van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).
 Google Scholar 
 Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467–471 (2011).
 Google Scholar 
 Brienen, R. J. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
 Google Scholar 
 Klein, T., Cahanovitc, R., Sprintsin, M., Herr, N. & Schiller, G. A nation-wide analysis of tree mortality under climate change: forest loss and its causes in Israel 1948–2017. For. Ecol. Manag. 432, 840–849 (2019).
 Google Scholar 
 Yu, K. et al. Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proc. Natl Acad. Sci. USA 116, 24662–24667 (2019).
 Google Scholar 
 Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
 Google Scholar 
 Kharuk, V. I. et al. Climate-driven conifer mortality in Siberia. Glob. Ecol. Biogeogr. 30, 543–556 (2021).
 Google Scholar 
 Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).
 Google Scholar 
 Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. & Nepstad, D. The 2010 amazon drought. Science 331, 554 (2011).
 Google Scholar 
 Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).
 Google Scholar 
 Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).
 Google Scholar 
 Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).
 Google Scholar 
 Kannenberg, S. A., Driscoll, A. W., Malesky, D. & Anderegg, W. R. Rapid and surprising dieback of Utah juniper in the southwestern USA due to acute drought stress. For. Ecol. Manag. 480, 118639 (2021).
 Google Scholar 
 Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).
 Google Scholar 
 Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26, 3122–3133 (2020).
 Google Scholar 
 Werner, W. L. Canopy dieback in the upper montane rain forests of Sri Lanka. GeoJournal 17, 245–248 (1988).
 Google Scholar 
 Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).
 Google Scholar 
 Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
 Google Scholar 
 Werner, R. A. & Holsten, E. H. Mortality of white spruce during a spruce beetle outbreak on the Kenai Peninsula in Alaska. Can. J. For. Res. 13, 96–101 (1983).
 Google Scholar 
 Suarez, M. L., Ghermandi, L. & Kitzberger, T. Factors predisposing episodic drought-induced tree mortality in Nothofagus: site, climatic sensitivity and growth trends. J. Ecol. 92, 954–966 (2004).
 Google Scholar 
 Swemmer, A. M. Locally high, but regionally low: the impact of the 2014–2016 drought on the trees of semi-arid savannas, South Africa. Afr. J. Range Forage Sci. 37, 31–42 (2020).
 Google Scholar 
 Michaelian, M., Hogg, E. H., Hall, R. J. & Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Chang Biol. 17, 2084–2094 (2011).
 Google Scholar 
 Kharuk, V. I. et al. Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed, Siberia. For. Ecol. Manag. 384, 191–199 (2017).
 Google Scholar 
 Kharuk, V. I., Ranson, K. J., Oskorbin, P. A., Im, S. T. & Dvinskaya, M. L. Climate induced birch mortality in Trans-Baikal lake region, Siberia. For. Ecol. Manag. 289, 385–392 (2013).
 Google Scholar 
 Crouchet, S. E., Jensen, J., Schwartz, B. F. & Schwinning, S. Tree mortality after a hot drought: distinguishing density-dependent and -independent drivers and why it matters. Front. For. Glob. Change 2, 21 (2019).
 Google Scholar 
 Breshears, D. D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4, 266 (2013).
 Google Scholar 
 Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
 Google Scholar 
 Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).
 Google Scholar 
 Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).
 Google Scholar 
 Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Chang. 9, 948–953 (2019).
 Google Scholar 
 Dore, M. H. Climate change and changes in global precipitation patterns: what do we know? Environ. Int. 31, 1167–1181 (2005).
 Google Scholar 
 Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 31, e2020GL087820 (2020).
 Google Scholar 
 Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. New Phytol. 231, 32–39 (2021).
 Google Scholar 
 Adams, H. D. et al. Temperature response surfaces for mortality risk of tree species with future drought. Environ. Res. Lett. 12, 115014 (2017).
 Google Scholar 
 McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Chang. 6, 295–300 (2016).
 Google Scholar 
 Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).
 Google Scholar 
 Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2020).
 Google Scholar 
 Long, S. P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ. 14, 729–739 (1991).
 Google Scholar 
 Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14, 1531–1542 (2008).
 Google Scholar 
 Baig, S., Medlyn, B. E., Mercado, L. & Zaehle, S. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob. Change Biol. 21, 4303–4319 (2015).
 Google Scholar 
 Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).
 Google Scholar 
 Belmecheri, S. et al. Precipitation alters the CO2 effect on water-use efficiency of temperate forests. Glob. Change Biol. 27, 1560–1571 (2021).
 Google Scholar 
 Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).
 Google Scholar 
 De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? New Phytol. 231, 2118–2124 (2021).
 Google Scholar 
 Martınez-Vilalta, J., Piñol, J. & Beven, K. A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol. Model. 155, 127–147 (2002).
 Google Scholar 
 McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).
 Google Scholar 
 McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).
 Google Scholar 
 Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017).
 Google Scholar 
 Fisher, R. et al. Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol. 187, 666–681 (2010).
 Google Scholar 
 McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel–experiment framework. New Phytol. 200, 304–321 (2013).
 Google Scholar 
 Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).
 Google Scholar 
 Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v. 1-Hydro). Geosci. Model Dev. 9, 4227–4255 (2016).
 Google Scholar 
 Kennedy, D. et al. Implementing plant hydraulics in the community land model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
 Google Scholar 
 Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).
 Google Scholar 
 Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 3, 30–36 (2013).
 Google Scholar 
 Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28 (2018).
 Google Scholar 
 Adams, H. D. et al. Ecohydrological consequences of drought- and infestation-triggered tree die-off: insights and hypotheses. Ecohydrology 5, 145–159 (2012).
 Google Scholar 
 Bearup, L. A., Maxwell, R. M., Clow, D. W. & McCray, J. E. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds. Nat. Clim. Chang. 4, 481–486 (2014).
 Google Scholar 
 Bennett, K. E. et al. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River. Hydrol. Earth Syst. Sci. 22, 709–725 (2018).
 Google Scholar 
 Lutz, J. A. & Halpern, C. B. Tree mortality during early forest development: a long-term study of rates, causes, and consequences. Ecol. Monogr. 76, 257–275 (2006).
 Google Scholar 
 Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352 (2016).
 Google Scholar 
 McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
 Google Scholar 
 Waring, K. M. et al. Modeling the impacts of two bark beetle species under a warming climate in the southwestern USA: ecological and economic consequences. Environ. Manag. 44, 824–835 (2009).
 Google Scholar 
 Barigah, T. S. et al. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann. Bot. 112, 1431–1437 (2013).
 Google Scholar 
 Guadagno, C. R. et al. Dead or alive? Using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. Plant Physiol. 175, 223–234 (2017).
 Google Scholar 
 Hammond, W. M. et al. Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phytol. 223, 1834–1843 (2019).
 Google Scholar 
 Sapes, G. et al. Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality. Tree Physiol. 39, 1300–1312 (2019).
 Google Scholar 
 Mantova, M., Menezes-Silva, P. E., Badel, E., Cochard, H. & Torres-Ruiz, J. M. The interplay of hydraulic failure and cell vitality explains tree capacity to recover from drought. Physiol. Plant. 172, 247–257 (2021).
 Google Scholar 
 Kono, Y. et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun. Biol. 2, 8 (2019).
 Google Scholar 
 Preisler, Y. et al. Seeking the “point of no return” in the sequence of events leading to mortality of mature trees. Plant Cell Environ. 44, 1315–1328 (2020).
 Google Scholar 
 Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).
 Google Scholar 
 Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).
 Google Scholar 
 McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Chang. 5, 669–672 (2015).
 Google Scholar 
 Stephenson, N. L. & van Mantgem, P. J. Forest turnover rates follow global and regional patterns of productivity. Ecol. Lett. 8, 524–531 (2005).
 Google Scholar 
 Zhu, K. C. et al. Dual impacts of climate change: forest migration and turnover through life history. Glob. Change Biol. 20, 251–264 (2014).
 Google Scholar 
 Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
 Google Scholar 
 Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).
 Google Scholar 
 Hartmann, H. et al. Climate change risks to global forest health – emergence of unexpected events of elevated tree mortality world-wide. Annu. Rev. Plant Biol. https://doi.org/10.1146/annurev-arplant-102820-012804 (2022).Article 
 Google Scholar 
 Manion, P. D. Tree Disease Concepts (Prentice-Hall, 1981)Brodribb, T. J. Learning from a century of droughts. Nat. Ecol. Evol. 4, 1007–1008 (2020).
 Google Scholar 
 Anderegg, W. R. et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208, 674–683 (2015).
 Google Scholar 
 Huang, J. et al. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2019).
 Google Scholar 
 Martinez-Vilalta, J., Anderegg, W. R., Sapes, G. & Sala, A. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytol. 223, 22–32 (2019).
 Google Scholar 
 Cuneo, I. F., Knipfer, T., Brodersen, C. R. & McElrone, A. J. Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought. Plant Physiol. 172, 1669–1678 (2016).
 Google Scholar 
 Johnson, D. M. et al. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant Cell Environ. 41, 576–588 (2018).
 Google Scholar 
 Cochard, H. A new mechanism for tree mortality due to drought and heatwaves. Peer Community J. 1, e36 (2021).
 Google Scholar 
 Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytol. 221, 693–705 (2019).
 Google Scholar 
 Beckett, R. P. Pressure–volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Ann. Bot. 79, 145–152 (1997).
 Google Scholar 
 Ding, Y., Zhang, Y., Zheng, Q. S. & Tyree, M. T. Pressure–volume curves: revisiting the impact of negative turgor during cell collapse by literature review and simulations of cell micromechanics. New Phytol. 203, 378–387 (2014).
 Google Scholar 
 Sperry, J. S., Adler, F. R., Campbell, G. S. & Comstock, J. P. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ. 21, 347–359 (1998).
 Google Scholar 
 Rodriguez-Dominguez, C. M. & Brodribb, T. J. Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytol. 225, 126–134 (2020).
 Google Scholar 
 Carminati, A. & Javaux, M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25, 868–880 (2020).
 Google Scholar 
 Maseda, P. H. & Fernandez, R. J. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J. Exp. Bot. 57, 3963–3977 (2006).
 Google Scholar 
 Plaut, J. A. et al. Hydraulic limits preceding mortality in a piñon–juniper woodland under experimental drought. Plant Cell Environ. 35, 1601–1617 (2012).
 Google Scholar 
 Creek, D. et al. Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique. J. Exp. Bot. 71, 1151–1159 (2020).
 Google Scholar 
 Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).
 Google Scholar 
 Hammond, W. M. & Adams, H. D. Dying on time: traits influencing the dynamics of tree mortality risk from drought. Tree Physiol. 39, 906–909 (2019).
 Google Scholar 
 Körner, C. No need for pipes when the well is dry — a comment on hydraulic failure in trees. Tree Physiol. 39, 695–700 (2019).
 Google Scholar 
 Machado, R. et al. Where do leaf water leaks come from? Trade-offs underlying the variability in minimum conductance across tropical savanna species with contrasting growth strategies. New Phytol. 229, 1415–1430 (2021).
 Google Scholar 
 Burghardt, M. & Riederer, M. in Biology of the Plant Cuticle (eds Riederer, M. & Müller, C.) 292–311 (Blackwell, 2006).Billon, L. M. et al. The DroughtBox: a new tool for phenotyping residual branch conductance and its temperature dependence during drought. Plant Cell Environ. 43, 1584–1594 (2020).
 Google Scholar 
 Wolfe, B. T. Bark water vapour conductance is associated with drought performance in tropical trees. Biol. Lett. 16, 20200263 (2020).
 Google Scholar 
 Martín-Gómez, P., Serrano, L. & Ferrio, J. P. Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology. Tree Physiol. 37, 511–522 (2017).
 Google Scholar 
 Arend, M. et al. Rapid hydraulic collapse as cause of drought-induced mortality in conifers. Proc. Natl Acad. Sci. USA 118, e2025251118 (2021).
 Google Scholar 
 Wang, W. et al. Mortality predispositions of conifers across western USA. New Phytol. 229, 831–844 (2020).
 Google Scholar 
 Christiansen, E., Waring, R. H. & Berryman, A. A. Resistance of conifers to bark beetle attack: searching for general relationships. For. Ecol. Manag. 22, 89–106 (1987).
 Google Scholar 
 Bigler, C., Bräker, O. U., Bugmann, H., Dobbertin, M. & Rigling, A. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9, 330–343 (2006).
 Google Scholar 
 Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 197, 850–861 (2013).
 Google Scholar 
 Meinzer, F. C. et al. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant Cell Environ. 29, 105–114 (2006).
 Google Scholar 
 McDowell, N. G., Allen, C. D. & Marshall, L. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob. Change Biol. 16, 399–415 (2010).
 Google Scholar 
 Kane, J. M. & Kolb, T. E. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack. Oecologia 164, 601–609 (2010).
 Google Scholar 
 Ferrenberg, S., Kane, J. M. & Mitton, J. B. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines. Oecologia 174, 1283–1292 (2014).
 Google Scholar 
 Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
 Google Scholar 
 Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M. & Gibon, Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).
 Google Scholar 
 Yu, S. Cellular and genetic responses of plants to sugar starvation. Plant Physiol. 121, 687–693 (1999).
 Google Scholar 
 Koster, K. L. & Leopold, A. C. Sugars and desiccation tolerance in seeds. Plant Physiol. 88, 829–832 (1988).
 Google Scholar 
 Sapes, G., Demaree, P., Lekberg, Y. & Sala, A. Plant carbohydrate depletion impairs water relations and spreads via ectomycorrhizal networks. New Phytol. 229, 3172–3183 (2021).
 Google Scholar 
 Hoekstra, F. A., Golovina, E. A. & Buitink, J. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6, 431–438 (2001).
 Google Scholar 
 Van den Ende, W. & Valluru, R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 60, 9–18 (2009).
 Google Scholar 
 Matros, A., Peshev, D., Peukert, M., Mock, H.-P. & Ende, W. Vden Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. Plant J. 82, 822–839 (2015).
 Google Scholar 
 Rolland, F., Baena-González, E. & Sheen, J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675–709 (2006).
 Google Scholar 
 Ramel, F., Sulmon, C., Bogard, M., Couée, I. & Gouesbet, G. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol. 9, 28 (2009).
 Google Scholar 
 Fine, P. V. A. et al. The growth–defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87, S150–S162 (2006).
 Google Scholar 
 Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 1267–1287 (2014).
 Google Scholar 
 Ouédraogo, D.-Y., Mortier, F., Gourlet-Fleury, S., Freycon, V. & Picard, N. Slow-growing species cope best with drought: evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa. J. Ecol. 101, 1459–1470 (2013).
 Google Scholar 
 de la Mata, R., Hood, S. & Sala, A. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa. Proc. Natl Acad. Sci. USA 114, 7391–7396 (2017).
 Google Scholar 
 Roskilly, B., Keeling, E., Hood, S., Giuggiola, A. & Sala, A. Conflicting functional effects of xylem pit structure relate to the growth-longevity trade-off in a conifer species. Proc. Natl Acad. Sci. USA 116, 15282–15287 (2019).
 Google Scholar 
 Snyder, K. A. & Williams, D. G. Defoliation alters water uptake by deep and shallow roots of Prosopis velutina (Velvet Mesquite). Funct. Ecol. 17, 363–374 (2003).
 Google Scholar 
 Eyles, A., Pinkard, E. A. & Mohammed, C. Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiol. 29, 753–764 (2009).
 Google Scholar 
 Hillabrand, R. M., Hacke, U. G. & Lieffers, V. J. Defoliation constrains xylem and phloem functionality. Tree Physiol. 39, 1099–1108 (2019).
 Google Scholar 
 Landhäusser, S. M. & Lieffers, V. J. Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees 26, 653–661 (2012).
 Google Scholar 
 Poyatos, R., Aguadé, D., Galiano, L., Mencuccini, M. & Martínez-Vilalta, J. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol. 200, 388–401 (2013).
 Google Scholar 
 Cardoso, A. A., Batz, T. A. & McAdam, S. A. Xylem embolism resistance determines leaf mortality during drought in Persea americana. Plant Physiol. 182, 547–554 (2020).
 Google Scholar 
 Mencuccini, M. et al. Leaf economics and plant hydraulics drive leaf:wood area ratios. New Phytol. 224, 1544–1556 (2019).
 Google Scholar 
 Cochard, H., Pimont, F., Ruffault, J. & Martin-St Paul, N. SurEau: a mechanistic model of plant water relations under extreme drought. Ann. Forest Sci. 78, 1–23 (2021).
 Google Scholar 
 Yin, M. C. & Blaxter, J. H. S. Temperature, salinity tolerance, and buoyancy during early development and starvation of Clyde and North Sea herring, cod, and flounder larvae. J. Exp. Mar. Biol. Ecol 107, 279–290 (1987).
 Google Scholar 
 Cahill, G. F. Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).
 Google Scholar 
 Yandi, I. & Altinok, I. Irreversible starvation using RNA/DNA on lab-grown larval anchovy, Engraulis encrasicolus, and evaluating starvation in the field-caught larval cohort. Fish. Res. 201, 32–37 (2018).
 Google Scholar 
 Smith, A. M. & Stitt, M. Coordination of carbon supply and plant growth. Plant Cell Environ. 30, 1126–1149 (2007).
 Google Scholar 
 Schädel, C., Richter, A., Blöchl, A. & Hoch, G. Hemicellulose concentration and composition in plant cell walls under extreme carbon source–sink imbalances. Physiol. Plant. 139, 241–255 (2010).
 Google Scholar 
 Tsamir-Rimon, M. et al. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. New Phytol. 229, 1398–1414 (2020).
 Google Scholar 
 McLoughlin, F. et al. Autophagy plays prominent roles in amino acid, nucleotide, and carbohydrate metabolism during fixed-carbon starvation in maize. Plant Cell 32, 2699–2724 (2020).
 Google Scholar 
 Quirk, J., McDowell, N. G., Leake, J. R., Hudson, P. J. & Beerling, D. J. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am. J. Bot. 100, 582–591 (2013).
 Google Scholar 
 Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).
 Google Scholar 
 Tomasella, M., Petrussa, E., Petruzzellis, F., Nardini, A. & Casolo, V. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. Int. J. Mol. Sci. 21, 144 (2020).
 Google Scholar 
 Gaylord, M. L. et al. Drought predisposes piñon–juniper woodlands to insect attacks and mortality. New Phytol. 198, 567–578 (2013).
 Google Scholar 
 Dickman, L. T., McDowell, N. G., Sevanto, S., Pangle, R. E. & Pockman, W. T. Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios. Plant Cell Environ. 38, 729–739 (2015).
 Google Scholar 
 Ruehr, N. K. et al. Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol. 184, 950–961 (2009).
 Google Scholar 
 Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J. & Hölttä, T. Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytol. 208, 396–409 (2015).
 Google Scholar 
 Hagedorn, F. et al. Recovery of trees from drought depends on belowground sink control. Nat. Plants 2, 16111 (2016).
 Google Scholar 
 Hesse, B. D., Goisser, M., Hartmann, H. & Grams, T. E. E. Repeated summer drought delays sugar export from the leaf and impairs phloem transport in mature beech. Tree Physiol. 39, 192–200 (2019).
 Google Scholar 
 Wiley, E., Hoch, G. & Landhäusser, S. M. Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress. J. Exp. Bot. 68, 5221–5232 (2017).
 Google Scholar 
 Weber, R. et al. Living on next to nothing: tree seedlings can survive weeks with very low carbohydrate concentrations. New Phytol. 218, 107–118 (2018).
 Google Scholar 
 Hasanuzzaman, M. & Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms (Springer, 2020)O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Chang. 4, 710–714 (2014).
 Google Scholar 
 Nardini, A. et al. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant Cell Environ. 39, 618–627 (2016).
 Google Scholar 
 Zinselmeier, C., Westgate, M. E., Schussler, J. R. & Jones, R. J. Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol. 107, 385–391 (1995).
 Google Scholar 
 Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63, 597–612 (2006).
 Google Scholar 
 Oliva, J., Stenlid, J. & Martínez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol. 203, 1028–1035 (2014).
 Google Scholar 
 Kolb, T. et al. Drought-mediated changes in tree physiological processes weaken tree defenses to bark beetle attack. J. Chem. Ecol. 45, 888–900 (2019).
 Google Scholar 
 Croize, L., Lieutier, F., Cochard, H. & Dreyer, E. Effects of drought stress and high density stem inoculations with Leptographium wingfieldii on hydraulic properties of young Scots pine trees. Tree Physiol. 21, 427–436 (2001).
 Google Scholar 
 Wullschleger, S. D., McLaughlin, S. B. & Ayres, M. P. High-resolution analysis of stem increment and sap flow for loblolly pine trees attacked by southern pine beetle. Can. J. For. Res. 34, 387–2393 (2004).
 Google Scholar 
 Hubbard, R. M., Rhoades, C. C., Elder, K. & Negron, J. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling. For. Ecol. Manag. 289, 312–317 (2013).
 Google Scholar 
 Manter, D. K. & Kavanagh, K. L. Stomatal regulation in Douglas fir following a fungal-mediated chronic reduction in leaf area. Trees 17, 485–491 (2003).
 Google Scholar 
 Lahr, E. L. & Sala, A. Sapwood stored resources decline in whitebark and lodgepole pines attacked by mountain pine beetles (Coleoptera: Curculionidae). Environ. Entomol. 45, 1463–1475 (2016).
 Google Scholar 
 Marler, T. E. & Cascasan, A. N. Carbohydrate depletion during lethal infestation of Aulacaspis yasumatsui on Cycas revoluta. Int. J. Plant Sci. 179, 497–504 (2018).
 Google Scholar 
 Hood, S. & Sala, A. Ponderosa pine resin defenses and growth: metrics matter. Tree Physiol. 35, 1223–1235 (2015).
 Google Scholar 
 Roth, M., Hussain, A., Cale, J. A. & Erbilgin, N. Successful colonization of lodgepole pine trees by mountain pine beetle increased monoterpene production and exhausted carbohydrate reserves. J. Chem. Ecol. 44, 209–214 (2018).
 Google Scholar 
 Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).
 Google Scholar 
 Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 4, 806–810 (2014).
 Google Scholar 
 Ryan, M. G., Sapes, G., Sala, A. & Hood, S. M. Tree physiology and bark beetles. New Phytol. 205, 955–957 (2015).
 Google Scholar 
 Huang, J. et al. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2020).
 Google Scholar 
 Goodsman, D. W., Lusebrink, I., Landhäusser, S. M., Erbilgin, N. & Lieffers, V. J. Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. New Phytol. 197, 586–594 (2013).
 Google Scholar 
 Wiley, E., Rogers, B. J., Hodgkinson, R. & Landhäusser, S. M. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack. New Phytol. 209, 550–562 (2016).
 Google Scholar 
 Netherer, S. et al. Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol. 205, 1128–1141 (2015).
 Google Scholar 
 Rissanen, K. et al. Drought effects on carbon allocation to resin defences and on resin dynamics in old-grown Scots pine. Environ. Exp. Bot. 185, 104410 (2021).
 Google Scholar 
 Gershenzon, J. Metabolic costs of terpenoid accumulation in higher plants. J. Chem. Ecol. 20, 1281–1328 (1994).
 Google Scholar 
 Navarro, L. et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 1, 650–655 (2008).
 Google Scholar 
 Fox, H. et al. Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiol. 38, 423–441 (2018).
 Google Scholar 
 Caretto, S., Linsalata, V., Colella, G., Mita, G. & Lattanzio, V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int. J. Mol. Sci. 16, 26378–26394 (2015).
 Google Scholar 
 Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 167, 353–376 (2005).
 Google Scholar 
 Suárez-Vidal, E. et al. Drought stress modifies early effective resistance and induced chemical defences of Aleppo pine against a chewing insect herbivore. Environ. Exp. Bot. 162, 550–559 (2019).
 Google Scholar 
 Hood, S., Sala, A., Heyerdahl, E. K. & Boutin, M. Low-severity fire increases tree defense against bark beetle attacks. Ecology 96, 1846–1855 (2015).
 Google Scholar 
 Zhao, S. & Erbilgin, N. Larger resin ducts are linked to the survival of lodgepole pine trees during mountain pine beetle outbreak. Front. Plant Sci. 10, 1459 (2019).
 Google Scholar 
 Kichas, N. E., Hood, S. M., Pederson, G. T., Everett, R. G. & McWethy, D. B. Whitebark pine (Pinus albicaulis) growth and defense in response to mountain pine beetle outbreaks. For. Ecol. Manag. 457, 117736 (2020).
 Google Scholar 
 Gaylord, M. L., Kolb, T. E. & McDowell, N. G. Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees. Tree Physiol. 35, 806–816 (2015).
 Google Scholar 
 Anderegg, W. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).
 Google Scholar 
 De Kauwe, M. G. et al. Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia. Glob. Change Biol. 26, 5716–5733 (2020).
 Google Scholar 
 Sperry, J. S. et al. The impact of rising CO2 and acclimation on the response of US forests to global warming. Proc. Natl Acad. Sci. USA 116, 25734–25744 (2019).
 Google Scholar 
 Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).
 Google Scholar 
 Klein, T. & Ramon, U. Stomatal sensitivity to CO2 diverges between angiosperm and gymnosperm tree species. Funct. Ecol. 33, 1411–1424 (2019).
 Google Scholar 
 Paudel, I. et al. Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environ. Exp. Bot. 148, 117–127 (2018).
 Google Scholar 
 Bobich, E. G., Barron-Gafford, G. A., Rascher, K. G. & Murthy, R. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. Tree Physiol. 30, 866–875 (2010).
 Google Scholar 
 Gimeno, T. E., McVicar, T. R., O’Grady, A. P., Tissue, D. T. & Ellsworth, D. S. Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Glob. Change Biol. 24, 3010–3024 (2018).
 Google Scholar 
 Nowak, R. S. et al. Elevated atmospheric CO2 does not conserve soil water in the mojave desert. Ecology 85, 93–99 (2004).
 Google Scholar 
 Schäfer, K. V., Oren, R., Lai, C. T. & Katul, G. G. Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Glob. Change Biol. 8, 895–911 (2002).
 Google Scholar 
 Novick, K. A., Katul, G. G., McCarthy, H. R. & Oren, R. Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility. Tree Physiol. 32, 752–763 (2012).
 Google Scholar 
 Li, X. M. et al. Temperature alters the response of hydraulic architecture to CO2 in cotton plants (Gossypium hirsutum). Environ. Exp. Bot. 172, 104004 (2020).
 Google Scholar 
 Li, W. et al. The sweet side of global change–dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiol. 38, 1706–1723 (2018).
 Google Scholar 
 Duan, H. et al. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ. 37, 1598–1613 (2014).
 Google Scholar 
 Duan, H. et al. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality. Tree Physiol. 38, 1138–1151 (2018).
 Google Scholar 
 Zavala, J. A., Nabity, P. D. & DeLucia, E. H. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 58, 79–97 (2013).
 Google Scholar 
 Kazan, K. Plant-biotic interactions under elevated CO2: a molecular perspective. Environ. Exp. Bot. 153, 249–261 (2018).
 Google Scholar 
 Gessler, A., Schaub, M. & McDowell, N. G. The role of nutrients in drought-induced tree mortality and recovery. New Phytol. 214, 513–520 (2017).
 Google Scholar 
 Mackay, D. S. et al. Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought. Water Resour. Res. 51, 6156–6176 (2015).
 Google Scholar 
 Mackay, D. S. et al. Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics. New Phytol. 225, 679–692 (2020).
 Google Scholar 
 Tai, X. et al. Plant hydraulic stress explained tree mortality and tree size explained beetle attack in a mixed conifer forest. J. Geophys. Res. Biogeosci. 124, 3555–3568 (2019).
 Google Scholar 
 Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 186, 274–281 (2010).
 Google Scholar 
 Limousin, J. M. et al. Regulation and acclimation of leaf gas exchange in a piñon–juniper woodland exposed to three different precipitation regimes. Plant Cell Environ. 36, 1812–1825 (2013).
 Google Scholar 
 Sorek, Y. et al. An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes. New Phytol. 229, 1955–1969 (2021).
 Google Scholar 
 Hudson, P. J. et al. Impacts of long-term precipitation manipulation on hydraulic architecture and xylem anatomy of piñon and juniper in Southwest USA. Plant Cell Environ. 41, 421–435 (2018).
 Google Scholar 
 Warren, J. M., Norby, R. J. & Wullschleger, S. D. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).
 Google Scholar 
 Matusick, G. et al. Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought. Environ. Res. Lett. 13, 095002 (2018).
 Google Scholar 
 Shirley, H. L. Lethal high temperatures for conifers, and the cooling effect of transpiration. J. Agric. Res. 53, 239–258 (1936).
 Google Scholar 
 Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).
 Google Scholar 
 Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).
 Google Scholar 
 Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).
 Google Scholar 
 Nakamura, T. et al. Tree hazards compounded by successive climate extremes after masting in a small endemic tree, Distylium lepidotum, on subtropical islands in Japan. Glob. Change Biol 27, 5094–5108 (2021).
 Google Scholar 
 Hummel, I. et al. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 154, 357–372 (2010).
 Google Scholar 
 Jamieson, M. A., Trowbridge, A. M., Raffa, K. F. & Lindroth, R. L. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 160, 1719–1727 (2012).
 Google Scholar 
 Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).
 Google Scholar 
 Netherer, S. et al. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest Sci. 94, 591–614 (2021).
 Google Scholar 
 Love, D. M. et al. Dependence of aspen stands on a subsurface water subsidy: implications for climate change impacts. Water Resour. Res. 55, 1833–1848 (2019).
 Google Scholar 
 McDowell, N. G. et al. Mechanisms of a coniferous woodland persistence under drought and heat. Environ. Res. Lett. 14, 045014 (2019).
 Google Scholar 
 Rozendaal, D. M. et al. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, e03052 (2020).
 Google Scholar 
 Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).
 Google Scholar 
 CH2018 Project Team. CH2018 — climate scenarios for Switzerland. NCCS https://doi.org/10.18751/Climate/Scenarios/CH2018/1.0 (2018).Article 
 Google Scholar 
 McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300 (1997).
 Google Scholar 
 McDowell, N. G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059 (2011).
 Google Scholar  More