free-flying songbirds. Nature 423, 704 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103(2), 247–260 (2003).
    Google Scholar 
    Alerstam, T. Optimal bird migration revisited. J. Ornithol. 152, 5–23 (2011).
    Google Scholar 
    Hedenstrom, A. & Alerstam, T. Optimum fuel loads in migratory birds: Distinguishing between time and energy minimization. J. Theor. Biol. 189, 227–234 (1997).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Åkesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 78 (2020).
    Google Scholar 
    Jiguet, F. et al. Desert crossing strategies of migrant songbirds vary between and within species. Sci. Rep. 9(1), 20248 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Senner, N. R., Morbey, Y. E. & Sandercock, B. K. Editorial: Flexibility in the migration strategies of animals. Front. Ecol. Evol. 8, 111 (2020).
    Google Scholar 
    Mellone, U., López-López, P., Limiñana, R., Piasevoli, G. & Urios, V. The trans-equatorial loop migration system of Eleonora’s falcon: Differences in migration patterns between age classes, regions and seasons. J. Avian Biol. 44, 417–426 (2013).
    Google Scholar 
    Chevallier, D. et al. Influence of weather conditions on the flight of migrating black storks. Proc. Biol. Sci. 277(1695), 2755–2764 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verhelst, B., Jansen, J. & Vansteelant, W. South West Georgia: An important bottleneck for raptor migration during autumn. Ardea 99, 137–146 (2011).
    Google Scholar 
    Klaassen, R. H. G., Strandberg, R., Hake, M. & Alerstam, T. Flexibility in daily travel routines causes regional variation in bird migration speed. Behav. Ecol. Sociobiol. 62(9), 1427–1432 (2008).
    Google Scholar 
    Alerstam, T. Detours in bird migration. J. Theor. Biol. 209(3), 319–331 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Alerstam, T. & Hedenström, A. The development of bird migration theory. J. Avian Biol. 29(4), 343–369 (1998).
    Google Scholar 
    Liechti, F., Klaassen, M. & Bruderer, B. Predicting migratory flight altitudes by physiological migration models. Auk 117, 205–214 (2000).
    Google Scholar 
    Senner, N. R. et al. High-altitude shorebird migration in the absence of topographical barriers: Avoiding high air temperatures and searching for profitable winds. Proc. Biol. Sci. 2018, 285 (1881).
    Google Scholar 
    Norevik, G., Akesson, S., Andersson, A., Backman, J. & Hedenstrom, A. Flight altitude dynamics of migrating European nightjars across regions and seasons. J. Exp. Biol. 224(20), jeb242836 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Hadjikyriakou, T. G., Nwankwo, E. C., Virani, M. Z. & Kirschel, A. N. G. Habitat availability influences migration speed, refueling patterns and seasonal flyways of a fly-and-forage migrant. Mov. Ecol. 8, 10 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Strandberg, R., Klaassen, R. H. G., Olofsson, P. & Alerstam, T. Daily travel schedules of adult Eurasian Hobbies Falco subbuteo—Variability in flight hours and migration speed along the route. Ardea 97(3), 287–295 (2009).
    Google Scholar 
    Strandberg, R. & Alerstam, T. The strategy of fly-and-forage migration, illustrated for the osprey (Pandion haliaetus). Behav. Ecol. Sociobiol. 61(12), 1865–1875 (2007).
    Google Scholar 
    McKinnon, E. A. & Love, O. P. Ten years tracking the migrations of small landbirds: Lessons learned in the golden age of bio-logging. Auk 135(4), 834–856 (2018).
    Google Scholar 
    Backman, J. et al. Actogram analysis of free-flying migratory birds: New perspectives based on acceleration logging. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203(6–7), 543–564 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Evens, R., Beenaerts, N., Witters, N. & Artois, T. Study on the foraging behaviour of the European nightjar Caprimulgus europaeus reveals the need for a change in conservation strategy in Belgium. J. Avian Biol. 48(9), 1238–1245 (2017).
    Google Scholar 
    Evens, R. et al. Lunar synchronization of daily activity patterns in a crepuscular avian insectivore. Ecol. Evol. 10(14), 7106–7116 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Liechti, F. et al. Miniaturized multi-sensor loggers provide new insight into year-round flight behaviour of small trans-Sahara avian migrants. Mov. Ecol. 6, 19 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Liechti, F., Witvliet, W., Weber, R. & Bachler, E. First evidence of a 200-day non-stop flight in a bird. Nat. Commun. 4, 2554 (2013).ADS 
    PubMed 

    Google Scholar 
    Dhanjal-Adams, K. L. PAMLr: Suite of functions for manipulating pressure, activity, magnetism and light data in R. (2020).Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J. Anim. Ecol. 89(1), 221–236 (2020).PubMed 

    Google Scholar 
    Lisovski, S. et al. Geolocation by light: Accuracy and precision affected by environmental factors. Methods Ecol. Evol. 3(3), 603–612 (2012).
    Google Scholar 
    Wotherspoon, S., Sumner, M., Lisovski, S. SGAT-Package: Solar/Satellite Geolocation for Animal Tracking. (2021). R package version 0.1.3. GitHub Repository.Bauer, R. RchivalTag: Analyzing Archival Tagging Data. R package version 0.1.2. (2020).Sjöberg, S. et al. Barometer logging reveals new dimensions of individual songbird migration. J. Avian Biol. 49(9), e01821 (2018).
    Google Scholar 
    Evens, R. et al. Migratory pathways, stopover zones and wintering destinations of Western European Nightjars Caprimulgus europaeus. Ibis 159(3), 680–686 (2017).
    Google Scholar 
    Becker, J. J. et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geodesy 32(4), 355–371 (2009).
    Google Scholar 
    Ricketts, T. H. Terrestrial Ecoregions of North America: A Conservation Assessment (Island Press, 1999).
    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51(11), 933–938 (2001).
    Google Scholar 
    QGIS-Development-Team: QGIS Geographic Information System. Open Source Geospatial Foundation (2021).Vansteelant, W. M. G., Gangoso, L., Bouten, W., Viana, D. S. & Figuerola, J. Adaptive drift and barrier-avoidance by a fly-forage migrant along a climate-driven flyway. Mov. Ecol. 9(1), 37 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).
    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical Multi-Level/Mixed) Regression Models. R package version 0.3.3.0. (2020).Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.1. (2020).Akesson, S., Bianco, G. & Hedenstrom, A. Negotiating an ecological barrier: Crossing the Sahara in relation to winds by common swifts. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371(1704), 20150393 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Strandberg, R., Klaassen, R. H. G., Hake, M., Olofsson, P. & Alerstam, T. Converging migration routes of Eurasian Hobbies Falco subbuteo crossing the African equatorial rain forest. Proc. R. Soc. B 276, 727–733 (2009).PubMed 

    Google Scholar 
    Rodriguez-Ruiz, J. et al. Disentangling migratory routes and wintering grounds of Iberian near-threatened European Rollers Coracias garrulus. PLoS ONE 9(12), e115615 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).
    Google Scholar 
    Evens, R. et al. Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. Sci. Rep. 8(1), 3008 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conring, C. M., Brautigam, K., Grisham, B. A., Collins, D. P. & Conway, W. C. Identifying the migratory strategy of the Lower Colorado River Valley population of Greater Sandhill Cranes. Avian Conserv. Ecol. 14(1), 11 (2019).
    Google Scholar 
    Imlay, T. L., Saldanha, S. & Taylor, P. D. The fall migratory movements of Bank Swallows, Riparia riparia: Fly-and-forage migration?. Avian Conserv. Ecol. 15(1), 2 (2020).
    Google Scholar 
    Piersma, T. Hop, skip, or jump? Constraints on migration of arctic waders by feeding, fattening, and flight speed. Limosa 60, 185–194 (1987).
    Google Scholar 
    Warnock, N. Stopping vs. staging: The difference between a hop and a jump. J. Avian Biol. 41(6), 621–626 (2010).
    Google Scholar 
    Gomez, C. et al. Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird. Sci. Rep. 7(1), 3405 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tottrup, A. P. et al. The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc. Biol. Sci. 279(1730), 1008–1016 (2012).PubMed 

    Google Scholar 
    Lisovski, S. et al. Inherent limits of light-level geolocation may lead to over-interpretation. Curr. Biol. 28(3), R99–R100 (2018).CAS 
    PubMed 

    Google Scholar 
    Buler, J. J., Moore, F. R. & Woltmann, S. A multi-scale examination of stopover habitat use by birds. Ecology 88(7), 1789–1802 (2007).PubMed 

    Google Scholar 
    Loon, A. V. et al. Migratory stopover timing is predicted by breeding latitude, not habitat quality, in a long-distance migratory songbird. J. Ornithol. 158(3), 745–752 (2017).
    Google Scholar 
    Norevik, G. et al. Wind-associated detours promote seasonal migratory connectivity in a flapping flying long-distance avian migrant. J. Anim. Ecol. 89(2), 635–646 (2020).PubMed 

    Google Scholar 
    Norevik, G., Åkesson, S. & Hedenström, A. Migration strategies and annual space-use in an Afro-Palaearctic aerial insectivore—The European nightjar Caprimulgus europaeus. J. Avian Biol. 48(5), 738–747 (2017).
    Google Scholar 
    Cresswell, B. & Edwards, D. Geolocators reveal wintering areas of European Nightjar (Caprimulgus europaeus). Bird Study 60(1), 77–86 (2013).
    Google Scholar 
    Jacobsen, L. B. et al. Annual spatiotemporal migration schedules in three larger insectivorous birds: European nightjar, common swift and common cuckoo. Anim. Biotelem. 5(1), 1–11 (2017).
    Google Scholar 
    Liechti, F. & Bruderer, B. The relevance of wind for optimal migration theory. J. Avian Biol. 29(4), 561–568 (1998).
    Google Scholar 
    Schmaljohann, H., Bruderer, B. & Liechti, F. Sustained bird flights occur at temperatures far beyond expected limits. Anim. Behav. 76(4), 1133–1138 (2008).
    Google Scholar 
    Schmaljohann, H., Liechti, F. & Bruderer, B. Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav. Ecol. Sociobiol. 63(11), 1609–1619 (2009).
    Google Scholar 
    Sjöberg, S. et al. Extreme altitudes during diurnal flights in a nocturnal songbird migrant. Science 372, 646–648 (2021).ADS 
    PubMed 

    Google Scholar 
    Bruderer, B., Peter, D. & Korner-Nievergelt, F. Vertical distribution of bird migration between the Baltic Sea and the Sahara. J. Ornithol. 159(2), 315–336 (2018).
    Google Scholar  More