Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470. https://doi.org/10.5194/bg-17-3439-2020 (2020).ADS
CAS
Article
Google Scholar
Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101. https://doi.org/10.1038/ncomms16101 (2017).ADS
Article
PubMed
PubMed Central
Google Scholar
Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian current. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030393 (2007).Article
Google Scholar
Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859. https://doi.org/10.1038/nclimate2743 (2015).ADS
Article
Google Scholar
Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400, 7–16. https://doi.org/10.1016/j.jembe.2011.02.021 (2011).Article
Google Scholar
Straub, S. C. et al. Resistance, extinction, and everything in between: The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00763 (2019).Article
Google Scholar
Roman-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA 117, 4211–4217. https://doi.org/10.1073/pnas.1913007117 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180186. https://doi.org/10.1098/rstb.2018.0186 (2019).Article
PubMed
PubMed Central
Google Scholar
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).Article
PubMed
Google Scholar
Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Annu. Rev. Mar. Sci. 12, 153–179. https://doi.org/10.1146/annurev-marine-010419-010916 (2020).ADS
Article
Google Scholar
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059. https://doi.org/10.1038/s41559-020-1198-2 (2020).Article
PubMed
Google Scholar
Smith, K. E. et al. Climate change and the threat of novel marine predators in Antarctica. Ecosphere 8, e02017. https://doi.org/10.1002/ecs2.2017 (2017).Article
Google Scholar
Aguilera, M. A., Valdivia, N., Broitman, B. R., Jenkins, S. R. & Navarrete, S. A. Novel co-occurrence of functionally redundant consumers induced by range expansion alters community structure. Ecology 101, e03150. https://doi.org/10.1002/ecy.3150 (2020).Article
PubMed
Google Scholar
Alexander, J. M., Diez, J. M., Hart, S. P. & Levine, J. M. When climate reshuffles competitors: A call for experimental macroecology. Trends Ecol. Evol. 31, 831–841. https://doi.org/10.1016/j.tree.2016.08.003 (2016).Article
PubMed
PubMed Central
Google Scholar
Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66. https://doi.org/10.1038/nclimate2457 (2015).ADS
Article
Google Scholar
Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920. https://doi.org/10.1242/jeb.037473 (2010).CAS
Article
PubMed
Google Scholar
Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitan-Espitia, J. D. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174. https://doi.org/10.1098/rstb.2018.0174 (2019).Article
PubMed
PubMed Central
Google Scholar
Kroeker, K. J. & Sanford, E. Ecological leverage points: Species interactions amplify the physiological effects of global environmental change in the ocean. Annu. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-042021-051211 (2021).Article
Google Scholar
Norin, T. & Metcalfe, N. B. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180180. https://doi.org/10.1098/rstb.2018.0180 (2019).Article
PubMed
PubMed Central
Google Scholar
Sokolova, I. M. & Pörtner, H.-O. Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes. J. Exp. Biol. 206, 195–207. https://doi.org/10.1242/jeb.00054 (2003).Article
PubMed
Google Scholar
Oellermann, M., Pörtner, H. O. & Mark, F. C. Mitochondrial dynamics underlying thermal plasticity of cuttlefish (Sepia officinalis) hearts. J. Exp. Biol. 215, 2992–3000. https://doi.org/10.1242/jeb.068163 (2012).CAS
Article
PubMed
Google Scholar
Guderley, H. & Johnston, I. Plasticity of fish muscle mitochondria with thermal acclimation. J. Exp. Biol. 199, 1311–1317. https://doi.org/10.1242/jeb.199.6.1311 (1996).CAS
Article
PubMed
Google Scholar
Han, G., Zhang, S. & Dong, Y. Anaerobic metabolism and thermal tolerance: The importance of opine pathways on survival of a gastropod after cardiac dysfunction. Integr. Zool. 12, 361–370. https://doi.org/10.1111/1749-4877.12229 (2017).Article
PubMed
Google Scholar
Verberk, W. C., Sommer, U., Davidson, R. L. & Viant, M. R. Anaerobic metabolism at thermal extremes: A metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integr. Comp. Biol. 53, 609–619. https://doi.org/10.1093/icb/ict015 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
Dunn, J. F. & Johnston, I. A. Metabolic constraints on burst-swimming in the Antarctic teleost Notothenia neglecta. Mar. Biol. 91, 433–440. https://doi.org/10.1007/BF00392593 (1986).CAS
Article
Google Scholar
Pörtner, H. O. Physiological basis of temperature-dependent biogeography: Trade-offs in muscle design and performance in polar ectotherms. J. Exp. Biol. 205, 2217–2230. https://doi.org/10.1242/jeb.205.15.2217 (2002).Article
PubMed
Google Scholar
Dell, A. I., Pawar, S. & Savage, V. M. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83, 70–84. https://doi.org/10.1111/1365-2656.12081 (2014).Article
PubMed
Google Scholar
Chown, S. L., Slabber, S., McGeouch, M., Janion, C. & Leinaas, H. P. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Philos. Trans. R. Soc. Lond. B Biol. Sci. 274, 2531–2537. https://doi.org/10.1098/rspb.2007.0772 (2007).Article
Google Scholar
Phillips, B. Lobsters: Biology, Management, Aquaculture and Fisheries (Wiley, 2008).
Google Scholar
Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. USA 106, 22341–22345. https://doi.org/10.1073/pnas.0907529106 (2009).ADS
Article
PubMed
PubMed Central
Google Scholar
Robinson, L. M. et al. Decision support for the ecosystem-based management of a range-extending species in a global marine hotspot presents effective strategies and challenges. Ecosystems https://doi.org/10.1007/s10021-020-00560-1 (2020).Article
Google Scholar
Pearce, J. & Balcom, N. The 1999 Long Island Sound lobster mortality event: Findings of the comprehensive research initiative. J. Shellfish Res. 24, 691–698. https://doi.org/10.2983/0730-8000(2005)24[691:TLISLM]2.0.CO;2 (2005).Article
Google Scholar
Wahle, R. A., Dellinger, L., Olszewski, S. & Jekielek, P. American lobster nurseries of southern New England receding in the face of climate change. ICES J. Mar. Sci. 72, i69–i78. https://doi.org/10.1093/icesjms/fsv093 (2015).Article
Google Scholar
Fitzgibbon, Q. P., Ruff, N., Tracey, S. R. & Battaglene, S. C. Thermal tolerance of the nektonic puerulus stage of spiny lobsters and implications of ocean warming. Mar. Ecol. Prog. Ser. 515, 173–186. https://doi.org/10.3354/meps10979 (2014).ADS
Article
Google Scholar
Spanier, E. et al. A concise review of lobster utilization by worldwide human populations from prehistory to the modern era. ICES J. Mar. Sci. 72, i7–i21. https://doi.org/10.1093/icesjms/fsv066 (2015).Article
Google Scholar
Lalancette, A. Creeping in? Neoliberalism, indigenous realities and tropical rock lobster (kaiar) management in Torres Strait Australia. Mar. Policy 80, 47–59. https://doi.org/10.1016/j.marpol.2016.02.020 (2017).Article
Google Scholar
Pereira, G. & Josupeit, H. The world lobster market. Report No. 1014–9546, (FAO, Rome, Italy, 2017).Holthuis, L. FAO species catalogue v. 13: Marine lobsters of the world. An annotated and illustrated catalogue of species of interest to fisheries known to date. Rome FAO Fish. Synop. (FAO) 125(13), 292 (1991).
Google Scholar
Boavida-Portugal, J. et al. Climate change impacts on the distribution of coastal lobsters. Mar. Biol. https://doi.org/10.1007/s00227-018-3441-9 (2018).Article
Google Scholar
Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425. https://doi.org/10.1007/s11160-013-9326-6 (2014).Article
Google Scholar
Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953. https://doi.org/10.1111/ele.12474 (2015).Article
PubMed
Google Scholar
Robinson, L. M. et al. Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Global. Environ. Chang. 31, 28–37. https://doi.org/10.1016/j.gloenvcha.2014.12.003 (2015).Article
Google Scholar
Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Glob. Ecol. Biogeogr. 20, 58–72. https://doi.org/10.1111/j.1466-8238.2010.00575.x (2011).Article
Google Scholar
Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: Inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731. https://doi.org/10.1111/j.1365-2486.2008.01734.x (2009).ADS
Article
Google Scholar
Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: A continental-scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. 27, 3200–3217. https://doi.org/10.1111/gcb.15634 (2021).Article
Google Scholar
Jeffs, A. G., Gardner, C. & Cockcroft, A. Jasus and Sagmariasus Species. In Lobsters: Biology, Management, Aquaculture and Fisheries, Second Edition, 259–288 (2013).Pecl, G. et al. The east coast Tasmanian rock lobster fishery: Vulnerability to climate change impacts and adaptation response options. 114 (Australian Government: Department of Climate Change, 2009).Thomas, C. W., Crear, B. J. & Hart, P. R. The effect of temperature on survival, growth, feeding and metabolic activity of the southern rock lobster Jasus edwardsii. Aquaculture 185, 73–84. https://doi.org/10.1016/S0044-8486(99)00341-5 (2000).Article
Google Scholar
Twiname, S. et al. Mismatch of thermal optima between performance measures, life stages and species of spiny lobster. Sci. Rep. 10, 21235. https://doi.org/10.1038/s41598-020-78052-4 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130. https://doi.org/10.1016/j.pocean.2018.02.007 (2018).ADS
Article
Google Scholar
Oellermann, M., Hickey, A. J. R., Fitzgibbon, Q. P. & Smith, G. Thermal sensitivity links to cellular cardiac decline in three spiny lobsters. Sci. Rep. 10, 202. https://doi.org/10.1038/s41598-019-56794-0 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Hooker, S. H., Jeffs, A. G., Creese, R. G. & Sivaguru, K. Growth of captive Jasus edwardsii (Hutton) (Crustacea: Palinuridae) in north–eastern New Zealand. Mar. Freshw. Res. 48, 903–910. https://doi.org/10.1071/MF97156 (1998).Article
Google Scholar
Yeruham, E., Shpigel, M., Abelson, A. & Rilov, G. Ocean warming and tropical invaders erode the performance of a key herbivore. Ecology 101, e02925. https://doi.org/10.1002/ecy.2925 (2020).CAS
Article
PubMed
Google Scholar
Groner, M. L., Shields, J. D., Landers, D. F. Jr., Swenarton, J. & Hoenig, J. M. Rising temperatures, molting phenology, and epizootic shell disease in the American lobster. Am. Nat. 192, E163–E177. https://doi.org/10.1086/699478 (2018).Article
PubMed
Google Scholar
Behringer, D. C. & Hart, J. E. Competition with stone crabs drives juvenile spiny lobster abundance and distribution. Oecologia 184, 205–218. https://doi.org/10.1007/s00442-017-3844-1 (2017).ADS
Article
PubMed
Google Scholar
Rossong, M. A., Williams, P. J., Comeau, M., Mitchell, S. C. & Apaloo, J. Agonistic interactions between the invasive green crab, Carcinus maenas (Linnaeus) and juvenile American lobster, Homarus americanus (Milne Edwards). J. Exp. Mar. Biol. Ecol. 329, 281–288. https://doi.org/10.1016/j.jembe.2005.09.007 (2006).Article
Google Scholar
Fitzgibbon, Q. P., Simon, C. J., Smith, G. G., Carter, C. G. & Battaglene, S. C. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 207, 13–20. https://doi.org/10.1016/j.cbpa.2017.02.003 (2017).CAS
Article
Google Scholar
Lo, S. & Andrews, S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front Psychol 6, 1171. https://doi.org/10.3389/fpsyg.2015.01171 (2015).Article
PubMed
PubMed Central
Google Scholar
Boyle, K. L., Dillaman, R. M. & Kinsey, S. T. Mitochondrial distribution and glycogen dynamics suggest diffusion constraints in muscle fibers of the blue crab Callinectes sapidus. J. Exp. Zool. 297, 1–16. https://doi.org/10.1002/jez.a.10227 (2003).Article
Google Scholar
Lee, C. G., Farrell, A. P., Lotto, A., Hinch, S. G. & Healey, M. C. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming. J. Exp. Biol. 206, 3253–3260. https://doi.org/10.1242/jeb.00548 (2003).CAS
Article
PubMed
Google Scholar
Briceno, F. A., Fitzgibbon, Q. P., Polymeropoulos, E. T., Hinojosa, I. A. & Pecl, G. T. Temperature alters the physiological response of spiny lobsters under predation risk. Conserv. Physiol. 8, coaa065. https://doi.org/10.1093/conphys/coaa065 (2020).Article
PubMed
PubMed Central
Google Scholar
Powell, M. L. & Watts, S. A. Effect of temperature acclimation on metabolism and hemocyanin binding affinities in two crayfish, Procambarus clarkii and Procambarus zonangulus. Comp Biochem. Physiol. Part A Mol. Integr. Physiol. 144, 211–217. https://doi.org/10.1016/j.cbpa.2006.02.032 (2006).CAS
Article
Google Scholar
Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447. https://doi.org/10.1038/ncomms11447 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Rodgers, E. M. & Franklin, C. E. Aerobic scope and climate warming: Testing the “plastic floors and concrete ceilings” hypothesis in the estuarine crocodile (Crocodylus porosus). J. Exp. Zool. Part A 335, 108–117. https://doi.org/10.1002/jez.2412 (2021).CAS
Article
Google Scholar
Farrell, A. P. Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids. J. Exp. Biol. 212, 3771–3780. https://doi.org/10.1242/jeb.023671 (2009).CAS
Article
PubMed
Google Scholar
Hedrick, M. S., Hancock, T. V. & Hillman, S. S. in Compr. Physiol. 1677–1703 (2015).Frederich, M. & Pörtner, H. O. Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1531–R1538. https://doi.org/10.1152/ajpregu.2000.279.5.R1531 (2000).CAS
Article
PubMed
Google Scholar
Verberk, W. C. E. P. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 192, 64–78. https://doi.org/10.1016/j.cbpa.2015.10.020 (2016).CAS
Article
Google Scholar
Boldsen, M. M., Norin, T. & Malte, H. Temporal repeatability of metabolic rate and the effect of organ mass and enzyme activity on metabolism in European eel (Anguilla anguilla). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 165, 22–29. https://doi.org/10.1016/j.cbpa.2013.01.027 (2013).CAS
Article
Google Scholar
Klymasz-Swartz, A. K. et al. Impact of climate change on the American lobster (Homarus americanus): Physiological responses to combined exposure of elevated temperature and pCO2. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 235, 202–210. https://doi.org/10.1016/j.cbpa.2019.06.005 (2019).CAS
Article
Google Scholar
Seebacher, F. & Wilson, R. S. Fighting fit: thermal plasticity of metabolic function and fighting success in the crayfish Cherax destructor. Funct. Ecol. 20, 1045–1053. https://doi.org/10.1111/j.1365-2435.2006.01194.x (2006).Article
Google Scholar
Jimenez, A. G., Dasika, S. K., Locke, B. R. & Kinsey, S. T. An evaluation of muscle maintenance costs during fiber hypertrophy in the lobster Homarus americanus: Are larger muscle fibers cheaper to maintain?. J. Exp. Biol. 214, 3688–3697. https://doi.org/10.1242/jeb.060301 (2011).CAS
Article
PubMed
Google Scholar
Jimenez, A. G., Locke, B. R. & Kinsey, S. T. The influence of oxygen and high-energy phosphate diffusion on metabolic scaling in three species of tail-flipping crustaceans. J. Exp. Biol. 211, 3214–3225. https://doi.org/10.1242/jeb.020677 (2008).CAS
Article
PubMed
Google Scholar
Johnson, L. K., Dillaman, R. M., Gay, D. M., Blum, J. E. & Kinsey, S. T. Metabolic influences of fiber size in aerobic and anaerobic locomotor muscles of the blue crab, Callinectes sapidus. J. Exp. Biol. 207, 4045–4056. https://doi.org/10.1242/jeb.01224 (2004).CAS
Article
PubMed
Google Scholar
Speed, S. R., Baldwin, J., Wong, R. J. & Wells, R. M. G. Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport. Comp. Biochem. Phys. B 128, 435–444. https://doi.org/10.1016/S1096-4959(00)00340-7 (2001).CAS
Article
Google Scholar
England, W. & Baldwin, J. Anaerobic energy metabolism in the tail musculature of the Australian yabby Cherax destructor (Crustacea, Decapoda, Parastacidae): Role of phosphagens and anaerobic glycolysis during escape behavior. Physiol. Zool. 56, 614–622. https://doi.org/10.1086/physzool.56.4.30155884 (1983).CAS
Article
Google Scholar
Head, G. & Baldwin, J. Energy metabolism and the fate of lactate during recovery from exercise in the Australian freshwater crayfish Cherax destructor. Mar. Freshw. Res. 37, 641–646. https://doi.org/10.1071/MF9860641 (1986).CAS
Article
Google Scholar
Goncalves, R., Lund, I. & Gesto, M. Interactions of temperature and dietary composition on juvenile European lobster (Homarus gammarus, L.) energy metabolism and performance. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 260, 111019. https://doi.org/10.1016/j.cbpa.2021.111019 (2021).CAS
Article
Google Scholar
Baldwin, J., Gupta, A. & Iglesias, X. Scaling of anaerobic energy metabolism during tail flipping behaviour in the freshwater crayfish Cherax destructor. Mar. Freshw. Res. 50, 183–187. https://doi.org/10.1071/MF98110 (1999).Article
Google Scholar
Lund, H. S. et al. Recovery by the Norway lobster Nephrops norvegicus (L) from the physiological stresses of trawling: Influence of season and live-storage position. J. Exp. Mar. Biol. Ecol. 373, 124–132. https://doi.org/10.1016/j.jembe.2009.04.004 (2009).Article
Google Scholar
Shields, J. D. Climate change enhances disease processes in crustaceans: case studies in lobsters, crabs, and shrimps. J. Crustac. Biol. 39, 673–683. https://doi.org/10.1093/jcbiol/ruz072 (2019).Article
Google Scholar
Mai, T. T. & Hovel, K. A. Influence of local-scale and landscape-scale habitat characteristics on California spiny lobster (Panulirus interruptus) abundance and survival. Mar. Freshw. Res. 58, 419–428. https://doi.org/10.1071/MF06141 (2007).Article
Google Scholar
Ling, S. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130269. https://doi.org/10.1098/rstb.2013.0269 (2015).Article
PubMed Central
Google Scholar
Sabino, M. A. et al. Habitat degradation increases interspecific trophic competition between three spiny lobster species in Seychelles. Estuar. Coast. Shelf Sci. 256, 107368. https://doi.org/10.1016/j.ecss.2021.107368 (2021).CAS
Article
Google Scholar
Twiname, S. et al. Resident lobsters dominate food competition with range-shifting lobsters in an ocean warming hotspot. Mar. Ecol. Prog. Ser https://doi.org/10.3354/meps13984 (2021).Article
Google Scholar
Briones-Fourzan, P., Lozano-Alvarez, E., Negrete-Soto, F. & Barradas-Ortiz, C. Enhancement of juvenile Caribbean spiny lobsters: An evaluation of changes in multiple response variables with the addition of large artificial shelters. Oecologia 151, 401–416. https://doi.org/10.1007/s00442-006-0595-9 (2007).ADS
Article
PubMed
Google Scholar
Norin, T. & Clark, T. D. Measurement and relevance of maximum metabolic rate in fishes. J. Fish Biol. 88, 122–151. https://doi.org/10.1111/jfb.12796 (2016).CAS
Article
PubMed
Google Scholar
Marzloff, M. P. et al. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management. Glob. Change Biol. 22, 2462–2474. https://doi.org/10.1111/gcb.13285 (2016).ADS
Article
Google Scholar
Taylor, N. G. & Dunn, A. M. Predatory impacts of alien decapod Crustacea are predicted by functional responses and explained by differences in metabolic rate. Biol. Invasions 20, 2821–2837. https://doi.org/10.1007/s10530-018-1735-y (2018).Article
Google Scholar
Seth, H. et al. Metabolic scope and interspecific competition in sculpins of Greenland are influenced by increased temperatures due to climate change. PLoS One 8, e62859. https://doi.org/10.1371/journal.pone.0062859 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Stoffels, R. J., Richardson, A. J., Vogel, M. T., Coates, S. P. & Muller, W. J. What do metabolic rates tell us about thermal niches? Mechanisms driving crayfish distributions along an altitudinal gradient. Oecologia 180, 45–54. https://doi.org/10.1007/s00442-015-3463-7 (2016).ADS
Article
PubMed
Google Scholar
Briceño, F. A., Polymeropoulos, E. T., Fitzgibbon, Q. P., Dambacher, J. M. & Pecl, G. T. Changes in metabolic rate of spiny lobster under predation risk. Mar. Ecol. Prog. Ser. 598, 71–84. https://doi.org/10.3354/meps12644 (2018).ADS
CAS
Article
Google Scholar
Twiname, S. et al. A cross-scale framework to support a mechanistic understanding and modelling of marine climate-driven species redistribution, from individuals to communities. Ecography 43, 1764–1778. https://doi.org/10.1111/ecog.04996 (2020).Article
Google Scholar
Mazur, M. D., Friedland, K. D., McManus, M. C. & Goode, A. G. Dynamic changes in American lobster suitable habitat distribution on the Northeast U.S. Shelf linked to oceanographic conditions. Fish. Oceanogr. 29, 349–365. https://doi.org/10.1111/fog.12476 (2020).Article
Google Scholar
Stobart, B., Mayfield, S., Mundy, C., Hobday, A. J. & Hartog, J. R. Comparison of in situ and satellite sea surface-temperature data from South Australia and Tasmania: How reliable are satellite data as a proxy for coastal temperatures in temperate southern Australia?. Mar. Freshw. Res. https://doi.org/10.1071/mf14340 (2016).Article
Google Scholar
Montgomery, S. S., Liggins, G. W., Craig, J. R. & McLeod, J. R. Growth of the spiny lobster Jasus verreauxi (Decapoda: Palinuridae) off the east coast of Australia. N. Z. J. Mar. Freshw. Res. 43, 113–123. https://doi.org/10.1080/00288330909509986 (2009).Article
Google Scholar
Oellermann, M. et al. Harnessing the benefits of open electronics in science. arXiv preprint, https://arxiv.org/abs/2106.15852 (2021).Havird, J. C. et al. Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to Q10 effects: Why methodology matters. Funct. Ecol. 34, 1015–1028. https://doi.org/10.1111/1365-2435.13534 (2020).Article
Google Scholar
Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: Respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782. https://doi.org/10.1242/jeb.084251 (2013).Article
PubMed
Google Scholar
Jensen, M. A., Fitzgibbon, Q. P., Carter, C. G. & Adams, L. R. Effect of body mass and activity on the metabolic rate and ammonia-N excretion of the spiny lobster Sagmariasus verreauxi during ontogeny. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 166, 191–198. https://doi.org/10.1016/j.cbpa.2013.06.003 (2013).CAS
Article
Google Scholar
Svendsen, M. B. S., Bushnell, P. G. & Steffensen, J. F. Design and setup of intermittent-flow respirometry system for aquatic organisms. J. Fish Biol. 88, 26–50. https://doi.org/10.1111/jfb.12797 (2016).CAS
Article
PubMed
Google Scholar
R: A language and environment for statistical computing. (Vienna, Austria, 2021).Rstudio: Integrated development environment for R. (Boston, MA, USA, 2021).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article
Google Scholar
emmeans: Estimated Marginal Means, aka Least-Squares Means. v. 1.6.2–1 (2021).Magnusson, A. et al. Package ‘glmmTMB’. R Package Version 0.2. 0 (2017). More