Wernberg, T., Krumhansl, K. A., Filbee-Dexter, K. & Pedersen, M. Status and trends for the world’s kelp forests. In World Seas: An Environmental Evaluation (ed. Sheppard, C.) 57–78 (Elsevier, 2019).Chapter
Google Scholar
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).ADS
Article
Google Scholar
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172. https://doi.org/10.1126/science.aad8745 (2016).ADS
CAS
Article
PubMed
Google Scholar
Coleman, M. A., Minne, A. J. P., Vranken, S. & Wernberg, T. Genetic tropicalisation following a marine heatwave. Sci. Rep. UK 10, 12726. https://doi.org/10.1038/s41598-020-69665-w (2020).ADS
CAS
Article
Google Scholar
Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790. https://doi.org/10.1073/pnas.1606102113 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00499 (2019).Article
Google Scholar
Tanaka, K., Taino, S., Haraguchi, H., Prendergast, G. & Hiraoka, M. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol. Evol. 2, 2854–2865. https://doi.org/10.1002/ece3.391 (2012).Article
PubMed
PubMed Central
Google Scholar
Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep. UK 8, 1851. https://doi.org/10.1038/s41598-018-20009-9 (2018).ADS
CAS
Article
Google Scholar
Graham, M. H., Kinlan, B. P., Druehl, L. D., Garske, L. E. & Banks, S. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc. Natl. Acad. Sci. 104, 16576. https://doi.org/10.1073/pnas.0704778104 (2007).ADS
Article
PubMed
PubMed Central
Google Scholar
Marzinelli, E. M. et al. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS ONE 10, e0118390. https://doi.org/10.1371/journal.pone.0118390 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
Varela, R., Rodríguez-Díaz, L., de Castro, M. & Gómez-Gesteira, M. Influence of Eastern Upwelling systems on marine heatwaves occurrence. Glob. Planet Change 196, 103379. https://doi.org/10.1016/j.gloplacha.2020.103379 (2021).Article
Google Scholar
Assis, J. et al. Deep reefs are climatic refugia for genetic diversity of marine forests. J. Biogeogr. 43, 833–844. https://doi.org/10.1111/jbi.12677 (2016).Article
Google Scholar
Lourenço, C. R. et al. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 43, 1595–1607. https://doi.org/10.1111/jbi.12744 (2016).Article
Google Scholar
Vranken, S. et al. Genotype-environment mismatch of kelp forests under climate change. Mol. Ecol. 30, 3730–3746. https://doi.org/10.1111/mec.15993 (2021).Article
PubMed
Google Scholar
Wood, G. et al. Genomic vulnerability of a dominant seaweed points to future-proofing pathways for Australia’s underwater forests. Glob. Change Biol. 27, 2200–2212. https://doi.org/10.1111/gcb.15534 (2021).ADS
Article
Google Scholar
Wernberg, T. et al. Biology and ecology of the globally significant kelp Ecklonia radiata. Oceanogr. Mar. Biol.: An Annu. Rev. 57, 265–324 (2019).Article
Google Scholar
Durrant, H. M. S., Barrett, N. S., Edgar, G. J., Coleman, M. A. & Burridge, C. P. Shallow phylogeographic histories of key species in a biodiversity hotspot. Phycologia 54, 556–565. https://doi.org/10.2216/15-24.1 (2015).Article
Google Scholar
Rothman, M. D. et al. A molecular investigation of the genus Ecklonia (Phaeophyceae, Laminariales) with special focus on the southern hemisphere. J. Phycol. 51, 236–246. https://doi.org/10.1111/jpy.12264 (2015).CAS
Article
PubMed
Google Scholar
Starko, S. et al. A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem. Mol. Phylogenetics Evol. 136, 138–150. https://doi.org/10.1016/j.ympev.2019.04.012 (2019).Article
Google Scholar
Shepherd, S. A. & Edgar, G. J. In (eds Shepherd, S. A. & Edgar, G. J.) (CSIRO Publishing, 2013).Guiry, M. D. et al. AlgaeBase: An on-line resource for algae. Cryptogam. Algol. 35, 105–115, 111 (2014).Barratt, L., Ormond, R. F. G. & Wrathall, T. J. Ecological studies of southern Oman kelp communities. Part 1. Ecology and productivity of the sublittoral algae Ecklonia radiata and Sargassopsis zanardinii (Council for the conservation of the environment and water resources, and regional organisation for the protection of the marine environment, Muscat and Kuwait, 1986).Barratt, L. et al. An ecological study of the rocky shores on the south coast of Oman. Report of IUCN to UNEP’s regional seas programme, Vol. 104 (Tropical Marine Research Unit, York, 1984).Klaus, R. & Turner, J. R. The marine biotopes of the Socotra Archipelago. Fauna Arab. 20, 45–116 (2004).
Google Scholar
Claereboudt, M. R. Oman. In World Seas: An Environmental Evaluation, (ed. Sheppard, C.) 25–47 (Academic Press, 2019).Savidge, G., Lennon, H. J. & Matthews, A. D. A shore based survey of oceanographic variables in the Dhofar region of southern Oman, August–October 1985. In Ecological Studies of Southern Oman Kelp Communities. Summary Report, 4–21. ROPME/GC-6/001 (1988).Hatcher, B. G., Kirkman, H. & Wood, W. F. Growth of the kelp Ecklonia-radiata near the northern limit of its range in Western-Australia. Mar. Biol. 95, 63–73. https://doi.org/10.1007/Bf00447486 (1987).Article
Google Scholar
Veenhof, R. et al. Kelp gametophytes in changing oceans. Oceanogr. Mar. Biol. Annu. Rev. 60 (in press).Goes, J. I., Thoppil, P. G., Gomes, H. D. R. & Fasullo, J. T. Warming of the Eurasian landmass is making the Arabian sea more productive. Science 308, 545. https://doi.org/10.1126/science.1106610 (2005).ADS
CAS
Article
PubMed
Google Scholar
Roxy, M. K. et al. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett. 43, 826–833. https://doi.org/10.1002/2015GL066979 (2016).ADS
Article
Google Scholar
Watanabe, T. K., Watanabe, T., Yamazaki, A., Pfeiffer, M. & Claereboudt, M. R. Oman coral δ18O seawater record suggests that Western Indian Ocean upwelling uncouples from the Indian Ocean Dipole during the global-warming hiatus. Sci. Rep. UK 9, 1887. https://doi.org/10.1038/s41598-018-38429-y (2019).ADS
CAS
Article
Google Scholar
Watanabe, T. K. et al. Past summer upwelling events in the Gulf of Oman derived from a coral geochemical record. Sci. Rep. UK 7, 4568. https://doi.org/10.1038/s41598-017-04865-5 (2017).ADS
CAS
Article
Google Scholar
Edwards, M. & Estes, J. A. Catastrophe, recovery and range limitation in NE Pacific kelp forests: a large-scale perspective. Mar. Ecol. Prog. Ser. 320, 79–87 (2006).ADS
Article
Google Scholar
Glynn, P. W. Monsoonal upwelling and episodic Acanthaster predation as probable controls of coral reef distribution and community structure in Oman, Indian Ocean. Atoll Res. Bull. 379, 1–66 (1993).Article
Google Scholar
Hiscock, S., Barratt, L. & Ormond, R. The marine algae of Dhofar, Oman-an upwelling system in the Arabian Sea. Br. Phycol. J. 19, 194 (1984).Article
Google Scholar
Kirkman, H. The 1st year in the life-history and the survival of the juvenile marine macrophyte, Ecklonia-radiata (Turn) J Agardh. J. Exp. Mar. Biol. Ecol. 55, 243–254. https://doi.org/10.1016/0022-0981(81)90115-5 (1981).Article
Google Scholar
Maeda, T., Kawai, T., Nakaoka, M. & Yotsukura, N. Effective DNA extraction method for fragment analysis using capillary sequencer of the kelp, Saccharina. J. Appl. Phycol. 25, 337–347 (2013).CAS
Article
Google Scholar
Voisin, M., Engel, C. R. & Viard, F. Differential shuffling of native genetic diversity across introduced regions in a brown alga: Aquaculture vs. maritime traffic effects. Proc. Natl. Acad. Sci. USA 102, 5432. https://doi.org/10.1073/pnas.0501754102 (2005).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Lane, C. E., Lindstrom, S. C. & Saunders, G. W. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol. Phylogenetics Evol. 44, 634–648 (2007).CAS
Article
Google Scholar
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article
PubMed
PubMed Central
Google Scholar
Johnson, M. et al. NCBI BLAST: A better web interface. Nucl. Acids Res. 36, W5–W9 (2008).CAS
Article
Google Scholar
Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucl. Acids Res. 44, W232–W235 (2016).CAS
Article
Google Scholar
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS
Article
Google Scholar
Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008. https://doi.org/10.1093/sysbio/syw037 (2016).Article
PubMed
PubMed Central
Google Scholar
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS
Article
Google Scholar
Rambaut, A. & Drummond, A. FigTree: Tree Figure Drawing Tool, Version 1.2. 2 (Institute of Evolutionary Biology, University of Edinburgh, 2008).
Google Scholar
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).CAS
Article
PubMed
Google Scholar
Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x (2000).CAS
Article
PubMed
Google Scholar
Leigh, J. W. & Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article
Google Scholar
Team, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. 113, 13791–13796. https://doi.org/10.1073/pnas.1610725113 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
Wood, G. et al. Using genetics to test provenance effects and to optimise seaweed restoration. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13707 (2020).Article
Google Scholar
Wynne, M. J. A checklist of the benthic marine algae of the Northern Arabian Sea coast of the Sultanate of Oman. Bot. Mar. 61, 481–498. https://doi.org/10.1515/bot-2018-0035 (2018).Richards, G. & Wynne, M. J. 57 (2003).Schils, T. Marine Plant Communities of Upwelling Areas Within the Arabian Sea: A Taxonomic, Ecological ABD Biogeographic Case Study on the Marine Flora of the Socotra Archipelago (Yemen) and Masirah Island (Oman). PhD thesis (2002).Schils, T. & Coppejans, E. Phytogeography of upwelling areas in the Arabian Sea. J. Biogeogr. 30, 1339–1356. https://doi.org/10.1046/j.1365-2699.2003.00933.x (2003).Article
Google Scholar
Schils, T. & Wilson, S. C. temperature threshold as a biogeographic barrier in northern Indian Ocean Macroalgae. J. Phycol. 42, 749–756. https://doi.org/10.1111/j.1529-8817.2006.00242.x (2006).Article
Google Scholar
Wiggert, J. D., Hood, R. R., Banse, K. & Kindle, J. C. Monsoon-driven biogeochemical processes in the Arabian Sea. Prog. Oceanogr. 65, 176–213. https://doi.org/10.1016/j.pocean.2005.03.008 (2005).ADS
Article
Google Scholar
Serisawa, Y., Imoto, Z., Ishikawa, T. & Ohno, M. Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish. Sci. 70, 189–191. https://doi.org/10.1111/j.0919-9268.2004.00788.x (2004).CAS
Article
Google Scholar
Nelson, W., Duffy, C., Trnski, T. & Stewart, R. Mesophotic Ecklonia radiata (Laminariales) at Rangitāhua, Kermadec Islands, New Zealand. Phycologia 57, 534–538. https://doi.org/10.2216/18-9.1 (2018).Article
Google Scholar
Richmond, S. & Stevens, T. Classifying benthic biotopes on sub-tropical continental shelf reefs: How useful are abiotic surrogates?. Estuar. Coast. Shelf Sci. 138, 79–89. https://doi.org/10.1016/j.ecss.2013.12.012 (2014).ADS
Article
Google Scholar
Davis, T. R., Champion, C. & Coleman, M. A. Climate refugia for kelp within an ocean warming hotspot revealed by stacked species distribution modelling. Mar. Environ. Res. 166, 105267. https://doi.org/10.1016/j.marenvres.2021.105267 (2021).CAS
Article
PubMed
Google Scholar
Jooste, C. M., Oliver, J., Emami-Khoyi, A. & Teske, P. R. Is the Wild Coast in eastern South Africa a distinct marine bioregion?. Helgol. Mar. Res. 72, 6. https://doi.org/10.1186/s10152-018-0509-3 (2018).Article
Google Scholar
Bolton, J. J. et al. Where is the western limit of the tropical Indian Ocean seaweed flora? An analysis of intertidal seaweed biogeography on the east coast of South Africa. Mar. Biol. 144, 51–59. https://doi.org/10.1007/s00227-003-1182-9 (2004).Article
Google Scholar
Bolton, J. J. The biogeography of kelps (Laminariales, Phaeophyceae): A global analysis with new insights from recent advances in molecular phylogenetics. Helgol. Mar. Res. 64, 263–279. https://doi.org/10.1007/s10152-010-0211-6 (2010).ADS
Article
Google Scholar
Bolton JJ, De Clerck O, John DM (2003). Seaweed diversity patterns in Sub-Saharan Africa. In Proceedings of the Marine Biodiversity in Sub-Saharan Africa: The Known and the Unknown. (eds. Decker, C. et al. ) Cape Town, South Africa, pp. 229–241 (2003).Wood, M. et al. Zanzibar and Indian Ocean trade in the first millennium CE: The glass bead evidence. Archaeol. Anthropol. Sci. 9, 879–901. https://doi.org/10.1007/s12520-015-0310-z (2017).Article
Google Scholar
Pollard, E., Bates, R., Ichumbaki, E. B. & Bita, C. Shipwreck evidence from Kilwa, Tanzania. Int. J. Naut. Archaeol. 45, 352–369. https://doi.org/10.1111/1095-9270.12185 (2016).Article
Google Scholar
Staples, M. In Oman. A Maritime History (eds Al Salimi, A. & Staples, E.) Chap. 4, 81–116 (Georg Olms Verlag, 2017).Assis, J. et al. Past climate changes and strong oceanographic barriers structured low-latitude genetic relics for the golden kelp Laminaria ochroleuca. J. Biogeogr. 45, 2326–2336. https://doi.org/10.1111/jbi.13425 (2018).Article
Google Scholar
Wade, R. et al. Macroalgal germplasm banking for conservation, food security, and industry. PLoS Biol. 18, e3000641. https://doi.org/10.1371/journal.pbio.3000641 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Coleman, M. A. et al. Restore or redefine: Future trajectories for restoration. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00237 (2020).Article
Google Scholar More