More stories

  • in

    Sociality predicts orangutan vocal phenotype

    Lipkind, D. et al. Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature 498, 104–108 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goldstein, M., King, A. P. & West, M. J. Social interaction shapes babbling: testing parallels between birdsong and speech. Proc. Natl Acad. Sci. USA 100, 8030–8035 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fehér, O., Ljubičić, I., Suzuki, K., Okanoya, K. & Tchernichovski, O. Statistical learning in songbirds: from self-tutoring to song culture. Phil. Trans. R. Soc. B 372, 20160053 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Tchernichovski, O., Lints, T., Mitra, P. P. & Nottebohm, F. Vocal imitation in zebra finches is inversely related to model abundance. Proc. Natl Acad. Sci. USA 96, 12901–12904 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tchernichovski, O. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569 (2001).CAS 

    Google Scholar 
    Fehér, O., Wang, H., Saar, S., Mitra, P. P. & Tchernichovski, O. De novo establishment of wild-type song culture in the zebra finch. Nature 459, 564–568 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, D. et al. The developmental dynamics of marmoset monkey vocal production. Science 349, 734–738 (2015).CAS 

    Google Scholar 
    Takahashi, D. Y., Liao, D. A. & Ghazanfar, A. A. Vocal learning via social reinforcement by infant marmoset monkeys. Curr. Biol. 27, 1844–1852.E6 (2017).Takahashi, D. Y., Fenley, A. R. & Ghazanfar, A. A. Early development of turn-taking with parents shapes vocal acoustics in infant marmoset monkeys. Phil. Trans. R. Soc. B 371, 20150370 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gultekin, Y. B. & Hage, S. R. Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys. Sci. Adv. 4, eaar4012 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Gultekin, Y. B. & Hage, S. R. Limiting parental feedback disrupts vocal development in marmoset monkeys. Nat. Commun. 8, 14046 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jarvis, E. D. Evolution of vocal learning and spoken language. Science 366, 50–54 (2019).CAS 

    Google Scholar 
    Snowdon, C. T. Learning from monkey “talk”. Science 355, 1120–1122 (2017).CAS 

    Google Scholar 
    Malik, K. Rights and wrongs. Nature 406, 675–676 (2000).
    Google Scholar 
    Wise, S. M. & Goodall, J. Rattling the Cage: Toward Legal Rights for Animals (Da Capo Press, 2017).Grayson, L. Animals in Research: For and Against (British Library, 2000).Nater, A. et al. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 27, 3487–3498.E10 (2017).CAS 

    Google Scholar 
    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3, e1600946 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ross, S. et al. Inappropriate use and portrayal of chimpanzees. Science 319, 1487 (2008).CAS 

    Google Scholar 
    Wich, S. A. et al. Land-cover changes predict steep declines for the Sumatran orangutan (Pongo abelii). Sci. Adv. 2, e1500789 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Understanding the impacts of land-use policies on a threatened species: is there a future for the Bornean orangutan? PLoS ONE 7, e49142 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Will oil palm’s homecoming spell doom for Africa’s great apes? Curr. Biol. https://doi.org/10.1016/j.cub.2014.05.077 (2014).Fitch, T. W. Empirical approaches to the study of language evolution. Psychon. Bull. Rev. 24, 3–33 (2017).Hauser, M. D. et al. The mystery of language evolution. Front. Psychol. https://doi.org/10.3389/fpsyg.2014.00401 (2014)Corballis, M. C. Crossing the Rubicon: behaviorism, language, and evolutionary continuity. Front. Psychol. 11, 653 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Berwick, R. C. & Chomsky, N. All or nothing: no half-merge and the evolution of syntax. PLoS Biol. 17, e3000539 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolhuis, J. J. & Wynne, C. D. Can evolution explain how minds work? Nature 458, 832–833 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayes, K. J. & Hayes, C. The intellectual development of a home-raised chimpanzee. Proc. Am. Phil. Soc. 95, 105–109 (1951).
    Google Scholar 
    Premack, D. Language in chimpanzee? Science 172, 808–822 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Terrace, H., Petitto, L., Sanders, R. & Bever, T. Can an ape create a sentence? Science 206, 891–902 (1979).CAS 

    Google Scholar 
    Patterson, F. & Linden, E. The Education of Koko (Holt, Rinehart and Winston, 1981).Leavens, D. A., Bard, K. A. & Hopkins, W. D. BIZARRE chimpanzees do not represent “the chimpanzee”. Behav. Brain Sci. 33, 100–101 (2010).
    Google Scholar 
    Lameira, A. R. Bidding evidence for primate vocal learning and the cultural substrates for speech evolution. Neurosci. Biobehav. Rev. 83, 429–439 (2017).
    Google Scholar 
    Lameira, A. R. et al. Speech-like rhythm in a voiced and voiceless orangutan call. PLoS ONE 10, e116136 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Shumaker, R. W. Orangutans show active voicing through a membranophone. Sci. Rep. 9, 12289 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R., Hardus, M. E., Mielke, A., Wich, S. A. & Shumaker, R. W. Vocal fold control beyond the species-specific repertoire in an orangutan. Sci. Rep. 6, 30315 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. et al. Orangutan (Pongo spp.) whistling and implications for the emergence of an open-ended call repertoire: a replication and extension. J. Acoust. Soc. Am. 134, 2326–2335 (2013).
    Google Scholar 
    Perlman, M. & Clark, N. Learned vocal and breathing behavior in an enculturated gorilla. Anim. Cogn. 18, 1165–1179 (2015).
    Google Scholar 
    Wich, S. et al. A case of spontaneous acquisition of a human sound by an orangutan. Primates 50, 56–64 (2009).
    Google Scholar 
    Lameira, A. R., Maddieson, I. & Zuberbuhler, K. Primate feedstock for the evolution of consonants. Trends Cogn. Sci. 18, 60–62 (2014).
    Google Scholar 
    Lameira, A. R. The forgotten role of consonant-like calls in theories of speech evolution. Behav. Brain Sci. 37, 559–560 (2014).
    Google Scholar 
    Boë, L.-J. et al. Which way to the dawn of speech? Reanalyzing half a century of debates and data in light of speech science. Sci. Adv. 5, eaaw3916 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Boë, L. J. et al. Evidence of a vocalic proto-system in the baboon (Papio papio) suggests pre-hominin speech precursors. PLoS ONE 12, e0169321 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fitch, T. W., Boer, B., Mathur, N. & Ghazanfar, A. A. Monkey vocal tracts are speech-ready. Sci. Adv. 2, e1600723 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, A. S., Kavanagh, E., Hobaiter, C., Slocombe, K. E. & Lameira, A. R. Chimpanzee lip-smacks confirm primate continuity for speech-rhythm evolution. Biol. Lett. 16, 20200232 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. et al. Proto-consonants were information-dense via identical bioacoustic tags to proto-vowels. Nat. Hum. Behav. 1, 0044 (2017).
    Google Scholar 
    Lameira, A. R. et al. Orangutan information broadcast via consonant-like and vowel-like calls breaches mathematical models of linguistic evolution. Biol. Lett. 17, 20210302 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Watson, S. K. et al. Nonadjacent dependency processing in monkeys, apes, and humans. Sci. Adv. 6, eabb0725 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Call, J. Time-space–displaced responses in the orangutan vocal system. Sci. Adv. 4, eaau3401 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Belyk, M. & Brown, S. The origins of the vocal brain in humans. Neurosci. Biobehav. Rev. 77, 177–193 (2017).
    Google Scholar 
    Crockford, C., Wittig, R. M. & Zuberbuhler, K. Vocalizing in chimpanzees is influenced by social-cognitive processes. Sci. Adv. 3, e1701742 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Taglialatela, J. P., Reamer, L., Schapiro, S. J. & Hopkins, W. D. Social learning of a communicative signal in captive chimpanzees. Biol. Lett. 8, 498–501 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Russell, J. L., Joseph, M., Hopkins, W. D. & Taglialatela, J. P. Vocal learning of a communicative signal in captive chimpanzees, Pan troglodytes. Brain Lang. 127, 520–525 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hopkins, W. D. et al. Genetic factors and orofacial motor learning selectively influence variability in central sulcus morphology in chimpanzees (Pan troglodytes). J. Neurosci. 37, 5475–5483 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Staes, N. et al. FOXP2 variation in great ape populations offers insight into the evolution of communication skills. Sci. Rep. 7, 16866 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Martins, P. T. & Boeckx, C. Vocal learning: beyond the continuum. PLoS Biol. 18, e3000672 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, S. K. et al. Vocal learning in the functionally referential food grunts of chimpanzees. Curr. Biol. 25, 495–499 (2015).CAS 

    Google Scholar 
    Hopkins, W. D., Taglialatela, J. P. & Leavens, D. A. Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Anim. Behav. 73, 281–286 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Bianchi, S., Reyes, L. D., Hopkins, W. D., Taglialatela, J. P. & Sherwood, C. C. Neocortical grey matter distribution underlying voluntary, flexible vocalizations in chimpanzees. Sci. Rep. 6, 34733 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Call cultures in orangutans? PLoS ONE 7, e36180 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crockford, C., Herbinger, I., Vigilant, L. & Boesch, C. Wild chimpanzees produce group-specific calls: a case for vocal learning? Ethology 110, 221–243 (2004).
    Google Scholar 
    Whiten, A. et al. Cultures in chimpanzees. Nature 399, 682–685 (1999).CAS 

    Google Scholar 
    van Schaik, C. P. et al. Orangutan cultures and the evolution of material culture. Science 299, 102–105 (2003).
    Google Scholar 
    Whiten, A. Culture extends the scope of evolutionary biology in the great apes. Proc. Natl Acad. Sci. USA 114, 7790–7797 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koops, K., Visalberghi, E. & van Schaik, C. The ecology of primate material culture. Biol. Lett. 10, 20140508 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kalan, A. K. et al. Chimpanzees use tree species with a resonant timbre for accumulative stone throwing. Biol. Lett. 15, 20190747 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hardus, M., Lameira, A. R., Van Schaik, C. P. & Wich, S. A. Tool use in wild orangutans modifies sound production: a functionally deceptive innovation? Proc. R. Soc. B https://doi.org/10.1098/rspb.2009.1027 (2009).Lameira, A. R. et al. Population-specific use of the same tool-assisted alarm call between two wild orangutan populations (Pongo pygmaeus wurmbii) indicates functional arbitrariness. PLoS ONE 8, e69749 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hohmann, G. & Fruth, B. Culture in bonobos? Between‐species and within‐species variation in behavior. Curr. Anthropol. 44, 563–571 (2003).
    Google Scholar 
    Robbins, M. M. et al. Behavioral variation in gorillas: evidence of potential cultural traits. PLoS ONE 11, e0160483 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kühl, H. S. et al. Human impact erodes chimpanzee behavioral diversity. Science 363, 1453–1455 (2019).
    Google Scholar 
    van Schaik, C. P. Fragility of Traditions: the disturbance hypothesis for the loss of local traditions in orangutans. Int. J. Primatol. 23, 527–538 (2002).
    Google Scholar 
    Delgado, R. A. & van Schaik, C. P. The behavioral ecology and conservation of the orangutan (Pongo pygmaeus): a tale of two islands. Evol. Anthropol. 9, 201–218 (2000).
    Google Scholar 
    van Schaik, C. The socioecology of fission–fusion sociality in orangutans. Primates 40, 69–86 (1999).
    Google Scholar 
    Nater, A. et al. Sex-biased dispersal and volcanic activities shaped phylogeographic patterns of extant orangutans (genus: Pongo). Mol. Biol. 28, 2275–2288 (2011).CAS 

    Google Scholar 
    Arora, N. et al. Parentage-based pedigree reconstruction reveals female matrilineal clusters and male-biased dispersal in nongregarious Asian great apes, the Bornean orangutans (Pongo pygmaeus). Mol. Ecol. 21, 3352–3362 (2012).CAS 

    Google Scholar 
    Kavanagh, E. et al. Dominance style is a key predictor of vocal use and evolution across nonhuman primates. R. Soc. Open Sci. 8, 210873 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Husson, S. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 6 (Oxford Univ. Press, 2009).van Noordwijk, M. A. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 12 (Oxford Univ Press, 2009).Singleton, I., Knott, C., Morrogh-Bernard, H., Wich, S. & van Schaik, C. P. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 13 (Oxford Univ. Press, 2009).Wich, S. et al. Life history of wild Sumatran orangutans (Pongo abelii). J. Hum. Evol. 47, 385–398 (2004).CAS 

    Google Scholar 
    Wich, S. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 5 (Oxford Univ. Press, 2009).Shumaker, R. W., Wich, S. A. & Perkins, L. Reproductive life history traits of female orangutans (Pongo spp.). Primate Reprod. Aging 36, 147–161 (2008).CAS 

    Google Scholar 
    Freund, C., Rahman, E. & Knott, C. Ten years of orangutan-related wildlife crime investigation in West Kalimantan, Indonesia. Am. J. Primatol. 79, 22620 (2016).
    Google Scholar 
    van Noordwijk, M. A. & van Schaik, C. P. Development of ecological competence in Sumatran orangutans. Am. J. Phys. Anthropol. 127, 79–94 (2005).
    Google Scholar 
    Knot, C. D. et al. The Gunung Palung Orangutan Project: Twenty-five years at the intersection of research and conservation in a critical landscape in Indonesia. Biol. Conserv. 255, 108856 (2021).
    Google Scholar 
    Guillermo, S.-B., Gershenson, C. & Fernández, N. A package for measuring emergence, self-organization, and complexity based on shannon entropy. Front. Robot. AI 4, 174102 (2017).
    Google Scholar 
    Santamaría-Bonfil, G., Fernández, N. & Gershenson, C. Measuring the complexity of continuous distributions. Entropy 18, 72 (2016).
    Google Scholar 
    Kalan, A. K., Mundry, R. & Boesch, C. Wild chimpanzees modify food call structure with respect to tree size for a particular fruit species. Anim. Behav. 101, 1–9 (2015).
    Google Scholar 
    Fedurek, P. & Slocombe, K. E. The social function of food-associated calls in male chimpanzees. Am. J. Primatol. 75, 726–739 (2013).
    Google Scholar 
    Luef, E., Breuer, T. & Pika, S. Food-associated calling in gorillas (Gorilla g. gorilla) in the wild. PLoS ONE 11, e0144197 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Clay, Z. & Zuberbuhler, K. Food-associated calling sequences in bonobos. Anim. Behav. 77, 1387–1396 (2009).
    Google Scholar 
    Hardus, M. E. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 4 (Oxford Univ. Press, 2009).Wich, S. A. et al. Forest fruit production is higher on Sumatra than on Borneo. PLoS ONE 6, e21278 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Wich, S. Orangutan long call degradation and individuality over distance: a playback approach. Int. J. Primatol. 29, 615–625 (2008).
    Google Scholar 
    Lameira, A. R., Delgado, R. & Wich, S. Review of geographic variation in terrestrial mammalian acoustic signals: human speech variation in a comparative perspective. J. Evolut. Psychol. 8, 309–332 (2010).
    Google Scholar 
    Lameira, A. R. et al. Predator guild does not influence orangutan alarm call rates and combinations. Behav. Ecol. Sociobiol. 67, 519–528 (2013).
    Google Scholar 
    Derex, M. & Mesoudi, A. Cumulative cultural evolution within evolving population structures. Trends Cogn. Sci. 24, 654–667 (2020).
    Google Scholar 
    Scerri, E. M. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582–594 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bobe, R. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).
    Google Scholar 
    Zhu, D., Galbraith, E. D., Reyes-García, V. & Ciais, P. Global hunter-gatherer population densities constrained by influence of seasonality on diet composition. Nat. Ecol. Evol. 5, 1536–1545 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).
    Google Scholar 
    Mauricio, G.-F. & Gardner, A. Inference of ecological and social drivers of human brain-size evolution. Nature 557, 554–557 (2018).
    Google Scholar 
    Lindenfors, P., Wartel, A. & Lind, J. ‘Dunbar’s number’ deconstructed. Biol. Lett. 17, 20210158 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C., van Noordwijk, M., Atmoko, S. U. & van Schaik, C. Early sociability fosters later exploratory tendency in wild immature orangutans. Sci. Adv. 6, eaaw2685 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C. et al. Observational social learning and socially induced practice of routine skills in immature wild orangutans. Anim. Behav. 119, 87–98 (2016).
    Google Scholar 
    Jaeggi, A. V. et al. Social learning of diet and foraging skills by wild immature Bornean orangutans: implications for culture. Am. J. Primatol. 72, 62–71 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C. et al. The effects of sociability on exploratory tendency and innovation repertoires in wild Sumatran and Bornean orangutans. Sci. Rep. 7, 15464 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ehmann, B. et al. Immature wild orangutans acquire relevant ecological knowledge through sex-specific attentional biases during social learning. PLoS Biol. 19, e3001173 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meijaard, E. et al. Declining orangutan encounter rates from Wallace to the present suggest the species was once more abundant. PLoS ONE 5, e12042 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, A. J. et al. The blowgun is mightier than the chainsaw in determining population density of Bornean orangutans (Pongo pygmaeus morio) in the forests of East Kalimantan. Biol. Conserv. 129, 566–578 (2006).
    Google Scholar 
    Gail, C.-S., Miran, C.-S., Singleton, I. & Linkie, M. Raiders of the lost bark: orangutan foraging strategies in a degraded landscape. PLoS ONE 6, e20962 (2011).
    Google Scholar 
    Schuppli, C. & van Schaik, C. P. Animal cultures: how we’ve only seen the tip of the iceberg. Evol. Hum. Sci. 1, e2 (2019).
    Google Scholar 
    Langergraber, K. E. et al. Vigilant, generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández, N., Maldonado, C. & Gershenson, C. in Guided Self-Organization: Inception (ed Prokopenko, M.) 19–51 (Springer Berlin Heidelberg, 2014).JAST Team, JASP (Univ. of Amsterdam, 2020).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009).Auguie, B. gridExtra: Functions in grid graphics. R version 0.9.1 (2012).Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar 
    Korthauer, K. et al. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 20, 118 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Fingerprint analysis reveals sources of petroleum hydrocarbons in soils of different geographical oilfields of China and its ecological assessment

    Concentration of TPHs in surface soilsStatistical results of TPHs concentrations at different geographic oilfields were showed in Fig. 2, and grid regional distribution of TPHs in YC Oilfield surface soils (Y6–Y25) were shown in Fig. 3. Results are given as mean value of triplicate analysis of each sample. The results of TPHs concentration in soil samples showed that the three oilfields all suffered from varying degrees of petroleum pollution, and 60.92% of the 47 sampling points was significantly higher than the soil critical value (500 mg/kg). The average concentration of the TPHs in each study areas conformed to be in the following law: SL Oilfield (average: 5.36 × 103 mg/kg) ( >) NY Oilfield (average: 1.73 × 103 mg/kg) ( >) YC Oilfield (average: 1.37 × 103 mg/kg). The highest concentration of the TPHs were found in SL Oilfield surface soils, ranging from 1.21 × 102 to 6.66 × 104 mg/kg, and NY Oilfield had the second highest TPHs concentrations in the range from 15.82 to 7.42 × 103 mg/kg. The concentrations of TPHs in YC Oilfield ranged from 12.34 to 5.38 × 103 mg/kg. The petroleum contamination mainly derived from abandoned and working oil wells. S4 and S8 soils were collected near the abandoned oil well and working oil well, respectively, and had the highest concentration of TPHs up to 5.28 × 104 and 6.66 × 104 mg/kg. Y1, N8 near the abandoned oil well also had high concentration of TPHs with 5.39 × 103 and 7.42 × 103 mg/kg, respectively. Pollution caused by grounded crude oil in exploitation process has been a serious problem in oilfield area. Our previous research reported that the TPHs content in Dagang Oilfield soils collected adjacent to working oil wells were about 20-folds higher than that in corn soils and living area soils25. Concentration contour map of TPHs in YC Oilfield by grid sampling method showed that regional pollution in the northwest and southeast area are more serious than other sites. Y6 near the gas station and Y15, Y21, Y23 adjacent to the working oil wells have higher concentration (2.12 × 103–5.34 × 103 mg/kg) of TPHs than other farmland and grass soils. Previous study reported that the concentrations of TPHs ranged 7.0 × 102–4.0 × 103 mg/kg in oil exploitation areas of the loess plateau region (34°20′N,107°10′E), showing a similar pollution level with this study26.Figure 2The concentration of TPHs in three oilfield soils.Full size imageFigure 3Grid regional distribution of TPHs in YC Oilfield.Full size imageThe percentage composition of total PAHs, SHs and polar components of petroleum hydrocarbons were shown in Table 1. In general, the dominant petroleum component was saturated hydrocarbons in all soils, accounting more than 50%. Yet, the percentage proportion of PAHs and SHs in contamination soils adjacent to working and abandon oil wells were significantly different (p  BbF (14.16–21.87%) ≫ BaA, Chr, InP, and BkF (less than 10%). This result aligned to the previous study that the contribution of individual PAHs to the TEQs of ∑PAH16 was BaP (45%)  > DBA (33%) in urban surface dust of Xi’an city, China46. Therefore, contamination control should priority focus on the individual PAHs of BaP, DBA, BbF in these areas. In addition, the ecological risk with abandoned time ranging 0–15 years has been assessed, and the descriptive statistic TEQBap of PAHs was shown in Supporting Information, Table S6. The highest TEQs of ∑PAH16 and ∑PAH7 with mean of 1422.27 μg/kg and 1400.48 μg/kg, respectively, were present in soils adjacent to abandoned oil well with abandoned time of 0—5 years. And the TEQs of ∑PAH16 and ∑PAH7 decreased with the abandoned time though the percentage proportion of PAHs increased. The TEQs of ∑PAH16 and ∑PAH7 were close between abandoned time of 5–10 years and 10—15 years while both had high content. It demonstrated that high ecological risk was persistent in abandoned oil well areas over abandoned time of 15 years, and basically stable after 5 years. Therefore, abandoned oil well areas need to be blocked to prevent PAHs entering the external environment, and combine physical–chemical technology for petroleum remediation instead of simple weathering biological processes.Table 3 Descriptive statistic TEQBap of PAHs in different sampling area.Full size tableAs referred the PAHs standard of Dutch soil, TEQs of ∑PAH7 was 32.02 μg/kg, calculated by ten individual PAHs times TEFs. In this study, the mean TEQs of ∑PAH7 were about 35- and 10-folds of Dutch soil in petro-related area soils and grassland soils, indicating a high and medium ecological risk in these soils respectively. However, the mean TEQs of ∑PAH7 in farmland soils (18.80 μg/kg) was below Dutch soil, presenting a low potential ecological risk. It should be noted that the minimum of TEQs of ∑PAH7 in grassland soil was 26.24 μg/kg less than TEQs of ∑PAH7 in Dutch soil, but it was vulnerable affected by the surrounding soils with high TEQs of ∑PAH7. In this study, except the farmland soils, TEQs of ∑PAH7 exhibited higher TEQ values than those reported soils in Santiago, Chile47 and Nepal24, and road dust in Tianjin, China48. Overall, the most threat of ecological risk in petro-related soils caused by the anthropogenic PAHs input, such like oil leakage, oil refining, and fossil energy combustion. Preventing oil spills accident and developing the remediation methods are the main significant ways to reduce the ecological risks in these areas. The medium ecological risk in grassland might result from the migration of PAHs via rainfall pathway. Therefore, establishment the oil-blocking isolation zones is the critical way for medium ecological risk areas to control petroleum inflow. Even though the low ecological risk was identified in farmland soils, PAHs source analysis indicated that the biomass combustion should be controlled in these areas. More

  • in

    Microbiomes in the Challenger Deep slope and bottom-axis sediments

    Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).PubMed 

    Google Scholar 
    Stewart, H. A. & Jamieson, A. J. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Prog. Oceanogr. 161, 47–65 (2018).ADS 

    Google Scholar 
    Zhu, G. et al. Along-strike variation in slab geometry at the southern Mariana subduction zone revealed by seismicity through ocean bottom seismic experiments. Geophys. J. Int. 218, 2122–2135 (2019).ADS 

    Google Scholar 
    Bao, R. et al. Tectonically-triggered sediment and carbon export to the Hadal zone. Nat. Commun. 9, 121 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kioka, A. et al. Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci. Rep. 9, 1553 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luo, M., Gieskes, J., Chen, L. Y., Shi, X. F. & Chen, D. F. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches. Mar. Geol. 386, 98–106 (2017).ADS 
    CAS 

    Google Scholar 
    Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).ADS 
    CAS 

    Google Scholar 
    Liu, S. & Peng, X. Organic matter diagenesis in hadal setting: insights from the pore-water geochemistry of the Mariana Trench sediments. Deep Sea Res. I 147, 22–31 (2019).CAS 

    Google Scholar 
    Nunoura, T. et al. Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench. Microbes Environ. 33, 186–194 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y. et al. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environ. Microbiol. 21, 716–729 (2019).CAS 
    PubMed 

    Google Scholar 
    Nunoura, T. et al. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environ. Microbiol. 15, 3087–3107 (2013).CAS 
    PubMed 

    Google Scholar 
    Mason, E. et al. Volatile metal emissions from volcanic degassing and lava–seawater interactions at Kīlauea Volcano, Hawai’i. Commun. Earth Environ. 2, 79 (2021).ADS 

    Google Scholar 
    Sun, R. et al. Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nat. Commun. 11, 3389 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalia, K. & Khambholja, D. B. in Handbook of Arsenic Toxicology (ed. Flora, S. J. S.) Ch. 28 (Elsevier, 2015).Welty, C. J., Sousa, M. L., Dunnivant, F. M. & Yancey, P. H. High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean. Heliyon 4, e00840 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Oremland, R. S. & Stolz, J. F. The ecology of arsenic. Science 300, 939–944 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Popowich, A., Zhang, Q. & Le, X. C. Arsenobetaine: the ongoing mystery. Natl Sci. Rev. 3, 451–458 (2016).CAS 

    Google Scholar 
    Hoffmann, T. et al. Arsenobetaine: an ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes. Environ. Microbiol. 20, 305–323 (2018).CAS 
    PubMed 

    Google Scholar 
    Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).
    Google Scholar 
    Hoffmann, A. A. & Hercus, M. J. Environmental stress as an evolutionary force. Bioscience 50, 217–226 (2000).
    Google Scholar 
    Cui, G., Li, J., Gao, Z. & Wang, Y. Spatial variations of microbial communities in abyssal and hadal sediments across the Challenger Deep. PeerJ 7, e6961 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hiraoka, S. et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14, 740–756 (2020).CAS 
    PubMed 

    Google Scholar 
    Morono, Y. et al. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. Commun. 11, 3626 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X. et al. Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a hadal biosphere at the Yap Trench. Front. Microbiol. 9, 2402 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).CAS 
    PubMed 

    Google Scholar 
    Zhou, Z. et al. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems 5, e00795-00719 (2020).
    Google Scholar 
    Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, X. et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat. Commun. 10, 1816 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laso-Pérez, R. et al. Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico. mBio 10, e01814–e01819 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z. M. et al. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environ. Microbiol. 21, 4092–4108 (2019).CAS 
    PubMed 

    Google Scholar 
    Varliero, G., Bienhold, C., Schmid, F., Boetius, A. & Molari, M. Microbial diversity and connectivity in deep-sea sediments of the South Atlantic polar front. Front. Microbiol. 10, 665 (2019).Su, X. et al. Identifying and predicting novelty in microbiome studies. mBio 9, e02099-02018 (2018).
    Google Scholar 
    Jing, G. et al. Microbiome Search Engine 2: a platform for taxonomic and functional search of global microbiomes on the whole-microbiome level. mSystems 6, e00943-00920 (2021).
    Google Scholar 
    Baltar, F., Zhao, Z. H. & Herndl, G. J. Potential and expression of carbohydrate untilization by marine fungi in the global ocean. Microbiome 9, 106 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quemener, M. et al. Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ. Microbiol. 22, 3950–3967 (2020).CAS 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).CAS 
    PubMed 

    Google Scholar 
    Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Bobay, L. M. & Ochman, H. The evolution of bacterial genome architecture. Front. Genet. 8, 72 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Huang, L. et al. dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 46, D516–D521 (2018).CAS 
    PubMed 

    Google Scholar 
    Xu, Y., Ge, H. & Fang, J. Biogeochemistry of hadal trenches: Recent developments and future perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 155, 19–26 (2018).ADS 
    CAS 

    Google Scholar 
    Jørgensen, B. B. & Boetius, A. Feast and famine — microbial life in the deep-sea bed. Nat. Rev. Microbiol. 5, 770–781 (2007).PubMed 

    Google Scholar 
    Pérez Castro, S. et al. Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments. ISME J. 15, 3480–3497 (2021).Rastelli, E. et al. Drivers of bacterial α- and β-diversity patterns and functioning in subsurface hadal sediments. Front. Microbiol. 10, 2609 (2019).Vetter, Y. A. & Deming, J. W. Extracellular enzyme-activity in the Arctic northeast water polynya. Mar. Ecol. Prog. Ser. 114, 23–34 (1994).ADS 
    CAS 

    Google Scholar 
    Li, J. et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 579, 250–255 (2020).ADS 
    CAS 

    Google Scholar 
    Kikuchi, G., Motokawa, Y., Yoshida, T. & Hiraga, K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc. Jpn. Acad. 84, 246–263 (2008).CAS 

    Google Scholar 
    Chakraborty, A. et al. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proc. Natl Acad. Sci. USA 117, 11029–11037 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, J. et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 7, 47 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xue, C.-X. et al. Insights into the vertical stratification of microbial ecological roles across the deepest seawater column on Earth. Microorganisms 8, 1309 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Thamdrup, B. et al. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. Proc. Natl Acad. Sci. USA 118, e2104529118 (2021).CAS 
    PubMed 

    Google Scholar 
    Wu, J. et al. Unexpectedly high diversity of anammox bacteria detected in deep-sea surface sediments of the South China Sea. FEMS Microbiol. Ecol. 95, fiz013 (2019).Kartal, B. et al. Molecular mechanism of anaerobic ammonium oxidation. Nature 479, 127–130 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Maalcke, W. J. et al. Characterization of anammox hydrazine dehydrogenase, a key N2-producing enzyme in the global nitrogen cycle. J. Biol. Chem. 291, 17077–17092 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kartal, B. et al. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev. 37, 428–461 (2013).CAS 
    PubMed 

    Google Scholar 
    Oshiki, M., Ali, M., Shinyako-Hata, K., Satoh, H. & Okabe, S. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by “Candidatus Brocadia sinica”. Environ. Microbiol. 18, 3133–3143 (2016).CAS 
    PubMed 

    Google Scholar 
    Mateos, L. M. et al. in Advances in Applied Microbiology (eds Sariaslani, S. & Gadd, G. M.) Ch. 4 (Academic Press, 2017).Ben Fekih, I. et al. Distribution of arsenic resistance genes in prokaryotes. Front. Microbiol. 9, 2473 (2018).Wang, P. P., Sun, G. X. & Zhu, Y. G. Identification and characterization of arsenite methyltransferase from an archaeon, methanosarcina acetivorans C2A. Environ. Sci. Technol. 48, 12706–12713 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Masuda, H., Yoshinishi, H., Fuchida, S., Toki, T. & Even, E. Vertical profiles of arsenic and arsenic species transformations in deep-sea sediment, Nankai Trough, offshore Japan. Prog. Earth Planet Sci. 6, 28 (2019).ADS 

    Google Scholar 
    Dunivin, T. K., Yeh, S. Y. & Shade, A. A global survey of arsenic-related genes in soil microbiomes. BMC Biol. 17, 45 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teske, A. et al. The Guaymas Basin hiking guide to hydrothermal mounds, chimneys, and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation. Front. Microbiol. 7, 75 (2016).O’Day, P. A., Vlassopoulos, D., Root, R. & Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl Acad. Sci. USA 101, 13703–13708 (2004).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galinski, E. A. Osmoadaptation in bacteria. Adv. Microb. Physiol. 37, 273–328 (1995).CAS 

    Google Scholar 
    Papini, C. M., Pandharipande, P. P., Royer, C. A. & Makhatadze, G. I. Putting the piezolyte hypothesis under pressure. Biophys. J. 113, 974–977 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caumette, G., Koch, I. & Reimer, K. J. Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J. Environ. Monit. 14, 2841–2853 (2012).CAS 
    PubMed 

    Google Scholar 
    Whaley-Martin, K. J., Koch, I., Moriarty, M. & Reimer, K. J. Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient. Environ. Sci. Technol. 46, 3110–3118 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795–4802 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rhine, E. D., Phelps, C. D. & Young, L. Y. Anaerobic arsenite oxidation by novel denitrifying isolates. Environ. Microbiol. 8, 899–908 (2006).CAS 
    PubMed 

    Google Scholar 
    Rhine et al. LY. The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem. Biophys. Res. Commun. 354, 662–667 (2007).CAS 
    PubMed 

    Google Scholar 
    Saunders, J. K., Fuchsman, C. A., Mckay, C. & Rocap, G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc. Natl Acad. Sci. USA 116, 9925–9930 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Couture, R. M., Sekowska, A., Fang, G. & Danchin, A. Linking selenium biogeochemistry to the sulfur‐dependent biological detoxification of arsenic. Environ. Microbiol. 14, 1612–1623 (2012).CAS 
    PubMed 

    Google Scholar 
    Zhang, Y. & Gladyshev, V. N. Trends in selenium utilization in marine microbial world revealed through the analysis of the Global Ocean Sampling (GOS) project. PLoS Genet. 4, e1000095 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Peng, T., Lin, J., Xu, Y.-Z. & Zhang, Y. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME J. 10, 2048–2059 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Labunskyy, V. M., Hatfield, D. L. & Gladyshev, V. N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yin, K., Wang, Q., Lv, M. & Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 360, 1553–1563 (2019).CAS 

    Google Scholar 
    O’Day, P. A., Vlassopoulos, D., Root, R. & Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl Acad. Sci. USA 101, 13703–13708 (2004).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, S. F., Zhou, Y. Q., Chen, Y. R. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890 (2018).
    Google Scholar 
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, Y., Gilna, P. & Li, W. Z. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25, 1338–1340 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Zenodo https://doi.org/10.5281/zenodo.6061243 (2022).Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jing, G. C. et al. Parallel-META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Sci. Rep. 7, 40371 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    PubMed 

    Google Scholar 
    Kang, D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).CAS 
    PubMed 

    Google Scholar 
    Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–887 (2013).CAS 
    PubMed 

    Google Scholar 
    Yamada, K. D., Tomii, K. & Katoh, K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 32, 3246–3251 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Perry, M. heatmaps: flexible heatmaps for functional genomics and sequence features. R package version 1.14.0 (Bioconductor, 2020).Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2019).PubMed Central 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).CAS 
    PubMed 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 

    Google Scholar 
    Zhou, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Figshare https://doi.org/10.6084/m6089.figshare.12979709 (2022). More

  • in

    European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.)

    Hill, L. et al. The£ 15 billion cost of ash dieback in Britain. Curr. Biol. 29(9), R315–R316 (2019).CAS 
    PubMed 

    Google Scholar 
    Pliûra, A. & Heuertz, M. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Common Ash (Fraxinus excelsior) (Bioversity International, 2003).
    Google Scholar 
    Dufour, S. & Piégay, H. Geomorphological controls of Fraxinus excelsior growth and regeneration in floodplain forests. Ecology 89(1), 205–215 (2008).CAS 
    PubMed 

    Google Scholar 
    Mitchell, R. J. et al. Ash dieback in the UK: a review of the ecological and conservation implications and potential management options. Biol. Conserv. 175, 95–109 (2014).
    Google Scholar 
    Przybył, K. Fungi associated with necrotic apical parts of Fraxinus excelsior shoots. For. Pathol. 32(6), 387–394 (2002).
    Google Scholar 
    Vasaitis, R., & Enderle, R. Dieback of European ash (Fraxinus spp.)-consequences and guidelines for sustainable management. Dieback of European ash (Fraxinus spp.). Report on COST Action FP1103 FRAXBACK. ISBN978-91-576-8696-1. (SLU Swedish University of Agricultural Sciences, 2017).Børja, I. et al. Ash dieback in Norway-current situation. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 166–175 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Ghelardini, L. et al. From the Alps to the Apennines: Possible spread of ash dieback in Mediterranean areas. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 140–149 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Marçais, B., Husson, C., Godart, L. & Cael, O. Influence of site and stand factors on Hymenoscyphus fraxineus-induced basal lesions. Plant. Pathol. 65(9), 1452–1461 (2016).
    Google Scholar 
    Queloz, V., Hopf, S., Schoebel, C. N., Rigling, D. & Gross, A. Ash dieback in Switzerland: History and scientific achievements. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 68–78 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Orton, E. S. et al. Population structure of the ash dieback pathogen, Hymenoscyphus fraxineus, in relation to its mode of arrival in the UK. Plant. Pathol. 67(2), 255–264 (2018).CAS 
    PubMed 

    Google Scholar 
    Enderle, R., Stenlid, J. & Vasaitis, R. An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CAB Rev. 14, 1–12 (2019).
    Google Scholar 
    Heinze, B., Tiefenbacher, H., Litschauer, R. & Kirisits, T. Ash dieback in Austria: History, current situation and outlook. in Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management, 33–52 (2017).Coker, T. L. et al. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 1(1), 48–58 (2019).
    Google Scholar 
    Cleary, M., Nguyen, D., Stener, L. G., Stenlid, J., & Skovsgaard, J. P. Ash and ash dieback in Sweden: A review of disease history, current status, pathogen and host dynamics, host tolerance and management options in forests and landscapes. Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management, 195–208 (2017).Stocks, J. J., Buggs, R. J. & Lee, S. J. A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles. Sci. Rep. 7(1), 1–7 (2017).
    Google Scholar 
    Díaz-Yáñez, O. et al. The invasive forest pathogen Hymenoscyphus fraxineus boosts mortality and triggers niche replacement of European ash (Fraxinus excelsior). Sci. Rep. 10(1), 1–10 (2020).
    Google Scholar 
    Enderle, R., Metzler, B., Riemer, U. & Kändler, G. Ash dieback on sample points of the national forest inventory in south-western Germany. Forests 9(1), 25 (2018).
    Google Scholar 
    Klesse, S. et al. Spread and severity of ash dieback in Switzerland: Tree characteristics and landscape features explain varying mortality probability. Front. For. Glob. Change 4, 18 (2021).
    Google Scholar 
    Timmermann, V., Potočić, N., Ognjenović, M. & Kirchner, T. Tree crown condition in 2020. In Forest Condition in Europe: The 2021 Assessment ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention) (eds Michel, A. et al.) (Thünen Institute, 2021).
    Google Scholar 
    Chumanová, E. et al. Predicting ash dieback severity and environmental suitability for the disease in forest stands. Scand. J. For. Res. 34(4), 254–266 (2019).
    Google Scholar 
    Solheim, H. & Hietala, A. M. Spread of ash dieback in Norway. Balt. For. 23(1), 1–6 (2017).
    Google Scholar 
    Kjær, E. D. et al. Genetics of ash dieback resistance in a restoration context: Experiences from Denmark. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 106–114 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Madsen, C. L. et al. Combined progress in symptoms caused by Hymenoscyphus fraxineus and Armillaria species, and corresponding mortality in young and old ash trees. For. Ecol. Manage. 491, 119177 (2021).
    Google Scholar 
    Trapiello, E., Schoebel, C. N. & Rigling, D. Fungal community in symptomatic ash leaves in Spain. Balt. For. 23(1), 68–73 (2017).
    Google Scholar 
    Grosdidier, M., Ioos, R. & Marçais, B. Do higher summer temperatures restrict the dissemination of Hymenoscyphus fraxineus in France?. For. Pathol. 48(4), e12426. https://doi.org/10.1111/efp.12426 (2018).Article 

    Google Scholar 
    Stroheker, S., Queloz, V. & Nemesio-Gorriz, M. First report of Hymenoscyphus fraxineus causing ash dieback in Spain. New Dis. Rep. 44(2), e12054 (2021).
    Google Scholar 
    Chandelier, A., Gerarts, F., San Martin, G., Herman, M. & Delahaye, L. Temporal evolution of collar lesions associated with ash dieback and the occurrence of Armillaria in Belgian forests. For. Pathol. 46(4), 289–297. https://doi.org/10.1111/efp.12258 (2016).Article 

    Google Scholar 
    Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V. & Sieber, T. N. H ymenoscyphus pseudoalbidus, the causal agent of E uropean ash dieback. Mol. Plant Pathol. 15(1), 5–21 (2014).CAS 
    PubMed 

    Google Scholar 
    Clark, J. & Webber, J. The ash resource and the response to ash dieback in Great Britain. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 228–237 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Dandy, N., Marzano, M., Porth, E. F., Urquhart, J. & Potter, C. Who has a stake in ash dieback? A conceptual framework for the identification and categorisation of tree health stakeholders. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 15–26 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Kjær, E. D., McKinney, L. V., Nielsen, L. R., Hansen, L. N. & Hansen, J. K. Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evol. Appl. 5(3), 219–228 (2012).PubMed 

    Google Scholar 
    Plumb, W. J. et al. The viability of a breeding programme for ash in the British Isles in the face of ash dieback. Plants People Planet 2(1), 29–40 (2020).
    Google Scholar 
    Evans, M. R. Will natural resistance result in populations of ash trees remaining in British woodlands after a century of ash dieback disease?. R. Soc. Open Sci. 6(8), 190908 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buggs, R. J. A. Changing perceptions of tree resistance research. Plants People Planet 2, 2–4. https://doi.org/10.1002/ppp3.10089 (2020).Article 

    Google Scholar 
    Tomlinson, I. & Potter, C. ‘Too little, too late’? Science, policy and Dutch Elm Disease in the UK. J. Hist. Geogr. 36(2), 121–131 (2010).
    Google Scholar 
    Kelly, L. J. et al. Convergent molecular evolution among ash species resistant to the emerald ash borer. Nat. Ecol. Evol. 4, 1116–1128. https://doi.org/10.1038/s41559-020-1209-3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sollars, E. S. et al. Genome sequence and genetic diversity of European ash trees. Nature 541(7636), 212–216 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stocks, J. J. et al. Genomic basis of European ash tree resistance to ash dieback fungus. Nat. Ecol. Evol. 3(12), 1686–1696 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Volkovitsh, M. G., Bieńkowski, A. O. & Orlova-Bienkowskaja, M. J. Emerald ash borer approaches the borders of the european union and kazakhstan and is confirmed to infest European ash. Forests 12(6), 691 (2021).
    Google Scholar 
    Eichhorn, J. et al. Part IV: Visual Assessment of Crown Condition and Damaging Agents. in Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. (Thünen Institute of Forest Ecosystems, 2016). Annex http://www.icp-forests.org/manual.htm.Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality. Nat. Commun. 12(1), 1–13 (2021).
    Google Scholar 
    Taccoen, A. et al. Climate change impact on tree mortality differs with tree social status. For. Ecol. Manage. 489, 119048 (2021).
    Google Scholar 
    Therneau, T. A Package for Survival Analysis in R. https://cran.r-project.org/web/packages/survival/vignettes/survival.pdf. Accessed 26 May 2021Godaert, L. et al. Prognostic factors of inhospital death in elderly patients: A time-to-event analysis of a cohort study in Martinique (French West Indies). BMJ Open 8(1), e018838 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sargeran, K., Murtomaa, H., Safavi, S. M. R., Vehkalahti, M. M. & Teronen, O. Survival after diagnosis of cancer of the oral cavity. Br. J. Oral Maxillofac. Surg. 46(3), 187–191 (2008).PubMed 

    Google Scholar 
    Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. B 34(2), 187–202 (1972).MathSciNet 
    MATH 

    Google Scholar 
    Aalen, O. O. A linear regression model for the analysis of life times. Stat. Med. 8(8), 907–925 (1989).CAS 
    PubMed 

    Google Scholar 
    Therneau, T. M., & Grambsch, P. M. The cox model. In Modeling survival data: extending the Cox model, pp. 39–77. (Springer, 2000).Neumann, M., Mues, V., Moreno, A., Hasenauer, H. & Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 23(11), 4788–4797 (2017).ADS 

    Google Scholar 
    Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11(1), 1–8 (2020).
    Google Scholar 
    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, D20 (2008).
    Google Scholar 
    R Development Core Team. RStudio, R: A Language and Environment for Statistical Computing (R Development Core Team, 2017).Holt, C. C. Forecasting Trends and Season-Als by Exponentially Weighted Averages. (Carnegie Institute of Technology, Pittsburgh ONR memorandum no. 52, 1957)Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3), 1–22 (2008).
    Google Scholar  More

  • in

    Assessment of deep convolutional neural network models for species identification of forensically-important fly maggots based on images of posterior spiracles

    Of which at the third instar, the external morphology of larvae is quite similar; thus, the morphological identification used to differentiate between its genera or species, generally includes cephalophalyngeal skeleton, anterior spiracle, and posterior spiracles. The morphology of the posterior spiracle is one of the important characteristics for identification. A typical morphology of the posterior spiracle of third stage larvae was shown in Fig. 2. Based on studying under light microscopy, the posterior spiracle of M. domestica was clearly distinguished from the others. On the other hand, the morphology of the posterior spiracle of C. megacephala and A. rufifacies was quite similar. For C. megacephala and C. rufifacies, the peritreme, a structure encircling the three spiracular openings (slits), was incomplete and slits were straight as shown Fig. 2A,B, respectively. The complete peritreme encircling three slits was found in L. cuprina and M. domestica as shown in Fig. 2C,D, respectively. However, only the slits of M. domestica were sinuous like the M-letter (Fig. 2D). Their morphological characteristics found in this study were like the descriptions in the previous reports23,24,25.Figure 2Morphology of posterior spiracles of four different fly species after inverting the image colors; (A) Chrysomya (Achoetandrus) ruffifacies, (B) Chrysomya megacephala, (C) Lucilia cuprina, (D) Musca domestica.Full size imageFor model training, four of the CNN models used for species-level identification of fly maggots provided 100% accuracy rates and 0% loss. Number of parameter (#Params), model speed, model size, macro precision, macro recall, f1-score, and support value were also presented in Table 1. The result demonstrated that the AlexNet model provided the best performance in all indicators when compared among four models. The AlexNet model used the least number of parameters while the Resnet101 model used the most. For model speed, the AlexNet model provided the fastest speed, while the Densenet161 model provided the slowest speed. For the model size, the AlexNet model was the smallest, while the Resnet101 model was the largest which corresponded to the number of parameters used. Macro precision, macro recall, f1-score and support value of all models were the same.Table 1 Comparison of model size, speed, and performances of each studied model (The text in bold indicates the best value in each category).Full size tableAs the training results presented in the supplementary data (Fig. S1), all models provided 100% accuracy and 0% loss in the early stage of training ( More

  • in

    Newly initiated carbon stock, organic soil accumulation patterns and main driving factors in the High Arctic Svalbard, Norway

    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar 
    Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).ADS 
    Article 

    Google Scholar 
    Danell, K. What Is the Arctic? In Which Ways Is the Arctic Different? In Arctic Ecology (ed. Thomas, D. N.) 1–22 (University of Helsinki, 2021).
    Google Scholar 
    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles 23(2), 1–11. https://doi.org/10.1029/2008GB003327 (2009).CAS 
    Article 

    Google Scholar 
    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. U.S.A. 117(34), 20438–20446. https://doi.org/10.1073/pnas.1916387117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24(9), 1028–1042. https://doi.org/10.1177/0959683614538073 (2014).ADS 
    Article 

    Google Scholar 
    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Chang. 8(10), 907–913. https://doi.org/10.1038/s41558-018-0271-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Yu, Z., Beilman, D. W. & Jones, M. C. Sensitivity of Northern Peatland carbon dynamics to holocene climate change. Carbon Cycl. Northern Peatl. C https://doi.org/10.1029/2008GM000822 (2009).Article 

    Google Scholar 
    Svendsen, J. & Mangerud, J. Paleoclimatic inferences from glacial fluctuations on Svalbard during the last 20 000 years. Clim. Dyn. 6(3–4), 213–220. https://doi.org/10.1007/BF00193533 (1992).Article 

    Google Scholar 
    Farnsworth, W. R. et al. Holocene glacial history of Svalbard: Status, perspectives and challenges. Earth Sci. Rev. 208(April), 103249. https://doi.org/10.1016/j.earscirev.2020.103249 (2020).CAS 
    Article 

    Google Scholar 
    D’Andrea, W. J. et al. Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40(11), 1007–1010. https://doi.org/10.1130/G33365.1 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Miller, G. H., Landvik, J. Y., Lehman, S. J. & Southon, J. R. Episodic Neoglacial snowline descent and glacier expansion on Svalbard reconstructed from the 14C ages of ice-entombed plants. Quatern. Sci. Rev. 155, 67–78. https://doi.org/10.1016/j.quascirev.2016.10.023 (2017).ADS 
    Article 

    Google Scholar 
    Røthe, T. O. et al. Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quatern. Sci. Rev. 109, 111–125. https://doi.org/10.1016/j.quascirev.2014.11.017 (2015).Article 

    Google Scholar 
    van der Bilt, W. G. M. et al. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quatern. Sci. Rev. 126, 201–218. https://doi.org/10.1016/j.quascirev.2015.09.003 (2015).ADS 
    Article 

    Google Scholar 
    Allaart, L. et al. Glacial history of the Åsgardfonna Ice Cap, NE Spitsbergen, since the last glaciation. Quatern. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106717 (2021).Article 

    Google Scholar 
    Humlum, O. et al. Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. Holocene 15(3), 396–407. https://doi.org/10.1191/0959683605hl817rp (2005).ADS 
    Article 

    Google Scholar 
    Yang, Z., Yang, W., Yuan, L., Wang, Y. & Sun, L. Evidence for glacial deposits during the Little Ice Age in Ny-Alesund, western Spitsbergen. J. Earth Syst. Sci. https://doi.org/10.1007/s12040-019-1274-7 (2020).Article 

    Google Scholar 
    AMAP – ARCTIC MONITORING AND ASSESSMENT PROGRAMME. (2019). Arctic Climate Change Update 2019: An update to key findings of Snow, Water, Ice, and Permafrost in the Arctic (SWIPA) 2017. Assessment Report, 12. https://www.amap.no/documents/doc/amap-climate-change-update-2019/1761.Nordli, Ø. et al. Polar Res. 39, 3614. https://doi.org/10.33265/polar.v39.3614 (2020).Article 

    Google Scholar 
    Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. Temperature and precipitation development at svalbard 1900–2100. Adv. Meteorol. 2011, 1–14. https://doi.org/10.1155/2011/893790 (2011).Article 

    Google Scholar 
    Van Der Knaap, W. O. (1988). A pollen diagram from Broggerhalvoya, Spitsbergen: changes in vegetation and environment from ca. 4400 to ca. 800 BP. Arctic & Alpine Research, 20(1), 106–116. Doi: https://doi.org/10.2307/1551703Rozema, J. et al. A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard. Plant Ecol. 182(1–2), 155–173. https://doi.org/10.1007/s11258-005-9024-0 (2006).Article 

    Google Scholar 
    Nakatsubo, T. et al. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration. Polar Sci. 9(2), 267–275. https://doi.org/10.1016/j.polar.2014.12.002 (2015).ADS 
    Article 

    Google Scholar 
    Magnússon, B., Magnússon, S. & Fridriksson, S. (2009). Developments in plant colonization and succession on Surtsey during 1999–2008. Surtsey Res. pp. 57–76.Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36(3), 363–372. https://doi.org/10.1007/s00300-012-1265-5 (2013).Article 

    Google Scholar 
    Leblans, N. I. W. et al. Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island Surtsey. Biogeosciences 11(22), 6237–6250. https://doi.org/10.5194/bg-11-6237-2014 (2014).ADS 
    Article 

    Google Scholar 
    Zmudczyńska-Skarbek, K. et al. Transfer of ornithogenic influence through different trophic levels of the Arctic terrestrial ecosystem of Bjørnøya (Bear Island), Svalbard. Soil Biol. Biochem. 115, 475–489. https://doi.org/10.1016/j.soilbio.2017.09.008 (2017).CAS 
    Article 

    Google Scholar 
    Hodkinson, I. D., Coulson, S. J. & Webb, N. R. Community assembly along proglacial chronosequences in the high arctic: vegetation and soil development in north-west Svalbard. J. Ecol. 91(4), 651–663. https://doi.org/10.1046/j.1365-2745.2003.00786.x (2003).Article 

    Google Scholar 
    Ravolainen, V. et al. High Arctic ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research. Ambio 49(3), 666–677. https://doi.org/10.1007/s13280-019-01310-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van der Wal, R. & Brooker, R. W. Mosses mediate grazer impacts on grass abundance in arctic ecosystems. Funct. Ecol. 18(1), 77–86. https://doi.org/10.1111/j.1365-2435.2004.00820.x (2004).Article 

    Google Scholar 
    Vanderpuye, A. W., Elvebakk, A. & Nilsen, L. Plant communities along environmental gradients of high-arctic mires in Sassendalen Svalbard. J. Veg. Sci. 13(6), 875–884. https://doi.org/10.1111/j.1654-1103.2002.tb02117.x (2002).Article 

    Google Scholar 
    Le Moullec, M., Pedersen, Å. Ø., Stien, A., Rosvold, J. & Hansen, B. B. A century of conservation: the ongoing recovery of svalbard reindeer. J. Wildl. Manag. 83(8), 1676–1686. https://doi.org/10.1002/jwmg.21761 (2019).Article 

    Google Scholar 
    Garfelt-Paulsen, I. M. et al. Don’t go chasing the ghosts of the past: habitat selection and site fidelity during calving in an Arctic ungulate. Wildl. Biol. https://doi.org/10.2981/wlb.00740 (2021).Article 

    Google Scholar 
    Moreau, M., Mercier, D., Laffly, D. & Roussel, E. Impacts of recent paraglacial dynamics on plant colonization: a case study on Midtre Lovénbreen foreland, Spitsbergen (79°N). Geomorphology 95(1–2), 48–60. https://doi.org/10.1016/j.geomorph.2006.07.031 (2008).ADS 
    Article 

    Google Scholar 
    Moreau, M., Laffly, D. & Brossard, T. Recent spatial development of Svalbard strandflat vegetation over a period of 31 years. Polar Res. 28(3), 364–375. https://doi.org/10.1111/j.1751-8369.2009.00119.x (2009).Article 

    Google Scholar 
    Wietrzyk, P., Wȩgrzyn, M. & Lisowska, M. Vegetation diversity and selected abiotic factors influencing the primary succession process on the foreland of Gåsbreen Svalbard. Pol. Polar Res. 37(4), 493–509. https://doi.org/10.1515/popore-2016-0026 (2016).Article 

    Google Scholar 
    Divine, D. et al. Thousand years of winter surface air temperature variations in Svalbard and northern norway reconstructed from ice-core data. Polar Res. 30(SUPPL.1), 1–12. https://doi.org/10.3402/polar.v30i0.7379 (2011).ADS 
    Article 

    Google Scholar 
    Van Pelt, W. et al. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). Cryosphere 13(9), 2259–2280. https://doi.org/10.5194/tc-13-2259-2019 (2019).ADS 
    Article 

    Google Scholar 
    Johansen, B. E., Karlsen, S. R. & Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 48(1), 47–63. https://doi.org/10.1017/S0032247411000647 (2012).Article 

    Google Scholar 
    Norwegian Polar Institute. Available online at: https://npolar.no (2021).Norwegian Meteorological Institute. Available online at: https://seklima.met.no (2019).Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468(November), 129–141. https://doi.org/10.1016/j.palaeo.2016.11.039 (2017).Article 

    Google Scholar 
    Estop-Aragonés, C. et al. Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands. Soil Biol. Biochem. 118, 115–129. https://doi.org/10.1016/j.soilbio.2017.12.010 (2018).CAS 
    Article 

    Google Scholar 
    Blaauw, M., Christen, J. A. & Aquino-Lopez, M. A. rplum: Bayesian Age-Depth Modelling of Cores Dated by Pb-210. R package version 0.2.2. https://CRAN.R-project.org/package=rplum (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020).Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 25(1), 101–110. https://doi.org/10.1023/A:1008119611481 (2001).ADS 
    Article 

    Google Scholar 
    Booth, R. K., Lamentowicz, M. & Charman, D. J. Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies. Mires and Peat 7(2), 1–7 (2010).
    Google Scholar 
    Charman, D., Hendon, D. & Woodland, W. A. The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats (Quaternary Research Association, 2000).
    Google Scholar 
    Siemensma, F. J. Microworld, world of Amoeboid Organisms. World-Wide Electronic Publication, Kortenhoef, the Netherlands. Available online at: https://www.arcella.nl (2019).Payne, R. J. & Mitchell, E. A. D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42(4), 483–495. https://doi.org/10.1007/s10933-008-9299-y (2009).ADS 
    Article 

    Google Scholar 
    Swindles, G. T. et al. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data. Q. Sci. Rev. 120, 107–117. https://doi.org/10.1016/j.quascirev.2015.04.019 (2015).ADS 
    Article 

    Google Scholar 
    Amesbury, M. J. et al. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quatern. Sci. Rev. 152, 132–151. https://doi.org/10.1016/j.quascirev.2016.09.024 (2016).ADS 
    Article 

    Google Scholar 
    Amesbury, M. J. et al. Towards a Holarctic synthesis of peatland testate amoeba ecology: Development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data. Quatern. Sci. Rev. 201, 483–500. https://doi.org/10.1016/j.quascirev.2018.10.034 (2018).ADS 
    Article 

    Google Scholar 
    Zhang, H. et al. Testate amoeba as palaeohydrological indicators in the permafrost peatlands of north-east European Russia and Finnish Lapland. J. Quat. Sci. 32(7), 976–988. https://doi.org/10.1002/jqs.2970 (2017).Article 

    Google Scholar 
    Sim, T. G. et al. Pathways for Ecological Change in Canadian High Arctic Wetlands Under Rapid Twentieth Century Warming. Geophys. Res. Lett. 46(9), 4726–4737. https://doi.org/10.1029/2019GL082611 (2019).ADS 
    Article 

    Google Scholar 
    Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecol. Lett. 15(2), 164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x (2012).Article 
    PubMed 

    Google Scholar 
    Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nat. Clim. Chang. 4(1), 51–55. https://doi.org/10.1038/nclimate2058 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bjorkman, A. D. et al. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 49(3), 678–692. https://doi.org/10.1007/s13280-019-01161-6 (2020).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Egli, M., Mavris, C., Mirabella, A. & Giaccai, D. Soil organic matter formation along a chronosequence in the Morteratsch proglacial area (Upper Engadine, Switzerland). CATENA 82(2), 61–69. https://doi.org/10.1016/j.catena.2010.05.001 (2010).CAS 
    Article 

    Google Scholar 
    Prach, K. & Rachlewicz, G. Succession of vascular plants in front of retreating glaciers in central Spitsbergen. Polish Polar Research 33(4), 319–328. https://doi.org/10.2478/v10183-012-0022-3 (2012).Article 

    Google Scholar 
    Låg, J. Special Peat Formations in Svalbard. Acta Agric. Scand. 30(2), 205–210. https://doi.org/10.1080/00015128009435267 (1980).Article 

    Google Scholar 
    Serebryannyy, L. P., Tishkov, A. A., Malyasova, Y. S., Solomina, O. N. & Il’ves, E. O.,. Reconstruction of the development of vegetation in Arctic high latitudes. Polar Geogr. Geol. 9(4), 308–320. https://doi.org/10.1080/10889378509377261 (1985).Article 

    Google Scholar 
    Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Punning, Y. M. K. Glacioclimatic conditions in the european arctic in the late holocene. Polar Geogr. Geol. 11(1), 50–57. https://doi.org/10.1080/10889378709377310 (1987).Article 

    Google Scholar 
    Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Troitskiy, Y. M. K. Changes in glacioclimatic conditions on svalbard during the subboreal period. Polar Geogr. Geol. 12(3), 221–226. https://doi.org/10.1080/10889378809377366 (1988).Article 

    Google Scholar 
    Låg, J. Peat Accumulation in Steep Hills at Alkhornet Spitsbergen. Acta Agric. Scand. 40(3), 217–219. https://doi.org/10.1080/00015129009438554 (1990).Article 

    Google Scholar 
    Oliva, M. et al. Sedimentological characteristics of ice-wedge polygon terrain in adventdalen (Svalbard) environmental and climatic implications for the late Holocene. Solid Earth 5(2), 901–914. https://doi.org/10.5194/se-5-901-2014 (2014).ADS 
    Article 

    Google Scholar 
    Van der Knaap, W. O. Past Vegetation and Reindeer on Edgeoya (Spitsbergen) Between c. 7900 and c. 3800 BP, Studied by Means of Peat Layers and Reindeer Faecal Pellets. J. Biogeogr. 16(4), 379. https://doi.org/10.2307/2845229 (1989).Article 

    Google Scholar 
    Røthe, T. O., Bakke, J., Støren, E. W. N. & Bradley, R. S. Reconstructing holocene glacier and climate fluctuations from lake sediments in Vårfluesjøen Northern Spitsbergen. Front. Earth Sci. 6(July), 1–20. https://doi.org/10.3389/feart.2018.00091 (2018).Article 

    Google Scholar 
    Alsos, I. G. et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene 26(4), 627–642. https://doi.org/10.1177/0959683615612563 (2016).ADS 
    Article 

    Google Scholar 
    Klimowicz, Z., Melke, J. & Uziak, S. Peat soils in the Bellsund region Spitsbergen. Pol. Polar Res. 18(1), 25–39 (1997).
    Google Scholar 
    Yang, Z. et al. Total photosynthetic biomass record between 9400 and 2200 BP and its link to temperature changes at a High Arctic site near Ny-Ålesund Svalbard. Polar Biol. 42(5), 991–1003. https://doi.org/10.1007/s00300-019-02493-5 (2019).Article 

    Google Scholar 
    Vickers, H. et al. Changes in greening in the high arctic: insights from a 30-year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/11/10/105004 (2016).Article 

    Google Scholar 
    Van Der Knaap, W. O. Human influence on natural Arctic vegetation in the 17th century and climatic change since AD 1600 in northwest Spitsbergen: a paleobotanical study. Arct. Alp. Res. 17(4), 371–387. https://doi.org/10.2307/1550863 (1985).Article 

    Google Scholar 
    Martín-Moreno, R., Allende Álvarez, F. & Hagen, J. O. ‘Little Ice Age’ glacier extent and subsequent retreat in Svalbard archipelago. Holocene 27(9), 1379–1390. https://doi.org/10.1177/0959683617693904 (2017).ADS 
    Article 

    Google Scholar 
    Rachlewicz, G., Szczuziński, W. & Ewertowski, M. Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen Svalbard. Pol. Polar Res. 28(3), 159–186 (2007).
    Google Scholar 
    Matthews, J. A. & Whittaker, R. J. Vegetation succession on the storbreen glacier foreland, Jotunheimen, Norway : a review. Arct. Alp. Res. 19(4), 385–395 (1987).Article 

    Google Scholar 
    Beyens, L. & Chardez, D. Evidence from testate amoebae for changes in some local hydrological conditions between c. 5000 BP and c. 3800 BP on Edgeøya (Svalbard). Polar Res. 5(2), 165–169. https://doi.org/10.1111/j.1751-8369.1987.tb00619.x (1987).Article 

    Google Scholar 
    Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/10/9/094011 (2015).Article 

    Google Scholar 
    Isaksen, K., Benestad, R. E., Harris, C. & Sollid, J. L. Recent extreme near-surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophys. Res. Lett. 34(17), 1–5. https://doi.org/10.1029/2007GL031002 (2007).Article 

    Google Scholar 
    Cable, S., Elberling, B. & Kroon, A. Holocene permafrost history and cryostratigraphy in the High-Arctic Adventdalen Valley, central Svalbard. Boreas 47(2), 423–442. https://doi.org/10.1111/bor.12286 (2018).Article 

    Google Scholar 
    König, M., Kohler, J. & Nuth, C. Glacier Area Outlines–Svalbard, v1.0, http://data.npolar.no/dataset/89f430f8-862f-11e2-8036-005056ad0004 Delivered by CryoClim service (2013).Box, J. E. et al. Key indicators of Arctic climate change: 1917–2017. Environ. Res. Lett. 14(4), 045010. https://doi.org/10.1088/1748-9326/aafc1b (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, H. et al. Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries. Glob. Change Biol. 26(4), 2435–2448. https://doi.org/10.1111/gcb.15005 (2020).ADS 
    Article 

    Google Scholar 
    Szymański, W., Wojtuń, B., Stolarczyk, M., Siwek, J. & Waścińska, J. Organic carbon and nutrients (N, P) in surface soil horizons in a non-glaciated catchment SW Spitsbergen. Pol. Polar Res. 37(1), 49–66. https://doi.org/10.1515/popore-2016-0006 (2016).Article 

    Google Scholar 
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11(23), 6573–6593. https://doi.org/10.5194/bg-11-6573-2014 (2014).ADS 
    Article 

    Google Scholar 
    Palmtag, J. et al. Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arct. Antarct. Alp. Res. 47(1), 71–88. https://doi.org/10.1657/AAAR0014-027 (2015).Article 

    Google Scholar 
    Siewert, M. B. et al. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. J. Geophys. Res. Biogeosci. 120, 1973–1994 (2015).CAS 
    Article 

    Google Scholar 
    Wojcik, R., Palmtag, J., Hugelius, G., Weiss, N. & Kuhry, P. Land cover and landform-based upscaling of soil organic carbon stocks on the Brøgger Peninsula, Svalbard. Arct. Antarct. Alp. Res. 51(1), 40–57. https://doi.org/10.1080/15230430.2019.1570784 (2019).Article 

    Google Scholar 
    Yoshitake, S. et al. Vegetation development and carbon storage on a glacier foreland in the High Arctic, Ny-Ålesund Svalbard. Polar Sci. 5(3), 391–397. https://doi.org/10.1016/j.polar.2011.03.002 (2011).ADS 
    Article 

    Google Scholar 
    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475(7357), 489–492. https://doi.org/10.1038/nature10283 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 180(1), 157–167. https://doi.org/10.1016/j.plantsci.2010.09.005 (2011).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Impact of different enzymes on biofilm formation and mussel settlement

    Zobell, C. E. & Allen, E. C. The significance of marine bacteria in the fouling of submerged surfaces. J. Bacteriol. 29, 239–251 (1935).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flemming, H. C. et al. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).CAS 
    PubMed 

    Google Scholar 
    Shikuma, N. J. & Hadfield, M. G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 26, 39–46 (2010).CAS 
    PubMed 

    Google Scholar 
    Maki, J., Rittschof, D., Schmidt, A., Snyder, A. & Mitchell, R. Factors controlling attachment of bryozoan larvae: A comparison of bacterial films and unfilmed surfaces. Biol. Bull. 177, 295–302 (1989).
    Google Scholar 
    Satuito, C. G., Natoyama, K., Yamazaki, M. & Fusetani, N. Inductin of attachment and metamorphosis of laboratory cultures mussel Mytilus edulis galloprovincialis larvae by microbial film. Fish. Sci. 61, 223–227 (1995).CAS 

    Google Scholar 
    Bao, W., Yang, J., Satuito, C. G. & Kitamura, H. Larval metamorphosis of the mussel Mytilus galloprovincialis in response to Alteromonas sp. 1: Evidence for two chemical cues?. Mar. Biol. 152, 657–666 (2007).
    Google Scholar 
    Liang, X. et al. Polyurethane, epoxy resin and polydimethylsiloxane altered biofilm formation and mussel settlement. Chemosphere 218, 599–608 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Huggett, M. J., Williamson, J. E., De Nys, R., Kjelleberg, S. & Steinberg, P. D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149, 604–619 (2006).ADS 
    PubMed 

    Google Scholar 
    Yang, J. et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29, 247–259 (2013).CAS 
    PubMed 

    Google Scholar 
    Qian, P. Y., Thiyagarajan, V., Lau, S. C. K. & Cheung, S. C. K. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat. Microb. Ecol. 33, 225–237 (2003).
    Google Scholar 
    Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C. & Combes, D. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24, 11–22 (2008).CAS 
    PubMed 

    Google Scholar 
    Beigbeder, A. et al. On the effect of carbon nanotubes on the wettability and surface morphology of hydrosilylation-curing silicone coatings. Nanostruct. Polym. Nanocomp 5, 37–43 (2009).
    Google Scholar 
    Lee, S. H., Pumprueg, S., Moudgil, B. & Sigmund, W. Inactivation of bacterial endospores by photocatalytic nanocomposites. Colloids Surf. B Biointerfaces 40, 93–98 (2005).CAS 
    PubMed 

    Google Scholar 
    Alzieu, C. Tributyltin: Case study of a chronic contaminant in the coastal environment. Ocean Coast. Manag. 40, 23–36 (1998).
    Google Scholar 
    Yang, J. L. et al. Chromosome-level genome assembly of the hard-shelled mussel Mytilus coruscus, a widely distributed species from the temperate areas of East Asia. GigaScience 10, giab024 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Liang, X. et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis. Int. J. Mol. Sci. 21, 710 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Liang, X. et al. Bacterial cellulose synthesis gene regulates cellular c-di-GMP that control biofilm formation and mussel larval settlement. Int. Biodeterior. Biodegrad. 165, 105330 (2021).CAS 

    Google Scholar 
    Peng, L. H. et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus. Biofouling 36, 753–765 (2020).CAS 
    PubMed 

    Google Scholar 
    Chang, R. H. et al. Complete genome sequence of Shewanella marisflavi ECSMB14101, a red pigment synthesizing bacterium isolated from the East China Sea. Mar. Genom. 58, 100846 (2021).
    Google Scholar 
    Sutherland, I. W. Polysaccharide lyases. FEMS Microbiol. Rev. 16, 323–347 (1995).CAS 
    PubMed 

    Google Scholar 
    Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).CAS 
    PubMed 

    Google Scholar 
    Kristensen, J. B. et al. Antifouling enzymes and the biochemistry of marine settlement. Biotechnol. Adv. 26, 471–481 (2008).CAS 
    PubMed 

    Google Scholar 
    Pettitt, M., Henry, S., Callow, M., Callow, J. & Clare, A. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling 20, 299–311 (2004).CAS 
    PubMed 

    Google Scholar 
    McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: Mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).CAS 

    Google Scholar 
    Boyd, A. & Chakrabarty, A. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60, 2355–2359 (1994).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaplan, J. B., Ragunath, C., Velliyagounder, K., Fine, D. H. & Ramasubbu, N. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 48, 2633–2636 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, J., Bradshaw, D., Fulford, M. & Marsh, P. Microbiological evaluation of a range of disinfectant products to control mixed-species biofilm contamination in a laboratory model of a dental unit water system. Appl. Environ. Microbiol. 69, 3327–3332 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiater, A., Szczodrak, J. & Rogalski, J. Hydrolysis of mutan and prevention of its formation in streptococcal films by fungal α-d-glucanases. Process Biochem. 39, 1481–1489 (2004).CAS 

    Google Scholar 
    Dobretsov, S., Xiong, H., Xu, Y., Levin, L. A. & Qian, P.-Y. Novel antifoulants: Inhibition of larval attachment by proteases. Mar. Biotechnol. 9, 388–397 (2007).CAS 

    Google Scholar 
    Carl, C. et al. Enhancing the efficacy of fouling-release coatings against fouling by Mytilus galloprovincialis using nanofillers. Biofouling 28, 1077–1091 (2012).CAS 
    PubMed 

    Google Scholar 
    Patel, P., Callow, M. E., Joint, I. & Callow, J. A. Specificity in the settlement–modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ. Microbiol. 5, 338–349 (2003).CAS 
    PubMed 

    Google Scholar 
    Thostenson, E. T., Ren, Z. & Chou, T. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899–1912 (2001).CAS 

    Google Scholar 
    Beigbeder, A. et al. Marine fouling release silicone/carbon nanotube nanocomposite coatings: On the importance of the nanotube dispersion state. J. Nanosci. Nanotechnol. 10, 2972–2978 (2010).CAS 
    PubMed 

    Google Scholar 
    Frogley, M. D., Ravich, D. & Wagner, H. D. Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63, 1647–1654 (2003).CAS 

    Google Scholar 
    G., A. Seawater Composition. Online edition. SBCC Marine Science. Santa Barbara City College. http://www.marinebio.net/marinescience/02ocean/swcomposition.htm. (2004).Shipovskov, S., Ferapontova, E. E., Gazaryan, I. & Ruzgas, T. Recombinant horseradish peroxidase-and cytochrome c-based two-electrode system for detection of superoxide radicals. Bioelectrochemistry 63, 277–280 (2004).CAS 
    PubMed 

    Google Scholar 
    Aehle, W. Enzymes in Industry: Production and Applications (Wiley, 2007).
    Google Scholar 
    Walker, G. Larval settlement: Historical and future perspectives. Crustacean Issues 10, 69–86 (1995).
    Google Scholar 
    Tomarelli, R., Charney, J. & Harding, M. L. The use of azoalbumin as a substrate in the colorimetric determination or peptic and tryptic activity. J. Lab. Clin. Med. 34, 428–433 (1949).CAS 
    PubMed 

    Google Scholar 
    Somogyi, M. Modifications of two methods for the assay of amylase. Clin. Chem. 6, 23–35 (1960).CAS 
    PubMed 

    Google Scholar 
    Sinegani, A. A. S. & Emtiazi, G. The relative effects of some elements on the DNS method in cellulase assay. J. Appl. Sci. Environ. Manag. 10, 93–96 (2006).
    Google Scholar 
    Li, Y. et al. Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 433, 434–441 (2014).
    Google Scholar 
    Yang, J. et al. Effects of biofilms on settlement of plantigrades of the mussel Mytilus coruscus. J. Fish. China 37, 904–909 (2013) ((In Chinese with English Abstract)).
    Google Scholar 
    Hu, X. M. et al. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition. Biofouling 37, 911–921 (2021).CAS 
    PubMed 

    Google Scholar  More

  • in

    Forest structure determines nest box use by Central European boreal owls

    Mikusiński, G., Roberge, J. M. & Fuller, R. J. Ecology and Conservation of Forest Birds (Cambridge University Press, 2018).Book 

    Google Scholar 
    Newton, I. The role of nest sites in limiting the numbers of hole-nesting birds: a review. Biol. Conserv. 70, 265–276. https://doi.org/10.1016/0006-3207(94)90172-4 (1994).Article 

    Google Scholar 
    Korpimäki, E. & Hakkarainen, H. The Boreal Owl: Ecology, Behaviour and Conservation of a Forest-Dwelling Predator (Cambridge University Press, 2012).Book 

    Google Scholar 
    Glutz von Blotzheim, U. N. & Bauer, K. M. Handbuch der Vögel Mitteleuropas. Band 9. (Akademische Verlagsgesellschaft, 1980).Newton, I. Population Limitation in Birds (Academic press, 1998).
    Google Scholar 
    Moning, C. & Müller, J. Environmental key factors and their thresholds for the avifauna of temperate montane forests. For. Ecol. Manag. 256, 1198–1208. https://doi.org/10.1016/j.foreco.2008.06.018 (2008).Article 

    Google Scholar 
    Walankiewicz, W., Czeszczewik, D., Stański, T., Sahel, M. & Ruczyński, I. Tree cavity resources in spruce-pine managed and protected stands of the Białowieża Forest, Poland. Nat. Areas J. 34, 423–428. https://doi.org/10.3375/043.034.0404 (2014).Article 

    Google Scholar 
    Lambrechts, M. M. et al. The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithol. 45, 1–26. https://doi.org/10.3161/000164510X516047 (2010).Article 

    Google Scholar 
    Lambrechts, M. M. et al. Nest box design for the study of diurnal raptors and owls is still an overlooked point in ecological, evolutionary and conservation studies: a review. J. Ornithol. 153, 23–34. https://doi.org/10.1007/s10336-011-0720-3 (2012).Article 

    Google Scholar 
    Zárybnická, M., Kubizňák, P., Šindelář, J. & Hlaváč, V. Smart nest box: a tool and methodology for monitoring of cavity-dwelling animals. Methods Ecol. Evol. 7, 483–492. https://doi.org/10.1111/2041-210X.12509 (2016).Article 

    Google Scholar 
    Kubizňák, P. et al. Designing network-connected systems for ecological research and education. Ecosphere 10(6), e02761. https://doi.org/10.1002/ecs2.2761 (2019).Article 

    Google Scholar 
    Mänd, R., Tilgar, V., Lõhmus, A. & Leivits, A. Providing nest boxes for hole-nesting birds—Does habitat matter?. Biodivers. Conserv. 14, 1823–1840. https://doi.org/10.1007/s10531-004-1039-7 (2005).Article 

    Google Scholar 
    König, C. & Weick, F. Owls of the World 2nd ed. (Christopher Helm, 2008).
    Google Scholar 
    Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386. https://doi.org/10.1002/ece3.5419 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ševčík, R., Riegert, J., Šťastný, K., Zárybnický, J. & Zárybnická, M. The effect of environmental variables on owl distribution in Central Europe: A case study from the Czech Republic. Ecol. Inform. 64, 101375. https://doi.org/10.1016/j.ecoinf.2021.101375 (2021).Article 

    Google Scholar 
    Brambilla, M. et al. Species interactions and climate change: How the disruption of species co-occurrence will impact on an avian forest guild. Glob. Change Biol. 26, 1212–1224. https://doi.org/10.1111/gcb.14953 (2020).ADS 
    Article 

    Google Scholar 
    Hayward, G. D., Hayward, P. H. & Garton, E. O. Ecology of boreal owl in the northern Rocky-Mountains, USA. Wildl. Monogr. 124, 3–59 (1993).
    Google Scholar 
    Zárybnická, M., Riegert, J. & Šťastný, K. The role of Apodemus mice and Microtus voles in the diet of the Tengmalm’s owl in Central Europe. Popul. Ecol. 55, 353–361. https://doi.org/10.1007/s10144-013-0367-4 (2013).Article 

    Google Scholar 
    Zárybnická, M., Sedláček, O., Salo, P., Šťastný, K. & Korpimäki, E. Reproductive responses of temperate and boreal Tengmalm’s owl Aegolius funereus populations to spatial and temporal variation in prey availability. Ibis 157, 369–383. https://doi.org/10.1111/ibi.12244 (2015).Article 

    Google Scholar 
    Mossop, D. H. The importance of old growth refugia in the Yukon boreal forest to cavity-nesting owls in Biology and Conservation of Owls of the Northern Hemisphere (eds. Duncan, J. R., Johnson, D. H. & Nicholls, T. H.) 584–586 (Forest Service General Technical Report GTR-NC-190, 1997).Domahidi, Z., Nielsen, S., Bayne, E. & Spence, J. Boreal owl (Aegolius funereus) and northern saw-whet owl (Aegolius acadicus) breeding records in managed boreal forests. Can. Field-Nat. 134, 125–131. https://doi.org/10.22621/cfn.v134i2.2146 (2020).Whitman, J. S. Diets of nesting boreal owls, Aegolius funereus, in western interior Alaska. Can. Field-Nat. 115, 476–479 (2001).
    Google Scholar 
    Whitman, J. S. Post-fledging estimation of annual productivity in boreal owls based on prey detritus mass. J. Raptor Res. 42, 58–60. https://doi.org/10.3356/JRR-06-88.1 (2008).Article 

    Google Scholar 
    Anderson, A. G. Wildfire impacts on nest provisioning and survival of Alaskan boreal owls. Master thesis, Miami University, Ohio (2017).Hayward, G. D., Steinhorst, R. K. & Hayward, P. H. Monitoring boreal owl populations with nest boxes: sample size and cost. J. Wildl. Manage. 56, 777–785. https://doi.org/10.2307/3809473 (1992).Article 

    Google Scholar 
    Koopman, M. E., McDonald, D. B. & Hayward, G. D. Microsatellite analysis reveals genetic monogamy among female boreal owls. J. Raptor Res. 41, 314–318. https://doi.org/10.3356/0892-1016(2007)41[314:MARGMA]2.0.CO;2 (2007).Article 

    Google Scholar 
    Fang, Y., Tang, S.-H., Gu, Y. & Sun, Y.-H. Conservation of Tengmalm’s owl and Sichuan wood owl in Lianhuashan Mountain, Gansu, China. Ardea 97, 649–649. https://doi.org/10.5253/078.097.0437 (2009).Article 

    Google Scholar 
    Löfgren, O., Hörnfeldt, B. & Carlsson, B. Site tenacity and nomadism in Tengmalm’s owl (Aegolius funereus (L.)) in relation to cyclic food production. Oecologia 69, 321–326. https://doi.org/10.1007/BF00377051 (1986).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hörnfeldt, B. & Nyholm, N. E. I. Breeding performance of Tengmalm’s owl in a heavy metal pollution gradient. J. Appl. Ecol. 33, 377–386. https://doi.org/10.2307/2404759 (1996).Article 

    Google Scholar 
    Hipkiss, T., Hörnfeldt, B., Eklund, U. & Berlin, S. Year-dependent sex-biased mortality in supplementary-fed Tengmalm’s owl nestlings. J. Anim. Ecol. 71, 693–699. https://doi.org/10.1046/j.1365-2656.2002.t01-1-00635.x (2002).Article 

    Google Scholar 
    Hipkiss, T., Gustafsson, J., Eklund, U. & Hörnfeldt, B. Is the long-term decline of boreal owls in Sweden caused by avoidance of old boxes?. J. Raptor Res. 47, 15–20. https://doi.org/10.3356/JRR-11-91.1 (2013).Article 

    Google Scholar 
    Korpimäki, E. Selection for nest-hole shift and tactics of breeding dispersal in Tengmalm’s owl Aegolius funereus. J. Anim. Ecol. 56, 185–196. https://doi.org/10.2307/4808 (1987).Article 

    Google Scholar 
    Drdáková-Zárybnická, M. Breeding biology of the Tengmalm’s owl (Aegolius funereus) in air-pollution damaged areas of the Krušné hory Mts. Sylvia 39, 35–51 (2003).
    Google Scholar 
    Zárybnická, M., Riegert, J., Kloubec, B. & Obuch, J. The effect of elevation and habitat cover on nest box occupancy and diet composition of boreal owls Aegolius funereus. Bird Study 64, 222–231. https://doi.org/10.1080/00063657.2017.1316236 (2017).Article 

    Google Scholar 
    Zárybnická, M., Kloubec, B., Obuch, J. & Riegert, J. Fledgling productivity in relation to diet composition of Tengmalm’s owl Aegolius funereus in Central Europe. Ardeola 62, 163–171. https://doi.org/10.13157/arla.62.1.2015.163 (2015).Article 

    Google Scholar 
    Kloubec, B. Breeding of Tengmalm’s owls (Aegolius funereus) in nest-boxes in Šumava Mts.: a summary from the years 1978–2002. Buteo 13, 75–86 (2003).
    Google Scholar 
    Flousek, J. Ochrana sov v Krkonošském národním parku in Sovy 1986 (eds. Sitko, J. & Trpák, P.) 33–34 (Státní ústav památkové péče a ochrany přírody, Přerov, 1988).Ravussin, P.-A. et al. Quel avenir pour la Chouette de Tengmalm Aegolius funereus dans le massif du Jura? Bilan de trente années de suivi. Nos Oiseaux 62, 5–28 (2015).
    Google Scholar 
    Schelper, W. Zur Brutbiologie, Ernährung und Populationsdynamik des Rauhfusskauzes Aegolius funereus im Kaufunger Wald (Südniedersachsen). Vogelkundliche Berichte aus Niedersachsen 21, 33–53 (1989).
    Google Scholar 
    Schwerdtfeger, O. The dispersion dynamics of Tengmalm’s owl Aegolius funereus in Central Europe in Raptor Conservation Today (eds. Meyburg, B. U. & Chancellor, R. C.) 543–550 (World Working Group on Birds of Prey and Pica Press, 1994).Hunke, W. Versuch eine Population des Raufußkauzes Aegolius funereus durch Anbringen von Nistkästen in den Jahren 1980 bis 2010 zu fördern. Charadrius 47, 93–101 (2011).
    Google Scholar 
    Mezzavilla, F. & Lombardo, S. Indagini sulla biologia riproduttiva della civetta capogrosso Aegolius funereus: anni 1987–2012 in Atti Secondo Convegno Italiano Rapaci Diurni e Notturni Vol. 3 (eds. Mezzavilla, F. & Scarton, F.) 261–270 (Associazione Faunisti Veneti, Quaderni Faunistici, 2013).Rajković, D. Diet composition and prey diversity of Tengmalm’s owl Aegolius funereus (Linnaeus, 1758; Aves: Strigidae) in central Serbia during breeding. Turk. J. Zool. 42, 346–351. https://doi.org/10.3906/zoo-1709-28 (2018).Article 

    Google Scholar 
    Zárybnická, M., Riegert, J. & Šťastný, K. Non-native spruce plantations represent a suitable habitat for Tengmalm’s owl (Aegolius funereus) in the Czech Republic, Central Europe. J. Ornithol. 156, 457–468. https://doi.org/10.1007/s10336-014-1145-6 (2015).Article 

    Google Scholar 
    Kopáček, J. & Veselý, J. Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos. Environ. 39, 2179–2188. https://doi.org/10.1016/j.atmosenv.2005.01.002 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Kloubec, B., Hora, J. & Šťastný, K. (eds.). Ptáci jižních Čech (Jihočeský kraj, 2015).Ševčík, R., Riegert, J., Šindelář, J. & Zárybnická, M. Vocal activity of the Central European boreal owl population in relation to varying environmental conditions. Ornis Fenn. 96, 1–12 (2019).
    Google Scholar 
    Savický, J. AM Services – Play Spectrogram Screens v. 4v7 (Czech Republic, 2009).Korpimäki, E. Diet of breeding Tengmalm’s owls Aegolius funereus: long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 65, 21–30 (1988).
    Google Scholar 
    Kouba, M. et al. Home range size of Tengmalm’s owl during breeding in Central Europe is determined by prey abundance. PLoS ONE 12, e0177314. https://doi.org/10.1371/journal.pone.0177314 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zárybnická, M., Sedláček, O. & Korpimäki, E. Do Tengmalm’s owls alter parental feeding effort under varying conditions of main prey availability?. J. Ornithol. 150, 231–237. https://doi.org/10.1007/s10336-008-0342-6 (2009).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).ter Braak, C. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, version 5.10. (Microcomputer Power, 2018).Kosiński, Z. & Kempa, M. Density, distribution and nest-sites of woodpeckers Picidae, in a managed forest of Western Poland. Pol. J. Ecol. 55, 519–533 (2007).
    Google Scholar 
    Miller, K. E. Nest-site limitation of secondary cavity-nesting birds in even-age southern pine forests. Wilson J. Ornithol. 122, 126–134. https://doi.org/10.1676/07-130.1 (2010).Article 

    Google Scholar 
    Sonerud, G. A. Nest hole shift in Tengmalm’s owl Aegolius funereus as defence against nest predation involving long-term memory in the predator. J. Anim. Ecol. 54, 179–192. https://doi.org/10.2307/4629 (1985).Article 

    Google Scholar 
    Sonerud, G. A. Reduced predation by pine martens on nests of Tengmalm’s owl in relocated boxes. Anim. Behav. 37, 332–334. https://doi.org/10.1016/0003-3472(89)90122-X (1989).Article 

    Google Scholar 
    Sonerud, G. A. Win – and stay, but not too long: cavity selection by boreal owls to minimize nest predation by pine marten. J. Ornithol. 162, 839–855. https://doi.org/10.1007/s10336-021-01876-y (2021).Article 

    Google Scholar 
    Korpimäki, E. Does nest-hole quality, poor breeding success or food depletion drive the breeding dispersal of Tengmalm’s owls?. J. Anim. Ecol. 62, 606–613. https://doi.org/10.2307/5382 (1993).Article 

    Google Scholar 
    Hruška, F. The boreal owl (Aegolius funereus) – breeding distribution, numbers, ringing results and notes on the breeding biology and feeding ecology of this species in the central part of the Jihlavské vrchy Hills. Crex 38, 112–150 (2020).
    Google Scholar 
    Broughton, R. et al. Nest-site competition between bumblebees (Bombidae), social wasps (Vespidae) and cavity-nesting birds in Britain and the Western Palearctic. Bird Study 62, 427–437. https://doi.org/10.1080/00063657.2015.1046811 (2015).Article 

    Google Scholar 
    Pawlikowski, T. & Pawlikowski, K. Nesting interactions of the social wasp Dolichovespula saxonica [F.] (Hymenoptera: Vespinae) in wooden nest boxes for birds in the forest reserve „Las Piwnicki” in the Chełmno Land (Northern Poland). Ecol. Quest. 13, 67–72. https://doi.org/10.2478/v10090-010-0017-9 (2010).Langowska, A., Ekner-Grzyb, A., Skórka, P., Tobółka, M. & Tryjanowski, P. Nest-site tenacity and dispersal patterns of Vespa crabro colonies located in bird nest-boxes. Sociobiology 56, 375–382 (2010).
    Google Scholar 
    Meyer, W. Mit welchem Erfolg nutzt der Rauhfusskauz Aegolius funereus (L.) Natruhölen und Nistkästen zur Brut. Vogelwelt 124, 325–331 (2003).
    Google Scholar 
    López, B. C. et al. Nest-box use by boreal owls (Aegolius funereus) in the Pyrenees Mountains in Spain. J. Raptor Res. 44, 40–49. https://doi.org/10.3356/JRR-09-32.1 (2010).ADS 
    Article 

    Google Scholar 
    Zárybnická, M., Riegert, J. & Kouba, M. Indirect food web interactions affect predation of Tengmalm’s owls Aegolius funereus nests by pine martens Martes martes according to the alternative prey hypothesis. Ibis 157, 459–467. https://doi.org/10.1111/ibi.12265 (2015).Article 

    Google Scholar 
    Zárybnická, M. & Vojar, J. Effect of male provisioning on the parental behavior of female boreal owls Aegolius funereus. Zool. Stud. 52, 36. https://doi.org/10.1186/1810-522X-52-36 (2013).Article 

    Google Scholar 
    Llambías, P. & Fernandez, G. Effects of nestboxes on the breeding biology of southern house wrens Troglodytes aedon bonariae in the southern temperate zone. Ibis 151, 113–121. https://doi.org/10.1111/j.1474-919X.2008.00868.x (2009).Article 

    Google Scholar 
    Vrezec, A. Breeding density and altitudinal distribution of the Ural, tawny, and boreal owls in North Dinaric Alps (Central Slovenia). J. Raptor Res. 37, 55–62 (2003).
    Google Scholar  More