More stories

  • in

    Misperception influence on zero-determinant strategies in iterated Prisoner’s Dilemma

    ModelsConsider an IPD game with misperception such as implementation errors and observation errors22,23,31. Due to the misperception, the parameter in the real game changes from (omega _1=[T_1,R_1,P_1,S_1]) to (omega _2=[T_2,R_2,P_2,S_2]), and only player X notices the change. Thus, player Y’s cognition of the parameter is (omega _1), while player X’s cognition of the parameter is (omega _2). In each round, player X chooses a strategy from its strategy set (Omega _X={{mathbf {p}}=[p_{cc},p_{cd},p_{dc},p_{dd}]^T|p_{xy} in [0,1],xyin {cc,cd,dc,dd}}), e.g., (p_{xy}) is player X’s probability for cooperating with given previous outcome (xyin {cc,cd,dc,dd}). Similar to (Omega _X), player Y’s strategy set is (Omega _Y={{mathbf {q}}=[q_{cc},q_{dc},q_{cd},q_{dd}]^T|q_{xy} in [0,1],xyin {cc,dc,cd,dd}}). According to Press and Dyson7, this game can be characterized by a Markov chain with a state transition matrix (M=[M_{jk}]_{4times 4}) (see “Notations” for details). Denote ({mathbf {v}}=[v_{cc},v_{cd},v_{dc},v_{dd}]^T) as a probability vector such that ({mathbf {v}}^T M={mathbf {v}}^T) and (v_{cc}+v_{cd}+v_{dc}+v_{dd}=1). Let ({mathbf {S}}^{omega _i}_{X}=[R_i,S_i,T_i,P_i]^T), and ({mathbf {S}}^{omega _i}_{Y}=[R_i,T_i,S_i,P_i]^T,) (iin {1,2}). The expected utility functions of players are as follows:$$begin{aligned} begin{aligned} u_X^{omega _i}({mathbf {p}},{mathbf {q}})={mathbf {v}} cdot {mathbf {S}}^{omega _i}_{X}, u_Y^{omega _i}({mathbf {p}},{mathbf {q}})={mathbf {v}} cdot {mathbf {S}}^{omega _i}_{Y},iin {1,2}. end{aligned} end{aligned}$$Denote (G_1 = {{mathbf {P}}, {varvec{Omega }}, {mathbf {u}}, omega _1}), and (G_2={{mathbf {P}},{varvec{Omega }},{mathbf {u}},omega _2}), where ({mathbf {P}}={X,Y}), ({varvec{Omega }}=Omega _Xtimes Omega _Y), and ({mathbf {u}}={u_X^{omega _i},u_Y^{omega _i}}, iin {1,2}). Thus, the actual utilities of players are obtained through (G_2), and in the view of player Y, they are playing game (G_1). In the view of player X, they are playing game (G_2) but player X knows that player Y’s cognition is (G_1). (G_1) and (G_2) are shown in Table 2.Table 2 Utility matrices in IPD games with misperception.Full size tableLet ({mathbf {p}}_0=[1,1,0,0]^T). For (iin {1,2}), ({mathbf {p}}=alpha {mathbf {S}}^{omega _i}_{X} +beta {mathbf {S}}^{omega _i}_Y +gamma {mathbf {1}}+{mathbf {p}}_0), where (alpha ,beta ,gamma in {mathbb {R}}), is called a ZD strategy7 of player X in (G_i) since the strategy makes the two players’ expected utilities subjected to a linear relation:$$begin{aligned} alpha u_X^{omega _i}({mathbf {p}},{mathbf {q}})+beta u_Y^{omega _i}({mathbf {p}},{mathbf {q}})+gamma =0, end{aligned}$$for any player Y’s strategy ({mathbf {q}}). All available ZD strategies for player X in G can be expressed as (Xi (omega _i)={{mathbf {p}}in Omega _X|{mathbf {p}}=alpha {mathbf {S}}^{omega _i}_{X} +beta {mathbf {S}}^{omega _i}_Y +gamma {mathbf {1}}+{mathbf {p}}_0,alpha ,beta ,gamma in {mathbb {R}} }.) Also, the three special ZD strategies are denoted as:

    (1)

    equalizer strategy7,12: ({mathbf {p}}=beta {mathbf {S}}^{omega _i}_{Y}+gamma {mathbf {1}}+{mathbf {p}}_0);

    (2)

    extortion strategy7,13: ({mathbf {p}}=phi [({mathbf {S}}^{omega _i}_X-P_i{mathbf {1}})-chi ({mathbf {S}}^{omega _i}_Y-P_i{mathbf {1}})]+{mathbf {p}}_0,chi geqslant 1);

    (3)

    generous strategy14,15: ({mathbf {p}}=phi [({mathbf {S}}^{omega _i}_X-R_i{mathbf {1}})-chi ({mathbf {S}}^{omega _i}_Y-R_i{mathbf {1}})] +{mathbf {p}}_0,chi geqslant 1).

    Based on the past experience, player Y knows that player X prefers ZD strategies, which has been widely considered in many IPD games7,9. To avoid that player Y notices the change, which may result in potential decrease of player X’s utility21 or collapse of the model28, player X keeps choosing ZD strategies according to (G_1), such that the strategy sequence matches player Y’s anticipation. To sum up, in our formulation,

    the real game is (G_2);

    player Y thinks that they are playing game (G_1), and player X thinks that they are playing game (G_2);

    player X knows that player Y’s cognition is (G_1);

    player Y believes that player X chooses ZD strategies;

    player X tends to choose a ZD strategy according to (G_1) to avoid player Y’s suspicion of misperception.

    In fact, player X can benefit from the misperception through the ZD strategy. For example, player X can adopt a generous strategy in (G_1) to not only promote player Y’s cooperation behavior, but also make player X’s utility higher than that of player Y, if the generous strategy is an extortion strategy in (G_2). A beneficial strategy for player X is able to maintain a linear relationship between players’ utilities or improve the supremum or the infimum of its utility in its own cognition. In the following, we aim to analyze player X’s implementation of a ZD strategy in IPD with misperception, and proofs are given in the Supplementary Information.Invariance of ZD strategyPlayer X’s ZD strategies may be kept in IPD games with misperception from implementation errors or observation errors. In particular, player X keeps choosing a ZD strategy ({mathbf {p}}) in (G_1) to avoid player Y’s suspicion about possible misperception. In the view of player X, it can also enforce players’ expected utilities subjected to a linear relationship if ({mathbf {p}}) is also a ZD strategy in (G_2). The following theorem provides a necessary and sufficient condition for the invariance of the linear relationship between players’ utilities.Theorem 1
    Any ZD strategy ({mathbf {p}}) of player X in (G_1) is also a ZD strategy in (G_2) if and only if$$begin{aligned} frac{R_1-P_1}{2R_1-S_1-T_1}=frac{R_2-P_2}{2R_2-S_2-T_2}. end{aligned}$$
    (1)

    If (1) holds, player X can ignore the misperception and choose an arbitrary ZD strategy based on its opponent’s anticipation since it also leads to a linear relationship between players’ utilities, as shown in Fig. 1; otherwise, player X can not unscrupulously choose ZD strategies based on player Y’s cognition. There is a player X’s ZD strategy in player Y’s cognition which is not the ZD strategy in player X’s cognition. Further, because of the symmetry of (omega _1) and (omega _2), player X’s any available ZD strategy ({mathbf {p}}) in (G_2) is also a ZD strategy in (G_1) if and only if (1) holds. It indicates that (Xi (omega _1)=Xi (omega _2)) and player X can choose any ZD strategy based on its own cognition, which does not cause suspicion of the opponent since it is also consistent with player Y’s anticipation. Additionally, the slopes of linear relations between players’ utilities may be different, as also shown in Fig. 1, and player X can benefit from the misperception by choosing a ZD strategy to improve the corresponding slope.In fact, (1) covers the following two cases:

    (1)

    (2P_i=T_i+S_i), (iin {1,2}), is a sufficient condition of (1). Thus, when (2P_i=T_i+S_i), (iin {1,2}), player X’s any ZD strategy ({mathbf {p}}) in (G_1) is also a ZD strategy in (G_2). Actually, (2P_i=T_i+S_i), (iin {1,2}), means that the sum of players’ utilities when players mutual defect is equal to that when only one player chooses defective strategies.

    (2)

    (R_i+P_i=T_i+S_i), (iin {1,2}), is another sufficient condition of (1). Thus, when (R_i+P_i=T_i+S_i), (iin {1,2}), player X’s any ZD strategy ({mathbf {p}}) in (G_1) is also a ZD strategy in (G_2). Actually, (R_i+P_i=T_i+S_i), (iin {1,2}), means that the game has a balanced structure in utilities32. At this point, the relationship between cooperation rate and efficiency is monotonous, i.e., the higher the cooperation rate of both sides, the greater the efficiency (the sum of players’ utilities).

    Furthermore, for the three special ZD strategies, player X can also maintain a linear relationship between players’ utilities in the IPD game with misperception.Figure 1Player X can also enforce a linear relationship between players’ utilities in its own cognition. Let (omega _1=[T,R_1,P_1,S]=[5,3,1,0]) and (omega _2=[T,R_2,P_2,S]=[5,frac{23}{7},frac{1}{7},0]), which satisfy (1). Consider that player X chooses two different ZD strategies in (a) and (b), respectively, and the red lines describe the relationships between players’ utilities in (G_1). We randomly generate 100 player Y’s strategies, and blue circles are ((u^{omega _2}_X,u^{omega _2}_Y)), correspondingly. Notice that blue circles are indeed on a cyan line in both (a) and (b).Full size imageEqualizer strategyBy choosing equalizer strategies according to player Y’s cognition, player X can unilaterally set player Y’s utilities, as shown in the following corollary.
    Corollary 1
    Player X’s any equalizer strategy ({mathbf {p}}) in (G_1) is also an equalizer strategy in (G_2) if and only if$$begin{aligned} frac{R_1-P_1}{R_2-P_2}=frac{R_1-T_1}{R_2-T_2}=frac{R_1-S_1}{R_2-S_2}. end{aligned}$$
    (2)

    (2) is also a sufficient condition of (1). If (2) holds, player X can unilaterally set player Y’s utility by choosing any equalizer strategy in (G_1) even though they have different cognitions; otherwise, player X can not unscrupulously choose an equalizer strategy based on player Y’s cognition since it may not be an equalizer strategy in player X’s cognition.Extortion strategyBy choosing extortion strategies according to player Y’s cognition, player X can get an extortionate share, as shown in the following corollary.
    Corollary 2
    For player X’s extortion strategy ({mathbf {p}}) with extortion factor (chi >1) in (G_1), ({mathbf {p}}) is also an extortion strategy in (G_2) if (1) and the following inequality hold:$$begin{aligned} begin{aligned} (S_1-P_1)(R_2-P_2)-(R_1-P_1)(T_2-P_2)-chi ((T_1-P_1)(R_2-P_2)-(R_1-P_1)(T_2-P_2))1) in (G_1), ({mathbf {p}}) is also a generous strategy in (G_2) if (1) and the following inequality hold:$$begin{aligned} begin{aligned}(S_1-R_1)(R_2-P_2)-(R_1-P_1)(T_2-R_2)-chi ((T_1-R_1)(R_2-P_2)-(R_1-P_1)(T_2-R_2))b^1_i, iin {1,2}, end{aligned} end{aligned}$$
    (5)
    where (a^1_i) and (b^1_i,iin {1,2}) are parameters shown in “Notations”.
    Actually, when player Y chooses the always cooperate (ALLC) strategy35, i.e., ({mathbf {q}}=[1,1,1,1]^T), player X gets the supremum of the expected utility in (G_1) and player X’s utility is improved in the IPD game with misperception.Figure 4Player X can use either equalizer strategies and extortion strategies to raise the supremum of its expected utility or generous strategies to raise the infimum of its expected utility. (a) and (b) consider that (omega _1=[T,R_1,P,S]) and (omega _2=[T,R_2,P,S]), where (R_1ne R_2); (c) considers that (omega _1=[T,R,P_1,S]) and (omega _2=[T,R,P_2,S]), where (P_1ne P_2). The red lines in (a), (b), and (c) describe utilities’ relationships when player X chooses an equalizer strategy, an extortion strategy, and a generous strategy in (G_1), respectively; The yellow area contains all possible relationships between players’ utilities in (G_2) if player X does not change its strategy. In (a) and (b), r is the supremum of player X’s utility in (G_1), and (r’) is lower than the supremum of player X’s utility in (G_2); In (c), l is the infimum of player X’s utility in (G_1), and (l’) is lower than the infimum of player X’s utility in (G_2).Full size imageExtortion strategyBy choosing extortion strategies according to player Y’s cognition, player X can also improve the supremum of its expected utility.
    Corollary 5
    For player X’s extortion strategy ({mathbf {p}}) with extortion factor (chi >1) in (G_1), the supremum of player X’s expected utility in (G_2) is larger than that in (G_1) if$$begin{aligned} begin{aligned}a^2_ichi ^2+b^2_ichi +c^2_i1), the infimum of player X’s expected utility in (G_2) is larger than that in (G_1) if$$begin{aligned} begin{aligned}a^3_ichi ^2+b^3_ichi +c^3_i More

  • in

    The marine biologist whose photography pastime became a profession

    If you are a scientist hoping to photograph and share your own research:
    •    Don’t underestimate the power of modern media and social-media platforms. Content is changing the world and people’s lives, and it can easily change your life. Stay at the forefront of media technology, or at least be aware of developments. It’s a never-ending race, but it’s easy to get into.
    •    If you plan to share your work with others, imagine what will be of interest to them. If you can excitingly describe your work to a 5-year-old, you won’t have any trouble getting anyone interested. Beautiful pictures help, but the story always comes first.

    •    You will stand out much more if you have a niche and unique story. It could be your rare field of science or a special angle that you use to tell the story of your work. Being different is awesome.
    •    Set the bar very high. You can find dozens of examples of truly high-quality content on the Internet. And you can almost always find resources that can help you to learn how to create work of the same calibre. With practice, your skills will inevitably rise — but at any given time, it’s important to know the level you should aim for.
    •    Find people who are cooler than you. Don’t hesitate to ask them for advice or to shadow them. Have them share their experiences, stand behind them and observe their work if they’ll let you. Few things are more useful than real work experience, both your own and that of others.
    •    Take on a project. This could be a an illustrated workbook for colleagues or students, a guide book, a lecture for schoolchildren with compelling visuals, a course for students or a documentary on your topic.
    •    If you work in a team, you can raise the bar even higher. Use each other’s strengths, share experiences, make plans, apply for grants and take on challenging science-communication projects together. This multiplies the fun and the results. More

  • in

    A nearly complete database on the records and ecology of the rarest boreal tiger moth from 1840s to 2020

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).ADS 
    CAS 

    Google Scholar 
    Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971 (2019).CAS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 

    Google Scholar 
    Heikkinen, R. K. et al. Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodivers. Conserv. 19, 695–723 (2010).
    Google Scholar 
    Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 108327 (2020).
    Google Scholar 
    Hufnagel, L. & Kocsis, M. Impacts of climate change on Lepidoptera species and communities. Appl. Ecol. Environ. Res. 9, 43–72 (2011).
    Google Scholar 
    Geyle, H. M. et al. Butterflies on the brink: identifying the Australian butterflies (Lepidoptera) most at risk of extinction. Austral Entomol. 60, 98–110 (2021).
    Google Scholar 
    Merckx, T., Huertas, B., Basset, Y. & Thomas, J. A global perspective on conserving butterflies and moths and their habitats. Key Topics in Conservation Biology 2, 237–257 (2013).
    Google Scholar 
    New, T. R. Moths (Insecta: Lepidoptera) and conservation: background and perspective. J. Insect Conserv. 8, 79–94 (2004).
    Google Scholar 
    Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl. Acad. Sci. USA 118, e2002549117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Langevelde, F. et al. Declines in moth populations stress the need for conserving dark nights. Glob. Chang. Biol. 24, 925–932 (2018).ADS 
    PubMed 

    Google Scholar 
    Green, K. et al. Australian Bogong moths Agrotis infusa (Lepidoptera: Noctuidae). 1951–2020: decline and crash. Austral Entomol. 60, 66–81 (2021).
    Google Scholar 
    Sánchez‐Bayo, F. & Wyckhuys, K. A. Further evidence for a global decline of the entomofauna. Austral Entomol. 60, 9–26 (2021).
    Google Scholar 
    Rönkä, K., Mappes, J., Kaila, L. & Wahlberg, N. Putting Parasemia in its phylogenetic place: a molecular analysis of the subtribe Arctiina (Lepidoptera). Syst. Entomol. 41, 844–853 (2016).
    Google Scholar 
    Witt, T. J., Speidel, W., Ronkay, G., Ronkay, L. & László, G. M. Subfamilia Arctiinae in Noctuidae Europaeae. Volume 13. Lymantriinae and Arctiinae including phylogeny and check list of the quadrifid Noctuoidea of Europe (eds. Witt, T. J. & Ronkay, L.) 81-216 (Entomological Press, 2011).Dowdy, N. J. et al. A deeper meaning for shallow‐level phylogenomic studies: nested anchored hybrid enrichment offers great promise for resolving the tiger moth tree of life (Lepidoptera: Erebidae: Arctiinae). Syst. Entomol. 45, 874–893 (2020).
    Google Scholar 
    Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Entomol. 37, 102–124 (2012).
    Google Scholar 
    Holloway, J. D. The Moths of Borneo 6: family Arctiidae, subfamilies: Syntominae, Euchromiinae, Arctiinae; Noctuidae misplaced in Arctiidae (Camptoma, Aganinae) (Southdene Sdn. Bhd., 1988).Černý, K. & Pinratana, A. Arctiidae. Moths of Thailand 6, 1–283 (2009).
    Google Scholar 
    Černý, K. A review of the subfamily Arctiinae (Lepidoptera: Arctiidae) from the Philippines. Entomofauna 32, 29–92 (2011).
    Google Scholar 
    Bucsek, K. Erebidae, Arctiinae (Lithosiini, Arctiini) of Malay Peninsula – Malaysia (Institut of Zoology SAS, 2012).Bolotov, I. N., Kondakov, A. V. & Spitsyn, V. M. A review of tiger moths (Lepidoptera: Erebidae: Arctiinae: Arctiini) from Flores Island, Lesser Sunda Archipelago, with description of a new species and new subspecies. Ecol. Montenegrina 16, 1–15 (2018).
    Google Scholar 
    Dubatolov, V. V. New genera and species of Arctiinae from the Afrotropical fauna (Lepidoptera: Arctiidae). Nachr. Entomol. Ver. Apollo 27, 139–152 (2006).
    Google Scholar 
    Ferro, V. G., Melo, A. S. & Diniz, I. R. Richness of tiger moths (Lepidoptera: Arctiidae) in the Brazilian Cerrado: how much do we know? Zoologia (Curitiba) 27, 725–731 (2010).
    Google Scholar 
    Schmidt, B. C. A new genus and two new species of arctiine tiger moth (Noctuidae, Arctiinae, Arctiini) from Costa Rica. Zookeys 9, 89–96 (2009).
    Google Scholar 
    Dubatolov, V. V. Tiger-moths of Eurasia (Lepidoptera, Arctiidae) (Nyctemerini by Rob de Vos and V. V. Dubatolov). Neue Ent. Nachr. 65, 1–106 (2010).
    Google Scholar 
    Fibiger, M. et al. Lymantriinae and Arctiinae, including phylogeny and check list of the quadrifid Noctuoidea of Europe. Noctuidae Europaeae 13, 1–448 (2011).
    Google Scholar 
    Koshkin, E. S. Moths (Lepidoptera, Macroheterocera, excluding Geometridae and Noctuidae s.l.) of the Bureinsky State Nature Reserve and adjacent territories (Khabarovsk Krai, Russia) [In Russian]. Amur. Zool. J. 12, 412–435 (2020).
    Google Scholar 
    Kullberg, J., Filippov, B. Y., Spitsyn, V. M., Zubrij, N. A. & Kozlov, M. V. Moths and butterflies (Insecta: Lepidoptera) of the Russian Arctic islands in the Barents Sea. Polar Biol. 42, 335–346 (2019).
    Google Scholar 
    Bolotov, I. N. et al. The distribution and biology of Pararctia subnebulosa (Dyar, 1899) (Lepidoptera: Erebidae: Arctiinae), the largest tiger moth species in the High Arctic. Polar Biol. 38, 905–911 (2015).
    Google Scholar 
    Bolotov, I. N. et al. New occurrences, morphology, and imaginal phenology of the rarest Arctic tiger moth Arctia tundrana (Erebidae: Arctiinae). Ecol. Montenegrina 39, 121–128 (2021).
    Google Scholar 
    Bolotov, I. N., Gofarov, M. Y., Kolosova, Y. S. & Frolov, A. A. Occurrence of Borearctia menetriesii (Eversmann, 1846) (Erebidae: Arctiinae) in Northern European Russia: a new locality in a disjunct species range. Nota Lepidopterol. 36, 65–75 (2013).
    Google Scholar 
    Dubatolov, V. V. Borearctia gen. n., a new genus for the tiger moth Callimorpha menetriesi (Ev.) (Lepidoptera, Arctiidae) [In Russian]. Entomol. Rev. 63, 157–161 (1984).
    Google Scholar 
    Hori, H. An unrecorded species of the Arctiidae [In Japanese]. Kontyu 1, 86 (1926).
    Google Scholar 
    Eversmann, E. Lepidoptera quaedam nova in Rossia observata. Bulletin de la Société Impériale des Naturalistes de Moscou 19, 83–88 (1846).
    Google Scholar 
    Koshkin, E. S. Life history of the rare boreal tiger moth Arctia menetriesii (Eversmann, 1846) (Lepidoptera, Erebidae, Arctiinae) in the Russian Far East. Nota Lepidopterol. 44, 141–151 (2021).
    Google Scholar 
    Krogerus, H. D. Vorkommen von Callimorpha menetriesi Ev. in Fennoskandien, nebst Beschriebungen der verschiedenen Entwicklungsstadien [In German]. Not. Entomol. 24, 79–86 (1944).
    Google Scholar 
    Saarenmaa, H. Conservation ecology of Borearctia menetriesii [online]. http://www.bormene.myspecies.info/en (2011-2021).Berlov, O. E. & Bolotov, I. N. Record of Borearctia menetriesii (Eversmann, 1846) (Lepidoptera, Erebidae, Arctiinae) larva on Aconitum rubicundum Fischer (Ranunculaceae) in Eastern Siberia. Nota Lepidopterol. 38, 23–27 (2015).
    Google Scholar 
    Staudinger, O. & Rebel, H. Catalog der Lepidopteren des palaearctischen Faunengebietes. Vol. 1. Th. Famil. Papilionidae-Hepialidae (R. Friedländer & Sohn, 1901).Filipiev, I. Lepidoptera [In Russian]. Russkoe Entomologicheskoe Obozrenie 16, 376–378 (1916).
    Google Scholar 
    Fabritius, G. R. Anmärkningsvärda fynd av fjärilar, bland dessa den för Europa nya Callimorpha menetriesii Ev. [In Finnish]. Meddeland. Soc. Fauna Fl. Fenn. 40, 47–49 (1914).
    Google Scholar 
    Carpelan, J. Callimorpha menetriesii Ev. återfunnen [In Finnish]. Meddeland. Soc. Fauna Fl. Fenn. 48, 108–109 (1921).
    Google Scholar 
    Kurentzov, A. I. Zoogeography of the Amur Region [In Russian] (Nauka Publisher, 1965).Dubatolov, V. V. Tiger moths (Lepidoptera, Arctiidae: Arctiinae) of South Siberian mountains (report 2) [In Russian] in Arthropods and Helminths, Fauna of Siberia Series (ed. Zolotarenko, G. S.) 139–169 (Nauka Publisher, 1990).Klitin, A. K. New record of the tiger moth Borearctia menetriesii on Sakhalin Island [In Russian]. Bulletin of Sakhalin Museum 16, 269–271 (2009).
    Google Scholar 
    Nupponen, K. & Fibiger, M. Additions to the checklist of Bombycoidea and Noctuoidea of the Volgo-Ural region. Part II. (Lepidoptera: Lasiocampidae, Erebidae, Nolidae, Noctuidae). Nota Lepidopterol. 35, 33–50 (2012).
    Google Scholar 
    Koshkin, E. S. Preliminary results of the examination of the fauna of Higher Moths (Macroheterocera, excluding Geometridae and Noctuidae) of the upper Bureya River basin (Khabarovsk Region) [In Russian]. Proceedings of Grodekovsky Museum (Nature of the Far East) 24, 65–75 (2010).
    Google Scholar 
    Marttila, O., Saarinen, K., Haahtela, T. & Pajari, M. Idänsiilikäs Borearctia menetriesi (Eversmann, 1846) [In Finnish] in Suomen kiitäjät ja kehrääjät [Macrolepidoptera of Finland] 265–266 (Kirjayhtymä Oy, 1996).Lappi, E., Mikkola, K. & Ryynänen, J. Idänsiilikäs Borearctia menetriesii, tervetuloa takaisin! [Welcome back Borearctia menetriesii] [In Finnish]. Baptria 29, 28–29 (2004).
    Google Scholar 
    Silvonen, K. Borearctia Dubatolov, 1985 [online]. Kimmo’s Lepidoptera Site, Finland. http://www.kolumbus.fi/~kr5298/lnel/a/bormenet.htm (2010).Bolotov, I. N. et al. Menetries’ Tiger Moth Range and Ecology Database (1840s-2020). figshare https://doi.org/10.6084/m9.figshare.15000399 (2022).Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).
    Google Scholar 
    Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).
    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Google Scholar 
    Simmons, B. I. et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Diver. 13, 103–114 (2020).
    Google Scholar 
    Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conserv. Diver. 14, 167–187 (2021).
    Google Scholar 
    Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. USA 118, e2002548117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 118, e2023989118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl. Acad. Sci. USA 118, e2002556117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berry, P. A. M., Smith, R. G. & Benveniste, J. ACE2: the new global digital elevation model in Gravity, Geoid and Earth Observation (ed. Mertikas, S. P.) 231–237 (Springer, 2010).Kurentzov, A. I. My travels [In Russian] (Far Eastern Publishing House, 1973).Dubatolov, V. V. A catalogue of type specimens of Palaearctic tiger moths (Lepidoptera, Arctiidae, Arctiinae) preserved in the collection of the Zoological Institute of Russian Academy of Sciences (St. Petersburg) [In Russian]. Entomol. Rev. 75, 338–356 (1996).
    Google Scholar 
    Bailey, R. G. Explanatory Supplement to Ecoregions Map of the Continents. Environ. Conserv. 16, 307–309 (1989).
    Google Scholar 
    Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224 (2002).
    Google Scholar 
    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    Beaumont, L. J. et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl. Acad. Sci. USA 108, 2306–2311 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).PubMed 

    Google Scholar  More

  • in

    Pronounced mito-nuclear discordance and various Wolbachia infections in the water ringlet Erebia pronoe have resulted in a complex phylogeographic structure

    Erebia pronoe exhibits highly structured and strongly differentiated mitochondrial lineages, which are consistent with the distribution of previously described morphotaxa and analyses of Dincă et al.10 These genetic lineages are also reflected to varying degrees in the nuclear markers. The observed mito-nuclear discordances can be explained by different evolutionary rates of genetic markers, the effects of Wolbachia infections, and introgression. These aspects are discussed in more detail in the following sections on the phylogeographic history of this species complex.Mito-nuclear discordance and the systematic status of Erebia melas
    Based on genital morphology and nuclear markers, E. melas represents a distinct group to E. pronoe. The common area of origin of both species was probably located in the eastern Alps, which is supported by a RASP analysis based on the nuclear markers. However, E. melas acts as an ingroup of E. pronoe based on the mitochondrial markers, and a RASP analysis indicates a common origin for both taxa in the Carpathian region. Since most Erebia species in Europe have at least parts of their distribution in the Alps21 and are adapted to Alpine environments and habitats22,23, we consider an eastern Alpine origin of the ancestor of E. pronoe and E. melas more likely. This hypothesis subsumes the assumption that the genetic proximity on the mitochondrial level was probably caused by hybridisation and introgression events, which could have occurred as a result of several eastward advances of E. pronoe to the Balkan Peninsula (see below). This seems plausible, because the ability and tendency of E. pronoe to hybridise with other Erebia species have been demonstrated repeatedly12,24,25.The existence of Wolbachia strain 2 in both species, and its distribution from the Pyrenees (in E. pronoe) to the Balkan Peninsula (in E. melas) also speaks for a common origin of both species. Thus, Wolbachia strain 2 might represent the ancient strain present in the common ancestor of this species group, surviving today at the geographic margins (i.e. Pyrenees, western Alps, Balkan Peninsula), but which at some time was replaced in the centre of the butterfly’s range (i.e. the eastern and central Alps) by strain 1. The link between co-occurrence in a common area and prevalence of one Wolbachia strain was also recently demonstrated in other Erebia species26 and might facilitate mitochondrial introgression27.Intraspecific differentiation and glacial refugia of Erebia pronoe
    The Pyrenean region is inhabited by one of the oldest and most differentiated intraspecific lineages of E. pronoe. The high genetic diversity in the Pyrenees speaks for large effective population sizes throughout time, enabled by mostly altitudinal shifts in response to climatic cycles, and a lack of major genetic bottlenecks. Compared to the Pyrenean group, the genetic diversity of the western Alpine populations, also well differentiated from all other groups, is lower. This lower diversity was probably the result of repeated cold stage retreat to a geographically more restricted refugium at the foot of the south-western Alps, a well-known refugial area for numerous species28.We cannot say conclusively whether the populations in the Pyrenean region or in the western Alps differentiated first, due to the contradictory genetical markers. The higher evolutionary rate of the mitochondrial markers, the allopatric distribution, and the hybridisation with diverse Erebia species may have led to a greater differentiation of the Pyrenees and/or a loss of the genetic link between the western Alps and the Pyrenees. Since a link between the western Alps and the Pyrenees is still well reflected in the nuclear data set and by the shared Wolbachia strain 2, we consider the most likely scenario to be an early Pleistocene or even Pliocene expansion from the western Alps to the Pyrenees, with subsequent isolation and differentiation. Thus, the Pyrenees-western Alps populations might first have separated as one group from an eastern Alps group s.l., as suggested by nuclear information, and not in two independent events, as suggested by mitochondrial genes.Simultaneously to the split between western Alps and Pyrenees, a separation of the eastern Alpine group s.l. into a southern Alpine subgroup and an eastern Alpine subgroup should have occurred. The southern Alpine subgroup displays a high genetic diversity in their nuclear markers, but a significantly lower diversity in the mtDNA. This might be explained by the existence of a cold-stage refugial area in the southern Alps or their margin, supporting the constant survival of large populations, but also a reshaping of the mtDNA patterns through introgression from the eastern Alpine subgroup during secondary contact when both subgroups expanded into formerly glaciated east-central Alpine areas. The isolated occurrence of Wolbachia strain 1 and mitochondrial haplotypes H29 and H30 (shared with the eastern Alps subgroup) in the southern Alps further support the hypothesis of gene flow from the eastern Alpine region into the southern Alpine populations and vice versa.The eastern Alpine subgroup probably survived glacial periods in a large, cohesive refugium at the eastern edge of the Alps, as has been demonstrated for numerous other species28. This area is also seen as a potential centre of origin of the entire taxon. From there, a recent (most likely postglacial) dispersal must have taken place, which should be responsible at least partly for the star-like pattern of this group in both mitochondrial and nuclear haplotype networks. However, further dispersal events out of the eastern Alps during previous interglacials and maybe even going back to the Pliocene have to be postulated to explain the entire range dynamics in E. pronoe.Apparently, multiple advances out of the eastern Alps into the Balkan mountain systems have taken place from several independent glacial refugia in the region, as indicated by the different mtDNA lineages in Slovenia, western Balkan mountains, and eastern Balkan mountains. A separation between the eastern and western Balkans, and hence also separate glacial refugia in both areas, was frequently observed for mountain taxa28,31. This pattern may have resulted from a succession of independent dispersal events from the eastern Alps throughout the younger Pleistocene, with subsequent regional extinction events and/or independent dispersal events across the Carpathians, as has been demonstrated for numerous other species29.A similar pattern of two independent colonisation events also applies to the Carpathians. Thus, the highly isolated populations in the south-eastern Carpathians must go back to an older expansion out of the eastern Alps. This probably took place during one of the last interglacial phases. The route most likely followed the Carpathian arc, but only a few populations survived at their south-eastern edge. This underlines the phylogeographic independence of this part of the Romanian Carpathians, which is also supported by studies on numerous other mountain species30,31,32. On the other hand, the Tatra mountains, as the northernmost part of the Carpathians, were colonised very recently, most likely postglacially, out of the eastern Alpine area. The strong and rather recent link between these two areas is also supported by phylogeographic studies on many taxa30,33,34.Because of the slower evolutionary rate of nuclear DNA and the resulting incomplete lineage sorting, nuclear markers can contribute little to the reconstruction of these presumably recent events. In line with that, the Valais lineage also has little nuclear differentiation but is clearly distinguished from the western and eastern Alpine lineages by the exclusive mtDNA haplotype H17 and Wolbachia strain 3. The presence of a single, highly differentiated mtDNA haplotype and an exclusive Wolbachia strain indicates a selective sweep. This lineage most likely represents a chronological relict of an interglacial expansion of the eastern Alpine subgroup to the western-central Alps surviving since then in this area, finding glacial refugia in nearby unglaciated areas and becoming infested by a Wolbachia strain not present in any other E. pronoe lineage, hence accelerating its differentiation.Another selective sweep was probably the cause of the mito-nuclear unconformity in the southern Alps lineage. The occurrence of the mtDNA haplotypes H29 and H30 and the Wolbachia strain 1 indicate mitochondrial hybridisation between the eastern and southern Alpine lineages during an expansive interglacial phase. As a result, Wolbachia infection probably occurred, which might have impoverished the mitochondrial diversity of the southern Alps lineage.Consequences for subspecific differentiation in Erebia pronoe
    In general, the support given by our data for the so-far described subspecies decreases from west to east. Erebia pronoe glottis Fruhstorfer, 1920, distributed in the Pyrenees, represents the best-supported subspecies. Fixed mitochondrial amino acid changes emphasize the distinctness of this taxon, which might be well advanced in the process of speciation; we cannot even exclude the possibility that it has already reached full species rank. The genetic separation of the western Alps from the Valais, geographically separated along the main Alpine ridge, justifies the recognition of the taxa E. pronoe vergy (Ochsenheimer, 1807) and E. pronoe psathura Fruhstorfer, 1920, respectively, and is supported by both marker sets as well as by the existence of two different Wolbachia strains. The eastern Alpine subgroup resembles the nominotypical E. pronoe pronoe. The existence of at least one lineage in the southern Alpine area is supported by both marker sets. A finer separation based on the mitochondrial markers is not possible, because of recent introgression events affecting east Alpine haplotypes, as also indicated by the existence of Wolbachia strain 1. This population group could be assigned to the taxon E. pronoe gardeina Schawerda, 1924, or to E. pronoe tarcenta Fruhstorfer, 1920, considering their ranges. Nevertheless, a final decision requires further regional studies. Erebia pronoe fruhstorferi Warren, 1933 was accepted to be widely distributed in the Balkan mountain systems. However, our data suggest independent lineages in the western and eastern Balkan mountain systems of which only the eastern populations can be assigned to this taxon. The lineage of the Slovenian Alps is primarily based on mitochondrial markers and morphological characteristics7. The existence of an independent lineage for the highly isolated populations in the southern Carpathians, justifies the subspecies status of E. pronoe regalis Hormuzachi, 1937. Both marker sets display a differentiation, which was more pronounced in the nuclear than in the mitochondrial DNA. More

  • in

    Spatial and temporal evolution of ecological vulnerability based on vulnerability scoring diagram model in Shennongjia, China

    Spatial and temporal distribution of ecological vulnerabilityBased on the SPCA model, the temporal and spatial distribution of ecological vulnerability in Shennongjia is obtained, as shown in Fig. 3. From 1996 to 2018, the area of micro vulnerability areas continued to increase and occupied a dominant position. Moreover, their distribution pattern tended to be gradually integrated, indicating that the structure and function of the ecosystem in most areas of Shennongjia were relatively complete, and in a healthy and stable state. However, the ecological environment of the severely vulnerable areas in the northeast, south and southwest of Shennongjia is in a trend of continuous deterioration, and the risk of extreme vulnerability is gradually emerging. From the spatial distribution of ecological vulnerability in 2018, it can be seen that the extremely vulnerable areas have increased significantly, and exhibit a dense and continuous distribution trend in some areas, accompanied by the development of rapid urbanization and highway traffic construction. There are also high-risk ecological vulnerable zones and the extremely vulnerability areas.Figure 3Spatial and temporal distribution of ecological vulnerability in Shennongjia. Spatial and temporal distribution of ecological vulnerability for (a) 1996, (b) 2007, (c) 2018 in Shennongjia, China.Full size imageIt can be seen from the area proportion of different levels of vulnerable areas (Fig. 4) that the area proportion of micro and extremely vulnerable areas increased significantly. Specifically, the area proportion of micro vulnerable areas increased from 59.98% in 1996 to 71.02% in 2018, while the area proportion of extremely vulnerable areas increased from 1.23% in 1996 to 7.32% in 2018. This shows that the ecological vulnerability of Shennongjia exhibits a significant two-level differentiation trend.Figure 4Proportion of the area of vulnerable districts at all levels in Shennongjia.Full size imageDynamic change of ecological vulnerabilityDuring the study period, the areas with a positive fitting slope account for more than 90% of the total area of the study area, which indicates that the overall vulnerability of Shennongjia presents a downward trend. According to the natural discontinuity point method, the dynamic change results of ecological vulnerability in Shennongjia are divided into five levels (Fig. 5), in order to discern the spatial angle more intuitively and clearly. It can be seen that the ecological vulnerability of most regions exhibits a decreasing trend, while the ecological vulnerability of certain regions increases.Figure 5Dynamic changes of ecological vulnerability in Shennongjia. Changes in the ecological vulnerability of Shennongjia in different periods: (a) 1996–2007, (b) 2007–2018, (c) 1996–2018.Full size imageFrom 1996 to 2007, whether the spatial distribution trend of ecological vulnerability increased or decreased is not obvious. However, from 2007 to 2018, the areas with significantly increased ecological vulnerability were concentrated in Yangri and Songbai in the northeast and near the Hongping airport in Shennongjia in the midwest. During this same time period, in the areas around the main urban areas and along the roads that were seriously disturbed by human activities, ecological vulnerability also exhibited a decreasing trend.Change trend of comprehensive ecological vulnerability indexAnnual change of the comprehensive ecological vulnerability indexThe results of the comprehensive ecological vulnerability index of 1996, 2007, and 2018 are 2.77, 2.71, and 2.51, respectively. From the annual change of the ecological vulnerability index in Shennongjia (Fig. 6), it can be seen that the ecological vulnerability of Shennongjia showed a downward trend from 1996 to 2018, and the stability and health of the ecosystem were improved overall.Figure 6Annual change of the comprehensive ecological vulnerability index. CEVI, comprehensive ecological vulnerability index.Full size imageAmong them, the decline of ecological vulnerability is relatively small from 1996 to 2007, which may be ascribed to the preliminary implementation of restrictive policies, such as banning logging and returning farmland to forest, which reduced ecological exposure factors, such as illegal logging and deforestation. From 2007 to 2018, the comprehensive index of ecological vulnerability in Shennongjia decreased significantly, which is mainly due to the designation of national nature reserves and the implementation of various ecological protection projects36. While reducing the exposed ecological disturbance, it simultaneously markedly improved the adaptability of the ecosystem, and further reduced the overall ecological vulnerability of the region.Changes of the comprehensive ecological vulnerability Index in different townsAccording to the comprehensive index of ecological vulnerability of eight towns in the Shennongjia (Table 5, Fig. 7), the ecological vulnerability difference of each town is obvious. In 2018, the comprehensive index of ecological vulnerability of each town is lower than that in 1996 and 2007. The results show that the average value of CEVI is, from high to low, Yangri, Xiaguping, Songbai, Xinhua, Jiuhu, Hongping, Muyu, and Songluo. The maximum value of the CEVI appeared in Yangri in 1996, and the minimum value occurred in Songluo in 2018.Table 5 Comprehensive ecological vulnerability index of towns.Full size tableFigure 7Radar chart of the comprehensive ecological vulnerability index of towns.Full size imageDriving factors of spatial and temporal evolution of ecological vulnerabilityThe formation and evolution of ecological vulnerability in Shennongjia constitutes a dynamic process, which is the result of interactions of human and natural factors. Based on the principle of SPCA of ecological vulnerability, the transformed principal components are extracted, and the rotated factor load matrix is obtained to reflect the different effects of various factors on the evaluation results. Each principal component possesses a different ability to explain the original index factors, but it has similar rules in the first four principal components (Table 6). The cumulative contribution rate of the first four principal components in the three groups of data reached more than 80%, which can reflect the information of most factors, and thus it has good representativeness.Table 6 Principal component loading and score.Full size tableAmong the first principal component and the third principal component, the contribution of land-use type index (C9) is higher; in the second principal component, the contribution of population density (C1) is higher; among the fourth principal components, the contribution of vegetation coverage (C13) is higher. Moreover, the contribution of other factors in different years and main components is dissimilar.The influence of land-use type on ecological vulnerabilityWhether due to natural or human factors, the original properties of the ecosystem are altered by changing the surface cover. Therefore, land-use type is an important factor affecting regional ecological vulnerability. The difference of surface cover leads to the difference of ecological community, and then produces varied ecological environmental benefits. Forest land is the most important land-use type in the study area, and the ecological vulnerability of the distribution area is mainly micro degree and light. However, consider the important ecological value of the forest ecosystem, attention should be given to its vulnerability. The ecological vulnerability of the construction land is mainly severe and extreme, which is largely due to the expansion of construction land, which destroys the original ecological structure and ecological community. Furthermore, a large number of manmade patches replace natural patches in the construction land, and biodiversity decreases, leading to the decline of the stability of ecological structures and the increase of vulnerability.The influence of population density on ecological vulnerabilityPopulation density is one of the most direct exposure factors in the vulnerability of ecological environments. Population density is generally higher than that in high area, and it is also a region with a developed economy and high urbanization. In these areas, human activities are frequent, which usually impart a negative disturbance to the natural environment, including the rapid expansion of cultivated land and construction land area, as well as high discharge of production and domestic wastewater waste, which has caused great pressure on the ecological environment, leading to a significant increase in ecological vulnerability.The influence of vegetation cover on ecological vulnerabilityFrom 1996 to 2018, the vegetation coverage of the Shennongjia exhibited an overall upward trend, which is of positive significance to the reduction of the vulnerability of the ecosystem. Vegetation, as the main body of the land ecosystem, maintains the balance of ecological environment through interactions with climate, landform, and soil37. Extant literature shows that the change of vegetation coverage is an major factor of regional ecological environment change, and has a clear indication function for the change of regional ecological environment38. The spatial distribution trend of ecological vulnerability in the Shennongjia is markedly similar to that of vegetation coverage. The ecological vulnerability of regions with higher vegetation coverage is lower, exhibiting a significant negative correlation. In the Shennongjia, the change of vegetation coverage is also obviously influenced by human factors.Contribution of landscape pattern index to ecological vulnerabilityThe spatial distribution of each index in Shennongjia have been obtained from previous studies47. From the unary linear regression analysis, in the years of 1996, 2007 and 2018, the NP, LPI, AI, DIVISION and SHDI are all significantly correlated with the ecological vulnerability index (Fig. 8).Figure 8Scatter plot of linear regression of landscape pattern index and ecological vulnerability index. EVI, ecological vulnerability index.Full size imageIn the case of different independent variable combinations in 1996, 2007 and 2018, the multiple regression relationship between the independent variable and the dependent variable of each group is significantly correlated, and the multiple linear regression equation of the full model is obtained as follows:$$1996{:};;{text{ Y}} = 6.443 + 0.014{text{X}}_{1} + 0.006{text{X}}_{2} – 0.038{text{X}}_{3} – 0.066{text{X}}_{4} + 0.058{text{X}}_{5}$$$$2007{:};;{text{ Y}} = 4.497 + 0.016{text{X}}_{1} + 0.007{text{X}}_{2} + 0.793{text{X}}_{3} – 0.047{text{X}}_{4} – 0.305{text{X}}_{5}$$$$2018{:};;{text{ Y}} = – 1.980 + 0.037{text{X}}_{1} + 0.006{text{X}}_{2} + 0.703{text{X}}_{3} + 0.019{text{X}}_{4} – 0.123{text{X}}_{5}$$The contribution rate of landscape pattern index to ecological vulnerability in different years of 1996, 2007, and 2018 is shown in Table 7. The contribution of AI and NP to ecological vulnerability in 1996 was high; the contribution of NP and AI to ecological vulnerability was higher in 2007; and the NP in 2018 had the highest contribution to ecological vulnerability, reaching 95.77%.Table 7 Contribution of the landscape pattern index to the ecological vulnerability index.Full size tableBased on the analysis results from 1996 to 2018, the contribution of NP and AI to ecological vulnerability is relatively high. The main reason for this is that the forest coverage rate of Shennongjia is as high as 91%. Specifically, with the forest as the landscape matrix, the NP is small and the connectivity between patches is high, showing a trend of aggregation. The degree of landscape fragmentation is relatively low and decreases annually, and ecological vulnerability decreases with the decrease of the degree of landscape fragmentation, Therefore, the impact of NP and AI on ecological vulnerability is highly significant.The AI and ecological vulnerability index always exhibit a significant negative correlation in the study period. In the 1996 research results, the contribution of AI to ecological vulnerability is the most obvious. Combined with the spatial distribution of ecological vulnerability, it can be seen that most of the severe and extremely vulnerable areas are distributed in areas with low AI. Most of them are the distribution areas of artificial patches, such as rural living areas, airports, tourism centers, etc., which are obviously disturbed by human activities, resulting in low connectivity among various landscape types, which greatly reduces the aggregation degree of landscape and increases regional vulnerability.There is also a significant positive correlation between the NP and the ecological vulnerability index. This is especially the case in 2018, when the contribution of the NP to ecological vulnerability is as high as 95.77%, which is mainly attributable to the urbanization construction of Songbai town in Shennongjia. Combined with the land-use structure map, it can be seen that the number of construction land patches in the northeast region increased sharply. In this process, the renewal of patches aggravates the degree of landscape fragmentation and plays a key role in the aggravation of regional vulnerability risk.Although the impact of LPI, SHDI and DIVISION on ecological vulnerability always exists, the contribution is not very significant. Among them, SHDI contributed 10.38% in 2007, which was more sensitive to the unbalanced distribution of each patch type. In areas with high SHDI, landscape heterogeneity is high, the ecological pattern is unstable, and ecological vulnerability increases. More

  • in

    An intergenerational approach to parasitoid fitness determined using clutch size

    Quicke, D. L. Parasitic Wasps (Chapman & Hall Ltd., 1997).
    Google Scholar 
    Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology (Princeton University Press, 1994).
    Google Scholar 
    Mayhew, P. J. & van Alphen, J. J. M. Gregarious development in alysiine parasitoids evolved through a reduction in larval aggression. Anim. Behav. 58 , 131–141 (1999).Mayhew, P. J. & Hardy, I. C. W. Nonsiblicidal behavior and the evolution of clutch size in bethylid wasps. Am. Nat. 151, 409–424 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schmidt, J. M. & Smith, J. J. B. Correlations between body angles and substrate curvature in the parasitoid wasp Trichogramma minutum: A possible mechanism of host radius measurement. J. Exp. Biol. 125, 271–285 (1986).
    Google Scholar 
    Boivin, G. & Baaren, J. The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol. Lett. 3, 469–474 (2000).
    Google Scholar 
    Rosenheim, J. A., Wilhoit, L. R. & Armer, C. A. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96, 439–449 (1993).ADS 
    PubMed 

    Google Scholar 
    Mayhew, P. J. The evolution of gregariousness in parasitoid wasps. Proc. R. Soc. Lond. B Biol. 265, 383–389 (1998).
    Google Scholar 
    Harvey, P. H. & Partridge, L. Murderous mandibles and black holes in hymenopteran wasps. Nature 326, 128–129 (1987).ADS 

    Google Scholar 
    Pexton, J. J. & Mayhew, P. J. Competitive interactions between parasitoid larvae and the evolution of gregarious development. Oecologia 141, 179–190 (2004).ADS 
    PubMed 

    Google Scholar 
    Pexton, J. J. & Mayhew, P. J. Immobility: The key to family harmony? Trends Ecol. Evol. 16, 7–9 (2001).CAS 
    PubMed 

    Google Scholar 
    Godfray, H. C. J. The evolution of clutch size in parasitic wasps. Am. Nat. 129, 221–233 (1987).
    Google Scholar 
    Laing, J. E. & Corrigan, J. E. Intrinsic competition between the gregarious parasite, Cotesia glomeratus and the solitary parasite Cotesia rubecula (Hymenoptera: Braconidae) for their host Artogeia rapae (Lepidoptera: Pieridae). Entomophaga 32, 493–501 (1987).
    Google Scholar 
    Pexton, J. J. & Mayhew, P. J. Clutch size adjustment, information use and the evolution of gregarious development in parasitoid wasps. Behav. Ecol. Soc. 58, 99–110 (2005).
    Google Scholar 
    Reitz, S. R. & Adler, P. H. Fecundity and oviposition of Eucelatoria bryani, a gregarious parasitoid of Helicoverpa zea and Heliothis virescens. Entomol. Exp. Appl. 75, 175–181 (1995).
    Google Scholar 
    Wei, K., Tang, Y. L., Wang, X. Y., Cao, L. M. & Yang, Z. Q. The developmental strategies and related profitability of an idiobiont ectoparasitoid Sclerodermus pupariae vary with host size. Ecol. Entomol. 39, 101–108 (2014).
    Google Scholar 
    van Alphen, J. J. M. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Ann. Rev. Entomol. 35, 59–79 (1990).
    Google Scholar 
    Mayhew, P. J. & Glaizot, O. Integrating theory of clutch size and body size evolution for parasitoids. Oikos 92, 372–376 (2001).
    Google Scholar 
    Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Reproductive strategy as a major factor determining female body size and fertility of a gregarious parasitoid. J. Appl. Entomol. 143, 441–450 (2019).
    Google Scholar 
    Hardy, I. C. W., Griffiths, N. T. & Godfray, H. C. J. Clutch size in a parasitoid wasp: A manipulation experiment. J. Anim. Ecol. 61, 121–129 (1992).
    Google Scholar 
    Visser, M. E. The importance of being large: The relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae). J. Anim. Ecol. 63, 963–978 (1994).
    Google Scholar 
    Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).CAS 
    PubMed 

    Google Scholar 
    Bezemer, T. M. & Mills, N. J. Clutch size decisions of a gregarious parasitoid under laboratory and field conditions. Anim. Behav. 66, 1119–1128 (2003).
    Google Scholar 
    Takagi, M. The reproductive strategy of the gregarious parasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae). Oecologia 68, 1–6 (1985).ADS 
    PubMed 

    Google Scholar 
    Jervis, M. A., Ferns, P. N. & Heimpel, G. E. Body size and the timing of egg production in parasitoid wasps: A comparative analysis. Funct. Ecol. 17, 375–383 (2003).
    Google Scholar 
    Waage, J. K. & Lane, J. A. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Ecol. 53, 417–426 (1984).
    Google Scholar 
    Waage, J. K. & Ming, N. S. The reproductive strategy of a parasitic wasp: I. Optimal progeny and sex allocation in Trichogramma evanescens. J. Anim. Ecol. 53, 401–415 (1984).
    Google Scholar 
    Rabinovich, J. E., Jorda, M. T. & Bernstein, C. Local mate competition and precise sex ratios in Telenomus fariai (Hymenoptera: Scelionidae), a parasitoid of triatomine eggs. Behav. Ecol. Sociobiol. 48, 308–315 (2000).
    Google Scholar 
    Goubault, M., Mack, A. F. & Hardy, I. C. W. Encountering competitors reduces clutch size and increases offspring size in a parasitoid with female–female fighting. Proc. R. Soc. B Biol. 274, 2571–2577 (2007).
    Google Scholar 
    Duval, J. F., Brodeur, J., Doyon, J. & Boivin, G. Impact of superparasitism time intervals on progeny survival and fitness of an egg parasitoid. Ecol. Entomol. 43, 310–317 (2018).
    Google Scholar 
    Mesterton-Gibbons, M. & Hardy, I. C. W. The influence of contests on optimal clutch size: A game–theoretic model. Proc. R. Soc. Lond. B Biol. 271, 971–978 (2004).
    Google Scholar 
    Koppik, M., Thiel, A. & Hoffmeister, T. S. Adaptive decision making or differential mortality: What causes offspring emergence in a gregarious parasitoid? Entomol. Exp. Appl. 150, 208–216 (2014).
    Google Scholar 
    Heimpel, G. E. Host–parasitoid population dynamics. In Parasitoid population biology (eds Hochberg, M. E. & Ives, A. R.) 27–40 (Princeton, 2000).
    Google Scholar 
    Zaviezo, T. & Mills, M. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 69, 1047–1057 (2000).
    Google Scholar 
    Kazmer, D. J. & Luck, R. F. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76, 412–425 (1995).
    Google Scholar 
    Segoli, M. & Rosenheim, J. A. The effect of body size on oviposition success of a minute parasitoid in nature. Ecol. Entomol. 40, 483–485 (2015).
    Google Scholar 
    Gao, S. K., Wei, K., Tang, Z. L., Wang, X. Y. & Yang, Z. Q. Effect of parasitoid density on the timing of parasitism and development duration of progeny in Sclerodermus pupariae (Hymenoptera: Bethylidae). Biol. Control 97, 57–62 (2016).
    Google Scholar 
    Anderson, R. C. & Paschke, J. D. The biology and ecology of Anaphes flavipes (Hymenoptera: Mymaridae), an exotic egg parasite of the cereal leaf beetle. Ann. Entomol. Soc. Am. 61, 1–5 (1968).
    Google Scholar 
    Hoffman, G. D. & Rao, S. Oviposition site selection on oats: The effect of plant architecture, plant and leaf age, tissue toughness, and hardness on cereal leaf beetle, Oulema melanopus. Entomol. Exp. Appl. 141, 232–244 (2011).
    Google Scholar 
    Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Host population density and presence of predators as key factors influencing the number of gregarious parasitoid Anaphes flavipes offspring. Sci. Rep. UK 9, 1–7 (2019).ADS 

    Google Scholar 
    Hardy, I. C. W. Sex ratio and mating structure in the parasitoid Hymenoptera. Oikos 69, 3–20 (1994).
    Google Scholar 
    Godfray, H. C. J. Models for clutch size and sex ratio with sibling interaction. Theor. Popul. Biol. 30, 215–231 (1986).MATH 

    Google Scholar 
    Hardy, I. C. W. Non-binomial sex allocation and brood sex ratio variances in the parasitoid Hymenoptera. Oikos 65, 143–158 (1992).
    Google Scholar 
    Petersen, G. & Hardy, I. C. W. The importance of being larger: Parasitoid intruder–owner contests and their implications for clutch size. Anim. Behav. 51, 1363–1373 (1996).
    Google Scholar 
    Klomp, H. & Teerink, B. J. The significance of oviposition rates in the egg parasite, Trichogramma embryophagum Htg. Arch. Neerl. Zool. 17, 350–375 (1967).
    Google Scholar 
    May, R. M., Hassell, M. P., Anderson, R. M. & Tonkyn, D. W. Density dependence in host–parasitoid models. J. Anim. Ecol. 50, 855–865 (1981).MathSciNet 

    Google Scholar 
    Hoddle, M. S., Van Driesche, R. G., Elkinton, J. S. & Sanderson, J. P. Discovery and utilization of Bemisia argentifolii patches by Eretmocerus eremicus and Encarsia formosa (Beltsville strain) in greenhouses. Entomol. Exp. Appl. 87, 15–28 (1998).
    Google Scholar 
    Samková, A., Raška, J., Hadrava, J. & Skuhrovec, J. Scarcity of hosts for gregarious parasitoids indicates an increase of individual offspring fertility by reducing their own fertility. bioRxiv https://doi.org/10.1101/2021.03.05.434037 (2021).Article 

    Google Scholar 
    van Dijken, M. J. & Waage, J. K. Self and conspecific superparasitism by the egg parasitoid Trichogramma evanescens. Entomol. Exp. Appl. 43, 183–192 (1987).
    Google Scholar 
    van de Vijver, E. et al. Inter-and intrafield distribution of cereal leaf beetle species (Coleoptera: Chrysomelidae) in Belgian winter wheat. Environ. Entomol. 48, 276–283 (2019).PubMed 

    Google Scholar 
    Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Host specificity of the parasitic wasp Anaphes flavipes (Hymenoptera: Mymaridae) and a new defence in its hosts (Coleoptera: Chrysomelidae: Oulema spp.). Insects 11, 175 (2020).PubMed Central 

    Google Scholar 
    Bezděk, J. & Baselga, A. Revision of western Palaearctic species of the Oulema melanopus group, with description of two new species from Europe (Coleoptera: Chrysomelidae: Criocerinae). Acta Entomol. Mus. Nat. Pragae 55, 273–304 (2015).
    Google Scholar 
    Anderson, R. C. & Paschke, J. D. Additional observations on the biology of Anaphes flavipes (Hymenoptera: Mymaridae), with special reference to the effects of temperature and superparasitism on development. Ann. Entomol. Soc. Am. 62, 1316–1321 (1969).
    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Core Team, 2020).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015). https://CRAN.R-project.org/package=lme4. More

  • in

    Southeast Asia must narrow down the yield gap to continue to be a major rice bowl

    OECD–FAO Agricultural Outlook 2017-2026 (OECD, 2017).Frenken, K. Irrigation in Southern and Eastern Asia in Figures—AQUASTAT Survey 2011 (FAO, 2012).FAOSTAT Production Data (FAO, accessed 2 May 2021); www.fao.org/faostat/en/#dataDawe, D., Jaffee, S. & Santos, N. Rice in the Shadow of Skyscrapers: Policy Choices in a Dynamic East and Southeast Asian Setting (FAO, 2014).Baldwin, K., Childs, N., Dyck, J. & Hansen, J. Southeast Asia’s Rice Surplus. Outlook No. RCS-121-01 (USDA, 2012).World Population Prospects (Department of Economic and Social Affairs, Population Division, UN, 2019).Rejesus, R. M., Mohanty, S. & Balagtas, J. V. Forecasting Global Rice Consumption (North Carolina State Univ., 2012).Clarete, R. L., Adriano, L. & Esteban A. Rice Trade and Price Volatility: Implications on ASEAN and Global Food Security (Asian Development Bank, 2013).Pandey, S. et al. Rice in the Global Economy: Strategic Research and Policy Issues for Food Security (International Rice Research Institute, 2010).Robinson, S. et al. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description for Version 3, IFPRI Discussion Paper 1483 (International Food Policy Research Institute, 2015).d’Amour, C. B. et al. Future urban land expansion and implications for global croplands. Proc. Natl Acad. Sci. USA 114, 8939–8944 (2017).
    Google Scholar 
    de Fraiture, C. et al. Trends and Transitions in Asian Irrigation: What are the Prospects for the Future? IWMI-FAO Workshop on Asian Irrigation (FAO Regional Office for Asia and the Pacific, 2009)Global Rice Science Partnership. Rice Almanac 4th edn (International Rice Research Institute, 2013).Ladha, J. K. et al. Steady agronomic and genetic interventions are essential for sustaining productivity in intensive rice cropping. Proc. Natl Acad. Sci. USA 118, e2110807118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mutert, E. & Fairhurst, T. H. Developments in rice production in Southeast Asia. Better Crops Int. 15, 12–17 (2002).
    Google Scholar 
    Dawe, D. C., Piedad, M. & Cheryll B. C. Why Does the Philippines Import Rice?: Meeting the Challenge of Trade Liberalization (International Rice Research Institute, 2006).van Ittersum, M. K. et al. Can Sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179 (2009).
    Google Scholar 
    Agus, F. et al. Yield gaps in intensive rice–maize cropping sequences in the humid tropics of Indonesia. Field Crops Res. 237, 12–22 (2019).
    Google Scholar 
    Cosslett, T. L. & Cosslett, P. D. Rice Trade of the Mainland Southeast Asian Countries: Cambodia, Laos, Thailand, and Vietnam. Sustainable Development of Rice and Water Resources in Mainland Southeast Asia and Mekong River Basin (Springer, 2018).Tran, U. T. & Kajisa, K. The impact of Green Revolution on rice production in Vietnam. Dev. Econ. 44, 167–189 (2006).
    Google Scholar 
    Dobermann, A., Witt, C. & Dawe, D. Increasing Productivity of Intensive Rice Systems Through Site-Specific Nutrient Management (Science Publishers Inc. and International Rice Research Institute, 2004).Hoang, H. K. & Meyers, W. H. Price stabilization and impacts of trade liberalization in the Southeast Asian rice market. Food Policy 57, 26–39 (2015).
    Google Scholar 
    Clapp, J. Food self-sufficiency: making sense of it, and when it makes sense. Food Policy 66, 88–96 (2017).
    Google Scholar 
    Buresh, R. J., Correa, T. Q. Jr, Pabuayon, I. L. B., Laureles, E. V. & Choi, I. R. Yield of irrigated rice affected by asymptomatic disease in a long-term intensive monocropping experiment. Field Crops Res. 265, 108121 (2021).
    Google Scholar 
    Dawe, D. & Timmer, C. P. Why stable food prices are a good thing: lessons from stabilizing rice prices in Asia. Glob. Food Secur. 1, 127–133 (2012).
    Google Scholar 
    Deng, N. et al. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 10, 1725 (2019).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Ray, D. K. et al. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).PubMed 
    ADS 

    Google Scholar 
    Stuart, A. M. et al. Yield gaps in rice-based farming systems: insights from local studies and prospects for future analysis. Field Crops Res. 194, 43–56 (2016).
    Google Scholar 
    Affholder, F., Poeydebat, C., Corbeels, M., Scopel, E. & Tittonell, P. The yield gap of major food crops in family agriculture in the tropics: assessment and analysis through field surveys and modelling. Field Crops Res. 143, 106–118 (2013).
    Google Scholar 
    Boling, A. A., Bouman, B. A., Tuong, T. P., Konboon, Y. & Harnpichitvitaya, D. Yield gap analysis and the effect of nitrogen and water on photoperiod-sensitive Jasmine rice in north-east Thailand. NJAS-Wagen. J. Life Sci. 58, 11–19 (2011).
    Google Scholar 
    van Oort, P. A. et al. Can yield gap analysis be used to inform R&D prioritisation? Glob. Food Sec. 12, 109–118 (2017).
    Google Scholar 
    Rattalino Edreira, J. I. et al. Spatial frameworks for robust estimation of yield gaps. Nat. Food 2, 773–779 (2021).
    Google Scholar 
    Grassini, P. et al. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Res. 177, 49–63 (2015).
    Google Scholar 
    Redfern, S. K., Azzu, N. & Binamira, J. S. Rice in Southeast Asia: Facing Risks and Vulnerabilities to Respond to Climate Change. Building Resilience for Adaptation to Climate Change in the Agriculture Sector (FAO, 2012).Angulo, C., Becker, M. & Wassmann, R. Yield gap analysis and assessment of climate-induced yield trends of irrigated rice in selected provinces of the Philippines. J. Agric. Rural Dev. Trop. Subtrop. 113, 61–68 (2012).
    Google Scholar 
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Gitz, V., Meybeck, A., Lipper, L., Young, C. D. & Braatz, S. Climate Change and Food Security: Risks and Responses (FAO, 2016).Collins, M. et al. in IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).ADS 

    Google Scholar 
    Pastor, A. V. et al. The global nexus of food–trade–water sustaining environmental flows by 2050. Nat. Sustain. 2, 499–507 (2019).
    Google Scholar 
    Kropff, M. J., Cassman, K. G., Peng, S., Matthews, R. B. & Setter, T. L. Quantitative Understanding of Yield Potential. Breaking the Yield Barrier (International Rice Research Institute, 1994).Matthews, R. B., Kropff, M. J., Bachelet, D. & van Laar, H. H. Modeling the Impact of Climate Change on Rice Production in Asia (CAB International and International Rice Research Institute, 1995).Mitchell P. L., Sheehy J. E. & Woodward F. I. Potential Yields and the Efficiency of Radiation Use in Rice. IRRI Discussion Paper Series 32 (International Rice Research Institute, 1998).Devkota, K. P. et al. Economic and environmental indicators of sustainable rice cultivation: a comparison across intensive irrigated rice cropping systems in six Asian countries. Ecol. Indic. 105, 199–214 (2019).CAS 

    Google Scholar 
    Peng, S. et al. The importance of maintenance breeding: a case study of the first miracle rice variety—IR8. Field Crops Res. 119, 342–347 (2010).ADS 

    Google Scholar 
    Peng, S., Cassman, K. G., Virmani, S. S., Sheehy, J. & Khush, G. S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci. 39, 1552–1559 (1999).
    Google Scholar 
    Kupkanchanakul, T. Bridging the Rice Yield Gap in Thailand. Bridging the Rice Yield Gap in the Asia-Pacific Region (FAO Regional Office for Asia and the Pacific, 2000).Monkham, T. et al. On-farm multi-location evaluation of occurrence of drought types and rice genotypes selected from controlled-water on-station experiments in northeast Thailand. Field Crops Res. 220, 27–36 (2018).
    Google Scholar 
    Naklang, K., Shu, F. & Nathabut, K. Growth of rice cultivars by direct seeding and transplanting under upland and lowland conditions. Field Crops Res. 48, 115–123 (1996).
    Google Scholar 
    Espe, M. B. et al. Rice yield improvements through plant breeding are offset by inherent yield declines over time. Field Crops Res. 222, 59–65 (2018).
    Google Scholar 
    Ermakova, M., Danila, F. R., Furbank, R. T. & von Caemmerer, S. On the road to C4 rice: advances and perspectives. Plant J. 101, 940–950 (2020).CAS 
    PubMed 

    Google Scholar 
    Hari Prasad, A. S., Viraktamath, B. C. & Mohapatra, T. Hybrid Rice Development in Asia: Assessment of Limitations and Potential (FAO Regional Office for Asia and the Pacific, 2014).Report on the Regional Expert Consultation on Hybrid Rice Development in Asia Under FAO–China South–South Cooperation: Constraints and Opportunities (FAO Regional Office for Asia and the Pacific, 2016).Xie, F. & Peng, S. History and prospects of hybrid rice development outside of China. Sci. Bull. 35, 3858–3868 (2016).
    Google Scholar 
    Gummert, M. et al. Assessment of post-harvest losses and carbon footprint in intensive lowland rice production in Myanmar. Sci. Rep. 10, 1–13 (2020).
    Google Scholar 
    A Regional Rice Strategy for Sustainable Food Security in Asia and the Pacific (FAO Regional Office for Asia and the Pacific, 2014).Laborte, A. G. et al. Rice yields and yield gaps in Southeast Asia: past trends and future outlook. Eur. J. Agron. 36, 9–20 (2012).
    Google Scholar 
    Chivenge, P., Saito, K., Bunquin, M. A., Sharma, S. & Dobermann, A. Co-benefits of nutrient management tailored to smallholder agriculture. Glob. Food Sec. 30, 100570 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, M. B. Ecological approaches and the development of “truly integrated” pest management. Proc. Natl Acad. Sci. USA 96, 5944–5951 (1999).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Adoption of Technologies for Sustainable Farming Systems. Wageningen Workshop Proceeding (OECD, 2001).OECD–FAO Agricultural Outlook 2021–2030 (OECD, 2021).Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).
    Google Scholar 
    Mortensen, D. A. & Smith, R. G. Confronting barriers to cropping system diversification. Front. Sustain. Food Syst. 4, 564197 (2020).
    Google Scholar 
    van Bussel, L. G. et al. From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Res. 177, 98–108 (2015).
    Google Scholar 
    van Wart, J. et al. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Res. 143, 44–55 (2013).
    Google Scholar 
    Bouman, B. A. M. et al. ORYZA2000: Modeling Lowland Rice (International Rice Research Institute, 2001).POWER Data Methodology (NASA, accessed 25 June 2020); https://power.larc.nasa.gov/docs/van Wart, J. et al. Creating long-term weather data from thin air for crop simulation modeling. Agric. For. Meteorol. 209, 49–58 (2015).ADS 

    Google Scholar 
    van Ittersum, M. K. et al. Yield gap analysis with local to global relevance—a review. Field Crops Res. 143, 4–17 (2013).
    Google Scholar 
    Khunthasuvon, S. et al. Lowland rice improvement in northern and northeast Thailand: 1. effects of fertiliser application and irrigation. Field Crops Res. 59, 99–108 (1998).
    Google Scholar 
    Naklang, K., Harnpichitvitaya, D., Amarante, S. T., Wade, L. J. & Haefele, S. M. Internal efficiency, nutrient uptake, and the relation to field water resources in rainfed lowland rice of northeast Thailand. Plant Soil 286, 193–208 (2006).CAS 

    Google Scholar 
    Roy, R. N., Finck, A., Blair, G. J. & Tandon, H. L. S. Plant Nutrition for Food Security—A Guide for Integrated Nutrient Management (FAO, 2006).White, P. F., Oberthür, T. & Sovuthy, P. The Soils Used for Rice Production in Cambodia: A Manual for Their Identification and Management (International Rice Research Institute, 1997).Agustiani, N. et al. Simulating rice and maize yield potential in the humid tropical environment of Indonesia. Eur. J. Agron. 101, 10–19 (2018).
    Google Scholar 
    Espe, M. B. et al. Yield gap analysis of US rice production systems shows opportunities for improvement. Field Crops Res. 196, 276–283 (2016).
    Google Scholar 
    Yuan, S., Peng, S. & Li, T. Evaluation and application of the ORYZA rice model under different crop managements with high-yielding rice cultivars in central China. Field Crops Res. 212, 115–125 (2017).
    Google Scholar 
    Li, T. et al. From ORYZA2000 to ORYZA (v3): an improved simulation model for rice in drought and nitrogen-deficient environments. Agric. For. Meteorol. 237, 246–256 (2017).PubMed 
    ADS 

    Google Scholar 
    Bouman, B. A. M. Developing a System of Temperate and Tropical Aerobic Rice in Asia (STAR), CPWF Project Report (CGIAR Challenge Program on Water and Food, 2008).Regional: Development and Dissemination of Climate-Resilient Rice Varieties for Water-Short Areas of South Asia and Southeast Asia (Asian Development Bank, 2016).Nguyen, V. N. & Tran, D. V. Rice in Producing Countries, FAO Rice Information (FAO, Rome, Italy, 2002).Li, T. et al. Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Res. 149, 312–321 (2013).
    Google Scholar 
    Samson, B. K., Hasan, M. & Wade, L. J. Penetration of hardpans by rice lines in the rainfed lowlands. Field Crops Res. 76, 175–188 (2002).
    Google Scholar 
    Haefele, S. M. et al. Factors affecting rice yield and fertilizer response in rainfed lowlands of northeast Thailand. Field Crops Res. 98, 39–51 (2006).
    Google Scholar 
    Boling, A. A. et al. The effect of toposequence position on soil properties, hydrology, and yield of rainfed lowland rice in Southeast Asia. Field Crops Res. 106, 22–33 (2008).
    Google Scholar 
    Foreign Agricultural Service (USDA, accessed 2 May 2021); https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQueryBalié, J. & Valera, H. G. Domestic and international impacts of the rice trade policy reform in the Philippines. Food Policy 92, 101876 (2020).
    Google Scholar 
    Koizumi, T., Gay, S. H. & Furuhashi, G. Reviewing Indica and Japonica Rice Market Developments (OECD, 2021).Standard Country or Area Codes for Statistical Use (M49) (United Nations Statistical Division, 1999).Rega, C., Helming, J. & Paracchini, M. L. Environmentalism and localism in agricultural and land-use policies can maintain food production while supporting biodiversity. Findings from simulations of contrasting scenarios in the EU. Land Use Policy 87, 103986 (2019).
    Google Scholar 
    Zhou, Y. & Staatz, J. Projected demand and supply for various foods in West Africa: implications for investments and food policy. Food Policy 61, 198–212 (2016).
    Google Scholar 
    Yuan, S. et al. Sustainable intensification for a larger global rice bowl. Nat. Commun. 12, 7163 (2021).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Andrade, J. F. et al. Impact of Urbanization trends on production of key staple crops. Ambio https://doi.org/10.1007/s13280-021-01674-z (2021). More

  • in

    Aggressiveness, ADHD-like behaviour, and environment influence repetitive behaviour in dogs

    Mason, G. J. Stereotypies: A critical review. Anim. Behav. 41, 1015–1037 (1991).
    Google Scholar 
    Cussen, V. A. & Mench, J. A. The relationship between personality dimensions and resiliency to environmental stress in orange-winged Amazon parrots (Amazona amazonica), as indicated by the development of abnormal behaviors. PLoS ONE 10, 1–11 (2015).
    Google Scholar 
    Clubb, R. & Mason, G. Captivity effects on wide-ranging carnivores. Nature 425, 473–474 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shepherdson, D., Lewis, K. D., Carlstead, K., Bauman, J. & Perrin, N. Individual and environmental factors associated with stereotypic behavior and fecal glucocorticoid metabolite levels in zoo housed polar bears. Appl. Anim. Behav. Sci. 147, 268–277 (2013).
    Google Scholar 
    Miller, L. J., Bettinger, T. & Mellen, J. The reduction of stereotypic pacing in tigers (Panthera tigris) by obstructing the view of neighbouring individuals. Anim. Welf. 17, 255–258 (2008).CAS 

    Google Scholar 
    Bachmann, I., Bernasconi, P., Herrmann, R., Weishaupt, M. A. & Stauffacher, M. Behavioural and physiological responses to an acute stressor in crib-biting and control horses. Appl. Anim. Behav. Sci. 82, 297–311 (2003).
    Google Scholar 
    Ahola, M. K., Vapalahti, K. & Lohi, H. Early weaning increases aggression and stereotypic behaviour in cats. Sci. Rep. 7, 10412 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salonen, M. et al. Prevalence, comorbidity, and breed differences in canine anxiety in 13,700 Finnish pet dogs. Sci. Rep. 10, 2962 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garner, J. P. Stereotypies and other abnormal repetitive behaviors: Potential impact on validity, reliability, and replicability of scientific outcomes. ILAR J. 46, 106–117 (2005).CAS 
    PubMed 

    Google Scholar 
    Tynes, V. V. & Sinn, L. Abnormal repetitive behaviors in dogs and cats. A guide for practitioners. Vet. Clin. North Am. Small Anim. Pract. 44, 543–564 (2014).PubMed 

    Google Scholar 
    Luescher, A. U. Diagnosis and management of compulsive disorders in dogs and cats. Vet. Clin. North Am. Small Anim. Pract. 33, 253–267 (2003).PubMed 

    Google Scholar 
    Mason, G., Clubb, R., Latham, N. & Vickery, S. Why and how should we use environmental enrichment to tackle stereotypic behaviour?. Appl. Anim. Behav. Sci. 102, 163–188 (2007).
    Google Scholar 
    Overall, K. L. & Dunham, A. E. Clinical features and outcome in dogs and cats with obsessive-compulsive disorder: 126 Cases (1989–2000). J. Am. Vet. Med. Assoc. 221, 1445–1452 (2002).PubMed 

    Google Scholar 
    Tiira, K. et al. Environmental effects on compulsive tail chasing in dogs. PLoS One 7, e41684 (2012).Mason, G. & Rushen, J. Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare 2nd edn. (CABI Publishing, 2006).
    Google Scholar 
    Moon-Fanelli, A. A., Dodman, N. H., Famula, T. R. & Cottam, N. Characteristics of compulsive tail chasing and associated risk factors in Bull Terriers. J. Am. Vet. Med. Assoc. 238, 883–889 (2011).PubMed 

    Google Scholar 
    Hewson, C. J., Luescher, U. A. & Ball, R. O. Measuring change in the behavioural severity of canine compulsive disorder: The construct validity of categories of change derived from two rating scales. Appl. Anim. Behav. Sci. 60, 55–68 (1998).
    Google Scholar 
    Vandeleest, J. J., McCowan, B. & Capitanio, J. P. Early rearing interacts with temperament and housing to influence the risk for motor stereotypy in rhesus monkeys (Macaca mulatta). Appl. Anim. Behav. Sci. 132, 81–89 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Tang, R. et al. Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biol. 15, 25 (2014).
    Google Scholar 
    Dodman, N. H. et al. A canine chromosome 7 locus confers compulsive disorder susceptibility. Mol. Psychiatry 15, 8–10 (2010).CAS 
    PubMed 

    Google Scholar 
    Jeppesen, L. L., Heller, K. E. & Bildsøe, M. Stereotypies in female farm mink (Mustela vison) may be genetically transmitted and associated with higher fertility due to effects on body weight. Appl. Anim. Behav. Sci. 86, 137–143 (2004).
    Google Scholar 
    Noh, H. J. et al. Integrating evolutionary and regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder. Nat. Commun. 8, 1–13 (2017).CAS 

    Google Scholar 
    Koran, L. M. Quality of life in obsessive-compulsive disorder. Psychiatr. Clin. North Am. 23, 509–517 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Murray, C. J. & Lopez, A. D. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020 (Harvard School of Public Health, 1996).
    Google Scholar 
    Calzà, J. et al. Altered cortico-striatal functional connectivity during resting state in obsessive-compulsive disorder. Front. Psychiatry 10, 319 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Brem, S., Grünblatt, E., Drechsler, R., Riederer, P. & Walitza, S. The neurobiological link between OCD and ADHD. ADHD Atten. Deficit Hyperact. Disord. 6, 175–202 (2014).
    Google Scholar 
    Stein, D. J., Dodman, N. H., Borchelt, P. & Hollander, E. Behavioral disorders in veterinary practice: Relevance to psychiatry. Compr. Psychiatry 35, 275–285 (1994).CAS 
    PubMed 

    Google Scholar 
    Overall, K. L. Natural animal models of human psychiatric conditions: Assessment of mechanism and validity. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 24, 727–776 (2000).CAS 

    Google Scholar 
    Flament, M. F. et al. Obsessive compulsive disorder in adolescence: An epidemiological study. J. Am. Acad. Child Adolesc. Psychiatry 27, 764–771 (1988).CAS 
    PubMed 

    Google Scholar 
    Nestadt, G. et al. A family study of obsessive-compulsive disorder. Arch. Gen. Psychiatry 57, 358–363 (2000).CAS 
    PubMed 

    Google Scholar 
    Protopopova, A., Hall, N. J. & Wynne, C. D. L. Association between increased behavioral persistence and stereotypy in the pet dog. Behav. Processes 106, 77–81 (2014).PubMed 

    Google Scholar 
    Valerius, G., Lumpp, A., Kuelz, A. K., Freyer, T. & Voderholzer, U. Reversal learning as a neuropsychological indicator for the neuropathology of obsessive compulsive disorder? A behavioral study. J. Neuropsychiatry Clin. Neurosci. 20, 210–218 (2008).PubMed 

    Google Scholar 
    Snyder, H. R., Kaiser, R. H., Warren, S. L. & Heller, W. Obsessive-compulsive disorder is associated with broad impairments in executive function: A meta-analysis. Clin. Psychol. Sci. 3, 301–330 (2015).PubMed 

    Google Scholar 
    Ogata, N. et al. Brain structural abnormalities in Doberman pinschers with canine compulsive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 45, 1–6 (2013).
    Google Scholar 
    Norman, L. J. et al. Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: A comparative meta-analysis. JAMA Psychiat. 73, 815–825 (2016).
    Google Scholar 
    Yalcin, E., Ilcol, Y. O. & Batmaz, H. Serum lipid concentrations in dogs with tail chasing. J. Small Anim. Pract. 50, 133–135 (2009).CAS 
    PubMed 

    Google Scholar 
    Vermeire, S. et al. Serotonin 2A receptor, serotonin transporter and dopamine transporter alterations in dogs with compulsive behaviour as a promising model for human obsessive-compulsive disorder. Psychiatry Res. 201, 78–87 (2012).CAS 
    PubMed 

    Google Scholar 
    Moon-Fanelli, A. A. & Dodman, N. H. Description and development of compulsive tail chasing in terriers and response to clomipramine treatment. J. Am. Vet. Med. Assoc. 212, 1252–1257 (1998).CAS 
    PubMed 

    Google Scholar 
    Irimajiri, M. et al. Randomized, controlled clinical trial of the efficacy of fluoxetine for treatment of compulsive disorders in dogs. J. Am. Vet. Med. Assoc. 235, 705–709 (2009).CAS 
    PubMed 

    Google Scholar 
    Walsh, B. R. A critical review of the evidence for the equivalence of canine and human compulsions. Appl. Anim. Behav. Sci. 234, 105166 (2021).
    Google Scholar 
    Wright, H. F., Mills, D. S. & Pollux, P. M. J. Development and validation of a psychometric tool for assessing impulsivity in the domestic dog (Canis familiaris). Int. J. Comp. Psychol. 24, 210–225 (2011).
    Google Scholar 
    Dinwoodie, I. R., Dwyer, B., Zottola, V., Gleason, D. & Dodman, N. H. Demographics and comorbidity of behavior problems in dogs. J. Vet. Behav. 32, 62–71 (2019).
    Google Scholar 
    Sulkama, S. et al. Canine hyperactivity, impulsivity, and inattention share similar demographic risk factors and behavioural comorbidities with human ADHD. Transl. Psychiatry 11, 501 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Kooij, J. J. S. et al. Updated European Consensus Statement on diagnosis and treatment of adult ADHD. Eur. Psychiatry 56, 14–34 (2019).CAS 
    PubMed 

    Google Scholar 
    Nakao, T., Okada, K. & Kanba, S. Neurobiological model of obsessive-compulsive disorder: Evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin. Neurosci. 68, 587–605 (2014).PubMed 

    Google Scholar 
    Milad, M. R. & Rauch, S. L. Obsessive-compulsive disorder: Beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 16, 43–51 (2012).PubMed 

    Google Scholar 
    Hollander, E. Managing aggressive behavior in patients with obsessive-compulsive disorder and borderline personality disorder. J. Clin. Psychiatry 60, 38–44 (1999).PubMed 

    Google Scholar 
    Marsden, M. D. & Wood-Gush, D. G. M. The use of space by group-housed sheep. Appl. Anim. Behav. Sci. 15, 178 (1986).
    Google Scholar 
    Burn, C. C. A vicious cycle: A cross-sectional study of canine tail-chasing and human responses to it, using a free video-sharing website. PLoS ONE 6, e26553 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stubbs, B. et al. An examination of the anxiolytic effects of exercise for people with anxiety and stress-related disorders: A meta-analysis. Psychiatry Res. 249, 102–108 (2017).PubMed 

    Google Scholar 
    Schneider, B. M., Dodman, N. H. & Maranda, L. Use of memantine in treatment of canine compulsive disorders. J. Vet. Behav. Clin. Appl. Res. 4, 118–126 (2009).
    Google Scholar 
    Mihevc, S. P. & Majdic, G. Canine cognitive dysfunction and Alzheimer’s disease-two facets of the same disease?. Front. Neurosci. 13, 604 (2019).
    Google Scholar 
    Delorme, R. et al. Admixture analysis of age at onset in obsessive-compulsive disorder. Psychol. Med. 35, 237–243 (2005).PubMed 

    Google Scholar 
    Flaisher-Grinberg, S. et al. Ovarian hormones modulate ‘compulsive’ lever-pressing in female rats. Horm. Behav. 55, 356–365 (2009).CAS 
    PubMed 

    Google Scholar 
    Fernández-Guasti, A., Agrati, D., Reyes, R. & Ferreira, A. Ovarian steroids counteract serotonergic drugs actions in an animal model of obsessive-compulsive disorder. Psychoneuroendocrinology 31, 924–934 (2006).PubMed 

    Google Scholar 
    Col, R., Day, C. & Phillips, C. J. C. An epidemiological analysis of dog behavior problems presented to an Australian behavior clinic, with associated risk factors. J. Vet. Behav. Clin. Appl. Res. 15, 1–11 (2016).
    Google Scholar 
    Rusbridge, C. Neurological diseases of the Cavalier King Charles spaniel. J. Small Anim. Pract. 46, 265–272 (2005).CAS 
    PubMed 

    Google Scholar 
    Wrzosek, M., Płonek, M., Nicpoń, J., Cizinauskas, S. & Pakozdy, A. Retrospective multicenter evaluation of the ‘fly-catching syndrome’ in 24 dogs: EEG, BAER, MRI, CSF findings and response to antiepileptic and antidepressant treatment. Epilepsy Behav. 53, 184–189 (2015).PubMed 

    Google Scholar 
    Cao, X. et al. Balancing selection on CDH2 may be related to the behavioral features of the Belgian malinois. PLoS ONE 9, e110075 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moon-Fanelli, A. A., Dodman, N. H. & Cottam, N. Blanket and flank sucking in Doberman Pinschers. J. Am. Vet. Med. Assoc. 231, 907–912 (2007).PubMed 

    Google Scholar 
    Tiira, K. & Lohi, H. Reliability and validity of a questionnaire survey in canine anxiety research. Appl. Anim. Behav. Sci. 155, 82–92 (2014).
    Google Scholar 
    Puurunen, J. et al. Inadequate socialisation, inactivity, and urban living environment are associated with social fearfulness in pet dogs. Sci. Rep. 10, 3527 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hakanen, E. et al. Active and social life is associated with lower non-social fearfulness in pet dogs. Sci. Rep. 10, 1–13 (2020).
    Google Scholar 
    Mikkola, S. et al. Aggressive behaviour is affected by demographic, environmental and behavioural factors in purebred dogs. Sci. Rep. 11, 9433 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hejjas, K. et al. Association of polymorphisms in the dopamine D4 receptor gene and the activity-impulsivity endophenotype in dogs. Anim. Genet. 38, 629–633 (2007).CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2019).Hastie, T. gam: Generalized Additive Models. (2018).Robinson, D. & Hayes, A. broom: Convert Statistical Analysis Objects into Tidy Tibbles. https://cran.r-project.org/package=broom (2018).Wickham, H., François, R., Lionel, H. & Müller, K. dplyr: A Grammar of Data Manipulation. https://cran.r-project.org/package=dplyr (2019).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications, 2011).
    Google Scholar 
    Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
    Google Scholar 
    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. https://cran.r-project.org/package=emmeans (2019).Fox, J. Effect Displays in R for Generalised Linear Models. J. Stat. Softw. 8, 1–27 (2003).
    Google Scholar 
    Goto, A., Arata, S., Kiyokawa, Y., Takeuchi, Y. & Mori, Y. Risk factors for canine tail chasing behaviour in Japan. Vet. J. 192, 445–448 (2012).PubMed 

    Google Scholar  More