Okogwu, O. I., Nwonumara, G. N. & Okoh, F. A. Evaluating heavy metals pollution and exposure risk through the consumption of four commercially important fish species and water from cross river ecosystem, Nigeria. Bull. Environ. Contam. Toxicol. 102, 867–872. https://doi.org/10.1007/s00128-019-02610-4 (2019).CAS
Article
PubMed
Google Scholar
Fuentes-Gandara, F., Pinedo-Hernández, J., Marrugo-Negrete, J. & Díez, S. Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environ. Geochem. Health 40, 229–242. https://doi.org/10.1007/s10653-016-9896-z (2018).CAS
Article
PubMed
Google Scholar
Liu, X. et al. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Total Environ. 463, 530–540 (2013).PubMed
Google Scholar
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371. https://doi.org/10.1038/nature15371 (2015).CAS
Article
PubMed
Google Scholar
Huang, R.-J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222. https://doi.org/10.1038/nature13774 (2014).CAS
Article
PubMed
Google Scholar
Rajeshkumar, S. et al. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 191, 626–638. https://doi.org/10.1016/j.chemosphere.2017.10.078 (2018).CAS
Article
PubMed
Google Scholar
Gao, X. & Chen, C.-T.A. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res. 46, 1901–1911. https://doi.org/10.1016/j.watres.2012.01.007 (2012).CAS
Article
PubMed
Google Scholar
Naser, H. A. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Mar. Pollut. Bull. 72, 6–13. https://doi.org/10.1016/j.marpolbul.2013.04.030 (2013).CAS
Article
PubMed
Google Scholar
Zhang, Y. et al. Heavy metals in aquatic organisms of different trophic levels and their potential human health risk in Bohai Bay, China. Environ. Sci. Pollut. Res. 23, 17801–17810 (2016).CAS
Google Scholar
Wei, M., Yanwen, Q., Zheng, B. & Zhang, L. Heavy metal pollution in Tianjin Bohai bay, China. J. Environ. Sci. 20, 814–819 (2008).
Google Scholar
Zhao, B. et al. Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in Xiangshan Bay, China (2011–2016). Chemosphere 212, 1163–1171. https://doi.org/10.1016/j.chemosphere.2018.09.020 (2018).CAS
Article
PubMed
Google Scholar
Wang, Y. & Fang, X. Analysis of the impact of heavy metal on the Chinese aquaculture and the ecological hazard. GuangDong 836, 156.152 (2016).
Google Scholar
Pini, J., Richir, J. & Watson, G. Metal bioavailability and bioaccumulation in the polychaete Nereis (Alitta) virens (Sars): The effects of site-specific sediment characteristics. Mar. Pollut. Bull. 95, 565–575 (2015).CAS
PubMed
Google Scholar
Amoozadeh, E. et al. Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ. Sci. Pollut. Res. 21, 2386–2395 (2014).CAS
Google Scholar
Gu, Y.-G., Huang, H.-H., Liu, Y., Gong, X.-Y. & Liao, X.-L. Non-metric multidimensional scaling and human risks of heavy metal concentrations in wild marine organisms from the Maowei Sea, the Beibu Gulf, South China Sea. Environ. Toxicol. Pharmacol. 59, 119–124. https://doi.org/10.1016/j.etap.2018.03.002 (2018).CAS
Article
PubMed
Google Scholar
Kennedy, A., Martinez, K., Chuang, C.-C., LaPoint, K. & McIntosh, M. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: Mechanisms of action and implications. J. Nutr. 139, 1–4. https://doi.org/10.3945/jn.108.098269 (2008).CAS
Article
PubMed
Google Scholar
Hao, Z. et al. Heavy metal distribution and bioaccumulation ability in marine organisms from coastal regions of Hainan and Zhoushan, China. Chemosphere 226, 340–350. https://doi.org/10.1016/j.chemosphere.2019.03.132 (2019).CAS
Article
PubMed
Google Scholar
Golden, C. D. et al. Nutrition: Fall in fish catch threatens human health. Nat. News 534, 317 (2016).
Google Scholar
Bosch, A. C., O’Neill, B., Sigge, G. O., Kerwath, S. E. & Hoffman, L. C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 96, 32–48 (2016).CAS
PubMed
Google Scholar
Burger, J., Gochfeld, M., Jeitner, C., Pittfield, T. & Donio, M. Heavy metals in fish from the Aleutians: Interspecific and locational differences. Environ. Res. 131, 119–130. https://doi.org/10.1016/j.envres.2014.02.016 (2014).CAS
Article
PubMed
Google Scholar
Anandkumar, A., Nagarajan, R., Prabakaran, K., Chua Han, B. & Rajaram, R. Human health risk assessment and bioaccumulation of trace metals in fish species collected from the Miri coast, Sarawak, Borneo. Mar. Pollut. Bull. 133, 655–663. https://doi.org/10.1016/j.marpolbul.2018.06.033 (2018).CAS
Article
Google Scholar
Murtala, B. A., Abdul, W. O. & Akinyemi, A. A. Bioaccumulation of heavy metals in fish (Hydrocynus forskahlii, Hyperopisus bebe occidentalis and Clarias gariepinus) organs in downstream Ogun coastal water, Nigeria. J. Agric. Sci. 4, 51 (2012).
Google Scholar
Ahmed, A. S. S., Rahman, M., Sultana, S., Babu, S. M. O. F. & Sarker, M. S. I. Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications. Mar. Pollut. Bull. 145, 436–447. https://doi.org/10.1016/j.marpolbul.2019.06.035 (2019).CAS
Article
PubMed
Google Scholar
Sun, X. et al. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment. Environ. Pollut. 241, 938–949. https://doi.org/10.1016/j.envpol.2018.05.050 (2018).CAS
Article
PubMed
Google Scholar
Dadar, M., Adel, M., NasrollahzadehSaravi, H. & Fakhri, Y. Trace element concentration and its risk assessment in common kilka (Clupeonella cultriventris caspia Bordin, 1904) from southern basin of Caspian Sea. Toxin Rev. 36, 222–227 (2017).CAS
Google Scholar
Chakraborty, P., Raghunadh Babu, P. V., Acharyya, T. & Bandyopadhyay, D. Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC. Chemosphere 80, 548–553. https://doi.org/10.1016/j.chemosphere.2010.04.039 (2010).CAS
Article
PubMed
Google Scholar
Handy, R. Seminar Series-Society for Experimental Biology 29–60 (Cambridge University Press, 1997).
Google Scholar
Ahmed, M. K. et al. Human health risks from heavy metals in fish of Buriganga river, Bangladesh. Springerplus 5, 1–12 (2016).
Google Scholar
WHO. Heavy metals-environmental aspects. Environment Health Criteria. No. 85. (1989).Xu, H. et al. Long-term study of heavy metal pollution in the northern Hangzhou Bay of China: Temporal and spatial distribution, contamination evaluation, and potential ecological risk. Environ. Sci. Pollut. Res. 28, 10718–10733 (2021).CAS
Google Scholar
El-Moselhy, K. M., Othman, A. I., AbdEl-Azem, H. & El-Metwally, M. E. A. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypti. J. Basic Appl. Sci. 1, 97–105. https://doi.org/10.1016/j.ejbas.2014.06.001 (2014).Article
Google Scholar
Jezierska, B. & Witeska, M. Soil and Water Pollution Monitoring, Protection and Remediation 107–114 (Springer, 2006).
Google Scholar
Bawuro, A. A., Voegborlo, R. B. & Adimado, A. A. Bioaccumulation of heavy metals in some tissues of fish in Lake Geriyo, Adamawa State, Nigeria. J. Environ. Public Health 2018, 1854892. https://doi.org/10.1155/2018/1854892 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
Zhuang, P., McBride, M. B., Xia, H., Li, N. & Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 407, 1551–1561. https://doi.org/10.1016/j.scitotenv.2008.10.061 (2009).CAS
Article
PubMed
Google Scholar
Hosseini, M., Nabavi, S. M. B., Nabavi, S. N. & Pour, N. A. Heavy metals (Cd Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: Risk assessment for the consumers. Environ. Monit. Assess. 187, 237. https://doi.org/10.1007/s10661-015-4464-z (2015).CAS
Article
PubMed
Google Scholar
Prabhakaran, K., Nagarajan, R., MerlinFranco, F. & AnandKumar, A. Biomonitoring of Malaysian aquatic environments: A review of status and prospects. Ecohydrol. Hydrobiol. 17, 134–147. https://doi.org/10.1016/j.ecohyd.2017.03.001 (2017).Article
Google Scholar
Meche, A. et al. Determination of heavy metals by inductively coupled plasma-optical emission spectrometry in fish from the Piracicaba River in Southern Brazil. Microchem. J. 94, 171–174 (2010).CAS
Google Scholar
Zhang, Y. et al. Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay. J. Environ. Sci. 44, 57–68. https://doi.org/10.1016/j.jes.2015.11.023 (2016).CAS
Article
Google Scholar
Huang, L. et al. Quantifying the spatiotemporal dynamics of industrial land uses through mining free access social datasets in the Mega Hangzhou Bay Region, China. Sustainability 10, 3463 (2018).
Google Scholar
Pang, H.-J. et al. Contamination, distribution, and sources of heavy metals in the sediments of Andong tidal flat, Hangzhou bay, China. Continental Shelf Res. 110, 72–84. https://doi.org/10.1016/j.csr.2015.10.002 (2015).Article
Google Scholar
National Bureau of Statstics. Zhejiang Statistical Yearbook-2017 (China Statistics Press, 2017).
Google Scholar
Chen, W., Zheng, Y., Chen, Y. & Mathews, C. An assessment of fishery yields from the East China Sea ecosystem. Mar. Fish. Rev. 59, 1–7 (1997).
Google Scholar
Zhejiang Provincial Development and Reform Commission. Zhejiang Zhoushan Islands New Area Development Plan (In Chinese). (2021).Che, Y., He, Q. & Lin, W.-Q. The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou Bay, China. Mar. Pollut. Bull. 46, 123–131 (2003).CAS
PubMed
Google Scholar
Li, R. et al. Environmental health and ecological risk assessment of soil heavy metal pollution in the coastal cities of Estuarine Bay—a case study of Hangzhou Bay, China. Toxics 8, 75 (2020).CAS
PubMed Central
Google Scholar
Bergami, E., Manno, C., Cappello, S., Vannuccini, M. L. & Corsi, I. Nanoplastics affect moulting and faecal pellet sinking in Antarctic krill (Euphausia superba) juveniles. Environ. Int. 143, 105999. https://doi.org/10.1016/j.envint.2020.105999 (2020).CAS
Article
PubMed
Google Scholar
Fang, H., Huang, L., Wang, J., He, G. & Reible, D. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China. J. Hazard. Mater. 302, 447–457 (2016).CAS
PubMed
Google Scholar
Zhu, G. et al. Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches. Environ. Pollut. 264, 114791. https://doi.org/10.1016/j.envpol.2020.114791 (2020).CAS
Article
PubMed
Google Scholar
Li, F. et al. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China. Environ. Sci. Pollut. Res. 25, 855–866. https://doi.org/10.1007/s11356-017-0425-0 (2018).CAS
Article
Google Scholar
Liu, L., Huang, X., Cao, W. & Yang, Y. Pollution load characteristics of the Hangzhou Bay and its surrounding areas. Ocean Dev. Manage 5, 108–112 (2012).
Google Scholar
He, Z., Li, F., Dominech, S., Wen, X. & Yang, S. Heavy metals of surface sediments in the Changjiang (Yangtze River) Estuary: Distribution, speciation and environmental risks. J. Geochem. Explor. 198, 18–28. https://doi.org/10.1016/j.gexplo.2018.12.015 (2019).CAS
Article
Google Scholar
Jin, X., Zhao, X., Meng, T. & Cui, Y. The Fishery Resources and the Environment of the Bohai Sea and Yellow Sea (Science Press, 2005).
Google Scholar
Huang, Z. The Species and Distribution of Marine Organisms of China (Ocean Press, Beijing, 1994) (In Chinese).
Google Scholar
Schram, F. R. Checklist of Marine Biota of China Seas. J. Crustac. Biol. 30, 339–339. https://doi.org/10.1651/09-3228.1 (2010).Article
Google Scholar
AQSIQ, P. in GB 17378.6–2007 (General Administration of Quality Supervision, Inspection and Quarantine of People’s Republic of China, 2007).Zhang, L. et al. Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China. Mar. Pollut. Bull. 101, 930–937. https://doi.org/10.1016/j.marpolbul.2015.10.041 (2015).CAS
Article
PubMed
Google Scholar
Zhong, W. et al. Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicol. Environ. Saf. 157, 343–349. https://doi.org/10.1016/j.ecoenv.2018.03.048 (2018).CAS
Article
PubMed
Google Scholar
Wang, Q. et al. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China. Sci. Total Environ. 598, 814–820. https://doi.org/10.1016/j.scitotenv.2017.04.167 (2017).CAS
Article
PubMed
Google Scholar
Arnot, J. A. & Gobas, F. A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 14, 257–297 (2006).CAS
Google Scholar
Duan, X., Zhao, X., Wang, B., Chen, Y. & Cao, S. Exposure Factors Handbook of Chinese Population (Adults) (China Environmental Science Press, 2013).
Google Scholar
Chauhan, G. & Chauhan, U. Human health risk assessment of heavy metals via dietary intake of vegetables grown in wastewater irrigated area of Rewa, India. Int. J. Sci. Res. Publ. 4, 1–9 (2014).
Google Scholar
USEPA. (Philadelphia PA; Washington, DC, 2007).Wang, X., Sato, T., Xing, B. & Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350, 28–37. https://doi.org/10.1016/j.scitotenv.2004.09.044 (2005).CAS
Article
PubMed
Google Scholar
USEPA. (2015).FAO/WHO. Wastewater Use in Agriculture. 988 (World Health Organization).Ahmed, A. S. S. et al. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS One 14, e0219336. https://doi.org/10.1371/journal.pone.0219336 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Saha, N., Mollah, M. Z. I., Alam, M. F. & Safiur Rahman, M. Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control 70, 110–118. https://doi.org/10.1016/j.foodcont.2016.05.040 (2016).CAS
Article
Google Scholar
Yin, S., Feng, C., Li, Y., Yin, L. & Shen, Z. Heavy metal pollution in the surface water of the Yangtze Estuary: A 5-year follow-up study. Chemosphere 138, 718–725. https://doi.org/10.1016/j.chemosphere.2015.07.060 (2015).CAS
Article
PubMed
Google Scholar
USEPA. Risk-based concentration table. United States Environmental Protection Agency, Washington DC, Philadelphia (2000).Hu, B. et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 14, 1042 (2017).PubMed Central
Google Scholar
USEPA. in United States Environmental Protection Agency, Washington DC, Philadelphia (2010).Kwok, C. K. et al. Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China. Ecotoxicol. Environ. Saf. 106, 62–67. https://doi.org/10.1016/j.ecoenv.2014.04.016 (2014).CAS
Article
PubMed
Google Scholar
Yu, T., Zhang, Y., Hu, X. & Meng, W. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol. Environ. Saf. 81, 55–64. https://doi.org/10.1016/j.ecoenv.2012.04.014 (2012).CAS
Article
Google Scholar
Qiu, Y.-W., Lin, D., Liu, J.-Q. & Zeng, E. Y. Bioaccumulation of trace metals in farmed fish from South China and potential risk assessment. Ecotoxicol. Environ. Saf. 74, 284–293. https://doi.org/10.1016/j.ecoenv.2010.10.008 (2011).CAS
Article
PubMed
Google Scholar
Arulkumar, A., Paramasivam, S. & Rajaram, R. Toxic heavy metals in commercially important food fishes collected from Palk Bay, Southeastern India. Mar. Pollut. Bull. 119, 454–459. https://doi.org/10.1016/j.marpolbul.2017.03.045 (2017).CAS
Article
PubMed
Google Scholar
Jonathan, M. P. et al. Metal concentrations in demersal fish species from Santa Maria Bay, Baja California Sur, Mexico (Pacific coast). Mar. Pollut. Bull. 99, 356–361. https://doi.org/10.1016/j.marpolbul.2015.07.032 (2015).CAS
Article
PubMed
Google Scholar
Liu, H., Yang, J. & Gan, J. Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China. Arch. Environ. Contam. Toxicol. 59, 593–601. https://doi.org/10.1007/s00244-010-9521-6 (2010).CAS
Article
PubMed
Google Scholar
Wang, W. X. et al. Copper and zinc contamination in oysters: Subcellular distribution and detoxification. Environ. Toxicol. Chem. 30, 1767–1774 (2011).CAS
PubMed
Google Scholar
de FreitasRebelo, M., do Amaral, M. C. R. & Pfeiffer, W. C. High Zn and Cd accumulation in the oyster Crassostrea rhizophorae, and its relevance as a sentinel species. Mar. Pollut. Bull. 46, 1354–1358 (2003).
Google Scholar
AQSIQ, P. in GB 18421–2001 (General administration of quality supervision, inspection and quarantine of People’s Republic of China, 2001).FAO/WHO. in Fifth Session [displayed 10 February 2014]. ftp://ftp.fao.org/codex/meetings/CCCF/cccf5/cf05_INF.pdf.Nauen, C. E. Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular (FAO). no. 764. (1983).Rajeshkumar, S. & Li, X. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 5, 288–295. https://doi.org/10.1016/j.toxrep.2018.01.007 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
Baki, M. A. et al. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol. Environ. Saf. 159, 153–163. https://doi.org/10.1016/j.ecoenv.2018.04.035 (2018).CAS
Article
PubMed
Google Scholar
Vu, C. T., Lin, C., Yeh, G. & Villanueva, M. C. Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: Assessment and possible human health implications. Environ. Sci. Pollut. Res. 24, 19422–19434. https://doi.org/10.1007/s11356-017-9590-4 (2017).CAS
Article
Google Scholar
Sharma, B., Singh, S. & Siddiqi, N. J. Biomedical implications of heavy metals induced imbalances in redox systems. BioMed Res. Int. 20, 14 (2014).
Google Scholar
Feng, W., Wang, Z., Xu, H., Chen, L. & Zheng, F. Trace metal concentrations in commercial fish, crabs, and bivalves from three lagoons in the South China Sea and implications for human health. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-019-06712-8 (2020).Article
Google Scholar
Ruiz-Fernández, A. C. et al. A comparative study on metal contamination in Estero de Urias lagoon, Gulf of California, using oysters, mussels and artificial mussels: Implications on pollution monitoring and public health risk. Environ. Pollut. 243, 197–205 (2018).PubMed
Google Scholar
Bergstad, O. A. In Encyclopedia of Ocean Sciences (Second Edition) (ed. Steele, J. H.) 458–466 (Academic Press, 2009).
Google Scholar
Mauchline, J. & Gordon, J. Foraging strategies of deep-sea fish. Mar. Ecol. Prog. Ser. 27, 227–238 (1986).
Google Scholar
Li, J., He, M., Han, W. & Gu, Y. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. J. Hazard. Mater. 164, 976–981. https://doi.org/10.1016/j.jhazmat.2008.08.112 (2009).CAS
Article
PubMed
Google Scholar
Yu, P. Applications of hierarchical cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based Fourier transform infrared (FTIR) microspectroscopy. J. Agric. Food Chem. 53, 7115–7127 (2005).CAS
PubMed
Google Scholar
Kara, D. Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis. Food Chem. 114, 347–354 (2009).CAS
Google Scholar
Chai, X. et al. Distribution, sources and assessment of heavy metals in surface sediments of the Hangzhou Bay and its adjacent areas. Acta Sci. Circum. 35, 3906–3916 (2015).CAS
Google Scholar
Mackay, D. & Fraser, A. Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environ. Pollut. 110, 375–391. https://doi.org/10.1016/S0269-7491(00)00162-7 (2000).CAS
Article
PubMed
Google Scholar
ATSDR, T. ATSDR (Agency for toxic substances and disease registry). Prepared by Clement International Corp., under contract 205, 88–0608 (2000).Traina, A. et al. Heavy metals concentrations in some commercially key species from Sicilian coasts (Mediterranean Sea): Potential human health risk estimation. Ecotoxicol. Environ. Saf. 168, 466–478. https://doi.org/10.1016/j.ecoenv.2018.10.056 (2019).CAS
Article
PubMed
Google Scholar
Ozmen, M., Ayas, Z., Güngördü, A., Ekmekci, G. F. & Yerli, S. Ecotoxicological assessment of water pollution in Sariyar Dam Lake, Turkey. Ecotoxicol. Environ. Saf. 70, 163–173. https://doi.org/10.1016/j.ecoenv.2007.05.011 (2008).CAS
Article
PubMed
Google Scholar
Jeffrey, B. & Alison, G. Guidance for assessing chemical contaminant data for use in fish advisories. v. 1. Fish sampling and analysis-v. 4. Risk communication. (1993).Regulations, U. S. E. P. A. O. o. W. Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual. (US Environmental Protection Agency, 1989).Liu, Q., Liao, Y. & Shou, L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Mar. Pollut. Bull 131, 356–364. https://doi.org/10.1016/j.marpolbul.2018.04.041 (2018).CAS
Article
PubMed
Google Scholar
Abtahi, M. et al. Heavy metals (As, Cr, Pb, Cd and Ni) concentrations in rice (Oryza sativa) from Iran and associated risk assessment: A systematic review. Toxin Rev. 36, 331–341 (2017).CAS
Google Scholar
WHO. WHO Technical Report Series. Evaluation of Certain Food Additives and Contaminants. Fifty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). http://www.Who.Int/foodsafety/publications/jecfa-reports/en/ (2000).USEPA. USEPA Regional Screening Level (RSL) summary table: November 2011. (2011).Farkas, A., Salánki, J. & Specziár, A. Age-and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res. 37, 959–964 (2003).CAS
PubMed
Google Scholar
Canpolat, Ö. & Çalta, M. Heavy metals in some tissues and organs of Capoeta capoeta umbla(Heckel, 1843) fish species in relation to body size, age, sex and seasons. Fresenius Environ. Bull. 12, 961–966 (2003).CAS
Google Scholar
Hosseini, M., Nabavi, S. M. B., Nabavi, S. N. & Pour, N. A. Heavy metals (Cd Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: Risk assessment for the consumers. Environ. Monit. Assess. 187, 1–7 (2015).CAS
Google Scholar
Jiang, X. et al. Assessment of heavy metal accumulation in freshwater fish of Dongting Lake, China: Effects of feeding habits, habitat preferences and body size. J. Environ. Sci. 112, 355–365 (2022).
Google Scholar
Yi, Y., Tang, C., Yi, T., Yang, Z. & Zhang, S. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecotoxicol. Environ. Saf. 145, 295–302 (2017).CAS
PubMed
Google Scholar
USEPA. Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual. (US Environmental Protection Agency, 1989).Means, B. Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final). (Environmental Protection Agency, Washington, DC (USA). Office of Solid Waste …, 1989).Raknuzzaman, M. et al. Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment. Environ. Sci. Pollut. Res. 23, 17298–17310. https://doi.org/10.1007/s11356-016-6918-4 (2016).CAS
Article
Google Scholar
Kalantzi, I. et al. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem. 194, 659–670. https://doi.org/10.1016/j.foodchem.2015.08.072 (2016).CAS
Article
PubMed
Google Scholar
Sarkar, S., Mukherjee, S., Chattopadhyay, A. & Bhattacharya, S. Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide. Ecotoxicol. Environ. Saf. 135, 173–182. https://doi.org/10.1016/j.ecoenv.2016.09.025 (2017).CAS
Article
PubMed
Google Scholar
Mandal, B. K. & Suzuki, K. T. Arsenic round the world: A review. Talanta 58, 201–235. https://doi.org/10.1016/S0039-9140(02)00268-0 (2002).CAS
Article
PubMed
Google Scholar
Kibria, G., Hossain, M. M., Mallick, D., Lau, T. C. & Wu, R. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts. Mar. Pollut. Bull. 105, 393–402. https://doi.org/10.1016/j.marpolbul.2016.02.021 (2016).CAS
Article
PubMed
Google Scholar
Fang, Y. et al. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem. 147, 147–151. https://doi.org/10.1016/j.foodchem.2013.09.116 (2014).CAS
Article
PubMed
Google Scholar
Vannoort, R. & Thomson, B. New Zealand Total Diet Study—Agricultural Compound Residues (Selected Contaminant and Nutrient Elements. Ministry for Primary Industries, 2009).
Google Scholar
Praveena, S. M., Pradhan, B. & Ismail, S. N. S. Spatial assessment of heavy metals in surface soil from Klang District (Malaysia): An example from a tropical environment. Hum. Ecol. Risk Assess. Int. J. 21, 1980–2003 (2015).CAS
Google Scholar More