Contrasting genetic trajectories of endangered and expanding red fox populations in the western U.S
Akins JR, Aubry KB, Sacks BN (2018) Genetic integrity, diversity, and population structure of the Cascade red fox. Conserv Genet 19:969–980
Google Scholar
Allen SH, Sargeant AB (1993) Dispersal patterns of red foxes relative to population density. J Wildlife Manag 57(3):526–533Arbogast BS, Schumacher KI, Kerhoulas NJ, Bidlack AL, Cook JA, Kenagy GJ (2017) Genetic data reveal a cryptic species of New World flying squirrel: Glaucomys oregonensis. J Mammal 98(4):1027–41
Google Scholar
Ashbrook FG (1928) Silver-Fox Farming. US Department of Agriculture. Washington D.C.Aubry KB (1984) The recent history and present distribution of the red fox in Washington. Northwest Sci 58(1):69–79
Google Scholar
Aubry KB, Statham MJ, Sacks BN, Perrine JD, Wisely SM (2009) Phylogeography of the North American red fox: vicariance in Pleistocene forest refugia. Mol Ecol 18(12):2668–2686CAS
PubMed
Google Scholar
Bailey V (1936a) The red fox in America. Nature 28:269–272
Google Scholar
Bailey V (1936b) The Mammals and Life Zones of Oregon. U.S. Government Printing Office, Washington, D.C
Google Scholar
Ball MC, Finnegan L, Manseau M, Wilson P (2010) Integrating multiple analytical approaches to spatially delineate and characterize genetic population structure: an application to boreal caribou (Rangifer tarandus caribou) in central Canada. Conserv Genet 11(6):2131–2143
Google Scholar
Barrowclough GF, Groth JG, Mertz LA, Gutiérrez RJ (2004) Phylogeographic structure, gene flow and species status in blue grouse (Dendragapus obscurus). Mol Ecol 13(7):1911–22CAS
PubMed
Google Scholar
Bell DA, Robinson ZL, Funk WC, Fitzpatrick SW, Allendorf FW, Tallmon DA et al. (2019) The exciting potential and remaining uncertainties of genetic rescue. Trends Ecol Evol 34(12):1070–1079PubMed
Google Scholar
Black KL, Petty SK, Radeloff VC, Pauli JN (2018) The Great Lakes Region is a melting pot for vicariant red fox (Vulpes vulpes) populations. J Mammal 99(5):1229–1236
Google Scholar
Champagnon J, Elmberg J, Guillemain M, Gauthier-Clerc M, Lebreton JD (2012) Conspecifics can be aliens too: a review of effects of restocking practices in vertebrates. J Nat Conserv 20(4):231–41
Google Scholar
Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7(5):747–756
Google Scholar
Cross PR, Sacks BN, Luikart G, Schwartz MK, Van Etten KW, Crabtree RL (2018) Red Fox Ancestry and Connectivity Assessments Reveal Minimal Fur Farm Introgression in Greater Yellowstone Ecosystem. J Fish Wildl Manag 9(2):519–530
Google Scholar
Dalquest, WW (1948) Mammals of Washington, Vol II. University of Kansas Publications, Museum of Natural History, Lawrence, KansasDevenish-Nelson ES, Harris S, Soulsbury CD, Richards SA, Stephens PA (2013) Demography of a carnivore, the red fox, Vulpes vulpes: what have we learnt from 70 years of published studies? Oikos 122(5):705–16
Google Scholar
Do C, Waples RS, Peel D, Macbeth G, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14(1):209–214CAS
PubMed
Google Scholar
Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26(9):1963–1973CAS
PubMed
Google Scholar
Earl DA, vonHoldt BM (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361
Google Scholar
Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 6(3):463–75
Google Scholar
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587CAS
PubMed
PubMed Central
Google Scholar
Fichter E, Williams R (1967) Distribution and status of the red fox in Idaho. J Mammal 48(2):219–230
Google Scholar
Fitzpatrick SW, Bradburd GS, Kremer CT, Salerno PE, Angeloni LM, Funk WC (2020) Genomic and fitness consequences of genetic rescue in wild populations. Curr Biol 30(3):517–22CAS
PubMed
Google Scholar
Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10(6):1500–8
Google Scholar
Frankham R (2015) Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24(11):2610–2618PubMed
Google Scholar
Frankham R, Ballou JD, Eldridge MD, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25(3):465–75PubMed
Google Scholar
Frankham R, Ballou JD, Ralls K, Eldridge MD, Dudash MR, Fenster CB et al. (2017) Genetic management of fragmented animal and plant populations. Oxford University Press, New York, NY
Google Scholar
Fuhrmann RT (1998) Distribution, Morphology, and Habitat Use of the Red Fox in the Northern Yellowstone Ecosystem. MSc Thesis, Montana State University, Bozeman, MontanaGortázar C, Travaini A, Delibes M (2000) Habitat-related microgeographic body size variation in two Mediterranean populations of red fox (Vulpes vulpes). J Zool Lond 250:335–338
Google Scholar
Gosselink TE, Piccolo KA, Van Deelen TR, Warner RE, Mankin PC (2010) Natal dispersal and philopatry of red foxes in urban and agricultural areas of Illinois. J Wildl Manag 74(6):1204–17
Google Scholar
Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5(1):184–186
Google Scholar
Green GA, Sacks BN, Erickson LJ, Aubry KB (2017) Genetic characteristics of red foxes in northeastern Oregon. Northwest Naturalist 98(2):73–81
Google Scholar
Grinnell J, Dixon JS, Linsdale JM (1937) Fur-Bearing Mammals of California, Vol II. University of California Press, Berkeley, California
Google Scholar
Hall E, Kelson KR (1959) The Mammals of North America. 2 Vols. Ronald Press, New York, NY
Google Scholar
Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8(5):461–7PubMed
Google Scholar
Harris K, Zhang Y, Nielsen R (2019) Genetic rescue and the maintenance of native ancestry. Conserv Genet 20(1):59–64
Google Scholar
Hedrick PW, Peterson RO, Vucetich LM, Adams JR, Vucetich JA (2014) Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population. Conserv Genet 15(5):1111–21
Google Scholar
Hiller TL, McFadden-Hiller JE, Sacks BN (2015) Genetic and photographic detections document Sierra Nevada red fox in the Northern Cascades of Oregon. Northwest Sci 89(4):409–13
Google Scholar
Hoffmann M, Sillero-Zubiri C (2021) Vulpes vulpes (amended version of 2016 assessment). IUCN Red List Threatened Species 2021:e.T23062A193903628. https://doi.org/10.2305/IUCN.UK.2021-1.RLTS.T23062A193903628.en. Accessed 23 September 2021Article
Google Scholar
Hoffmann RS, Wright PL, Newby FE (1969) The distribution of some mammals in Montana I. Mammals other than bats. J Mammal 50(3):579–604
Google Scholar
Hope AG, Malaney JL, Bell KC, Salazar-Miralles F, Chavez AS, Barber BR et al. (2016) Revision of widespread red squirrels (genus: Tamiasciurus) highlights the complexity of speciation within North American forests. Mol Phylogenet Evol 100:170–82PubMed
Google Scholar
Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806CAS
PubMed
Google Scholar
Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405CAS
PubMed
Google Scholar
Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94PubMed
PubMed Central
Google Scholar
Kamler JF, Ballard WB (2002) A review of native and nonnative red foxes in North America. Wildlife Soc Bullet 30(2):370–379Kamler JF, Ballard WB (2003) Range expansion of red foxes in eastern Nevada and western Utah. J Arizona-Nevada Acad Sci 36(1):18–20Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW (2016) Genomics advances the study of inbreeding depression in the wild. Evolut Appl 9(10):1205–18
Google Scholar
Kasprowicz AE, Statham MJ, Sacks BN (2016) Fate of the other redcoat: remnants of colonial British foxes in the eastern United States. J Mammal 97(1):298–309
Google Scholar
Kuchler A (1964) Potential natural vegetation of the conterminous United States. Am Geogr Soc Spec Publ 36:1–116Kyriazis CC, Wayne RK, Lohmueller KE (2021) Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol Lett 5(1):33–47PubMed
Google Scholar
Laikre L, Schwartz MK, Waples RS, Ryman N, Group GW (2010) Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol Evol 25(9):520–529PubMed
Google Scholar
Larivière S, Pasitschniak-Arts M (1996) Vulpes vulpes. Mamm Species 537:1–11
Google Scholar
Laut AC (1921) The fur trade of America. Macmillan Company, New York, NY
Google Scholar
Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–6
Google Scholar
Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9(4):753–60
Google Scholar
Lewis JC, Sallee KL, Golightly Jr RT (1999) Introduction and range expansion of nonnative red foxes (Vulpes vulpes) in California. Am Midland Naturalist 142(2):372–381Long J (2003) Introduced mammals of the world: their history, distribution and influence. CSIRO Publishing, Melbourne, Australia
Google Scholar
Lord KA, Larson G, Coppinger RP, Karlsson EK (2020) The history of farm foxes undermines the animal domestication syndrome. Trends Ecol Evol 35(2):125–136PubMed
Google Scholar
Love Stowell SM, Pinzone CA, Martin AP (2017) Overcoming barriers to active interventions for genetic diversity. Biodivers Conserv 26(8):1753–65
Google Scholar
Lounsberry ZT, Quinn CB, Statham MJ, Angulo CL, Kalani TJ, Tiller E et al. (2017) Investigating genetic introgression from farmed red foxes into the wild population in Newfoundland, Canada. Conserv Genet 18(2):383–392
Google Scholar
Mace RU (1970). Oregon’s Furbearing Animals. Oregon State Game Commission, Corvallis, OregonManthey JD, Klicka J, Spellman GM (2012) Is gene flow promoting the reversal of Pleistocene divergence in the Mountain Chickadee (Poecile gambeli)? PLOS ONE 7(11):e49218CAS
PubMed
PubMed Central
Google Scholar
Merson C, Statham MJ, Janecka JE, Lopez RR, Silvy NJ, Sacks BN (2017) Distribution of native and nonnative ancestry in red foxes along an elevational gradient in central Colorado. J Mammal 98(2):365–377
Google Scholar
Miller JM, Cullingham CI, Peery RM (2020) The influence of a priori grouping on inference of genetic clusters: simulation study and literature review of the DAPC method. Heredity 125(5):269–280PubMed
PubMed Central
Google Scholar
Moore M, Brown SK, Sacks BN (2010) Thirty-one short red fox (Vulpes vulpes) microsatellite markers. Mol Ecol Resour 10:404–8PubMed
Google Scholar
Moritz C (1994) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3(4):401–11CAS
Google Scholar
Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51(2):238–254PubMed
Google Scholar
Neel MC, McKelvey K, Ryman N, Lloyd MW, Bull RS, Allendorf FW et al. (2013) Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity 111(3):189–99CAS
PubMed
PubMed Central
Google Scholar
Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, NY
Google Scholar
Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30(7):683–691
Google Scholar
Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26(3):419–20CAS
PubMed
Google Scholar
Perrine JD, Campbell LA, Green GA (2010) Sierra Nevada red fox (Vulpes vulpes necator): a conservation assessment. US Department of Agriculture, Vallejo, CaliforniaPerrine JD, Pollinger JP, Sacks BN, Barrett RH, Wayne RK (2007) Genetic evidence for the persistence of the critically endangered Sierra Nevada red fox in California. Conserv Genet 8(5):1083–1095
Google Scholar
Petersen M (1914) The fur traders and fur bearing animals. Hammond Press, Buffalo, New York, NY
Google Scholar
Petkova D, Novembre J, Stephens M (2016) Visualizing spatial population structure with estimated effective migration surfaces. Nat Genet 48(1):94–100CAS
PubMed
Google Scholar
Petkova (2020) reemsplots2: Generate plots to inspect and visualize the results of EEMS. R package version 0.1.0. https://github.com/dipetkov/eemsPritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959CAS
PubMed
PubMed Central
Google Scholar
Pritchard JK, Wen W, Falush D (2003) Documentation for STRUCTURE Software: Version 2. https://web.stanford.edu/group/pritchardlab/software/readme_structure2.pdf Accessed 3 Dec 2020Quinn CB, Alden PB, Sacks BN (2019) Noninvasive sampling reveals short-term genetic rescue in an insular red fox population. J Heredity 110(5):559–576
Google Scholar
Ralls K, Ballou JD, Dudash MR, Eldridge MD, Fenster CB, Lacy RC et al. (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11(2):e12412
Google Scholar
Ralls K, Sunnucks P, Lacy RC, Frankham R (2020) Genetic rescue: a critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol Conserv 251:108784
Google Scholar
Rando HM, Stutchman JT, Bastounes ER, Johnson JL, Driscoll CA, Barr CS et al. (2017) Y-chromosome Markers for the Red Fox. J Heredity 108(6):678–685CAS
Google Scholar
Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27(1):83–109
Google Scholar
Roest AI (1977) Taxonomic status of the red fox in California. State of California, The Resources Agency, Department of Fish and Game, California Polytechnic State University, San Luis Obispo, CaliforniaRoux C, Fraisse C, Romiguier J, Anciaux Y, Galtier N, Bierne N (2016) Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLOS Biol 14(12):e2000234PubMed
PubMed Central
Google Scholar
Sacks BN, Brazeal JL, Lewis JC (2016) Landscape genetics of the nonnative red fox of California. Ecol Evol 6(14):4775–4791PubMed
PubMed Central
Google Scholar
Sacks B, Lounsberry Z, Rando H, Kluepfel K, Fain S, Brown S et al. (2021) Sequencing red fox Y chromosome fragments to develop phylogenetically informative SNP markers and glimpse male-specific trans-Pacific phylogeography. Genes 12(1):97CAS
PubMed
PubMed Central
Google Scholar
Sacks BN, Moore M, Statham MJ, Wittmer HU (2011) A restricted hybrid zone between native and introduced red fox (Vulpes vulpes) populations suggests reproductive barriers and competitive exclusion. Mol Ecol 20(2):326–341PubMed
Google Scholar
Sacks BN, Statham MJ, Perrine JD, Wisely SM, Aubry KB (2010) North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox. Conserv Genet 11(4):1523–1539
Google Scholar
Saunders G, Coman B, Kinnear J, Braysher M (1995) Managing vertebrate pests: foxes. Bureau of Resource Science and Australian Nature Conservation Agency, Commonwealth of Australia, Canberra
Google Scholar
Sierra Nevada Red Fox Conservation Advisory Team [SCAT] (2022) A Conservation Strategy for the Sierra Nevada Red Fox. California Department of Fish and Wildlife, Sacramento, USA, In pressSeton E (1929) Lives of Game Animals. Doubleday, Doran and Co, New York, NY
Google Scholar
Shaffer ML, Stein BA (2000) Safeguarding our precious heritage. In: Stein BA, Kutner LS, Adams JS (eds) Precious heritage: the status of biodiversity in the United States. Oxford University Press, Oxford, p 301–322
Google Scholar
Shirk A, Cushman S (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11(5):922–934CAS
PubMed
Google Scholar
Sikes RS, Gannon WL, Animal Care and Use Committee of the American Society of Mammalogists (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253
Google Scholar
Statham MJ, Murdoch J, Janecka J, Aubry KB, Edwards CJ, Soulsbury CD et al. (2014) Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories. Mol Ecol 23(19):4813–4830PubMed
Google Scholar
Statham MJ, Sacks BN, Aubry KB, Perrine JD, Wisely SM (2012) The origin of recently established red fox populations in the United States: translocations or natural range expansions? J Mammal 93(1):52–65
Google Scholar
Statham MJ, Trut LN, Sacks BN, Kharlamova AV, Oskina IN, Gulevich RG et al. (2011) On the origin of a domesticated species: identifying the parent population of Russian silver foxes (Vulpes vulpes). Biol J Linn Soc 103(1):168–175
Google Scholar
Szuma E (2008) Evolutionary and climatic factors affecting tooth size in the red fox Vulpes vulpes in the Holarctic. Mammal Res 53(4):289–332
Google Scholar
U.S. Fish and Wildlife Service (2015) Endangered and threatened wildlife and plants; 12-month finding on a petition to list Sierra Nevada red fox as an endangered or threatened species. Fed Reg 80:60989–61028
Google Scholar
U.S. Fish and Wildlife Service (2021) Endangered and threatened wildlife and plants; endangered status for the Sierra Nevada Distinct Population Segment of the Sierra Nevada red fox. Fed Reg 86:41743–41758
Google Scholar
van der Valk T, de Manuel M, Marques-Bonet T, Guschanski K (2021) Estimates of genetic load suggest frequent purging of deleterious alleles in small populations. bioRxiv:696831Verts B, Carraway LN (1998) Land Mammals of Oregon. University of California Press, Berkeley
Google Scholar
Volkmann LA, Statham MJ, Mooers AØ, Sacks BN (2015) Genetic distinctiveness of red foxes in the Intermountain West as revealed through expanded mitochondrial sequencing. J Mammal 96(2):297–307
Google Scholar
Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7(2):167–184
Google Scholar
Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197(2):769–780PubMed
PubMed Central
Google Scholar
Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8(4):753–756PubMed
Google Scholar
Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolut Appl 3(3):244–262
Google Scholar
Waples RS, England PR (2011) Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189(2):633–644PubMed
PubMed Central
Google Scholar
Washington Department of Fish and Wildlife (2015) Washington’s State Wildlife Action Plan: 2015 Update. Washington Department of Fish and Wildlife, Olympia, Washington, USA
Google Scholar
Wei W, Ayub Q, Xue Y, Tyler-Smith C (2013) A comparison of Y-chromosomal lineage dating using either resequencing or Y-SNP plus Y-STR genotyping. Forensic Sci Int- Genet 7:568–572CAS
PubMed
PubMed Central
Google Scholar
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 36:1358–1370Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30(1):42–49PubMed
Google Scholar
Wilder AP, Navarro AY, King SN, Miller WB, Thomas SM, Steiner CC et al. (2020) Fitness costs associated with ancestry to isolated populations of an endangered species. Conserv Genet 21(3):589–601CAS
Google Scholar
Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31(1):39CAS
PubMed
PubMed Central
Google Scholar
Zabel CJ, Taggart SJ (1989) Shift in red fox, Vulpes vulpes, mating system associated with El Niño in the Bering Sea. Anim Behav 38(5):830–838
Google Scholar More