Aggressiveness, ADHD-like behaviour, and environment influence repetitive behaviour in dogs
Mason, G. J. Stereotypies: A critical review. Anim. Behav. 41, 1015–1037 (1991).
Google Scholar
Cussen, V. A. & Mench, J. A. The relationship between personality dimensions and resiliency to environmental stress in orange-winged Amazon parrots (Amazona amazonica), as indicated by the development of abnormal behaviors. PLoS ONE 10, 1–11 (2015).
Google Scholar
Clubb, R. & Mason, G. Captivity effects on wide-ranging carnivores. Nature 425, 473–474 (2003).ADS
CAS
PubMed
Google Scholar
Shepherdson, D., Lewis, K. D., Carlstead, K., Bauman, J. & Perrin, N. Individual and environmental factors associated with stereotypic behavior and fecal glucocorticoid metabolite levels in zoo housed polar bears. Appl. Anim. Behav. Sci. 147, 268–277 (2013).
Google Scholar
Miller, L. J., Bettinger, T. & Mellen, J. The reduction of stereotypic pacing in tigers (Panthera tigris) by obstructing the view of neighbouring individuals. Anim. Welf. 17, 255–258 (2008).CAS
Google Scholar
Bachmann, I., Bernasconi, P., Herrmann, R., Weishaupt, M. A. & Stauffacher, M. Behavioural and physiological responses to an acute stressor in crib-biting and control horses. Appl. Anim. Behav. Sci. 82, 297–311 (2003).
Google Scholar
Ahola, M. K., Vapalahti, K. & Lohi, H. Early weaning increases aggression and stereotypic behaviour in cats. Sci. Rep. 7, 10412 (2017).ADS
PubMed
PubMed Central
Google Scholar
Salonen, M. et al. Prevalence, comorbidity, and breed differences in canine anxiety in 13,700 Finnish pet dogs. Sci. Rep. 10, 2962 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
Garner, J. P. Stereotypies and other abnormal repetitive behaviors: Potential impact on validity, reliability, and replicability of scientific outcomes. ILAR J. 46, 106–117 (2005).CAS
PubMed
Google Scholar
Tynes, V. V. & Sinn, L. Abnormal repetitive behaviors in dogs and cats. A guide for practitioners. Vet. Clin. North Am. Small Anim. Pract. 44, 543–564 (2014).PubMed
Google Scholar
Luescher, A. U. Diagnosis and management of compulsive disorders in dogs and cats. Vet. Clin. North Am. Small Anim. Pract. 33, 253–267 (2003).PubMed
Google Scholar
Mason, G., Clubb, R., Latham, N. & Vickery, S. Why and how should we use environmental enrichment to tackle stereotypic behaviour?. Appl. Anim. Behav. Sci. 102, 163–188 (2007).
Google Scholar
Overall, K. L. & Dunham, A. E. Clinical features and outcome in dogs and cats with obsessive-compulsive disorder: 126 Cases (1989–2000). J. Am. Vet. Med. Assoc. 221, 1445–1452 (2002).PubMed
Google Scholar
Tiira, K. et al. Environmental effects on compulsive tail chasing in dogs. PLoS One 7, e41684 (2012).Mason, G. & Rushen, J. Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare 2nd edn. (CABI Publishing, 2006).
Google Scholar
Moon-Fanelli, A. A., Dodman, N. H., Famula, T. R. & Cottam, N. Characteristics of compulsive tail chasing and associated risk factors in Bull Terriers. J. Am. Vet. Med. Assoc. 238, 883–889 (2011).PubMed
Google Scholar
Hewson, C. J., Luescher, U. A. & Ball, R. O. Measuring change in the behavioural severity of canine compulsive disorder: The construct validity of categories of change derived from two rating scales. Appl. Anim. Behav. Sci. 60, 55–68 (1998).
Google Scholar
Vandeleest, J. J., McCowan, B. & Capitanio, J. P. Early rearing interacts with temperament and housing to influence the risk for motor stereotypy in rhesus monkeys (Macaca mulatta). Appl. Anim. Behav. Sci. 132, 81–89 (2011).PubMed
PubMed Central
Google Scholar
Tang, R. et al. Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biol. 15, 25 (2014).
Google Scholar
Dodman, N. H. et al. A canine chromosome 7 locus confers compulsive disorder susceptibility. Mol. Psychiatry 15, 8–10 (2010).CAS
PubMed
Google Scholar
Jeppesen, L. L., Heller, K. E. & Bildsøe, M. Stereotypies in female farm mink (Mustela vison) may be genetically transmitted and associated with higher fertility due to effects on body weight. Appl. Anim. Behav. Sci. 86, 137–143 (2004).
Google Scholar
Noh, H. J. et al. Integrating evolutionary and regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder. Nat. Commun. 8, 1–13 (2017).CAS
Google Scholar
Koran, L. M. Quality of life in obsessive-compulsive disorder. Psychiatr. Clin. North Am. 23, 509–517 (2000).ADS
CAS
PubMed
Google Scholar
Murray, C. J. & Lopez, A. D. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020 (Harvard School of Public Health, 1996).
Google Scholar
Calzà, J. et al. Altered cortico-striatal functional connectivity during resting state in obsessive-compulsive disorder. Front. Psychiatry 10, 319 (2019).PubMed
PubMed Central
Google Scholar
Brem, S., Grünblatt, E., Drechsler, R., Riederer, P. & Walitza, S. The neurobiological link between OCD and ADHD. ADHD Atten. Deficit Hyperact. Disord. 6, 175–202 (2014).
Google Scholar
Stein, D. J., Dodman, N. H., Borchelt, P. & Hollander, E. Behavioral disorders in veterinary practice: Relevance to psychiatry. Compr. Psychiatry 35, 275–285 (1994).CAS
PubMed
Google Scholar
Overall, K. L. Natural animal models of human psychiatric conditions: Assessment of mechanism and validity. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 24, 727–776 (2000).CAS
Google Scholar
Flament, M. F. et al. Obsessive compulsive disorder in adolescence: An epidemiological study. J. Am. Acad. Child Adolesc. Psychiatry 27, 764–771 (1988).CAS
PubMed
Google Scholar
Nestadt, G. et al. A family study of obsessive-compulsive disorder. Arch. Gen. Psychiatry 57, 358–363 (2000).CAS
PubMed
Google Scholar
Protopopova, A., Hall, N. J. & Wynne, C. D. L. Association between increased behavioral persistence and stereotypy in the pet dog. Behav. Processes 106, 77–81 (2014).PubMed
Google Scholar
Valerius, G., Lumpp, A., Kuelz, A. K., Freyer, T. & Voderholzer, U. Reversal learning as a neuropsychological indicator for the neuropathology of obsessive compulsive disorder? A behavioral study. J. Neuropsychiatry Clin. Neurosci. 20, 210–218 (2008).PubMed
Google Scholar
Snyder, H. R., Kaiser, R. H., Warren, S. L. & Heller, W. Obsessive-compulsive disorder is associated with broad impairments in executive function: A meta-analysis. Clin. Psychol. Sci. 3, 301–330 (2015).PubMed
Google Scholar
Ogata, N. et al. Brain structural abnormalities in Doberman pinschers with canine compulsive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 45, 1–6 (2013).
Google Scholar
Norman, L. J. et al. Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: A comparative meta-analysis. JAMA Psychiat. 73, 815–825 (2016).
Google Scholar
Yalcin, E., Ilcol, Y. O. & Batmaz, H. Serum lipid concentrations in dogs with tail chasing. J. Small Anim. Pract. 50, 133–135 (2009).CAS
PubMed
Google Scholar
Vermeire, S. et al. Serotonin 2A receptor, serotonin transporter and dopamine transporter alterations in dogs with compulsive behaviour as a promising model for human obsessive-compulsive disorder. Psychiatry Res. 201, 78–87 (2012).CAS
PubMed
Google Scholar
Moon-Fanelli, A. A. & Dodman, N. H. Description and development of compulsive tail chasing in terriers and response to clomipramine treatment. J. Am. Vet. Med. Assoc. 212, 1252–1257 (1998).CAS
PubMed
Google Scholar
Irimajiri, M. et al. Randomized, controlled clinical trial of the efficacy of fluoxetine for treatment of compulsive disorders in dogs. J. Am. Vet. Med. Assoc. 235, 705–709 (2009).CAS
PubMed
Google Scholar
Walsh, B. R. A critical review of the evidence for the equivalence of canine and human compulsions. Appl. Anim. Behav. Sci. 234, 105166 (2021).
Google Scholar
Wright, H. F., Mills, D. S. & Pollux, P. M. J. Development and validation of a psychometric tool for assessing impulsivity in the domestic dog (Canis familiaris). Int. J. Comp. Psychol. 24, 210–225 (2011).
Google Scholar
Dinwoodie, I. R., Dwyer, B., Zottola, V., Gleason, D. & Dodman, N. H. Demographics and comorbidity of behavior problems in dogs. J. Vet. Behav. 32, 62–71 (2019).
Google Scholar
Sulkama, S. et al. Canine hyperactivity, impulsivity, and inattention share similar demographic risk factors and behavioural comorbidities with human ADHD. Transl. Psychiatry 11, 501 (2021).PubMed
PubMed Central
Google Scholar
Kooij, J. J. S. et al. Updated European Consensus Statement on diagnosis and treatment of adult ADHD. Eur. Psychiatry 56, 14–34 (2019).CAS
PubMed
Google Scholar
Nakao, T., Okada, K. & Kanba, S. Neurobiological model of obsessive-compulsive disorder: Evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin. Neurosci. 68, 587–605 (2014).PubMed
Google Scholar
Milad, M. R. & Rauch, S. L. Obsessive-compulsive disorder: Beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 16, 43–51 (2012).PubMed
Google Scholar
Hollander, E. Managing aggressive behavior in patients with obsessive-compulsive disorder and borderline personality disorder. J. Clin. Psychiatry 60, 38–44 (1999).PubMed
Google Scholar
Marsden, M. D. & Wood-Gush, D. G. M. The use of space by group-housed sheep. Appl. Anim. Behav. Sci. 15, 178 (1986).
Google Scholar
Burn, C. C. A vicious cycle: A cross-sectional study of canine tail-chasing and human responses to it, using a free video-sharing website. PLoS ONE 6, e26553 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
Stubbs, B. et al. An examination of the anxiolytic effects of exercise for people with anxiety and stress-related disorders: A meta-analysis. Psychiatry Res. 249, 102–108 (2017).PubMed
Google Scholar
Schneider, B. M., Dodman, N. H. & Maranda, L. Use of memantine in treatment of canine compulsive disorders. J. Vet. Behav. Clin. Appl. Res. 4, 118–126 (2009).
Google Scholar
Mihevc, S. P. & Majdic, G. Canine cognitive dysfunction and Alzheimer’s disease-two facets of the same disease?. Front. Neurosci. 13, 604 (2019).
Google Scholar
Delorme, R. et al. Admixture analysis of age at onset in obsessive-compulsive disorder. Psychol. Med. 35, 237–243 (2005).PubMed
Google Scholar
Flaisher-Grinberg, S. et al. Ovarian hormones modulate ‘compulsive’ lever-pressing in female rats. Horm. Behav. 55, 356–365 (2009).CAS
PubMed
Google Scholar
Fernández-Guasti, A., Agrati, D., Reyes, R. & Ferreira, A. Ovarian steroids counteract serotonergic drugs actions in an animal model of obsessive-compulsive disorder. Psychoneuroendocrinology 31, 924–934 (2006).PubMed
Google Scholar
Col, R., Day, C. & Phillips, C. J. C. An epidemiological analysis of dog behavior problems presented to an Australian behavior clinic, with associated risk factors. J. Vet. Behav. Clin. Appl. Res. 15, 1–11 (2016).
Google Scholar
Rusbridge, C. Neurological diseases of the Cavalier King Charles spaniel. J. Small Anim. Pract. 46, 265–272 (2005).CAS
PubMed
Google Scholar
Wrzosek, M., Płonek, M., Nicpoń, J., Cizinauskas, S. & Pakozdy, A. Retrospective multicenter evaluation of the ‘fly-catching syndrome’ in 24 dogs: EEG, BAER, MRI, CSF findings and response to antiepileptic and antidepressant treatment. Epilepsy Behav. 53, 184–189 (2015).PubMed
Google Scholar
Cao, X. et al. Balancing selection on CDH2 may be related to the behavioral features of the Belgian malinois. PLoS ONE 9, e110075 (2014).ADS
PubMed
PubMed Central
Google Scholar
Moon-Fanelli, A. A., Dodman, N. H. & Cottam, N. Blanket and flank sucking in Doberman Pinschers. J. Am. Vet. Med. Assoc. 231, 907–912 (2007).PubMed
Google Scholar
Tiira, K. & Lohi, H. Reliability and validity of a questionnaire survey in canine anxiety research. Appl. Anim. Behav. Sci. 155, 82–92 (2014).
Google Scholar
Puurunen, J. et al. Inadequate socialisation, inactivity, and urban living environment are associated with social fearfulness in pet dogs. Sci. Rep. 10, 3527 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
Hakanen, E. et al. Active and social life is associated with lower non-social fearfulness in pet dogs. Sci. Rep. 10, 1–13 (2020).
Google Scholar
Mikkola, S. et al. Aggressive behaviour is affected by demographic, environmental and behavioural factors in purebred dogs. Sci. Rep. 11, 9433 (2021).ADS
CAS
PubMed
PubMed Central
Google Scholar
Hejjas, K. et al. Association of polymorphisms in the dopamine D4 receptor gene and the activity-impulsivity endophenotype in dogs. Anim. Genet. 38, 629–633 (2007).CAS
PubMed
Google Scholar
R Core Team. R: A language and environment for statistical computing. (2019).Hastie, T. gam: Generalized Additive Models. (2018).Robinson, D. & Hayes, A. broom: Convert Statistical Analysis Objects into Tidy Tibbles. https://cran.r-project.org/package=broom (2018).Wickham, H., François, R., Lionel, H. & Müller, K. dplyr: A Grammar of Data Manipulation. https://cran.r-project.org/package=dplyr (2019).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH
Google Scholar
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications, 2011).
Google Scholar
Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
Google Scholar
Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. https://cran.r-project.org/package=emmeans (2019).Fox, J. Effect Displays in R for Generalised Linear Models. J. Stat. Softw. 8, 1–27 (2003).
Google Scholar
Goto, A., Arata, S., Kiyokawa, Y., Takeuchi, Y. & Mori, Y. Risk factors for canine tail chasing behaviour in Japan. Vet. J. 192, 445–448 (2012).PubMed
Google Scholar More
