More stories

  • in

    Fingerprint analysis reveals sources of petroleum hydrocarbons in soils of different geographical oilfields of China and its ecological assessment

    Concentration of TPHs in surface soilsStatistical results of TPHs concentrations at different geographic oilfields were showed in Fig. 2, and grid regional distribution of TPHs in YC Oilfield surface soils (Y6–Y25) were shown in Fig. 3. Results are given as mean value of triplicate analysis of each sample. The results of TPHs concentration in soil samples showed that the three oilfields all suffered from varying degrees of petroleum pollution, and 60.92% of the 47 sampling points was significantly higher than the soil critical value (500 mg/kg). The average concentration of the TPHs in each study areas conformed to be in the following law: SL Oilfield (average: 5.36 × 103 mg/kg) ( >) NY Oilfield (average: 1.73 × 103 mg/kg) ( >) YC Oilfield (average: 1.37 × 103 mg/kg). The highest concentration of the TPHs were found in SL Oilfield surface soils, ranging from 1.21 × 102 to 6.66 × 104 mg/kg, and NY Oilfield had the second highest TPHs concentrations in the range from 15.82 to 7.42 × 103 mg/kg. The concentrations of TPHs in YC Oilfield ranged from 12.34 to 5.38 × 103 mg/kg. The petroleum contamination mainly derived from abandoned and working oil wells. S4 and S8 soils were collected near the abandoned oil well and working oil well, respectively, and had the highest concentration of TPHs up to 5.28 × 104 and 6.66 × 104 mg/kg. Y1, N8 near the abandoned oil well also had high concentration of TPHs with 5.39 × 103 and 7.42 × 103 mg/kg, respectively. Pollution caused by grounded crude oil in exploitation process has been a serious problem in oilfield area. Our previous research reported that the TPHs content in Dagang Oilfield soils collected adjacent to working oil wells were about 20-folds higher than that in corn soils and living area soils25. Concentration contour map of TPHs in YC Oilfield by grid sampling method showed that regional pollution in the northwest and southeast area are more serious than other sites. Y6 near the gas station and Y15, Y21, Y23 adjacent to the working oil wells have higher concentration (2.12 × 103–5.34 × 103 mg/kg) of TPHs than other farmland and grass soils. Previous study reported that the concentrations of TPHs ranged 7.0 × 102–4.0 × 103 mg/kg in oil exploitation areas of the loess plateau region (34°20′N,107°10′E), showing a similar pollution level with this study26.Figure 2The concentration of TPHs in three oilfield soils.Full size imageFigure 3Grid regional distribution of TPHs in YC Oilfield.Full size imageThe percentage composition of total PAHs, SHs and polar components of petroleum hydrocarbons were shown in Table 1. In general, the dominant petroleum component was saturated hydrocarbons in all soils, accounting more than 50%. Yet, the percentage proportion of PAHs and SHs in contamination soils adjacent to working and abandon oil wells were significantly different (p  BbF (14.16–21.87%) ≫ BaA, Chr, InP, and BkF (less than 10%). This result aligned to the previous study that the contribution of individual PAHs to the TEQs of ∑PAH16 was BaP (45%)  > DBA (33%) in urban surface dust of Xi’an city, China46. Therefore, contamination control should priority focus on the individual PAHs of BaP, DBA, BbF in these areas. In addition, the ecological risk with abandoned time ranging 0–15 years has been assessed, and the descriptive statistic TEQBap of PAHs was shown in Supporting Information, Table S6. The highest TEQs of ∑PAH16 and ∑PAH7 with mean of 1422.27 μg/kg and 1400.48 μg/kg, respectively, were present in soils adjacent to abandoned oil well with abandoned time of 0—5 years. And the TEQs of ∑PAH16 and ∑PAH7 decreased with the abandoned time though the percentage proportion of PAHs increased. The TEQs of ∑PAH16 and ∑PAH7 were close between abandoned time of 5–10 years and 10—15 years while both had high content. It demonstrated that high ecological risk was persistent in abandoned oil well areas over abandoned time of 15 years, and basically stable after 5 years. Therefore, abandoned oil well areas need to be blocked to prevent PAHs entering the external environment, and combine physical–chemical technology for petroleum remediation instead of simple weathering biological processes.Table 3 Descriptive statistic TEQBap of PAHs in different sampling area.Full size tableAs referred the PAHs standard of Dutch soil, TEQs of ∑PAH7 was 32.02 μg/kg, calculated by ten individual PAHs times TEFs. In this study, the mean TEQs of ∑PAH7 were about 35- and 10-folds of Dutch soil in petro-related area soils and grassland soils, indicating a high and medium ecological risk in these soils respectively. However, the mean TEQs of ∑PAH7 in farmland soils (18.80 μg/kg) was below Dutch soil, presenting a low potential ecological risk. It should be noted that the minimum of TEQs of ∑PAH7 in grassland soil was 26.24 μg/kg less than TEQs of ∑PAH7 in Dutch soil, but it was vulnerable affected by the surrounding soils with high TEQs of ∑PAH7. In this study, except the farmland soils, TEQs of ∑PAH7 exhibited higher TEQ values than those reported soils in Santiago, Chile47 and Nepal24, and road dust in Tianjin, China48. Overall, the most threat of ecological risk in petro-related soils caused by the anthropogenic PAHs input, such like oil leakage, oil refining, and fossil energy combustion. Preventing oil spills accident and developing the remediation methods are the main significant ways to reduce the ecological risks in these areas. The medium ecological risk in grassland might result from the migration of PAHs via rainfall pathway. Therefore, establishment the oil-blocking isolation zones is the critical way for medium ecological risk areas to control petroleum inflow. Even though the low ecological risk was identified in farmland soils, PAHs source analysis indicated that the biomass combustion should be controlled in these areas. More

  • in

    Metabarcoding analysis of the soil fungal community to aid the conservation of underexplored church forests in Ethiopia

    Balami, S., Vašutová, M., Godbold, D., Kotas, P. & Cudlín, P. Soil fungal communities across land use types. Forest Biogeosci. For. 13, 548–558 (2020).
    Google Scholar 
    Deacon, J. Fungal Biology (Wiley, 2009).
    Google Scholar 
    Ruiz-Almenara, C., Gándara, E. & Gómez-Hernández, M. Comparison of diversity and composition of macrofungal species between intensive mushroom harvesting and non-harvesting areas in Oaxaca, Mexico. PeerJ 7, e8325 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).ADS 

    Google Scholar 
    Egli, S. Mycorrhizal mushroom diversity and productivity—an indicator of forest health?. Ann. For. Sci. 68, 81–88 (2011).
    Google Scholar 
    Westover, K. M. & Bever, J. D. Mechanisms of plant species coexistence: Roles of rhizosphere bacteria and root fungal pathogens. Ecology 82, 3285–3294 (2001).
    Google Scholar 
    Deacon, J. Fungal Biology (Wiley, 2006).
    Google Scholar 
    Fernandez, C. W., Nguyen, N. H. U. H., Stefanski, A. & Han, Y. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Chang. Biol. 23, 1598–1609 (2017).ADS 
    PubMed 

    Google Scholar 
    Heilmann-Clausen, J. et al. A fungal perspective on conservation biology. Conserv. Biol. 29, 61–68 (2015).PubMed 

    Google Scholar 
    Shay, P.-E., Winder, R. S. & Trofymow, J. A. Nutrient-cycling microbes in coastal Douglas-fir forests: Regional-scale correlation between communities, in situ climate, and other factors. Front. Microbiol. 6, 5897 (2015).
    Google Scholar 
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 

    Google Scholar 
    Richter, A., Schöning, I., Kahl, T., Bauhus, J. & Ruess, L. Regional environmental conditions shape microbial community structure stronger than local forest management intensity. For. Ecol. Manag. 409, 250–259 (2018).
    Google Scholar 
    Monkai, J., Hyde, K. D., Xu, J. & Mortimer, P. E. Diversity and ecology of soil fungal communities in rubber plantations. Fungal Biol. Rev. 31, 1–11 (2017).
    Google Scholar 
    White, F. Vegetation of Africa—a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa, Natural Resources Research Report XX. U.N. Educational, Scientific and Cultural Organization, Paris (1983).Aynekulu, E. et al. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia. Folia Geobot. 51, 115–127 (2016).
    Google Scholar 
    Wassie, A., Sterck, F. J. & Bongers, F. Species and structural diversity of church forests in a fragmented Ethiopian Highland landscape. J. Veg. Sci. 21, 938–948 (2010).
    Google Scholar 
    Alem, D., Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Survey of macrofungal diversity and analysis of edaphic factors influencing the fungal community of church forests in Dry Afromontane areas of Northern Ethiopia. For. Ecol. Manag. 496, 119391 (2021).
    Google Scholar 
    Aerts, R. et al. Conservation of the Ethiopian church forests: Threats, opportunities and implications for their management. Sci. Total Environ. 551–552, 404–414 (2016).ADS 
    PubMed 

    Google Scholar 
    Wassie, A., Teketay, D. & Powell, N. Church forests in North Gonder administrative zone, Northern Ethiopia. For. Trees Livelihoods 15, 349–373 (2005).
    Google Scholar 
    Wsaaie, A., Teketay, D. & Powell, N. Church forests in North Gondar Administative Zone, Northern Ethioopia. For. Trees Livelihoods 15, 349–373 (2005).
    Google Scholar 
    Lemenih, M. & Bongers, F. Dry forests of Ethiopia and their silviculture. In Silviculture in the Tropics, Tropical Forestry 8 (ed. S. G€unter et al.) 261–272 (Springer, Heidelberg, 2011). https://doi.org/10.1007/978-3-642-19986-8_17.Fernández, A., Sánchez, S., García, P. & Sánchez, J. Macrofungal diversity in an isolated and fragmented Mediterranean Forest ecosystem. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 154, 139–148 (2020).
    Google Scholar 
    Peay, K. G. & Bruns, T. D. Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant-fungal interactions. New Phytol. 204, 180–191 (2014).PubMed 

    Google Scholar 
    Burgess, N. D., Hales, J. D. A., Ricketts, T. H. & Dinerstein, E. Factoring species, non-species values and threats into biodiversity prioritisation across the ecoregions of Africa and its islands. Biol. Conserv. 127, 383–401 (2006).
    Google Scholar 
    Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Fungal community succession and sporocarp production following fire occurrence in Dry Afromontane forests of Ethiopia. For. Ecol. Manag. 398, 37–47 (2017).
    Google Scholar 
    Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 1–14 (2020).
    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science (80-. ). 346 (2014).Hawksworth, D. L. Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate?. Biodivers. Conserv. 21, 2425–2433 (2012).
    Google Scholar 
    Crous, P. W. et al. How many species of fungi are there at the tip of Africa?. Stud. Mycol. 55, 13–33 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Martínez, M. L. et al. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. For. Ecol. Manag. 258, 1856–1863 (2009).
    Google Scholar 
    Phillips, H. et al. The effects of global change on soil faunal communities: a meta-analytic approach. Res. Ideas Outcomes 5 (2019).Riutta, T. et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol. Biochem. 49, 124–131 (2012).CAS 

    Google Scholar 
    Rantalainen, M., Haimi, J., Fritze, H., Pennanen, T. & Setala, T. Soil decomposer community as a model system in studying the effects of habitat fragmentation and habitat corridors. Soil Biol. Biochem. 40, 853–863 (2008).CAS 

    Google Scholar 
    Newsham, K. K. et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Chang. 6, 182–186 (2016).ADS 

    Google Scholar 
    Bahram, M., Põlme, S., Kõljalg, U., Zarre, S. & Tedersoo, L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol. 193, 465–473 (2012).PubMed 

    Google Scholar 
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).PubMed 

    Google Scholar 
    Krüger, C. et al. Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. Front. Microbiol. 8, 1–16 (2017).
    Google Scholar 
    Bahram, M., Peay, K. G. & Tedersoo, L. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 205, 1454–1463 (2015).CAS 
    PubMed 

    Google Scholar 
    Li, P. et al. Spatial variation in soil fungal communities across paddy fields in Subtropical China. mSystems 5 (2020).Grilli, G., Urcelay, C. & Galetto, L. Forest fragment size and nutrient availability: Complex responses of mycorrhizal fungi in native–exotic hosts. Plant Ecol. 213, 155–165 (2012).
    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. Shrub Resprouting Response After Fuel Reduction Treatments: Comparison of Prescribed Burning, Clearing and Mastication (Elsevier, 2013).
    Google Scholar 
    Tedersoo, L., Sadam, A., Zambrano, M., Valencia, R. & Bahram, M. Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME J. 4, 465–471 (2010).PubMed 

    Google Scholar 
    Glassman, S. I., Wang, I. J. & Bruns, T. D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol. 26, 6960–6973 (2017).CAS 
    PubMed 

    Google Scholar 
    Colwell, R. K. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates (2013).Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).CAS 
    PubMed 

    Google Scholar 
    Pan, W. et al. DNA polymerase preference determines PCR priming efficiency. BMC Biotechnol. 14, 10 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kirk, P. M., Cannon, P. F., Minter, D. W. & J.A, S. Dictionary of the Fungi (The Centre for Agriculture and Bioscience International (CABI), 2008).Rossman, A., Samuel, G., Rogerson, C. & Lowen, R. Genera of bionectriaceae, hypocreaceae and nectriaceae (hypocreales, ascomycetes). Stud. Mycol. 42, 1–260 (1999).
    Google Scholar 
    Samuels, G. Trichoderma: A review of biology and systematics of the genus. Mycol. Res. 923–935 (1996).Alem, D. et al. Soil fungal communities and succession following wildfire in Ethiopian dry Afromontane forests, a highly diverse underexplored ecosystem. For. Ecol. Manag. 474, 118328 (2020).
    Google Scholar 
    Muleta, D., Woyessa, D. & Teferi, Y. Mushroom consumption habits of Wacha Kebele residents, southwestern Ethiopia. Glob. Res. J. Agric. Biol. Sci. 4, 6–16 (2013).
    Google Scholar 
    Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Edible wild mushrooms of Ethiopia: Neglected non-timber forest products. Rev. Fitotec. Mex. 40, 391–397 (2017).
    Google Scholar 
    Tedersoo, L. et al. Disentangling global soil fungal diversity. Science (80-) 346, 1052–1053 (2014).
    Google Scholar 
    Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Fungal community succession and sporocarp production following fire occurrence in Dry Afromontane forests of Ethiopia. For. Ecol. Manag. 398 (2017).Dang, P. et al. Changes in soil fungal communities and vegetation following afforestation with Pinus tabulaeformis on the Loess Plateau. Ecosphere 9 (2018).Gilbert, G. S., Ferrer, A. & Carranza, J. Polypore fungal diversity and host density in a moist tropical forest. Biodivers. Conserv. 11, 947–957 (2002).
    Google Scholar 
    Kottke, I., Beck, A., Oberwinkler, F., Homeier, J. & Neill, D. Arbuscular endomycorrhizas are dominant in the organic soil of a neotropical montane cloud forest. J. Trop. Ecol. 20, 125–129 (2004).
    Google Scholar 
    Barnes, C. J., Van der Gast, C. J., Burns, C. A., McNamara, N. P. & Bending, G. D. Temporally variable geographical distance effects contribute to the assembly of root-associated fungal communities. Front. Microbiol. 7, 1–13 (2016).
    Google Scholar 
    Tian, J. et al. Environmental factors driving fungal distribution in freshwater lake sediments across the Headwater Region of the Yellow River, China. Sci. Rep. 8, 4–11 (2018).
    Google Scholar 
    Rosales-Castillo, J. et al. Fungal community and ligninolytic enzyme activities in Quercus deserticola Trel. litter from forest fragments with increasing levels of disturbance. Forests 9, 11 (2017).
    Google Scholar 
    Kuhar, F., Barroetaveña, C. & Rajchenberg, M. New species of Tomentella (Thelephorales) from the Patagonian Andes forests. Mycologia 108, 780–790 (2016).CAS 
    PubMed 

    Google Scholar 
    Alem, D., Dejene, T., Oria-de-Rueda, J. A., Geml, J. & Martín-Pinto, P. Soil fungal communities under Pinus patula Schiede ex Schltdl. & Cham. Plantation forests of different ages in Ethiopia. Forests 11, 1109 (2020).
    Google Scholar 
    Tedersoo, L. et al. Terrestrial and lignicolous macrofungi. ISME J. 10, 1228–1239 (2016).
    Google Scholar 
    Ruiz, R., Decock, C., Saikawa, M., Gene, J. & Guarro, J. Polyschema obclaviformis sp. Nov., and some new records of hyphomycetes from Cuba. Cryptogam. Mycol. 21, 215–220 (2000).
    Google Scholar 
    Kaygusuz, O. New locality records of Trichoglossum hirsutum (Geoglossales: Geoglossaceae) based on molecular analyses, and prediction of its potential distribution in Turkey. Curr. Res. Environ. Appl. Mycol. 10, 443–456 (2020).
    Google Scholar 
    Mayer, P. M. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient. Acta Oecol. 33, 222–230 (2008).ADS 

    Google Scholar 
    Krishna, M. P. & Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2, 236–249 (2017).
    Google Scholar 
    Kirschbaum, M. U. F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27, 753–760 (1995).CAS 

    Google Scholar 
    Mayer, P. M., Tunnell, S. J., Engle, D. M., Jorgensen, E. E. & Nunn, P. Invasive grass alters litter decomposition by influencing macrodetritivores. Ecosystems 8, 200–209 (2005).
    Google Scholar 
    Epstein, H. E., Burke, I. C. & Lauenroth, W. K. Regional patterns of decomposition and primary production rates in the U.S. great plains. Ecology 83, 320 (2002).
    Google Scholar 
    Sharon, R., Degani, G. & Warburg, M. Comparing the soil macro-fauna in two oak-wood forests: Does community structure differ under similar ambient conditions?. Pedobiologia (Jena). 45, 355–366 (2001).
    Google Scholar 
    Clocchiatti, A., Hannula, S. E., van den Berg, M., Korthals, G. & de Boer, W. The hidden potential of saprotrophic fungi in arable soil: Patterns of short-term stimulation by organic amendments. Appl. Soil Ecol. 147, 103434 (2020).
    Google Scholar 
    Drenovsky, R., Vo, D., Graham, K. & Scow, K. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48, 424–430 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lauber, C., Hamady, M., Knigh, R. & Fierer, N. Pyrosequencing based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ullah, S. et al. The response of soil fungal diversity and community composition to long-term fertilization. Appl. Soil Ecol. 140, 35–41 (2019).
    Google Scholar 
    Bååth, E. & Anderson, T.-H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35, 955–963 (2003).
    Google Scholar 
    Zhang, T., Wang, N.-F., Liu, H.-Y., Zhang, Y.-Q. & Yu, L.-Y. Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (high arctic). Front. Microbiol. 7 (2016).Tian, D. et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. Sci. Total Environ. 607–608, 1367–1375 (2017).ADS 
    PubMed 

    Google Scholar 
    Zhao, A. et al. Influences of canopy nitrogen and water addition on am fungal biodiversity and community composition in a mixed deciduous forest of China. Front. Plant Sci. 9 (2018).He, J. et al. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. FEMS Microbiol. Ecol. 93, 1–12 (2017).
    Google Scholar 
    Shi, L. et al. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers. 64, 305–315 (2014).
    Google Scholar 
    Gebeyehu, G., Soromessa, T., Bekele, T. & Teketay, D. Plant diversity and communities along environmental, harvesting and grazing gradients in dry afromontane forests of Awi Zone, northwestern Ethiopia. Taiwania 64, 307–320 (2019).
    Google Scholar 
    Zegeye, H., Teketay, D. & Kelbessa, E. Diversity and regeneration status of woody species in Tara Gedam and Abebaye forests, northwestern Ethiopia. J. For. Res. 22, 315–328 (2011).
    Google Scholar 
    Abere, F., Belete, Y., Kefalew, A. & Soromessa, T. Carbon stock of Banja forest in Banja district, Amhara region, Ethiopia: An implication for climate change mitigation. J. Sustain. For. 36, 604–622 (2017).
    Google Scholar 
    Masresha, G., Soromessa, T. & Kelbessa, E. Status and species diversity of Alemsaga Forest, Northwestern Ethiopia 14 (2015).Rudolph, S., Maciá-Vicente, J. G., Lotz-Winter, H., Schleuning, M. & Piepenbring, M. Temporal variation of fungal diversity in a mosaic landscape in Germany. Stud. Mycol. 89, 95–104 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De la Varga, H., Águeda, B., Martínez-Peña, F., Parladé, J. & Pera, J. Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity. Mycorrhiza 22, 59–68 (2012).PubMed 

    Google Scholar 
    Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).PubMed 

    Google Scholar 
    Reeuwijk, L. Procedures for Soil Analysis (International Soil Reference and Information Centre, 2002).
    Google Scholar 
    Walkley, A. & Black, I. A. An examination of the digestion method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 34, 29–38 (1934).ADS 

    Google Scholar 
    Kim, J., Kreller, C. R. & Greenberg, M. M. Preparation and analysis of oligonucleotides containing the C4’-oxidized abasic site and related mechanistic probes. J. Org. Chem. 70, 8122–8129 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, H. T. Soil sampling, preparation and analysis. 139–145 (1996).Bouyoucos, G. H. A reclamation of the hydrometer for making mechanical analysis. Soil. Agro. J. 43, 434–438 (1951).CAS 

    Google Scholar 
    Ihrmark, K., Bödeker, I. & Cruz-Martinez, K. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).CAS 
    PubMed 

    Google Scholar 
    White, T. ., Bruns, S., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315–322 (Academic Press, 1990).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).
    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).PubMed 

    Google Scholar 
    Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105 (2020).Hedberg, I. & Edwards, S. Flora of Ethiopia and Eritria (1989).Collins, C. G., Stajich, J. E., Weber, S. E., Pombubpa, N. & Diez, J. M. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol. Ecol. 27, 2461–2476 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Schön, M. E., Nieselt, K. & Garnica, S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS ONE 13, e0208493 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Castaño, C. et al. Changes in fungal diversity and composition along a chronosequence of Eucalyptus grandis plantations in Ethiopia. Fungal Ecol. 39, 328–335 (2019).
    Google Scholar 
    Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).MATH 

    Google Scholar 
    Kent, M. & Coker, P. Vegetation Description and Analysis: A Practical Approach (Belhaven Press, 1993).
    Google Scholar 
    Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).
    Google Scholar 
    Jost, L., Chao, A. & Chazdon, R. Compositional similarity and β (beta) diversity. in Biological Diversity. Frontiers in Measurement and Assessment (eds. A.E., Magurran & B.J., M.) 66–84 (Oxford University Press, 2011).Kindt, R. & Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. (World Agroforestry Centre (ICRAF), 2005).R Core Team. A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-128. http://CRAN.R-project.org/package=nlme (2016).Tóthmérész, B. Comparison of different methods for diversity ordering. J. Veg. Sci. 6, 283–290 (1995).
    Google Scholar 
    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation. (PRIMER-E, Plymouth, 2014).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar  More

  • in

    European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.)

    Hill, L. et al. The£ 15 billion cost of ash dieback in Britain. Curr. Biol. 29(9), R315–R316 (2019).CAS 
    PubMed 

    Google Scholar 
    Pliûra, A. & Heuertz, M. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Common Ash (Fraxinus excelsior) (Bioversity International, 2003).
    Google Scholar 
    Dufour, S. & Piégay, H. Geomorphological controls of Fraxinus excelsior growth and regeneration in floodplain forests. Ecology 89(1), 205–215 (2008).CAS 
    PubMed 

    Google Scholar 
    Mitchell, R. J. et al. Ash dieback in the UK: a review of the ecological and conservation implications and potential management options. Biol. Conserv. 175, 95–109 (2014).
    Google Scholar 
    Przybył, K. Fungi associated with necrotic apical parts of Fraxinus excelsior shoots. For. Pathol. 32(6), 387–394 (2002).
    Google Scholar 
    Vasaitis, R., & Enderle, R. Dieback of European ash (Fraxinus spp.)-consequences and guidelines for sustainable management. Dieback of European ash (Fraxinus spp.). Report on COST Action FP1103 FRAXBACK. ISBN978-91-576-8696-1. (SLU Swedish University of Agricultural Sciences, 2017).Børja, I. et al. Ash dieback in Norway-current situation. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 166–175 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Ghelardini, L. et al. From the Alps to the Apennines: Possible spread of ash dieback in Mediterranean areas. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 140–149 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Marçais, B., Husson, C., Godart, L. & Cael, O. Influence of site and stand factors on Hymenoscyphus fraxineus-induced basal lesions. Plant. Pathol. 65(9), 1452–1461 (2016).
    Google Scholar 
    Queloz, V., Hopf, S., Schoebel, C. N., Rigling, D. & Gross, A. Ash dieback in Switzerland: History and scientific achievements. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 68–78 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Orton, E. S. et al. Population structure of the ash dieback pathogen, Hymenoscyphus fraxineus, in relation to its mode of arrival in the UK. Plant. Pathol. 67(2), 255–264 (2018).CAS 
    PubMed 

    Google Scholar 
    Enderle, R., Stenlid, J. & Vasaitis, R. An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CAB Rev. 14, 1–12 (2019).
    Google Scholar 
    Heinze, B., Tiefenbacher, H., Litschauer, R. & Kirisits, T. Ash dieback in Austria: History, current situation and outlook. in Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management, 33–52 (2017).Coker, T. L. et al. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 1(1), 48–58 (2019).
    Google Scholar 
    Cleary, M., Nguyen, D., Stener, L. G., Stenlid, J., & Skovsgaard, J. P. Ash and ash dieback in Sweden: A review of disease history, current status, pathogen and host dynamics, host tolerance and management options in forests and landscapes. Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management, 195–208 (2017).Stocks, J. J., Buggs, R. J. & Lee, S. J. A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles. Sci. Rep. 7(1), 1–7 (2017).
    Google Scholar 
    Díaz-Yáñez, O. et al. The invasive forest pathogen Hymenoscyphus fraxineus boosts mortality and triggers niche replacement of European ash (Fraxinus excelsior). Sci. Rep. 10(1), 1–10 (2020).
    Google Scholar 
    Enderle, R., Metzler, B., Riemer, U. & Kändler, G. Ash dieback on sample points of the national forest inventory in south-western Germany. Forests 9(1), 25 (2018).
    Google Scholar 
    Klesse, S. et al. Spread and severity of ash dieback in Switzerland: Tree characteristics and landscape features explain varying mortality probability. Front. For. Glob. Change 4, 18 (2021).
    Google Scholar 
    Timmermann, V., Potočić, N., Ognjenović, M. & Kirchner, T. Tree crown condition in 2020. In Forest Condition in Europe: The 2021 Assessment ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention) (eds Michel, A. et al.) (Thünen Institute, 2021).
    Google Scholar 
    Chumanová, E. et al. Predicting ash dieback severity and environmental suitability for the disease in forest stands. Scand. J. For. Res. 34(4), 254–266 (2019).
    Google Scholar 
    Solheim, H. & Hietala, A. M. Spread of ash dieback in Norway. Balt. For. 23(1), 1–6 (2017).
    Google Scholar 
    Kjær, E. D. et al. Genetics of ash dieback resistance in a restoration context: Experiences from Denmark. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 106–114 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Madsen, C. L. et al. Combined progress in symptoms caused by Hymenoscyphus fraxineus and Armillaria species, and corresponding mortality in young and old ash trees. For. Ecol. Manage. 491, 119177 (2021).
    Google Scholar 
    Trapiello, E., Schoebel, C. N. & Rigling, D. Fungal community in symptomatic ash leaves in Spain. Balt. For. 23(1), 68–73 (2017).
    Google Scholar 
    Grosdidier, M., Ioos, R. & Marçais, B. Do higher summer temperatures restrict the dissemination of Hymenoscyphus fraxineus in France?. For. Pathol. 48(4), e12426. https://doi.org/10.1111/efp.12426 (2018).Article 

    Google Scholar 
    Stroheker, S., Queloz, V. & Nemesio-Gorriz, M. First report of Hymenoscyphus fraxineus causing ash dieback in Spain. New Dis. Rep. 44(2), e12054 (2021).
    Google Scholar 
    Chandelier, A., Gerarts, F., San Martin, G., Herman, M. & Delahaye, L. Temporal evolution of collar lesions associated with ash dieback and the occurrence of Armillaria in Belgian forests. For. Pathol. 46(4), 289–297. https://doi.org/10.1111/efp.12258 (2016).Article 

    Google Scholar 
    Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V. & Sieber, T. N. H ymenoscyphus pseudoalbidus, the causal agent of E uropean ash dieback. Mol. Plant Pathol. 15(1), 5–21 (2014).CAS 
    PubMed 

    Google Scholar 
    Clark, J. & Webber, J. The ash resource and the response to ash dieback in Great Britain. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 228–237 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Dandy, N., Marzano, M., Porth, E. F., Urquhart, J. & Potter, C. Who has a stake in ash dieback? A conceptual framework for the identification and categorisation of tree health stakeholders. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 15–26 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Kjær, E. D., McKinney, L. V., Nielsen, L. R., Hansen, L. N. & Hansen, J. K. Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evol. Appl. 5(3), 219–228 (2012).PubMed 

    Google Scholar 
    Plumb, W. J. et al. The viability of a breeding programme for ash in the British Isles in the face of ash dieback. Plants People Planet 2(1), 29–40 (2020).
    Google Scholar 
    Evans, M. R. Will natural resistance result in populations of ash trees remaining in British woodlands after a century of ash dieback disease?. R. Soc. Open Sci. 6(8), 190908 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buggs, R. J. A. Changing perceptions of tree resistance research. Plants People Planet 2, 2–4. https://doi.org/10.1002/ppp3.10089 (2020).Article 

    Google Scholar 
    Tomlinson, I. & Potter, C. ‘Too little, too late’? Science, policy and Dutch Elm Disease in the UK. J. Hist. Geogr. 36(2), 121–131 (2010).
    Google Scholar 
    Kelly, L. J. et al. Convergent molecular evolution among ash species resistant to the emerald ash borer. Nat. Ecol. Evol. 4, 1116–1128. https://doi.org/10.1038/s41559-020-1209-3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sollars, E. S. et al. Genome sequence and genetic diversity of European ash trees. Nature 541(7636), 212–216 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stocks, J. J. et al. Genomic basis of European ash tree resistance to ash dieback fungus. Nat. Ecol. Evol. 3(12), 1686–1696 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Volkovitsh, M. G., Bieńkowski, A. O. & Orlova-Bienkowskaja, M. J. Emerald ash borer approaches the borders of the european union and kazakhstan and is confirmed to infest European ash. Forests 12(6), 691 (2021).
    Google Scholar 
    Eichhorn, J. et al. Part IV: Visual Assessment of Crown Condition and Damaging Agents. in Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. (Thünen Institute of Forest Ecosystems, 2016). Annex http://www.icp-forests.org/manual.htm.Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality. Nat. Commun. 12(1), 1–13 (2021).
    Google Scholar 
    Taccoen, A. et al. Climate change impact on tree mortality differs with tree social status. For. Ecol. Manage. 489, 119048 (2021).
    Google Scholar 
    Therneau, T. A Package for Survival Analysis in R. https://cran.r-project.org/web/packages/survival/vignettes/survival.pdf. Accessed 26 May 2021Godaert, L. et al. Prognostic factors of inhospital death in elderly patients: A time-to-event analysis of a cohort study in Martinique (French West Indies). BMJ Open 8(1), e018838 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sargeran, K., Murtomaa, H., Safavi, S. M. R., Vehkalahti, M. M. & Teronen, O. Survival after diagnosis of cancer of the oral cavity. Br. J. Oral Maxillofac. Surg. 46(3), 187–191 (2008).PubMed 

    Google Scholar 
    Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. B 34(2), 187–202 (1972).MathSciNet 
    MATH 

    Google Scholar 
    Aalen, O. O. A linear regression model for the analysis of life times. Stat. Med. 8(8), 907–925 (1989).CAS 
    PubMed 

    Google Scholar 
    Therneau, T. M., & Grambsch, P. M. The cox model. In Modeling survival data: extending the Cox model, pp. 39–77. (Springer, 2000).Neumann, M., Mues, V., Moreno, A., Hasenauer, H. & Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 23(11), 4788–4797 (2017).ADS 

    Google Scholar 
    Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11(1), 1–8 (2020).
    Google Scholar 
    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, D20 (2008).
    Google Scholar 
    R Development Core Team. RStudio, R: A Language and Environment for Statistical Computing (R Development Core Team, 2017).Holt, C. C. Forecasting Trends and Season-Als by Exponentially Weighted Averages. (Carnegie Institute of Technology, Pittsburgh ONR memorandum no. 52, 1957)Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3), 1–22 (2008).
    Google Scholar  More

  • in

    Assessment of deep convolutional neural network models for species identification of forensically-important fly maggots based on images of posterior spiracles

    Of which at the third instar, the external morphology of larvae is quite similar; thus, the morphological identification used to differentiate between its genera or species, generally includes cephalophalyngeal skeleton, anterior spiracle, and posterior spiracles. The morphology of the posterior spiracle is one of the important characteristics for identification. A typical morphology of the posterior spiracle of third stage larvae was shown in Fig. 2. Based on studying under light microscopy, the posterior spiracle of M. domestica was clearly distinguished from the others. On the other hand, the morphology of the posterior spiracle of C. megacephala and A. rufifacies was quite similar. For C. megacephala and C. rufifacies, the peritreme, a structure encircling the three spiracular openings (slits), was incomplete and slits were straight as shown Fig. 2A,B, respectively. The complete peritreme encircling three slits was found in L. cuprina and M. domestica as shown in Fig. 2C,D, respectively. However, only the slits of M. domestica were sinuous like the M-letter (Fig. 2D). Their morphological characteristics found in this study were like the descriptions in the previous reports23,24,25.Figure 2Morphology of posterior spiracles of four different fly species after inverting the image colors; (A) Chrysomya (Achoetandrus) ruffifacies, (B) Chrysomya megacephala, (C) Lucilia cuprina, (D) Musca domestica.Full size imageFor model training, four of the CNN models used for species-level identification of fly maggots provided 100% accuracy rates and 0% loss. Number of parameter (#Params), model speed, model size, macro precision, macro recall, f1-score, and support value were also presented in Table 1. The result demonstrated that the AlexNet model provided the best performance in all indicators when compared among four models. The AlexNet model used the least number of parameters while the Resnet101 model used the most. For model speed, the AlexNet model provided the fastest speed, while the Densenet161 model provided the slowest speed. For the model size, the AlexNet model was the smallest, while the Resnet101 model was the largest which corresponded to the number of parameters used. Macro precision, macro recall, f1-score and support value of all models were the same.Table 1 Comparison of model size, speed, and performances of each studied model (The text in bold indicates the best value in each category).Full size tableAs the training results presented in the supplementary data (Fig. S1), all models provided 100% accuracy and 0% loss in the early stage of training ( More

  • in

    Residual characteristics and safety assessment of the insecticides spiromesifen and chromafenozide in lettuce and perilla

    Chemicals and materialsAnalytical standard ( > 99% purity) of spiromesifen, BSN2060-enol, and chromafenozide were purchased from AB Solution Co., Ltd., Hwaseong-si, Gyeonggi-do, Republic of Korea. HPLC grade water and acetonitrile were supplied by Merck, Darmstadt, Germany. QuEChERS kit (4.0 g magnesium sulfate, 1.0 g sodium chloride, 1.0 g sodium citrate tribasic dihydrate, 0.5 g disodium citrate sesquihydrate) were obtained from Phenomenex, California, USA. Individual stock solutions of the target compounds were prepared in acetonitrile and stored at − 20 °C before use.Field experimentsThe trials were carried out in a greenhouse farm during the season 2018 at two different sites (with approximately 24 km distance between both sites) located in Chuncheon and Hongcheon-gun, Gangwon-do, Republic of Korea following the method described by the Organization for Economic Co-operation and Development (OECD)38. The field test of lettuce (Latuca sativa L.) crop was conducted in Chuncheon city, and perilla (Perilla frutescens (L.) Britton) crop in Hongcheon city. The area of each field was divided into two plots (treatment and control). The treatment plots were further divided into three replicates (subplots 33 m2). The control plot was separated by a buffer zone of 3 m2 from the treated site. To minimize spray overlap, buffer zones (1 m) were set up between subplots. The commercial products of spiromesifen 20% SC diluted 2000 times and chromafenozide 5% EC diluted 1000 times were sprayed twice at 7-days intervals using an automatic sprayer. After the second spray samples (lettuce and perilla leaves) were collected from each subplot at 0 (2 h after spraying), 1, 3, 5, and 7 days according to the Korean RDA23 method. Thirty samples 1.0 kg each from the collected crop were placed in polyethylene bag and labeled. After collection, the samples were transported to the laboratory, where they were chopped and homogenized. The homogenized samples were kept frozen at − 20 °C until analysis.We confirm all plant samples used in the current work comply with the IUCN Policy Statement on Research Involving Species at Risk of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora.Samples pretreatmentA QuEChERS method was used for the extraction of the targeted compounds from lettuce and perilla leaves. A 10 g of previously homogenized samples were weighed into a 50 mL polypropylene centrifuge tube and mixed with 10 mL of water followed by 10 mL of acetonitrile. The samples were shaken at 1500 rpm in a shaker machine for 10 min. Then commercial QuEChERS kit was added, and the mixtures were shaken vigorously for 2 min in a shaker. Subsequently, the samples were centrifuged at 3584 g-force for 10 min. After centrifugation, the supernatant was filtered with a 0.22 μm membrane filter and transferred into the glass vial for instrumental analysis.LC-MS/MS analysisQuantitative determination of the tested compounds was carried out by using HPLC system Dionex Ultimate 3000 (Thermo Science, USA) coupled with tandem mass spectrometry (MS/MS) (TSQ Quantum Access Max (Thermo Science, USA). Water (solvent A) and acetonitrile (solvent B) containing 0.1% formic acid and 5 mM ammonium format were used as mobile phase at a flow rate of 0.4 mL/min and injection volume 1.0 µL. To obtain desirable chromatographic peaks, two different instrumental conditions were used. The chromatographic separation of spiromesifen was separated by Capcell core-C18 (2.1 mm I.D. × 150 mm × 2.7 μm, Shiseido Co., Ltd., Tokyo, Japan) and BSN2060-enol was performed by C18 column (Poroshell 120 SB-Ag, 2.1 mm I.D. × 100 mm × 2.7-μm, Agilent Technologies, Santa Clara, California, USA) with a gradient elution as follows (mobile phase B%): 0.0 min, 5.0%; 2.0 min 5%; 2.5 min, 95%; 6.0 min, 95%; 6.5 min, 5.0%; 10 min, 5.0%. Likewise, chromafenozide was separated by C18 column (Imtakt Unison UK-C18, 2.0 mm I.D. × 100 mm × 3.0-μm, Imtakt, Portland, USA) with a gradient elution as follows (mobile phase B%): 0.0 min, 5%; 1.0 min, 5.0%; 1.5 min, 90%; 5.0 min, 90%; 7.0 min, 5.0%; 10 min, 5.0%. An MS/MS system (TSQ quantum ultra, Thermo Science, USA) equipped with an electrospray ionization source operating in positive mode (ESI+) was used. The MS/MS parameters and selected product ions are shown in supplementary Tables S2 and S3.The calculation of spiromesifen total residuesThe total residues in lettuce and perilla samples were calculated using Eq. (1)23.Total residues of spiromesifen (mg/kg) = spiromesifen + (BSN2060 residue × 1.36). The conversion factor was calculated as follow;$${1}.{36},{text{(conversion}},{text{factor)}} = frac{{370.49left( {{text{spiromesifen}},{text{MW}}} right)}}{{272.34{ }left( {{text{BSN}}2060,{text{MW}}} right)}}$$
    (1)
    where MW molecular weight.Initial deposition calculationThe initial residues of spiromesifen and chromafenozide deposition in lettuce and perilla leaves were calculated from 0-day according to Eq. (2) described by Kang et al.12 as follow;$${text{A }},({text{mg}}/{text{kg}}) = {text{B(mg}}/{text{kg)}} times frac{100}{{{text{C}}({text{% }})}} times frac{1}{{text{E}}} times 1000$$
    (2)
    A: Initial residue (mg/kg), B: Residues (mg/kg) on 0 day, C: active ingredients, E: dilution factor.Method validationThe analytical method was validated in terms of different performance criteria such as linearity, accuracy, precision, and method limit of quantitation (MLOQ). Matrix-matched standards were used to construct the calibration curve by evaporating (0.01, 0.05, 0.1, 0.2, 0.5, 0.7 and 1.0 mg/kg) working solution (1 mL) and re-dissolved in the extract of control sample. The linearity of the matrix-matched calibration curve was evaluated by the values of the correlation coefficient (R2). The accuracy and precision were obtained in terms of recovery (70–120%) and repeatability (n = 3). The recoveries were determined by spiking the analytes at two concentrations levels (0.1 mg/L) and (0.5 mg/L) in 10 g control samples and were quantified by comparing the response of analytes in samples with response in calibration standard solutions prepared in matrix. The repeatability expressed as the relative standard deviation (RSD) of the analyzed samples was calculated from three repetitions. The MLOQ was calculated by Eq. (3) taking into consideration the following factors: the instrument limit of detection, volume of extraction solvent, injection volume, dilution factor, and sample amount39,40.$${text{MLOQ}},{text{(mg}}/{text{kg)}} = {text{A(ng)}} times frac{{text{B(mL)}}}{{{text{C(}}upmu {text{L)}}}} times frac{{text{D}}}{{text{E(g)}}}$$
    (3)
    where A: instrument limit of detection, B: volume of extraction solvent, C: injection volume, D: dilution factor, E: sample amount.Half-life calculationThe dissipation patterns of spiromesifen and chromafenozide in lettuce and perilla leaves over time were found following the first-order kinetics model28. The half-life was determined by the following equation:$${text{C}}_{{text{t}}} = {text{C}}_{0} times {text{e}}^{{ – {text{kt}}}} ,{text{DT}}_{{{5}0}} = {text{ln2}}/{text{k}}$$where Ct is the concentration of the insecticide, C0 represents the initial residue concentration of insecticide, t is the time (days) after insecticide application, and k is the constant rate.Safety assessmentIn this study, the safety assessments (percent acceptable daily intake; %ADI) of the target insecticides that are consumed with lettuce and perilla leaves were calculated by the ratio of estimated daily intake (EDI) to acceptable daily intake (ADI). The EDI was calculated using insecticide concentration and average consumption of food commodities per person per day. In addition, the theoretical maximum daily intakes (TMDIs) of both insecticides were calculated using the maximum residue limits (MRLs) and average body weight (60 kg) of adults in Republic of Korea. TMDIs were calculated following the equation described by Kim et al.41.$$begin{aligned} & {text{ADI (mg}}/{text{person}}/{text{day)}} = {text{ADI}},({text{mg}}/{text{kg}}/{text{body weight}}/{text{day}}),{text{of target insecticide}} times {text{6}}0,({text{average body weight}}) \ & {text{EDI (mg}}/{text{kg}}/{text{person)}} = {text{concentration of target insecticide (mg}}/{text{kg)}} times {text{ daily food intake (g)}} \ & % {text{ADI}} = {text{EDI}}/{text{ADI}} times {text{1}}00 \ & {text{TMDI}}% = sum % {text{ADI of all registered crops}} \ end{aligned}$$ More

  • in

    Frequency-dependent Batesian mimicry maintains colour polymorphism in a sea snake population

    Van Gossum, H., Sherratt, T. N., Cordero-Rivera, A. & Córdoba-Aguilar, A. The evolution of sex-limited colour polymorphism. In Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research (ed. Córdoba-Aguilar, A.) 219–231 (Oxford University Press, 2008).
    Google Scholar 
    Hughes, J. M. & Jones, M. P. Shell colour polymorphism in a mangrove snail Littorina sp. (Prosobranchia: Littorinidae). Biol. J. Linn. Soc. 25, 365–378 (1985).
    Google Scholar 
    Sinervo, B., Bleay, C. & Adamopoulou, C. Social causes of correlational selection and the resolution of a heritable throat color polymorphism in a lizard. Evolution 55, 2040–2052 (2001).CAS 
    PubMed 

    Google Scholar 
    Westerman, E. L. et al. Does male preference play a role in maintaining female limited polymorphism in a Batesian mimetic butterfly? Behav. Process. 150, 47–58 (2018).CAS 

    Google Scholar 
    Vane-Wright, R. I. An integrated classification for polymorphism and sexual dimorphism in butterflies. J. Zool. 177, 329–337 (1975).
    Google Scholar 
    Timmermans, M. J., Srivathsan, A., Collins, S., Meier, R. & Vogler, A. P. Mimicry diversification in Papilio dardanus via a genomic inversion in the regulatory region of engrailed–invected. Proc. R. Soc. B 287, 20200443 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodie, E. D. III. & Janzen, F. J. Experimental studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Funct. Ecol. 9, 186–190 (1995).
    Google Scholar 
    Banci, K. R., Eterovic, A., Marinho, P. S. & Marques, O. A. Being a bright snake: Testing aposematism and mimicry in a neotropical forest. Biotropica 52, 1229–1241 (2020).
    Google Scholar 
    Wüster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. B 271, 2495–2499 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Valkonen, J. K. & Mappes, J. Resembling a viper: Implications of mimicry for conservation of the endangered smooth snake. Conserv. Biol. 28, 1568–1574 (2014).PubMed 

    Google Scholar 
    Sinervo, B. & Lively, C. M. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996).ADS 
    CAS 

    Google Scholar 
    Moon, R. M. & Kamath, A. Re-examining escape behaviour and habitat use as correlates of dorsal pattern variation in female brown anole lizards, Anolis sagrei (Squamata: Dactyloidae). Biol. J. Linn. Soc. 126, 783–795 (2019).
    Google Scholar 
    Le Rouzic, A., Hansen, T. F., Gosden, T. P. & Svensson, E. I. Evolutionary time-series analysis reveals the signature of frequency-dependent selection on a female mating polymorphism. Am. Nat. 185, E182–E196 (2015).PubMed 

    Google Scholar 
    Udyawer, V. et al. Future directions in the research and management of marine snakes. Front. Mar. Sci. 5, 399 (2018).
    Google Scholar 
    Goiran, C., Bustamante, P. & Shine, R. Industrial melanism in the seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).CAS 
    PubMed 

    Google Scholar 
    Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of sea snakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).
    Google Scholar 
    Shine, R., Shine, T. & Shine, B. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): The effects of sex, body size, and colour pattern. Biol. J. Linn. Soc. 80, 1–10 (2003).
    Google Scholar 
    Udyawer, V., Goiran, C. & Shine, R. Peaceful coexistence between people and deadly wildlife: why are recreational users of the ocean so rarely bitten by sea snakes? People Nat. 3, 335–346 (2021).
    Google Scholar 
    Heatwole, H. Sea Snakes 2nd edn. (Krieger Publishing, 1999).
    Google Scholar 
    Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Life history traits of the sea snake Emydocephalus annulatus, based on a 17-yr study. Coral Reefs 39, 1407–1414 (2020).
    Google Scholar 
    Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).ADS 

    Google Scholar 
    Olsson, M., Stuart-Fox, D. & Ballen, C. Genetics and evolution of colour patterns in reptiles. Semin. Cell Dev. Biol. 24, 529–541 (2013).PubMed 

    Google Scholar 
    Shine, R., Brischoux, F. & Pile, A. J. A seasnake’s colour affects its susceptibility to algal fouling. Proc. R. Soc. B 277, 2459–2464 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
    Google Scholar 
    Packard, G. C. & Boardman, T. J. The misuse of ratios, indices, and percentages in ecophysiological research. Physiol. Zool. 61, 1–9 (1988).
    Google Scholar 
    Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Shine, R. All at sea: Aquatic life modifies mate-recognition modalities in sea snakes (Emydocephalus annulatus, Hydrophiidae). Behav. Ecol. Sociobiol. 57, 591–598 (2005).
    Google Scholar 
    Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Population dynamics of the sea snake Emydocephalus annulatus (Elapidae, Hydrophiinae). Sci. Rep. 11, 20701 (2021).ADS 

    Google Scholar 
    Rancurel, P. & Intes, A. Le requin tigre, Galeocerdo cuvieri Lacepede, des eaux neocaledoniennes examen des contenus stomacaux. Tethys 10, 195–199 (1982).
    Google Scholar 
    Heatwole, H. Predation on sea snakes. In The Biology of Sea Snakes (ed. Dunson, W. A.) 233–250 (University Park Press, 1975).
    Google Scholar 
    Ineich, I. & Laboute, P. Les serpents marins de Nouvelle-Calédonie (IRD éditions, 2002).
    Google Scholar 
    Kerford, M. R., Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Danger on the rise: diurnal tidal state mediates an exchange of food for safety by the bar-bellied sea snake Hydrophis elegans. Mar. Ecol. Progr. Ser. 358, 289–294 (2008).ADS 

    Google Scholar 
    Masunaga, G., Kosuge, T., Asai, N. & Ota, H. Shark predation of sea snakes (Reptilia: Elapidae) in the shallow waters around the Yaeyama Islands of the southern Ryukyus, Japan. Mar. Biodivers. Rec. 1, e96 (2008).
    Google Scholar 
    Wirsing, A. J. & Heithaus, M. R. Olive-headed sea snakes Disteria major shift seagrass microhabitats to avoid shark predation. Mar. Ecol. Progr. Ser. 387, 287–293 (2009).ADS 

    Google Scholar 
    Goiran, C. & Shine, R. The ability of damselfish to distinguish between dangerous and harmless sea snakes. Sci. Rep. 10, 1377 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Norman, M. D., Finn, J. & Tregenza, T. Dynamic mimicry in an Indo-Malayan octopus. Proc. R. Soc. B 268, 1755–1758 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pernetta, J. C. Observations on the habits and morphology of the sea snake Laticauda colubrina (Schneider) in Fiji. Can. J. Zool. 55, 1612–1619 (1977).
    Google Scholar 
    Randall, J. E. A review of mimicry in marine fishes. Zool. Stud. 44, 299–328 (2005).
    Google Scholar 
    Dudgeon, C. L. & White, W. T. First record of potential Batesian mimicry in an elasmobranch: Juvenile zebra sharks mimic banded sea snakes? Mar. Freshw. Res. 63, 545–551 (2012).
    Google Scholar 
    Sullivan Caldwell, G. & Wolff Rubinoff, R. Avoidance of venomous sea snakes by naive herons and egrets. Auk 100, 195–198 (1983).
    Google Scholar 
    Sanders, K. L., Malhotra, A. & Thorpe, R. S. Evidence for a Müllerian mimetic radiation in Asian pitvipers. Proc. R. Soc. B 273, 1135–1141 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raveendran, D. K., Deepak, V., Smith, E. N. & Smart, U. A new colour morph of Calliophis bibroni (Squamata: Elapidae) and evidence for Müllerian mimicry in Tropical Indian coral snakes. Herpetol. Notes 10, 209–217 (2017).
    Google Scholar  More

  • in

    A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs

    Bokulich, N. A. et al. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. MBio, https://doi.org/10.1128/mBio.00631-16 (2016).Zohary, D. The Domestication of the Grapevine Vitis Vinifera L. in the Near East (Chapter 2) in The Origins and Ancient History of Wine (eds McGovern, P. E., Katz, S. H. & Fleming, S. J.) 21–28. (Routledge, 2003).Whalen, P. ‘Insofar as the ruby wine seduces them’: cultural strategies for selling wine in inter-war Burgundy. Contemp. Eur. Hist. 18, 67–98 (2009).
    Google Scholar 
    Østerlie, M. & Wicklund, T. In Nutritional and Health Aspects of Food in Nordic Countries (eds Bar, E., Wirtanen, G. & Veslemøy Andersen, V.) Ch. 2 (Elsevier Inc., 2018).Planète Terroirs. The future needs terroirs. https://planeteterroirs.org/ (2010).California Wine-Growing Regions, https://discovercaliforniawines.com/wine-map-winery-directory/Agricultura, M. D. E. & Ambiente. Compendio informativo en relación con las DOPs/IGPs y terminos tradicionales de vino, las indicaciones geograficas de bebidas espirituosas, y las indicaciones geograficas de productos vitivinicolas aromatizados. https://www.mapa.gob.es/es/alimentacion/temas/calidad-diferenciada/relaciondisposicionesdopseigpsdevinosbbeevinosaromatiz_tcm30-432336.pdf (2016).Ballantyne, D., Terblanche, N. S., Lecat, B. & Chapuis, C. Old world and new world wine concepts of terroir and wine: perspectives of three renowned non-French wine makers. J. Wine Res. 30, 122–143 (2019).
    Google Scholar 
    OIV. Resolution OIV/VITI 333/2010, definition of vitivinicultural “terroir”. https://www.oiv.int/public/medias/379/viti-2010-1-en.pdf (2010).Belda, I., Zarraonaindia, I., Perisin, M., Palacios, A. & Acedo, A. From vineyard soil to wine fermentation: microbiome approximations to explain the ‘terroir’ Concept. Front. Microbiol. 8, 1–12 (2017).
    Google Scholar 
    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. MBio 6, 1–10 (2015).CAS 

    Google Scholar 
    Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by vineyard management. Soil Biol. Biochem. 103, 337–348 (2016).CAS 

    Google Scholar 
    Bokulich, N. A., Joseph, C. M. L., Allen, G., Benson, A. K. & Mills, D. A. Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS ONE 7, 3–12 (2012).
    Google Scholar 
    Portillo, M., del, C., Franquès, J., Araque, I., Reguant, C. & Bordons, A. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 219, 56–63 (2016).
    Google Scholar 
    Mezzasalma, V. et al. Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. PLoS ONE 12, 1–20 (2017).
    Google Scholar 
    Hermans, S. M. et al. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 8, 1–13 (2020).
    Google Scholar 
    OIV. Functional biodiversity in the vineyard. https://www.oiv.int/public/medias/6367/functional-biodiversity-in-the-vineyard-oiv-expertise-docume.pdf (2018).Ortiz-Álvarez, R. et al. Network properties of local fungal communities reveal the anthropogenic disturbance consequences of farming practices in vineyard soils. mSystems 6, e00344-21 (2021).Knight, S., Klaere, S., Fedrizzi, B. & Goddard, M. R. Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Sci. Rep. 5, 1–10 (2015).
    Google Scholar 
    Belda, I. et al. Unraveling the enzymatic basis of wine ‘flavorome’: a phylo-functional study of wine related yeast species. Front. Microbiol. 7, 1–13 (2016).
    Google Scholar 
    Gilbert, J. A., van der Lelie, D. & Zarraonaindia, I. Microbial terroir for wine grapes. Proc. Natl Acad. Sci. USA 111, 5–6 (2014).CAS 
    PubMed 

    Google Scholar 
    Belda, I. et al. Microbiomics to Define Wine Terroir (Chapter: 3.32) in Comprehensive Foodomics (Ed. Cifuentes, A.) 438–451 (Elsevier, 2021).Van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).Altieri, M. A. In Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes (1999).Brussaard, L., de Ruiter, P. C. & Brown, G. G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 121, 233–244 (2007).Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).Wei, Y. J. et al. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS ONE 13, 1–17 (2018).
    Google Scholar 
    Liao, J., Xu, Q., Xu, H. & Huang, D. Natural farming improves soil quality and alters microbial diversity in a cabbage field in Japan. Sustain 11, 1–16 (2019).
    Google Scholar 
    Yan, J. et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319, 194–203 (2018).CAS 

    Google Scholar 
    Qiao, Q. et al. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7, 1–10 (2017).
    Google Scholar 
    Pacchioni, R. G. et al. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil. Microbiologyopen 3, 299–315 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ishaq, S. L. et al. Impact of cropping systems, soil inoculum, and plant species identity on soil bacterial community structure. Microb. Ecol. 73, 417–434 (2017).CAS 
    PubMed 

    Google Scholar 
    Verkley, G. J. M., Da Silva, M., Wicklow, D. T. & Crous, P. W. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud. Mycol. 50, 323–335 (2004).
    Google Scholar 
    Thomma, B. P. H. J. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4, 225–236 (2003).CAS 
    PubMed 

    Google Scholar 
    Mašínová, T. et al. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol. Ecol. 93, 1–10 (2017).
    Google Scholar 
    Chen, J., Xu, L., Liu, B. & Liu, X. Taxonomy of Dactylella complex and Vermispora. III. A new genus Brachyphoris and revision of Vermispora. Fungal Divers. 26, 127–142 (2014).Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol. Biochem. 91, 232–247 (2015).Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl Acad. Sci. USA 111, 139–148 (2014).
    Google Scholar 
    Castañeda, L. E. & Barbosa, O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5, e3098 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Coller, E. et al. Microbiome of vineyard soils is shaped by geography and management. Microbiome 7, 1–15 (2019).
    Google Scholar 
    Zhou, J. et al. Wine terroir and the soil bacteria: an amplicon sequencing–based assessment of the Barossa Valley and its sub-regions. Front. Microbiol. 11, 1–15 (2021).
    Google Scholar 
    Price, C. A. et al. Testing the metabolic theory of ecology. Ecol. Lett. 15, 1465–1474 (2012).PubMed 

    Google Scholar 
    Jenerette, G. D., Scott, R. L. & Huxman, T. E. Whole ecosystem metabolic pulses following precipitation events. Funct. Ecol. 22, 924–930 (2008).
    Google Scholar 
    Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 1–9 (2019).
    Google Scholar 
    Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D. & Kursar, T. A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 3, 267–274 (2000).
    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1052–1053 (2014).
    Google Scholar 
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bintrim, S. B., Donohue, T. J., Handelsman, J., Roberts, G. P. & Goodman, R. M. Molecular phylogeny of Archaea from soil. Proc. Natl Acad. Sci. USA 94, 277–282 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, H. M., Dodsworth, J. A. & Goodman, R. M. Crenarchaeota colonize terrestrial plant roots. Environ. Microbiol. 2, 495–505 (2000).CAS 
    PubMed 

    Google Scholar 
    Buckley, D. H., Graber, J. R. & Schmidt, T. M. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl. Environ. Microbiol. 64, 4333–4339 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L. & Schleper, C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5, 787–797 (2003).CAS 
    PubMed 

    Google Scholar 
    Kemnitz, D., Kolb, S. & Conrad, R. High abundance of Crenarchaeota in a temperate acidic forest soil. FEMS Microbiol. Ecol. 60, 442–448 (2007).CAS 
    PubMed 

    Google Scholar 
    Zhalnina, K. et al. Ca. nitrososphaera and bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front. Microbiol. 4, 1–13 (2013).
    Google Scholar 
    Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259 (2012).CAS 
    PubMed 

    Google Scholar 
    Yurkov, A. M. Yeasts of the soil—obscure but precious. Yeast 35, 369–378 (2018).CAS 
    PubMed 

    Google Scholar 
    Kachalkin, A. V., Abdullabekova, D. A., Magomedova, E. S., Magomedov, G. G. & Chernov, I. Y. Yeasts of the vineyards in Dagestan and other regions. Microbiology 84, 425–432 (2015).CAS 

    Google Scholar 
    Čadež, N., Zupan, J. & Raspor, P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10, 619–630 (2010).PubMed 

    Google Scholar 
    Comitini, F. & Ciani, M. Influence of fungicide treatments on the occurrence of yeast flora associated with wine grapes. Ann. Microbiol. 58, 489–493 (2008).
    Google Scholar 
    Kepler, R. M., Maul, J. E. & Rehner, S. A. Managing the plant microbiome for biocontrol fungi: examples from Hypocreales. Curr. Opin. Microbiol. 37, 48–53 (2017).CAS 
    PubMed 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 

    Google Scholar 
    Liu, D. & Howell, K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ. Microbiol. 23, 1842–1857 (2021).CAS 
    PubMed 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Bacteria found in soil. Science 325, 320–325 (2018).
    Google Scholar 
    Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).Alonso, A. et al. Looking at the origin: Some insights into the general and fermentative microbiota of vineyard soils. Fermentation 5, 1–15 (2019).
    Google Scholar 
    OIV. Resolution OIV-VITI 655-2021. OIV recommendations about valuation and importance of microbial biodiversity in a sustainable vitiviniculture context. https://www.oiv.int/public/medias/8097/en-oiv-viti-655-2021.pdf (2021).Vishnivetskaya, T. A. et al. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiol. Ecol. 87, 217–230 (2014).CAS 
    PubMed 

    Google Scholar 
    Gobbi, A. et al. Quantitative and qualitative evaluation of the impact of the G2 enhancer, bead sizes and lysing tubes on the bacterial community composition during DNA extraction from recalcitrant soil core samples based on community sequencing and qPCR. PLoS One 14, e0200979 (2019).Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 37, 852–857 (2018).Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021-18 (2018).Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).Chen, H. VennDiagram: generate high-resolution Venn and Euler plots. R. Packag. Version 1, 1 (2018).
    Google Scholar 
    Salonen, A., Salojärvi, J., Lahti, L. & de Vos, W. M. The adult intestinal core microbiota is determined by analysis depth and health status. Clin. Microbiol. Infect. 18, 16–20 (2012).CAS 
    PubMed 

    Google Scholar 
    Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Model. 15, 134–158 (2015).
    Google Scholar 
    Oksanen, J. et al. vegan: community ecology package. R package version 2.4-3. Vienna R Found. Stat. Comput. Sch. (2016).Wright, M. N. & Ziegler, A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).Team, R. C. R: a language and environment for statistical computing. (2019).Henschel, A., Anwar, M. Z. & Manohar, V. Comprehensive meta-analysis of ontology annotated 16S rRNA profiles identifies beta diversity clusters of environmental bacterial communities. PLoS Comput. Biol. 11, 1–24 (2015).
    Google Scholar 
    Lozupone, C. A. et al. Meta-analyses of studies of the human microbiota. Genome Res. 23, 1704–1714 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pauvert, C. et al. Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. 41, 23–33 (2019).Gobbi, A., Kyrkou, I., Filippi, E., Ellegaard-Jensen, L. & Hansen, L. H. Seasonal epiphytic microbial dynamics on grapevine leaves under biocontrol and copper fungicide treatments. Sci. Rep. 10, 681 (2020).Engelbrektson, A. et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 4, 642–647 (2010).CAS 
    PubMed 

    Google Scholar 
    Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407 (2019). More

  • in

    Cultural diversity through the lenses of ecology

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More