More stories

  • in

    Contrasting genetic trajectories of endangered and expanding red fox populations in the western U.S

    Akins JR, Aubry KB, Sacks BN (2018) Genetic integrity, diversity, and population structure of the Cascade red fox. Conserv Genet 19:969–980
    Google Scholar 
    Allen SH, Sargeant AB (1993) Dispersal patterns of red foxes relative to population density. J Wildlife Manag 57(3):526–533Arbogast BS, Schumacher KI, Kerhoulas NJ, Bidlack AL, Cook JA, Kenagy GJ (2017) Genetic data reveal a cryptic species of New World flying squirrel: Glaucomys oregonensis. J Mammal 98(4):1027–41
    Google Scholar 
    Ashbrook FG (1928) Silver-Fox Farming. US Department of Agriculture. Washington D.C.Aubry KB (1984) The recent history and present distribution of the red fox in Washington. Northwest Sci 58(1):69–79
    Google Scholar 
    Aubry KB, Statham MJ, Sacks BN, Perrine JD, Wisely SM (2009) Phylogeography of the North American red fox: vicariance in Pleistocene forest refugia. Mol Ecol 18(12):2668–2686CAS 
    PubMed 

    Google Scholar 
    Bailey V (1936a) The red fox in America. Nature 28:269–272
    Google Scholar 
    Bailey V (1936b) The Mammals and Life Zones of Oregon. U.S. Government Printing Office, Washington, D.C
    Google Scholar 
    Ball MC, Finnegan L, Manseau M, Wilson P (2010) Integrating multiple analytical approaches to spatially delineate and characterize genetic population structure: an application to boreal caribou (Rangifer tarandus caribou) in central Canada. Conserv Genet 11(6):2131–2143
    Google Scholar 
    Barrowclough GF, Groth JG, Mertz LA, Gutiérrez RJ (2004) Phylogeographic structure, gene flow and species status in blue grouse (Dendragapus obscurus). Mol Ecol 13(7):1911–22CAS 
    PubMed 

    Google Scholar 
    Bell DA, Robinson ZL, Funk WC, Fitzpatrick SW, Allendorf FW, Tallmon DA et al. (2019) The exciting potential and remaining uncertainties of genetic rescue. Trends Ecol Evol 34(12):1070–1079PubMed 

    Google Scholar 
    Black KL, Petty SK, Radeloff VC, Pauli JN (2018) The Great Lakes Region is a melting pot for vicariant red fox (Vulpes vulpes) populations. J Mammal 99(5):1229–1236
    Google Scholar 
    Champagnon J, Elmberg J, Guillemain M, Gauthier-Clerc M, Lebreton JD (2012) Conspecifics can be aliens too: a review of effects of restocking practices in vertebrates. J Nat Conserv 20(4):231–41
    Google Scholar 
    Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7(5):747–756
    Google Scholar 
    Cross PR, Sacks BN, Luikart G, Schwartz MK, Van Etten KW, Crabtree RL (2018) Red Fox Ancestry and Connectivity Assessments Reveal Minimal Fur Farm Introgression in Greater Yellowstone Ecosystem. J Fish Wildl Manag 9(2):519–530
    Google Scholar 
    Dalquest, WW (1948) Mammals of Washington, Vol II. University of Kansas Publications, Museum of Natural History, Lawrence, KansasDevenish-Nelson ES, Harris S, Soulsbury CD, Richards SA, Stephens PA (2013) Demography of a carnivore, the red fox, Vulpes vulpes: what have we learnt from 70 years of published studies? Oikos 122(5):705–16
    Google Scholar 
    Do C, Waples RS, Peel D, Macbeth G, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14(1):209–214CAS 
    PubMed 

    Google Scholar 
    Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26(9):1963–1973CAS 
    PubMed 

    Google Scholar 
    Earl DA, vonHoldt BM (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361
    Google Scholar 
    Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 6(3):463–75
    Google Scholar 
    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fichter E, Williams R (1967) Distribution and status of the red fox in Idaho. J Mammal 48(2):219–230
    Google Scholar 
    Fitzpatrick SW, Bradburd GS, Kremer CT, Salerno PE, Angeloni LM, Funk WC (2020) Genomic and fitness consequences of genetic rescue in wild populations. Curr Biol 30(3):517–22CAS 
    PubMed 

    Google Scholar 
    Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10(6):1500–8
    Google Scholar 
    Frankham R (2015) Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24(11):2610–2618PubMed 

    Google Scholar 
    Frankham R, Ballou JD, Eldridge MD, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25(3):465–75PubMed 

    Google Scholar 
    Frankham R, Ballou JD, Ralls K, Eldridge MD, Dudash MR, Fenster CB et al. (2017) Genetic management of fragmented animal and plant populations. Oxford University Press, New York, NY
    Google Scholar 
    Fuhrmann RT (1998) Distribution, Morphology, and Habitat Use of the Red Fox in the Northern Yellowstone Ecosystem. MSc Thesis, Montana State University, Bozeman, MontanaGortázar C, Travaini A, Delibes M (2000) Habitat-related microgeographic body size variation in two Mediterranean populations of red fox (Vulpes vulpes). J Zool Lond 250:335–338
    Google Scholar 
    Gosselink TE, Piccolo KA, Van Deelen TR, Warner RE, Mankin PC (2010) Natal dispersal and philopatry of red foxes in urban and agricultural areas of Illinois. J Wildl Manag 74(6):1204–17
    Google Scholar 
    Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5(1):184–186
    Google Scholar 
    Green GA, Sacks BN, Erickson LJ, Aubry KB (2017) Genetic characteristics of red foxes in northeastern Oregon. Northwest Naturalist 98(2):73–81
    Google Scholar 
    Grinnell J, Dixon JS, Linsdale JM (1937) Fur-Bearing Mammals of California, Vol II. University of California Press, Berkeley, California
    Google Scholar 
    Hall E, Kelson KR (1959) The Mammals of North America. 2 Vols. Ronald Press, New York, NY
    Google Scholar 
    Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8(5):461–7PubMed 

    Google Scholar 
    Harris K, Zhang Y, Nielsen R (2019) Genetic rescue and the maintenance of native ancestry. Conserv Genet 20(1):59–64
    Google Scholar 
    Hedrick PW, Peterson RO, Vucetich LM, Adams JR, Vucetich JA (2014) Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population. Conserv Genet 15(5):1111–21
    Google Scholar 
    Hiller TL, McFadden-Hiller JE, Sacks BN (2015) Genetic and photographic detections document Sierra Nevada red fox in the Northern Cascades of Oregon. Northwest Sci 89(4):409–13
    Google Scholar 
    Hoffmann M, Sillero-Zubiri C (2021) Vulpes vulpes (amended version of 2016 assessment). IUCN Red List Threatened Species 2021:e.T23062A193903628. https://doi.org/10.2305/IUCN.UK.2021-1.RLTS.T23062A193903628.en. Accessed 23 September 2021Article 

    Google Scholar 
    Hoffmann RS, Wright PL, Newby FE (1969) The distribution of some mammals in Montana I. Mammals other than bats. J Mammal 50(3):579–604
    Google Scholar 
    Hope AG, Malaney JL, Bell KC, Salazar-Miralles F, Chavez AS, Barber BR et al. (2016) Revision of widespread red squirrels (genus: Tamiasciurus) highlights the complexity of speciation within North American forests. Mol Phylogenet Evol 100:170–82PubMed 

    Google Scholar 
    Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806CAS 
    PubMed 

    Google Scholar 
    Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405CAS 
    PubMed 

    Google Scholar 
    Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94PubMed 
    PubMed Central 

    Google Scholar 
    Kamler JF, Ballard WB (2002) A review of native and nonnative red foxes in North America. Wildlife Soc Bullet 30(2):370–379Kamler JF, Ballard WB (2003) Range expansion of red foxes in eastern Nevada and western Utah. J Arizona-Nevada Acad Sci 36(1):18–20Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW (2016) Genomics advances the study of inbreeding depression in the wild. Evolut Appl 9(10):1205–18
    Google Scholar 
    Kasprowicz AE, Statham MJ, Sacks BN (2016) Fate of the other redcoat: remnants of colonial British foxes in the eastern United States. J Mammal 97(1):298–309
    Google Scholar 
    Kuchler A (1964) Potential natural vegetation of the conterminous United States. Am Geogr Soc Spec Publ 36:1–116Kyriazis CC, Wayne RK, Lohmueller KE (2021) Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol Lett 5(1):33–47PubMed 

    Google Scholar 
    Laikre L, Schwartz MK, Waples RS, Ryman N, Group GW (2010) Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol Evol 25(9):520–529PubMed 

    Google Scholar 
    Larivière S, Pasitschniak-Arts M (1996) Vulpes vulpes. Mamm Species 537:1–11
    Google Scholar 
    Laut AC (1921) The fur trade of America. Macmillan Company, New York, NY
    Google Scholar 
    Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–6
    Google Scholar 
    Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9(4):753–60
    Google Scholar 
    Lewis JC, Sallee KL, Golightly Jr RT (1999) Introduction and range expansion of nonnative red foxes (Vulpes vulpes) in California. Am Midland Naturalist 142(2):372–381Long J (2003) Introduced mammals of the world: their history, distribution and influence. CSIRO Publishing, Melbourne, Australia
    Google Scholar 
    Lord KA, Larson G, Coppinger RP, Karlsson EK (2020) The history of farm foxes undermines the animal domestication syndrome. Trends Ecol Evol 35(2):125–136PubMed 

    Google Scholar 
    Love Stowell SM, Pinzone CA, Martin AP (2017) Overcoming barriers to active interventions for genetic diversity. Biodivers Conserv 26(8):1753–65
    Google Scholar 
    Lounsberry ZT, Quinn CB, Statham MJ, Angulo CL, Kalani TJ, Tiller E et al. (2017) Investigating genetic introgression from farmed red foxes into the wild population in Newfoundland, Canada. Conserv Genet 18(2):383–392
    Google Scholar 
    Mace RU (1970). Oregon’s Furbearing Animals. Oregon State Game Commission, Corvallis, OregonManthey JD, Klicka J, Spellman GM (2012) Is gene flow promoting the reversal of Pleistocene divergence in the Mountain Chickadee (Poecile gambeli)? PLOS ONE 7(11):e49218CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Merson C, Statham MJ, Janecka JE, Lopez RR, Silvy NJ, Sacks BN (2017) Distribution of native and nonnative ancestry in red foxes along an elevational gradient in central Colorado. J Mammal 98(2):365–377
    Google Scholar 
    Miller JM, Cullingham CI, Peery RM (2020) The influence of a priori grouping on inference of genetic clusters: simulation study and literature review of the DAPC method. Heredity 125(5):269–280PubMed 
    PubMed Central 

    Google Scholar 
    Moore M, Brown SK, Sacks BN (2010) Thirty-one short red fox (Vulpes vulpes) microsatellite markers. Mol Ecol Resour 10:404–8PubMed 

    Google Scholar 
    Moritz C (1994) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3(4):401–11CAS 

    Google Scholar 
    Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51(2):238–254PubMed 

    Google Scholar 
    Neel MC, McKelvey K, Ryman N, Lloyd MW, Bull RS, Allendorf FW et al. (2013) Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity 111(3):189–99CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, NY
    Google Scholar 
    Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30(7):683–691
    Google Scholar 
    Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26(3):419–20CAS 
    PubMed 

    Google Scholar 
    Perrine JD, Campbell LA, Green GA (2010) Sierra Nevada red fox (Vulpes vulpes necator): a conservation assessment. US Department of Agriculture, Vallejo, CaliforniaPerrine JD, Pollinger JP, Sacks BN, Barrett RH, Wayne RK (2007) Genetic evidence for the persistence of the critically endangered Sierra Nevada red fox in California. Conserv Genet 8(5):1083–1095
    Google Scholar 
    Petersen M (1914) The fur traders and fur bearing animals. Hammond Press, Buffalo, New York, NY
    Google Scholar 
    Petkova D, Novembre J, Stephens M (2016) Visualizing spatial population structure with estimated effective migration surfaces. Nat Genet 48(1):94–100CAS 
    PubMed 

    Google Scholar 
    Petkova (2020) reemsplots2: Generate plots to inspect and visualize the results of EEMS. R package version 0.1.0. https://github.com/dipetkov/eemsPritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pritchard JK, Wen W, Falush D (2003) Documentation for STRUCTURE Software: Version 2. https://web.stanford.edu/group/pritchardlab/software/readme_structure2.pdf Accessed 3 Dec 2020Quinn CB, Alden PB, Sacks BN (2019) Noninvasive sampling reveals short-term genetic rescue in an insular red fox population. J Heredity 110(5):559–576
    Google Scholar 
    Ralls K, Ballou JD, Dudash MR, Eldridge MD, Fenster CB, Lacy RC et al. (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11(2):e12412
    Google Scholar 
    Ralls K, Sunnucks P, Lacy RC, Frankham R (2020) Genetic rescue: a critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol Conserv 251:108784
    Google Scholar 
    Rando HM, Stutchman JT, Bastounes ER, Johnson JL, Driscoll CA, Barr CS et al. (2017) Y-chromosome Markers for the Red Fox. J Heredity 108(6):678–685CAS 

    Google Scholar 
    Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27(1):83–109
    Google Scholar 
    Roest AI (1977) Taxonomic status of the red fox in California. State of California, The Resources Agency, Department of Fish and Game, California Polytechnic State University, San Luis Obispo, CaliforniaRoux C, Fraisse C, Romiguier J, Anciaux Y, Galtier N, Bierne N (2016) Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLOS Biol 14(12):e2000234PubMed 
    PubMed Central 

    Google Scholar 
    Sacks BN, Brazeal JL, Lewis JC (2016) Landscape genetics of the nonnative red fox of California. Ecol Evol 6(14):4775–4791PubMed 
    PubMed Central 

    Google Scholar 
    Sacks B, Lounsberry Z, Rando H, Kluepfel K, Fain S, Brown S et al. (2021) Sequencing red fox Y chromosome fragments to develop phylogenetically informative SNP markers and glimpse male-specific trans-Pacific phylogeography. Genes 12(1):97CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sacks BN, Moore M, Statham MJ, Wittmer HU (2011) A restricted hybrid zone between native and introduced red fox (Vulpes vulpes) populations suggests reproductive barriers and competitive exclusion. Mol Ecol 20(2):326–341PubMed 

    Google Scholar 
    Sacks BN, Statham MJ, Perrine JD, Wisely SM, Aubry KB (2010) North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox. Conserv Genet 11(4):1523–1539
    Google Scholar 
    Saunders G, Coman B, Kinnear J, Braysher M (1995) Managing vertebrate pests: foxes. Bureau of Resource Science and Australian Nature Conservation Agency, Commonwealth of Australia, Canberra
    Google Scholar 
    Sierra Nevada Red Fox Conservation Advisory Team [SCAT] (2022) A Conservation Strategy for the Sierra Nevada Red Fox. California Department of Fish and Wildlife, Sacramento, USA, In pressSeton E (1929) Lives of Game Animals. Doubleday, Doran and Co, New York, NY
    Google Scholar 
    Shaffer ML, Stein BA (2000) Safeguarding our precious heritage. In: Stein BA, Kutner LS, Adams JS (eds) Precious heritage: the status of biodiversity in the United States. Oxford University Press, Oxford, p 301–322
    Google Scholar 
    Shirk A, Cushman S (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11(5):922–934CAS 
    PubMed 

    Google Scholar 
    Sikes RS, Gannon WL, Animal Care and Use Committee of the American Society of Mammalogists (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253
    Google Scholar 
    Statham MJ, Murdoch J, Janecka J, Aubry KB, Edwards CJ, Soulsbury CD et al. (2014) Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories. Mol Ecol 23(19):4813–4830PubMed 

    Google Scholar 
    Statham MJ, Sacks BN, Aubry KB, Perrine JD, Wisely SM (2012) The origin of recently established red fox populations in the United States: translocations or natural range expansions? J Mammal 93(1):52–65
    Google Scholar 
    Statham MJ, Trut LN, Sacks BN, Kharlamova AV, Oskina IN, Gulevich RG et al. (2011) On the origin of a domesticated species: identifying the parent population of Russian silver foxes (Vulpes vulpes). Biol J Linn Soc 103(1):168–175
    Google Scholar 
    Szuma E (2008) Evolutionary and climatic factors affecting tooth size in the red fox Vulpes vulpes in the Holarctic. Mammal Res 53(4):289–332
    Google Scholar 
    U.S. Fish and Wildlife Service (2015) Endangered and threatened wildlife and plants; 12-month finding on a petition to list Sierra Nevada red fox as an endangered or threatened species. Fed Reg 80:60989–61028
    Google Scholar 
    U.S. Fish and Wildlife Service (2021) Endangered and threatened wildlife and plants; endangered status for the Sierra Nevada Distinct Population Segment of the Sierra Nevada red fox. Fed Reg 86:41743–41758
    Google Scholar 
    van der Valk T, de Manuel M, Marques-Bonet T, Guschanski K (2021) Estimates of genetic load suggest frequent purging of deleterious alleles in small populations. bioRxiv:696831Verts B, Carraway LN (1998) Land Mammals of Oregon. University of California Press, Berkeley
    Google Scholar 
    Volkmann LA, Statham MJ, Mooers AØ, Sacks BN (2015) Genetic distinctiveness of red foxes in the Intermountain West as revealed through expanded mitochondrial sequencing. J Mammal 96(2):297–307
    Google Scholar 
    Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7(2):167–184
    Google Scholar 
    Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197(2):769–780PubMed 
    PubMed Central 

    Google Scholar 
    Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8(4):753–756PubMed 

    Google Scholar 
    Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolut Appl 3(3):244–262
    Google Scholar 
    Waples RS, England PR (2011) Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189(2):633–644PubMed 
    PubMed Central 

    Google Scholar 
    Washington Department of Fish and Wildlife (2015) Washington’s State Wildlife Action Plan: 2015 Update. Washington Department of Fish and Wildlife, Olympia, Washington, USA
    Google Scholar 
    Wei W, Ayub Q, Xue Y, Tyler-Smith C (2013) A comparison of Y-chromosomal lineage dating using either resequencing or Y-SNP plus Y-STR genotyping. Forensic Sci Int- Genet 7:568–572CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 36:1358–1370Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30(1):42–49PubMed 

    Google Scholar 
    Wilder AP, Navarro AY, King SN, Miller WB, Thomas SM, Steiner CC et al. (2020) Fitness costs associated with ancestry to isolated populations of an endangered species. Conserv Genet 21(3):589–601CAS 

    Google Scholar 
    Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31(1):39CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zabel CJ, Taggart SJ (1989) Shift in red fox, Vulpes vulpes, mating system associated with El Niño in the Bering Sea. Anim Behav 38(5):830–838
    Google Scholar  More

  • in

    Dynamic modeling of female neutering interventions for free-roaming dog population management in an urban setting of southeastern Iran

    Morey, D. F. Burying key evidence: The social bond between dogs and people. J. Archaeol. Sci. 33, 158–175 (2006).
    Google Scholar 
    de Garcia, R. C. M., Calderón, N. & Ferreira, F. Consolidação de diretrizes internacionais de manejo de populações caninas em áreas urbanas e proposta de indicadores para seu gerenciamento. Rev. Panam. Salud Pública 32, 140–144 (2012).
    Google Scholar 
    Willis, C. M. et al. Olfactory detection of human bladder cancer by dogs: Proof of principle study. BMJ 329, 712 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Beck, A. M. The Ecology of Stray Dogs: A Study of Free-Ranging Urban Animals (Purdue University Press, 2002).
    Google Scholar 
    Jackman, J. & Rowan, A. N. Free-roaming dogs in developing countries: The benefits of capture, neuter, and return programs (2007).Borhani, M. et al. Echinococcoses in Iran, Turkey, and Pakistan: Old diseases in the new millennium. Clin. Microbiol. Rev. 34, e00290-e320 (2021).
    Google Scholar 
    Otranto, D. et al. Zoonotic parasites of sheltered and stray dogs in the era of the global economic and political crisis. Trends Parasitol. 33, 813–825 (2017).PubMed 

    Google Scholar 
    Quinnell, R. J. & Courtenay, O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 136, 1915–1934 (2009).CAS 
    PubMed 

    Google Scholar 
    Zain, S. N. M., Rahman, R. & Lewis, J. W. Stray animal and human defecation as sources of soil-transmitted helminth eggs in playgrounds of Peninsular Malaysia. J. Helminthol. 89, 740–747 (2015).
    Google Scholar 
    Garcia, R., Amaku, M., Biondo, A. W. & Ferreira, F. Dog and cat population dynamics in an urban area: Evaluation of a birth control strategy. Pesqui. Veterinária Bras. 38, 511–518 (2018).
    Google Scholar 
    Smith, L. M. et al. The effectiveness of dog population management: A systematic review. Animals 9, 1020 (2019).PubMed Central 

    Google Scholar 
    Tenzin, T. et al. Comparison of mark-resight methods to estimate abundance and rabies vaccination coverage of free-roaming dogs in two urban areas of south Bhutan. Prev. Vet. Med. 118, 436–448 (2015).PubMed 

    Google Scholar 
    Hiby, E. et al. Scoping review of indicators and methods of measurement used to evaluate the impact of dog population management interventions. BMC Vet. Res. 13, 1–20 (2017).
    Google Scholar 
    Chidumayo, N. N. System dynamics modelling approach to explore the effect of dog demography on rabies vaccination coverage in Africa. PLoS One 13, e0205884 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Home, C., Bhatnagar, Y. V. & Vanak, A. T. Canine Conundrum: Domestic dogs as an invasive species and their impacts on wildlife in India. Anim. Conserv. 21, 275–282 (2018).
    Google Scholar 
    Humane Dog Population Management 2019 Update—ICAM. https://www.icam-coalition.org/download/humane-dog-population-management-guidance/http://www.icam-coalition.org/abhay-sankalp-a-sustainable-solution-to-human-dog-conflict-for-improved-human-dog-relationships/.Belo, V. S., Werneck, G. L., da Silva, E. S., Barbosa, D. S. & Struchiner, C. J. Population estimation methods for free-ranging dogs: A systematic review. PLoS One 10, e0144830 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Font, E. Spacing and social organization: Urban stray dogs revisited. Appl. Anim. Behav. Sci. 17, 319–328 (1987).
    Google Scholar 
    Patronek, G. J., Beck, A. M. & Glickman, L. T. Dynamics of dog and cat populations in a community. J. Am. Vet. Med. Assoc. 210, 637–642 (1997).CAS 
    PubMed 

    Google Scholar 
    Kato, M., Yamamoto, H., Inukai, Y. & Kira, S. Survey of the stray dog population and the health education program on the prevention of dog bites and dog-acquired infections: A comparative study in Nepal and Okayama Prefecture, Japan. Acta Med. Okayama 57, 261–266 (2003).PubMed 

    Google Scholar 
    Tiwari, H. K., Vanak, A. T., O’Dea, M., Gogoi-Tiwari, J. & Robertson, I. D. A comparative study of enumeration techniques for Free-roaming dogs in rural Baramati, District Pune, India. Front. Vet. Sci. 5, 104 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hiby, L. R. et al. A mark-resight survey method to estimate the roaming dog population in three cities in Rajasthan, India. BMC Vet. Res. 7, 1–10 (2011).
    Google Scholar 
    Childs, J. E. et al. Density estimates of rural dog populations and an assessment of marking methods during a rabies vaccination campaign in the Philippines. Prev. Vet. Med. 33, 207–218 (1998).CAS 
    PubMed 

    Google Scholar 
    Tiwari, H. K., Robertson, I. D., O’Dea, M. & Vanak, A. T. Demographic characteristics of free-roaming dogs (FRD) in rural and urban India following a photographic sight-resight survey. Sci. Rep. 9, 16562 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Punjabi, G. A., Athreya, V. & Linnell, J. D. C. Using natural marks to estimate free-ranging dog Canis familiaris abundance in a MARK-RESIGHT framework in suburban Mumbai, India. Trop. Conserv. Sci. 5, 510–520 (2012).
    Google Scholar 
    Cleaton, J. M. et al. Use of photography to identify free-roaming dogs during sight-resight surveys: Impacts on estimates of population size and vaccination coverage, Haiti 2016. Vaccine X 2, 100025 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rockwood, L. L. Introduction to Population Ecology (Wiley, 2015).
    Google Scholar 
    Baquero, O. S., Marconcin, S., Rocha, A. & de Garcia, R. C. M. Companion animal demography and population management in Pinhais, Brazil. Prev. Vet. Med. 158, 169–177 (2018).PubMed 

    Google Scholar 
    Totton, S. C. et al. Stray dog population demographics in Jodhpur, India following a population control/rabies vaccination program. Prev. Vet. Med. 97, 51–57 (2010).PubMed 

    Google Scholar 
    Høgåsen, H. R., Er, C., Di Nardo, A. & Dalla Villa, P. Free-roaming dog populations: A cost-benefit model for different management options, applied to Abruzzo, Italy. Prev. Vet. Med. 112, 401–413 (2013).PubMed 

    Google Scholar 
    Kisiel, L. M. et al. Modeling the effect of surgical sterilization on owned dog population size in Villa de Tezontepec, Hidalgo, Mexico, using an individual-based computer simulation model. PLoS One 13, e0198209 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Yoak, A. J., Reece, J. F., Gehrt, S. D. & Hamilton, I. M. Optimizing free-roaming dog control programs using agent-based models. Ecol. Model. 341, 53–61 (2016).
    Google Scholar 
    Belsare, A. & Vanak, A. T. Modelling the challenges of managing free-ranging dog populations. Sci. Rep. 10, 1–12 (2020).
    Google Scholar 
    Harandi, M. F. et al. Sonographical and serological survey of human cystic echinococcosis and analysis of risk factors associated with seroconversion in rural communities of Kerman, Iran. Zoonoses Public Health 58, 582–588 (2011).CAS 
    PubMed 

    Google Scholar 
    Abedi, M., Doosti-Irani, A., Jahanbakhsh, F. & Sahebkar, A. Epidemiology of animal bite in Iran during a 20-year period (1993–2013): A meta-analysis. Trop. Med. Health 47, 1–13 (2019).
    Google Scholar 
    Kartal, T. & Rowan, A. N. Stray dog population management. F. Man. Small Anim. Med. 15–28 (2018).Amaral, A. C., Ward, M. P. & da Costa Freitas, J. Estimation of roaming dog populations in Timor Leste. Prev. Vet. Med. 113, 608–613 (2014).PubMed 

    Google Scholar 
    de Melo, S. N. et al. Effects of gender, sterilization, and environment on the spatial distribution of free-roaming dogs: An intervention study in an urban setting. Front. Vet. Sci. 7, 289 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conan, A. et al. Population dynamics of owned, free-roaming dogs: Implications for rabies control. PLoS Negl. Trop. Dis. 9, e0004177 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Belsare, A. V. & Gompper, M. E. Assessing demographic and epidemiologic parameters of rural dog populations in India during mass vaccination campaigns. Prev. Vet. Med. 111, 139–146 (2013).PubMed 

    Google Scholar 
    Mustiana, A. et al. Owned and unowned dog population estimation, dog management and dog bites to inform rabies prevention and response on Lombok Island, Indonesia. PLoS One 10, e0124092 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Hossain, M. et al. A survey of the dog population in rural Bangladesh. Prev. Vet. Med. 111, 134–138 (2013).PubMed 

    Google Scholar 
    Acosta-Jamett, G., Cleaveland, S., Cunningham, A. A. & de Bronsvoort, B. M. C. Demography of domestic dogs in rural and urban areas of the Coquimbo region of Chile and implications for disease transmission. Prev. Vet. Med. 94, 272–281 (2010).CAS 
    PubMed 

    Google Scholar 
    Massei, G. et al. Free-roaming dogs in Nepal: Demographics, health and public knowledge, attitudes and practices. Zoonoses Public Health 64, 29–40 (2017).CAS 
    PubMed 

    Google Scholar 
    Rinzin, K. The epidemiology of the free-roaming dog and cat population in the Wellington Region of the New Zealand Palmerston North, New Zealand: Massey University. Master’s thesis (2007).Arief, R. A. et al. Determinants of vaccination coverage and consequences for rabies control in Bali, Indonesia. Front. Vet. Sci. 3, 123 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Morters, M. K. et al. The demography of free-roaming dog populations and applications to disease and population control. J. Appl. Ecol. 51, 1096–1106 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Pal, S. K. Population ecology of free-ranging urban dogs in West Bengal, India. Acta Theriol. (Warsz) 46, 69–78 (2001).
    Google Scholar 
    Rinzin, K., Tenzin, T. & Robertson, I. Size and demography pattern of the domestic dog population in Bhutan: Implications for dog population management and disease control. Prev. Vet. Med. 126, 39–47 (2016).PubMed 

    Google Scholar 
    Hoffman, J. M., O’Neill, D. G., Creevy, K. E. & Austad, S. N. Do female dogs age differently than male dogs?. J. Gerontol. Ser. A 73, 150–156 (2018).
    Google Scholar 
    Dürr, S., Dhand, N. K., Bombara, C., Molloy, S. & Ward, M. P. What influences the home range size of free-roaming domestic dogs?. Epidemiol. Infect. 145, 1339–1350 (2017).PubMed 

    Google Scholar 
    Aiyedun, J. O. & Olugasa, B. O. Use of aerial photograph to enhance dog population census in Ilorin, Nigeria. Sokoto J. Vet. Sci. 10, 22–27 (2012).
    Google Scholar 
    Butler, J. R. A. & Bingham, J. Demography and dog-human relationships of the dog population in Zimbabwean communal lands. Vet. Rec. 147, 442–446 (2000).CAS 
    PubMed 

    Google Scholar 
    Raymond, T. N. et al. Do open garbage dumps play a role in canine rabies transmission in Biyem-Assi health district in Cameroon?. Infect. Ecol. Epidemiol. 5, 26055 (2015).PubMed 

    Google Scholar 
    Wright, N., Subedi, D., Pantha, S., Acharya, K. P. & Nel, L. H. The role of waste management in control of rabies: A neglected issue. Viruses 13, 225 (2021).PubMed 
    PubMed Central 

    Google Scholar 


    Krystosik, A. et al. Solid wastes provide breeding sites, burrows, and food for biological disease vectors, and urban zoonotic reservoirs: A call to action for solutions-based research. Front. Public Health 7, 405 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Tantanee, S. & Hantrakul, S. Municipal Waste Management Challenge of Urbanization: Lesson Learned From Phitsanulok, Thailand. Geogr. Tech. 14 (2019).Desa, U. World urbanization prospects 2018. United Nations Dep. Econ. Soc. Affairs (2018).
    https://www.icam-coalition.org/cnvr-in-dehradun-female-dog-focused-cnvr-implemented-with-community-engagement/
    Bacon, H., Vancia, V., Walters, H. & Waran, N. Canine trap-neuter-return: A critical review of potential welfare issues. Anim. Welf. 26, 281–292 (2017).
    Google Scholar 
    Bacon, H., Walters, H., Vancia, V., Connelly, L. & Waran, N. Development of a robust canine welfare assessment protocol for use in dog (Canis familiaris) catch-neuter-return (CNR) programmes. Animals 9, 564 (2019).PubMed Central 

    Google Scholar 
    ICAM Coalition. Are we making a difference? A guide to monitoring and evaluating dog population management interventions 2015 (2015).World Society for the Protection of Animals. Surveying roaming dog populations: Guidelines on methodology, 1–20 (2008).Acharya, M. & Dhakal, S. Survey on street dog population in Pokhara valley of Nepal, Bangladesh. J. Vet. Med. 13, 65–70 (2015).
    Google Scholar 

    http://www.icam-coalition.org/tool/dog-body-condition-scoring-training/
    Tenzin, T., Ahmed, R., Debnath, N. C., Ahmed, G. & Yamage, M. Free-roaming dog population estimation and status of the dog population management and rabies control program in Dhaka City, Bangladesh. PLoS Negl. Trop. Dis. 9, e0003784 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Toole, T. M. A project management causal loop diagram. in Arcom Conference 5–7 (2005).Amaku, M., Dias, R. A. & Ferreira, F. Dynamics and control of stray dog populations. Math. Popul. Stud. 17, 69–78 (2010).MathSciNet 
    MATH 

    Google Scholar 
    Kitala, P. M., McDERMOTT, J. J., Coleman, P. G. & Dye, C. Comparison of vaccination strategies for the control of dog rabies in Machakos District, Kenya. Epidemiol. Infect. 129, 215–222 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dahabreh, I. J. et al. A review of validation and calibration methods for health care modeling and simulation. Model. Simul. Context Heal. Technol. Assess. Rev. Exist. Guid. Futur. Res. Needs, Validity Assess. [Internet] (2017).Knobel, D. L. et al. Re-evaluating the burden of rabies in Africa and Asia. Bull. World Health Organ. 83, 360–368 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Özen, D., Böhning, D. & Gürcan, İS. Estimation of stray dog and cat populations in metropolitan Ankara, Turkey. Turk. J. Vet. Anim. Sci. 40, 7–12 (2016).
    Google Scholar 
    Cortez-Aguirre, G. R., Jiménez-Coello, M., Gutiérrez-Blanco, E. & Ortega-Pacheco, A. Stray dog population in a city of Southern Mexico and its impact on the contamination of public areas. Vet. Med. Int. 2018 (2018). More

  • in

    A novel approach for reliable qualitative and quantitative prey spectra identification of carnivorous plants combining DNA metabarcoding and macro photography

    A combined DNA metabarcoding/in-situ macro photography approach to reliably analyse carnivorous plant prey spectraResults indicate that DNA metabarcoding allows for reliable analysis of prey spectra composition in carnivorous plants at a taxonomic resolution and level of completeness unachievable by traditional morphology-based approaches (as performed, for example, by4,5,6,7,9,10,11). Even in remote tropical northern Western Australia, where many (if not most) arthropod species have not yet been accessioned into the BOLD or GenBank barcode reference libraries, this method identified over 90% of obtained OTUs from our sample set; most of them at family-level, but 41% to genus-level, and 17% even down to species rank (Supplementary Data S1). Lekesyte et al.27 were able to identify 80% of the analysed prey items found on D. rotundifolia in England to species-level. However, their sampling was performed in western Europe, whose entomofauna is comparatively well studied taxonomically and has an excellent coverage in the BOLD reference library of DNA barcodes41. New insect barcodes are regularly added to the BOLD library through large-scale initiatives such as the international Barcode of Life Project (iBOL; https://ibol.org/) and its Australian node Australian Barcode of Life Network (ABOLN), hence accuracy of future metabarcoding research performed in Australia can be expected to increase to similar levels soon.In-situ macro photography was found to provide a valuable plausibility control tool for the prey taxa identified by metabarcoding. While many of the smaller prey taxa detected by metabarcoding were impossible to identify in the in-situ macro photographs due to their tendency to quickly degenerate after digestion into small, shapeless “crumbs”8, this control method considerably reduced the amount of prey taxa detected which were not actually present as prey in the Drosera samples. This flaw of metabarcoding is most commonly a consequence of procedural errors resulting in cross-contamination within the DNA extraction procedure27, usually resulting in low read numbers. However, in-situ macro photographs may also fail to detect species if prey captured by the sundew escaped from the trap33,42, or was stolen by larger animals. In both cases, a DNA imprint left on the Drosera leaves as excretions, detached scales, hairs or, frequently, as autotomised (shedded) body parts42 could have been detected by metabarcoding. Additionally, some barcoding-detected taxa may not constitute prey if they were associated with another captured prey taxon (either as part of its diet, or as a parasite). The latter may explain some barcode hits for taxa not immediately apparent from the in-situ macro photographs, as they are (endo)parasites of captured prey taxa. This was likely the case in the detected Strepsiptera (stylops) which are frequently contained as larvae and adult females in their hymenopteran and orthopteran hosts43. However, insect endoparasites and other non-obvious prey taxa were by default not excluded by the very conservative approach of pictorial plausibility control. Additionally, in the case of endoparasites, these organisms would also contribute to plant nutrition as “bycatch” after being digested together with their host, despite not having been actively attracted to the carnivorous traps. Finally, the control method tested in this study showed that even heavily digested prey items in the samples had sufficient amounts of intact (mitochondrial) DNA present to be detected by metabarcoding, as we found no instance of any prey item being clearly identifiable in the macro photographs but not present in the barcoding data.Prey spectra composition of the studied Drosera speciesThe analysed prey spectra of the three studied species from D. sect. Arachnopus most commonly contained flying insects (especially of the orders Diptera and Hemiptera, both present in 100% of the samples; Fig. 3), thus confirming earlier in-situ macro photography-based studies of closely-related D. sect. Arachnopus species by Krueger et al.8. All members of D. sect. Arachnopus are characterised by a large, erect growth habit and thread-like aerial leaves which usually do not contact the ground8,32, thereby excluding most ground-dwelling arthropods as prey. This result is also similar to other prey spectra studies of erect-leaved Drosera from different geographic areas, where flying insects (particularly Diptera) unanimously comprised almost the entire recorded prey5,11,44. Furthermore, this study confirmed the result of Krueger et al.8 that Hemiptera—and within this order especially the Cicadellidae—are exceptionally common in the prey spectra of D. sect. Arachnopus compared with all other, previously studied Drosera. A possible explanation for this may be the relatively high abundance of Cicadellidae in tropical habitats45 compared to subtropical or temperate habitats where the above-mentioned previous Drosera prey spectra studies were conducted.Of the five most commonly detected orders, Lepidoptera generally comprised the largest prey items in terms of body size or wingspan, respectively. This prey order was exceptionally common in D. finlaysoniana, being present in 100% of samples and also visually conspicuous in the in-situ photographs. Since this Drosera species had by far the largest trapping leaves among the three species studied with an average leaf length of 10.4 ± 0.6 cm (Suppl Appendix S7), and exhibits the largest leaves in D. section Arachnopus32, this may represent an example of large prey items being more easily captured by species with larger trapping leaves33. Additionally, the sampled population of D. finlaysoniana was huge and dense (see Supplementary Figure S1), probably attracting larger prey and enabling capture of larger prey items by “collective” trapping46. Alternatively, Fleischmann30 suggested that captured Lepidoptera themselves could attract further individuals of the same species by pheromone release, potentially explaining the very high numbers of this insect order observed in D. finlaysoniana.Differences among observed prey spectraComparison of prey spectra between the three studied Drosera species revealed significant differences at arthropod family-level but not at the higher level of arthropod orders, indicating that at a coarse taxonomic resolution, the same five arthropod orders (Diptera, Hemiptera, Hymenoptera, Lepidoptera and Thysanoptera) generally comprise most of the prey in D. sect. Arachnopus, regardless of given Drosera species or habitat. However, as strong differences were discovered in the ANOSIM comparison at family-level, it can be concluded that differences might likely increase with finer taxonomic resolution of prey taxa, a conclusion also reached by the carnivorous plant prey spectra meta-analysis of Ellison & Gotelli47. While these differences may be partially attributed to different morphological traits of the three species such as leaf scent8,30 or eglandular appendages31, the very high ANOSIM R-values returned and the large number of prey families contributing nearly equally to dissimilarity (Table 2) indicate that the most likely explanation is very different available prey spectra at the three study sites. Indeed, significant differences among different study sites, even within the same species, were previously reported for Drosera rotundifolia by Lekesyte et al.27 and for four species from D. sect. Arachnopus by Krueger et al.8. Notably, the three study sites feature different habitat types and climate regimes (Supplementary Fig. S1).Analyses indicate that there is likely little specialisation in prey capture by the three studied Drosera species. For example, the relatively high detection rate of Lepidoptera in the samples of D. finlaysoniana and D. hartmeyerorum compared to D. margaritacea may be explained by the lake margin habitats of the former two species, while the latter species was found in a completely dry drainage channel lacking any nearby waterbodies (Supplementary Fig. S1). Lepidoptera are likely to occur in much higher concentrations near water sources, especially during the dry season (May to November) when the surrounding areas are lacking other water sources (G. Bourke in Fleischmann30).Estimating prey quantityIn addition to providing a plausibility control for the compositional prey analysis by metabarcoding, the in-situ macro photography method facilitated an estimation of prey quantity per sample. Metabarcoding by itself is currently not a reliable tool for prey quantification due to the lack of a linear relationship between the number of sequence reads and organism biomass26,27.In contrast to Krueger et al.8, who generally found more prey items on larger trapping leaves in species of D. sect. Arachnopus (even when values were compared as per cm of trapping leaf length), the species with the largest leaves studied here (D. finlaysoniana) captured significantly less prey items than the smaller-leaved species D. margaritacea and D. hartmeyerorum (Fig. 4). However, while Krueger et al.8 was able to compare sympatric species (thus minimising any potential effects of the habitat or region on prey spectra), the three species in this study were studied at three different, geographically distant sites. While it is possible that overall prey abundance in the habitat was much lower at the D. finlaysoniana study site (Site 1), it can be hypothesised that the low total prey capture observed in this species may be due to the very large and extremely dense population resulting in strong intraspecific competition for prey (see Supplementary Fig. S1). This effect of population structure on prey capture has also been observed by Gibson48 and Tagawa and Watanabe46 who found a significant negative correlation between total prey capture and population density in different species of Drosera.Conclusions and outlookOur study is the first to employ a DNA metabarcoding approach supported by controls for species presence to analyse carnivorous plant prey spectra. When combined with in-situ macro photography, this method is clearly superior in terms of taxonomic resolution and completeness for analysis of environmental bulk samples (containing different organisms in highly variable states of preservation), as used here for the reconstruction of prey spectra of carnivorous plants. The capability of this method increases with new reference barcodes being regularly added to DNA barcode libraries (such as BOLD and NCBI GenBank) and it thus has the potential to become the standard methodology for future carnivorous plant prey spectra research.Additional studies are needed to test this method for other carnivorous plant species and genera, especially those possessing different trap types. Within Western Australia, three additional trap types occur: snap traps (Aldrovanda), suction traps (Utricularia) and pitfall traps (Cephalotus). In particular, it might be expected that in-situ macro photography will not work as well for the extremely small, typically submerged traps of Aldrovanda and Utricularia (which also completely enclose their captured, microscopic prey items49), potentially necessitating usage of alternative control methods for metabarcoding data. Furthermore, even within Drosera (adhesive traps) some species may require adjustments to the methodology presented here as they accumulate captured prey in a central point via tentacle movement (e.g., many climbing tuberous Drosera) or their leaves may be very difficult to place on paper sheets with the sticky side facing upwards (e.g., all pygmy Drosera). The latter problem may be solved by using reverse action forceps and photographing the leaves while held in place by the forceps.Extensive sampling of sites with co-occurring species from D. sect. Arachnopus is clearly required to better understand the ecological role of trap scent and eglandular appendages in this section. For example, manipulation experiments involving the removal of all yellow blackberry-shaped appendages of D. hartmeyerorum (which have been hypothesised to function as visual prey attractants31) and subsequent metabarcoding prey spectra comparisons of mutilated plants lacking emergences with control plants are proposed. Potential effects of population density on prey spectra (as hypothesised here for D. finlaysoniana) could be studied by comparing prey spectra of individual plants from within mass populations with more exposed-growing individuals of the same population. More

  • in

    Fingerprint analysis reveals sources of petroleum hydrocarbons in soils of different geographical oilfields of China and its ecological assessment

    Concentration of TPHs in surface soilsStatistical results of TPHs concentrations at different geographic oilfields were showed in Fig. 2, and grid regional distribution of TPHs in YC Oilfield surface soils (Y6–Y25) were shown in Fig. 3. Results are given as mean value of triplicate analysis of each sample. The results of TPHs concentration in soil samples showed that the three oilfields all suffered from varying degrees of petroleum pollution, and 60.92% of the 47 sampling points was significantly higher than the soil critical value (500 mg/kg). The average concentration of the TPHs in each study areas conformed to be in the following law: SL Oilfield (average: 5.36 × 103 mg/kg) ( >) NY Oilfield (average: 1.73 × 103 mg/kg) ( >) YC Oilfield (average: 1.37 × 103 mg/kg). The highest concentration of the TPHs were found in SL Oilfield surface soils, ranging from 1.21 × 102 to 6.66 × 104 mg/kg, and NY Oilfield had the second highest TPHs concentrations in the range from 15.82 to 7.42 × 103 mg/kg. The concentrations of TPHs in YC Oilfield ranged from 12.34 to 5.38 × 103 mg/kg. The petroleum contamination mainly derived from abandoned and working oil wells. S4 and S8 soils were collected near the abandoned oil well and working oil well, respectively, and had the highest concentration of TPHs up to 5.28 × 104 and 6.66 × 104 mg/kg. Y1, N8 near the abandoned oil well also had high concentration of TPHs with 5.39 × 103 and 7.42 × 103 mg/kg, respectively. Pollution caused by grounded crude oil in exploitation process has been a serious problem in oilfield area. Our previous research reported that the TPHs content in Dagang Oilfield soils collected adjacent to working oil wells were about 20-folds higher than that in corn soils and living area soils25. Concentration contour map of TPHs in YC Oilfield by grid sampling method showed that regional pollution in the northwest and southeast area are more serious than other sites. Y6 near the gas station and Y15, Y21, Y23 adjacent to the working oil wells have higher concentration (2.12 × 103–5.34 × 103 mg/kg) of TPHs than other farmland and grass soils. Previous study reported that the concentrations of TPHs ranged 7.0 × 102–4.0 × 103 mg/kg in oil exploitation areas of the loess plateau region (34°20′N,107°10′E), showing a similar pollution level with this study26.Figure 2The concentration of TPHs in three oilfield soils.Full size imageFigure 3Grid regional distribution of TPHs in YC Oilfield.Full size imageThe percentage composition of total PAHs, SHs and polar components of petroleum hydrocarbons were shown in Table 1. In general, the dominant petroleum component was saturated hydrocarbons in all soils, accounting more than 50%. Yet, the percentage proportion of PAHs and SHs in contamination soils adjacent to working and abandon oil wells were significantly different (p  BbF (14.16–21.87%) ≫ BaA, Chr, InP, and BkF (less than 10%). This result aligned to the previous study that the contribution of individual PAHs to the TEQs of ∑PAH16 was BaP (45%)  > DBA (33%) in urban surface dust of Xi’an city, China46. Therefore, contamination control should priority focus on the individual PAHs of BaP, DBA, BbF in these areas. In addition, the ecological risk with abandoned time ranging 0–15 years has been assessed, and the descriptive statistic TEQBap of PAHs was shown in Supporting Information, Table S6. The highest TEQs of ∑PAH16 and ∑PAH7 with mean of 1422.27 μg/kg and 1400.48 μg/kg, respectively, were present in soils adjacent to abandoned oil well with abandoned time of 0—5 years. And the TEQs of ∑PAH16 and ∑PAH7 decreased with the abandoned time though the percentage proportion of PAHs increased. The TEQs of ∑PAH16 and ∑PAH7 were close between abandoned time of 5–10 years and 10—15 years while both had high content. It demonstrated that high ecological risk was persistent in abandoned oil well areas over abandoned time of 15 years, and basically stable after 5 years. Therefore, abandoned oil well areas need to be blocked to prevent PAHs entering the external environment, and combine physical–chemical technology for petroleum remediation instead of simple weathering biological processes.Table 3 Descriptive statistic TEQBap of PAHs in different sampling area.Full size tableAs referred the PAHs standard of Dutch soil, TEQs of ∑PAH7 was 32.02 μg/kg, calculated by ten individual PAHs times TEFs. In this study, the mean TEQs of ∑PAH7 were about 35- and 10-folds of Dutch soil in petro-related area soils and grassland soils, indicating a high and medium ecological risk in these soils respectively. However, the mean TEQs of ∑PAH7 in farmland soils (18.80 μg/kg) was below Dutch soil, presenting a low potential ecological risk. It should be noted that the minimum of TEQs of ∑PAH7 in grassland soil was 26.24 μg/kg less than TEQs of ∑PAH7 in Dutch soil, but it was vulnerable affected by the surrounding soils with high TEQs of ∑PAH7. In this study, except the farmland soils, TEQs of ∑PAH7 exhibited higher TEQ values than those reported soils in Santiago, Chile47 and Nepal24, and road dust in Tianjin, China48. Overall, the most threat of ecological risk in petro-related soils caused by the anthropogenic PAHs input, such like oil leakage, oil refining, and fossil energy combustion. Preventing oil spills accident and developing the remediation methods are the main significant ways to reduce the ecological risks in these areas. The medium ecological risk in grassland might result from the migration of PAHs via rainfall pathway. Therefore, establishment the oil-blocking isolation zones is the critical way for medium ecological risk areas to control petroleum inflow. Even though the low ecological risk was identified in farmland soils, PAHs source analysis indicated that the biomass combustion should be controlled in these areas. More

  • in

    Transgenerational effects of grandparental and parental diets combine with early-life learning to shape adaptive foraging phenotypes in Amblyseius swirskii

    Avital, E. & Jablonka, E. Animal Traditions: Behavioural Inheritance in Evolution. (Cambridge University Press, 2000).Bonduriansky, R. & Day, T. Nongenetic inheritance and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 40, 103–125 (2009).
    Google Scholar 
    Mousseau, T. A. & Fox, C. W. Maternal Effects as Adaptations. (Oxford University Press, 1998).Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998b).CAS 
    PubMed 

    Google Scholar 
    Jablonka, E. & Lamb, M. J. Evolution in four dimensions. Genetic, Epigenetic, Behavioral and Symbolic Variation in the History of Life. Revised Edition. (MIT Press, 2014).Uller, T. Developmental plasticity and the evolution of parental effects. Trends Ecol. Evol. 23, 432–438 (2018).
    Google Scholar 
    Bell, A. M. & Hellmann, J. K. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annu. Rev. Ecol. Evol. Syst. 50, 97–118 (2019).
    Google Scholar 
    Marshall, D. J. & Uller, T. When is a maternal effect adaptive? Oikos 116, 1957–1963 (2007).
    Google Scholar 
    Yin, J., Zhou, M., Lin, Z., Li, Q. Q. & Zhang, Y.-Y. Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. Ecol. Lett. 22, 1976–1986 (2019).PubMed 

    Google Scholar 
    Wolf, J. B. & Wade, M. J. What are maternal effects (and what are they not)? Philos. Trans. R. Soc. B 364, e1115 (2008).
    Google Scholar 
    Kilner, R. M. et al. Parental effects alter the adaptive value of an adult behavioural trait. eLife 4, e07340 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    McNamara, J. M., Dall, S. R. X., Hammerstein, P. & Leimar, O. Detection vs. selection: integration of genetic, epigenetic and environmental cues in fluctuating environments. Ecol. Lett. 19, 1267–1276 (2016).PubMed 

    Google Scholar 
    Deas, J. B., Blondel, L. & Extavour, C. G. Ancestral and offspring nutrition interact to affect life-history traits in Drosophila melanogaster. Proc. R. Soc. B 286, 20182778 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamps, J. A. & Bell, A. M. Combining information from parental and personal experiences: simple processes generate diverse outcomes. PLoS ONE 16, e0250540 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of defences in animals and plants. Nature 401, 60–63 (1999).CAS 

    Google Scholar 
    Remy, J. J. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol. 20, R877–R878 (2010).CAS 
    PubMed 

    Google Scholar 
    Shama, L. N. S. & Wegner, K. M. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations. J. Evol. Biol. 27, 2297–2307 (2014).CAS 
    PubMed 

    Google Scholar 
    Crocker, K. C. & Hunter, M. D. Environmental causes and transgenerational consequences of ecdysteroid hormone provisioning in Acheta domesticus. J. Insect Physiol. 109, 69–78 (2018).CAS 
    PubMed 

    Google Scholar 
    Sarker, G. & Peleg-Raibstein, D. Maternal overnutrition induces long-term cognitive deficits across several generations. Nutrients 11, 7 (2019).CAS 

    Google Scholar 
    Hellmann, J. K., Carlsson, E. R. & Bell, A. M. Sex-specific plasticity across generations II: grandpaternal effects are lineage specific and sex specific. J. Anim. Ecol. 89, 2800–2819 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Mahaq, O. The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice. Brain Behav. 10, e01817 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ranade, S. C. et al. Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze. Neuroscience 152, 859–866 (2008).CAS 
    PubMed 

    Google Scholar 
    De Souza, A. S., Fernandes, F. S., do Carmo, T. & das Gracas, M. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr. Rev. 69, 132–144 (2011).PubMed 

    Google Scholar 
    Munch, K. L. et al. Maternal effects impact decision-making in a viviparous lizard. Biol. Lett. 14, 20170556 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Li, C. et al. The learning ability and memory retention of broiler breeders: 2 transgenerational effects of reduced balanced protein diet on reward-based learning. Animal 13, 1260–1268 (2019).CAS 
    PubMed 

    Google Scholar 
    Boogert, N. J., Zimmer, C. & Spencer, K. A. Pre- and post-natal stress have opposing effects on social information use. Biol. Lett. 9, 20121088 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Xia, S.-Z., Liu, L., Feng, C.-H. & Guo, A.-K. Nutritional effects on operant visual learning in Drosophila melanogaster. Physiol. Behav. 62, 263–271 (1997).CAS 
    PubMed 

    Google Scholar 
    Eaton, L., Edmonds, E. J., Henry, T. B., Snellgrove, D. L. & Sloman, K. A. Mild maternal stress disrupts associative learning and increases aggression in offspring. Horm. Behav. 71, 10–15 (2015).CAS 
    PubMed 

    Google Scholar 
    Costa, C. P. et al. Care-giver identity impacts offspring development and performance in an annually social bumble bee. BMC Ecol. Evol. 21, 20 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Roche, D. P., McGhee, K. E. & Bell, A. M. Maternal predator-exposure has lifelong consequences for offspring learning in three-spined sticklebacks. Biol. Lett. 8, 932–935 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Feng, S., McGhee, K. E. & Bell, A. M. Effect of maternal predator exposure on the ability of stickleback offspring to generalize a learned colour-reward association. Anim. Behav. 107, 61–69 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Ghio, S. C., Leblanc, A. B., Audet, C. & Aubin-Horth, N. Effects of maternal stress and cortisol exposure at the egg stage on learning, boldness and neophobia in brook trout. Behaviour 153, 1639–1663 (2016).
    Google Scholar 
    Tariel, J., Plenet, S. & Luquet, E. How do developmental and parental exposures to predation affect personality and immediate behavioural plasticity in the snail Physa acuta? Proc. R. Soc. B 287, 20201761 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Dinh, H. et al. Transgenerational effects of parental diet on offspring development and disease resistance in flies. Front. Ecol. Evol. 9, 606993 (2021).
    Google Scholar 
    Bilkó, A., Altbäcker, V. & Hudson, R. Transmission of food preference in the rabbit: The means of information transfer. Physiol. Behav. 56, 907–912 (1994).PubMed 

    Google Scholar 
    Oostindjer, M., Bolhuis, J. E., van den Brand, H., Roura, E. & Kemp, B. Prenatal flavor exposure affects growth, health and behavior of newly weaned piglets. Physiol. Behav. 99, 579–586 (2010).CAS 
    PubMed 

    Google Scholar 
    Wells, D. L. & Hepper, P. G. Prenatal olfactory learning in the domestic dog. Anim. Behav. 72, 681–686 (2006).
    Google Scholar 
    Hepper, P. G. Fetal memory: does it exist? What does it do? Acta Paediatr. 85, 16–20 (1996).
    Google Scholar 
    Gowri, V., Dion, E., Viswanath, A., Monteiro Piel, F. & Monteiro, A. Transgenerational inheritance of learned preferences for novel host plant odors in Bicyclus anynana butterflies. Evolution 73, 2401–2414 (2019).CAS 
    PubMed 

    Google Scholar 
    Peralta-Quesada, P. C. & Schausberger, P. Prenatal chemosensory learning by the predatory mite Neoseiulus californicus. PLoS ONE 7, e53229 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Nieberding, C. M., van Dyck, H. & Chittka, L. Adaptive learning in non-social insects: from theory to field work, and back. Curr. Opin. Insect Sci. 27, 75–81 (2018).PubMed 

    Google Scholar 
    Momen, F. M. & El Saway, S. A. Biology and fee18lopemenviour of the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). Acarologia 33, 199–204 (1993).
    Google Scholar 
    Wimmer, D., Hoffmann, D. & Schausberger, P. Prey suitability of Western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontrol Sci. Technol. 18, 533–542 (2008).
    Google Scholar 
    Vangansbeke, D. et al. Supplemental food for Amblyseius swirskii in the control of thrips: feeding friend or foe? Pest Manag. Sci. 72, 466–473 (2016).CAS 
    PubMed 

    Google Scholar 
    Delisle, J. F., Brodeur, J. & Shipp, L. Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae). Exp. Appl. Acarol. 65, 483–494 (2015).CAS 
    PubMed 

    Google Scholar 
    Christiansen, I. C., Szin, S. & Schausberger, P. Benefit-cost trade-offs of early learning in foraging predatory mites Amblyseius swirskii. Sci. Rep. 6, 23571 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schausberger, P., Davaasambuu, U., Saussure, S. & Christiansen, I. C. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence. R. Soc. Open Sci. 5, 172110 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Seiter, M. & Schausberger, P. Constitutive and operational variation of learning in foraging predatory mites. PLoS ONE 11, e0166334 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schausberger, P., Seiter, M. & Raspotnig, G. Innate and learned responses of foraging predatory mites to polar and non-polar fractions of thrips’ chemical cues. Biol. Control 151, 104371 (2020).CAS 

    Google Scholar 
    Seiter, M. & Schausberger, P. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites. Sci. Rep. 5, 15046 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, Z. M. Transgenerational influence of sensorimotor training on offspring behavior and its neural basis in Drosophila. Neurobiol. Learn. Mem. 131, 166–175 (2016).PubMed 

    Google Scholar 
    Jahanbazi, M., Sedaratian-Jahromi, A. & Ghane-Jahromi, M. Comparative study of predation, preference and switching behaviors of two predatory mite Neoseiulus californicus and Amblyseius swirskii (Acari: Phytoseiidae). Int. J. Pest Manag. https://doi.org/10.1080/09670874.2021.1944699 (2021).Margulies, C., Tully, T. & Dubnau, J. Deconstructing memory in Drosophila. Curr. Biol. 15, R700–R713 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mery, F. & Kawecki, T. J. A cost of long-term memory in Drosophila. Science 308, 1148 (2005).CAS 
    PubMed 

    Google Scholar 
    Schausberger, P., Walzer, A., Hoffmann, D. & Rahmani, H. Food imprinting revisited: early learning in foraging predatory mites. Behaviour 147, 883–897 (2010).
    Google Scholar 
    Schausberger, P. & Peneder, S. Non-associative versus associative learning by foraging predatory mites. BMC Ecol. 17, 2 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory. (Princeton University Press, 1986).Mendel, D. & Schausberger, P. Diet-dependent intraguild predation between the predatory mites Neoseiulus californicus and Neoseiulus cucumeris. J. Appl. Entomol. 135, 311–319 (2011).
    Google Scholar 
    Somer, R. A. & Thummel, C. S. Epigenetic inheritance of metabolic state. Curr. Opin. Genet. Dev. 27, 43–47 (2014).CAS 
    PubMed 

    Google Scholar 
    Bonduriansky, R. & Crean, A. J. What are condition-transfer effects and how can they be detected? Methods Ecol. Evol. 9, 450–456 (2018).
    Google Scholar 
    Engqvist, L. & Reinhold, K. Adaptive parental effects and how to estimate them: a comment to Bonduriansky and Crean. Methods Ecol. Evol. 9, 457–459 (2018).
    Google Scholar 
    Melis, R. et al. Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innov. Food Sci. Emerg. Technol. 48, 138–149 (2018).CAS 

    Google Scholar 
    Singh, Y., Cullere, M., Kovitvadhi, A., Chundang, P. & Dalle Zotte, A. Effect of different killing methods on physicochemical traits, nutritional characteristics, in vitro human digestibility and oxidative stability during storage of the house cricket (Acheta domesticus L.). Innov. Food Sci. Emerg. Technol. 65, 102444 (2020).CAS 

    Google Scholar 
    Grafen, A. On the uses of data on lifetime reproductive success. Philos. Trans. R. Soc. B 363, 1635–1645 (1988).
    Google Scholar 
    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B 363, 1635–1645 (2008).
    Google Scholar 
    English, S., Fawcett, T. W., Higginson, A. D., Trimmer, P. C. & Uller, T. Adaptive use of information during growth can explain long-term effects of early life experiences. Am. Nat. 187, 620–632 (2016).PubMed 

    Google Scholar 
    Miller, R. R. & Polack, C. W. Sources of maladaptive behavior in ‘normal’ organisms. Behav. Process. 154, 4–12 (2018).
    Google Scholar 
    Schausberger, P. Inter-and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae). Exp. Appl. Acarol. 21, 131–150 (1997).
    Google Scholar 
    Walzer, A. & Schausberger, P. Non-consumptive effects of predatory mites on thrips and its host plant. Oikos 118, 934–940 (2009).
    Google Scholar 
    Walzer, A., Paulus, H. & Schausberger, P. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization. Bull. Entomol. Res. 94, 577–588 (2004).CAS 
    PubMed 

    Google Scholar 
    Vangansbeke, D., Duarte, M. V. A. & De Clercq, P. Cold-born killers: exploiting temperature-size rule enhances predation capacity of a predatory mite. Pest Manag. Sci. 76, 1841–1846 (2020).CAS 
    PubMed 

    Google Scholar 
    Krantz, G. W. & Walter, D. E. A Manual of Acarology 3rd edn (Texas Tech University Press, 2008).Croft, B. A., Luh, H.-K. & Schausberger, P. Larval size relative to larval feeding, cannibalism of larvae, egg or adult female size and larval–adult setal patterns among 13 phytoseiid mite species. Exp. Appl. Acarol. 23, 599–610 (1999).
    Google Scholar  More

  • in

    Metabarcoding analysis of the soil fungal community to aid the conservation of underexplored church forests in Ethiopia

    Balami, S., Vašutová, M., Godbold, D., Kotas, P. & Cudlín, P. Soil fungal communities across land use types. Forest Biogeosci. For. 13, 548–558 (2020).
    Google Scholar 
    Deacon, J. Fungal Biology (Wiley, 2009).
    Google Scholar 
    Ruiz-Almenara, C., Gándara, E. & Gómez-Hernández, M. Comparison of diversity and composition of macrofungal species between intensive mushroom harvesting and non-harvesting areas in Oaxaca, Mexico. PeerJ 7, e8325 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).ADS 

    Google Scholar 
    Egli, S. Mycorrhizal mushroom diversity and productivity—an indicator of forest health?. Ann. For. Sci. 68, 81–88 (2011).
    Google Scholar 
    Westover, K. M. & Bever, J. D. Mechanisms of plant species coexistence: Roles of rhizosphere bacteria and root fungal pathogens. Ecology 82, 3285–3294 (2001).
    Google Scholar 
    Deacon, J. Fungal Biology (Wiley, 2006).
    Google Scholar 
    Fernandez, C. W., Nguyen, N. H. U. H., Stefanski, A. & Han, Y. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Chang. Biol. 23, 1598–1609 (2017).ADS 
    PubMed 

    Google Scholar 
    Heilmann-Clausen, J. et al. A fungal perspective on conservation biology. Conserv. Biol. 29, 61–68 (2015).PubMed 

    Google Scholar 
    Shay, P.-E., Winder, R. S. & Trofymow, J. A. Nutrient-cycling microbes in coastal Douglas-fir forests: Regional-scale correlation between communities, in situ climate, and other factors. Front. Microbiol. 6, 5897 (2015).
    Google Scholar 
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 

    Google Scholar 
    Richter, A., Schöning, I., Kahl, T., Bauhus, J. & Ruess, L. Regional environmental conditions shape microbial community structure stronger than local forest management intensity. For. Ecol. Manag. 409, 250–259 (2018).
    Google Scholar 
    Monkai, J., Hyde, K. D., Xu, J. & Mortimer, P. E. Diversity and ecology of soil fungal communities in rubber plantations. Fungal Biol. Rev. 31, 1–11 (2017).
    Google Scholar 
    White, F. Vegetation of Africa—a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa, Natural Resources Research Report XX. U.N. Educational, Scientific and Cultural Organization, Paris (1983).Aynekulu, E. et al. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia. Folia Geobot. 51, 115–127 (2016).
    Google Scholar 
    Wassie, A., Sterck, F. J. & Bongers, F. Species and structural diversity of church forests in a fragmented Ethiopian Highland landscape. J. Veg. Sci. 21, 938–948 (2010).
    Google Scholar 
    Alem, D., Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Survey of macrofungal diversity and analysis of edaphic factors influencing the fungal community of church forests in Dry Afromontane areas of Northern Ethiopia. For. Ecol. Manag. 496, 119391 (2021).
    Google Scholar 
    Aerts, R. et al. Conservation of the Ethiopian church forests: Threats, opportunities and implications for their management. Sci. Total Environ. 551–552, 404–414 (2016).ADS 
    PubMed 

    Google Scholar 
    Wassie, A., Teketay, D. & Powell, N. Church forests in North Gonder administrative zone, Northern Ethiopia. For. Trees Livelihoods 15, 349–373 (2005).
    Google Scholar 
    Wsaaie, A., Teketay, D. & Powell, N. Church forests in North Gondar Administative Zone, Northern Ethioopia. For. Trees Livelihoods 15, 349–373 (2005).
    Google Scholar 
    Lemenih, M. & Bongers, F. Dry forests of Ethiopia and their silviculture. In Silviculture in the Tropics, Tropical Forestry 8 (ed. S. G€unter et al.) 261–272 (Springer, Heidelberg, 2011). https://doi.org/10.1007/978-3-642-19986-8_17.Fernández, A., Sánchez, S., García, P. & Sánchez, J. Macrofungal diversity in an isolated and fragmented Mediterranean Forest ecosystem. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 154, 139–148 (2020).
    Google Scholar 
    Peay, K. G. & Bruns, T. D. Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant-fungal interactions. New Phytol. 204, 180–191 (2014).PubMed 

    Google Scholar 
    Burgess, N. D., Hales, J. D. A., Ricketts, T. H. & Dinerstein, E. Factoring species, non-species values and threats into biodiversity prioritisation across the ecoregions of Africa and its islands. Biol. Conserv. 127, 383–401 (2006).
    Google Scholar 
    Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Fungal community succession and sporocarp production following fire occurrence in Dry Afromontane forests of Ethiopia. For. Ecol. Manag. 398, 37–47 (2017).
    Google Scholar 
    Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 1–14 (2020).
    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science (80-. ). 346 (2014).Hawksworth, D. L. Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate?. Biodivers. Conserv. 21, 2425–2433 (2012).
    Google Scholar 
    Crous, P. W. et al. How many species of fungi are there at the tip of Africa?. Stud. Mycol. 55, 13–33 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Martínez, M. L. et al. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. For. Ecol. Manag. 258, 1856–1863 (2009).
    Google Scholar 
    Phillips, H. et al. The effects of global change on soil faunal communities: a meta-analytic approach. Res. Ideas Outcomes 5 (2019).Riutta, T. et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol. Biochem. 49, 124–131 (2012).CAS 

    Google Scholar 
    Rantalainen, M., Haimi, J., Fritze, H., Pennanen, T. & Setala, T. Soil decomposer community as a model system in studying the effects of habitat fragmentation and habitat corridors. Soil Biol. Biochem. 40, 853–863 (2008).CAS 

    Google Scholar 
    Newsham, K. K. et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Chang. 6, 182–186 (2016).ADS 

    Google Scholar 
    Bahram, M., Põlme, S., Kõljalg, U., Zarre, S. & Tedersoo, L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol. 193, 465–473 (2012).PubMed 

    Google Scholar 
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).PubMed 

    Google Scholar 
    Krüger, C. et al. Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. Front. Microbiol. 8, 1–16 (2017).
    Google Scholar 
    Bahram, M., Peay, K. G. & Tedersoo, L. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 205, 1454–1463 (2015).CAS 
    PubMed 

    Google Scholar 
    Li, P. et al. Spatial variation in soil fungal communities across paddy fields in Subtropical China. mSystems 5 (2020).Grilli, G., Urcelay, C. & Galetto, L. Forest fragment size and nutrient availability: Complex responses of mycorrhizal fungi in native–exotic hosts. Plant Ecol. 213, 155–165 (2012).
    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. Shrub Resprouting Response After Fuel Reduction Treatments: Comparison of Prescribed Burning, Clearing and Mastication (Elsevier, 2013).
    Google Scholar 
    Tedersoo, L., Sadam, A., Zambrano, M., Valencia, R. & Bahram, M. Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME J. 4, 465–471 (2010).PubMed 

    Google Scholar 
    Glassman, S. I., Wang, I. J. & Bruns, T. D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol. 26, 6960–6973 (2017).CAS 
    PubMed 

    Google Scholar 
    Colwell, R. K. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates (2013).Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).CAS 
    PubMed 

    Google Scholar 
    Pan, W. et al. DNA polymerase preference determines PCR priming efficiency. BMC Biotechnol. 14, 10 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kirk, P. M., Cannon, P. F., Minter, D. W. & J.A, S. Dictionary of the Fungi (The Centre for Agriculture and Bioscience International (CABI), 2008).Rossman, A., Samuel, G., Rogerson, C. & Lowen, R. Genera of bionectriaceae, hypocreaceae and nectriaceae (hypocreales, ascomycetes). Stud. Mycol. 42, 1–260 (1999).
    Google Scholar 
    Samuels, G. Trichoderma: A review of biology and systematics of the genus. Mycol. Res. 923–935 (1996).Alem, D. et al. Soil fungal communities and succession following wildfire in Ethiopian dry Afromontane forests, a highly diverse underexplored ecosystem. For. Ecol. Manag. 474, 118328 (2020).
    Google Scholar 
    Muleta, D., Woyessa, D. & Teferi, Y. Mushroom consumption habits of Wacha Kebele residents, southwestern Ethiopia. Glob. Res. J. Agric. Biol. Sci. 4, 6–16 (2013).
    Google Scholar 
    Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Edible wild mushrooms of Ethiopia: Neglected non-timber forest products. Rev. Fitotec. Mex. 40, 391–397 (2017).
    Google Scholar 
    Tedersoo, L. et al. Disentangling global soil fungal diversity. Science (80-) 346, 1052–1053 (2014).
    Google Scholar 
    Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Fungal community succession and sporocarp production following fire occurrence in Dry Afromontane forests of Ethiopia. For. Ecol. Manag. 398 (2017).Dang, P. et al. Changes in soil fungal communities and vegetation following afforestation with Pinus tabulaeformis on the Loess Plateau. Ecosphere 9 (2018).Gilbert, G. S., Ferrer, A. & Carranza, J. Polypore fungal diversity and host density in a moist tropical forest. Biodivers. Conserv. 11, 947–957 (2002).
    Google Scholar 
    Kottke, I., Beck, A., Oberwinkler, F., Homeier, J. & Neill, D. Arbuscular endomycorrhizas are dominant in the organic soil of a neotropical montane cloud forest. J. Trop. Ecol. 20, 125–129 (2004).
    Google Scholar 
    Barnes, C. J., Van der Gast, C. J., Burns, C. A., McNamara, N. P. & Bending, G. D. Temporally variable geographical distance effects contribute to the assembly of root-associated fungal communities. Front. Microbiol. 7, 1–13 (2016).
    Google Scholar 
    Tian, J. et al. Environmental factors driving fungal distribution in freshwater lake sediments across the Headwater Region of the Yellow River, China. Sci. Rep. 8, 4–11 (2018).
    Google Scholar 
    Rosales-Castillo, J. et al. Fungal community and ligninolytic enzyme activities in Quercus deserticola Trel. litter from forest fragments with increasing levels of disturbance. Forests 9, 11 (2017).
    Google Scholar 
    Kuhar, F., Barroetaveña, C. & Rajchenberg, M. New species of Tomentella (Thelephorales) from the Patagonian Andes forests. Mycologia 108, 780–790 (2016).CAS 
    PubMed 

    Google Scholar 
    Alem, D., Dejene, T., Oria-de-Rueda, J. A., Geml, J. & Martín-Pinto, P. Soil fungal communities under Pinus patula Schiede ex Schltdl. & Cham. Plantation forests of different ages in Ethiopia. Forests 11, 1109 (2020).
    Google Scholar 
    Tedersoo, L. et al. Terrestrial and lignicolous macrofungi. ISME J. 10, 1228–1239 (2016).
    Google Scholar 
    Ruiz, R., Decock, C., Saikawa, M., Gene, J. & Guarro, J. Polyschema obclaviformis sp. Nov., and some new records of hyphomycetes from Cuba. Cryptogam. Mycol. 21, 215–220 (2000).
    Google Scholar 
    Kaygusuz, O. New locality records of Trichoglossum hirsutum (Geoglossales: Geoglossaceae) based on molecular analyses, and prediction of its potential distribution in Turkey. Curr. Res. Environ. Appl. Mycol. 10, 443–456 (2020).
    Google Scholar 
    Mayer, P. M. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient. Acta Oecol. 33, 222–230 (2008).ADS 

    Google Scholar 
    Krishna, M. P. & Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2, 236–249 (2017).
    Google Scholar 
    Kirschbaum, M. U. F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27, 753–760 (1995).CAS 

    Google Scholar 
    Mayer, P. M., Tunnell, S. J., Engle, D. M., Jorgensen, E. E. & Nunn, P. Invasive grass alters litter decomposition by influencing macrodetritivores. Ecosystems 8, 200–209 (2005).
    Google Scholar 
    Epstein, H. E., Burke, I. C. & Lauenroth, W. K. Regional patterns of decomposition and primary production rates in the U.S. great plains. Ecology 83, 320 (2002).
    Google Scholar 
    Sharon, R., Degani, G. & Warburg, M. Comparing the soil macro-fauna in two oak-wood forests: Does community structure differ under similar ambient conditions?. Pedobiologia (Jena). 45, 355–366 (2001).
    Google Scholar 
    Clocchiatti, A., Hannula, S. E., van den Berg, M., Korthals, G. & de Boer, W. The hidden potential of saprotrophic fungi in arable soil: Patterns of short-term stimulation by organic amendments. Appl. Soil Ecol. 147, 103434 (2020).
    Google Scholar 
    Drenovsky, R., Vo, D., Graham, K. & Scow, K. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48, 424–430 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lauber, C., Hamady, M., Knigh, R. & Fierer, N. Pyrosequencing based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ullah, S. et al. The response of soil fungal diversity and community composition to long-term fertilization. Appl. Soil Ecol. 140, 35–41 (2019).
    Google Scholar 
    Bååth, E. & Anderson, T.-H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35, 955–963 (2003).
    Google Scholar 
    Zhang, T., Wang, N.-F., Liu, H.-Y., Zhang, Y.-Q. & Yu, L.-Y. Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (high arctic). Front. Microbiol. 7 (2016).Tian, D. et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. Sci. Total Environ. 607–608, 1367–1375 (2017).ADS 
    PubMed 

    Google Scholar 
    Zhao, A. et al. Influences of canopy nitrogen and water addition on am fungal biodiversity and community composition in a mixed deciduous forest of China. Front. Plant Sci. 9 (2018).He, J. et al. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. FEMS Microbiol. Ecol. 93, 1–12 (2017).
    Google Scholar 
    Shi, L. et al. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers. 64, 305–315 (2014).
    Google Scholar 
    Gebeyehu, G., Soromessa, T., Bekele, T. & Teketay, D. Plant diversity and communities along environmental, harvesting and grazing gradients in dry afromontane forests of Awi Zone, northwestern Ethiopia. Taiwania 64, 307–320 (2019).
    Google Scholar 
    Zegeye, H., Teketay, D. & Kelbessa, E. Diversity and regeneration status of woody species in Tara Gedam and Abebaye forests, northwestern Ethiopia. J. For. Res. 22, 315–328 (2011).
    Google Scholar 
    Abere, F., Belete, Y., Kefalew, A. & Soromessa, T. Carbon stock of Banja forest in Banja district, Amhara region, Ethiopia: An implication for climate change mitigation. J. Sustain. For. 36, 604–622 (2017).
    Google Scholar 
    Masresha, G., Soromessa, T. & Kelbessa, E. Status and species diversity of Alemsaga Forest, Northwestern Ethiopia 14 (2015).Rudolph, S., Maciá-Vicente, J. G., Lotz-Winter, H., Schleuning, M. & Piepenbring, M. Temporal variation of fungal diversity in a mosaic landscape in Germany. Stud. Mycol. 89, 95–104 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De la Varga, H., Águeda, B., Martínez-Peña, F., Parladé, J. & Pera, J. Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity. Mycorrhiza 22, 59–68 (2012).PubMed 

    Google Scholar 
    Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).PubMed 

    Google Scholar 
    Reeuwijk, L. Procedures for Soil Analysis (International Soil Reference and Information Centre, 2002).
    Google Scholar 
    Walkley, A. & Black, I. A. An examination of the digestion method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 34, 29–38 (1934).ADS 

    Google Scholar 
    Kim, J., Kreller, C. R. & Greenberg, M. M. Preparation and analysis of oligonucleotides containing the C4’-oxidized abasic site and related mechanistic probes. J. Org. Chem. 70, 8122–8129 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, H. T. Soil sampling, preparation and analysis. 139–145 (1996).Bouyoucos, G. H. A reclamation of the hydrometer for making mechanical analysis. Soil. Agro. J. 43, 434–438 (1951).CAS 

    Google Scholar 
    Ihrmark, K., Bödeker, I. & Cruz-Martinez, K. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).CAS 
    PubMed 

    Google Scholar 
    White, T. ., Bruns, S., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315–322 (Academic Press, 1990).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).
    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).PubMed 

    Google Scholar 
    Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105 (2020).Hedberg, I. & Edwards, S. Flora of Ethiopia and Eritria (1989).Collins, C. G., Stajich, J. E., Weber, S. E., Pombubpa, N. & Diez, J. M. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol. Ecol. 27, 2461–2476 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Schön, M. E., Nieselt, K. & Garnica, S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS ONE 13, e0208493 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Castaño, C. et al. Changes in fungal diversity and composition along a chronosequence of Eucalyptus grandis plantations in Ethiopia. Fungal Ecol. 39, 328–335 (2019).
    Google Scholar 
    Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).MATH 

    Google Scholar 
    Kent, M. & Coker, P. Vegetation Description and Analysis: A Practical Approach (Belhaven Press, 1993).
    Google Scholar 
    Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).
    Google Scholar 
    Jost, L., Chao, A. & Chazdon, R. Compositional similarity and β (beta) diversity. in Biological Diversity. Frontiers in Measurement and Assessment (eds. A.E., Magurran & B.J., M.) 66–84 (Oxford University Press, 2011).Kindt, R. & Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. (World Agroforestry Centre (ICRAF), 2005).R Core Team. A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-128. http://CRAN.R-project.org/package=nlme (2016).Tóthmérész, B. Comparison of different methods for diversity ordering. J. Veg. Sci. 6, 283–290 (1995).
    Google Scholar 
    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation. (PRIMER-E, Plymouth, 2014).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar  More

  • in

    Sociality predicts orangutan vocal phenotype

    Lipkind, D. et al. Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature 498, 104–108 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goldstein, M., King, A. P. & West, M. J. Social interaction shapes babbling: testing parallels between birdsong and speech. Proc. Natl Acad. Sci. USA 100, 8030–8035 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fehér, O., Ljubičić, I., Suzuki, K., Okanoya, K. & Tchernichovski, O. Statistical learning in songbirds: from self-tutoring to song culture. Phil. Trans. R. Soc. B 372, 20160053 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Tchernichovski, O., Lints, T., Mitra, P. P. & Nottebohm, F. Vocal imitation in zebra finches is inversely related to model abundance. Proc. Natl Acad. Sci. USA 96, 12901–12904 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tchernichovski, O. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569 (2001).CAS 

    Google Scholar 
    Fehér, O., Wang, H., Saar, S., Mitra, P. P. & Tchernichovski, O. De novo establishment of wild-type song culture in the zebra finch. Nature 459, 564–568 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, D. et al. The developmental dynamics of marmoset monkey vocal production. Science 349, 734–738 (2015).CAS 

    Google Scholar 
    Takahashi, D. Y., Liao, D. A. & Ghazanfar, A. A. Vocal learning via social reinforcement by infant marmoset monkeys. Curr. Biol. 27, 1844–1852.E6 (2017).Takahashi, D. Y., Fenley, A. R. & Ghazanfar, A. A. Early development of turn-taking with parents shapes vocal acoustics in infant marmoset monkeys. Phil. Trans. R. Soc. B 371, 20150370 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gultekin, Y. B. & Hage, S. R. Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys. Sci. Adv. 4, eaar4012 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Gultekin, Y. B. & Hage, S. R. Limiting parental feedback disrupts vocal development in marmoset monkeys. Nat. Commun. 8, 14046 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jarvis, E. D. Evolution of vocal learning and spoken language. Science 366, 50–54 (2019).CAS 

    Google Scholar 
    Snowdon, C. T. Learning from monkey “talk”. Science 355, 1120–1122 (2017).CAS 

    Google Scholar 
    Malik, K. Rights and wrongs. Nature 406, 675–676 (2000).
    Google Scholar 
    Wise, S. M. & Goodall, J. Rattling the Cage: Toward Legal Rights for Animals (Da Capo Press, 2017).Grayson, L. Animals in Research: For and Against (British Library, 2000).Nater, A. et al. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 27, 3487–3498.E10 (2017).CAS 

    Google Scholar 
    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3, e1600946 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ross, S. et al. Inappropriate use and portrayal of chimpanzees. Science 319, 1487 (2008).CAS 

    Google Scholar 
    Wich, S. A. et al. Land-cover changes predict steep declines for the Sumatran orangutan (Pongo abelii). Sci. Adv. 2, e1500789 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Understanding the impacts of land-use policies on a threatened species: is there a future for the Bornean orangutan? PLoS ONE 7, e49142 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Will oil palm’s homecoming spell doom for Africa’s great apes? Curr. Biol. https://doi.org/10.1016/j.cub.2014.05.077 (2014).Fitch, T. W. Empirical approaches to the study of language evolution. Psychon. Bull. Rev. 24, 3–33 (2017).Hauser, M. D. et al. The mystery of language evolution. Front. Psychol. https://doi.org/10.3389/fpsyg.2014.00401 (2014)Corballis, M. C. Crossing the Rubicon: behaviorism, language, and evolutionary continuity. Front. Psychol. 11, 653 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Berwick, R. C. & Chomsky, N. All or nothing: no half-merge and the evolution of syntax. PLoS Biol. 17, e3000539 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolhuis, J. J. & Wynne, C. D. Can evolution explain how minds work? Nature 458, 832–833 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayes, K. J. & Hayes, C. The intellectual development of a home-raised chimpanzee. Proc. Am. Phil. Soc. 95, 105–109 (1951).
    Google Scholar 
    Premack, D. Language in chimpanzee? Science 172, 808–822 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Terrace, H., Petitto, L., Sanders, R. & Bever, T. Can an ape create a sentence? Science 206, 891–902 (1979).CAS 

    Google Scholar 
    Patterson, F. & Linden, E. The Education of Koko (Holt, Rinehart and Winston, 1981).Leavens, D. A., Bard, K. A. & Hopkins, W. D. BIZARRE chimpanzees do not represent “the chimpanzee”. Behav. Brain Sci. 33, 100–101 (2010).
    Google Scholar 
    Lameira, A. R. Bidding evidence for primate vocal learning and the cultural substrates for speech evolution. Neurosci. Biobehav. Rev. 83, 429–439 (2017).
    Google Scholar 
    Lameira, A. R. et al. Speech-like rhythm in a voiced and voiceless orangutan call. PLoS ONE 10, e116136 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Shumaker, R. W. Orangutans show active voicing through a membranophone. Sci. Rep. 9, 12289 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R., Hardus, M. E., Mielke, A., Wich, S. A. & Shumaker, R. W. Vocal fold control beyond the species-specific repertoire in an orangutan. Sci. Rep. 6, 30315 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. et al. Orangutan (Pongo spp.) whistling and implications for the emergence of an open-ended call repertoire: a replication and extension. J. Acoust. Soc. Am. 134, 2326–2335 (2013).
    Google Scholar 
    Perlman, M. & Clark, N. Learned vocal and breathing behavior in an enculturated gorilla. Anim. Cogn. 18, 1165–1179 (2015).
    Google Scholar 
    Wich, S. et al. A case of spontaneous acquisition of a human sound by an orangutan. Primates 50, 56–64 (2009).
    Google Scholar 
    Lameira, A. R., Maddieson, I. & Zuberbuhler, K. Primate feedstock for the evolution of consonants. Trends Cogn. Sci. 18, 60–62 (2014).
    Google Scholar 
    Lameira, A. R. The forgotten role of consonant-like calls in theories of speech evolution. Behav. Brain Sci. 37, 559–560 (2014).
    Google Scholar 
    Boë, L.-J. et al. Which way to the dawn of speech? Reanalyzing half a century of debates and data in light of speech science. Sci. Adv. 5, eaaw3916 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Boë, L. J. et al. Evidence of a vocalic proto-system in the baboon (Papio papio) suggests pre-hominin speech precursors. PLoS ONE 12, e0169321 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fitch, T. W., Boer, B., Mathur, N. & Ghazanfar, A. A. Monkey vocal tracts are speech-ready. Sci. Adv. 2, e1600723 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, A. S., Kavanagh, E., Hobaiter, C., Slocombe, K. E. & Lameira, A. R. Chimpanzee lip-smacks confirm primate continuity for speech-rhythm evolution. Biol. Lett. 16, 20200232 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. et al. Proto-consonants were information-dense via identical bioacoustic tags to proto-vowels. Nat. Hum. Behav. 1, 0044 (2017).
    Google Scholar 
    Lameira, A. R. et al. Orangutan information broadcast via consonant-like and vowel-like calls breaches mathematical models of linguistic evolution. Biol. Lett. 17, 20210302 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Watson, S. K. et al. Nonadjacent dependency processing in monkeys, apes, and humans. Sci. Adv. 6, eabb0725 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Call, J. Time-space–displaced responses in the orangutan vocal system. Sci. Adv. 4, eaau3401 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Belyk, M. & Brown, S. The origins of the vocal brain in humans. Neurosci. Biobehav. Rev. 77, 177–193 (2017).
    Google Scholar 
    Crockford, C., Wittig, R. M. & Zuberbuhler, K. Vocalizing in chimpanzees is influenced by social-cognitive processes. Sci. Adv. 3, e1701742 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Taglialatela, J. P., Reamer, L., Schapiro, S. J. & Hopkins, W. D. Social learning of a communicative signal in captive chimpanzees. Biol. Lett. 8, 498–501 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Russell, J. L., Joseph, M., Hopkins, W. D. & Taglialatela, J. P. Vocal learning of a communicative signal in captive chimpanzees, Pan troglodytes. Brain Lang. 127, 520–525 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hopkins, W. D. et al. Genetic factors and orofacial motor learning selectively influence variability in central sulcus morphology in chimpanzees (Pan troglodytes). J. Neurosci. 37, 5475–5483 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Staes, N. et al. FOXP2 variation in great ape populations offers insight into the evolution of communication skills. Sci. Rep. 7, 16866 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Martins, P. T. & Boeckx, C. Vocal learning: beyond the continuum. PLoS Biol. 18, e3000672 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, S. K. et al. Vocal learning in the functionally referential food grunts of chimpanzees. Curr. Biol. 25, 495–499 (2015).CAS 

    Google Scholar 
    Hopkins, W. D., Taglialatela, J. P. & Leavens, D. A. Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Anim. Behav. 73, 281–286 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Bianchi, S., Reyes, L. D., Hopkins, W. D., Taglialatela, J. P. & Sherwood, C. C. Neocortical grey matter distribution underlying voluntary, flexible vocalizations in chimpanzees. Sci. Rep. 6, 34733 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Call cultures in orangutans? PLoS ONE 7, e36180 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crockford, C., Herbinger, I., Vigilant, L. & Boesch, C. Wild chimpanzees produce group-specific calls: a case for vocal learning? Ethology 110, 221–243 (2004).
    Google Scholar 
    Whiten, A. et al. Cultures in chimpanzees. Nature 399, 682–685 (1999).CAS 

    Google Scholar 
    van Schaik, C. P. et al. Orangutan cultures and the evolution of material culture. Science 299, 102–105 (2003).
    Google Scholar 
    Whiten, A. Culture extends the scope of evolutionary biology in the great apes. Proc. Natl Acad. Sci. USA 114, 7790–7797 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koops, K., Visalberghi, E. & van Schaik, C. The ecology of primate material culture. Biol. Lett. 10, 20140508 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kalan, A. K. et al. Chimpanzees use tree species with a resonant timbre for accumulative stone throwing. Biol. Lett. 15, 20190747 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hardus, M., Lameira, A. R., Van Schaik, C. P. & Wich, S. A. Tool use in wild orangutans modifies sound production: a functionally deceptive innovation? Proc. R. Soc. B https://doi.org/10.1098/rspb.2009.1027 (2009).Lameira, A. R. et al. Population-specific use of the same tool-assisted alarm call between two wild orangutan populations (Pongo pygmaeus wurmbii) indicates functional arbitrariness. PLoS ONE 8, e69749 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hohmann, G. & Fruth, B. Culture in bonobos? Between‐species and within‐species variation in behavior. Curr. Anthropol. 44, 563–571 (2003).
    Google Scholar 
    Robbins, M. M. et al. Behavioral variation in gorillas: evidence of potential cultural traits. PLoS ONE 11, e0160483 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kühl, H. S. et al. Human impact erodes chimpanzee behavioral diversity. Science 363, 1453–1455 (2019).
    Google Scholar 
    van Schaik, C. P. Fragility of Traditions: the disturbance hypothesis for the loss of local traditions in orangutans. Int. J. Primatol. 23, 527–538 (2002).
    Google Scholar 
    Delgado, R. A. & van Schaik, C. P. The behavioral ecology and conservation of the orangutan (Pongo pygmaeus): a tale of two islands. Evol. Anthropol. 9, 201–218 (2000).
    Google Scholar 
    van Schaik, C. The socioecology of fission–fusion sociality in orangutans. Primates 40, 69–86 (1999).
    Google Scholar 
    Nater, A. et al. Sex-biased dispersal and volcanic activities shaped phylogeographic patterns of extant orangutans (genus: Pongo). Mol. Biol. 28, 2275–2288 (2011).CAS 

    Google Scholar 
    Arora, N. et al. Parentage-based pedigree reconstruction reveals female matrilineal clusters and male-biased dispersal in nongregarious Asian great apes, the Bornean orangutans (Pongo pygmaeus). Mol. Ecol. 21, 3352–3362 (2012).CAS 

    Google Scholar 
    Kavanagh, E. et al. Dominance style is a key predictor of vocal use and evolution across nonhuman primates. R. Soc. Open Sci. 8, 210873 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Husson, S. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 6 (Oxford Univ. Press, 2009).van Noordwijk, M. A. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 12 (Oxford Univ Press, 2009).Singleton, I., Knott, C., Morrogh-Bernard, H., Wich, S. & van Schaik, C. P. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 13 (Oxford Univ. Press, 2009).Wich, S. et al. Life history of wild Sumatran orangutans (Pongo abelii). J. Hum. Evol. 47, 385–398 (2004).CAS 

    Google Scholar 
    Wich, S. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 5 (Oxford Univ. Press, 2009).Shumaker, R. W., Wich, S. A. & Perkins, L. Reproductive life history traits of female orangutans (Pongo spp.). Primate Reprod. Aging 36, 147–161 (2008).CAS 

    Google Scholar 
    Freund, C., Rahman, E. & Knott, C. Ten years of orangutan-related wildlife crime investigation in West Kalimantan, Indonesia. Am. J. Primatol. 79, 22620 (2016).
    Google Scholar 
    van Noordwijk, M. A. & van Schaik, C. P. Development of ecological competence in Sumatran orangutans. Am. J. Phys. Anthropol. 127, 79–94 (2005).
    Google Scholar 
    Knot, C. D. et al. The Gunung Palung Orangutan Project: Twenty-five years at the intersection of research and conservation in a critical landscape in Indonesia. Biol. Conserv. 255, 108856 (2021).
    Google Scholar 
    Guillermo, S.-B., Gershenson, C. & Fernández, N. A package for measuring emergence, self-organization, and complexity based on shannon entropy. Front. Robot. AI 4, 174102 (2017).
    Google Scholar 
    Santamaría-Bonfil, G., Fernández, N. & Gershenson, C. Measuring the complexity of continuous distributions. Entropy 18, 72 (2016).
    Google Scholar 
    Kalan, A. K., Mundry, R. & Boesch, C. Wild chimpanzees modify food call structure with respect to tree size for a particular fruit species. Anim. Behav. 101, 1–9 (2015).
    Google Scholar 
    Fedurek, P. & Slocombe, K. E. The social function of food-associated calls in male chimpanzees. Am. J. Primatol. 75, 726–739 (2013).
    Google Scholar 
    Luef, E., Breuer, T. & Pika, S. Food-associated calling in gorillas (Gorilla g. gorilla) in the wild. PLoS ONE 11, e0144197 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Clay, Z. & Zuberbuhler, K. Food-associated calling sequences in bonobos. Anim. Behav. 77, 1387–1396 (2009).
    Google Scholar 
    Hardus, M. E. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 4 (Oxford Univ. Press, 2009).Wich, S. A. et al. Forest fruit production is higher on Sumatra than on Borneo. PLoS ONE 6, e21278 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Wich, S. Orangutan long call degradation and individuality over distance: a playback approach. Int. J. Primatol. 29, 615–625 (2008).
    Google Scholar 
    Lameira, A. R., Delgado, R. & Wich, S. Review of geographic variation in terrestrial mammalian acoustic signals: human speech variation in a comparative perspective. J. Evolut. Psychol. 8, 309–332 (2010).
    Google Scholar 
    Lameira, A. R. et al. Predator guild does not influence orangutan alarm call rates and combinations. Behav. Ecol. Sociobiol. 67, 519–528 (2013).
    Google Scholar 
    Derex, M. & Mesoudi, A. Cumulative cultural evolution within evolving population structures. Trends Cogn. Sci. 24, 654–667 (2020).
    Google Scholar 
    Scerri, E. M. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582–594 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bobe, R. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).
    Google Scholar 
    Zhu, D., Galbraith, E. D., Reyes-García, V. & Ciais, P. Global hunter-gatherer population densities constrained by influence of seasonality on diet composition. Nat. Ecol. Evol. 5, 1536–1545 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).
    Google Scholar 
    Mauricio, G.-F. & Gardner, A. Inference of ecological and social drivers of human brain-size evolution. Nature 557, 554–557 (2018).
    Google Scholar 
    Lindenfors, P., Wartel, A. & Lind, J. ‘Dunbar’s number’ deconstructed. Biol. Lett. 17, 20210158 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C., van Noordwijk, M., Atmoko, S. U. & van Schaik, C. Early sociability fosters later exploratory tendency in wild immature orangutans. Sci. Adv. 6, eaaw2685 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C. et al. Observational social learning and socially induced practice of routine skills in immature wild orangutans. Anim. Behav. 119, 87–98 (2016).
    Google Scholar 
    Jaeggi, A. V. et al. Social learning of diet and foraging skills by wild immature Bornean orangutans: implications for culture. Am. J. Primatol. 72, 62–71 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C. et al. The effects of sociability on exploratory tendency and innovation repertoires in wild Sumatran and Bornean orangutans. Sci. Rep. 7, 15464 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ehmann, B. et al. Immature wild orangutans acquire relevant ecological knowledge through sex-specific attentional biases during social learning. PLoS Biol. 19, e3001173 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meijaard, E. et al. Declining orangutan encounter rates from Wallace to the present suggest the species was once more abundant. PLoS ONE 5, e12042 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, A. J. et al. The blowgun is mightier than the chainsaw in determining population density of Bornean orangutans (Pongo pygmaeus morio) in the forests of East Kalimantan. Biol. Conserv. 129, 566–578 (2006).
    Google Scholar 
    Gail, C.-S., Miran, C.-S., Singleton, I. & Linkie, M. Raiders of the lost bark: orangutan foraging strategies in a degraded landscape. PLoS ONE 6, e20962 (2011).
    Google Scholar 
    Schuppli, C. & van Schaik, C. P. Animal cultures: how we’ve only seen the tip of the iceberg. Evol. Hum. Sci. 1, e2 (2019).
    Google Scholar 
    Langergraber, K. E. et al. Vigilant, generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández, N., Maldonado, C. & Gershenson, C. in Guided Self-Organization: Inception (ed Prokopenko, M.) 19–51 (Springer Berlin Heidelberg, 2014).JAST Team, JASP (Univ. of Amsterdam, 2020).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009).Auguie, B. gridExtra: Functions in grid graphics. R version 0.9.1 (2012).Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar 
    Korthauer, K. et al. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 20, 118 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Identifying conservation technology needs, barriers, and opportunities

    Pimm, S. L. et al. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30, 685–696 (2015).Article 

    Google Scholar 
    Marvin, D. C. et al. Integrating technologies for scalable ecology and conservation. Glob. Ecol. Conserv. 7, 262–275 (2016).Article 

    Google Scholar 
    Wall, J., Wittemyer, G., Klinkenberg, B. & Douglas-Hamilton, I. Novel opportunities for wildlife conservation and research with real-time monitoring. Ecol. Appl. 24, 593–601 (2014).Article 

    Google Scholar 
    Snaddon, J., Petrokofsky, G., Jepson, P. & Willis, K. J. Biodiversity technologies: tools as change agents. Biol. Lett. 9, 20121029 (2013).Article 

    Google Scholar 
    Pettorelli, N., Safi, K., Turner, W. Satellite remote sensing, biodiversity research and conservation of the future. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130190 (2014).Ripperger, S. P. et al. Thinking small: Next-generation sensor networks close the size gap in vertebrate biologging. PLOS Biol. 18, e3000655 (2020).CAS 
    Article 

    Google Scholar 
    Xu, H., Wang, K., Vayanos, P. & Tambe, M. Strategic coordination of human patrollers and mobile sensors with signaling for security games. 8 (2018).Liu, Y. et al. AI for Earth: Rainforest conservation by acoustic surveillance. 2 (2019).Joppa, L. N. Technology for nature conservation: an industry perspective. Ambio 44, 522–526 (2015).Article 

    Google Scholar 
    Koh, L. P. & Wich, S. A. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 5, 121–132 (2012).Article 

    Google Scholar 
    Hahn, N. et al. Unmanned aerial vehicles mitigate human–elephant conflict on the borders of Tanzanian Parks: a case study. Oryx 51, 513–516 (2017).Article 

    Google Scholar 
    Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. GigaScience 7, (2018).Van Doren, B. M. & Horton, K. G. A continental system for forecasting bird migration. Science 361, 1115–1118 (2018).ADS 
    Article 

    Google Scholar 
    Howson, P. Building trust and equity in marine conservation and fisheries supply chain management with blockchain. Mar. Policy 115, 103873 (2020).Article 

    Google Scholar 
    Speaker, T. et al. A global community-sourced assessment of the state of conservation technology. Conserv. Biol. cobi. https://doi.org/10.1111/cobi.13871 (2022).Article 

    Google Scholar 
    Pearce, J. M. Building research equipment with free Open-Source Hardware. Science 337, 1303–1304 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Gibb, R., Browning, E., Glover-Kapfer, P. & Jones, K. E. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. 10, 169–185 (2019).Article 

    Google Scholar 
    current constraints and future priorities for development. Glover-Kapfer, P., Soto-Navarro, C. A. & Wearn, O. R. Camera-trapping version 3.0. Remote Sens. Ecol. Conserv. 5, 209–223 (2019).Article 

    Google Scholar 
    Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115, E5716–E5725 (2018).CAS 
    Article 

    Google Scholar 
    Berger-Tal, O. & Lahoz-Monfort, J. J. Conservation technology: the next generation. Conserv. Lett. 11, 1–6 (2018).Article 

    Google Scholar 
    Hill, A. P. et al. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 9, 1199–1211 (2018).Article 

    Google Scholar 
    Zárybnická, M., Kubizňák, P., Šindelář, J. & Hlaváč, V. Smart nest box: a tool and methodology for monitoring of cavity-dwelling animals. Methods Ecol. Evol. 7, 483–492 (2016).Article 

    Google Scholar 
    Kalmár, G. et al. Animal-Borne Anti-Poaching System. in Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services 91–102 (ACM, 2019). https://doi.org/10.1145/3307334.3326080.Weise, F. J. et al. Lions at the gates: Trans-disciplinary design of an early warning system to improve human-lion coexistence. Front. Ecol. Evol. 6, 242 (2019).Article 

    Google Scholar 
    Beery, S., Van Horn, G. & Perona, P. Recognition in Terra Incognita. in Proceedings of the European Conference on Computer Vision (ECCV) (eds. Ferrari, V., Hebert, M., Sminchisescu, C. & Weiss, Y.) 472–489 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-030-01270-0_28.Crego, R. D., Masolele, M. M., Connette, G. & Stabach, J. A. Enhancing animal movement analyses: spatiotemporal matching of animal positions with remotely sensed data using google earth engine and R. Remote Sens. 13, 4154 (2021).ADS 
    Article 

    Google Scholar 
    Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    Vulcan. EarthRanger. https://earthranger.com.Ahumada, J. A. et al. Wildlife insights: A platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environ. Conserv. 47, 1–6 (2020).MathSciNet 
    Article 

    Google Scholar 
    Lahoz-Monfort, J. J. et al. A call for international leadership and coordination to realize the potential of conservation technology. Bioscience 69, 823–832 (2019).Article 

    Google Scholar 
    Group Gets – AudioMoth. https://groupgets.com/manufacturers/open-acoustic-devices/products/audiomoth.Kulits, P., Wall, J., Bedetti, A., Henley, M. & Beery, S. ElephantBook: A semi-automated human-in-the-loop system for elephant re-identification. in ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS) 88–98 (ACM, 2021). https://doi.org/10.1145/3460112.3471947.Pardo, L. E. et al. Snapshot Safari: A large-scale collaborative to monitor Africa’s remarkable biodiversity. South Afr. J. Sci. 117, (2021).Iacona, G. et al. Identifying technology solutions to bring conservation into the innovation era. Front. Ecol. Environ. 17, 591–598 (2019).Article 

    Google Scholar 
    Cooper, R. G. What’s next?: After stage-gate. Res.-Technol. Manag. 57, 20–31 (2014).ADS 

    Google Scholar 
    Cooper, R. G. The drivers of success in new-product development. Ind. Mark. Manag. 76, 36–47 (2019).Article 

    Google Scholar 
    Pearce, J. M. The case for open source appropriate technology. Environ. Dev. Sustain. 14, 425–431 (2012).Article 

    Google Scholar 
    Mair, J., Battilana, J. & Cardenas, J. Organizing for society: A typology of social entrepreneuring models. J. Bus. Ethics 111, 353–373 (2012).Article 

    Google Scholar 
    Meissner, D. Public-private partnership models for science, technology, and innovation cooperation. J. Knowl. Econ. 10, 1341–1361 (2019).Article 

    Google Scholar 
    Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 22, 1–55.Mayer, A. L. & Wellstead, A. M. Questionable survey methods generate a questionable list of recommended articles. Nat. Ecol. Evol. 2, 1336–1337 (2018).Article 

    Google Scholar 
    Archie, K. M., Dilling, L., Milford, J. B. & Pampel, F. C. Climate Change and Western Public Lands: a Survey of U.S. Federal Land Managers on the Status of Adaptation Efforts. Ecol. Soc. 17 (2012).Jimenez, M. F. et al. Underrepresented faculty play a disproportionate role in advancing diversity and inclusion. Nat. Ecol. Evol. 3, 1030–1033 (2019).Article 

    Google Scholar 
    Christensen, R. ordinal – Regression Models for Ordinal Data. R package version 2019.12-10. (2019).R Core Team. R: A language and environment for statistical computing. (2020).Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar 
    QSR International Pty Ltd. Nvivo 12 Pro. (2020).Glesne, C. Making words fly: Developing understanding through interviewing. Becom. Qual. Res. Introd. 3, (2006).Creswell, J. W. & Creswell, J. D. Research design: Qualitative, quantitative, and mixed methods approaches. (Sage publications 2017). More