Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction
Martin, G., Martin-Clouaire, R. & Duru, M. Farming system design to feed the changing world. A review. Agron. Sustain. Dev. 33, 131–149 (2013).
 Google Scholar 
 McElwee, G. & Bosworth, G. Exploring the strategic skills of farmers across a typology of farm diversification approaches. J. Farm Manag. 13, 819–838 (2010).
 Google Scholar 
 Maghrebi, M. et al. Iran’s agriculture in the anthropocene. Earth’s Future. https://doi.org/10.1029/2020EF001547 (2020).Article 
 Google Scholar 
 Raorane, A. A. & Kulkarni, R. V. Data mining: An effective tool for yield estimation in the agricultural sector. Int. J. Emerg. Trends Technol. Comput. Sci. 1, 1–4 (2012).
 Google Scholar 
 Gonzalez-Sanchez, A., Frausto-Solis, J. & Ojeda-Bustamante, W. Attribute selection impact on linear and nonlinear regression models for crop yield prediction. Sci. World J. 2014, 509429 (2014).
 Google Scholar 
 Salman, S. A. et al. Changes in climatic water availability and crop water demand for Iraq region. Sustainability 12, 3437 (2020).
 Google Scholar 
 Mahmood, N., Arshad, M., Kächele, H., Ullah, A. & Müller, K. Economic efficiency of rainfed wheat farmers under changing climate: Evidence from Pakistan. Environ. Sci. Pollut. Res. 27, 34453–34467 (2020).
 Google Scholar 
 Pracha, A. S. & Volk, T. A. An edible energy return on investment (EEROI) analysis of wheat and rice in Pakistan. Sustainability 3, 2358–2391 (2011).
 Google Scholar 
 Canadell, J. et al. Abberton, M., Conant, R., & Batello, C. (Eds.). (2010). Grassland carbon sequestration: Management, policy and economics. Food and Agriculture Organization of the United Nations, Integrated Crop Management, Vol. 11–2010. Ahlstrom, A., Raupach, M., Schurgers. Sensit. A Semi-Arid Grassl. To Extrem. Precip. Events 127, 6 (2021).
 Google Scholar 
 Canton, H. Food and Agriculture Organization of the United Nations—FAO. In The Europa Directory of International Organizations 2021 (ed. Canton, H.) 297–305 (Routledge, 2021).
 Google Scholar 
 Abdullah, A. et al. Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview. J. Clean. Prod. 287, 125047 (2020).
 Google Scholar 
 Mughal, I. et al. Protein quantification and enzyme activity estimation of Pakistani wheat landraces. PLoS ONE 15, e0239375 (2020).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Dorosh, P. & Salam, A. Wheat markets and price stabilisation in Pakistan: An analysis of policy options. Pak. Dev. Rev. 47, 71–87 (2008).
 Google Scholar 
 Fowke, V. The National Policy and the Wheat Economy (University of Toronto Press, 2019).
 Google Scholar 
 Hussain, S. et al. Study the effects of COVID-19 in Punjab, Pakistan using space-time scan statistic for policy measures in regional agriculture and food supply chain. Environ. Sci. Pollut. Res. Int. 20, 1–14 (2021).
 Google Scholar 
 Sajjad, S. A. Story of Pakistan’s Elite Wheat (The Express Tribune, 2017).
 Google Scholar 
 Durgun, Y. Ö., Gobin, A., Duveiller, G. & Tychon, B. A study on trade-offs between spatial resolution and temporal sampling density for wheat yield estimation using both thermal and calendar time. Int. J. Appl. Earth Obs. Geoinf. 86, 101988 (2020).
 Google Scholar 
 Vannoppen, A. et al. Wheat yield estimation from NDVI and regional climate models in Latvia. Remote Sens. 12, 2206 (2020).ADS 
 Google Scholar 
 Irmak, A. et al. Artificial neural network model as a data analysis tool in precision farming. Trans. ASABE 49, 2027–2037 (2006).
 Google Scholar 
 Bannerjee, G., Sarkar, U., Das, S. & Ghosh, I. Artificial intelligence in agriculture: A literature survey. Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud. 7, 1–6 (2018).
 Google Scholar 
 Patrício, D. I. & Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153, 69–81 (2018).
 Google Scholar 
 Yaseen, Z. M. et al. Prediction of evaporation in arid and semi-arid regions: A comparative study using different machine learning models. Eng. Appl. Comput. Fluid Mech. 14, 70–89 (2019).
 Google Scholar 
 Bauer, M. E. The role of remote sensing in determining the distribution and yield of crops. In Advances in Agronomy (ed. Sparks, D. L.) 271–304 (Elsevier, 1975). https://doi.org/10.1016/s0065-2113(08)70012-9.Chapter 
 Google Scholar 
 Dempewolf, J. et al. Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. Remote Sens. 6, 9653–9675 (2014).ADS 
 Google Scholar 
 Hamid, N., Pinckney, T. C., Gnaegy, S. & Valdes, A. The Wheat Economy of Pakistan: Setting and Prospects (IFPRI, 2015).
 Google Scholar 
 Muhammad, K. Description of the Historical Background of Wheat Improvement in Baluchistan, Pakistan (Agriculture Research Institute (Sariab, Quetta, Baluchistan, Pakistan), 1989).
 Google Scholar 
 Iqbal, N., Bakhsh, K., Maqbool, A. & Abid Shohab, A. Use of the ARIMA model for forecasting wheat area and production in Pakistan. J. Agric. Soc. Sci. 1, 120–122 (2005).
 Google Scholar 
 Sher, F. & Ahmad, E. Forecasting wheat production in Pakistan. LAHORE J. Econ. 13, 57–85 (2008).
 Google Scholar 
 Khan, N. et al. Determination of cotton and wheat yield using the standard precipitation evaporation index in Pakistan. Arab. J. Geosci. 14, 1–16 (2021).
 Google Scholar 
 Rahman, M. M., Haq, N. & Rahman, R. M. Machine learning facilitated rice prediction in Bangladesh. In 2014 Annual Global Online Conference on Information and Computer Technology. https://doi.org/10.1109/gocict.2014.9 (2014).Chen, C. & Mcnairn, H. A neural network integrated approach for rice crop monitoring. Int. J. Remote Sens. 27, 1367–1393 (2006).
 Google Scholar 
 Kaul, M., Hill, R. L. & Walthall, C. Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 85, 1–18 (2005).
 Google Scholar 
 Deo, R. C., Samui, P., Kisi, O. & Yaseen, Z. M. Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation: Theory and Practice of Hazard Mitigation (Springer Nature, 2020).
 Google Scholar 
 Sanikhani, H. et al. Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors. Comput. Electron. Agric. 152, 242–260 (2018).
 Google Scholar 
 Hai, T. et al. Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive model. IEEE Access 8, 12026–12042 (2020).
 Google Scholar 
 Ramos, A. P. M. et al. A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. Comput. Electron. Agric. 178, 105791 (2020).
 Google Scholar 
 Suchithra, M. S. & Pai, M. L. Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters. Inf. Process. Agric. 7, 72–82 (2020).
 Google Scholar 
 Feng, Z., Huang, G. & Chi, D. Classification of the complex agricultural planting structure with a semi-supervised extreme learning machine framework. Remote Sens. 12, 3708 (2020).ADS 
 Google Scholar 
 Tur, R. & Yontem, S. A comparison of soft computing methods for the prediction of wave height parameters. Knowl. Based Eng. Sci. 2, 31–46 (2021).
 Google Scholar 
 Yaseen, Z. M., Ali, M., Sharafati, A., Al-Ansari, N. & Shahid, S. Forecasting standardized precipitation index using data intelligence models: Regional investigation of Bangladesh. Sci. Rep. 11, 1–25 (2021).
 Google Scholar 
 Sharafati, A., Asadollah, S. B. H. S. & Neshat, A. A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125468 (2020).Article 
 Google Scholar 
 Huang, G.-B., Zhu, Q.-Y. & Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (2006).
 Google Scholar 
 Adnan, R. M. et al. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl. Based Syst. 230, 107379 (2021).
 Google Scholar 
 Yaseen, Z. M. et al. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J. Hydrol. 542, 603–614 (2016).ADS 
 Google Scholar 
 Prasad, R., Deo, R. C., Li, Y. & Maraseni, T. Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors. Soil Tillage Res. https://doi.org/10.1016/j.still.2018.03.021 (2018).Article 
 Google Scholar 
 Tiyasha, T. et al. Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: Development of hybrid tree-based artificial intelligence models. Mar. Pollut. Bull. 170, 112639 (2021).CAS 
 PubMed 
 Google Scholar 
 Ali, M. et al. Variational mode decomposition based random forest model for solar radiation forecasting: New emerging machine learning technology. Energy Rep. 7, 6700–6717 (2021).
 Google Scholar 
 Khozani, Z. S. et al. Determination of compound channel apparent shear stress: Application of novel data mining models. J. Hydroinform. 21, 798–811 (2019).MathSciNet 
 Google Scholar 
 Dorigo, M. & Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999. https://doi.org/10.1109/CEC.1999.782657 (1999).Mullen, R. J., Monekosso, D., Barman, S. & Remagnino, P. A review of ant algorithms. Expert Syst. Appl. https://doi.org/10.1016/j.eswa.2009.01.020 (2009).Article 
 Google Scholar 
 Sweetlin, J. D., Nehemiah, H. K. & Kannan, A. Feature selection using ant colony optimization with tandem-run recruitment to diagnose bronchitis from CT scan images. Comput. Methods Prog. Biomed. https://doi.org/10.1016/j.cmpb.2017.04.009 (2017).Article 
 Google Scholar 
 Cordon, O., Herrera, F. & Stützle, T. A review on the ant colony optimization metaheuristic: Basis, models and new trends. Mathw. Comput. 9, 2–3 (2002).MathSciNet 
 MATH 
 Google Scholar 
 Singh, G., Kumar, N. & Kumar Verma, A. Ant colony algorithms in MANETs: A review. J. Netw. Comput. Appl. https://doi.org/10.1016/j.jnca.2012.07.018 (2012).Article 
 Google Scholar 
 Kumar, S., Solanki, V. K., Choudhary, S. K., Selamat, A. & González Crespo, R. Comparative study on ant colony optimization (ACO) and K-means clustering approaches for jobs scheduling and energy optimization model in internet of things (IoT). Int. J. Interact. Multimed. Artif. Intell. 6, 107 (2020).
 Google Scholar 
 Paniri, M., Dowlatshahi, M. B. & Nezamabadi-pour, H. MLACO: A multi-label feature selection algorithm based on ant colony optimization. Knowl. Based Syst. 192, 105285 (2020).
 Google Scholar 
 Yaseen, Z. M., Sulaiman, S. O., Deo, R. C. & Chau, K.-W. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 569, 387–408 (2019).ADS 
 Google Scholar 
 Manju Parkavi, R., Shanthi, M. & Bhuvaneshwari, M. C. Recent trends in ELM and MLELM: A review. Adv. Sci. Technol. Eng. Syst. https://doi.org/10.25046/aj020108 (2017).Article 
 Google Scholar 
 Araba, A. M., Memon, Z. A., Alhawat, M., Ali, M. & Milad, A. Estimation at completion in Civil engineering projects: Review of regression and soft computing models. Knowl. Based Eng. Sci. 2, 1–12 (2021).
 Google Scholar 
 Tamura, S. & Tateishi, M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Trans. Neural Netw. 8, 251–255 (1997).CAS 
 PubMed 
 Google Scholar 
 Huang, G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 14, 274–281 (2003).PubMed 
 Google Scholar 
 Ali, M., Deo, R. C., Downs, N. J. & Maraseni, T. Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting. Atmos. Res. 213, 450–464 (2018).
 Google Scholar 
 Liang, N.-Y., Huang, G.-B., Saratchandran, P. & Sundararajan, N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17, 1411–1423 (2006).PubMed 
 Google Scholar 
 Lan, Y., Soh, Y. C. & Huang, G.-B. Ensemble of online sequential extreme learning machine. Neurocomputing 72, 3391–3395 (2009).
 Google Scholar 
 Yadav, B., Ch, S., Mathur, S. & Adamowski, J. Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: A case study in Neckar River, Germany. Measurement 92, 433–445 (2016).ADS 
 Google Scholar 
 Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).MATH 
 Google Scholar 
 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
 Google Scholar 
 Al-Sulttani, A. O. et al. Proposition of new ensemble data-intelligence models for surface water quality prediction. IEEE Access 9, 108527–108541 (2021).
 Google Scholar 
 Carranza, C., Nolet, C., Pezij, M. & Van Der Ploeg, M. Root zone soil moisture estimation with random forest. J. Hydrol. 593, 125840 (2021).
 Google Scholar 
 Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. Modeling species distribution and change using random forest. In Predictive Species and Habitat Modeling in Landscape Ecology (eds Ashton Drew, C. et al.) 139–159 (Springer, 2011).
 Google Scholar 
 Rahmati, O., Pourghasemi, H. R. & Melesse, A. M. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. CATENA 137, 360–372 (2016).
 Google Scholar 
 Prasad, R., Ali, M., Kwan, P. & Khan, H. Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation. Appl. Energy 236, 778–792 (2019).
 Google Scholar 
 Sharafati, A. et al. The potential of novel data mining models for global solar radiation prediction. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-019-02344-0 (2019).Article 
 Google Scholar 
 Service, A. M. I. District-Wise Area of Wheat Crop. Available at: http://www.amis.pk/Agristatistics/DistrictWise/2010-2012/Wheat.html (2012).Service, A. M. I. District-Wise Area of Wheat Crop. Available at: http://www.amis.pk/Agristatistics/DistrictWise/2012-2014/Wheat.html (2014).Punjab, P. Population. Available at: https://en.wikipedia.org/wiki/Punjab_Pakistan (2015).Steiniger, S. & Hunter, A. J. S. The 2012 free and open source GIS software map—A guide to facilitate research, development, and adoption. Comput. Environ. Urban Syst. 39, 136–150 (2013).
 Google Scholar 
 Hsu, C.-W. et al. A practical guide to support vector classification. BJU Int. https://doi.org/10.1177/02632760022050997 (2008).Article 
 PubMed 
 Google Scholar 
 Bergmeir, C. & Benítez, J. M. On the use of cross-validation for time series predictor evaluation. Inf. Sci. (NY) 191, 192–213 (2012).
 Google Scholar 
 Xia, Y., Liu, C., Li, Y. Y. & Liu, N. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Syst. Appl. https://doi.org/10.1016/j.eswa.2017.02.017 (2017).Article 
 Google Scholar 
 Yen, B. C., ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models of the Watershed Management Committee Irrigation and Drainage Division. Discussion and closure: Criteria for evaluation of watershed models. J. Irrig. Drain. Eng. 121, 130–132 (1995).
 Google Scholar 
 Yaseen, Z. M. An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere 277, 130126 (2021).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Dawson, C. W., Abrahart, R. J. & See, L. M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 22, 1034–1052 (2007).
 Google Scholar 
 Legates, D. R. & Mccabe, G. J. Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35, 233–241 (1999).ADS 
 Google Scholar 
 Willmott, C. J. & Willmott, C. J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/1520-0477(1982)063%3c1309:SCOTEO%3e2.0.CO;2 (1982).Article 
 MATH 
 Google Scholar 
 Willmott, C. J. On the validation of models. Phys. Geogr. https://doi.org/10.1080/02723646.1981.10642213 (1981).Article 
 MATH 
 Google Scholar 
 Sharafati, A., Yasa, R. & Azamathulla, H. M. Assessment of stochastic approaches in prediction of wave-induced pipeline scour depth. J. Pipeline Syst. Eng. Pract. 9, 04018024 (2018).
 Google Scholar 
 Mohammadi, K. et al. A new hybrid support vector machine-wavelet transform approach for estimation of horizontal global solar radiation. Energy Convers. Manag. 92, 162–171 (2015).
 Google Scholar 
 Willmott, C. J., Robeson, S. M. & Matsuura, K. A refined index of model performance. Int. J. Climatol. 32, 2088–2094 (2012).
 Google Scholar 
 Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 10, 282–290 (1970).ADS 
 Google Scholar 
 Yaseen, Z. M. et al. Hourly river flow forecasting: Application of emotional neural network versus multiple machine learning paradigms. Water Resour. Manag. 34, 1075–1091 (2020).
 Google Scholar 
 Bhagat, S. K., Tung, T. M. & Yaseen, Z. M. Heavy metal contamination prediction using ensemble model: Case study of Bay sedimentation, Australia. J. Hazard. Mater. 403, 123492 (2021).CAS 
 PubMed 
 Google Scholar 
 Hora, J. & Campos, P. A review of performance criteria to validate simulation models. Expert Syst. 32, 578–595 (2015).
 Google Scholar 
 Nourani, V., Kisi, Ö. & Komasi, M. Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2011.03.002 (2011).Article 
 Google Scholar 
 Ertekin, C. & Yaldiz, O. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Convers. Manag. 41, 311–330 (2000).
 Google Scholar 
 Li, M. F., Tang, X. P., Wu, W. & Liu, H. B. General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers. Manag. 70, 139–148. https://doi.org/10.1016/j.enconman.2013.03.004 (2013).Article 
 Google Scholar 
 Xu, Z., Hou, Z., Han, Y. & Guo, W. A diagram for evaluating multiple aspects of model performance in simulating vector fields. Geosci. Model Dev. 9, 4365–4380 (2016).ADS 
 Google Scholar 
 Dan Foresee, F. & Hagan, M. T. Gauss–Newton approximation to bayesian learning. In IEEE International Conference on Neural Networks—Conference Proceedings. https://doi.org/10.1109/ICNN.1997.614194 (1997).Akhtar, I. U. H. Pakistan needs a new crop forecasting system (2012).Stathakis, D., Savina, I. & Nègrea, T. Neuro-fuzzy modeling for crop yield prediction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34, 1–4 (2006).
 Google Scholar 
 Kumar, P., Gupta, D. K., Mishra, V. N. & Prasad, R. Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data. Int. J. Remote Sens. 36, 1604–1617 (2015).
 Google Scholar 
 Sun, J., Xu, W. & Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In 2004 IEEE Conference on Cybernetics and Intelligent Systems. https://doi.org/10.1109/iccis.2004.1460396 (2004)Naganna, S. et al. Dew point temperature estimation: Application of artificial intelligence model integrated with nature-inspired optimization algorithms. Water. https://doi.org/10.3390/w11040742 (2019).Article 
 Google Scholar 
 Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 61, 3999–4010 (2013).ADS 
 MathSciNet 
 MATH 
 Google Scholar 
 Bokde, N., Feijóo, A., Al-Ansari, N., Tao, S. & Yaseen, Z. M. The hybridization of ensemble empirical mode decomposition with forecasting models: Application of short-term wind speed and power modeling. Energies 13, 1666 (2020).
 Google Scholar 
 Chau, K. W. & Wu, C. L. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J. Hydroinform. 12, 458–473 (2010).
 Google Scholar  More
 