More stories

  • in

    Publisher Correction: Heterogeneity within and among co-occurring foundation species increases biodiversity

    Marine Ecology Research Group and Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New ZealandMads S. Thomsen, Luca Mondardini, David R. Schiel & Alfonso SicilianoDepartment of Bioscience, Aarhus University, 4000, Roskilde, DenmarkMads S. ThomsenSmithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of PanamaAndrew H. Altieri, Viktoria M. M. Frühling, Seamus B. Harrison & Gerhard ZotzEnvironmental Engineering Sciences, University of Florida, Gainesville, FL, USAAndrew H. Altieri & Christine AngeliniDepartment of Biological Sciences, Macquarie University, Sydney, NSW, AustraliaMelanie J. Bishop & Semonn OleksynDipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, ItalyFabio Bulleri & Joachim LangeneckMarine Sciences, University of Georgia, Athens, GA, USARoxanne FarhanCentre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, AustraliaPaul E. Gribben & Brendan S. LanhamSydney Institute of Marine Science, Chowder Bay Road, Mosman, 2088, Sydney, NSW, AustraliaPaul E. Gribben & Brendan S. LanhamCoastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, 200438, Shanghai, ChinaQiang HeInstitute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, GermanyMoritz Klinghardt, Tristan Schneider & Gerhard ZotzSchool of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, AustraliaYannick Mulders & Thomas WernbergDepartment of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USAAaron P. RamusNicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC, USABrian R. Silliman & Stacy ZhangMarine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UKDan A. SmaleCawthron Institute, Nelson, New ZealandPaul M. South More

  • in

    Changes in precipitation patterns can destabilize plant species coexistence via changes in plant–soil feedback

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).CAS 
    PubMed 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    PubMed 

    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).CAS 
    PubMed 

    Google Scholar 
    Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Change 10, 965–970 (2020).CAS 

    Google Scholar 
    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).PubMed 

    Google Scholar 
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).CAS 
    PubMed 

    Google Scholar 
    Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland responses to changing climate. Science 315, 640–642 (2007).CAS 
    PubMed 

    Google Scholar 
    van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Proc. R. Soc. B 365, 2025–2034 (2010).
    Google Scholar 
    Gaüzère, P., Iversen, L. L., Barnagaud, J.-Y., Svenning, J.-C. & Blonder, B. Empirical predictability of community responses to climate change. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00186 (2018).Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).CAS 
    PubMed 

    Google Scholar 
    Bennett, J. A. et al. Plant–soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).CAS 
    PubMed 

    Google Scholar 
    Teste, F. P. et al. Plant–soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355, 173–176 (2017).CAS 
    PubMed 

    Google Scholar 
    Kardol, P., Bezemer, T. M. & van der Putten, W. H. Temporal variation in plant–soil feedback controls succession. Ecol. Lett. 9, 1080–1088 (2006).PubMed 

    Google Scholar 
    van der Putten, W. H., van Dijk, C. & Peters, B. A. M. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362, 53–56 (1993).
    Google Scholar 
    Bever, J. D. Feedback between plants and their soil communities in an old field community. Ecology 75, 1965–1977 (1994).
    Google Scholar 
    Bever, J. D., Westover, K. M. & Antonovics, J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 85, 561–573 (1997).
    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Google Scholar 
    Bever, J. D. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol. 157, 465–473 (2003).PubMed 

    Google Scholar 
    Revilla, T. A., Veen, G. F., Eppinga, M. B. & Weissig, F. J. Plant–soil feedbacks and the coexistence of competing plants. Theor. Ecol. 6, 99–113 (2013).
    Google Scholar 
    Molofsky, J. & Bever, J. D. A novel theory to explain species diversity in landscapes: positive frequency dependence and habitat suitability. Proc. R. Soc. B 269, 2389–2393 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    Ke, P. J. & Wan, J. Effects of soil microbes on plant competition: a perspective from modern coexistence theory. Ecol. Monogr. 90, e01391 (2020).
    Google Scholar 
    Mack, K. M. L. & Bever, J. D. Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local. J. Ecol. 102, 1195–1201 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Bauer, J. T., Mack, K. M. L. & Bever, J. D. Plant–soil feedbacks as drivers of succession: evidence from remnant and restored tallgrass prairies. Ecosphere 6, art158 (2015).
    Google Scholar 
    Kulmatiski, A., Beard, K. H., Grenzer, J., Forero, L. & Heavilin, J. Using plant–soil feedbacks to predict plant biomass in diverse communities. Ecology 97, 2064–2073 (2016).PubMed 

    Google Scholar 
    Reinhart, K. O. et al. Globally, plant–soil feedbacks are weak predictors of plant abundance. Ecol. Evol. 11, 1756–1768 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Casper, B. B. & Castelli, J. P. Evaluating plant–soil feedback together with competition in a serpentine grassland. Ecol. Lett. 10, 394–400 (2007).PubMed 

    Google Scholar 
    Shannon, S., Flory, S. L. & Reynolds, H. Competitive context alters plant–soil feedback in an experimental woodland community. Oecologia 169, 235–243 (2012).PubMed 

    Google Scholar 
    Lekberg, Y. et al. Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).PubMed 

    Google Scholar 
    Kostenko, O., van de Voorde, T. F. J., Mulder, P. P. J., van der Putten, W. H. & Bezemer, M. T. Legacy effects of aboveground–belowground interactions. Ecol. Lett. 15, 813–821 (2012).PubMed 

    Google Scholar 
    Bezemer, M. T. et al. Above- and below-ground herbivory effects on below-ground plant–fungus interactions and plant–soil feedback responses. J. Ecol. 101, 325–333 (2013).
    Google Scholar 
    Classen, A. T. et al. Direct and indirect effects of climate change on soil microbial and soil microbial–plant interactions: what lies ahead? Ecosphere 6, art130 (2015).
    Google Scholar 
    McCarthy-Neumann, S. & Kobe, R. K. Site soil-fertility and light availability influence plant–soil feedback. Front. Ecol. Evol. 7, 383 (2019).
    Google Scholar 
    Smith-Ramesh, L. M. & Reynolds, H. L. The next frontier of plant–soil feedback research: unraveling context dependence across biotic and abiotic gradients. J. Veg. Sci. 28, 484–494 (2017).
    Google Scholar 
    Crawford, K. M. et al. When and where plant–soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22, 1274–1284 (2019).PubMed 

    Google Scholar 
    de Long, J. R., Fry, E. L., Veen, G. F. & Kardol, P. Why are plant–soil feedbacks so unpredictable, and what to do about it? Funct. Ecol. 33, 118–128 (2019).
    Google Scholar 
    Beals, K. K. et al. Predicting plant–soil feedback in the field: meta-analysis reveals that competition and environmental stress differentially influence PSF. Front. Ecol. Evol. 8, 191 (2020).
    Google Scholar 
    van der Putten, W. H., Bradford, M. A., Brinkman, P. E., van de Voorde, T. F. J. & Veen, G. F. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).
    Google Scholar 
    Pugnaire, F. I. et al. Climate change effects on plant–soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 5, eaaz1834 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).
    Google Scholar 
    Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fierer, N., Schimel, J. P. & Holden, P. A. Influence of drying–rewetting frequency on soil bacterial community structure. Microb. Ecol. 45, 63–71 (2003).CAS 
    PubMed 

    Google Scholar 
    Drenovsky, R. E., Vo, D., Graham, K. J. & Scow, K. M. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48, 424–430 (2004).CAS 
    PubMed 

    Google Scholar 
    Brockett, B. F., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44, 9–20 (2012).CAS 

    Google Scholar 
    Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2012).PubMed 

    Google Scholar 
    de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    de Oliveira, T. B. et al. Fungal communities differentially respond to warming and drought in tropical grassland soil. Mol. Ecol. 29, 1550–1559 (2020).PubMed 

    Google Scholar 
    Eastburn, D. M., McElrone, A. J. & Bilgin, D. D. Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathol. 60, 54–69 (2011).
    Google Scholar 
    Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).PubMed 

    Google Scholar 
    Cavagnaro, T. R. Soil moisture legacy effects: impacts on soil nutrients, plants and mycorrhizal responsiveness. Soil Biol. Biochem. 95, 173–179 (2016).CAS 

    Google Scholar 
    Crawford, K. M. & Hawkes, C. V. Soil precipitation legacies influence intraspecific plant–soil feedback. Ecology 101, e03142 (2020).PubMed 

    Google Scholar 
    Fry, E. L. et al. Drought neutralises plant–soil feedback of two mesic grassland forbs. Oecologia 186, 1113–1125 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Snyder, A. E. & Harmon-Threatt, A. N. Reduced water-availability lowers the strength of negative plant–soil feedbacks of two Asclepias species. Oecologia 190, 425–432 (2019).PubMed 

    Google Scholar 
    Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant–soil feedbacks: a meta-analytical review. Ecol. Lett. 11, 980–992 (2008).PubMed 

    Google Scholar 
    Brinkman, P. E., van der Putten, W. H., Bakker, E.-J. & Verhoeven, K. J. Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. J. Ecol. 98, 1063–1073 (2010).
    Google Scholar 
    Bever, J. D. Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc. R. Soc. B 269, 2595–2601 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    Castelli, J. P. & Casper, B. B. Intraspecific AM fungal variation contributes to plant–fungal feedback in a serpentine grassland. Ecology 84, 323–336 (2003).
    Google Scholar 
    Mangan, S. A., Herre, E. A. & Bever, J. D. Specificity between neotropical tree seedlings and their fungal mutualists leads to plant–soil feedback. Ecology 91, 2594–2603 (2010).PubMed 

    Google Scholar 
    Bever, J. D., Mangan, S. A. & Alexander, H. M. Maintenance of plant species diversity by pathogens. Annu. Rev. Ecol. Evol. Syst. 46, 305–325 (2015).
    Google Scholar 
    Gilbert, G. S. & Parker, I. M. The evolutionary ecology of plant disease: a phylogenetic perspective. Annu. Rev. Phytopathol. 54, 549–578 (2016).CAS 
    PubMed 

    Google Scholar 
    Milici, V. R., Dalui, D., Mickley, J. G. & Bagchi, R. Responses of plant–pathogen interactions to precipitation: implications for tropical tree richness in a changing world. J. Ecol. 108, 1800–1809 (2020).
    Google Scholar 
    Kaisermann, A., de Vries, F. T., Griffiths, R. I. & Bardgett, R. D. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytol. 215, 1413–1424 (2017).CAS 
    PubMed 

    Google Scholar 
    Revillini, D., Gehring, C. A. & Johnson, N. C. The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Funct. Ecol. 30, 1086–1098 (2016).
    Google Scholar 
    Ji, B. & Bever, J. D. Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere 7, e01256 (2016).
    Google Scholar 
    Rubin, R. L., van Groenigen, K. J. & Hungate, B. A. Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil 416, 309–323 (2017).CAS 

    Google Scholar 
    Brinkman, E. P., Duyts, H., Karssen, G., van der Stoel, C. D. & van der Putten, W. H. Plant-feeding nematodes in coastal sand dunes: occurrence, host specificity and effects on plant growth. Plant Soil 397, 17–30 (2015).CAS 

    Google Scholar 
    Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010).PubMed 

    Google Scholar 
    Chase, J. M. Community assembly: when should history matter? Oecologia 136, 489–498 (2003).PubMed 

    Google Scholar 
    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
    Google Scholar 
    Reinhart, K. O. & Rinella, M. J. A common soil handling technique can generate incorrect estimates of soil biota effects on plants. New Phytol. 210, 786–789 (2016).PubMed 

    Google Scholar 
    Mehlich, A. Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409–1416 (1984).CAS 

    Google Scholar 
    Rhoades, J. D. in Methods of Soil Analysis: Part 2 (eds Page, A. L. et al.) Ch. 10 (American Society of Agronomy and Soil Science Society of America, 1982).Schofield, R. K. & Taylor, A. W. The measurement of soil pH. Soil Sci. Soc. Am. Proc. 19, 164–167 (1955).CAS 

    Google Scholar 
    Keeney, D. R. in Methods of Soil Analysis: Part 2 (eds Page, A. L. et al.) Ch. 35 (American Society of Agronomy and Soil Science Society of America, 1982).Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pauvert, C. et al. Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. 41, 23–33 (2019).
    Google Scholar 
    Abarenkov, K. et al UNITE QIIME Release for Fungi. Version 04.02.2020 (UNITE Community, 2020).Francioli, D., van Ruijven, J., Bakker, L. & Mommer, L. Drivers of total and pathogenic soil-borne fungal communities in grassland plant species. Fungal Ecol. 48, 100987 (2020).
    Google Scholar 
    Nhu, H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Google Scholar 
    Brooks, M. B. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Lou, J. Entropy and diversity. Oikos 113, 363–375 (2006).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R version 2.5–7 https://CRAN.R-project.org/package=vegan (2020).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2020).
    Google Scholar 
    Wilensky, U. NetLogo http://ccl.northwestern.edu/netlogo (1999).Salecker, J., Sciaini, M., Meyer, K. M. & Wiegand, K. The NLRX R package: a next-generation framework for reproducible NetLogo model analyses. Methods Ecol. Evol. 10, 1854–1863 (2019).
    Google Scholar 
    Wickham et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    An expert-curated global database of online newspaper articles on spiders and spider bites

    Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, FinlandStefano Mammola, Jagoba Malumbres-Olarte, Pedro Cardoso, Caroline S. Fukushima, Tuuli Korhonen, Marija Miličić & Joni A. SaarinenMolecular Ecology Group (MEG), Water Research Institute, National Research Council of Italy (CNR-IRSA), Largo Tonolli 50, 28922, Verbania Pallanza, ItalyStefano Mammola & Alejandro MartínezCE3C – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Angra do Heroísmo, Azores, PortugalJagoba Malumbres-OlarteAlbert Katz International School for Desert Studies, Ben-Gurion University of the Negev, Sede Boqer Campus, Beersheba, IsraelValeria ArabeskyBlaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beersheba, IsraelValeria Arabesky & Yael LubinColección Nacional de Arácnidos, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, MexicoDiego Alejandro Barrales-AlcaláEnvironmental Biology Division, Institute of Biological Sciences, College of Arts and Sciences and Museum of Natural History, University of the Philippines Los Banos, 4031, Los Baños, PhilippinesAimee Lynn Barrion-DupoCentro Universitario de Rivera, Universidad de la República, Montevideo, UruguayMarco Antonio BenamúLab. Ecotoxicología de Artrópodos Terrestres, Centro Univeritario de Rivera, Universidad de la República, Montevideo, UruguayMarco Antonio BenamúLaboratorio Ecología del Comportamiento, Instituto de Investigaciones Biológicas clemente Estable (IIBCE), Montevideo, UruguayMarco Antonio BenamúDitsong National Museum of Natural History, PO Box 4197, Pretoria, 0001, South AfricaTharina L. BirdDepartment of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South AfricaTharina L. BirdFreelance translator, Verbania Pallanza, ItalyMaria BogomolovaDepartment of Molecular Biology and Genetics, Democritus University of Thrace, Komotini, GreeceMaria ChatzakiDepartment of Life sciences, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung City, 402204, TaiwanRen-Chung Cheng & Tien-Ai ChuDepartment of Biology, Macelwane Hall, 3507 Laclede Avenue, Saint Louis University, St. Louis, MO, 63103, USALeticia M. Classen-RodríguezCroatian Biospeleological Society, Rooseveltov trg 6, Zagreb, CroatiaIva Čupić & Martina PavlekProgram Sarjana, Fakultas Biologi, Universitas Gadjah Mada, Yogyakarta, IndonesiaNaufal Urfi Dhiya’ulhaqInsectarium de Montréal, Espace pour la vie, 4101, rue Sherbrooke Est, Montréal, Québec, H1X 2B2, CanadaAndré-Philippe Drapeau PicardSerket, Arachnid Collection of Egypt (ACE), Cairo, EgyptHisham K. El-HennawyErzincan Binali Yıldırım University, Faculty of Science and Arts, Biology Department, 24002, Erzincan, TurkeyMert ElvericiThe National Natural History Collections, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, IsraelZeana Ganem & Efrat Gavish-RegevThe Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, IsraelZeana GanemBotswana International University of Science and Technology, Palapye, BotswanaNaledi T. GonnyeUMR CNRS 6553 Ecobio, Université de Rennes, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, FranceAxel Hacala & Julien PétillonDepartment of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South AfricaCharles R. Haddad & Zingisile MboDepartment of Zoology, University of Oxford, Oxford, OX1 3PS, United KingdomThomas HesselbergDepartment of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, SingaporeTammy Ai Tian HoDepartment of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 12121, ThailandThanakorn Into & Booppa PetcharadDept. of Life Science and Systems Biology, University of Torino, Via Accademia Albertina, 13 – 10123, Torino, ItalyMarco Isaia & Veronica NanniUnit of Conservation Biology, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, IndiaDharmaraj JayaramanNational Museum of Namibia, Windhoek, NamibiaNanguei Karuaera5A Sagar Sangeet, SBS Marg, Mumbai, 400005, IndiaRajashree Khalap & Kiran KhalapDepartment of Biological Sciences, Ajou University, Suwon, Republic of KoreaDongyoung KimResearch Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Ljubljana, SloveniaSimona Kralj-FišerUniversity of Greifswald, Zoological Institute and Museum, General and Systematic Zoology, Loitzerstrasse 26, 17489, Greifswald, GermanyHeidi Land, Shou-Wang Lin & Gabriele UhlDepartment of Natural Resource Sciences, McGill University, 21 111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, CanadaSarah Loboda & Catherine ScottDepartment of Biological Science, Macquarie University, Sydney, NSW, 2122, AustraliaElizabeth LoweMitrani Department of Desert Ecology, University in Midreshet Ben-Gurion, Midreshet Ben-Gurion, IsraelYael LubinBioSense Institute – Research Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Đinđića 1, 21000, Novi Sad, SerbiaMarija MiličićNational Museums of Kenya, Museum Hill, P.O. BOX 40658- 00100, Nairobi, KenyaGrace Mwende KiokoSchool for Advanced Studies IUSS, Science, Technology and Society Department, 25100, Pavia, ItalyVeronica NanniInstitute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, MalaysiaYusoff Norma-RashidDepartment of Animal and Environmental Biology, Federal University, Oye-Ekiti, Ekiti State, NigeriaDaniel NwankwoTe Aka Mātuatua School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New ZealandChristina J. PaintingIndependent researcher, Toronto, CanadaAleck PangMuseo Civico di Scienze Naturali “E. Caffi”, Piazza Cittadella, 10, I-24129, Bergamo, ItalyPaolo PantiniRuđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, CroatiaMartina PavlekBiodiversity Research Laboratory, Moreton Morrell, Warwickshire College University Centre, Warwickshire, United KingdomRichard PearceInstitute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South AfricaJulien PétillonDepartment of Entomology, University of Antananrivo, Antananarivo, MadagascarOnjaherizo Christian RaberahonaSchool of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United StatesLaura Segura-HernándezDepartment of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, CanadaLenka SentenskáNatural Sciences, Auckland War Memorial Museum, Parnell, Auckland, 1010, New ZealandLeilani WalkerTe Pūnaha Matatini, University of Auckland, Auckland, New ZealandLeilani WalkerMurang’a University of Technology, Department of Physical & Biological Sciences, P.O.Box 75-10200, Murang’a, KenyaCharles M. WaruiInstitute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22a, 76-200, Słupsk, PolandKonrad WiśniewskiZoological Museum, Biodiversity Unit, FI-20014, University of Turku, Turku, FinlandAlireza ZamaniDepartment of Psychology, University of Tennessee, Knoxville, Tennessee, USAAngela ChuangDepartment of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USAAngela ChuangConceptualization: SM, JM-O, CS, AC; Data collection & validation: all authors; Data management: SM, VN, AC; Data analysis & visualization (Figs. 2–5): SM; Summary illustration (Fig. 1): JM-O; Writing (first draft): SM; Writing, contributions: JM-O, CS, AC; All authors read the text, provided comments, suggestions, and corrections, and approved the final version. More

  • in

    Reactive nitrogen restructures and weakens microbial controls of soil N2O emissions

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Kanter, D. R. et al. Nitrogen pollution policy beyond the farm. Nat. Food 1, 27–32 (2020).
    Google Scholar 
    Tian, H. Q. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998 (2019).CAS 

    Google Scholar 
    Isobe, K., Allison, S. D., Khalili, B., Martiny, A. C. & Martiny, J. B. H. Phylogenetic conservation of bacterial responses to soil nitrogen addition across continents. Nat. Commun. 10, 2499 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Dai, Z. M. et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Glob. Change Biol. 24, 3452–3461 (2018).
    Google Scholar 
    Wallenstein, M., Myrold, D., Firestone, M. & Voytek, M. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol. Appl 16, 2143–2152 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Scheer, C., Fuchs, K., Pelster, D. E. & Butterbach-Bahl, K. Estimating global terrestrial denitrification from measured N2O:(N2O + N2) product ratios. Curr. Opin. Enviro 47, 72–80 (2020).
    Google Scholar 
    Inatomi, M., Hajima, T. & Ito, A. Fraction of nitrous oxide production in nitrification and its effect on total soil emission: a meta-analysis and global-scale sensitivity analysis using a process-based model. PLoS One 14, e0219159 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liang, D. & Robertson, G. P. Nitrification is a minor source of nitrous oxide (N2O) in an agricultural landscape and declines with increasing management intensity. Glob. Change Biol. 27, 5599–5613 (2021).
    Google Scholar 
    Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol Mol. Biol. R. 61, 533–616 (1997).CAS 

    Google Scholar 
    Graf, D. R. H., Jones, C. M. & Hallin, S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One 9, e114118 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lycus, P. et al. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy. ISME J. 11, 2219–2232 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roco, C. A., Bergaust, L. L., Bakken, L. R., Yavitt, J. B. & Shapleigh, J. P. Modularity of nitrogen-oxide reducing soil bacteria: linking phenotype to genotype. Environ. Microbiol 19, 2507–2519 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hallin, S., Philippot, L., Loffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26, 43–55 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Philippot, L., Andert, J., Jones, C. M., Bru, D. & Hallin, S. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob. Change Biol. 17, 1497–1504 (2011).
    Google Scholar 
    Domeignoz-Horta, L. A. et al. Non-denitrifying nitrous oxide-reducing bacteria—an effective N2O sink in soil. Soil Biol. Biochem 103, 376–379 (2016).CAS 

    Google Scholar 
    Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).
    Google Scholar 
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 112, 10967–10972 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Huang, R. L. et al. Plant-microbe networks in soil are weakened by century-long use of inorganic fertilizers. Micro. Biotechnol. 12, 1464–1475 (2019).CAS 

    Google Scholar 
    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. S 48, 25–48 (2017).
    Google Scholar 
    Geisseler, D. & Scow, K. M. Long-term effects of mineral fertilizers on soil microorganisms—a review. Soil Biol. Biochem 75, 54–63 (2014).CAS 

    Google Scholar 
    Simek, M. & Cooper, J. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci. 53, 345–354 (2002).CAS 

    Google Scholar 
    Klemedtsson, L., von Arnold, K., Weslien, P. & Gundersen, P. Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Glob. Change Biol. 11, 1142–1147 (2005).
    Google Scholar 
    Parn, J. et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 9, 1135 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Maeda, K. et al. Relative contribution of nirK-and nirS-bacterial denitrifiers as well as fungal denitrifiers to nitrous oxide production from dairy manure compost. Environ. Sci. Technol. 51, 14083–14091 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coyotzi, S. et al. Agricultural soil denitrifiers possess extensive nitrite reductase gene diversity. Environ. Microbiol 19, 1189–1208 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nadeau, S. A. et al. Metagenomic analysis reveals distinct patterns of denitrification gene abundance across soil moisture, nitrate gradients. Environ. Microbiol 21, 1255–1266 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Enwall, K., Throbäck, I. N., Stenberg, M., Söderström, M. & Hallin, S. Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl Environ. Microbiol 76, 2243–2250 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, C. M. & Hallin, S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J. 4, 633–641 (2010).PubMed 

    Google Scholar 
    Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. A phylogenetic transform enhances analysis of compositional microbiota data. eLife 6, 5721 (2017).
    Google Scholar 
    Magurran, A. E. & Henderson, P. A. Explaining the excess of rare species in natural species abundance distributions. Nature 422, 714–716 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, Z. et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteriain agro-ecosystems across the globe. Glob. Change Biol. 24, 3452–3461 (2018).
    Google Scholar 
    Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Naether, A. et al. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ. Microbiol. 78, 7398–7406 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Navarrete, A. A. et al. Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the Western Brazilian Amazon. Front. Microbiol. 6, 1443 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Jones, C. M., Stres, B., Rosenquist, M. & Hallin, S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol. 25, 1955–1966 (2008).CAS 
    PubMed 

    Google Scholar 
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol 16, 263–274 (2018).CAS 
    PubMed 

    Google Scholar 
    Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2, e00122-00111–e00122-00111 (2011).
    Google Scholar 
    Huang, R. et al. Plant–microbe networks in soil are weakened by century‐long use of inorganic fertilizers. Micro. Biotechnol. 12, 1464–1475 (2019).CAS 

    Google Scholar 
    Bar-Massada, A. Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities. Proc. Royal Soc. B 282, 20150927 (2015).
    Google Scholar 
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).
    Google Scholar 
    Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–U100 (2021).
    Google Scholar 
    Freilich, S. et al. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 38, 3857–3868 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Samad, M. D. S. et al. Phylogenetic and functional potential links pH and N2O emissions in pasture soils. Sci. Rep. 6, 35990 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y. et al. Soil pH as the chief modifier for regional nitrous oxide emissions: new evidence and implications for global estimates and mitigation. Glob. Change Biol. 24, E617–E626 (2018).
    Google Scholar 
    Jones, C. M. et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat. Clim. Change 4, 801–805 (2014).CAS 

    Google Scholar 
    Dorsch, P., Braker, G. & Bakken, L. R. Community-specific pH response of denitrification: experiments with cells extracted from organic soils. FEMS Microbiol Ecol. 79, 530–541 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Linton, N. F., Machado, P. V. F., Deen, B., Wagner-Riddle, C. & Dunfield, K. E. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biol. Biochem 149, 107917 (2020).CAS 

    Google Scholar 
    Xu, X. Y. et al. nosZ clade II rather than clade I determine in situ N2O emissions with different fertilizer types under simulated climate change and its legacy. Soil Biol. Biochem 150, 107974 (2020).CAS 

    Google Scholar 
    Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delgado-Baquerizo, M., Grinyer, J., Reich, P. B. & Singh, B. K. Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Funct. Ecol. 30, 1862–1873 (2016).
    Google Scholar 
    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).
    Google Scholar 
    Lu, C. Q. & Tian, H. Q. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9, 181–192 (2017).
    Google Scholar 
    Van Meter, K. J., Basu, N. B., Veenstra, J. J. & Burras, C. L. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ. Res. Lett. 11, 035014–035013 (2016).
    Google Scholar 
    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS One 9, e105592 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate illumina paired-end reAd mergeR. Bioinformatics 30, 614–620 (2014).CAS 
    PubMed 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J. vegan: Community Ecology Package version 1.8–5 (Semantic Scholar, 2007).McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palarea-Albaladejo, J. & Martin-Fernandez, J. A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab 143, 85–96 (2015).CAS 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006).
    Google Scholar 
    Menzel, U. RMThreshold: Signal-Noise Separation in Random Matrices by Using Eigenvalue. R Package Version 1.1 edn. https://rdrr.io/cran/RMThreshold/man/RMThreshold-package.html (2016).Gu, Z. G., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goenawan, I. H., Bryan, K. & Lynn, D. J. DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics 32, 2713–2715 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, C. M. & Hallin, S. Geospatial variation in co-occurrence networks of nitrifying microbial guilds. Mol. Ecol. 28, 293–306 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 268–215 (2004).
    Google Scholar 
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinform. 13, 113 (2012).
    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2012).
    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
    Google Scholar 
    Greenwell, B. M. & Boehmke, B. C. Variable importance plots-an introduction to the vip package. R. J. 12, 343–366 (2020).
    Google Scholar 
    Molnar, C. iml: An R package for Interpretable. Mach. Learn. J. Open Source Softw. 3, 786 (2018).
    Google Scholar  More

  • in

    Spatial ecology, activity patterns, and habitat use by giant pythons (Simalia amethistina) in tropical Australia

    Seigel, R. A. & Ford, N. B. Reproductive ecology in Snakes: Ecology and Evolutionary Biology (eds. Seigel, R. A., Collins, J. T. &. Novak, S. S.). 210–252. (MacMillan Publishing, 1987).Kremen, C., Merenlender, A. M. & Murphy, D. D. Ecological monitoring: A vital need for integrated conservation and development programs in the tropics. Conserv. Biol. 8, 388–397 (1994).
    Google Scholar 
    Shine, R. & Bonnet, X. Snakes: A new ‘model organism’ in ecological research?. Trends Ecol. Evol. 15, 221–222 (2000).CAS 
    PubMed 

    Google Scholar 
    Vilela, B., Villalobos, F., Rodríguez, M. Á. & Terribile, L. C. Body size, extinction risk and knowledge bias in New World snakes. PLoS ONE 9, e113429 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mathies, T. Reproductive cycles of tropical snakes. in Reproductive Biology and Phylogeny of Snakes (eds. Sever, D. & Aldridge, R.). 523–562. (CRC Press, 2016).Shine, R., Harlow, P. S. & Keogh, J. S. The allometry of life-history traits: Insights from a study of giant snakes (Python reticulatus). J. Zool. 244, 405–414 (1998).
    Google Scholar 
    Natusch, D. J., Lyons, J. A., Riyanto, A., Khadiejah, S. & Shine, R. Detailed biological data are informative, but robust trends are needed for informing sustainability of wildlife harvesting: A case study of reptile offtake in Southeast Asia. Biol. Conserv. 233, 83–92 (2019).
    Google Scholar 
    Freeman, A. & Freeman, A. Habitat use in a large rainforest python (Morelia kinghorni) in the wet tropics of north Queensland, Australia. Herpetol. Conserv. Biol. 4, 252–260 (2009).
    Google Scholar 
    Smith, S. N., Jones, M. D., Marshall, B. M. & Strine, C. T. Native Burmese pythons exhibit site fidelity and preference for aquatic habitats in an agricultural mosaic. Sci. Rep. 11, 7014 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999).
    Google Scholar 
    Spong, G. Space use in lions, Panthera leo, in the Selous Game Reserve: Social and ecological factors. Behav. Ecol. Sociobiol. 52, 303–307 (2002).
    Google Scholar 
    Webb, J. K. & Shine, R. A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biol. Conserv. 82, 203–217 (1997).
    Google Scholar 
    Fearn, S. & Sambono, J. A reliable size record for the scrub python Morelia amethistina (Serpentes: Pythonidae) in north east Queensland. Herpetofauna 30, 2–6 (2000).
    Google Scholar 
    Grow, D., Wheeler, S. & Clark, B. Reproduction of the Amethystine python Python amethystinus kinghorni at the Oklahoma City Zoo. Int. Zoo Year. 27, 241–244 (1988).
    Google Scholar 
    Feldman, A. & Meiri, S. Length–mass allometry in snakes. Biol. J. Linn. Soc. 108, 161–172 (2013).
    Google Scholar 
    Harvey, M. B., Barker, D. G., Ammerman, L. K. & Chippindale, P. T. Systematics of pythons of the Morelia amethistina complex (Serpentes: Boidae) with the description of three new species. Herpetol. Monogr. 14, 139–185 (2000).
    Google Scholar 
    Fearn, S., Schwarzkopf, L. & Shine, R. Giant snakes in tropical forests: A field study of the Australian scrub python, Morelia kinghorni. Wildl. Res. 32, 193–201 (2005).
    Google Scholar 
    Natusch, D. J. D., Lyons, J. A. & Shine, R. Rainforest pythons flexibly adjust foraging ecology to exploit seasonal concentrations of prey. J. Zool. 313, 114–123 (2021).
    Google Scholar 
    Martin, R. W. Field observation of predation on Bennett’s tree-kangaroo (Dendrolagus bennettianus) by an amethystine python (Morelia amethistina). Herpetol. Rev. 26, 74–75 (1995).
    Google Scholar 
    Natusch, D., Lyons, J., Mears, L. A. & Shine, R. Biting off more than you can chew: Attempted predation on a human by a giant snake (Simalia amethistina). Austral. Ecol. 46, 159–162 (2021).
    Google Scholar 
    Neldner, V. J. & Clarkson, J. R. Vegetation of Cape York Peninsula. (Department of Environment and Heritage, 1995).Bureau of Meteorology. Climate Data Online. http://www.bom.gov.au/climate/data/. Accessed 17 July 2020 (2020).Whitaker, P. B. & Shine, R. A radiotelemetric study of movements and shelter-site selection by free-ranging brownsnakes (Pseudonaja textilis, Elapidae). Herpetol. Monogr. 17, 130–144 (2003).
    Google Scholar 
    Harris, S. et al. Home-range analysis using radio-tracking data–A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123 (1990).
    Google Scholar 
    Fearn, S. & Sambono, J. Some ambush predation postures of the Scrub Python Morelia amethistina (Serpentes: Pythonidae) in north east Queensland. Herpetofauna 30, 39–44 (2000).
    Google Scholar 
    Caswell, H. Theory and models in ecology: A different perspective. Ecol. Model. 43, 33–44 (1988).
    Google Scholar 
    Silva, I., Crane, M., Marshall, B. M. & Strine, C. T. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian bridge movement models. Move. Ecol. 8, 43 (2020).
    Google Scholar 
    Row, J. R. & Blouin-Demers, G. Kernels are not accurate estimators of home-range size for herpetofauna. Copeia 2006, 797–802 (2006).
    Google Scholar 
    Newman, P., Dwyer, R. G., Belbin, L. & Campbell, H. A. ZoaTrack—An online tool to analyse and share animal location data: User engagement and future perspectives. Aust. Zool. 41, 12–18. https://zoatrack.org/toolkit/doi (2020).Pearson, D. J. & Shine, R. Expulsion of interperitoneally-implanted radiotransmitters by Australian pythons. Herpetol. Rev. 33, 261–263 (2002).
    Google Scholar 
    Hale, V. L. et al. Radio transmitter implantation and movement in the wild timber rattlesnake (Crotalus horridus). J. Wildl. Dis. 53, 591–595 (2017).PubMed 

    Google Scholar 
    Martin, A. E., Jørgensen, D. & Gates, C. C. Costs and benefits of straight versus tortuous migration paths for Prairie Rattlesnakes (Crotalus viridis viridis) in seminatural and human-dominated landscapes. Can. J. Zool. 95, 921–928 (2017).
    Google Scholar 
    Glaudas, X., Rice, S. E., Clark, R. W. & Alexander, G. J. Male energy reserves, mate-searching activities, and reproductive success: Alternative resource use strategies in a presumed capital breeder. Oecologia 194, 415–425 (2020).ADS 
    PubMed 

    Google Scholar 
    Glaudas, X., Rice, S. E., Clark, R. W. & Alexander, G. J. The intensity of sexual selection, body size and reproductive success in a mating system with male–male combat: is bigger better?. Oikos 129, 998–1011 (2020).
    Google Scholar 
    Gannon, V. P. J. & Secoy, D. M. Seasonal and daily activity patterns in a Canadian population of the prairie rattlesnake, Crotalus viridus viridis. Can. J. Zool. 63, 86–91 (1985).
    Google Scholar 
    Heard, G. W., Black, D. & Robertson, P. Habitat use by the inland carpet python (Morelia spilota metcalfei: Pythonidae): Seasonal relationships with habitat structure and prey distribution in a rural landscape. Austral. Ecol. 29, 446–460 (2004).
    Google Scholar 
    Madsen, T. & Shine, R. Seasonal migration of predators and prey—A study of pythons and rats in tropical Australia. Ecology 77, 149–156 (1996).
    Google Scholar 
    Graves, B. M. & Duvall, D. Reproduction, rookery use, and thermoregulation in free-ranging, pregnant Crotalus v. viridis. J. Herpetol. 27, 33–41 (1993).
    Google Scholar 
    Chiaraviglio, M. The effects of reproductive condition on thermoregulation in the Argentina boa constrictor (Boa constrictor occidentalis) (Boidae). Herpetol. Monogr. 20, 172–177 (2006).
    Google Scholar 
    Smith, C. F., Schuett, G. W., Earley, R. L. & Schwenk, K. The spatial and reproductive ecology of the copperhead (Agkistrodon contortrix) at the northeastern extreme of its range. Herpetol. Monogr. 23, 45–73 (2009).
    Google Scholar 
    Shine, R. & Fitzgerald, M. Large snakes in a mosaic rural landscape: The ecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Biol. Conserv. 76, 113–122 (1996).
    Google Scholar 
    Heard, G. W. et al. Canid predation: A potentially significant threat to relic populations of the Inland Carpet Python ‘Morelia spilota metcalfei’ (Pythonidae) in Victoria. Vic. Nat. 123, 68–74 (2006).
    Google Scholar 
    Downes, S. & Shine, R. Sedentary snakes and gullible geckos: Predator–prey coevolution in nocturnal rock-dwelling reptiles. Anim. Behav. 55, 1373–1385 (1998).CAS 
    PubMed 

    Google Scholar 
    Miller, A. K., Maritz, B., McKay, S., Glaudas, X. & Alexander, G. J. An ambusher’s arsenal: chemical crypsis in the puff adder (Bitis arietans). Proc. R. Soc. B 282, 20152182 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Maritz, B. & Alexander, G. J. Dwarfs on the move: Spatial ecology of the world’s smallest viper, Bitis schneideri. Copeia 2012, 115–120 (2012).
    Google Scholar 
    Stirrat, S. C. Seasonal changes in home-range area and habitat use by the agile wallaby (Macropus agilis). Wildl. Res. 30, 593–600 (2003).
    Google Scholar 
    Ayers, D. Y. & Shine, R. Thermal influences on foraging ability: Body size, posture and cooling rate of an ambush predator, the python Morelia spilota. Funct. Ecol. 11, 342–347 (1997).
    Google Scholar 
    Pearson, D., Shine, R. & Williams, A. Spatial ecology of a threatened python (Morelia spilota imbricata) and the effects of anthropogenic habitat change. Austral. Ecol. 30, 261–274 (2005).
    Google Scholar 
    Freeman, A. A study in power and grace: The amethystine python. Wildl. Aust. 53, 27–29 (2016).
    Google Scholar 
    Silva, I., Crane, M., Suwanwaree, P., Strine, C. & Goode, M. Using dynamic Brownian bridge movement models to identify home range size and movement patterns in king cobras. PLoS ONE 13, e0203449 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, B. M. et al. Space fit for a king: Spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphibia-Reptilia 40, 163–178 (2019).
    Google Scholar 
    Udyawer, V., Simpfendorfer, C. A., Heupel, M. R. & Clark, T. D. Temporal and spatial activity-associated energy partitioning in free-swimming sea snakes. Funct. Ecol. 31, 1739–1749 (2017).
    Google Scholar 
    Smaniotto, N. P., Moreira, L. F., Rivas, J. A. & Strüssmann, C. Home range size, movement, and habitat use of yellow anacondas (Eunectes notaeus). Salamandra 56, 159–167 (2020).
    Google Scholar 
    Low, M. R. Rescue, rehabilitation and release of reticulated pythons in Singapore. in Global Reintroduction Perspectives: 2018. Case Studies from Around the Globe (ed. Soorae, P. S.) 78–81 (IUCN/SSC Reintroduction Specialist Group, 2018).Alexander, G. J. & Maritz, B. Sampling interval affects the estimation of movement parameters in four species of African snakes. J. Zool. 297, 309–318 (2015).
    Google Scholar 
    Smith, B. J. et al. Betrayal: Radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18, 3239–3250 (2016).
    Google Scholar  More

  • in

    Squid adjust their body color according to substrate

    Endler, J. A. Interactions between predators and prey. In Behavioural Ecology: An Evolutionary Approach 3rd edn (eds Krebs, J. R. & Davies, N. B.) 169–196 (Blackwell, 1991).
    Google Scholar 
    Stevens, M. & Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R Soc. Lond. B 364, 423–427 (2009).
    Google Scholar 
    Stevens, M. & Merilaita, S. Animal camouflage: Function and mechanisms. In Animal Camouflage: Mechanisms and Function (eds Stevens, M. & Merilaita, S.) 1–17 (Cambridge University Press, 2011).
    Google Scholar 
    Reiter, S. & Laurent, G. Visual perception and cuttlefish camouflage. Curr. Opin. Neurobiol. 260, 47–54 (2020).
    Google Scholar 
    Cott, H. B. Adaptive Coloration in Animals (Methuen, 1940).
    Google Scholar 
    Cloney, R. A. & Florey, E. Ultrastructure of cephalopod chromatophore organs. Z. Zellforsch. Mikrosk. Anat. 89, 250–280 (1968).CAS 
    PubMed 

    Google Scholar 
    Borrelli, L., Gherardi, F. & Fiorito, G. A. Catalogue of Body Patterning in Cephalopoda (Firenze University Press, 2006).
    Google Scholar 
    Reiter, S. et al. Elucidating the control and development of skin patterning in cuttlefish. Nature 562, 361–366 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbosa, A., Allen, J. J., Mäthger, L. M. & Hanlon, R. T. Cuttlefish use visual cues to determine arm postures for camouflage. Proc. R Soc. B Biol. Sci. 279, 84–90 (2012).
    Google Scholar 
    Hanlon, R. T. Cephalopod dynamic camouflage. Curr. Biol. 17, R400-404 (2007).CAS 
    PubMed 

    Google Scholar 
    Hill, A. V. & Solandt, D. Y. Myograms from the chromatophores of Sepia. J. Physiol. Lond. 83, 13–14 (1935).
    Google Scholar 
    Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10, 1–5 (2019).
    Google Scholar 
    Hanlon, R. T. et al. Rapid adaptive camouflage in cephalopods. In Animal Camouflage: Mechanisms and Functions (eds Stevens, M. & Merilaita, S.) 145–163 (Cambridge Univ Press, 2011).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Adaptive coloration in young cuttlefish (Sepia officinalis L.): The morphology and development of body patterns and their relation to behavior. Philos. Trans. R Soc. Lond. B 320, 437–487 (1988).ADS 

    Google Scholar 
    Ferguson, G., Messenger, J. B. & Budelmann, B. Gravity and light influence the countershading reflexes of the cuttlefish Sepia officinalis. J. Exp. Biol. 191, 247–256 (1994).CAS 
    PubMed 

    Google Scholar 
    Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. & Osorio, D. Cuttlefish responses to visual orientation of substrates, water flow and a model of motion camouflage. J. Exp. Biol. 209, 4717–4723 (2006).CAS 
    PubMed 

    Google Scholar 
    Barbosa, A. et al. Disruptive coloration in cuttlefish: A visual perception mechanism that regulates ontogenetic adjustment of skin patterning. J. Exp. Biol. 210, 1139–1147 (2007).PubMed 

    Google Scholar 
    Chiao, C. C., Chubb, C. & Hanlon, R. T. Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish. Vis. Res. 47, 2223–2235 (2007).PubMed 

    Google Scholar 
    Nakajima, R. & Ikeda, Y. A catalog of the chromatic, postural, and locomotor behaviors of the pharaoh cuttlefish (Sepia pharaonis) from Okinawa Island, Japan. Mar. Biodivers. 47, 735–753 (2017).
    Google Scholar 
    Packard, A. Chromatophore fields in the skin of the octopus. J. Physiol. 238, 38–40 (1974).
    Google Scholar 
    Caldwell, R. L., Ross, R., Rodaniche, A. F. & Huffard, C. L. Behavior and body patterns of the larger pacific striped octopus. PLoS ONE 10, e0134152 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gutnick, T., Shomrat, T., Mather, J. A. & Kuba, M. J. The cephalopod brain: Motion control, learning, and cognition. In Physiology of Molluscs: A Collection of Selected Reviews Vol. 2 (eds Salleudin, S. & Mukai, S.) 139–177 (Apple Academic Press, 2016).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour 2nd edn. (Cambridge University Press, 2018).
    Google Scholar 
    Cloney, R. & Brocco, S. Chromatophore organs, reflector cells, iridocytes, and leucophores. Am. Zool. 23, 581–592 (1983).
    Google Scholar 
    Mäthger, L. M. & Hanlon, R. T. Malleable skin coloration in cephalopods: Selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res. 329, 179 (2007).PubMed 

    Google Scholar 
    Josef, N., Berenshtein, I., Fiorito, G., Sykes, A. V. & Shashar, N. Camouflage during movement in the European cuttlefish (Sepia officinalis). J. Exp. Biol. 218, 3391–3398 (2015).PubMed 

    Google Scholar 
    Josef, N. et al. Size matters: Observed and modeled camouflage response of European Cuttlefish (Sepia officinalis) to different substrate patch sizes during movement. Front. Physiol. 7, 671 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1890).
    Google Scholar 
    Zhang, Y. & Richardson, J. S. Unidirectional prey–predator facilitation: Apparent prey enhance predators’ foraging success on cryptic prey. Biol. Lett. 3, 348–351 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Troscianko, T., Benton, C. P., Lovell, P. G., Tolhurst, D. J. & Pizlo, Z. Camouflage and visual perception. Philos. Trans. R Soc. B 364, 449–461 (2009).
    Google Scholar 
    Land, M. F. & Nilsson, D. E. Animal Eyes (Oxford University Press, 2012).
    Google Scholar 
    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology (Princeton University Press, 2014).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour (Cambridge University Press, 1996).
    Google Scholar 
    Staudinger, M. D., Hanlon, R. T. & Juanes, F. Primary and secondary defences of squid to cruising and ambush fish predators: Variable tactics and their survival value. Anim. Behav. 81, 585–594 (2011).
    Google Scholar 
    Ferguson, G. P. & Messenger, J. B. A countershading reflex in cephalopods. Proc. R. Soc. B 243, 63–67 (1991).ADS 

    Google Scholar 
    Zylinski, S. & Johnsen, S. Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Curr. Biol. 21, 1937–1941 (2011).CAS 
    PubMed 

    Google Scholar 
    Young, R. E. & Roper, C. F. E. Bioluminescent countershading in mid water animals: Evidence from living squid. Science 191, 1046–1048 (1976).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jereb, P. & Roper, C. F. E. Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Myopsid and Oegopsid Squids Vol. 2 (FAO, 2010).
    Google Scholar 
    Okutani, T. Life history of the oval squid, Sepioteuthis lessoniana. Saibai Giken 13, 69–75 (1984) ((in Japanese)).
    Google Scholar 
    Segawa, S. Food consumption, food conversion and growth rates of the oval squid Sepioteuthis lessoniana by laboratory experiments. Nippon Suisan Gakkai Shi 56, 217–222 (1990).
    Google Scholar 
    Izuka, T., Segawa, S., Okutani, T. & Numachi, K. Evidence on the existence of three species in the oval squid Sepioteuthis lessoniana complex in Ishigaki Island, Okinawa, southwestern Japan, by isozyme analyses. Venus Jpn. J. Malacol/Kairuigaku Zasshi 53, 217–228 (1994).
    Google Scholar 
    Izuka, T. Biochemical study of the population heterogeneity and distribution of the oval squid Sepioteuthis lessoniana complex in southwestern Japan. Am. Malac. Bull. 12, 129–135 (1996).
    Google Scholar 
    Imai, H., & Aoki, M. Genetic diversity and genetic heterogeneity of bigfin reef squid “Sepioteuthis lessoniana” species complex in northwestern Pacific Ocean. in Analysis of Genetic Variation in Animals (Caliskan, M. ed). 151–166. (InTech, 2012).Cheng, S. H. et al. Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans. Hydrobiologia 725, 165–188 (2014).CAS 

    Google Scholar 
    Tomano, S. et al. Contribution of Sepioteuthis sp. 1 and Sepioteuthis sp. 2 to oval squid fishery stocks in western Japan. Fish Sci 82, 585–596 (2016).CAS 

    Google Scholar 
    Okutani, T. Past, present and future studies on cephalopod diversity in tropical west Pacific. Phuket Mar. Biol. Center Res. Bull. 66, 39–50 (2005).
    Google Scholar 
    Lee, P. G., Turk, P. E., Yang, W. T. & Hanlon, R. T. Biological characteristics and biomedical applications of the squid Sepioteuthis lessoniana cultured through multiple generations. Biol. Bull. 186, 328–341 (1994).CAS 
    PubMed 

    Google Scholar 
    Nabhitabhata, J. & Ikeda, Y. Sepioteuthis lessoniana. In Cephalopod Culture (eds Iglesias, J. et al.) 315–347 (Springer, 2014).
    Google Scholar 
    Lajbner, Z. et al. Captive breeding of the oval squid (Aori-ika; Sepioteuthis sp.). in Cephalopod International Advisory Council Conference 2018, Book of Abstracts, St. Petersburg. 152. (2018)Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, i01 (2015).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org (R Foundation for Statistical Computing, 2019).RStudio Team. RStudio: Integrated Development for R. http://www.rstudio.com (RStudio, Inc., 2019)Kenward, M. & Roger, J. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–997 (1997).CAS 
    PubMed 
    MATH 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, C. Y., Tsai, Y. C. & Chiao, C. C. Quantitative analysis of dynamic body patterning reveals the grammar of visual signals during the reproductive behavior of the oval squid Sepioteuthis lessoniana. Front. Ecol. Evol. 5, 30 (2017).
    Google Scholar 
    Chung, W. S., Kurniawan, N. D. & Marshall, N. J. Toward an MRI-based mesoscale connectome of the squid brain. Iscience 23, 100816 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Messenger, J. B. Cephalopod chromatophores: Neurobiology and natural history. Biol. Rev. Camb. Philos. Soc. 76, 473–528 (2001).CAS 
    PubMed 

    Google Scholar 
    York, C. A. & Bartol, I. K. Anti-predator behavior of squid throughout ontogeny. J. Exp. Mar. Biol. Ecol. 480, 26–35 (2016).
    Google Scholar 
    Suzuki, M., Kimura, T., Ogawa, H., Hotta, K. & Oka, K. Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: Contributions of miniature oscillation. PLoS ONE 6, e18244 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y.C., Wang, W.C., & Grasse, B. Electrical coupling between chromatophore muscle fibers allows for versatile control of chromatophore expansion in squid. bioRxiv 2020.02.17.951715 (2020).Hadjisolomou, S. P., El-Haddad, R. W., Kloskowski, K., Chavarga, A. & Abramov, I. Quantifying the speed of chromatophore activity at the single-organ level in response to a visual startle stimulus in living, intact squid. Front. Physiol. 12, 675252. https://doi.org/10.3389/fphys.2021.675252 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    DNA barcoding and phylogeography of the Hoplias malabaricus species complex

    Cardoso, Y. P. et al. A continental-wide molecular approach unraveling mtDNA diversity and geographic distribution of the Neotropical genus Hoplias. PLoS ONE 13(8), e0202024. https://doi.org/10.1371/journal.pone.0202024 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertollo, L. A. C., Born, G. G., Dergam, J. A., Fenocchio, A. S. & Moreira-Filho, O. A biodiversity approach in the Neotropical Erythrinidae fish, Hoplias malabaricus: Karyotypic survey, geographic distribution of karyomorphs and cytotaxonomic considerations. Chrom. Res. 8(7), 603–613 (2000).CAS 
    Article 

    Google Scholar 
    Oyakawa, O. T. Family Erythrinidae (Trahiras). in Check list of the freshwater fishes of South and Central America (Reis, R. E., Kullander, S. O. & Ferraris, C.). Edipucrs 238–240 (Porto Alegre, 2003).Dagosta, F. C. P. & de Pinna, M. C. C. The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Museum Nat. Hist. 431, 1–163 (2019).
    Google Scholar 
    Da Rosa, R., Vicari, M. R., Dias, A. L. & Giuliano-Caetano, L. New insights into the biogeographic and Karyotypic Evolution of Hoplias Malabaricus. Zebrafish 11(3), 198–206. https://doi.org/10.1089/zeb.2013.0953 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Santos, U. et al. Molecular and karyotypic phylogeography in the neotropical Hoplias malabaricus (Erythrinidae) fish in eastern Brazil. J. Fish Biol. 75(9), 2326–2343. https://doi.org/10.1111/j.1095-8649.2009.02489.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Blanco, D. R., Lui, R. L., Bertollo, L. A. C., Diniz, D. & Filho, O. M. Characterization of invasive fish species in a river transposition region: Evolutionary chromosome studies in the genus Hoplias (Characiformes, Erythrinidae). Rev. Fish Biol. Fish. 20(1), 1–8. https://doi.org/10.1007/s11160-009-9116-3 (2010).Article 

    Google Scholar 
    Jacobina, U. P. et al. DNA barcode sheds light on systematics and evolution of neotropical freshwater trahiras. Genetica 146, 505. https://doi.org/10.1007/s10709-018-0043-x (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marques, D. F., Santos, F. A., da Silva, S. S., Sampaio, I. & Rodrigues, L. R. R. Cytogenetic and DNA barcoding reveals high divergence within the trahira, Hoplias malabaricus (Characiformes: Erythrinidae) from the lower Amazon River. Neotrop. Ichthyol. 11(2), 459–466. https://doi.org/10.1590/S1679-62252013000200015 (2013).Article 

    Google Scholar 
    Paz, F. P. C., Batista, J. S. & Porto, J. I. R. DNA barcodes of rosy tetras and allied species (Characiformes: Characidae: Hyphessobrycon) from the Brazilian Amazon Basin. PLoS ONE 9(5), e98603. https://doi.org/10.1371/journal.pone.0098603 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Guimarães, K. L. A., de Sousa, M. P. A., Ribeiro, F. R. V., Porto, J. I. R. & Rodrigues, L. R. R. DNA barcoding of fish fauna from low order streams of Tapajós River basin. PLoS ONE 13(12), e0209430. https://doi.org/10.1371/journal.pone.0209430 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Machado, V. N. et al. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognized diversity in the Amazon. Sci. Rep. 8, 8387. https://doi.org/10.1038/s41598-018-26550-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Philos. Trans. R. Soc. B 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).CAS 
    Article 

    Google Scholar 
    Pugedo, M. L., de Andrade Neto, F. R., Pessali, T. C., Birindelli, J. L. O. & Carvalho, D. C. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin. Genetica 144(3), 1–9. https://doi.org/10.1007/s10709-016-9903-4 (2016).Article 

    Google Scholar 
    Rosso, J. J. et al. Integrative taxonomy reveals a new species of the Hoplias malabaricus species complex (Teleostei: Erythrinidae). Ichthyol. Explor. Freshw. 1, 1–18. https://doi.org/10.23788/IEF-1076 (2018).Article 

    Google Scholar 
    Azpelicueta, M. M., Benítez, M., Aichino, D. & Mendez, C. M. D. A new species of the genus Hoplias (Characiformes, Erythrinidae), a tararira from the lower Paraná River, in Missiones, Argentina. Acta Zool. Lilloana 59(1–2), 71–82 (2015).
    Google Scholar 
    Rosso, J. J. et al. A new species of the Hoplias malabaricus species complex (Characiformes: Erythrinidae) from the La Plata River basin. Cybium 40(3), 199–208 (2016).
    Google Scholar 
    Cardoso, Y. P. & Montoya-Burgos, J. I. Unexpected diversity in the catfish Pseudancistrus brevispinis reveals dispersal routes in a Neotropical center of endemism: The Guyanas Region. Mol. Ecol. 18(5), 947–964. https://doi.org/10.1111/j.1365-294X.2008.04068.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hoorn, C., Wesselingh, F. P., Hovikoski, J. & Guerrero, J. The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). Amazon. Landsc. Species Evol. https://doi.org/10.1002/9781444306408.ch8 (2010).Article 

    Google Scholar 
    Albert, J. S. & Reis, R. E. Introduction to neotropical freshwaters. In Historical Biogeography of Neotropical Freshwater Fishes (eds Albert, J. S. & Reis, R. E.) 3–19 (University of California Press, 2011).
    Google Scholar 
    Leys, M., Keller, I., Räsänen, K., Gattolliat, J.-L. & Robinson, C. T. Distribution and population genetic variation of cryptic species of the Alpine mayfly Baetis alpinus (Ephemeroptera: Baetidae) in the Central Alps. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0643-y (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25(22), 4692–4693 (1997).CAS 
    Article 

    Google Scholar 
    Vitorino, C. A., Oliveira, R. C. C., Margarido, V. P. & Venere, P. C. Genetic diversity of Arapaima gigas (Schinz, 1822) (Osteoglossiformes: Arapaimidae) in the Araguaia-Tocantins basin estimated by ISSR marker. Neotrop. Ichthyol. 13, 557–568. https://doi.org/10.1590/1982-0224-20150037 (2015).Article 

    Google Scholar 
    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B 359, 1847–1857. https://doi.org/10.1098/srtb.2005.1716 (2005).Article 

    Google Scholar 
    Dunn, I. S. & Blattner, F. R. Sharons 36 to 40: Multienzyme, high capacity, recombination deficient replacement vectors with polylinkers and polystuffers. Nucleic Acids Res. 15, 2677–2698 (1987).CAS 
    Article 

    Google Scholar 
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994).CAS 
    Article 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334 (2000).CAS 
    Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. DNA-Based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8(7), e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55(4), 595–609. https://doi.org/10.1080/10635150600852011 (2006).Article 
    PubMed 

    Google Scholar 
    Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62(5), 707–724. https://doi.org/10.1093/sysbio/syt033 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21(8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Drummond, A. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. https://doi.org/10.1186/1471-2148-7-214 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. https://doi.org/10.1093/molbev/msn083 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2017).Ezard, T., Fujisawa, T. & Barraclough, T. splits: Species Limits by Threshold Statistics. R package version 1.0–19/r52. https://R-Forge.R-project.org/projects/splits/ (2017).Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 

    Google Scholar 
    Bermingham, E., McCafferty, S. S. & Martin, A. P. Fish biogeography and molecular clocks: Perspectives from the Panamanian Isthmus. In Molecular Systematics of Fishes (eds Kocher, T. D. & Stepien, C. A.) 113–128 (Academic Press, 1997).Chapter 

    Google Scholar 
    Thomaz, A. T., Malabarba, L. R., Bonatto, S. L. & Knowles, L. L. Testing the effect of palaeodrainages versus habitat stability on genetic divergence in riverine systems: Study of a Neotropical fish of the Brazilian coastal Atlantic Forest. J. Biogeogr. 42, 2389–2401. https://doi.org/10.1111/jbi.12597 (2015).Article 

    Google Scholar 
    Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic and geograhic data. Syst. Biol. 61(6), 897–911. https://doi.org/10.1093/sysbio/sys038 (2012).Article 
    PubMed 

    Google Scholar 
    Excoffier, L., Laval, G. & Schneider, S. Arlequin: A Software for Population Data Analysis. Version 3.1. http://cmpg.unibe.ch/software/arlequin3 (2007).Wright, S. Evolution and the genetics of populations: Variability within and among natural populations. Univ. Chicago 4, 580 (1978).
    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16(1), 37–48 (1999).CAS 
    Article 

    Google Scholar 
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).Article 

    Google Scholar 
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    Article 

    Google Scholar 
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    Article 

    Google Scholar 
    Austin, M. P. Continuum concept, ordination methods, and niche theory. Annu. Rev. Ecol. Syst. 16(1), 39–61. https://doi.org/10.1146/annurev.es.16.110185.000351 (1985).MathSciNet 
    Article 

    Google Scholar 
    Graham, A., Atkinson, P. & Danson, F. Spatial analysis for epidemiology. Acta Trop. 91(3), 219–225. https://doi.org/10.1016/j.actatropica.2004.05.001 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Guimarães, K. L. A., Rosso, J. J., Souza, M. F. B., de Astarloa, J. M. D. & Rodrigues, L. R. R. Integrative taxonomy reveals disjunct distribution and first record of Hoplias misionera (Characiformes: Erythrinidae) in the Amazon River basin: Morphological, DNA barcoding and cytogenetic considerations. Neotrop. Ichthyol. 19(2), e200110. https://doi.org/10.1590/1982-0224-2020-0110 (2021).Article 

    Google Scholar 
    Queiroz, L. J. et al. Evolutionary units delimitation and continental multilocus phylogeny of the hyperdiverse catfish genus Hypostomus. Mol. Phylogenet. Evol. 145, 106711. https://doi.org/10.1016/j.ympev.2019.106711 (2020).Article 

    Google Scholar 
    Phillips, J. D., Gillis, D. J. & Hanner, R. H. Incomplete estimates of genetic diversity within species: Implications for DNA barcoding. Ecol. Evol. https://doi.org/10.1002/ece3.4757 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blaxter, M. L. The promise of a DNA taxonomy. Philos. Trans. R. Soc. B. 359(1444), 669–679. https://doi.org/10.1098/rstb.2003.1447 (2004).CAS 
    Article 

    Google Scholar 
    Nwani, C. D. et al. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species. Mitochondrial DNA 22(1), 43–51. https://doi.org/10.3109/19401736.2010.536537 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aguirre, W. E., Shervette, V. R., Navarrete, R., Calle, P. & Agorastos, S. Morphological and genetic divergence of Hoplias microlepis (Characiformes: Erythrinidae) in rivers and artificial impoundments of Western Ecuador. Copeia 2013(2), 312–323. https://doi.org/10.1643/ci-12-083 (2013).Article 

    Google Scholar 
    Pires, W. M. M., Barros, M. C. & Fraga, E. C. DNA Barcoding unveils cryptic lineages of Hoplias malabaricus from Northeastern Brazil. Braz. J. Biol. 81(4), 917–927. https://doi.org/10.1590/1519-6984.231598 (2020).Article 

    Google Scholar 
    Souza, F. H. S. et al. interspecific genetic differences and historical demography in South American Arowanas (Osteoglossiformes, Osteoglossidae, Osteoglossum). Genes 10(9), 693. https://doi.org/10.3390/genes10090693 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Torati, L. S. et al. Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins. BMC Genet. https://doi.org/10.1186/s12863-018-0711-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lovejoy, N. R. & Araujo, M. L. G. Molecular systematics, biogeography and population structure of Neotropical freshwater needlefishes of the genus Potamorrhaphis. Mol. Ecol. 9(3), 259–268. https://doi.org/10.1046/j.1365-294x.2000.00845.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mabesoone, J. M. Sedimentary Basins of Northeast Brazil (Federal University of Pernambuco, 1994).
    Google Scholar 
    Haffer, J. & Prance, G. T. Impulsos climáticos da evolução na Amazônia durante o Cenozóico: Sobre a teoria dos Refúgios da diferenciação biótica. Estudos Avançados USP 46, 175–208. https://doi.org/10.1590/S0103-40142002000300014 (2002).Article 

    Google Scholar 
    Riker, S. R. L., Lima, F. J. C., Motta, M. B. Evidências de glaciação Pleistocênica na Amazônia Brasileira. Anais do 14° Simpósio de Geologia da Amazônia, Sociedade Brasileira de Geologia 15–18 (2015).Albert, J. S., Val, P. & Hoorn, C. The changing course of the Amazon River in the Neogene: Center stage for Neotropical diversification. Neotrop. Ichthyol. 16(3), e180033. https://doi.org/10.1590/1982-0224-20180033 (2018).Article 

    Google Scholar 
    Lundberg, J. G. et al. The stage for Neotropical fish diversification: a history of tropical South American rivers. (eds. Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M., Lucena, C. A. S. Phylogeny and classification of Neotropical fishes). Edipucrs 13–48 (1998).Hubert, N. & Renno, J. F. Historical biogeography of South American freshwater fishes. J. Biogeogr. 33(8), 1414–1436. https://doi.org/10.1111/j.1365-2699.2006.01518.x (2006).Article 

    Google Scholar 
    Farias, I. P. & Hrbek, T. Patterns of diversification in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon basin. Mol. Phylogenet. Evol. 49, 32–43. https://doi.org/10.1016/j.ympev.2008.05.033 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tagliacollo, V. A., Bernt, M. J., Craig, J. M., Oliveira, C. & Albert, J. S. Model-based total evidence phylogeny of Neotropical electric knifefishes (Teleostei, Gymnoti-formes). Mol. Phylogenet. Evol. 95, 20–33. https://doi.org/10.1016/j.ympev.2015.11.007 (2015).Article 
    PubMed 

    Google Scholar 
    Hutchinson, G. E. Concluding remarks. Cold Spring Harbor Symposium. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Inte-grating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    McNyset, K. M. Ecological niche conservatism in North American freshwater fishes. Biol. J. Lin. Soc. 96, 282–295 (2009).Article 

    Google Scholar 
    Silva, W. C., Marceniuk, A. P., Sales, J. B. L. & Araripe, J. Early pleistocene lineages of Bagre bagre (Linnaeus, 1766) (Siluriformes: Ariidae), from the Atlantic coast of South America, with insights into the demography and biogeography of the species. Neotrop. Ichthyol. https://doi.org/10.1590/1982-0224-20150184 (2016).Article 

    Google Scholar 
    Lemopoulos, A. & Covain, R. Biogeography of the freshwater fishes of the Guianas using a partitioned parsimony analysis of endemicity with reappraisal of ecoregional boundaries. Cladistics 35(2019), 106–124. https://doi.org/10.1111/cla.12341 (2018).Article 
    PubMed 

    Google Scholar 
    Hoorn, C. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 267–309. https://doi.org/10.1016/0031-0182(93)90087-Y (1993).Article 

    Google Scholar 
    Hoorn, C., Guerreiro, J. & Sarmiento, G. Andean tectonics as a cause for changing drainage patterns in Miocene Northern South America. Geology 23(3), 237–240. https://doi.org/10.1130/0091-7613(1995)023%3c0237:ATAACF%3e2.3.CO;2 (1995).ADS 
    Article 

    Google Scholar 
    Ribeiro, A. C. Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: An example of faunal evolution associated with a divergent continental margin. Neotrop. Ichthyol. 4(2), 225–246. https://doi.org/10.1590/S1679-62252006000200009 (2006).Article 

    Google Scholar 
    Lovejoy, N. R., Albert, J. S. & Crampton, W. G. R. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. J. S. Am. Earth Sci. 21(1–2), 5–13. https://doi.org/10.1016/j.jsames.2005.07.009 (2006).Article 

    Google Scholar  More

  • in

    Western boundary currents drive sun-coral (Tubastraea spp.) coastal invasion from oil platforms

    Katsanevakis, S. et al. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquat. Invasions 9, 391–423 (2014).
    Google Scholar 
    Huxel, G. R. Rapid displacement of native species by invasive species: Effects of hybridization. Biol. Conserv. 89, 143–152 (1999).
    Google Scholar 
    Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).
    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 

    Google Scholar 
    Ferreira, C. E. L., Gonçalves, J. E. A. & Coutinho, R. Ship hulls and oil platforms as potential vectors to marine species introduction. J. Coast. Res. SI 39 (Pro), 1341–1346 (2006).
    Google Scholar 
    Glasby, T. M., Connell, S. D., Holloway, M. G. & Hewitt, C. L. Nonindigenous biota on artificial structures: Could habitat creation facilitate biological invasions?. Mar. Biol. 151, 887–895 (2007).
    Google Scholar 
    Hedge, L. H. & Johnston, E. L. Propagule pressure determines recruitment from a commercial shipping pier. Biofouling 28, 73–85 (2012).PubMed 

    Google Scholar 
    Capel, K. C. C., Creed, J., Kitahara, M. V., Chen, C. A. & Zilberberg, C. Multiple introductions and secondary dispersion of Tubastraea spp. in the Southwestern Atlantic. Sci. Rep. 9, 1–11 (2019).CAS 

    Google Scholar 
    De Paula, A. F. & Creed, J. C. Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: A case of accidental introduction. Bull. Mar. Sci. 74, 175–183 (2004).
    Google Scholar 
    Lages, B. G., Fleury, B. G., Menegola, C. & Creed, J. C. Change in tropical rocky shore communities due to an alien coral invasion. Mar. Ecol. Prog. Ser. 438, 85–96 (2011).ADS 

    Google Scholar 
    Mantelatto, M. C., Creed, J. C., Mourão, G. G., Migotto, A. E. & Lindner, A. Range expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis in the Southwest Atlantic. Coral Reefs 30, 397–397 (2011).ADS 

    Google Scholar 
    do Santos, L. A. H., Ribeiro, F. V. & Creed, J. C. Antagonism between invasive pest corals Tubastraea spp. and the native reef-builder Mussismilia hispida in the southwest Atlantic. J. Exp. Mar. Biol. Ecol. 449, 69–76 (2013).
    Google Scholar 
    Miranda, R. J., Cruz, I. C. S. & Barros, F. Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef. Mar. Biol. 163, 1–12 (2016).CAS 

    Google Scholar 
    Silva, A. G., Lima, R. P., Gomes, A. N., Fleury, B. G. & Creed, J. C. Expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis into the tamoios ecological station marine protected area, Brazil. Aquat. Invasions 6, S105–S110 (2011).
    Google Scholar 
    Mizrahi, D., Navarrete, S. A. & Flores, A. A. V. Groups travel further: Pelagic metamorphosis and polyp clustering allow higher dispersal potential in sun coral propagules. Coral Reefs 33, 443–448 (2014).ADS 

    Google Scholar 
    De Paula, A. F., De Oliveira Pires, D. & Creed, J. C. Reproductive strategies of two invasive sun corals (Tubastraea spp.) in the southwestern Atlantic. J. Mar. Biol. Assoc. UK 94, 481–492 (2014).
    Google Scholar 
    Capel, K. C. C. et al. Clone wars: Asexual reproduction dominates in the invasive range of Tubastraea spp. (Anthozoa: Scleractinia) in the South-Atlantic Ocean. PeerJ 2017, 1–21 (2017).
    Google Scholar 
    Luz, B. L. P., Di Domenico, M., Migotto, A. E. & Kitahara, M. V. Life-history traits of Tubastraea coccinea: Reproduction, development, and larval competence. Ecol. Evol. 10, 6223–6238 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kitahara, M. V. Species richness and distribution of azooxanthellate scleractinia in Brazil. Bull. Mar. Sci. 81, 497–518 (2007).
    Google Scholar 
    da Silva, A. G., de Paula, A. F., Fleury, B. G. & Creed, J. C. Eleven years of range expansion of two invasive corals (Tubastraea coccinea and Tubastraea tagusensis) through the southwest Atlantic (Brazil). Estuar. Coast. Shelf Sci. 141, 9–16 (2014).ADS 

    Google Scholar 
    Creed, J. C. et al. The invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world: History, pathways and vectors. Biol. Invasions 19, 283–305 (2017).
    Google Scholar 
    Mantelatto, M. C., Pires, L. M., de Oliveira, G. J. G. & Creed, J. C. A test of the efficacy of wrapping to manage the invasive corals Tubastraea tagusensis and T. coccinea. Manag. Biol. Invasions 6, 367–374 (2015).
    Google Scholar 
    Crivellaro, M. S. et al. Fighting on the edge: Reproductive effort and population structure of the invasive coral Tubastraea coccinea in its southern Atlantic limit of distribution following control activities. Biol. Invasions 23, 811–823 (2021).
    Google Scholar 
    Creed, J. C., Casares, F. A., Oigman-Pszczol, S. S. & Masi, B. P. Multi-site experiments demonstrate that control of invasive corals (Tubastraea spp.) by manual removal is effective. Ocean Coast. Manag. 207, 105616 (2021).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D., Boland, G. S., Sinclair, J. & Lirette, A. Geographic expansion of hermatypic and ahermatypic corals in the Gulf of Mexico, and implications for dispersal and recruitment. J. Exp. Mar. Biol. Ecol. 436–437, 36–49 (2012).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D. & Boland, G. S. Coral settlement on oil/gas platforms in the northern Gulf of Mexico: Preliminary evidence of rarity. Gulf Mex. Sci. 32, 11–23 (2014).
    Google Scholar 
    López, C. et al. Invasive Tubastraea spp. and Oculina patagonica and other introduced scleractinians corals in the Santa Cruz de Tenerife (Canary Islands) harbor: Ecology and potential risks. Reg. Stud. Mar. Sci. 29, 100713 (2019).
    Google Scholar 
    Yeo, D. C. J. et al. Semisubmersible oil platforms: Understudied and potentially major vectors of biofouling-mediated invasions. Biofouling 26, 179–186 (2009).
    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. M. The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 15, 904–910 (2009).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D. & Boland, G. S. Expansion of coral communities within the Northern Gulf of Mexico via offshore oil and gas platforms. Mar. Ecol. Prog. Ser. 280, 129–143 (2004).ADS 

    Google Scholar 
    Macreadie, P. I., Fowler, A. M. & Booth, D. J. Rigs-to-reefs: Will the deep sea benefit from artificial habitat?. Front. Ecol. Environ. 9, 455–461 (2011).
    Google Scholar 
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies. Biol. Rev. 80, 205–225 (2005).PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 

    Google Scholar 
    Peterson, R. G. & Stramma, L. Upper-level circulation in the South Atlantic Ocean. Prog. Oceanogr. 26, 1–73 (1991).ADS 

    Google Scholar 
    Johns, W. E. et al. Annual cycle and variability of the North Brazil current. J. Phys. Oceanogr. 28, 103–128 (1998).ADS 

    Google Scholar 
    Silveira, I. C. A. et al. Brazil current off the eastern Brazilian coast. Rev. Brasil. Oceanog. 48, 171–183 (2000).
    Google Scholar 
    Soutelino, R. G., Gangopadhyay, A. & da Silveira, I. C. A. The roles of vertical shear and topography on the eddy formation near the site of origin of the Brazil Current. Cont. Shelf Res. 70, 46–60 (2013).ADS 

    Google Scholar 
    D’Agostini, A., Gherardi, D. F. M. & Pezzi, L. P. Connectivity of marine protected areas and its relation with total kinetic energy. PLoS ONE 10, 1–19 (2015).
    Google Scholar 
    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 1–11 (2019).
    Google Scholar 
    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).ADS 
    CAS 

    Google Scholar 
    López-Duarte, P. C. et al. What controls connectivity? An empirical, multi-species approach. Integr. Comp. Biol. 52, 511–524 (2012).PubMed 

    Google Scholar 
    Batista, D. et al. Distribution of the invasive orange cup coral tubastraea coccinea lesson, 1829 in an upwelling area in the South Atlantic Ocean fifteen years after its first record. Aquat. Invasions 12, 23–32 (2017).
    Google Scholar 
    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. USA. 104, 1266–1271 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cairns, S. Studies on the natural history of the Caribbean region. Stud. Fauna Curaçao other Caribb. … IXl, (2000).De Paula, A. F. & Creed, J. C. Spatial distribution and abundance of nonindigenous coral genus Tubastraea (Cnidaria, Scleractinia) around Ilha Grande, Brazil. Braz. J. Biol. 65, 661–673 (2005).CAS 
    PubMed 

    Google Scholar 
    Papacostas, K. J. et al. Biological mechanisms of marine invasions. Mar. Ecol. Prog. Ser. 565, 251–268 (2017).ADS 

    Google Scholar 
    Loureiro, T. G., Silva Gentil Anastácio, P. M., Souty-Grosset, C., Araujo, P. B. & Pereira Almerão, M. Red swamp crayfish: Biology, ecology and invasion—an overview. Nauplius 23, 1–19 (2015).
    Google Scholar 
    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).
    Google Scholar 
    Siegel, D. A. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. USA. 105, 8974–8979 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viard, F., Ellien, C. & Dupont, L. Dispersal ability and invasion success of Crepidula fornicata in a single gulf: Insights from genetic markers and larval-dispersal model. Helgol. Mar. Res. 60, 144–152 (2006).ADS 

    Google Scholar 
    Rodrigues, R. R., Rothstein, L. M. & Wimbush, M. Seasonal variability of the South Equatorial Current bifurcation in the Atlantic Ocean: A numerical study. J. Phys. Oceanogr. 37, 16–30 (2007).ADS 

    Google Scholar 
    Fenner, D. Biogeography of three Caribbean corals (Scleractinia) and the invasion of Tubastraea coccinea into the Gulf of Mexico. Bull. Mar. Sci. 69, 1175–1189 (2001).
    Google Scholar 
    Gouveia, M. B. et al. Persistent meanders and eddies lead to quasi-steady Lagrangian transport patterns in a weak western boundary current. Sci. Rep. 11, 1–18 (2021).
    Google Scholar 
    Campos, E. J., Gonçalves, J. & Ikeda, Y. Water mass characteristics and geostrophic circulation in the South Brazil bight: Summer of 1991. J. Geophys. Res. Oceans 100, 18537–18550. https://doi.org/10.1029/95jc01724 (1995).ADS 
    Article 

    Google Scholar 
    Silveira, I. C. A. et al. Is the meander growth in the Brazil Current system off Southeast Brazil due to baroclinic instability?. Dyn. Atmos. Ocean. 45, 187–207 (2008).ADS 

    Google Scholar 
    Lima, L. S. et al. Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Sci. Rep. 11, 1–12 (2021).
    Google Scholar 
    Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity?. Progr. Oceanogr. 165, 110–122 (2018).ADS 

    Google Scholar 
    Ellien, C., Thiébaut, E., Dumas, F., Salomon, J. C. & Nival, P. A modelling study of the respective role of hydrodynamic processes and larval mortality on larval dispersal and recruitment of benthic invertebrates: Example of Pectinaria koreni (Annelida: Polychaeta) in the Bay of Seine (English Channel). J. Plankton Res. 26, 117–132 (2004).
    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and coral reefs of Brazil. In Latin American Coral Reefs (ed. Cortés, J.) 9–52 (Elsevier Science, 2003).
    Google Scholar 
    Dutra, G. F., Allen, G. R., Werner, T., et al. A rapid marine biodiversity assessment of the Abrolhos Bank, Bahia, Brazil. In RAP Bull. Mar. Biol. Assessment, Vol. 38 (Conservation International, 2005).Costa, T. J. F. et al. Expansion of an invasive coral species over Abrolhos Bank, Southwestern Atlantic. Mar. Pollut. Bull. 85, 252–253 (2014).CAS 
    PubMed 

    Google Scholar 
    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, 1–12 (2016).
    Google Scholar 
    Soares, M. O., Davis, M. & de Macêdo Carneiro, P. B. Northward range expansion of the invasive coral (Tubastraea tagusensis) in the southwestern Atlantic. Mar. Biodivers. 48, 1651–1654 (2018).
    Google Scholar 
    Rocha, L. A. & Rosa, I. L. Baseline assessment of reef fish assemblages of Parcel Manuel Luiz Marine State Park, Maranhão, north-east Brazil. J. Fish Biol. 58, 985–998 (2001).
    Google Scholar 
    Luz, B. L. P. & Kitahara, M. V. Could the invasive scleractinians Tubastraea coccinea and T. tagusensis replace the dominant zoantharian Palythoa caribaeorum in the Brazilian subtidal?. Coral Reefs 36, 875 (2017).ADS 

    Google Scholar 
    Cordeiro, C. A. M. M. et al. Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luís. Coral Reefs 40, 165–185 (2021).
    Google Scholar 
    Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).
    Google Scholar 
    Cruz, R. et al. Life cycle and connectivity of the spiny lobster, Panulirus spp.: Case studies from Brazil and the Wider Caribbean (Decapoda, Achelata). Crustaceana 94, 603–645 (2021).
    Google Scholar 
    Castro, B. D., Lorenzzetti, J., Silveira, I. D. & Miranda, L. D. Estrutura termohalina e circulação na região entre o cabo de são tomé (rj) eo chuí (rs). O ambiente oceanográfco da plataforma continental e do talude na região sudeste-sul do Brasil 1, 11–120 (2006).
    Google Scholar 
    Dias, D. F., Pezzi, L. P., Gherardi, D. F. M. & Camargo, R. Modeling the spawning strategies and larval survival of the Brazilian sardine (Sardinella brasiliensis). Prog. Oceanogr. 123, 38–53 (2014).ADS 

    Google Scholar 
    Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).PubMed 

    Google Scholar 
    Vinagre, C. et al. Food web organization following the invasion of habitat-modifying Tubastraea spp. corals appears to favour the invasive borer bivalve Leiosolenus aristatus. Ecol. Indic. 85, 1204–1209 (2018).
    Google Scholar 
    Capel, K. C. C., Creed, J. C. & Kitahara, M. V. Invasive corals trigger seascape changes in the southwestern Atlantic. Bull. Mar. Sci. 96, 217–218 (2020).
    Google Scholar 
    Silva, R. et al. Sun coral invasion of shallow rocky reefs: Effects on mobile invertebrate assemblages in Southeastern Brazil. Biol. Invasions 21, 1339–1350 (2019).
    Google Scholar 
    Creed, J. C. & De Paula, A. F. Substratum preference during recruitment of two invasive alien corals onto shallow-subtidal tropical rocky shores. Mar. Ecol. Prog. Ser. 330, 101–111 (2007).ADS 

    Google Scholar 
    Glynn, P. W. et al. Reproductive ecology of the azooxanthellate coral Tubastraea coccinea in the Equatorial Eastern Pacific: Part V. Dendrophylliidae. Mar. Biol. 153, 529–544 (2008).
    Google Scholar 
    Eckman, J. E. Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates. J. Exp. Mar. Biol. Ecol. 200, 207–237 (1996).
    Google Scholar 
    Cairns, S. D. & Zibrowius, H. Azooxanthellate Scleractinia from the Philippines and Indonesian regions. Mémoires du Muséum national d’Histoire naturelle, Vol. 172, (1997).Saura, S., Bodin, Ö. & Fortin, M. J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Faria, L. C. & Kitahara, M. V. Invasive corals hitchhiking in the Southwestern Atlantic. Ecology 101, 1–3 (2020).
    Google Scholar 
    Mantelatto, M. C., Póvoa, A. A., Skinner, L. F., de Araujo, F. V. & Creed, J. C. Marine litter and wood debris as habitat and vector for the range expansion of invasive corals (Tubastraea spp.). Mar. Pollut. Bull. 160, 111659 (2020).CAS 
    PubMed 

    Google Scholar 
    Braga, M. D. A. et al. Retirement risks: Invasive coral on old oil platform on the Brazilian equatorial continental shelf. Mar. Pollut. Bull. 165, 112156 (2021).CAS 
    PubMed 

    Google Scholar 
    IMO. Anti-fouling systems. Online (2019). https://www.imo.org/en/OurWork/Environment/Pages/Anti-fouling.aspx. (Accessed 01 May 2021).Vander Zanden, M. J., Hansen, G. J. A., Higgins, S. N. & Kornis, M. S. A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. J. Great Lakes Res. 36, 199–205 (2010).
    Google Scholar 
    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84(1), 1–20 (2001).
    Google Scholar 
    Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404 (2005).ADS 

    Google Scholar 
    Shchepetkin, A. F. & McWilliams, J. C. Correction and commentary for “ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by haidvogel et al., j. comp. phys. 227, pp. 3595–3624. J. Comput. Phys. 228, 8985–9000 (2009).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Lett, C. et al. A Lagrangian tool for modelling ichthyoplankton dynamics. Environ. Model. Sofw. 23, 1210–1214 (2008).
    Google Scholar 
    Gouveia, M. B., Gherardi, D. F. M., Lentini, C. A. D., Dias, D. F. & Campos, P. C. Do the Brazilian sardine commercial landings respond to local ocean circulation?. PLoS ONE 12, 1–19 (2017).
    Google Scholar 
    Saha, S. et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1057 (2010).ADS 

    Google Scholar 
    Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: A new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).ADS 

    Google Scholar 
    Flather, R. A. A tidal model of the northeast pacific. Atmos. Ocean 25, 22–45 (1987).
    Google Scholar 
    Chapman, D. C. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr. 15(8), 1060–1075 (1985).ADS 

    Google Scholar 
    Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3, 1–20 (2001).ADS 

    Google Scholar 
    Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183–204 (2002).ADS 

    Google Scholar 
    Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Equilibrium structure and dynamics of the California current system. J. Phys. Oceanogr. 33, 753–783 (2003).ADS 

    Google Scholar 
    Mizrahi, D., Navarrete, S. A. & Flores, A. A. V. Uneven abundance of the invasive sun coral over habitat patches of different orientation: An outcome of larval or later benthic processes?. J. Exp. Mar. Biol. Ecol. 452, 22–30 (2014).
    Google Scholar 
    Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman and Hall, 1986).MATH 

    Google Scholar  More