More stories

  • in

    Cultural diversity through the lenses of ecology

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Genetic and morphological variation of Vespa velutina nigrithorax which is an invasive species in a mountainous area

    Kim, J. K., Choi, M. B. & Moon, T. Y. Occurrence of Vespa velutina Lepeletier from Korea, and a revised key for Korean Vespa species (Hymenoptera: Vespidae). Entomol. Res. 36, 112–115 (2006).
    Google Scholar 
    Choi, M. B., Martin, S. J. & Lee, J. W. Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. J. Asia-Pac. Entomol. 15, 473–477 (2012).
    Google Scholar 
    Do, Y. et al. Quantitative analysis of research topics and public concern on V. velutina as invasive species in Asian and European countries. Entomol. Res. 49, 456–461 (2019).
    Google Scholar 
    Kwon, O. & Choi, M. B. Interspecific hierarchies from aggressiveness and body size among the invasive alien hornet, Vespa velutina nigrithorax, and five native hornets in South Korea. PLoS ONE 15, e0226934 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choi, M. B. Foraging behavior of an invasive alien hornet (Vespa velutina) at Apis mellifera hives in Korea: Foraging duration and success. Entomol. Res. 51, 143–148 (2021).
    Google Scholar 
    Turchi, L. & Derijard, B. Options for the biological and physical control of Vespa velutina nigrithorax (Hym.: Vespidae) in Europe: A review. J. Appl. Entomol. 142, 553–562 (2018).CAS 

    Google Scholar 
    Bessa, A. S., Carvalho, J., Gomes, A. & Santarém, F. Climate and land-use drivers of invasion: Predicting the expansion of Vespa velutina nigrithorax into the Iberian Peninsula. Insect Conserv. Divers. 9, 27–37 (2016).
    Google Scholar 
    Rodríguez-Flores, M. S., Seijo-Rodríguez, A., Escuredo, O. & del Carmen Seijo-Coello, M. Spreading of Vespa velutina in northwestern Spain: Influence of elevation and meteorological factors and effect of bait trapping on target and non-target living organisms. J. Pest Sci. 92, 557–565 (2019).
    Google Scholar 
    Robinet, C., Darrouzet, E. & Suppo, C. Spread modelling: A suitable tool to explore the role of human-mediated dispersal in the range expansion of the yellow-legged hornet in Europe. Int. J. Pest Manag. 65, 258–267 (2019).
    Google Scholar 
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Google Scholar 
    Ellstrand, N. C. & Elam, D. R. Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Evol. Syst. 24, 217–242 (1993).
    Google Scholar 
    Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).CAS 
    PubMed 

    Google Scholar 
    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. 101, 8998–9002 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution (Princeton University Press, 2002).
    Google Scholar 
    Porporato, M., Manino, A., Laurino, D. & Demichelis, D. Vespa velutina Lepeletier (Hymenoptera Vespidae): A first assessment 2 years after its arrival in Italy. Redia 97, 189–194 (2014).
    Google Scholar 
    Sauvard, D., Imbault, V. & Darrouzet, É. Flight capacities of yellow-legged hornet (Vespa velutina nigrithorax, Hymenoptera: Vespidae) workers from an invasive population in Europe. PLoS ONE 13, e0198597 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Monceau, K., Bonnard, O., Moreau, J. & Thiéry, D. Spatial distribution of Vespa velutina individuals hunting at domestic honeybee hives: Heterogeneity at a local scale. Insect Sci. 21, 765–774 (2014).PubMed 

    Google Scholar 
    Choi, M. B., Lee, S. A., Suk, H. Y. & Lee, J. W. Microsatellite variation in colonizing populations of yellow-legged Asian hornet, Vespa velutina nigrithorax, South Korea. Entomol. Res. 43, 208–214 (2013).
    Google Scholar 
    Jeong, J. S. et al. Tracing the invasion characteristics of the yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Korea using newly detected variable mitochondrial DNA sequences. J. Asia-Pac. Entomol. 24(2), 135–147 (2021).MathSciNet 

    Google Scholar 
    Villemant, C. et al. Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol. Conserv. 144, 2142–2150 (2011).
    Google Scholar 
    Kishi, S. & Goka, K. Review of the invasive yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Japan and its possible chemical control. Appl. Entomol. Zool. 52, 361–368 (2017).
    Google Scholar 
    Arca, M. et al. Development of microsatellite markers for the yellow-legged Asian hornet, Vespa velutina, a major threat for European bees. Conserv. Genet. Resour. 4, 283–286 (2012).
    Google Scholar 
    Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Res. 8, 103–106 (2008).
    Google Scholar 
    Peakall, P. & Smouse, R. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Oksanen, J. et al. The vegan package. 10, 719 (2007).Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, S. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. Resour. 14, 2611–2620 (2005).CAS 

    Google Scholar 
    Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waraniak, J. M., Fisher, J. D., Purcell, K., Mushet, D. M. & Stockwell, C. A. Landscape genetics reveal broad and fine-scale population structure due to landscape features and climate history in the northern leopard frog (Rana pipiens) in North Dakota. Ecol. Evol. 9, 1041–1060 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rohlf, F. J. tpsDig, version 2.10. http://life.bio.sunysb.edu/morph/index.html (2006).Zimmermann, G. et al. Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zool. 93, 492–500 (2012).
    Google Scholar  More

  • in

    A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs

    Bokulich, N. A. et al. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. MBio, https://doi.org/10.1128/mBio.00631-16 (2016).Zohary, D. The Domestication of the Grapevine Vitis Vinifera L. in the Near East (Chapter 2) in The Origins and Ancient History of Wine (eds McGovern, P. E., Katz, S. H. & Fleming, S. J.) 21–28. (Routledge, 2003).Whalen, P. ‘Insofar as the ruby wine seduces them’: cultural strategies for selling wine in inter-war Burgundy. Contemp. Eur. Hist. 18, 67–98 (2009).
    Google Scholar 
    Østerlie, M. & Wicklund, T. In Nutritional and Health Aspects of Food in Nordic Countries (eds Bar, E., Wirtanen, G. & Veslemøy Andersen, V.) Ch. 2 (Elsevier Inc., 2018).Planète Terroirs. The future needs terroirs. https://planeteterroirs.org/ (2010).California Wine-Growing Regions, https://discovercaliforniawines.com/wine-map-winery-directory/Agricultura, M. D. E. & Ambiente. Compendio informativo en relación con las DOPs/IGPs y terminos tradicionales de vino, las indicaciones geograficas de bebidas espirituosas, y las indicaciones geograficas de productos vitivinicolas aromatizados. https://www.mapa.gob.es/es/alimentacion/temas/calidad-diferenciada/relaciondisposicionesdopseigpsdevinosbbeevinosaromatiz_tcm30-432336.pdf (2016).Ballantyne, D., Terblanche, N. S., Lecat, B. & Chapuis, C. Old world and new world wine concepts of terroir and wine: perspectives of three renowned non-French wine makers. J. Wine Res. 30, 122–143 (2019).
    Google Scholar 
    OIV. Resolution OIV/VITI 333/2010, definition of vitivinicultural “terroir”. https://www.oiv.int/public/medias/379/viti-2010-1-en.pdf (2010).Belda, I., Zarraonaindia, I., Perisin, M., Palacios, A. & Acedo, A. From vineyard soil to wine fermentation: microbiome approximations to explain the ‘terroir’ Concept. Front. Microbiol. 8, 1–12 (2017).
    Google Scholar 
    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. MBio 6, 1–10 (2015).CAS 

    Google Scholar 
    Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by vineyard management. Soil Biol. Biochem. 103, 337–348 (2016).CAS 

    Google Scholar 
    Bokulich, N. A., Joseph, C. M. L., Allen, G., Benson, A. K. & Mills, D. A. Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS ONE 7, 3–12 (2012).
    Google Scholar 
    Portillo, M., del, C., Franquès, J., Araque, I., Reguant, C. & Bordons, A. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 219, 56–63 (2016).
    Google Scholar 
    Mezzasalma, V. et al. Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. PLoS ONE 12, 1–20 (2017).
    Google Scholar 
    Hermans, S. M. et al. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 8, 1–13 (2020).
    Google Scholar 
    OIV. Functional biodiversity in the vineyard. https://www.oiv.int/public/medias/6367/functional-biodiversity-in-the-vineyard-oiv-expertise-docume.pdf (2018).Ortiz-Álvarez, R. et al. Network properties of local fungal communities reveal the anthropogenic disturbance consequences of farming practices in vineyard soils. mSystems 6, e00344-21 (2021).Knight, S., Klaere, S., Fedrizzi, B. & Goddard, M. R. Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Sci. Rep. 5, 1–10 (2015).
    Google Scholar 
    Belda, I. et al. Unraveling the enzymatic basis of wine ‘flavorome’: a phylo-functional study of wine related yeast species. Front. Microbiol. 7, 1–13 (2016).
    Google Scholar 
    Gilbert, J. A., van der Lelie, D. & Zarraonaindia, I. Microbial terroir for wine grapes. Proc. Natl Acad. Sci. USA 111, 5–6 (2014).CAS 
    PubMed 

    Google Scholar 
    Belda, I. et al. Microbiomics to Define Wine Terroir (Chapter: 3.32) in Comprehensive Foodomics (Ed. Cifuentes, A.) 438–451 (Elsevier, 2021).Van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).Altieri, M. A. In Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes (1999).Brussaard, L., de Ruiter, P. C. & Brown, G. G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 121, 233–244 (2007).Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).Wei, Y. J. et al. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS ONE 13, 1–17 (2018).
    Google Scholar 
    Liao, J., Xu, Q., Xu, H. & Huang, D. Natural farming improves soil quality and alters microbial diversity in a cabbage field in Japan. Sustain 11, 1–16 (2019).
    Google Scholar 
    Yan, J. et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319, 194–203 (2018).CAS 

    Google Scholar 
    Qiao, Q. et al. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7, 1–10 (2017).
    Google Scholar 
    Pacchioni, R. G. et al. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil. Microbiologyopen 3, 299–315 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ishaq, S. L. et al. Impact of cropping systems, soil inoculum, and plant species identity on soil bacterial community structure. Microb. Ecol. 73, 417–434 (2017).CAS 
    PubMed 

    Google Scholar 
    Verkley, G. J. M., Da Silva, M., Wicklow, D. T. & Crous, P. W. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud. Mycol. 50, 323–335 (2004).
    Google Scholar 
    Thomma, B. P. H. J. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4, 225–236 (2003).CAS 
    PubMed 

    Google Scholar 
    Mašínová, T. et al. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol. Ecol. 93, 1–10 (2017).
    Google Scholar 
    Chen, J., Xu, L., Liu, B. & Liu, X. Taxonomy of Dactylella complex and Vermispora. III. A new genus Brachyphoris and revision of Vermispora. Fungal Divers. 26, 127–142 (2014).Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol. Biochem. 91, 232–247 (2015).Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl Acad. Sci. USA 111, 139–148 (2014).
    Google Scholar 
    Castañeda, L. E. & Barbosa, O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5, e3098 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Coller, E. et al. Microbiome of vineyard soils is shaped by geography and management. Microbiome 7, 1–15 (2019).
    Google Scholar 
    Zhou, J. et al. Wine terroir and the soil bacteria: an amplicon sequencing–based assessment of the Barossa Valley and its sub-regions. Front. Microbiol. 11, 1–15 (2021).
    Google Scholar 
    Price, C. A. et al. Testing the metabolic theory of ecology. Ecol. Lett. 15, 1465–1474 (2012).PubMed 

    Google Scholar 
    Jenerette, G. D., Scott, R. L. & Huxman, T. E. Whole ecosystem metabolic pulses following precipitation events. Funct. Ecol. 22, 924–930 (2008).
    Google Scholar 
    Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 1–9 (2019).
    Google Scholar 
    Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D. & Kursar, T. A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 3, 267–274 (2000).
    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1052–1053 (2014).
    Google Scholar 
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bintrim, S. B., Donohue, T. J., Handelsman, J., Roberts, G. P. & Goodman, R. M. Molecular phylogeny of Archaea from soil. Proc. Natl Acad. Sci. USA 94, 277–282 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, H. M., Dodsworth, J. A. & Goodman, R. M. Crenarchaeota colonize terrestrial plant roots. Environ. Microbiol. 2, 495–505 (2000).CAS 
    PubMed 

    Google Scholar 
    Buckley, D. H., Graber, J. R. & Schmidt, T. M. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl. Environ. Microbiol. 64, 4333–4339 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L. & Schleper, C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5, 787–797 (2003).CAS 
    PubMed 

    Google Scholar 
    Kemnitz, D., Kolb, S. & Conrad, R. High abundance of Crenarchaeota in a temperate acidic forest soil. FEMS Microbiol. Ecol. 60, 442–448 (2007).CAS 
    PubMed 

    Google Scholar 
    Zhalnina, K. et al. Ca. nitrososphaera and bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front. Microbiol. 4, 1–13 (2013).
    Google Scholar 
    Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259 (2012).CAS 
    PubMed 

    Google Scholar 
    Yurkov, A. M. Yeasts of the soil—obscure but precious. Yeast 35, 369–378 (2018).CAS 
    PubMed 

    Google Scholar 
    Kachalkin, A. V., Abdullabekova, D. A., Magomedova, E. S., Magomedov, G. G. & Chernov, I. Y. Yeasts of the vineyards in Dagestan and other regions. Microbiology 84, 425–432 (2015).CAS 

    Google Scholar 
    Čadež, N., Zupan, J. & Raspor, P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10, 619–630 (2010).PubMed 

    Google Scholar 
    Comitini, F. & Ciani, M. Influence of fungicide treatments on the occurrence of yeast flora associated with wine grapes. Ann. Microbiol. 58, 489–493 (2008).
    Google Scholar 
    Kepler, R. M., Maul, J. E. & Rehner, S. A. Managing the plant microbiome for biocontrol fungi: examples from Hypocreales. Curr. Opin. Microbiol. 37, 48–53 (2017).CAS 
    PubMed 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 

    Google Scholar 
    Liu, D. & Howell, K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ. Microbiol. 23, 1842–1857 (2021).CAS 
    PubMed 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Bacteria found in soil. Science 325, 320–325 (2018).
    Google Scholar 
    Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).Alonso, A. et al. Looking at the origin: Some insights into the general and fermentative microbiota of vineyard soils. Fermentation 5, 1–15 (2019).
    Google Scholar 
    OIV. Resolution OIV-VITI 655-2021. OIV recommendations about valuation and importance of microbial biodiversity in a sustainable vitiviniculture context. https://www.oiv.int/public/medias/8097/en-oiv-viti-655-2021.pdf (2021).Vishnivetskaya, T. A. et al. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiol. Ecol. 87, 217–230 (2014).CAS 
    PubMed 

    Google Scholar 
    Gobbi, A. et al. Quantitative and qualitative evaluation of the impact of the G2 enhancer, bead sizes and lysing tubes on the bacterial community composition during DNA extraction from recalcitrant soil core samples based on community sequencing and qPCR. PLoS One 14, e0200979 (2019).Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 37, 852–857 (2018).Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021-18 (2018).Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).Chen, H. VennDiagram: generate high-resolution Venn and Euler plots. R. Packag. Version 1, 1 (2018).
    Google Scholar 
    Salonen, A., Salojärvi, J., Lahti, L. & de Vos, W. M. The adult intestinal core microbiota is determined by analysis depth and health status. Clin. Microbiol. Infect. 18, 16–20 (2012).CAS 
    PubMed 

    Google Scholar 
    Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Model. 15, 134–158 (2015).
    Google Scholar 
    Oksanen, J. et al. vegan: community ecology package. R package version 2.4-3. Vienna R Found. Stat. Comput. Sch. (2016).Wright, M. N. & Ziegler, A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).Team, R. C. R: a language and environment for statistical computing. (2019).Henschel, A., Anwar, M. Z. & Manohar, V. Comprehensive meta-analysis of ontology annotated 16S rRNA profiles identifies beta diversity clusters of environmental bacterial communities. PLoS Comput. Biol. 11, 1–24 (2015).
    Google Scholar 
    Lozupone, C. A. et al. Meta-analyses of studies of the human microbiota. Genome Res. 23, 1704–1714 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pauvert, C. et al. Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. 41, 23–33 (2019).Gobbi, A., Kyrkou, I., Filippi, E., Ellegaard-Jensen, L. & Hansen, L. H. Seasonal epiphytic microbial dynamics on grapevine leaves under biocontrol and copper fungicide treatments. Sci. Rep. 10, 681 (2020).Engelbrektson, A. et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 4, 642–647 (2010).CAS 
    PubMed 

    Google Scholar 
    Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407 (2019). More

  • in

    Newly initiated carbon stock, organic soil accumulation patterns and main driving factors in the High Arctic Svalbard, Norway

    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar 
    Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).ADS 
    Article 

    Google Scholar 
    Danell, K. What Is the Arctic? In Which Ways Is the Arctic Different? In Arctic Ecology (ed. Thomas, D. N.) 1–22 (University of Helsinki, 2021).
    Google Scholar 
    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles 23(2), 1–11. https://doi.org/10.1029/2008GB003327 (2009).CAS 
    Article 

    Google Scholar 
    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. U.S.A. 117(34), 20438–20446. https://doi.org/10.1073/pnas.1916387117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24(9), 1028–1042. https://doi.org/10.1177/0959683614538073 (2014).ADS 
    Article 

    Google Scholar 
    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Chang. 8(10), 907–913. https://doi.org/10.1038/s41558-018-0271-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Yu, Z., Beilman, D. W. & Jones, M. C. Sensitivity of Northern Peatland carbon dynamics to holocene climate change. Carbon Cycl. Northern Peatl. C https://doi.org/10.1029/2008GM000822 (2009).Article 

    Google Scholar 
    Svendsen, J. & Mangerud, J. Paleoclimatic inferences from glacial fluctuations on Svalbard during the last 20 000 years. Clim. Dyn. 6(3–4), 213–220. https://doi.org/10.1007/BF00193533 (1992).Article 

    Google Scholar 
    Farnsworth, W. R. et al. Holocene glacial history of Svalbard: Status, perspectives and challenges. Earth Sci. Rev. 208(April), 103249. https://doi.org/10.1016/j.earscirev.2020.103249 (2020).CAS 
    Article 

    Google Scholar 
    D’Andrea, W. J. et al. Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40(11), 1007–1010. https://doi.org/10.1130/G33365.1 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Miller, G. H., Landvik, J. Y., Lehman, S. J. & Southon, J. R. Episodic Neoglacial snowline descent and glacier expansion on Svalbard reconstructed from the 14C ages of ice-entombed plants. Quatern. Sci. Rev. 155, 67–78. https://doi.org/10.1016/j.quascirev.2016.10.023 (2017).ADS 
    Article 

    Google Scholar 
    Røthe, T. O. et al. Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quatern. Sci. Rev. 109, 111–125. https://doi.org/10.1016/j.quascirev.2014.11.017 (2015).Article 

    Google Scholar 
    van der Bilt, W. G. M. et al. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quatern. Sci. Rev. 126, 201–218. https://doi.org/10.1016/j.quascirev.2015.09.003 (2015).ADS 
    Article 

    Google Scholar 
    Allaart, L. et al. Glacial history of the Åsgardfonna Ice Cap, NE Spitsbergen, since the last glaciation. Quatern. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106717 (2021).Article 

    Google Scholar 
    Humlum, O. et al. Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. Holocene 15(3), 396–407. https://doi.org/10.1191/0959683605hl817rp (2005).ADS 
    Article 

    Google Scholar 
    Yang, Z., Yang, W., Yuan, L., Wang, Y. & Sun, L. Evidence for glacial deposits during the Little Ice Age in Ny-Alesund, western Spitsbergen. J. Earth Syst. Sci. https://doi.org/10.1007/s12040-019-1274-7 (2020).Article 

    Google Scholar 
    AMAP – ARCTIC MONITORING AND ASSESSMENT PROGRAMME. (2019). Arctic Climate Change Update 2019: An update to key findings of Snow, Water, Ice, and Permafrost in the Arctic (SWIPA) 2017. Assessment Report, 12. https://www.amap.no/documents/doc/amap-climate-change-update-2019/1761.Nordli, Ø. et al. Polar Res. 39, 3614. https://doi.org/10.33265/polar.v39.3614 (2020).Article 

    Google Scholar 
    Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. Temperature and precipitation development at svalbard 1900–2100. Adv. Meteorol. 2011, 1–14. https://doi.org/10.1155/2011/893790 (2011).Article 

    Google Scholar 
    Van Der Knaap, W. O. (1988). A pollen diagram from Broggerhalvoya, Spitsbergen: changes in vegetation and environment from ca. 4400 to ca. 800 BP. Arctic & Alpine Research, 20(1), 106–116. Doi: https://doi.org/10.2307/1551703Rozema, J. et al. A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard. Plant Ecol. 182(1–2), 155–173. https://doi.org/10.1007/s11258-005-9024-0 (2006).Article 

    Google Scholar 
    Nakatsubo, T. et al. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration. Polar Sci. 9(2), 267–275. https://doi.org/10.1016/j.polar.2014.12.002 (2015).ADS 
    Article 

    Google Scholar 
    Magnússon, B., Magnússon, S. & Fridriksson, S. (2009). Developments in plant colonization and succession on Surtsey during 1999–2008. Surtsey Res. pp. 57–76.Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36(3), 363–372. https://doi.org/10.1007/s00300-012-1265-5 (2013).Article 

    Google Scholar 
    Leblans, N. I. W. et al. Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island Surtsey. Biogeosciences 11(22), 6237–6250. https://doi.org/10.5194/bg-11-6237-2014 (2014).ADS 
    Article 

    Google Scholar 
    Zmudczyńska-Skarbek, K. et al. Transfer of ornithogenic influence through different trophic levels of the Arctic terrestrial ecosystem of Bjørnøya (Bear Island), Svalbard. Soil Biol. Biochem. 115, 475–489. https://doi.org/10.1016/j.soilbio.2017.09.008 (2017).CAS 
    Article 

    Google Scholar 
    Hodkinson, I. D., Coulson, S. J. & Webb, N. R. Community assembly along proglacial chronosequences in the high arctic: vegetation and soil development in north-west Svalbard. J. Ecol. 91(4), 651–663. https://doi.org/10.1046/j.1365-2745.2003.00786.x (2003).Article 

    Google Scholar 
    Ravolainen, V. et al. High Arctic ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research. Ambio 49(3), 666–677. https://doi.org/10.1007/s13280-019-01310-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van der Wal, R. & Brooker, R. W. Mosses mediate grazer impacts on grass abundance in arctic ecosystems. Funct. Ecol. 18(1), 77–86. https://doi.org/10.1111/j.1365-2435.2004.00820.x (2004).Article 

    Google Scholar 
    Vanderpuye, A. W., Elvebakk, A. & Nilsen, L. Plant communities along environmental gradients of high-arctic mires in Sassendalen Svalbard. J. Veg. Sci. 13(6), 875–884. https://doi.org/10.1111/j.1654-1103.2002.tb02117.x (2002).Article 

    Google Scholar 
    Le Moullec, M., Pedersen, Å. Ø., Stien, A., Rosvold, J. & Hansen, B. B. A century of conservation: the ongoing recovery of svalbard reindeer. J. Wildl. Manag. 83(8), 1676–1686. https://doi.org/10.1002/jwmg.21761 (2019).Article 

    Google Scholar 
    Garfelt-Paulsen, I. M. et al. Don’t go chasing the ghosts of the past: habitat selection and site fidelity during calving in an Arctic ungulate. Wildl. Biol. https://doi.org/10.2981/wlb.00740 (2021).Article 

    Google Scholar 
    Moreau, M., Mercier, D., Laffly, D. & Roussel, E. Impacts of recent paraglacial dynamics on plant colonization: a case study on Midtre Lovénbreen foreland, Spitsbergen (79°N). Geomorphology 95(1–2), 48–60. https://doi.org/10.1016/j.geomorph.2006.07.031 (2008).ADS 
    Article 

    Google Scholar 
    Moreau, M., Laffly, D. & Brossard, T. Recent spatial development of Svalbard strandflat vegetation over a period of 31 years. Polar Res. 28(3), 364–375. https://doi.org/10.1111/j.1751-8369.2009.00119.x (2009).Article 

    Google Scholar 
    Wietrzyk, P., Wȩgrzyn, M. & Lisowska, M. Vegetation diversity and selected abiotic factors influencing the primary succession process on the foreland of Gåsbreen Svalbard. Pol. Polar Res. 37(4), 493–509. https://doi.org/10.1515/popore-2016-0026 (2016).Article 

    Google Scholar 
    Divine, D. et al. Thousand years of winter surface air temperature variations in Svalbard and northern norway reconstructed from ice-core data. Polar Res. 30(SUPPL.1), 1–12. https://doi.org/10.3402/polar.v30i0.7379 (2011).ADS 
    Article 

    Google Scholar 
    Van Pelt, W. et al. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). Cryosphere 13(9), 2259–2280. https://doi.org/10.5194/tc-13-2259-2019 (2019).ADS 
    Article 

    Google Scholar 
    Johansen, B. E., Karlsen, S. R. & Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 48(1), 47–63. https://doi.org/10.1017/S0032247411000647 (2012).Article 

    Google Scholar 
    Norwegian Polar Institute. Available online at: https://npolar.no (2021).Norwegian Meteorological Institute. Available online at: https://seklima.met.no (2019).Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468(November), 129–141. https://doi.org/10.1016/j.palaeo.2016.11.039 (2017).Article 

    Google Scholar 
    Estop-Aragonés, C. et al. Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands. Soil Biol. Biochem. 118, 115–129. https://doi.org/10.1016/j.soilbio.2017.12.010 (2018).CAS 
    Article 

    Google Scholar 
    Blaauw, M., Christen, J. A. & Aquino-Lopez, M. A. rplum: Bayesian Age-Depth Modelling of Cores Dated by Pb-210. R package version 0.2.2. https://CRAN.R-project.org/package=rplum (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020).Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 25(1), 101–110. https://doi.org/10.1023/A:1008119611481 (2001).ADS 
    Article 

    Google Scholar 
    Booth, R. K., Lamentowicz, M. & Charman, D. J. Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies. Mires and Peat 7(2), 1–7 (2010).
    Google Scholar 
    Charman, D., Hendon, D. & Woodland, W. A. The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats (Quaternary Research Association, 2000).
    Google Scholar 
    Siemensma, F. J. Microworld, world of Amoeboid Organisms. World-Wide Electronic Publication, Kortenhoef, the Netherlands. Available online at: https://www.arcella.nl (2019).Payne, R. J. & Mitchell, E. A. D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42(4), 483–495. https://doi.org/10.1007/s10933-008-9299-y (2009).ADS 
    Article 

    Google Scholar 
    Swindles, G. T. et al. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data. Q. Sci. Rev. 120, 107–117. https://doi.org/10.1016/j.quascirev.2015.04.019 (2015).ADS 
    Article 

    Google Scholar 
    Amesbury, M. J. et al. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quatern. Sci. Rev. 152, 132–151. https://doi.org/10.1016/j.quascirev.2016.09.024 (2016).ADS 
    Article 

    Google Scholar 
    Amesbury, M. J. et al. Towards a Holarctic synthesis of peatland testate amoeba ecology: Development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data. Quatern. Sci. Rev. 201, 483–500. https://doi.org/10.1016/j.quascirev.2018.10.034 (2018).ADS 
    Article 

    Google Scholar 
    Zhang, H. et al. Testate amoeba as palaeohydrological indicators in the permafrost peatlands of north-east European Russia and Finnish Lapland. J. Quat. Sci. 32(7), 976–988. https://doi.org/10.1002/jqs.2970 (2017).Article 

    Google Scholar 
    Sim, T. G. et al. Pathways for Ecological Change in Canadian High Arctic Wetlands Under Rapid Twentieth Century Warming. Geophys. Res. Lett. 46(9), 4726–4737. https://doi.org/10.1029/2019GL082611 (2019).ADS 
    Article 

    Google Scholar 
    Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecol. Lett. 15(2), 164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x (2012).Article 
    PubMed 

    Google Scholar 
    Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nat. Clim. Chang. 4(1), 51–55. https://doi.org/10.1038/nclimate2058 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bjorkman, A. D. et al. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 49(3), 678–692. https://doi.org/10.1007/s13280-019-01161-6 (2020).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Egli, M., Mavris, C., Mirabella, A. & Giaccai, D. Soil organic matter formation along a chronosequence in the Morteratsch proglacial area (Upper Engadine, Switzerland). CATENA 82(2), 61–69. https://doi.org/10.1016/j.catena.2010.05.001 (2010).CAS 
    Article 

    Google Scholar 
    Prach, K. & Rachlewicz, G. Succession of vascular plants in front of retreating glaciers in central Spitsbergen. Polish Polar Research 33(4), 319–328. https://doi.org/10.2478/v10183-012-0022-3 (2012).Article 

    Google Scholar 
    Låg, J. Special Peat Formations in Svalbard. Acta Agric. Scand. 30(2), 205–210. https://doi.org/10.1080/00015128009435267 (1980).Article 

    Google Scholar 
    Serebryannyy, L. P., Tishkov, A. A., Malyasova, Y. S., Solomina, O. N. & Il’ves, E. O.,. Reconstruction of the development of vegetation in Arctic high latitudes. Polar Geogr. Geol. 9(4), 308–320. https://doi.org/10.1080/10889378509377261 (1985).Article 

    Google Scholar 
    Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Punning, Y. M. K. Glacioclimatic conditions in the european arctic in the late holocene. Polar Geogr. Geol. 11(1), 50–57. https://doi.org/10.1080/10889378709377310 (1987).Article 

    Google Scholar 
    Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Troitskiy, Y. M. K. Changes in glacioclimatic conditions on svalbard during the subboreal period. Polar Geogr. Geol. 12(3), 221–226. https://doi.org/10.1080/10889378809377366 (1988).Article 

    Google Scholar 
    Låg, J. Peat Accumulation in Steep Hills at Alkhornet Spitsbergen. Acta Agric. Scand. 40(3), 217–219. https://doi.org/10.1080/00015129009438554 (1990).Article 

    Google Scholar 
    Oliva, M. et al. Sedimentological characteristics of ice-wedge polygon terrain in adventdalen (Svalbard) environmental and climatic implications for the late Holocene. Solid Earth 5(2), 901–914. https://doi.org/10.5194/se-5-901-2014 (2014).ADS 
    Article 

    Google Scholar 
    Van der Knaap, W. O. Past Vegetation and Reindeer on Edgeoya (Spitsbergen) Between c. 7900 and c. 3800 BP, Studied by Means of Peat Layers and Reindeer Faecal Pellets. J. Biogeogr. 16(4), 379. https://doi.org/10.2307/2845229 (1989).Article 

    Google Scholar 
    Røthe, T. O., Bakke, J., Støren, E. W. N. & Bradley, R. S. Reconstructing holocene glacier and climate fluctuations from lake sediments in Vårfluesjøen Northern Spitsbergen. Front. Earth Sci. 6(July), 1–20. https://doi.org/10.3389/feart.2018.00091 (2018).Article 

    Google Scholar 
    Alsos, I. G. et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene 26(4), 627–642. https://doi.org/10.1177/0959683615612563 (2016).ADS 
    Article 

    Google Scholar 
    Klimowicz, Z., Melke, J. & Uziak, S. Peat soils in the Bellsund region Spitsbergen. Pol. Polar Res. 18(1), 25–39 (1997).
    Google Scholar 
    Yang, Z. et al. Total photosynthetic biomass record between 9400 and 2200 BP and its link to temperature changes at a High Arctic site near Ny-Ålesund Svalbard. Polar Biol. 42(5), 991–1003. https://doi.org/10.1007/s00300-019-02493-5 (2019).Article 

    Google Scholar 
    Vickers, H. et al. Changes in greening in the high arctic: insights from a 30-year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/11/10/105004 (2016).Article 

    Google Scholar 
    Van Der Knaap, W. O. Human influence on natural Arctic vegetation in the 17th century and climatic change since AD 1600 in northwest Spitsbergen: a paleobotanical study. Arct. Alp. Res. 17(4), 371–387. https://doi.org/10.2307/1550863 (1985).Article 

    Google Scholar 
    Martín-Moreno, R., Allende Álvarez, F. & Hagen, J. O. ‘Little Ice Age’ glacier extent and subsequent retreat in Svalbard archipelago. Holocene 27(9), 1379–1390. https://doi.org/10.1177/0959683617693904 (2017).ADS 
    Article 

    Google Scholar 
    Rachlewicz, G., Szczuziński, W. & Ewertowski, M. Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen Svalbard. Pol. Polar Res. 28(3), 159–186 (2007).
    Google Scholar 
    Matthews, J. A. & Whittaker, R. J. Vegetation succession on the storbreen glacier foreland, Jotunheimen, Norway : a review. Arct. Alp. Res. 19(4), 385–395 (1987).Article 

    Google Scholar 
    Beyens, L. & Chardez, D. Evidence from testate amoebae for changes in some local hydrological conditions between c. 5000 BP and c. 3800 BP on Edgeøya (Svalbard). Polar Res. 5(2), 165–169. https://doi.org/10.1111/j.1751-8369.1987.tb00619.x (1987).Article 

    Google Scholar 
    Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/10/9/094011 (2015).Article 

    Google Scholar 
    Isaksen, K., Benestad, R. E., Harris, C. & Sollid, J. L. Recent extreme near-surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophys. Res. Lett. 34(17), 1–5. https://doi.org/10.1029/2007GL031002 (2007).Article 

    Google Scholar 
    Cable, S., Elberling, B. & Kroon, A. Holocene permafrost history and cryostratigraphy in the High-Arctic Adventdalen Valley, central Svalbard. Boreas 47(2), 423–442. https://doi.org/10.1111/bor.12286 (2018).Article 

    Google Scholar 
    König, M., Kohler, J. & Nuth, C. Glacier Area Outlines–Svalbard, v1.0, http://data.npolar.no/dataset/89f430f8-862f-11e2-8036-005056ad0004 Delivered by CryoClim service (2013).Box, J. E. et al. Key indicators of Arctic climate change: 1917–2017. Environ. Res. Lett. 14(4), 045010. https://doi.org/10.1088/1748-9326/aafc1b (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, H. et al. Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries. Glob. Change Biol. 26(4), 2435–2448. https://doi.org/10.1111/gcb.15005 (2020).ADS 
    Article 

    Google Scholar 
    Szymański, W., Wojtuń, B., Stolarczyk, M., Siwek, J. & Waścińska, J. Organic carbon and nutrients (N, P) in surface soil horizons in a non-glaciated catchment SW Spitsbergen. Pol. Polar Res. 37(1), 49–66. https://doi.org/10.1515/popore-2016-0006 (2016).Article 

    Google Scholar 
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11(23), 6573–6593. https://doi.org/10.5194/bg-11-6573-2014 (2014).ADS 
    Article 

    Google Scholar 
    Palmtag, J. et al. Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arct. Antarct. Alp. Res. 47(1), 71–88. https://doi.org/10.1657/AAAR0014-027 (2015).Article 

    Google Scholar 
    Siewert, M. B. et al. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. J. Geophys. Res. Biogeosci. 120, 1973–1994 (2015).CAS 
    Article 

    Google Scholar 
    Wojcik, R., Palmtag, J., Hugelius, G., Weiss, N. & Kuhry, P. Land cover and landform-based upscaling of soil organic carbon stocks on the Brøgger Peninsula, Svalbard. Arct. Antarct. Alp. Res. 51(1), 40–57. https://doi.org/10.1080/15230430.2019.1570784 (2019).Article 

    Google Scholar 
    Yoshitake, S. et al. Vegetation development and carbon storage on a glacier foreland in the High Arctic, Ny-Ålesund Svalbard. Polar Sci. 5(3), 391–397. https://doi.org/10.1016/j.polar.2011.03.002 (2011).ADS 
    Article 

    Google Scholar 
    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475(7357), 489–492. https://doi.org/10.1038/nature10283 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 180(1), 157–167. https://doi.org/10.1016/j.plantsci.2010.09.005 (2011).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Impact of different enzymes on biofilm formation and mussel settlement

    Zobell, C. E. & Allen, E. C. The significance of marine bacteria in the fouling of submerged surfaces. J. Bacteriol. 29, 239–251 (1935).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flemming, H. C. et al. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).CAS 
    PubMed 

    Google Scholar 
    Shikuma, N. J. & Hadfield, M. G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 26, 39–46 (2010).CAS 
    PubMed 

    Google Scholar 
    Maki, J., Rittschof, D., Schmidt, A., Snyder, A. & Mitchell, R. Factors controlling attachment of bryozoan larvae: A comparison of bacterial films and unfilmed surfaces. Biol. Bull. 177, 295–302 (1989).
    Google Scholar 
    Satuito, C. G., Natoyama, K., Yamazaki, M. & Fusetani, N. Inductin of attachment and metamorphosis of laboratory cultures mussel Mytilus edulis galloprovincialis larvae by microbial film. Fish. Sci. 61, 223–227 (1995).CAS 

    Google Scholar 
    Bao, W., Yang, J., Satuito, C. G. & Kitamura, H. Larval metamorphosis of the mussel Mytilus galloprovincialis in response to Alteromonas sp. 1: Evidence for two chemical cues?. Mar. Biol. 152, 657–666 (2007).
    Google Scholar 
    Liang, X. et al. Polyurethane, epoxy resin and polydimethylsiloxane altered biofilm formation and mussel settlement. Chemosphere 218, 599–608 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Huggett, M. J., Williamson, J. E., De Nys, R., Kjelleberg, S. & Steinberg, P. D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149, 604–619 (2006).ADS 
    PubMed 

    Google Scholar 
    Yang, J. et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29, 247–259 (2013).CAS 
    PubMed 

    Google Scholar 
    Qian, P. Y., Thiyagarajan, V., Lau, S. C. K. & Cheung, S. C. K. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat. Microb. Ecol. 33, 225–237 (2003).
    Google Scholar 
    Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C. & Combes, D. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24, 11–22 (2008).CAS 
    PubMed 

    Google Scholar 
    Beigbeder, A. et al. On the effect of carbon nanotubes on the wettability and surface morphology of hydrosilylation-curing silicone coatings. Nanostruct. Polym. Nanocomp 5, 37–43 (2009).
    Google Scholar 
    Lee, S. H., Pumprueg, S., Moudgil, B. & Sigmund, W. Inactivation of bacterial endospores by photocatalytic nanocomposites. Colloids Surf. B Biointerfaces 40, 93–98 (2005).CAS 
    PubMed 

    Google Scholar 
    Alzieu, C. Tributyltin: Case study of a chronic contaminant in the coastal environment. Ocean Coast. Manag. 40, 23–36 (1998).
    Google Scholar 
    Yang, J. L. et al. Chromosome-level genome assembly of the hard-shelled mussel Mytilus coruscus, a widely distributed species from the temperate areas of East Asia. GigaScience 10, giab024 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Liang, X. et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis. Int. J. Mol. Sci. 21, 710 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Liang, X. et al. Bacterial cellulose synthesis gene regulates cellular c-di-GMP that control biofilm formation and mussel larval settlement. Int. Biodeterior. Biodegrad. 165, 105330 (2021).CAS 

    Google Scholar 
    Peng, L. H. et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus. Biofouling 36, 753–765 (2020).CAS 
    PubMed 

    Google Scholar 
    Chang, R. H. et al. Complete genome sequence of Shewanella marisflavi ECSMB14101, a red pigment synthesizing bacterium isolated from the East China Sea. Mar. Genom. 58, 100846 (2021).
    Google Scholar 
    Sutherland, I. W. Polysaccharide lyases. FEMS Microbiol. Rev. 16, 323–347 (1995).CAS 
    PubMed 

    Google Scholar 
    Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).CAS 
    PubMed 

    Google Scholar 
    Kristensen, J. B. et al. Antifouling enzymes and the biochemistry of marine settlement. Biotechnol. Adv. 26, 471–481 (2008).CAS 
    PubMed 

    Google Scholar 
    Pettitt, M., Henry, S., Callow, M., Callow, J. & Clare, A. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling 20, 299–311 (2004).CAS 
    PubMed 

    Google Scholar 
    McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: Mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).CAS 

    Google Scholar 
    Boyd, A. & Chakrabarty, A. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60, 2355–2359 (1994).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaplan, J. B., Ragunath, C., Velliyagounder, K., Fine, D. H. & Ramasubbu, N. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 48, 2633–2636 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, J., Bradshaw, D., Fulford, M. & Marsh, P. Microbiological evaluation of a range of disinfectant products to control mixed-species biofilm contamination in a laboratory model of a dental unit water system. Appl. Environ. Microbiol. 69, 3327–3332 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiater, A., Szczodrak, J. & Rogalski, J. Hydrolysis of mutan and prevention of its formation in streptococcal films by fungal α-d-glucanases. Process Biochem. 39, 1481–1489 (2004).CAS 

    Google Scholar 
    Dobretsov, S., Xiong, H., Xu, Y., Levin, L. A. & Qian, P.-Y. Novel antifoulants: Inhibition of larval attachment by proteases. Mar. Biotechnol. 9, 388–397 (2007).CAS 

    Google Scholar 
    Carl, C. et al. Enhancing the efficacy of fouling-release coatings against fouling by Mytilus galloprovincialis using nanofillers. Biofouling 28, 1077–1091 (2012).CAS 
    PubMed 

    Google Scholar 
    Patel, P., Callow, M. E., Joint, I. & Callow, J. A. Specificity in the settlement–modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ. Microbiol. 5, 338–349 (2003).CAS 
    PubMed 

    Google Scholar 
    Thostenson, E. T., Ren, Z. & Chou, T. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899–1912 (2001).CAS 

    Google Scholar 
    Beigbeder, A. et al. Marine fouling release silicone/carbon nanotube nanocomposite coatings: On the importance of the nanotube dispersion state. J. Nanosci. Nanotechnol. 10, 2972–2978 (2010).CAS 
    PubMed 

    Google Scholar 
    Frogley, M. D., Ravich, D. & Wagner, H. D. Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63, 1647–1654 (2003).CAS 

    Google Scholar 
    G., A. Seawater Composition. Online edition. SBCC Marine Science. Santa Barbara City College. http://www.marinebio.net/marinescience/02ocean/swcomposition.htm. (2004).Shipovskov, S., Ferapontova, E. E., Gazaryan, I. & Ruzgas, T. Recombinant horseradish peroxidase-and cytochrome c-based two-electrode system for detection of superoxide radicals. Bioelectrochemistry 63, 277–280 (2004).CAS 
    PubMed 

    Google Scholar 
    Aehle, W. Enzymes in Industry: Production and Applications (Wiley, 2007).
    Google Scholar 
    Walker, G. Larval settlement: Historical and future perspectives. Crustacean Issues 10, 69–86 (1995).
    Google Scholar 
    Tomarelli, R., Charney, J. & Harding, M. L. The use of azoalbumin as a substrate in the colorimetric determination or peptic and tryptic activity. J. Lab. Clin. Med. 34, 428–433 (1949).CAS 
    PubMed 

    Google Scholar 
    Somogyi, M. Modifications of two methods for the assay of amylase. Clin. Chem. 6, 23–35 (1960).CAS 
    PubMed 

    Google Scholar 
    Sinegani, A. A. S. & Emtiazi, G. The relative effects of some elements on the DNS method in cellulase assay. J. Appl. Sci. Environ. Manag. 10, 93–96 (2006).
    Google Scholar 
    Li, Y. et al. Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 433, 434–441 (2014).
    Google Scholar 
    Yang, J. et al. Effects of biofilms on settlement of plantigrades of the mussel Mytilus coruscus. J. Fish. China 37, 904–909 (2013) ((In Chinese with English Abstract)).
    Google Scholar 
    Hu, X. M. et al. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition. Biofouling 37, 911–921 (2021).CAS 
    PubMed 

    Google Scholar  More

  • in

    Nodulation competitiveness and diversification of symbiosis genes in common beans from the American centers of domestication

    In the work reported here, we have examined the interaction of symbiotic partners representative of the three major diversification centers. Although P. vulgaris could establish symbiosis with diverse rhizobial lineages, Rhizobium etli seemed to predominate in nature in the bean nodules collected from the Americas8,9, while the Americas is where the origin and diversification of the host have been experimentally supported19,20. Genotypes other than R. etli that also induce nodule formation in the bean have already been taxonomically defined as species, for instance Rhizobium tropici and Rhizobium ecuadorense, both of which were isolated from areas in northwestern South America, namely Ecuador, Brazil, and Colombia.American-bean rhizobia, from soil samples retrieved by the common bean as well as isolates from nodules found in nature have possessed polymorphism in the nodC gene, disclosing three nodC genotypes namely α, (upgamma), and (updelta)9. The different nodC alleles in American strains exhibit a varying predominance in their regional distributions in correlation with the centers of bean genetic diversification. The nodC types α and (upgamma) were detected both in bean nodules and in soils from Mexico, whereas the nodC type (updelta) was clearly predominant in soil and nodules from the Southern Andes (i. e., in Bolivia and northwest Argentina9). A quantitatively balanced representation of rhizobia with nodC type α and (upgamma) was detected in soils from Ecuador, but the nodC type (upgamma) had been found to be predominantly isolated from nodules formed in nature in that area5,9,10. It should be noted that we have reported finding of equal distribution of allele nodC type α and γ among the nine R etli isolates from bean in Mexico reported by Silva et al.7,9. The occurrence of this polymorphism proved to contribute to examining rhizobial populations inhabiting the Americas and characterizing the interaction with beans in BGD centers from Mexico to the northwest of Argentina. In performing our nodC analysis, we were aware that rhizobia genes for symbiosis are carried on plasmids which might mediate horizontal transfer, however in agreement with Silva et al.7 we assumed that although genetic exchange could be important, it is not so extensive to prevent epidemic clones from arising at significant frequency. Similar findings were found in R. leguminosarum bv trifolii associated with native Trifolium species growing in nature21.Investigations in the last decade have proposed an evolutionary pathway for the host bean that provided us with a framework for examining our results on rhizobia-bean interactions and facilitated an interpretation of the results. The current model proposes the occurrence of a Mesoamerican origin from where dispersion by independent migrations over time led to the Mesoamerican and Andean gene pools and to the Ecuador-Peru wild common-bean populations2,19,20. We found a balanced competition between α and (upgamma) nodC types in beans from Mesoamerica and the southern Andes, whereas the beans from Ecuador and Peru revealed a clear affinity for nodulation with strains of nodC type α rather than with the sympatric strains nodC type (upgamma) that we assayed (R. ecuadorense, CIAT894 and Bra-5). Nevertheless, we have previously reported that native strains and isolates with respectively both nodC types α and (upgamma) were found in soils and bean nodules from Mexico9, whereas lineages harboring nodC type (upgamma) were found to be predominant in beans from the northern and central regions of Ecuador-Peru8,9. The present results, however, indicated a clear affinity of the Ecuadorean-Peruvian—i. e., AHD—beans for strains nodC type α when assessed for competition against nodC type (upgamma) (Fig. 2A). We also found that nodC type (updelta) displayed a clear predominant occupancy of nodules of the AHD beans in contrast to the scarce occupancy of nodules of the Mesoamerican and Andean beans (Fig. 2B). Taken together, these results indicate no affinity of AHD beans for sympatric rhizobial strains containing nodC type (upgamma)—despite the finding that rhizobia of nodC type (upgamma) appear to predominate in isolates of nodules formed in Ecuador9,10.We conclude that although rhizobial type nodC (upgamma) was previously found to predominate in bean nodules from Ecuador, the competitiveness of that rhizobial strain for nodulation compared to other genotypes of bean rhizobia was relatively low. A possible explanation could be that seeds might be assumed to play a key role as carriers during the dissemination of the bean throughout the American regions. Thus, we can hypothesize that at the time of bean dissemination both R. etli nodC types α and (upgamma) (R. ecuadorense and other lineages) moved in conjunction with the host from Mesoamerica to northern Ecuador-Peru, but the strains bearing nodC type (upgamma) achieved an adaptation—probably due to edaphic characteristics, environmental stresses, and other features—in such a way that that strain predominated in soils and succeeded in nodulation.Alternatively, that prevalence might arise from a host selection for a rhizobium that is more effective in nitrogen fixation in a new and different environment. A poor relationship, however, between competitiveness and efficiency was found in the pea22. In line with the concept of adaptation, the bean had been found to be preferentially nodulated by species of R. tropici in acidic soils in regions of Brazil and Africa4,23. Since the environment could also be a major influence on the host and its symbiotic interactions, the Andean area represents a cooler climate for the growth of the bean than the Mesoamerican region24,25. Furthermore, since our assays were performed in laboratory environment parameters, we do not rule out the effect -if any- by the diverse and complex soil microbial community coexisting with bean rhizobia. Within this context, two contrasting soils from Argentina which differ in geolocation and edaphic properties and the perlite substrate were assayed side by side in nodule occupancy of Negro Xamapa after inoculation with a mixture of strains nodC type α and γ (Results not shown). Our results showed that the predominance of nodC type γ in the occupation of the nodules of this variety (about 80% occupation) is not affected by the type of substrate (p = 0.5566). Yet, we assume that the performance in diverse soil and ecosystems should be further evaluated in situ. In agreement, a good coevolution of rhizobia strains with nodC type (upgamma) was detected in nodules of bean varieties from the Mesoamerica and Andean genetic pools inoculated with soil samples from Mexico, Ecuador, and Northwest of Argentina, respectively (see Table 2 in Aguilar et al., 2004) [9].With respect to the interaction in the southern Andes, we propose another interpretation that takes into consideration the bottleneck that occurred before domestication in the Andes, as was indicated by Bitocchi et al.26, which scenario enables the assumption that the adaptation and concomitant diversification involved a coevolution of the symbioses. Therefore, similar profiles of competitiveness for nodulation in Mesoamerican and Andean beans were found between nodC type (upgamma) versus nodC types α and (updelta), but a significant occupancy by the nodC type (updelta) was recorded in the Andean beans.Our work suggests that the genetics of both the host and the bacteria determine the mutual affinity and additionally indicates that symbiotic interaction is another trait of legumes sensitive to the effects of evolution and ecological adaptation to the locale environment such as the characteristics of the soil and the climate.The analysis of the genetic sequences of the bean that encode genes associated with symbiosis, revealed variation of NFR1, NFR5 and NIN over the representative accessions of the Mesoamerican, the Andean, and the AHD gene pools. It is proposed that a receptor complex composed of NFR1 and NFR5 initiates signal transduction in response to Nod-factor synthesized and released by rhizobia27. Although the variation consisted mainly in neutral-amino-acid substitutions, thus suggesting only minimal changes in the functionality, if any at all; we could cite the convincing and relevant evidence reported by Radutoiu et al.27 that the amino-acid residue 118 of the second LysM module of NFR5 is essential for the recognition of rhizobia by species of Lotus japonicus and Lotus filicaulis. Our finding that the Mesoamerican-bean NFR5 has glutamine (Q) in position 151, whereas the Andean and the AHD both have proline (P)—neither of which amino acids is neutral—would merit further investigation to evaluate if such a mutation might play a role in nodulation preference. Although this result must be considered with caution, we found that the conserved polymorphism in the NFR1 and NFR5 proteins has caused the beans representative of the genetic pool Ecuador-Peru—i. e., the AHD—to be grouped in a cluster separate from those of Mesoamerica and the Andes. What we found to be interesting was that the phylogenetic and RMSD profiles of grouping the sequences are consistent with different evolutionary pathways in beans from the AHD and the Andean areas. This observation agrees with the proposal of Randón-Anaya et al.2 that those former beans from northern Peru-Ecuador originated from an ancestral form earlier than that of Mesoamerican- and Andean-bean genotypes. In addition, by applying a suppressive subtractive hybridization approach a set of bean genes were identified in our laboratory to be expressed in early step of infection by the cognate rhizobia28. Taken these results together, we conclude that genomic regions and patterns of expression in the host appear associated with an affinity for nodulation.Within a broader context, we believe that our results on the biogeography of bean-rhizobia interactions in the region where the origin and domestication of the host plants occurred provide novel useful issues to be considered in inoculation programs, for instance those involving selection of strains and cultivars, and invite to validate these findings in follow up field trials. More

  • in

    Post-lockdown changes of age-specific susceptibility and its correlation with adherence to social distancing measures

    Stochastic age-specific transmission modelWe formulate a stochastic age-specific transmission model in the general Susceptible(S)-Exposed(E)-Reported(I)-Unreported(U)-Recovered(R) framework. For a particular age group (i) at time (t-1) ((i=1) corresponding to the 0–17 years, (i=2) to 18–44, (i=3) to 45–64 and (i=4) to 65+), we have$$begin{array}{l}{S}_{i}(t)= {S}_{i}(t-1)-{n}_{S{E}_{i}}(t)\ {E}_{i}(t)= {E}_{i}(t-1)+{n}_{S{E}_{i}}(t)-\ {n}_{E{I}_{i}}(t)-{n}_{E{U}_{i}}(t)\ {I}_{i}(t)= {I}_{i}(t-1)+{n}_{E{I}_{i}}(t)-{n}_{I{R}_{i}}(t)\ {U}_{i}(t)= {U}_{i}(t-1)+{n}_{E{U}_{i}}(t)-{n}_{U{R}_{i}}(t)\ {R}_{i}(t)= {R}_{i}(t-1)+{n}_{I{R}_{i}}(t)+{n}_{U{R}_{i}}(t),end{array}$$
    (1)
    where ({n}_{{XY}_{i}}(t)) represents number of transitions between a class X and class Y for age group (i) at time (t).The number of transitions from the susceptible to exposed class for group (i) at time (t) is modelled by$$begin{aligned}{n}_{S{E}_{i}}(t)&sim Poi({S}_{i}(t-1)times {gamma }_{i}(t)times \ & quad sum_{j=1}beta (t)times {c}_{j,i}(t)times {{I}_{j}(t-1)+{U}_{j}(t-1)}).end{aligned}$$
    (2)
    Here, (beta (t)) denotes the average infectiousness of an infectious individual and ({c}_{j,i}(t)) is the average number of contacts per day made by age group (j) to (i). Also note that the product (beta (t)times {c}_{j,i}(t)) may represent age-specific transmissibility (of age group (j)) accounting for contacts. We allow and infer two change points of (beta (t)) (one potentially correlates to changes due to the implementation of lockdown and another one to changes due to the lifting of lockdown), i.e.,$$beta left(tright)=left{begin{array}{ll}{beta }_{0},&quad if; tle {T}_{1}\ {beta }_{1}={omega }_{1}times {beta }_{0},&quad if ;{T}_{1}{T}_{2},end{array}right.$$
    (3)
    where ({T}_{1}) and ({T}_{2}) are the two change points to be inferred (({T}_{2}ge {T}_{1})). ({gamma }_{i}(t)) denotes the susceptibility of group (i) relative to the oldest age group (i.e., ({gamma }_{4}=1)), which is also allowed to change proportionally after lifting the lockdown. Note that ({gamma }_{i}(t)) implicitly incorporates any behavioral effects (e.g., potential reduction of risk of getting infection due to facemask wearing). Transitions between other classes are modelled as:$$begin{aligned}{n}_{E{U}_{i}}(t)sim & Bin({n}_{S{E}_{i}}(t-{D}_{EU}),{p}_{{U}_{i}}(t-{D}_{EU}))\ {n}_{E{I}_{i}}(t)=& {n}_{S{E}_{i}}(t-{D}_{EI})-{n}_{E{U}_{i}}(t)\ {n}_{I{R}_{i}}(t)=& {n}_{E{I}_{i}}(t-{D}_{IR})\ {n}_{U{R}_{i}}(t)=& {n}_{E{U}_{i}}(t-{D}_{UR}),end{aligned}$$
    (4)
    where ({D}_{EI}), ({D}_{EU}), ({D}_{IR}) and ({D}_{UR}) denote the mean waiting times between the indicated two classes. We assume that ({D}_{EI})= ({D}_{EU})=7 days and ({D}_{IR})= ({D}_{UR})=14 days. ({p}_{{U}_{i}}(t)) represents probability that an infection is unreported at times (t) for age group (i), we assume$${p}_{{U}_{i}}(t)=1-frac{{e}^{{f}_{i}(t)}}{1+{e}^{{f}_{i}(t)}}.$$
    (5)
    ({f}_{i}(.)) is an increasing function with ({f}_{i}(t)={a}_{i}+{b}_{i}times t), where (-infty More

  • in

    The Terrific Skink bite force suggests insularity as a likely driver to exceptional resource use

    Case, T. J., Bolger, D. T. & Richman, A. D. Reptilian extinctions: The last ten thousand years. In Conservation Biology (eds Fiedler, P. L. & Jain, S. K.) 91–125 (Springer, 1992).
    Google Scholar 
    Shivanna, K. R. The sixth mass extinction crisis and its impact on biodiversity and human welfare. Resonance 25, 93–109 (2020).
    Google Scholar 
    Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M. & Palmer, T. M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, (2015)Lawler, J. J. et al. Conservation science: A 20-year report card. Front. Ecol. Environ. 4, 473–480 (2006).
    Google Scholar 
    Sodhi, N. S., Brook, B. W. & Bradshaw, C. J. A. Tropical Conservation Biology (Wiley-Blackwell, 2007).
    Google Scholar 
    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: Back from the brink?. PLoS ONE 6, 1–8 (2011).
    Google Scholar 
    Ineich I. Bocourt’s terrific skink, Phoboscincus bocourti Brocchi, 1876 (Squamata, Scincidae, Lygosominae). In 7. Biodiversity studies in New Caledonia.Mémoires du Muséum National d’Histoire Naturelle (ed. Grancolas, P.) vol. 198, 149–174, Muséum National d’Histoire Naturelle, (2009).Holden, M. & Ineich, I. scinque terrifiant terrifié. Le Courrier de la Nat. 312, 4 (2018).
    Google Scholar 
    Sadlier, R. A., Deuss, M., Bauer, A. M. & Jourdan, H. Kuniesaurus albiauris, a new genus and species of scincid lizard from the Île des Pins, New Caledonia, with comments on the diversity and affinities of the region’s lizard fauna. Pac. Sci. 73, 123–141 (2019).Bauer, A. M. & Sadlier, R. A. Lizard discoveries and rediscoveries in the New Caledonian region. In Flores, O., Ah-Peng, C., & Wilding, N. Island Biology 2019. Third International Conference on Island Ecology, Evolution and Conservation: Book of Abstracts. Island Biology 2019, Jul 2019, Saint Denis, France. 2020. ffhal-02633975v2 243 (2019).Ineich, I., Sadlier, R. A., Bauer, A. M., Jackman, T. R. & Smith, S. A. Bocourt’s terrific skink, Phoboscincus bocourti (Brocchi, 1876), and the monophyly of the genus Phoboscincus Greer, 1974. In Zoologia Neocaledonica 8. Biodiversity studies in New Caledonia. Mémoires du Muséum National d’Histoire Naturelle (eds Guilbert, E. et al.) 69–78 Muséum National d’Histoire naturelle, (2014).
    Google Scholar 
    Caut, S., Holden, M., Jowers, M. J., Boistel, R. & Ineich, I. Is Bocourt’s terrific skink really so terrific? Trophic myth and reality. PLoS One 8, e78638 (2013).Sagonas, K. et al. Insularity affects head morphology, bite force and diet in a Mediterranean lizard. Biol. J. Linn. Soc. 112, 469–484 (2014).
    Google Scholar 
    Tseng, W.-H. et al. Opsin gene expression regulated by testosterone level in a sexually dimorphic lizard. Sci. Rep. 8, 16055 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avramo, V. et al. Evaluating the island effect on phenotypic evolution in the Italian wall lizard, Podarcis siculus (Reptilia: Lacertidae). Biol. J. Linn. Soc. 132, 655–665 (2021).
    Google Scholar 
    Siliceo-Cantero, H. H., Benítez-Malvido, J. & Suazo-Ortuño, I. Insularity effects on the morphological space and sexual dimorphism of a tropical tree lizard in western Mexico. J. Zool. 311, 277–285 (2020).
    Google Scholar 
    Pérez-Mellado, V. & Corti, C. Dietary adaptations and herbivory in lacertid lizards of the genus Podarcis from western Mediterranean islands (Reptilia: Sauria). Bonner Zool. Beiträge 44, 193–220 (1993).
    Google Scholar 
    Castilla, A. M., Vanhooydonck, B. & Catenazzi, A. Feeding behavior of the Columbretes lizard Podarcis atrata, in relation to the marine species, Ligia italica (Isopoda, Crustaceae). Belgian J. Zool. 138, 146–148 (2008).
    Google Scholar 
    Castilla, A. M. & Herrel, A. The scorpion Buthus occitanus as a profitable prey for the endemic lizard Podarcis atrata in the volcanic Columbretes islands (Mediterranean, Spain). J. Arid Environ. 73, 378–380 (2009).ADS 

    Google Scholar 
    Van Damme, R. Evolution of herbivory in lacertid lizards: Effects of insularity and body size. J. Herpetol. 33, 663 (1999).
    Google Scholar 
    Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    D’Amore, D. C. et al. Increasing dietary breadth through allometry: Bite forces in sympatric Australian skinks. Herpetol. Notes 11, 179–187 (2018).
    Google Scholar 
    Taverne, M. et al. Proximate and ultimate drivers of variation in bite force in the insular lizards Podarcis melisellensis and Podarcis sicula. Biol. J. Linn. Soc. 131, 88–108 (2020).
    Google Scholar 
    Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).
    Google Scholar 
    Itescu, Y., Foufopoulos, J., Pafilis, P. & Meiri, S. The diverse nature of island isolation and its effect on land bridge insular faunas. Glob. Ecol. Biogeogr. 29, 262–280 (2020).
    Google Scholar 
    Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).
    Google Scholar 
    Donihue, C. M., Brock, K. M., Foufopoulos, J. & Herrel, A. Feed or fight: Testing the impact of food availability and intraspecific aggression on the functional ecology of an island lizard. Funct. Ecol. 30, 566–575 (2016).
    Google Scholar 
    Runemark, A., Sagonas, K. & Svensson, E. I. Ecological explanations to island gigantism: Dietary niche divergence, predation, and size in an endemic lizard. Ecology 96, 2077–2092 (2015).PubMed 

    Google Scholar 
    Verwaijen, D., Van Damme, R. & Herrel, A. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct. Ecol. 16, 842–850 (2002).
    Google Scholar 
    Herrel, A., O’Reilly, J. C. & Richmond, A. M. Evolution of bite performance in turtles. J. Evol. Biol. 15, 1083–1094 (2002).
    Google Scholar 
    Herrel, A., Vanhooydonck, B., Joachim, R. & Irschick, D. J. Frugivory in polychrotid lizards: Effects of body size. Oecologia 140, 160–168 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Vanhooydonck, B. & Van Damme, R. Omnivory in lacertid lizards: Adaptive evolution or constraint?. J. Evol. Biol. 17, 974–984 (2004).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Bite performance and morphology in a population of Darwin’s finches: Implications for the evolution of beak shape. Funct. Ecol. 19, 43–48 (2005).
    Google Scholar 
    Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Evolution of bite force in Darwin’s finches: A key role for head width. J. Evol. Biol. 18, 669–675 (2005).CAS 
    PubMed 

    Google Scholar 
    Aguirre, L. F., Herrel, A., Van Damme, R. & MatThysen, E. The implications of food hardness for diet in bats. Funct. Ecol. 17, 201–212 (2003).
    Google Scholar 
    Herrel, A. & Holanova, V. Cranial morphology and bite force in Chamaeleolis lizards—Adaptations to molluscivory?. Zoology 111, 467–475 (2008).PubMed 

    Google Scholar 
    Greer, A. E. Distribution of maximum snout-vent length among species of scincid lizards. J. Herpetol. 35, 383 (2001).
    Google Scholar 
    Burggren, W. W. & McMahon, B. R. Biology of the Land Crabs, Cambridge University Press, (1988).
    Google Scholar 
    Grubb, P. Ecology of terrestrial decapod crustaceans on Aldabra. Philos. Trans. R. Soc. Lond. B Biol. Sci. 260, 411–416 (1971)Wineski, L. E. & Gans, C. Morphological basis of the feeding mechanics in the shingle-back lizard Trachydosaurus rugosus (Scincidae, Reptilia). J. Morphol. 181, 271–295 (1984).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Verstappen, M. & De Vree, F. Modulatory complexity of the feeding repertoire in scincid lizards. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 501–518 (1999).Herrel, A., Aerts, P. & De Vree, F. Ecomorphology of the lizard feeding apparatus: A modelling approach. Neth. J. Zool. 48, 1–25 (1998).
    Google Scholar 
    Hartnoll, R. G. Evolution, systematics, and geographical distribution. In Biology of the Land Crabs (eds Burggren, W. W. & McMahon, B. R.) 6–54, (Cambridge University Press, 1988).
    Google Scholar 
    Ben-David, M. & Schell, D. M. Mixing models in analyses of diet using multiple stable isotopes: A response. Oecologia 127, 180–184 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Caut, S., Angulo, E. & Courchamp, F. Caution on isotopic model use for analyses of consumer diet. Can. J. Zool. 86, 438–445 (2008).CAS 

    Google Scholar 
    Warne, R. W., Gilman, C. A. & Wolf, B. O. Tissue-carbon incorporation rates in lizards: Implications for ecological studies using stable isotopes in terrestrial ectotherms. Physiol. Biochem. Zool. 83, 608–617 (2010).PubMed 

    Google Scholar 
    Steinitz, R., Lemm, J. M., Pasachnik, S. A. & Kurle, C. M. Diet-tissue stable isotope (Δ13C and Δ15N) discrimination factors for multiple tissues from terrestrial reptiles. Rapid Commun. Mass Spectrom. 30, 9–21 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lattanzio, M. & Miles, D. Stable carbon and nitrogen isotope discrimination and turnover in a small-bodied insectivorous lizard. Isot. Environ. Health Stud. 52, 673–681 (2016).CAS 

    Google Scholar 
    Durso, A. M., Smith, G. D., Hudson, S. B. & French, S. S. Stoichiometric and stable isotope ratios of wild lizards in an urban landscape vary with reproduction, physiology, space and time. Conserv. Physiol. 8, 1–14 (2020).
    Google Scholar 
    Warne, R. W. & Wolf, B. O. Nitrogen stable isotope turnover and discrimination in lizards. Rapid Commun. Mass Spectrom. 35, e9030 (2021).Aerts, P., De Vree, F. & Herrel, A. Ecomorphology of the lizard feeding apparatus: A modelling approach. Neth. J. Zool. 48, 1–25 (1997).
    Google Scholar 
    Herrel, A., Schaerlaeken, V., Meyers, J. J., Metzger, K. A. & Ross, C. F. The evolution of cranial design and performance in squamates: Consequences of skull-bone reduction on feeding behavior. Integr. Comp. Biol. 47, 107–117 (2007).PubMed 

    Google Scholar 
    Beuttner, A. & Koch, C. Analysis of diet composition and morphological characters of the Peruvian lizard Microlophus stolzmanni (Squamata: Tropiduridae). Phyllomedusa J. Herpetol. 18, 47–62 (2019).
    Google Scholar 
    Herrel, A., Aerts, P. & Vree, D. Static biting in lizards: Functional morphology of the temporal ligaments. J. Zool. 244, 135–143 (1998).
    Google Scholar 
    Greer, A. The genetic relationships of the scincid lizard genus Leiolopisma and its relatives. Aust. J. Zool. Suppl. Ser. 22, 1–67 (1974).
    Google Scholar 
    Shirley, M. H., Carr, A. N., Nestler, J. H., Vliet, K. A. & Brochu, C. A. Systematic revision of the living African slender-snouted crocodiles (Mecistops Gray, 1844). Zootaxa 4504, 151 (2018).PubMed 

    Google Scholar 
    Yoshioka, S. & Kimura, T. What does the red-eared slider eat on the tidal flats? Comparing the diet of the invasive alien species Trachemys scripta elegans inhabiting the tidal flat and freshwaters. Jpn. J. Benthol. 72, 83–93 (2018).
    Google Scholar 
    Bernal, S. & Magda, S. Análisis de los contenidos estomacales de las tortugas y cachirres de la Reserva Natural Privada de la Sociedad Civil Bojonawi (Puerto Carreño, Vichada). (Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2020).Murphy, J. C. Homalopsid Snakes, Evolution in the Mud (Krieger Publishing Company, 2007).
    Google Scholar 
    Chen, P. Z. An observation of crab predation by a Gerard’s water snake, Gerarda prevostiana (Reptilia: Squamata: Homalopsidae) in the wild at Sungei Buloh, Singapore. Nat. Singap. 3, 195–197 (2010).
    Google Scholar 
    Jayne, B. C., Voris, H. K. & Ng, P. K. L. Snake circumvents constraints on prey size. Nature 418, 143–143 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jayne, B. C., Voris, H. K. & Ng, P. K. L. How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behaviour affect prey size and feeding performance. Biol. J. Linn. Soc. 123, 636–650 (2018).
    Google Scholar 
    Murphy, J. C. & Voris, H. K. Aquatic snakes with crustacean-eating habits elude herpetologists for two centuries. Litt. Serpentium 22, 107–114 (2002).
    Google Scholar 
    Voris, H. K. & Murphy, J. C. The prey and predators of Homalopsine snakes. J. Nat. Hist. 36, 1621–1632 (2002).
    Google Scholar 
    Wai-Neng, L. & Melville, D. S. Notes on the feeding of Enhydris bennetti (Gray) (Reptilia, Squamata, Colubridae) in Hong Kong. Mem. Hong Kong Nat. Hist. Soc. 19, 117 (2020).
    Google Scholar 
    López-Hurtado, Y., García-Padrón, L. Y., González, A., Díaz, L. M. & Rodríguez-Cabrera, T. M. Notes on the feeding habits of the Caribbean watersnake, Tretanorhinus variabilis (Dipsadidae). Reptil. Amphib. 27, 147–153 (2020).
    Google Scholar 
    Gripshover, N. D. & Jayne, B. C. Crayfish eating in snakes: Testing how anatomy and behavior affect prey size and feeding performance. Integr. Org. Biol. 3, 1–16 (2021).
    Google Scholar 
    Naish, D. The Madagascan skink Amphiglossus eats crabs. Sci. Am. Blog Netw. https://blogs.scientificamerican.com/tetrapod-zoology/the-madagascan-skink-amphiglossus-eats-crabs/ (2016).Hediger, H. Beitrag zur herpetologie und zoogeographie Neu Britanniens und einiger umliegender gebiete. Zool. Jahrbücher. Abteilung für Syst. Geogr. und Biol. der Tiere 65, 441–582 (1934).McCoy, M. W. Reptiles of the Solomon Islands, (Pensoft Publishers, 2006).
    Google Scholar 
    Huang, W. S. Ecology and reproductive patterns of the littoral skink Emoia atrocostata on an East Asian tropical rainforest island. Zool. Stud. 50, 506–512 (2011).
    Google Scholar 
    Anderson, C. Decapod crustacean species of Aride Island, Seychelles. Phelsuma 2(12), 36–49 (1994).
    Google Scholar 
    Paulay, G. & Starmer, J. Evolution, insular restriction, and extinction of oceanic land crabs, exemplified by the loss of an endemic Geograpsus in the Hawaiian Islands. PLoS ONE 6, e19916 (2011).Cleuren, J., Aerts, P. & de Vree, F. Bite and joint force analysis in Caiman crocodilus. Belgian J. Zool. 125, 79–94 (1995).
    Google Scholar 
    Meyers, J. J., Nishikawa, K. C. & Herrel, A. The evolution of bite force in horned lizards: The influence of dietary specialization. J. Anat. 232, 214–226 (2018).PubMed 

    Google Scholar 
    Van Damme, R., De Vree, F. & Herrel, A. Sexual dimorphism of head size in Podarcis hispanica atrata: Testing the dietary divergence hypothesis by bite force analysis. Neth. J. Zool. 46, 253–262 (1995).
    Google Scholar 
    Gröning, F. et al. The importance of accurate muscle modelling for biomechanical analyses: A case study with a lizard skull. J. R. Soc. Interface 10, 1–10 (2013).
    Google Scholar 
    Vanhooydonck, B., Boistel, R., Fernandez, V. & Herrel, A. Push and bite: Trade-offs between burrowing and biting in a burrowing skink (Acontias percivali). Biol. J. Linn. Soc. 102, 91–99 (2011).
    Google Scholar 
    Handschuh, S. et al. Cranial kinesis in the miniaturised lizard Ablepharus kitaibelii (Squamata: Scincidae). J. Exp. Biol. 222, 1–15 (2019).
    Google Scholar 
    Le Guilloux, M. et al. Trade-offs between burrowing and biting force in fossorial scincid lizards?. Biol. J. Linn. Soc. 130, 310–319 (2020).
    Google Scholar 
    Herrel, A, Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).
    Google Scholar 
    Herrel, A., De Grauw, E. & Lemos-Espinal, J. A. Head shape and bite performance in xenosaurid lizards. J. Exp. Zool. 290, 101–107 (2001).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Petrochic, S. & Draud, M. Sexual dimorphism, bite force and diet in the diamondback terrapin. J. Zool. 304, 217–224 (2018).
    Google Scholar  More