Resident birds are more behaviourally plastic than migrants
Hall, M. J., Burns, A. L., Martin, J. M. & Hochuli, D. F. Flight initiation distance changes across landscapes and habitats in a successful urban coloniser. Urban Ecosyst. https://doi.org/10.1007/s11252-020-00969-5 (2020).ArticleÂ
Google ScholarÂ
MĂžller, A. P., Samia, D. S. M., Weston, M. A., Guay, P. J. & Blumstein, D. T. Flight initiation distances in relation to sexual dichromatism and body size in birds from three continents. Biol. J. Linn. Soc. 117, 823â831 (2016).
Google ScholarÂ
Morelli, F. et al. Contagious fear: Escape behavior increases with flock size in European gregarious birds. Ecol. Evol. 9, 6096â6104 (2019).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Samia, D. S. M. et al. Rural-urban differences in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 5, 66 (2017).ADSÂ
Google ScholarÂ
Blumstein, D. T. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389â399 (2006).
Google ScholarÂ
McFarland, D. Oxford companion to animal behavior. (Oxford University Press, 1987).Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627â2634 (2005).
Google ScholarÂ
Lima, S. L. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia 66, 60â67 (1985).ADSÂ
PubMedÂ
Google ScholarÂ
Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).
Google ScholarÂ
Lockwood, R., Swaddle, J. P. & Rayner, J. M. V. Avian Wingtip Shape Reconsidered: Wingtip Shape Indices and Morphological Adaptations to Migration. J. Avian Biol. 29, 273â292 (1998).
Google ScholarÂ
MĂžller, A. P. Birds. in Escaping from predators: An integrative view of escape decisions and refuge use (eds. Cooper, W. E. J. & Blumstein, D. T.) 88â112 (Cambridge University Press, 2015).MĂžller, A. P. Flight distance of urban birds, predation and selection for urban life. Behav. Ecol. Sociobiol. 63, 63â75 (2008).
Google ScholarÂ
FernĂĄndez-Juricic, E. et al. Relationships of anti-predator escape and post-escape responses with body mass and morphology: a comparative avian study. Evol. Ecol. Res. 8, 731â752 (2006).
Google ScholarÂ
Weston, M. A., Mcleod, E. M., Blumstein, D. T. & Guay, P. J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu 112, 269â286 (2012).
Google ScholarÂ
Hemmingsen, A. The relation of shyness (flushing distance) to body size. Spolia Zool Musei Hauniensis 11, 74â76 (1951).
Google ScholarÂ
Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manage. 67, 852â857 (2013).
Google ScholarÂ
Glover, H. K., Weston, M. A., Maguire, G. S., Miller, K. K. & Christie, B. A. Towards ecologically meaningful and socially acceptable buffers: Response distances of shorebirds in Victoria, Australia, to human disturbance. Landsc. Urban Plan. 103, 326â334 (2011).
Google ScholarÂ
Geist, C., Liao, J., Libby, S. & Blumstein, D. T. Does intruder group size and orientation affect flight initiation distance in birds?. Anim. Biodivers. Conserv. 28, 69â73 (2001).
Google ScholarÂ
Mikula, P. Pedestrian density influences flight distances of urban birds. Ardea 102, 53â60 (2014).
Google ScholarÂ
Piratelli, A. J., Favoretto, G. R. & de Almeida Maximiano, M. F. Factors affecting escape distance in birds. Zoologia 32, 438â444 (2015).Burger, J. & Gochfeld, M. Human activity influence and diurnal and nocturnal foraging of Sanderlings (Calidris alba). Condor 93, 259â265 (1991).
Google ScholarÂ
MĂžller, A. P. & Garamszegi, L. Z. Between individual variation in risk-taking behavior and its life history consequences. Behav. Ecol. 23, 843â853 (2012).
Google ScholarÂ
Ferguson, S. M., Gilson, L. N. & Bateman, P. W. Look at the time: diel variation in the flight initiation distance of a nectarivorous bird. Behav. Ecol. Sociobiol. 73, 147 (2019).
Google ScholarÂ
Garamszegi, L. Z. & MĂžller, A. P. Partitioning within-species variance in behaviour to within- and between-population components for understanding evolution. Ecol. Lett. 20, 599â608 (2017).PubMedÂ
Google ScholarÂ
Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CASÂ
PubMedÂ
Google ScholarÂ
Dufour, P. et al. Reconstructing the geographic and climatic origins of long-distance bird migrations. J. Biogeogr. 47, 155â166 (2020).
Google ScholarÂ
Sol, D. et al. Evolutionary divergence in brain size between migratory and resident birds. PLoS ONE 5, e9617 (2010).ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Bonnet-Lebrun, A. S., Somveille, M., Rodrigues, A. S. L. & Manica, A. Exploring intraspecific variation in migratory destinations to investigate the drivers of migration. Oikos 130, 187â196 (2021).
Google ScholarÂ
Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons?. J. Biogeogr. 45, 1459â1468 (2018).
Google ScholarÂ
Samia, D. S. M., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 6, 8877 (2015).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229â249 (1986).
Google ScholarÂ
Cooper, W. E. J. & Blumstein, D. T. Escape behavior: importance, scope, and variables. in Escaping from predators: An integrative view of escape decisions (eds. Cooper, W. E. J. & Blumstein, D. T.) 3â14 (Cambridge University Press, 2015). https://doi.org/10.1017/CBO9781107447189.002.Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).
Google ScholarÂ
Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018).ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190012 (2019).
Google ScholarÂ
Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the worldâs birds and mammals. Ecology 95, 2027 (2014).
Google ScholarÂ
Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120341â22012034 (2013).
Google ScholarÂ
Machado, J. P., Antunes, A., Borges, R., Gomes, C. & Rocha, A. P. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics https://doi.org/10.1093/bioinformatics/bty800 (2018).ArticleÂ
Google ScholarÂ
Ericson, P. G. P. et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543â547 (2006).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289â290 (2004).CASÂ
PubMedÂ
Google ScholarÂ
Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592â593 (2011).CASÂ
Google ScholarÂ
Revell, L. J. & Chamberlain, S. A. Rphylip: An R interface for PHYLIP R package. (2014).Blomberg, S. P. & Garland, T. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899â910 (2003).
Google ScholarÂ
Keck, F., Rimet, F., Bouchez, A. & Franc, A. Phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774â2780 (2016).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
MĂŒnkemĂŒller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743â756 (2012).
Google ScholarÂ
Kot, M. Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227â241 (1990).
Google ScholarÂ
Blomberg, S. P., Garland, T. J. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution (N. Y.) 57, 717â745 (2003).
Google ScholarÂ
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877â884 (1999).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATHÂ
Google ScholarÂ
McCullagh, P. & Nelder, J. A. Generalized Linear Models. (Chapman and Hall, 1989).Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-140. 1â117 (2019).Nakazawa, M. âfmsbâ Functions for Medical Statistics Book with some Demographic Data – R package version 0.6.1. (2017).R Development Core Team. R: A language and environment for statistical computing. (2021).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2. More
