More stories

  • in

    Smartphone app reveals that lynx avoid human recreationists on local scale, but not home range scale

    United Nations. (Department of Economic and Social Affairs, Population Division, 2019).Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469. https://doi.org/10.1126/science.aam9712 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tablado, Z. & Jenni, L. Determinants of uncertainty in wildlife responses to human disturbance. Biol. Rev. 92, 216–233. https://doi.org/10.1111/brv.12224 (2017).Article 
    PubMed 

    Google Scholar 
    IUCN. IUCN Programme 2017–2020. (2016).IUCN. The IUCN Red List of Threatened Species. Version 2021–3. (2021).Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, 6. https://doi.org/10.1371/journal.pbio.1002074 (2015).CAS 
    Article 

    Google Scholar 
    Balmford, A. et al. A global perspective on trends in nature-based tourism. PLoS Biol. 7, 6. https://doi.org/10.1371/journal.pbio.1000144 (2009).CAS 
    Article 

    Google Scholar 
    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. U. S. A. 109, 16083–16088. https://doi.org/10.1073/pnas.1211658109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, G. Z. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 12. https://doi.org/10.1038/s41467-020-14386-x (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Larson, C. L., Reed, S. E., Merenlender, A. M. & Crooks, K. R. Effects of recreation on animals revealed as widespread through a global systematic review. PLoS ONE 11, 21. https://doi.org/10.1371/journal.pone.0167259 (2016).CAS 
    Article 

    Google Scholar 
    Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 16 (2002).
    Google Scholar 
    Moen, G. K., Stoen, O. G., Sahlen, V. & Swenson, J. E. Behaviour of solitary adult scandinavian brown bears (Ursus arctos) when approached by humans on foot. PLoS ONE 7, 7. https://doi.org/10.1371/journal.pone.0031699 (2012).CAS 
    Article 

    Google Scholar 
    Le Grand, L. et al. Behavioral and physiological responses of scandinavian brown bears (ursus arctos) to dog hunts and human encounters. Front. Ecol. Evol. 7, 9. https://doi.org/10.3389/fevo.2019.00134 (2019).Article 

    Google Scholar 
    Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecol. (Washington D C) 61, 65–71. https://doi.org/10.2307/1937156 (1980).Article 

    Google Scholar 
    Zimmermann, B., Nelson, L., Wabakken, P., Sand, H. & Liberg, O. Behavioral responses of wolves to roads: scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364. https://doi.org/10.1093/beheco/aru134 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heinemeyer, K. et al. Wolverines in winter: indirect habitat loss and functional responses to backcountry recreation. Ecosphere https://doi.org/10.1002/ecs2.2611 (2019).Article 

    Google Scholar 
    Ladle, A. et al. Grizzly bear response to spatio-temporal variability in human recreational activity. J. Appl. Ecol. 56, 375–386. https://doi.org/10.1111/1365-2664.13277 (2019).Article 

    Google Scholar 
    Coppes, J., Burghardt, F., Hagen, R., Suchant, R. & Braunisch, V. Human recreation affects spatio-temporal habitat use patterns in red deer (Cervus elaphus). PLoS ONE 12, 19. https://doi.org/10.1371/journal.pone.0175134 (2017).CAS 
    Article 

    Google Scholar 
    Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Global Ecol. Conserv. 30, e01772 (2021).Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519. https://doi.org/10.1126/science.1257553 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ordiz, A., Bischof, R. & Swenson, J. E. Saving large carnivores, but losing the apex predator?. Biol. Conserv. 168, 128–133. https://doi.org/10.1016/j.biocon.2013.09.024 (2013).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306. https://doi.org/10.1126/science.1205106 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ordiz, A. et al. Habituation, sensitization, or consistent behavioral responses? Brown bear responses after repeated approaches by humans on foot. Biol. Conserv. 232, 228–237. https://doi.org/10.1016/j.biocon.2019.01.016 (2019).Article 

    Google Scholar 
    Smith, T. S., Oyster, J., Partridge, S. D., Martin, I. E. & Sisson, A. Assessing American black bear response to human activity at Kenai Fjords National Park, Alaska. Ursus 23, 179–191. https://doi.org/10.2192/ursus-d-11-00020.1 (2012).Article 

    Google Scholar 
    Wam, H. K., Eldegard, K. & Hjeljord, O. Minor habituation to repeated experimental approaches in Scandinavian wolves. Eur. J. Wildl. Res. 60, 839–842. https://doi.org/10.1007/s10344-014-0841-0 (2014).Article 

    Google Scholar 
    Sweanor, L. L., Logan, K. A. & Hornocker, M. G. Puma responses to close approaches by researchers. Wildl. Soc. Bull. 33, 905–913. https://doi.org/10.2193/0091-7648(2005)33[905:Prtcab]2.0.Co;2 (2005).Article 

    Google Scholar 
    Coppes, J., Ehrlacher, J., Thiel, D., Suchant, R. & Braunisch, V. Outdoor recreation causes effective habitat reduction in capercaillie Tetrao urogallus: a major threat for geographically restricted populations. J. Avian Biol. 48, 1583–1594. https://doi.org/10.1111/jav.01239 (2017).Article 

    Google Scholar 
    Coppes, J. et al. Habitat suitability modulates the response of wildlife to human recreation. Biol. Conserv. 227, 56–64. https://doi.org/10.1016/j.biocon.2018.08.018 (2018).Article 

    Google Scholar 
    Gundersen, V., Vistad, O. I., Panzacchi, M., Strand, O. & van Moorter, B. Large-scale segregation of tourists and wild reindeer in three Norwegian national parks: Management implications. Tourism Manage. 75, 22–33. https://doi.org/10.1016/j.tourman.2019.04.017 (2019).Article 

    Google Scholar 
    Filla, M. et al. Habitat selection by Eurasian lynx (Lynx lynx) is primarily driven by avoidance of human activity during day and prey availability during night. Ecol. Evol. 7, 6367–6381. https://doi.org/10.1002/ece3.3204 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andersen, O., Gundersen, V., Wold, L. C. & Stange, E. Monitoring visitors to natural areas in wintertime: issues in counter accuracy. J. Sustain. Tour. 22, 550–560. https://doi.org/10.1080/09669582.2013.839693 (2014).Article 

    Google Scholar 
    Marion, S. et al. A systematic review of methods for studying the impacts of outdoor recreation on terrestrial wildlife. Glob. Ecol. Conserv. 22, e00917 (2020).Article 

    Google Scholar 
    Corradini, A. et al. Effects of cumulated outdoor activity on wildlife habitat use. Biol. Conserv. 253, 8. https://doi.org/10.1016/j.biocon.2020.108818 (2021).Article 

    Google Scholar 
    Jager, H., Schirpke, U. & Tappeiner, U. Assessing conflicts between winter recreational activities and grouse species. J. Environ. Manage. 276, 9. https://doi.org/10.1016/j.jenvman.2020.111194 (2020).Article 

    Google Scholar 
    Linnell, J. D. C., Broseth, H., Odden, J. & Nilsen, E. B. Sustainably harvesting a large Carnivore? Development of Eurasian Lynx populations in Norway during 160 years of shifting policy. Environ. Manage. 45, 1142–1154. https://doi.org/10.1007/s00267-010-9455-9 (2010).ADS 
    Article 
    PubMed 

    Google Scholar 
    Andren, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32. https://doi.org/10.1016/j.biocon.2006.01.025 (2006).Article 

    Google Scholar 
    Manly, B., McDonald, L., Thomas, D., McDonald, T. & Erickson, W. Resource Selection by Animals (Dordrecht: Kluwer Academic Publishers, 2002).Odden, J., Linnell, J. D. C. & Andersen, R. Diet of Eurasian lynx, Lynx lynx, in the boreal forest of southeastern Norway: the relative importance of livestock and hares at low roe deer density. Eur. J. Wildl. Res. 52, 237–244. https://doi.org/10.1007/s10344-006-0052-4 (2006).Article 

    Google Scholar 
    Gervasi, V., Nilsen, E. B., Odden, J., Bouyer, Y. & Linnell, J. D. C. The spatio-temporal distribution of wild and domestic ungulates modulates lynx kill rates in a multi-use landscape. J. Zool. 292, 175–183. https://doi.org/10.1111/jzo.12088 (2014).Article 

    Google Scholar 
    Arnemo, J. M. & Evans, A. Biomedical protocols for free-ranging brown bears, wolves, wolverines and lynx (Hedmark University College Evenstad, 2017).
    Google Scholar 
    Padgham, M., Lovelace, R., Salmon, M. & Rudis, B. osmdata. J. Open Source Softw. 2, 305 (2017).
    ADS 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020).Northrup, J. M., Hooten, M. B., Anderson, C. R. & Wittemyer, G. Practical guidance on characterizing availability in resource selection functions under a use-availability design. Ecology 94, 1456–1463. https://doi.org/10.1890/12-1688.1 (2013).Article 
    PubMed 

    Google Scholar 
    Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363. https://doi.org/10.1890/06-0957.1 (2007).Article 
    PubMed 

    Google Scholar 
    Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017 (2006).Article 

    Google Scholar 
    Therneau, T. A Package for Survival Analysis in R. R package version 3.2–7. (2020).Fay, M. P., Graubard, B. I., Freedman, L. S. & Midthune, D. N. Conditional logistic regression with sandwich estimators: Application to a meta-analysis. Biometrics 54, 195–208. https://doi.org/10.2307/2534007 (1998).CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Prima, M.-C., Duchesne, T. & Fortin, D. Robust inference from conditional logistic regression applied to movement and habitat selection analysis. PLoS ONE 12, e0169779 (2017).Article 

    Google Scholar 
    Basille, M. et al. Selecting habitat to survive: the impact of road density on survival in a large carnivore. PLoS ONE 8, 11. https://doi.org/10.1371/journal.pone.0065493 (2013).CAS 
    Article 

    Google Scholar 
    Basille, M. et al. What shapes Eurasian lynx distribution in human dominated landscapes: selecting prey or avoiding people?. Ecography 32, 683–691. https://doi.org/10.1111/j.1600-0587.2009.05712.x (2009).Article 

    Google Scholar 
    Bouyer, Y. et al. Eurasian lynx habitat selection in human-modified landscape in Norway: effects of different human habitat modifications and behavioral states. Biol. Conserv. 191, 291–299. https://doi.org/10.1016/j.biocon.2015.07.007 (2015).Article 

    Google Scholar 
    Heggem, E. S. F., Mathisen, H. & Frydenlund, J. J. N. R. AR50–Arealressurskart i målestokk 1: 50 000. Et heldekkende arealressurskart for jord-og skogbruk. (2019).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4–5. (2020).Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 1.1–1. https://CRAN.R-project.org/package=maptools. (2021).Akaike, H. in IEEE Transactions on Automatic Control Vol. 19 716–723 (1974).Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference—a practical information-theoretic approach.2nd edn. Springer, New York (2002).Hastie, T. J. & Tibshirani, R. J. Generalized additive models. Vol. 43 (CRC press, 1990).Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686. https://doi.org/10.1198/016214504000000980 (2004).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Vazquez, C., Rowcliffe, J. M., Spoelstra, K. & Jansen, P. A. Comparing diel activity patterns of wildlife across latitudes and seasons: Time transformations using day length. Methods Ecol. Evol. 10, 2057–2066. https://doi.org/10.1111/2041-210x.13290 (2019).Article 

    Google Scholar 
    Rowcliffe, M. activity: Animal Activity Statistics. R package version 1.3.1. (2021).Olson, L. E., Squires, J. R., Roberts, E. K., Ivan, J. S. & Hebblewhite, M. Sharing the same slope: behavioral responses of a threatened mesocarnivore to motorized and nonmotorized winter recreation. Ecol. Evol. 8, 8555–8572. https://doi.org/10.1002/ece3.4382 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Squires, J. R., Olson, L. E., Roberts, E. K., Ivan, J. S. & Hebblewhite, M. Winter recreation and Canada lynx: reducing conflict through niche partitioning. Ecosphere 10, 22. https://doi.org/10.1002/ecs2.2876 (2019).Article 

    Google Scholar 
    Belotti, E., Mayer, K., Kreisinger, J., Heurich, M. & Bufka, L. Recreational activities affect resting site selection and foraging time of Eurasian lynx (Lynx lynx). Hystrix 29, 181–189. https://doi.org/10.4404/hystrix-00053-2018 (2018).Article 

    Google Scholar 
    Sunde, P., Stener, S. O. & Kvam, T. Tolerance to humans of resting lynxes Lynx lynx in a hunted population. Wildlife Biol. 4, 177–183 (1998).Article 

    Google Scholar 
    Heurich, M. et al. Activity patterns of Eurasian Lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, 20. https://doi.org/10.1371/journal.pone.0114143 (2014).CAS 
    Article 

    Google Scholar 
    Bischof, R., Gjevestad, J. G. O., Ordiz, A., Eldegard, K. & Milleret, C. High frequency GPS bursts and path-level analysis reveal linear feature tracking by red foxes. Sci. Rep. 9, 13. https://doi.org/10.1038/s41598-019-45150-x (2019).CAS 
    Article 

    Google Scholar 
    Bouyer, Y. et al. Tolerance to anthropogenic disturbance by a large carnivore: the case of Eurasian lynx in south-eastern Norway. Anim. Conserv. 18, 271–278. https://doi.org/10.1111/acv.12168 (2015).MathSciNet 
    Article 

    Google Scholar 
    Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H. & Nowell, M. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 11. https://doi.org/10.1088/1748-9326/abb396 (2020).CAS 
    Article 

    Google Scholar 
    Sun, Y. R., Du, Y. Y., Wang, Y. & Zhuang, L. Y. Examining associations of environmental characteristics with recreational cycling behaviour by street-level strava data. Int. J. Environ. Res. Public Health 14, 12. https://doi.org/10.3390/ijerph14060644 (2017).Article 

    Google Scholar 
    Griffin, G. P. & Jiao, J. Where does bicycling for health happen? analysing volunteered geographic information through place and plexus. J. Transp. Health 2, 238–247. https://doi.org/10.1016/j.jth.2014.12.001 (2015).Article 

    Google Scholar 
    Conrow, L., Wentz, E., Nelson, T. & Pettit, C. Comparing spatial patterns of crowdsourced and conventional bicycling datasets. Appl. Geogr. 92, 21–30. https://doi.org/10.1016/j.apgeog.2018.01.009 (2018).Article 

    Google Scholar  More

  • in

    Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems

    Climate change is affecting arctic ecosystems through temperature increase1, hydrological changes2, earlier snowmelt3,4, and the associated increase in growing season length5. Annual arctic air temperature has been increasing at more than double the magnitude of the global mean air temperature increase1, and terrestrial snow cover in June has decreased by 15.2% per decade from 1981 to 20194. Warming is the main driver of the earlier start of the growing season, and the greening of the Arctic6,7,8. Arctic greening is associated with enhanced vegetation height, biomass, cover, and abundance9. However, the complexity of arctic systems reveals an intricate patchwork of landscape greening and browning8,10,11, with browning linked to a variety of stresses to vegetation8 including water stress12,13. The interconnected changes in temperature, soil moisture, snowmelt timing, etc. can have important effects on the carbon sequestered by arctic ecosystems14. The reservoir of carbon in arctic soil and vegetation depends on the interaction of two main processes: (1) changes in net CO2 uptake by vegetation; and (2) increased net loss of CO2 (from vegetation and soil) to the atmosphere via respiration. Therefore, defining the response of both plant productivity and ecosystem respiration to environmental changes is needed to predict the sensitivity of the net CO2 fluxes of arctic systems to climate change.An earlier snowmelt, and a longer growing season, do not necessarily translate into more carbon sequestered by high latitude ecosystems5. There is a large disagreement on the response of plant productivity and the net CO2 uptake to early snowmelt in tundra ecosystems15,16,17,18,19. A warmer and longer growing season might not result in more net CO2 uptake if CO2 loss from respiration increases16, particularly later in the season, and surpasses the CO2 sequestered by enhanced plant productivity in northern ecosystems16,20. Moreover, snowmelt timing and the growing season length greatly affect hydrologic conditions of arctic soils21, as well as plant productivity22. Longer non-frozen periods earlier in the year23 and earlier vegetation greening can increase evapotranspiration (ET), resulting in lower summer soil moisture24,25,26. The complexity in the hydrology of tundra systems arises from the tight link between the water drainage and the presence and depth of permafrost. The presence of permafrost reduces vertical water losses, preventing soil drainage in northern wetlands during most of the summer despite low precipitation input27. Increasing rainfall28 and increased permafrost degradation can increase soil wetness in continuous permafrost regions2. Further permafrost degradation (e.g. ice-wedge melting) can increase hydrologic connectivity leading to increased lateral drainage of the landscape and subsequent soil drying2,29.Given the importance of soil moisture in affecting the carbon balance of arctic ecosystems, and its links with snowmelt timing, in this study, we investigated the correlation between summer fluxes of CO2 (i.e., net ecosystem exchange (NEE), gross primary productivity (GPP) ecosystem respiration (ER)), ET, and environmental drivers such as soil moisture and snowmelt timing, while controlling for the other most important drivers of photosynthesis and respiration (i.e. solar radiation and air temperature). We expected earlier snowmelt to be correlated with larger ET and lower soil moisture, particularly during peak and late season, consistent with drying associated with a longer growing season. The lower soil moisture with earlier snowmelt should result in a negative correlation between snowmelt timing and GPP, particularly during the peak and late season (when we expect the most water stress), and in a positive correlation between snowmelt timing and ER during the entire growing season. This soil moisture limitation to plant productivity should result in lower net cumulative CO2 sequestration during the entire summer, because of lower plant productivity if these ecosystems are water-limited due to lower soil moisture with earlier snowmelt.Testing the impact of snowmelt timing on the carbon dynamics and hydrology of tundra ecosystemsThe 11 sites were selected as among the longest-running tower sites in the circumpolar Arctic (including 6 to 19 years of fluxes per site and a total of 119 site-years of summer (June to August) eddy covariance CO2 flux data, Table S1). All sites lie in the zone of continuous permafrost. The sites are representative of dominant tundra vegetation classes (wetland, graminoids, and shrub tundra), together accounting for 31% of all tundra vegetation types (Fig. 130 and Supplementary Information). Given the complex interactions among different variables (many covarying together), we used a variety of statistical analyses to identify the association between standardized anomalies of NEE, GPP, ER, and ET, and standardized anomalies of the main environmental controls during different periods of the summer corresponding to various stages in seasonal phenology (early season: June, peak season: July, and late season: August). We used a partial correlation analysis to identify if the timing of the snowmelt associates with anomalies of ET, soil moisture, NEE, GPP, ER, atmospheric vapor pressure deficit (VPD), or the Bowen ratio (the ratio between Sensible Heat (H) and Latent Heat (LE)) while statistically controlling for the main meteorological forcing such as air temperature and solar radiation (Methods). Identifying the correlation between ET (and the Bowen ratio) and snowmelt timing is a way to assess water limitation to ecosystems (in addition to testing their response to soil moisture changes), as H, and therefore, the Bowen ratio, are expected to increase with surface drying31,32. To identify the association between snowmelt timing, the main environmental variables (i.e., air temperature and solar radiation), and NEE, GPP, ER, and ET over time, we performed a maximum covariance analysis (MCA) on the monthly median standardized anomalies from 2004 to 2019 (a time period when data for most of the sites were available). MCA allowed us to find patterns in two space–time datasets that are highly correlated using a cross-covariance matrix26. We retained sites as the unit of variation (i.e., by estimating the standardized anomalies by site for each of the indicated variables, see “Methods”), hence the results of the MCA integrated the site level relationships between each of the variables over time). The goal of this analysis was to identify the most important environmental drivers associated with NEE, GPP, and ER across all the sites over time. MCA is particularly appropriate for this study as it can handle data with gaps and unequal lengths in the datasets. We also tested the relative importance of the abovementioned environmental drivers on the monthly median GPP, ER, and NEE using a linear mixed effect model, including site as a random effect to account for the site-to-site variability. The MCA and the mixed model analyses were conducted to test the relative importance of snowmelt and other variables at different times of the season. Finally, to evaluate the water balance at different times of the season, we estimated the difference between Potential Evapotranspiration (PET) and the actual ET, and the difference between precipitation (PPT) and ET for each of the sites, years, and months (e.g. June, July, and August). This study did not attempt to describe the long-term temporal changes in the anomalies of snowmelt and carbon fluxes, given the short data record available for some of the sites (i.e. less than 10 years, Table S1), but instead focused on understanding the association between environmental variables and the carbon balance at different times of the season. More details of these analyses are included in the Methods.Figure 1Study sites. Locations of the 11 eddy covariance flux tower sites used in this study. Light blue regions delineate the total Circumpolar Arctic Vegetation Map (CAVM), green regions delineate the subset of CAVM vegetation types represented in this study (including all the vegetation types listed in Table S1). This map was created using QGIS.org, 2020, QGIS 3.10. Geographic Information System User Guide. QGIS Association: https://docs.qgis.org/3.10/en/docs/user_manual/index.html. The dataset used in the map was the CAVM map: CAVM Team. 2003. Circumpolar Arctic Vegetation Map. (1:7,500,000 scale), Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage, Alaska. ISBN: 0-9767525-0-6, ISBN-13: 978-0-9767525-0-9.Full size imageInfluence of snowmelt timing on NEE, GPP, ER, and hydrological status of tundra ecosystemsOnce statistically controlling for solar radiation and air temperature (in the partial correlation analysis, see “Methods”), we observed a significant positive relationship between the snowmelt timing anomalies and NEE anomalies (i.e. earlier snowmelt was associated with a higher net CO2 sequestration) in June and July, but a negative correlation in August (Fig. 2a, Table 1). A significant relationship was also found between snowmelt date anomalies and GPP anomalies, with more positive GPP anomalies (i.e. higher plant productivity) with earlier snowmelt in June and July, and more negative GPP anomalies with earlier snowmelt in August (Fig. 2b, Table 1). Earlier snowmelt was associated with significantly higher ER in both June and July, but there was no significant relationship in August (Fig. 2c, Table 1), suggesting that the late-season correlation between NEE and snowmelt timing was mostly driven by the lower GPP and with earlier snowmelt in August. The MCA analysis showed that the anomalies in snowmelt timing had the highest squared covariance fraction (SCF) with the monthly median anomalies of GPP, NEE, and ER in June and July, and the lowest in August over the 2004–2019 period (Fig. 3). A similar result was observed in the linear mixed effect model, which showed a significant relationship between snowmelt date and GPP, and NEE, in all summer months, higher ({R}_{m}^{2}) between the snowmelt date and GPP in June and July, and no significant relationship between snowmelt date and ER in August (Table S3). In late season, other environmental variables had a higher covariance with the GPP, NEE, and ER anomalies than the snowmelt timing (Fig. 3, Table S3).Figure 2Relationships between the indicated median monthly anomalies using partial correlation analysis accounting for solar radiation and air temperature anomalies (retaining site as the unit of variation). Given that the interaction term between “month” and snowmelt timing was significant, we included the correlation coefficients and P of the regressions for each of the indicated months separately in each panel (also included in Table 1). Negative values indicate CO2 uptake and positive values CO2 release into the atmosphere, and shaded areas are 95% confidence intervals.Full size imageTable 1 Significance (P) and Pearson’s correlation coefficient (r) of the relationships between the indicated monthly median standardized anomalies for June, July, and August retaining site as a unit of variation.Full size tableFigure 3Squared covariance fraction (SCF) of each couple of the indicated variables for the maximum covariance analysis (MCA) of the monthly median anomalies of GPP, ER, and NEE in June, July, and August. The first pair of singular vectors are the phase-space directions when projected that have the largest possible cross-covariance. The singular vectors describe the patterns in the anomalies that are linearly correlated. A higher SCF indicates a stronger association over time between the indicated variables.Full size imageOur results are consistent with the discrepancy between the observed increase in the maxNDVI over the last four decades and the time-integrated (TI) NDVI which instead has plateaued in the last two decades and even decreased over the last 10 years in several northern arctic ecosystems33. TI-NDVI considers the length of the growing season and phenological variations34 and, therefore, better integrates vegetation development during the entire growing season. Moisture was shown to be important for the NDVI trends33,35. Given the potential water limitation to summer carbon uptake in northern ecosystems12,23,24,25, we tested if an earlier snowmelt was associated with a decrease in soil moisture, which would affect GPP and NEE. We only observed a significant correlation between soil moisture anomalies and snowmelt date anomalies in June (i.e. higher soil moisture with earlier snowmelt, Fig. S1a, Table S2), but no significant correlation in July and August (Fig. S1a, Table S2). The higher soil moisture with earlier snowmelt in June is consistent with surface inundation after snowmelt36,37 and earlier soil thawing resulting in higher soil moisture (i.e., soil moisture is low while soils are frozen). A similar result was observed for the ET anomalies. Higher ET with earlier snowmelt in June (Fig. S1b) could be the result of surface inundation after snowmelt32. The standardized NEE anomalies were significantly correlated with the soil moisture anomalies in each of the summer months (Fig. S1d, Table S2). However, the relationship between the GPP (and ER anomalies) and soil moisture anomalies was only significant in June (Fig. S1e,f, Table S2) suggesting an earlier activation of the vegetation with earlier soil thaw (and the associated higher soil moisture). A higher water loss from ET in early season (Fig. S1b) could have resulted in the drying of the surface moss layer with the progression of the summer, which would have been consistent with the observed lower GPP and the lower net CO2 sequestration with earlier snowmelt observed in August (Fig. 2a,b, Table 1). A potential moisture limitation to plant productivity might have been consistent also with the higher SCF of NEE, or GPP and VPD anomalies in August than in June and July (Fig. 3). However, no significant relationship between ET (or soil moisture) and snowmelt date anomalies was observed in July and August (Fig. S1a,b) contrary to what would be expected if drying occurred following earlier snowmelt. No significant relationship was found between VPD anomalies and snowmelt date anomalies in any of the summer months (P = 0.14 in a partial correlation considering air temperature and solar radiation anomalies). Finally, surface drying should result in an increase in the Bowen ratio anomalies with the progression of the summer, given that H increases with a decrease in water table and surface drying32,38. However, the Bowen ratio showed no correlation with the standardized snowmelt date anomalies in any of the summer months (Fig. S1c, Table S2), and presented similar values in all the summer months (Fig. S2a). The lack of correlation between the soil moisture, VPD, Bowen ratio, and snowmelt date anomalies suggests that an earlier snowmelt did not result in significant surface drying in the sites of this study. The median PET-ET and PPT-ET for all years and sites included in this analysis (Fig.S2 b,c) was slightly higher in August, similar to reports by others for the Russian arctic tundra38,39, further supporting a lack of soil moisture limitation in late season. Although these analyses do not consider runoff, which can be significant21,26, overall our results do not suggest that an earlier snowmelt resulted in a water stress that significantly limited plant productivity in these arctic ecosystems over continuous permafrost.The correlation between the anomalies in the August GPP and snowmelt timing is consistent with earlier senescence in northern plant species (e.g. Eriophorum vaginatum, a dominant species across these tundra types) compared to southern species growing in the same location in a common garden experiment40. The phenotypic variation was shown to be persisting for decades41, and ecotypes may be unable to extend their effective growth period or take advantage of a longer growing season40. Several studies across different plant functional types have shown that once plant growth is initiated after the snowmelt in northern ecosystems, it continues only for a fixed number of days until the occurrence of senescence42,43,44. Therefore, the lower GPP in August with earlier snowmelt might not be linked to water limitation on photosynthesis later in the season, but rather to an earlier senescence arising from the endogenous rhythms of growth and senescence, that plant functional types living in these extreme conditions have developed over decades. On a broader scale, earlier senescence with an earlier start of the growing season after snowmelt in northern ecosystems is also consistent with an earlier spring zero-crossing date and an earlier autumn zero-crossing date of the mean detrended seasonal CO2 variations at Barrow, AK, USA (NOAA ESRL: https://www.esrl.noaa.gov/gmd/ccgg/obspack/) during 2013–2017 compared to 1980–19845. The spring and autumn zero-crossing date is the time when the detrended seasonal CO2 variations intersect the zero line in spring and autumn respectively and can be used as an indicator for the start and end of the net CO2 uptake by vegetation45,46. On the other hand, NDVI measurements show both an earlier start of the season and a later end of season for 2008–2012 compared to 1982–19865. The disagreement between the detrended seasonal atmospheric CO2 concentration showing an earlier autumn zero-crossing date and the NDVI measurements showing a later end of the season has been explained by the increase in respiration in the fall20. The disagreement between atmospheric CO2 concentration trends (showing an earlier autumn zero-crossing date), and NDVI (showing a later end of the season,5 may also be explained by the challenges in using NDVI as a proxy for plant productivity in these arctic systems. The relationship between NDVI and CO2 flux and plant productivity is highly variable and non-linear in arctic ecosystems47. While some arctic ecosystems have shown that NDVI was strongly correlated with GPP (explaining 75% of the variation in GPP48, other studies showed that NDVI was either not significantly correlated with GPP and NEE49 or was only able to explain a minor fraction (maximum of 25%) of the variation in NEE and GPP in some arctic tundra ecosystems after accounting for the seasonal variation50,51.In conclusion, earlier snowmelt was associated with greater net CO2 uptake and higher GPP in early and peak seasons, but with less net CO2 uptake and lower GPP later in the summer, in the studied arctic tundra ecosystems. We did not find evidence of a late-season water limitation to GPP with earlier snowmelt. Although several hypotheses can be forwarded to explain the link between snowmelt and late season declines in plant productivity and carbon uptake, the current literature does not provide a definitive explanation (schematic Fig. 4). Future studies should investigate the potential interaction of different processes explaining the response of the carbon dynamics in the Arctic to earlier snowmelt and reconstruct the temporal changes in the carbon balance from these systems. The link between the long-term changes in the CO2 fluxes and NDVI in tundra ecosystems needs closer examination. Studies should investigate if higher NDVI is definitively associated with higher net CO2 uptake. Greening of the Arctic might not necessarily translate into more net CO2 uptake, as early and peak season carbon gains might be offset by a late-season CO2 loss, and respiration might counterbalance the increase in plant productivity. A better understanding of the processes driving these temporal changes is a fundamental step in advancing our prediction of the response of the arctic CO2 balance to changing climate.Figure 4Schematic of the effect of earlier snowmelt on NEE, GPP, and ER at different times of the season. Earlier snowmelt results in an earlier activation of the vegetation, higher plant productivity, and higher net carbon uptake in June and July. This earlier activation could result in more carbon loss and lower plant productivity with earlier snowmelt in August, potentially related to either environmental stress, or to earlier senescence. Photo credit: Donatella Zona.Full size image More

  • in

    Microbiomes in the Challenger Deep slope and bottom-axis sediments

    Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).PubMed 

    Google Scholar 
    Stewart, H. A. & Jamieson, A. J. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Prog. Oceanogr. 161, 47–65 (2018).ADS 

    Google Scholar 
    Zhu, G. et al. Along-strike variation in slab geometry at the southern Mariana subduction zone revealed by seismicity through ocean bottom seismic experiments. Geophys. J. Int. 218, 2122–2135 (2019).ADS 

    Google Scholar 
    Bao, R. et al. Tectonically-triggered sediment and carbon export to the Hadal zone. Nat. Commun. 9, 121 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kioka, A. et al. Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci. Rep. 9, 1553 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luo, M., Gieskes, J., Chen, L. Y., Shi, X. F. & Chen, D. F. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches. Mar. Geol. 386, 98–106 (2017).ADS 
    CAS 

    Google Scholar 
    Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).ADS 
    CAS 

    Google Scholar 
    Liu, S. & Peng, X. Organic matter diagenesis in hadal setting: insights from the pore-water geochemistry of the Mariana Trench sediments. Deep Sea Res. I 147, 22–31 (2019).CAS 

    Google Scholar 
    Nunoura, T. et al. Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench. Microbes Environ. 33, 186–194 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y. et al. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environ. Microbiol. 21, 716–729 (2019).CAS 
    PubMed 

    Google Scholar 
    Nunoura, T. et al. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environ. Microbiol. 15, 3087–3107 (2013).CAS 
    PubMed 

    Google Scholar 
    Mason, E. et al. Volatile metal emissions from volcanic degassing and lava–seawater interactions at Kīlauea Volcano, Hawai’i. Commun. Earth Environ. 2, 79 (2021).ADS 

    Google Scholar 
    Sun, R. et al. Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nat. Commun. 11, 3389 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalia, K. & Khambholja, D. B. in Handbook of Arsenic Toxicology (ed. Flora, S. J. S.) Ch. 28 (Elsevier, 2015).Welty, C. J., Sousa, M. L., Dunnivant, F. M. & Yancey, P. H. High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean. Heliyon 4, e00840 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Oremland, R. S. & Stolz, J. F. The ecology of arsenic. Science 300, 939–944 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Popowich, A., Zhang, Q. & Le, X. C. Arsenobetaine: the ongoing mystery. Natl Sci. Rev. 3, 451–458 (2016).CAS 

    Google Scholar 
    Hoffmann, T. et al. Arsenobetaine: an ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes. Environ. Microbiol. 20, 305–323 (2018).CAS 
    PubMed 

    Google Scholar 
    Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).
    Google Scholar 
    Hoffmann, A. A. & Hercus, M. J. Environmental stress as an evolutionary force. Bioscience 50, 217–226 (2000).
    Google Scholar 
    Cui, G., Li, J., Gao, Z. & Wang, Y. Spatial variations of microbial communities in abyssal and hadal sediments across the Challenger Deep. PeerJ 7, e6961 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hiraoka, S. et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14, 740–756 (2020).CAS 
    PubMed 

    Google Scholar 
    Morono, Y. et al. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. Commun. 11, 3626 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X. et al. Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a hadal biosphere at the Yap Trench. Front. Microbiol. 9, 2402 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).CAS 
    PubMed 

    Google Scholar 
    Zhou, Z. et al. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems 5, e00795-00719 (2020).
    Google Scholar 
    Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, X. et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat. Commun. 10, 1816 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laso-Pérez, R. et al. Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico. mBio 10, e01814–e01819 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z. M. et al. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environ. Microbiol. 21, 4092–4108 (2019).CAS 
    PubMed 

    Google Scholar 
    Varliero, G., Bienhold, C., Schmid, F., Boetius, A. & Molari, M. Microbial diversity and connectivity in deep-sea sediments of the South Atlantic polar front. Front. Microbiol. 10, 665 (2019).Su, X. et al. Identifying and predicting novelty in microbiome studies. mBio 9, e02099-02018 (2018).
    Google Scholar 
    Jing, G. et al. Microbiome Search Engine 2: a platform for taxonomic and functional search of global microbiomes on the whole-microbiome level. mSystems 6, e00943-00920 (2021).
    Google Scholar 
    Baltar, F., Zhao, Z. H. & Herndl, G. J. Potential and expression of carbohydrate untilization by marine fungi in the global ocean. Microbiome 9, 106 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quemener, M. et al. Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ. Microbiol. 22, 3950–3967 (2020).CAS 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).CAS 
    PubMed 

    Google Scholar 
    Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Bobay, L. M. & Ochman, H. The evolution of bacterial genome architecture. Front. Genet. 8, 72 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Huang, L. et al. dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 46, D516–D521 (2018).CAS 
    PubMed 

    Google Scholar 
    Xu, Y., Ge, H. & Fang, J. Biogeochemistry of hadal trenches: Recent developments and future perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 155, 19–26 (2018).ADS 
    CAS 

    Google Scholar 
    Jørgensen, B. B. & Boetius, A. Feast and famine — microbial life in the deep-sea bed. Nat. Rev. Microbiol. 5, 770–781 (2007).PubMed 

    Google Scholar 
    Pérez Castro, S. et al. Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments. ISME J. 15, 3480–3497 (2021).Rastelli, E. et al. Drivers of bacterial α- and β-diversity patterns and functioning in subsurface hadal sediments. Front. Microbiol. 10, 2609 (2019).Vetter, Y. A. & Deming, J. W. Extracellular enzyme-activity in the Arctic northeast water polynya. Mar. Ecol. Prog. Ser. 114, 23–34 (1994).ADS 
    CAS 

    Google Scholar 
    Li, J. et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 579, 250–255 (2020).ADS 
    CAS 

    Google Scholar 
    Kikuchi, G., Motokawa, Y., Yoshida, T. & Hiraga, K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc. Jpn. Acad. 84, 246–263 (2008).CAS 

    Google Scholar 
    Chakraborty, A. et al. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proc. Natl Acad. Sci. USA 117, 11029–11037 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, J. et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 7, 47 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xue, C.-X. et al. Insights into the vertical stratification of microbial ecological roles across the deepest seawater column on Earth. Microorganisms 8, 1309 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Thamdrup, B. et al. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. Proc. Natl Acad. Sci. USA 118, e2104529118 (2021).CAS 
    PubMed 

    Google Scholar 
    Wu, J. et al. Unexpectedly high diversity of anammox bacteria detected in deep-sea surface sediments of the South China Sea. FEMS Microbiol. Ecol. 95, fiz013 (2019).Kartal, B. et al. Molecular mechanism of anaerobic ammonium oxidation. Nature 479, 127–130 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Maalcke, W. J. et al. Characterization of anammox hydrazine dehydrogenase, a key N2-producing enzyme in the global nitrogen cycle. J. Biol. Chem. 291, 17077–17092 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kartal, B. et al. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev. 37, 428–461 (2013).CAS 
    PubMed 

    Google Scholar 
    Oshiki, M., Ali, M., Shinyako-Hata, K., Satoh, H. & Okabe, S. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by “Candidatus Brocadia sinica”. Environ. Microbiol. 18, 3133–3143 (2016).CAS 
    PubMed 

    Google Scholar 
    Mateos, L. M. et al. in Advances in Applied Microbiology (eds Sariaslani, S. & Gadd, G. M.) Ch. 4 (Academic Press, 2017).Ben Fekih, I. et al. Distribution of arsenic resistance genes in prokaryotes. Front. Microbiol. 9, 2473 (2018).Wang, P. P., Sun, G. X. & Zhu, Y. G. Identification and characterization of arsenite methyltransferase from an archaeon, methanosarcina acetivorans C2A. Environ. Sci. Technol. 48, 12706–12713 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Masuda, H., Yoshinishi, H., Fuchida, S., Toki, T. & Even, E. Vertical profiles of arsenic and arsenic species transformations in deep-sea sediment, Nankai Trough, offshore Japan. Prog. Earth Planet Sci. 6, 28 (2019).ADS 

    Google Scholar 
    Dunivin, T. K., Yeh, S. Y. & Shade, A. A global survey of arsenic-related genes in soil microbiomes. BMC Biol. 17, 45 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teske, A. et al. The Guaymas Basin hiking guide to hydrothermal mounds, chimneys, and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation. Front. Microbiol. 7, 75 (2016).O’Day, P. A., Vlassopoulos, D., Root, R. & Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl Acad. Sci. USA 101, 13703–13708 (2004).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galinski, E. A. Osmoadaptation in bacteria. Adv. Microb. Physiol. 37, 273–328 (1995).CAS 

    Google Scholar 
    Papini, C. M., Pandharipande, P. P., Royer, C. A. & Makhatadze, G. I. Putting the piezolyte hypothesis under pressure. Biophys. J. 113, 974–977 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caumette, G., Koch, I. & Reimer, K. J. Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J. Environ. Monit. 14, 2841–2853 (2012).CAS 
    PubMed 

    Google Scholar 
    Whaley-Martin, K. J., Koch, I., Moriarty, M. & Reimer, K. J. Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient. Environ. Sci. Technol. 46, 3110–3118 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795–4802 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rhine, E. D., Phelps, C. D. & Young, L. Y. Anaerobic arsenite oxidation by novel denitrifying isolates. Environ. Microbiol. 8, 899–908 (2006).CAS 
    PubMed 

    Google Scholar 
    Rhine et al. LY. The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem. Biophys. Res. Commun. 354, 662–667 (2007).CAS 
    PubMed 

    Google Scholar 
    Saunders, J. K., Fuchsman, C. A., Mckay, C. & Rocap, G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc. Natl Acad. Sci. USA 116, 9925–9930 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Couture, R. M., Sekowska, A., Fang, G. & Danchin, A. Linking selenium biogeochemistry to the sulfur‐dependent biological detoxification of arsenic. Environ. Microbiol. 14, 1612–1623 (2012).CAS 
    PubMed 

    Google Scholar 
    Zhang, Y. & Gladyshev, V. N. Trends in selenium utilization in marine microbial world revealed through the analysis of the Global Ocean Sampling (GOS) project. PLoS Genet. 4, e1000095 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Peng, T., Lin, J., Xu, Y.-Z. & Zhang, Y. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME J. 10, 2048–2059 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Labunskyy, V. M., Hatfield, D. L. & Gladyshev, V. N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yin, K., Wang, Q., Lv, M. & Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 360, 1553–1563 (2019).CAS 

    Google Scholar 
    O’Day, P. A., Vlassopoulos, D., Root, R. & Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl Acad. Sci. USA 101, 13703–13708 (2004).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, S. F., Zhou, Y. Q., Chen, Y. R. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890 (2018).
    Google Scholar 
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, Y., Gilna, P. & Li, W. Z. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25, 1338–1340 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Zenodo https://doi.org/10.5281/zenodo.6061243 (2022).Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jing, G. C. et al. Parallel-META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Sci. Rep. 7, 40371 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    PubMed 

    Google Scholar 
    Kang, D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).CAS 
    PubMed 

    Google Scholar 
    Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–887 (2013).CAS 
    PubMed 

    Google Scholar 
    Yamada, K. D., Tomii, K. & Katoh, K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 32, 3246–3251 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Perry, M. heatmaps: flexible heatmaps for functional genomics and sequence features. R package version 1.14.0 (Bioconductor, 2020).Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2019).PubMed Central 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).CAS 
    PubMed 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 

    Google Scholar 
    Zhou, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Figshare https://doi.org/10.6084/m6089.figshare.12979709 (2022). More

  • in

    Transgenerational effects of grandparental and parental diets combine with early-life learning to shape adaptive foraging phenotypes in Amblyseius swirskii

    Avital, E. & Jablonka, E. Animal Traditions: Behavioural Inheritance in Evolution. (Cambridge University Press, 2000).Bonduriansky, R. & Day, T. Nongenetic inheritance and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 40, 103–125 (2009).
    Google Scholar 
    Mousseau, T. A. & Fox, C. W. Maternal Effects as Adaptations. (Oxford University Press, 1998).Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998b).CAS 
    PubMed 

    Google Scholar 
    Jablonka, E. & Lamb, M. J. Evolution in four dimensions. Genetic, Epigenetic, Behavioral and Symbolic Variation in the History of Life. Revised Edition. (MIT Press, 2014).Uller, T. Developmental plasticity and the evolution of parental effects. Trends Ecol. Evol. 23, 432–438 (2018).
    Google Scholar 
    Bell, A. M. & Hellmann, J. K. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annu. Rev. Ecol. Evol. Syst. 50, 97–118 (2019).
    Google Scholar 
    Marshall, D. J. & Uller, T. When is a maternal effect adaptive? Oikos 116, 1957–1963 (2007).
    Google Scholar 
    Yin, J., Zhou, M., Lin, Z., Li, Q. Q. & Zhang, Y.-Y. Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. Ecol. Lett. 22, 1976–1986 (2019).PubMed 

    Google Scholar 
    Wolf, J. B. & Wade, M. J. What are maternal effects (and what are they not)? Philos. Trans. R. Soc. B 364, e1115 (2008).
    Google Scholar 
    Kilner, R. M. et al. Parental effects alter the adaptive value of an adult behavioural trait. eLife 4, e07340 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    McNamara, J. M., Dall, S. R. X., Hammerstein, P. & Leimar, O. Detection vs. selection: integration of genetic, epigenetic and environmental cues in fluctuating environments. Ecol. Lett. 19, 1267–1276 (2016).PubMed 

    Google Scholar 
    Deas, J. B., Blondel, L. & Extavour, C. G. Ancestral and offspring nutrition interact to affect life-history traits in Drosophila melanogaster. Proc. R. Soc. B 286, 20182778 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamps, J. A. & Bell, A. M. Combining information from parental and personal experiences: simple processes generate diverse outcomes. PLoS ONE 16, e0250540 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of defences in animals and plants. Nature 401, 60–63 (1999).CAS 

    Google Scholar 
    Remy, J. J. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol. 20, R877–R878 (2010).CAS 
    PubMed 

    Google Scholar 
    Shama, L. N. S. & Wegner, K. M. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations. J. Evol. Biol. 27, 2297–2307 (2014).CAS 
    PubMed 

    Google Scholar 
    Crocker, K. C. & Hunter, M. D. Environmental causes and transgenerational consequences of ecdysteroid hormone provisioning in Acheta domesticus. J. Insect Physiol. 109, 69–78 (2018).CAS 
    PubMed 

    Google Scholar 
    Sarker, G. & Peleg-Raibstein, D. Maternal overnutrition induces long-term cognitive deficits across several generations. Nutrients 11, 7 (2019).CAS 

    Google Scholar 
    Hellmann, J. K., Carlsson, E. R. & Bell, A. M. Sex-specific plasticity across generations II: grandpaternal effects are lineage specific and sex specific. J. Anim. Ecol. 89, 2800–2819 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Mahaq, O. The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice. Brain Behav. 10, e01817 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ranade, S. C. et al. Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze. Neuroscience 152, 859–866 (2008).CAS 
    PubMed 

    Google Scholar 
    De Souza, A. S., Fernandes, F. S., do Carmo, T. & das Gracas, M. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr. Rev. 69, 132–144 (2011).PubMed 

    Google Scholar 
    Munch, K. L. et al. Maternal effects impact decision-making in a viviparous lizard. Biol. Lett. 14, 20170556 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Li, C. et al. The learning ability and memory retention of broiler breeders: 2 transgenerational effects of reduced balanced protein diet on reward-based learning. Animal 13, 1260–1268 (2019).CAS 
    PubMed 

    Google Scholar 
    Boogert, N. J., Zimmer, C. & Spencer, K. A. Pre- and post-natal stress have opposing effects on social information use. Biol. Lett. 9, 20121088 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Xia, S.-Z., Liu, L., Feng, C.-H. & Guo, A.-K. Nutritional effects on operant visual learning in Drosophila melanogaster. Physiol. Behav. 62, 263–271 (1997).CAS 
    PubMed 

    Google Scholar 
    Eaton, L., Edmonds, E. J., Henry, T. B., Snellgrove, D. L. & Sloman, K. A. Mild maternal stress disrupts associative learning and increases aggression in offspring. Horm. Behav. 71, 10–15 (2015).CAS 
    PubMed 

    Google Scholar 
    Costa, C. P. et al. Care-giver identity impacts offspring development and performance in an annually social bumble bee. BMC Ecol. Evol. 21, 20 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Roche, D. P., McGhee, K. E. & Bell, A. M. Maternal predator-exposure has lifelong consequences for offspring learning in three-spined sticklebacks. Biol. Lett. 8, 932–935 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Feng, S., McGhee, K. E. & Bell, A. M. Effect of maternal predator exposure on the ability of stickleback offspring to generalize a learned colour-reward association. Anim. Behav. 107, 61–69 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Ghio, S. C., Leblanc, A. B., Audet, C. & Aubin-Horth, N. Effects of maternal stress and cortisol exposure at the egg stage on learning, boldness and neophobia in brook trout. Behaviour 153, 1639–1663 (2016).
    Google Scholar 
    Tariel, J., Plenet, S. & Luquet, E. How do developmental and parental exposures to predation affect personality and immediate behavioural plasticity in the snail Physa acuta? Proc. R. Soc. B 287, 20201761 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Dinh, H. et al. Transgenerational effects of parental diet on offspring development and disease resistance in flies. Front. Ecol. Evol. 9, 606993 (2021).
    Google Scholar 
    Bilkó, A., Altbäcker, V. & Hudson, R. Transmission of food preference in the rabbit: The means of information transfer. Physiol. Behav. 56, 907–912 (1994).PubMed 

    Google Scholar 
    Oostindjer, M., Bolhuis, J. E., van den Brand, H., Roura, E. & Kemp, B. Prenatal flavor exposure affects growth, health and behavior of newly weaned piglets. Physiol. Behav. 99, 579–586 (2010).CAS 
    PubMed 

    Google Scholar 
    Wells, D. L. & Hepper, P. G. Prenatal olfactory learning in the domestic dog. Anim. Behav. 72, 681–686 (2006).
    Google Scholar 
    Hepper, P. G. Fetal memory: does it exist? What does it do? Acta Paediatr. 85, 16–20 (1996).
    Google Scholar 
    Gowri, V., Dion, E., Viswanath, A., Monteiro Piel, F. & Monteiro, A. Transgenerational inheritance of learned preferences for novel host plant odors in Bicyclus anynana butterflies. Evolution 73, 2401–2414 (2019).CAS 
    PubMed 

    Google Scholar 
    Peralta-Quesada, P. C. & Schausberger, P. Prenatal chemosensory learning by the predatory mite Neoseiulus californicus. PLoS ONE 7, e53229 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Nieberding, C. M., van Dyck, H. & Chittka, L. Adaptive learning in non-social insects: from theory to field work, and back. Curr. Opin. Insect Sci. 27, 75–81 (2018).PubMed 

    Google Scholar 
    Momen, F. M. & El Saway, S. A. Biology and fee18lopemenviour of the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). Acarologia 33, 199–204 (1993).
    Google Scholar 
    Wimmer, D., Hoffmann, D. & Schausberger, P. Prey suitability of Western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontrol Sci. Technol. 18, 533–542 (2008).
    Google Scholar 
    Vangansbeke, D. et al. Supplemental food for Amblyseius swirskii in the control of thrips: feeding friend or foe? Pest Manag. Sci. 72, 466–473 (2016).CAS 
    PubMed 

    Google Scholar 
    Delisle, J. F., Brodeur, J. & Shipp, L. Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae). Exp. Appl. Acarol. 65, 483–494 (2015).CAS 
    PubMed 

    Google Scholar 
    Christiansen, I. C., Szin, S. & Schausberger, P. Benefit-cost trade-offs of early learning in foraging predatory mites Amblyseius swirskii. Sci. Rep. 6, 23571 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schausberger, P., Davaasambuu, U., Saussure, S. & Christiansen, I. C. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence. R. Soc. Open Sci. 5, 172110 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Seiter, M. & Schausberger, P. Constitutive and operational variation of learning in foraging predatory mites. PLoS ONE 11, e0166334 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schausberger, P., Seiter, M. & Raspotnig, G. Innate and learned responses of foraging predatory mites to polar and non-polar fractions of thrips’ chemical cues. Biol. Control 151, 104371 (2020).CAS 

    Google Scholar 
    Seiter, M. & Schausberger, P. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites. Sci. Rep. 5, 15046 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, Z. M. Transgenerational influence of sensorimotor training on offspring behavior and its neural basis in Drosophila. Neurobiol. Learn. Mem. 131, 166–175 (2016).PubMed 

    Google Scholar 
    Jahanbazi, M., Sedaratian-Jahromi, A. & Ghane-Jahromi, M. Comparative study of predation, preference and switching behaviors of two predatory mite Neoseiulus californicus and Amblyseius swirskii (Acari: Phytoseiidae). Int. J. Pest Manag. https://doi.org/10.1080/09670874.2021.1944699 (2021).Margulies, C., Tully, T. & Dubnau, J. Deconstructing memory in Drosophila. Curr. Biol. 15, R700–R713 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mery, F. & Kawecki, T. J. A cost of long-term memory in Drosophila. Science 308, 1148 (2005).CAS 
    PubMed 

    Google Scholar 
    Schausberger, P., Walzer, A., Hoffmann, D. & Rahmani, H. Food imprinting revisited: early learning in foraging predatory mites. Behaviour 147, 883–897 (2010).
    Google Scholar 
    Schausberger, P. & Peneder, S. Non-associative versus associative learning by foraging predatory mites. BMC Ecol. 17, 2 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory. (Princeton University Press, 1986).Mendel, D. & Schausberger, P. Diet-dependent intraguild predation between the predatory mites Neoseiulus californicus and Neoseiulus cucumeris. J. Appl. Entomol. 135, 311–319 (2011).
    Google Scholar 
    Somer, R. A. & Thummel, C. S. Epigenetic inheritance of metabolic state. Curr. Opin. Genet. Dev. 27, 43–47 (2014).CAS 
    PubMed 

    Google Scholar 
    Bonduriansky, R. & Crean, A. J. What are condition-transfer effects and how can they be detected? Methods Ecol. Evol. 9, 450–456 (2018).
    Google Scholar 
    Engqvist, L. & Reinhold, K. Adaptive parental effects and how to estimate them: a comment to Bonduriansky and Crean. Methods Ecol. Evol. 9, 457–459 (2018).
    Google Scholar 
    Melis, R. et al. Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innov. Food Sci. Emerg. Technol. 48, 138–149 (2018).CAS 

    Google Scholar 
    Singh, Y., Cullere, M., Kovitvadhi, A., Chundang, P. & Dalle Zotte, A. Effect of different killing methods on physicochemical traits, nutritional characteristics, in vitro human digestibility and oxidative stability during storage of the house cricket (Acheta domesticus L.). Innov. Food Sci. Emerg. Technol. 65, 102444 (2020).CAS 

    Google Scholar 
    Grafen, A. On the uses of data on lifetime reproductive success. Philos. Trans. R. Soc. B 363, 1635–1645 (1988).
    Google Scholar 
    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B 363, 1635–1645 (2008).
    Google Scholar 
    English, S., Fawcett, T. W., Higginson, A. D., Trimmer, P. C. & Uller, T. Adaptive use of information during growth can explain long-term effects of early life experiences. Am. Nat. 187, 620–632 (2016).PubMed 

    Google Scholar 
    Miller, R. R. & Polack, C. W. Sources of maladaptive behavior in ‘normal’ organisms. Behav. Process. 154, 4–12 (2018).
    Google Scholar 
    Schausberger, P. Inter-and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae). Exp. Appl. Acarol. 21, 131–150 (1997).
    Google Scholar 
    Walzer, A. & Schausberger, P. Non-consumptive effects of predatory mites on thrips and its host plant. Oikos 118, 934–940 (2009).
    Google Scholar 
    Walzer, A., Paulus, H. & Schausberger, P. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization. Bull. Entomol. Res. 94, 577–588 (2004).CAS 
    PubMed 

    Google Scholar 
    Vangansbeke, D., Duarte, M. V. A. & De Clercq, P. Cold-born killers: exploiting temperature-size rule enhances predation capacity of a predatory mite. Pest Manag. Sci. 76, 1841–1846 (2020).CAS 
    PubMed 

    Google Scholar 
    Krantz, G. W. & Walter, D. E. A Manual of Acarology 3rd edn (Texas Tech University Press, 2008).Croft, B. A., Luh, H.-K. & Schausberger, P. Larval size relative to larval feeding, cannibalism of larvae, egg or adult female size and larval–adult setal patterns among 13 phytoseiid mite species. Exp. Appl. Acarol. 23, 599–610 (1999).
    Google Scholar  More

  • in

    Dynamic modeling of female neutering interventions for free-roaming dog population management in an urban setting of southeastern Iran

    Morey, D. F. Burying key evidence: The social bond between dogs and people. J. Archaeol. Sci. 33, 158–175 (2006).
    Google Scholar 
    de Garcia, R. C. M., Calderón, N. & Ferreira, F. Consolidação de diretrizes internacionais de manejo de populações caninas em áreas urbanas e proposta de indicadores para seu gerenciamento. Rev. Panam. Salud Pública 32, 140–144 (2012).
    Google Scholar 
    Willis, C. M. et al. Olfactory detection of human bladder cancer by dogs: Proof of principle study. BMJ 329, 712 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Beck, A. M. The Ecology of Stray Dogs: A Study of Free-Ranging Urban Animals (Purdue University Press, 2002).
    Google Scholar 
    Jackman, J. & Rowan, A. N. Free-roaming dogs in developing countries: The benefits of capture, neuter, and return programs (2007).Borhani, M. et al. Echinococcoses in Iran, Turkey, and Pakistan: Old diseases in the new millennium. Clin. Microbiol. Rev. 34, e00290-e320 (2021).
    Google Scholar 
    Otranto, D. et al. Zoonotic parasites of sheltered and stray dogs in the era of the global economic and political crisis. Trends Parasitol. 33, 813–825 (2017).PubMed 

    Google Scholar 
    Quinnell, R. J. & Courtenay, O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 136, 1915–1934 (2009).CAS 
    PubMed 

    Google Scholar 
    Zain, S. N. M., Rahman, R. & Lewis, J. W. Stray animal and human defecation as sources of soil-transmitted helminth eggs in playgrounds of Peninsular Malaysia. J. Helminthol. 89, 740–747 (2015).
    Google Scholar 
    Garcia, R., Amaku, M., Biondo, A. W. & Ferreira, F. Dog and cat population dynamics in an urban area: Evaluation of a birth control strategy. Pesqui. Veterinária Bras. 38, 511–518 (2018).
    Google Scholar 
    Smith, L. M. et al. The effectiveness of dog population management: A systematic review. Animals 9, 1020 (2019).PubMed Central 

    Google Scholar 
    Tenzin, T. et al. Comparison of mark-resight methods to estimate abundance and rabies vaccination coverage of free-roaming dogs in two urban areas of south Bhutan. Prev. Vet. Med. 118, 436–448 (2015).PubMed 

    Google Scholar 
    Hiby, E. et al. Scoping review of indicators and methods of measurement used to evaluate the impact of dog population management interventions. BMC Vet. Res. 13, 1–20 (2017).
    Google Scholar 
    Chidumayo, N. N. System dynamics modelling approach to explore the effect of dog demography on rabies vaccination coverage in Africa. PLoS One 13, e0205884 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Home, C., Bhatnagar, Y. V. & Vanak, A. T. Canine Conundrum: Domestic dogs as an invasive species and their impacts on wildlife in India. Anim. Conserv. 21, 275–282 (2018).
    Google Scholar 
    Humane Dog Population Management 2019 Update—ICAM. https://www.icam-coalition.org/download/humane-dog-population-management-guidance/http://www.icam-coalition.org/abhay-sankalp-a-sustainable-solution-to-human-dog-conflict-for-improved-human-dog-relationships/.Belo, V. S., Werneck, G. L., da Silva, E. S., Barbosa, D. S. & Struchiner, C. J. Population estimation methods for free-ranging dogs: A systematic review. PLoS One 10, e0144830 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Font, E. Spacing and social organization: Urban stray dogs revisited. Appl. Anim. Behav. Sci. 17, 319–328 (1987).
    Google Scholar 
    Patronek, G. J., Beck, A. M. & Glickman, L. T. Dynamics of dog and cat populations in a community. J. Am. Vet. Med. Assoc. 210, 637–642 (1997).CAS 
    PubMed 

    Google Scholar 
    Kato, M., Yamamoto, H., Inukai, Y. & Kira, S. Survey of the stray dog population and the health education program on the prevention of dog bites and dog-acquired infections: A comparative study in Nepal and Okayama Prefecture, Japan. Acta Med. Okayama 57, 261–266 (2003).PubMed 

    Google Scholar 
    Tiwari, H. K., Vanak, A. T., O’Dea, M., Gogoi-Tiwari, J. & Robertson, I. D. A comparative study of enumeration techniques for Free-roaming dogs in rural Baramati, District Pune, India. Front. Vet. Sci. 5, 104 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hiby, L. R. et al. A mark-resight survey method to estimate the roaming dog population in three cities in Rajasthan, India. BMC Vet. Res. 7, 1–10 (2011).
    Google Scholar 
    Childs, J. E. et al. Density estimates of rural dog populations and an assessment of marking methods during a rabies vaccination campaign in the Philippines. Prev. Vet. Med. 33, 207–218 (1998).CAS 
    PubMed 

    Google Scholar 
    Tiwari, H. K., Robertson, I. D., O’Dea, M. & Vanak, A. T. Demographic characteristics of free-roaming dogs (FRD) in rural and urban India following a photographic sight-resight survey. Sci. Rep. 9, 16562 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Punjabi, G. A., Athreya, V. & Linnell, J. D. C. Using natural marks to estimate free-ranging dog Canis familiaris abundance in a MARK-RESIGHT framework in suburban Mumbai, India. Trop. Conserv. Sci. 5, 510–520 (2012).
    Google Scholar 
    Cleaton, J. M. et al. Use of photography to identify free-roaming dogs during sight-resight surveys: Impacts on estimates of population size and vaccination coverage, Haiti 2016. Vaccine X 2, 100025 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rockwood, L. L. Introduction to Population Ecology (Wiley, 2015).
    Google Scholar 
    Baquero, O. S., Marconcin, S., Rocha, A. & de Garcia, R. C. M. Companion animal demography and population management in Pinhais, Brazil. Prev. Vet. Med. 158, 169–177 (2018).PubMed 

    Google Scholar 
    Totton, S. C. et al. Stray dog population demographics in Jodhpur, India following a population control/rabies vaccination program. Prev. Vet. Med. 97, 51–57 (2010).PubMed 

    Google Scholar 
    Høgåsen, H. R., Er, C., Di Nardo, A. & Dalla Villa, P. Free-roaming dog populations: A cost-benefit model for different management options, applied to Abruzzo, Italy. Prev. Vet. Med. 112, 401–413 (2013).PubMed 

    Google Scholar 
    Kisiel, L. M. et al. Modeling the effect of surgical sterilization on owned dog population size in Villa de Tezontepec, Hidalgo, Mexico, using an individual-based computer simulation model. PLoS One 13, e0198209 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Yoak, A. J., Reece, J. F., Gehrt, S. D. & Hamilton, I. M. Optimizing free-roaming dog control programs using agent-based models. Ecol. Model. 341, 53–61 (2016).
    Google Scholar 
    Belsare, A. & Vanak, A. T. Modelling the challenges of managing free-ranging dog populations. Sci. Rep. 10, 1–12 (2020).
    Google Scholar 
    Harandi, M. F. et al. Sonographical and serological survey of human cystic echinococcosis and analysis of risk factors associated with seroconversion in rural communities of Kerman, Iran. Zoonoses Public Health 58, 582–588 (2011).CAS 
    PubMed 

    Google Scholar 
    Abedi, M., Doosti-Irani, A., Jahanbakhsh, F. & Sahebkar, A. Epidemiology of animal bite in Iran during a 20-year period (1993–2013): A meta-analysis. Trop. Med. Health 47, 1–13 (2019).
    Google Scholar 
    Kartal, T. & Rowan, A. N. Stray dog population management. F. Man. Small Anim. Med. 15–28 (2018).Amaral, A. C., Ward, M. P. & da Costa Freitas, J. Estimation of roaming dog populations in Timor Leste. Prev. Vet. Med. 113, 608–613 (2014).PubMed 

    Google Scholar 
    de Melo, S. N. et al. Effects of gender, sterilization, and environment on the spatial distribution of free-roaming dogs: An intervention study in an urban setting. Front. Vet. Sci. 7, 289 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conan, A. et al. Population dynamics of owned, free-roaming dogs: Implications for rabies control. PLoS Negl. Trop. Dis. 9, e0004177 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Belsare, A. V. & Gompper, M. E. Assessing demographic and epidemiologic parameters of rural dog populations in India during mass vaccination campaigns. Prev. Vet. Med. 111, 139–146 (2013).PubMed 

    Google Scholar 
    Mustiana, A. et al. Owned and unowned dog population estimation, dog management and dog bites to inform rabies prevention and response on Lombok Island, Indonesia. PLoS One 10, e0124092 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Hossain, M. et al. A survey of the dog population in rural Bangladesh. Prev. Vet. Med. 111, 134–138 (2013).PubMed 

    Google Scholar 
    Acosta-Jamett, G., Cleaveland, S., Cunningham, A. A. & de Bronsvoort, B. M. C. Demography of domestic dogs in rural and urban areas of the Coquimbo region of Chile and implications for disease transmission. Prev. Vet. Med. 94, 272–281 (2010).CAS 
    PubMed 

    Google Scholar 
    Massei, G. et al. Free-roaming dogs in Nepal: Demographics, health and public knowledge, attitudes and practices. Zoonoses Public Health 64, 29–40 (2017).CAS 
    PubMed 

    Google Scholar 
    Rinzin, K. The epidemiology of the free-roaming dog and cat population in the Wellington Region of the New Zealand Palmerston North, New Zealand: Massey University. Master’s thesis (2007).Arief, R. A. et al. Determinants of vaccination coverage and consequences for rabies control in Bali, Indonesia. Front. Vet. Sci. 3, 123 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Morters, M. K. et al. The demography of free-roaming dog populations and applications to disease and population control. J. Appl. Ecol. 51, 1096–1106 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Pal, S. K. Population ecology of free-ranging urban dogs in West Bengal, India. Acta Theriol. (Warsz) 46, 69–78 (2001).
    Google Scholar 
    Rinzin, K., Tenzin, T. & Robertson, I. Size and demography pattern of the domestic dog population in Bhutan: Implications for dog population management and disease control. Prev. Vet. Med. 126, 39–47 (2016).PubMed 

    Google Scholar 
    Hoffman, J. M., O’Neill, D. G., Creevy, K. E. & Austad, S. N. Do female dogs age differently than male dogs?. J. Gerontol. Ser. A 73, 150–156 (2018).
    Google Scholar 
    Dürr, S., Dhand, N. K., Bombara, C., Molloy, S. & Ward, M. P. What influences the home range size of free-roaming domestic dogs?. Epidemiol. Infect. 145, 1339–1350 (2017).PubMed 

    Google Scholar 
    Aiyedun, J. O. & Olugasa, B. O. Use of aerial photograph to enhance dog population census in Ilorin, Nigeria. Sokoto J. Vet. Sci. 10, 22–27 (2012).
    Google Scholar 
    Butler, J. R. A. & Bingham, J. Demography and dog-human relationships of the dog population in Zimbabwean communal lands. Vet. Rec. 147, 442–446 (2000).CAS 
    PubMed 

    Google Scholar 
    Raymond, T. N. et al. Do open garbage dumps play a role in canine rabies transmission in Biyem-Assi health district in Cameroon?. Infect. Ecol. Epidemiol. 5, 26055 (2015).PubMed 

    Google Scholar 
    Wright, N., Subedi, D., Pantha, S., Acharya, K. P. & Nel, L. H. The role of waste management in control of rabies: A neglected issue. Viruses 13, 225 (2021).PubMed 
    PubMed Central 

    Google Scholar 


    Krystosik, A. et al. Solid wastes provide breeding sites, burrows, and food for biological disease vectors, and urban zoonotic reservoirs: A call to action for solutions-based research. Front. Public Health 7, 405 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Tantanee, S. & Hantrakul, S. Municipal Waste Management Challenge of Urbanization: Lesson Learned From Phitsanulok, Thailand. Geogr. Tech. 14 (2019).Desa, U. World urbanization prospects 2018. United Nations Dep. Econ. Soc. Affairs (2018).
    https://www.icam-coalition.org/cnvr-in-dehradun-female-dog-focused-cnvr-implemented-with-community-engagement/
    Bacon, H., Vancia, V., Walters, H. & Waran, N. Canine trap-neuter-return: A critical review of potential welfare issues. Anim. Welf. 26, 281–292 (2017).
    Google Scholar 
    Bacon, H., Walters, H., Vancia, V., Connelly, L. & Waran, N. Development of a robust canine welfare assessment protocol for use in dog (Canis familiaris) catch-neuter-return (CNR) programmes. Animals 9, 564 (2019).PubMed Central 

    Google Scholar 
    ICAM Coalition. Are we making a difference? A guide to monitoring and evaluating dog population management interventions 2015 (2015).World Society for the Protection of Animals. Surveying roaming dog populations: Guidelines on methodology, 1–20 (2008).Acharya, M. & Dhakal, S. Survey on street dog population in Pokhara valley of Nepal, Bangladesh. J. Vet. Med. 13, 65–70 (2015).
    Google Scholar 

    http://www.icam-coalition.org/tool/dog-body-condition-scoring-training/
    Tenzin, T., Ahmed, R., Debnath, N. C., Ahmed, G. & Yamage, M. Free-roaming dog population estimation and status of the dog population management and rabies control program in Dhaka City, Bangladesh. PLoS Negl. Trop. Dis. 9, e0003784 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Toole, T. M. A project management causal loop diagram. in Arcom Conference 5–7 (2005).Amaku, M., Dias, R. A. & Ferreira, F. Dynamics and control of stray dog populations. Math. Popul. Stud. 17, 69–78 (2010).MathSciNet 
    MATH 

    Google Scholar 
    Kitala, P. M., McDERMOTT, J. J., Coleman, P. G. & Dye, C. Comparison of vaccination strategies for the control of dog rabies in Machakos District, Kenya. Epidemiol. Infect. 129, 215–222 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dahabreh, I. J. et al. A review of validation and calibration methods for health care modeling and simulation. Model. Simul. Context Heal. Technol. Assess. Rev. Exist. Guid. Futur. Res. Needs, Validity Assess. [Internet] (2017).Knobel, D. L. et al. Re-evaluating the burden of rabies in Africa and Asia. Bull. World Health Organ. 83, 360–368 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Özen, D., Böhning, D. & Gürcan, İS. Estimation of stray dog and cat populations in metropolitan Ankara, Turkey. Turk. J. Vet. Anim. Sci. 40, 7–12 (2016).
    Google Scholar 
    Cortez-Aguirre, G. R., Jiménez-Coello, M., Gutiérrez-Blanco, E. & Ortega-Pacheco, A. Stray dog population in a city of Southern Mexico and its impact on the contamination of public areas. Vet. Med. Int. 2018 (2018). More

  • in

    A novel approach for reliable qualitative and quantitative prey spectra identification of carnivorous plants combining DNA metabarcoding and macro photography

    A combined DNA metabarcoding/in-situ macro photography approach to reliably analyse carnivorous plant prey spectraResults indicate that DNA metabarcoding allows for reliable analysis of prey spectra composition in carnivorous plants at a taxonomic resolution and level of completeness unachievable by traditional morphology-based approaches (as performed, for example, by4,5,6,7,9,10,11). Even in remote tropical northern Western Australia, where many (if not most) arthropod species have not yet been accessioned into the BOLD or GenBank barcode reference libraries, this method identified over 90% of obtained OTUs from our sample set; most of them at family-level, but 41% to genus-level, and 17% even down to species rank (Supplementary Data S1). Lekesyte et al.27 were able to identify 80% of the analysed prey items found on D. rotundifolia in England to species-level. However, their sampling was performed in western Europe, whose entomofauna is comparatively well studied taxonomically and has an excellent coverage in the BOLD reference library of DNA barcodes41. New insect barcodes are regularly added to the BOLD library through large-scale initiatives such as the international Barcode of Life Project (iBOL; https://ibol.org/) and its Australian node Australian Barcode of Life Network (ABOLN), hence accuracy of future metabarcoding research performed in Australia can be expected to increase to similar levels soon.In-situ macro photography was found to provide a valuable plausibility control tool for the prey taxa identified by metabarcoding. While many of the smaller prey taxa detected by metabarcoding were impossible to identify in the in-situ macro photographs due to their tendency to quickly degenerate after digestion into small, shapeless “crumbs”8, this control method considerably reduced the amount of prey taxa detected which were not actually present as prey in the Drosera samples. This flaw of metabarcoding is most commonly a consequence of procedural errors resulting in cross-contamination within the DNA extraction procedure27, usually resulting in low read numbers. However, in-situ macro photographs may also fail to detect species if prey captured by the sundew escaped from the trap33,42, or was stolen by larger animals. In both cases, a DNA imprint left on the Drosera leaves as excretions, detached scales, hairs or, frequently, as autotomised (shedded) body parts42 could have been detected by metabarcoding. Additionally, some barcoding-detected taxa may not constitute prey if they were associated with another captured prey taxon (either as part of its diet, or as a parasite). The latter may explain some barcode hits for taxa not immediately apparent from the in-situ macro photographs, as they are (endo)parasites of captured prey taxa. This was likely the case in the detected Strepsiptera (stylops) which are frequently contained as larvae and adult females in their hymenopteran and orthopteran hosts43. However, insect endoparasites and other non-obvious prey taxa were by default not excluded by the very conservative approach of pictorial plausibility control. Additionally, in the case of endoparasites, these organisms would also contribute to plant nutrition as “bycatch” after being digested together with their host, despite not having been actively attracted to the carnivorous traps. Finally, the control method tested in this study showed that even heavily digested prey items in the samples had sufficient amounts of intact (mitochondrial) DNA present to be detected by metabarcoding, as we found no instance of any prey item being clearly identifiable in the macro photographs but not present in the barcoding data.Prey spectra composition of the studied Drosera speciesThe analysed prey spectra of the three studied species from D. sect. Arachnopus most commonly contained flying insects (especially of the orders Diptera and Hemiptera, both present in 100% of the samples; Fig. 3), thus confirming earlier in-situ macro photography-based studies of closely-related D. sect. Arachnopus species by Krueger et al.8. All members of D. sect. Arachnopus are characterised by a large, erect growth habit and thread-like aerial leaves which usually do not contact the ground8,32, thereby excluding most ground-dwelling arthropods as prey. This result is also similar to other prey spectra studies of erect-leaved Drosera from different geographic areas, where flying insects (particularly Diptera) unanimously comprised almost the entire recorded prey5,11,44. Furthermore, this study confirmed the result of Krueger et al.8 that Hemiptera—and within this order especially the Cicadellidae—are exceptionally common in the prey spectra of D. sect. Arachnopus compared with all other, previously studied Drosera. A possible explanation for this may be the relatively high abundance of Cicadellidae in tropical habitats45 compared to subtropical or temperate habitats where the above-mentioned previous Drosera prey spectra studies were conducted.Of the five most commonly detected orders, Lepidoptera generally comprised the largest prey items in terms of body size or wingspan, respectively. This prey order was exceptionally common in D. finlaysoniana, being present in 100% of samples and also visually conspicuous in the in-situ photographs. Since this Drosera species had by far the largest trapping leaves among the three species studied with an average leaf length of 10.4 ± 0.6 cm (Suppl Appendix S7), and exhibits the largest leaves in D. section Arachnopus32, this may represent an example of large prey items being more easily captured by species with larger trapping leaves33. Additionally, the sampled population of D. finlaysoniana was huge and dense (see Supplementary Figure S1), probably attracting larger prey and enabling capture of larger prey items by “collective” trapping46. Alternatively, Fleischmann30 suggested that captured Lepidoptera themselves could attract further individuals of the same species by pheromone release, potentially explaining the very high numbers of this insect order observed in D. finlaysoniana.Differences among observed prey spectraComparison of prey spectra between the three studied Drosera species revealed significant differences at arthropod family-level but not at the higher level of arthropod orders, indicating that at a coarse taxonomic resolution, the same five arthropod orders (Diptera, Hemiptera, Hymenoptera, Lepidoptera and Thysanoptera) generally comprise most of the prey in D. sect. Arachnopus, regardless of given Drosera species or habitat. However, as strong differences were discovered in the ANOSIM comparison at family-level, it can be concluded that differences might likely increase with finer taxonomic resolution of prey taxa, a conclusion also reached by the carnivorous plant prey spectra meta-analysis of Ellison & Gotelli47. While these differences may be partially attributed to different morphological traits of the three species such as leaf scent8,30 or eglandular appendages31, the very high ANOSIM R-values returned and the large number of prey families contributing nearly equally to dissimilarity (Table 2) indicate that the most likely explanation is very different available prey spectra at the three study sites. Indeed, significant differences among different study sites, even within the same species, were previously reported for Drosera rotundifolia by Lekesyte et al.27 and for four species from D. sect. Arachnopus by Krueger et al.8. Notably, the three study sites feature different habitat types and climate regimes (Supplementary Fig. S1).Analyses indicate that there is likely little specialisation in prey capture by the three studied Drosera species. For example, the relatively high detection rate of Lepidoptera in the samples of D. finlaysoniana and D. hartmeyerorum compared to D. margaritacea may be explained by the lake margin habitats of the former two species, while the latter species was found in a completely dry drainage channel lacking any nearby waterbodies (Supplementary Fig. S1). Lepidoptera are likely to occur in much higher concentrations near water sources, especially during the dry season (May to November) when the surrounding areas are lacking other water sources (G. Bourke in Fleischmann30).Estimating prey quantityIn addition to providing a plausibility control for the compositional prey analysis by metabarcoding, the in-situ macro photography method facilitated an estimation of prey quantity per sample. Metabarcoding by itself is currently not a reliable tool for prey quantification due to the lack of a linear relationship between the number of sequence reads and organism biomass26,27.In contrast to Krueger et al.8, who generally found more prey items on larger trapping leaves in species of D. sect. Arachnopus (even when values were compared as per cm of trapping leaf length), the species with the largest leaves studied here (D. finlaysoniana) captured significantly less prey items than the smaller-leaved species D. margaritacea and D. hartmeyerorum (Fig. 4). However, while Krueger et al.8 was able to compare sympatric species (thus minimising any potential effects of the habitat or region on prey spectra), the three species in this study were studied at three different, geographically distant sites. While it is possible that overall prey abundance in the habitat was much lower at the D. finlaysoniana study site (Site 1), it can be hypothesised that the low total prey capture observed in this species may be due to the very large and extremely dense population resulting in strong intraspecific competition for prey (see Supplementary Fig. S1). This effect of population structure on prey capture has also been observed by Gibson48 and Tagawa and Watanabe46 who found a significant negative correlation between total prey capture and population density in different species of Drosera.Conclusions and outlookOur study is the first to employ a DNA metabarcoding approach supported by controls for species presence to analyse carnivorous plant prey spectra. When combined with in-situ macro photography, this method is clearly superior in terms of taxonomic resolution and completeness for analysis of environmental bulk samples (containing different organisms in highly variable states of preservation), as used here for the reconstruction of prey spectra of carnivorous plants. The capability of this method increases with new reference barcodes being regularly added to DNA barcode libraries (such as BOLD and NCBI GenBank) and it thus has the potential to become the standard methodology for future carnivorous plant prey spectra research.Additional studies are needed to test this method for other carnivorous plant species and genera, especially those possessing different trap types. Within Western Australia, three additional trap types occur: snap traps (Aldrovanda), suction traps (Utricularia) and pitfall traps (Cephalotus). In particular, it might be expected that in-situ macro photography will not work as well for the extremely small, typically submerged traps of Aldrovanda and Utricularia (which also completely enclose their captured, microscopic prey items49), potentially necessitating usage of alternative control methods for metabarcoding data. Furthermore, even within Drosera (adhesive traps) some species may require adjustments to the methodology presented here as they accumulate captured prey in a central point via tentacle movement (e.g., many climbing tuberous Drosera) or their leaves may be very difficult to place on paper sheets with the sticky side facing upwards (e.g., all pygmy Drosera). The latter problem may be solved by using reverse action forceps and photographing the leaves while held in place by the forceps.Extensive sampling of sites with co-occurring species from D. sect. Arachnopus is clearly required to better understand the ecological role of trap scent and eglandular appendages in this section. For example, manipulation experiments involving the removal of all yellow blackberry-shaped appendages of D. hartmeyerorum (which have been hypothesised to function as visual prey attractants31) and subsequent metabarcoding prey spectra comparisons of mutilated plants lacking emergences with control plants are proposed. Potential effects of population density on prey spectra (as hypothesised here for D. finlaysoniana) could be studied by comparing prey spectra of individual plants from within mass populations with more exposed-growing individuals of the same population. More

  • in

    Sociality predicts orangutan vocal phenotype

    Lipkind, D. et al. Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature 498, 104–108 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goldstein, M., King, A. P. & West, M. J. Social interaction shapes babbling: testing parallels between birdsong and speech. Proc. Natl Acad. Sci. USA 100, 8030–8035 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fehér, O., Ljubičić, I., Suzuki, K., Okanoya, K. & Tchernichovski, O. Statistical learning in songbirds: from self-tutoring to song culture. Phil. Trans. R. Soc. B 372, 20160053 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Tchernichovski, O., Lints, T., Mitra, P. P. & Nottebohm, F. Vocal imitation in zebra finches is inversely related to model abundance. Proc. Natl Acad. Sci. USA 96, 12901–12904 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tchernichovski, O. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569 (2001).CAS 

    Google Scholar 
    Fehér, O., Wang, H., Saar, S., Mitra, P. P. & Tchernichovski, O. De novo establishment of wild-type song culture in the zebra finch. Nature 459, 564–568 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, D. et al. The developmental dynamics of marmoset monkey vocal production. Science 349, 734–738 (2015).CAS 

    Google Scholar 
    Takahashi, D. Y., Liao, D. A. & Ghazanfar, A. A. Vocal learning via social reinforcement by infant marmoset monkeys. Curr. Biol. 27, 1844–1852.E6 (2017).Takahashi, D. Y., Fenley, A. R. & Ghazanfar, A. A. Early development of turn-taking with parents shapes vocal acoustics in infant marmoset monkeys. Phil. Trans. R. Soc. B 371, 20150370 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gultekin, Y. B. & Hage, S. R. Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys. Sci. Adv. 4, eaar4012 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Gultekin, Y. B. & Hage, S. R. Limiting parental feedback disrupts vocal development in marmoset monkeys. Nat. Commun. 8, 14046 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jarvis, E. D. Evolution of vocal learning and spoken language. Science 366, 50–54 (2019).CAS 

    Google Scholar 
    Snowdon, C. T. Learning from monkey “talk”. Science 355, 1120–1122 (2017).CAS 

    Google Scholar 
    Malik, K. Rights and wrongs. Nature 406, 675–676 (2000).
    Google Scholar 
    Wise, S. M. & Goodall, J. Rattling the Cage: Toward Legal Rights for Animals (Da Capo Press, 2017).Grayson, L. Animals in Research: For and Against (British Library, 2000).Nater, A. et al. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 27, 3487–3498.E10 (2017).CAS 

    Google Scholar 
    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3, e1600946 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ross, S. et al. Inappropriate use and portrayal of chimpanzees. Science 319, 1487 (2008).CAS 

    Google Scholar 
    Wich, S. A. et al. Land-cover changes predict steep declines for the Sumatran orangutan (Pongo abelii). Sci. Adv. 2, e1500789 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Understanding the impacts of land-use policies on a threatened species: is there a future for the Bornean orangutan? PLoS ONE 7, e49142 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Will oil palm’s homecoming spell doom for Africa’s great apes? Curr. Biol. https://doi.org/10.1016/j.cub.2014.05.077 (2014).Fitch, T. W. Empirical approaches to the study of language evolution. Psychon. Bull. Rev. 24, 3–33 (2017).Hauser, M. D. et al. The mystery of language evolution. Front. Psychol. https://doi.org/10.3389/fpsyg.2014.00401 (2014)Corballis, M. C. Crossing the Rubicon: behaviorism, language, and evolutionary continuity. Front. Psychol. 11, 653 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Berwick, R. C. & Chomsky, N. All or nothing: no half-merge and the evolution of syntax. PLoS Biol. 17, e3000539 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolhuis, J. J. & Wynne, C. D. Can evolution explain how minds work? Nature 458, 832–833 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayes, K. J. & Hayes, C. The intellectual development of a home-raised chimpanzee. Proc. Am. Phil. Soc. 95, 105–109 (1951).
    Google Scholar 
    Premack, D. Language in chimpanzee? Science 172, 808–822 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Terrace, H., Petitto, L., Sanders, R. & Bever, T. Can an ape create a sentence? Science 206, 891–902 (1979).CAS 

    Google Scholar 
    Patterson, F. & Linden, E. The Education of Koko (Holt, Rinehart and Winston, 1981).Leavens, D. A., Bard, K. A. & Hopkins, W. D. BIZARRE chimpanzees do not represent “the chimpanzee”. Behav. Brain Sci. 33, 100–101 (2010).
    Google Scholar 
    Lameira, A. R. Bidding evidence for primate vocal learning and the cultural substrates for speech evolution. Neurosci. Biobehav. Rev. 83, 429–439 (2017).
    Google Scholar 
    Lameira, A. R. et al. Speech-like rhythm in a voiced and voiceless orangutan call. PLoS ONE 10, e116136 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Shumaker, R. W. Orangutans show active voicing through a membranophone. Sci. Rep. 9, 12289 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R., Hardus, M. E., Mielke, A., Wich, S. A. & Shumaker, R. W. Vocal fold control beyond the species-specific repertoire in an orangutan. Sci. Rep. 6, 30315 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. et al. Orangutan (Pongo spp.) whistling and implications for the emergence of an open-ended call repertoire: a replication and extension. J. Acoust. Soc. Am. 134, 2326–2335 (2013).
    Google Scholar 
    Perlman, M. & Clark, N. Learned vocal and breathing behavior in an enculturated gorilla. Anim. Cogn. 18, 1165–1179 (2015).
    Google Scholar 
    Wich, S. et al. A case of spontaneous acquisition of a human sound by an orangutan. Primates 50, 56–64 (2009).
    Google Scholar 
    Lameira, A. R., Maddieson, I. & Zuberbuhler, K. Primate feedstock for the evolution of consonants. Trends Cogn. Sci. 18, 60–62 (2014).
    Google Scholar 
    Lameira, A. R. The forgotten role of consonant-like calls in theories of speech evolution. Behav. Brain Sci. 37, 559–560 (2014).
    Google Scholar 
    Boë, L.-J. et al. Which way to the dawn of speech? Reanalyzing half a century of debates and data in light of speech science. Sci. Adv. 5, eaaw3916 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Boë, L. J. et al. Evidence of a vocalic proto-system in the baboon (Papio papio) suggests pre-hominin speech precursors. PLoS ONE 12, e0169321 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fitch, T. W., Boer, B., Mathur, N. & Ghazanfar, A. A. Monkey vocal tracts are speech-ready. Sci. Adv. 2, e1600723 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, A. S., Kavanagh, E., Hobaiter, C., Slocombe, K. E. & Lameira, A. R. Chimpanzee lip-smacks confirm primate continuity for speech-rhythm evolution. Biol. Lett. 16, 20200232 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. et al. Proto-consonants were information-dense via identical bioacoustic tags to proto-vowels. Nat. Hum. Behav. 1, 0044 (2017).
    Google Scholar 
    Lameira, A. R. et al. Orangutan information broadcast via consonant-like and vowel-like calls breaches mathematical models of linguistic evolution. Biol. Lett. 17, 20210302 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Watson, S. K. et al. Nonadjacent dependency processing in monkeys, apes, and humans. Sci. Adv. 6, eabb0725 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Call, J. Time-space–displaced responses in the orangutan vocal system. Sci. Adv. 4, eaau3401 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Belyk, M. & Brown, S. The origins of the vocal brain in humans. Neurosci. Biobehav. Rev. 77, 177–193 (2017).
    Google Scholar 
    Crockford, C., Wittig, R. M. & Zuberbuhler, K. Vocalizing in chimpanzees is influenced by social-cognitive processes. Sci. Adv. 3, e1701742 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Taglialatela, J. P., Reamer, L., Schapiro, S. J. & Hopkins, W. D. Social learning of a communicative signal in captive chimpanzees. Biol. Lett. 8, 498–501 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Russell, J. L., Joseph, M., Hopkins, W. D. & Taglialatela, J. P. Vocal learning of a communicative signal in captive chimpanzees, Pan troglodytes. Brain Lang. 127, 520–525 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hopkins, W. D. et al. Genetic factors and orofacial motor learning selectively influence variability in central sulcus morphology in chimpanzees (Pan troglodytes). J. Neurosci. 37, 5475–5483 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Staes, N. et al. FOXP2 variation in great ape populations offers insight into the evolution of communication skills. Sci. Rep. 7, 16866 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Martins, P. T. & Boeckx, C. Vocal learning: beyond the continuum. PLoS Biol. 18, e3000672 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, S. K. et al. Vocal learning in the functionally referential food grunts of chimpanzees. Curr. Biol. 25, 495–499 (2015).CAS 

    Google Scholar 
    Hopkins, W. D., Taglialatela, J. P. & Leavens, D. A. Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Anim. Behav. 73, 281–286 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Bianchi, S., Reyes, L. D., Hopkins, W. D., Taglialatela, J. P. & Sherwood, C. C. Neocortical grey matter distribution underlying voluntary, flexible vocalizations in chimpanzees. Sci. Rep. 6, 34733 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Call cultures in orangutans? PLoS ONE 7, e36180 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crockford, C., Herbinger, I., Vigilant, L. & Boesch, C. Wild chimpanzees produce group-specific calls: a case for vocal learning? Ethology 110, 221–243 (2004).
    Google Scholar 
    Whiten, A. et al. Cultures in chimpanzees. Nature 399, 682–685 (1999).CAS 

    Google Scholar 
    van Schaik, C. P. et al. Orangutan cultures and the evolution of material culture. Science 299, 102–105 (2003).
    Google Scholar 
    Whiten, A. Culture extends the scope of evolutionary biology in the great apes. Proc. Natl Acad. Sci. USA 114, 7790–7797 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koops, K., Visalberghi, E. & van Schaik, C. The ecology of primate material culture. Biol. Lett. 10, 20140508 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kalan, A. K. et al. Chimpanzees use tree species with a resonant timbre for accumulative stone throwing. Biol. Lett. 15, 20190747 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hardus, M., Lameira, A. R., Van Schaik, C. P. & Wich, S. A. Tool use in wild orangutans modifies sound production: a functionally deceptive innovation? Proc. R. Soc. B https://doi.org/10.1098/rspb.2009.1027 (2009).Lameira, A. R. et al. Population-specific use of the same tool-assisted alarm call between two wild orangutan populations (Pongo pygmaeus wurmbii) indicates functional arbitrariness. PLoS ONE 8, e69749 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hohmann, G. & Fruth, B. Culture in bonobos? Between‐species and within‐species variation in behavior. Curr. Anthropol. 44, 563–571 (2003).
    Google Scholar 
    Robbins, M. M. et al. Behavioral variation in gorillas: evidence of potential cultural traits. PLoS ONE 11, e0160483 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kühl, H. S. et al. Human impact erodes chimpanzee behavioral diversity. Science 363, 1453–1455 (2019).
    Google Scholar 
    van Schaik, C. P. Fragility of Traditions: the disturbance hypothesis for the loss of local traditions in orangutans. Int. J. Primatol. 23, 527–538 (2002).
    Google Scholar 
    Delgado, R. A. & van Schaik, C. P. The behavioral ecology and conservation of the orangutan (Pongo pygmaeus): a tale of two islands. Evol. Anthropol. 9, 201–218 (2000).
    Google Scholar 
    van Schaik, C. The socioecology of fission–fusion sociality in orangutans. Primates 40, 69–86 (1999).
    Google Scholar 
    Nater, A. et al. Sex-biased dispersal and volcanic activities shaped phylogeographic patterns of extant orangutans (genus: Pongo). Mol. Biol. 28, 2275–2288 (2011).CAS 

    Google Scholar 
    Arora, N. et al. Parentage-based pedigree reconstruction reveals female matrilineal clusters and male-biased dispersal in nongregarious Asian great apes, the Bornean orangutans (Pongo pygmaeus). Mol. Ecol. 21, 3352–3362 (2012).CAS 

    Google Scholar 
    Kavanagh, E. et al. Dominance style is a key predictor of vocal use and evolution across nonhuman primates. R. Soc. Open Sci. 8, 210873 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Husson, S. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 6 (Oxford Univ. Press, 2009).van Noordwijk, M. A. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 12 (Oxford Univ Press, 2009).Singleton, I., Knott, C., Morrogh-Bernard, H., Wich, S. & van Schaik, C. P. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 13 (Oxford Univ. Press, 2009).Wich, S. et al. Life history of wild Sumatran orangutans (Pongo abelii). J. Hum. Evol. 47, 385–398 (2004).CAS 

    Google Scholar 
    Wich, S. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 5 (Oxford Univ. Press, 2009).Shumaker, R. W., Wich, S. A. & Perkins, L. Reproductive life history traits of female orangutans (Pongo spp.). Primate Reprod. Aging 36, 147–161 (2008).CAS 

    Google Scholar 
    Freund, C., Rahman, E. & Knott, C. Ten years of orangutan-related wildlife crime investigation in West Kalimantan, Indonesia. Am. J. Primatol. 79, 22620 (2016).
    Google Scholar 
    van Noordwijk, M. A. & van Schaik, C. P. Development of ecological competence in Sumatran orangutans. Am. J. Phys. Anthropol. 127, 79–94 (2005).
    Google Scholar 
    Knot, C. D. et al. The Gunung Palung Orangutan Project: Twenty-five years at the intersection of research and conservation in a critical landscape in Indonesia. Biol. Conserv. 255, 108856 (2021).
    Google Scholar 
    Guillermo, S.-B., Gershenson, C. & Fernández, N. A package for measuring emergence, self-organization, and complexity based on shannon entropy. Front. Robot. AI 4, 174102 (2017).
    Google Scholar 
    Santamaría-Bonfil, G., Fernández, N. & Gershenson, C. Measuring the complexity of continuous distributions. Entropy 18, 72 (2016).
    Google Scholar 
    Kalan, A. K., Mundry, R. & Boesch, C. Wild chimpanzees modify food call structure with respect to tree size for a particular fruit species. Anim. Behav. 101, 1–9 (2015).
    Google Scholar 
    Fedurek, P. & Slocombe, K. E. The social function of food-associated calls in male chimpanzees. Am. J. Primatol. 75, 726–739 (2013).
    Google Scholar 
    Luef, E., Breuer, T. & Pika, S. Food-associated calling in gorillas (Gorilla g. gorilla) in the wild. PLoS ONE 11, e0144197 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Clay, Z. & Zuberbuhler, K. Food-associated calling sequences in bonobos. Anim. Behav. 77, 1387–1396 (2009).
    Google Scholar 
    Hardus, M. E. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 4 (Oxford Univ. Press, 2009).Wich, S. A. et al. Forest fruit production is higher on Sumatra than on Borneo. PLoS ONE 6, e21278 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Wich, S. Orangutan long call degradation and individuality over distance: a playback approach. Int. J. Primatol. 29, 615–625 (2008).
    Google Scholar 
    Lameira, A. R., Delgado, R. & Wich, S. Review of geographic variation in terrestrial mammalian acoustic signals: human speech variation in a comparative perspective. J. Evolut. Psychol. 8, 309–332 (2010).
    Google Scholar 
    Lameira, A. R. et al. Predator guild does not influence orangutan alarm call rates and combinations. Behav. Ecol. Sociobiol. 67, 519–528 (2013).
    Google Scholar 
    Derex, M. & Mesoudi, A. Cumulative cultural evolution within evolving population structures. Trends Cogn. Sci. 24, 654–667 (2020).
    Google Scholar 
    Scerri, E. M. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582–594 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bobe, R. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).
    Google Scholar 
    Zhu, D., Galbraith, E. D., Reyes-García, V. & Ciais, P. Global hunter-gatherer population densities constrained by influence of seasonality on diet composition. Nat. Ecol. Evol. 5, 1536–1545 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).
    Google Scholar 
    Mauricio, G.-F. & Gardner, A. Inference of ecological and social drivers of human brain-size evolution. Nature 557, 554–557 (2018).
    Google Scholar 
    Lindenfors, P., Wartel, A. & Lind, J. ‘Dunbar’s number’ deconstructed. Biol. Lett. 17, 20210158 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C., van Noordwijk, M., Atmoko, S. U. & van Schaik, C. Early sociability fosters later exploratory tendency in wild immature orangutans. Sci. Adv. 6, eaaw2685 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C. et al. Observational social learning and socially induced practice of routine skills in immature wild orangutans. Anim. Behav. 119, 87–98 (2016).
    Google Scholar 
    Jaeggi, A. V. et al. Social learning of diet and foraging skills by wild immature Bornean orangutans: implications for culture. Am. J. Primatol. 72, 62–71 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C. et al. The effects of sociability on exploratory tendency and innovation repertoires in wild Sumatran and Bornean orangutans. Sci. Rep. 7, 15464 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ehmann, B. et al. Immature wild orangutans acquire relevant ecological knowledge through sex-specific attentional biases during social learning. PLoS Biol. 19, e3001173 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meijaard, E. et al. Declining orangutan encounter rates from Wallace to the present suggest the species was once more abundant. PLoS ONE 5, e12042 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, A. J. et al. The blowgun is mightier than the chainsaw in determining population density of Bornean orangutans (Pongo pygmaeus morio) in the forests of East Kalimantan. Biol. Conserv. 129, 566–578 (2006).
    Google Scholar 
    Gail, C.-S., Miran, C.-S., Singleton, I. & Linkie, M. Raiders of the lost bark: orangutan foraging strategies in a degraded landscape. PLoS ONE 6, e20962 (2011).
    Google Scholar 
    Schuppli, C. & van Schaik, C. P. Animal cultures: how we’ve only seen the tip of the iceberg. Evol. Hum. Sci. 1, e2 (2019).
    Google Scholar 
    Langergraber, K. E. et al. Vigilant, generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández, N., Maldonado, C. & Gershenson, C. in Guided Self-Organization: Inception (ed Prokopenko, M.) 19–51 (Springer Berlin Heidelberg, 2014).JAST Team, JASP (Univ. of Amsterdam, 2020).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009).Auguie, B. gridExtra: Functions in grid graphics. R version 0.9.1 (2012).Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar 
    Korthauer, K. et al. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 20, 118 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Fingerprint analysis reveals sources of petroleum hydrocarbons in soils of different geographical oilfields of China and its ecological assessment

    Concentration of TPHs in surface soilsStatistical results of TPHs concentrations at different geographic oilfields were showed in Fig. 2, and grid regional distribution of TPHs in YC Oilfield surface soils (Y6–Y25) were shown in Fig. 3. Results are given as mean value of triplicate analysis of each sample. The results of TPHs concentration in soil samples showed that the three oilfields all suffered from varying degrees of petroleum pollution, and 60.92% of the 47 sampling points was significantly higher than the soil critical value (500 mg/kg). The average concentration of the TPHs in each study areas conformed to be in the following law: SL Oilfield (average: 5.36 × 103 mg/kg) ( >) NY Oilfield (average: 1.73 × 103 mg/kg) ( >) YC Oilfield (average: 1.37 × 103 mg/kg). The highest concentration of the TPHs were found in SL Oilfield surface soils, ranging from 1.21 × 102 to 6.66 × 104 mg/kg, and NY Oilfield had the second highest TPHs concentrations in the range from 15.82 to 7.42 × 103 mg/kg. The concentrations of TPHs in YC Oilfield ranged from 12.34 to 5.38 × 103 mg/kg. The petroleum contamination mainly derived from abandoned and working oil wells. S4 and S8 soils were collected near the abandoned oil well and working oil well, respectively, and had the highest concentration of TPHs up to 5.28 × 104 and 6.66 × 104 mg/kg. Y1, N8 near the abandoned oil well also had high concentration of TPHs with 5.39 × 103 and 7.42 × 103 mg/kg, respectively. Pollution caused by grounded crude oil in exploitation process has been a serious problem in oilfield area. Our previous research reported that the TPHs content in Dagang Oilfield soils collected adjacent to working oil wells were about 20-folds higher than that in corn soils and living area soils25. Concentration contour map of TPHs in YC Oilfield by grid sampling method showed that regional pollution in the northwest and southeast area are more serious than other sites. Y6 near the gas station and Y15, Y21, Y23 adjacent to the working oil wells have higher concentration (2.12 × 103–5.34 × 103 mg/kg) of TPHs than other farmland and grass soils. Previous study reported that the concentrations of TPHs ranged 7.0 × 102–4.0 × 103 mg/kg in oil exploitation areas of the loess plateau region (34°20′N,107°10′E), showing a similar pollution level with this study26.Figure 2The concentration of TPHs in three oilfield soils.Full size imageFigure 3Grid regional distribution of TPHs in YC Oilfield.Full size imageThe percentage composition of total PAHs, SHs and polar components of petroleum hydrocarbons were shown in Table 1. In general, the dominant petroleum component was saturated hydrocarbons in all soils, accounting more than 50%. Yet, the percentage proportion of PAHs and SHs in contamination soils adjacent to working and abandon oil wells were significantly different (p  BbF (14.16–21.87%) ≫ BaA, Chr, InP, and BkF (less than 10%). This result aligned to the previous study that the contribution of individual PAHs to the TEQs of ∑PAH16 was BaP (45%)  > DBA (33%) in urban surface dust of Xi’an city, China46. Therefore, contamination control should priority focus on the individual PAHs of BaP, DBA, BbF in these areas. In addition, the ecological risk with abandoned time ranging 0–15 years has been assessed, and the descriptive statistic TEQBap of PAHs was shown in Supporting Information, Table S6. The highest TEQs of ∑PAH16 and ∑PAH7 with mean of 1422.27 μg/kg and 1400.48 μg/kg, respectively, were present in soils adjacent to abandoned oil well with abandoned time of 0—5 years. And the TEQs of ∑PAH16 and ∑PAH7 decreased with the abandoned time though the percentage proportion of PAHs increased. The TEQs of ∑PAH16 and ∑PAH7 were close between abandoned time of 5–10 years and 10—15 years while both had high content. It demonstrated that high ecological risk was persistent in abandoned oil well areas over abandoned time of 15 years, and basically stable after 5 years. Therefore, abandoned oil well areas need to be blocked to prevent PAHs entering the external environment, and combine physical–chemical technology for petroleum remediation instead of simple weathering biological processes.Table 3 Descriptive statistic TEQBap of PAHs in different sampling area.Full size tableAs referred the PAHs standard of Dutch soil, TEQs of ∑PAH7 was 32.02 μg/kg, calculated by ten individual PAHs times TEFs. In this study, the mean TEQs of ∑PAH7 were about 35- and 10-folds of Dutch soil in petro-related area soils and grassland soils, indicating a high and medium ecological risk in these soils respectively. However, the mean TEQs of ∑PAH7 in farmland soils (18.80 μg/kg) was below Dutch soil, presenting a low potential ecological risk. It should be noted that the minimum of TEQs of ∑PAH7 in grassland soil was 26.24 μg/kg less than TEQs of ∑PAH7 in Dutch soil, but it was vulnerable affected by the surrounding soils with high TEQs of ∑PAH7. In this study, except the farmland soils, TEQs of ∑PAH7 exhibited higher TEQ values than those reported soils in Santiago, Chile47 and Nepal24, and road dust in Tianjin, China48. Overall, the most threat of ecological risk in petro-related soils caused by the anthropogenic PAHs input, such like oil leakage, oil refining, and fossil energy combustion. Preventing oil spills accident and developing the remediation methods are the main significant ways to reduce the ecological risks in these areas. The medium ecological risk in grassland might result from the migration of PAHs via rainfall pathway. Therefore, establishment the oil-blocking isolation zones is the critical way for medium ecological risk areas to control petroleum inflow. Even though the low ecological risk was identified in farmland soils, PAHs source analysis indicated that the biomass combustion should be controlled in these areas. More