More stories

  • in

    Salmon lice in the Pacific Ocean show evidence of evolved resistance to parasiticide treatment

    BioassaysSalmon-louse bioassays were performed by the BC Centre for Aquatic Health Sciences (CAHS) as described in Saksida et al.10. Briefly, motile (i.e., pre-adult and adult) L. salmonis were collected from 11 salmon farms in the Broughton Archipelago (BA) between 2010 and 2021 and transported to CAHS in Campbell River, BC. Within 18 h of collection, healthy lice were separated by sex and randomly placed into petri dishes each containing approximately 10 lice (mean ± SD = 9.6 ± 1.1) and subjected to one of six EMB concentrations (either 0, 31.3, 62.5, 125, 250, and 500 ppb or 0, 62.5, 125, 250, 500, and 1000 ppb, depending on suspected variation in EMB sensitivity11). Each collection corresponded to one bioassay, and each bioassay contained roughly four replicates for each sex (4.0 ± 1.3 for females and 3.6 ± 0.9 for males). After 24 h of EMB exposure, lice were classified as alive if they could swim and attach to the petri dish, or moribund/dead otherwise. Lice were kept at 10 °C throughout the process. In total, 34 bioassays were conducted from 11 farms between October 2010 and November 2021.We analysed the proportion of lice that survived exposure to EMB, using standard statistical descriptions that accounted for within-assay dependencies (generalized linear mixed models (GLMMs) with logit link functions, fitted separately to the data from each bioassay). The models included fixed effects for EMB concentration, sex, and the interaction between the two, as well as a random intercept for petri dish. For each analysis, we centered concentration values and scaled them by one standard deviation. We used the GLMM fits to calculate the effective concentrations at which 50% of the lice survived (EC50) in each bioassay. The GLMM for one bioassay produced a singular fit because there was not enough variation in the female survival data to warrant the random-effects structure. We retained the EC50 values resulting from this singular fit because re-fitting without the random intercept yielded identical EC50 values, and removing the entire bioassay from the overall dataset did not qualitatively affect the subsequent analysis.To assess whether the sensitivity of salmon lice to EMB has decreased over time, we fitted a set of five standard GLMs with gamma error distributions and log link functions to the maximum-likelihood EC50 estimates. Each of these five models included binary effects for sex and for whether the farm’s stock had previously been treated, since both affect EMB sensitivity in lice10. The first model included only these two effects and served as a null model that assumed lice did not evolve EMB resistance over time. The second model added a fixed effect for time (i.e., the number of days since January 1, 2010), while the third model included an interaction between time and sex. The fourth and fifth models were identical to the second and third, but with a quadratic effect for time, to account for possible first-order nonlinearity. We were unable to add an effect for farm due to small sample sizes. We performed model selection using the Akaike Information Criterion penalized for small sample sizes AICc25, treating AICc differences of less than two as being indistinguishable in terms of statistical support and selecting the least complex model when that was the case26. The ΔAICc values for the EC50 models were 48.1, 6.1, 4.9, 0, 1.75, respectively.Field efficacyWe used relative salmon-louse counts after EMB treatment (i.e., the post-treatment count divided by the pre-treatment count) as our measure of EMB field resistance between 2010 and 2021 (higher relative counts imply lower treatment efficacy). We defined “pre-treatment” as one month prior to treatment and “post-treatment” as three months after treatment (roughly when one would expect to find the lowest counts in louse populations previously unexposed to EMB), as in Saksida et al.10. We excluded EMB treatments for which an additional, non-EMB treatment was performed within the following three months. In total, there were 73 EMB treatments for which we were able to calculate relative post-treatment counts.Salmon-louse counts were performed by farm staff as described by Godwin et al.27. In short, salmon-louse counts were usually performed at least one per month by capturing 20 stocked fish in each of three net pens using a box seine net, then placing the fish in an anesthetic bath of tricaine methanesulfonate (TMS, or MS-222) and assessing the fish for motile (i.e., pre-adult and adult) L. salmonis by eye.The treatment dataset included the date and type of every treatment that has been performed on a BA farm (i.e., not just the 11 farms with bioassay data). In total, 88 EMB treatments were conducted between 2010 and 2021, of which we were able to calculate relative post-treatment counts for 73 because some months lacked counts or had a non-EMB treatment performed within the following three months. An additional 22 non-EMB treatments (e.g., freshwater and hydrogen baths) were performed, all since the beginning of 2019, but we excluded these data from our analysis.To determine whether field efficacy of EMB treatments has decreased over time, we used GLM-based “hurdle models”—standard statistical descriptions used to accommodate an over-abundance of zeroes in data being analysed. A hurdle model uses two components—one model for whether a count is nonzero and another for the value of the nonzero count—to predict overall mean count. To this end, we fitted three binomial GLMs paired with three gamma GLMs to the relative-count data, each of the paired models being structurally identical in terms of predictors. All of these submodels included a binary fixed effect for previous treatment, as in the EC50 models. The null pair of submodels included no additional terms, the second pair of submodels included a fixed effect for time (i.e., the number of days since January 1, 2010), and the third pair of submodels included a quadratic effect of time (again, to account for possible first-order deviations nonlinearity). We were unable to add an effect for farm due to small sample sizes. We performed model selection of the hurdle models, again using the Akaike Information Criterion penalized for small sample sizes. The ΔAICc values for the three hurdle models were 39.6, 18.3, and 0, respectively. We performed our analyses in R 3.6.028, using the lme4 package29. More

  • in

    Machine learning reveals cryptic dialects that explain mate choice in a songbird

    Ethics oversightThis study was carried out within the frame of our housing and breeding permit (311.4-si) granted by the Landratsamt Starnberg, Germany. Attachment of backpacks was approved by the Regierung von Oberbayern, Germany (ROB-55-2-2532. Vet_02-17-211).Study populationsWe used four zebra finch populations that are genetically differentiated due to founder effects and selection (see Supplementary Fig. 1 & Fig. 2): two domesticated populations (D1 and D2) that have been maintained in captivity in Europe for about 150 years and two populations (W1 and W2) that have been taken from the wild about 10–30 years ago (see Supplementary Fig. 1). We ran all experiments in two independent replicates. We used individuals from populations D1 and W1 for replicate 1 and individuals from D2 and W2 for replicate 2.Breeding experiment Generation 1We created four groups of 36 individuals (9 males and 9 females from both a domesticated and a wild-derived population, two groups within each replicate) and put each group separately in an indoor aviary (5 m × 2.0 m × 2.5 m). All individuals had been reared normally by their genetic parents in similar breeding aviaries, were inexperienced (never mated before) and unfamiliar to all opposite-sex individuals. In replicate 1 (W1 – D1, starting December 2016), birds were 142 ± 32 days old at the start of the experiment (range: 101–191 days); in replicate 2 (W2 – D2, starting March 2017), birds were 241 ± 47 days old (range: 151–306 days). In each aviary, we provided nest material and nest boxes to stimulate breeding and observed pair-bonding behaviour for ca. 60 h spread over 14 days. Two observers recorded all instances of allopreening, sitting in bodily contact, and visiting a nest box together, which reflects pair bonding64.In total, we observed 3166 instances of heterosexual association among the 4 × 36 individuals (Supplementary Table 3). We defined a pair-bond between two opposite-sex individuals if they were recorded in pair-bonding behaviour at least five times (mean: 22 ± 14 SD, range: 5 – 73). This cut-off was chosen (blind to the outcome of data analysis) based on the frequency distribution showing a clear deviation from a random, zero-truncated Poisson distribution (Supplementary Fig. 8). Using this definition, we identified a total of 60 pairs (30 in each replicate). Of all females, 48 and 6 had a pair-bond with one and two males, respectively (18 females remained unpaired). Conversely, 34, 10, and 2 males had a pair-bond with one, two, and three females, respectively (26 males remained unpaired).Cross-fostering for Generation 2 experimentsAfter the breeding experiment of Generation 1, in 2017, we established two different cultural lineages within each genetic population by cross-fostering eggs, either within or between populations (Fig. 3). For this purpose, we used 16 aviaries (four per population), each containing 8 males and 8 females of the same population (Generation 1). Individuals were allowed to freely form pairs and breed. We reciprocally exchanged eggs shortly after laying between two aviaries per population (within-population cross-fostering) and between pairs of aviaries from different populations (between-population cross-fostering). This resulted in four cultural lineages per replicate (DD, DW, WD, and WW; Fig. 3). Each lineage was maintained in two separate breeding aviaries to ensure the availability of unfamiliar opposite-sex Generation 2 individuals from the same line. Offspring remained with their foster parents until they reached sexual maturity, when the following experiment started.Social experiment Generation 2Between December 2017 and March 2018, we put four groups of individuals (two groups for each replicate) in indoor aviaries (same as in Generation 1 experiment). Each group consisted of 10 males and 10 females from each of the cross-fostered groups DD, WW, DW and WD, i.e., a total of 80 birds per aviary, except that one aviary of replicate 2 only consisted of 63 individuals (7DD, 8WW, 8DW and 8WD) due to a shortage of birds. In replicate 1 (W1 – D1, starting December 2017), birds were 170 ± 25 days old at the start of the experiment (range: 105–199 days); in replicate 2 (W2 – D2, starting January 2018), birds were 200 ± 29 days old (range: 120–241 days). We recorded the position of individuals using an automated barcode-based tracking system31. We fitted each individual with a unique machine-readable barcode (Supplementary Fig. 4a) and placed eight cameras (8-megapixel Camera Module V2; RS Components Ltd and Allied Electronics Inc.), each connected to a Raspberry Pi (Raspberry Pi 3 Model Bs; Raspberry Pi Foundation) in each aviary. For 30 consecutive days, the cameras recorded individuals at six perches and at two feeders (Supplementary Fig. 4b, c). Between 05:30 and 20:00, when lights were switched on, each camera took a picture every two seconds.Each day, pictures stored on the Raspberry Pis were downloaded to a central server and processed using customised scripts. The customised software used the PinPoint library in Python65 to identify each barcode in each picture, allowing us to simultaneously track the position and orientation of each individual (Supplementary Fig. 4b) for the duration of the experiment. The tracking system generated 118 million observations across all four aviaries (Supplementary Fig. 4c). From these data, we extracted the average distance between the male and the female (in mm) for each male-female dyad, either daily or across the entire 30-day period (for comparison, such distance data were also extracted for all male-male and all female-female dyads). We used this dataset to identify the nearest opposite-sex individual for each of 151 males and females (55% of these 151 associations were reciprocal). Out of 151 nearest males to females, 74 (49%) paired with that female in the following breeding experiment (see below) and this proportion strongly increased as the average distance between partners decreased (Supplementary Fig. 9).Breeding experiment Generation 2Immediately after the social experiment, we moved each group into a separate semi-outdoor aviary (5 m × 2.5 m × 2.5 m) and provided nest material and nest boxes. During the next 2 months, three observers scored heterosexual associations to identify pair bonds as described for ‘breeding experiment Generation 1’ (ca 300 h per replicate). In total, we observed 6072 associations involving 284 individuals (Supplementary Table 3). Consistent with the previous experiment, we defined a pair-bond when a male-female dyad was observed in pair-bonding behaviour at least five times during the entire experiment (mean: 18 ± 13 SD range: 5 – 61; Supplementary Fig. 8). Using this definition, we identified 147 pairs (79 pairs in replicate 1 and 68 in replicate 2). Of all males, 97, 22 and 2 had a pair-bond with 1, 2 and 3 females, respectively (27 males remained unpaired). Conversely, 99, 21 and 2 females had a pair-bond with 1, 2 and 3 males (26 females remained unpaired).Breeding experiment Generation 3Between April and December 2018, we housed the four cultural lineages (DD, WW, DW and WD) separately again. We placed 8 males and 8 females in each of 16 breeding aviaries (four per lineage) and allowed them to freely form pairs and breed. The offspring belong to four lineages (Fig. 3): two lineages with individuals that were raised by parents that had not been cross-fostered between the domestic and wild-derived population (DDD and WWW) and two lineages with individuals from the same genetic background, but where their parents had been cross-fostered and raised by the other population (DDW and WWD).Between December 2018 and February 2019, we put four groups of 36 birds (two per replicate, i.e., 2 with 18 DDD and 18 DDW individuals and 2 with 18 WWW and 18 WWD individuals; 9 males and 9 females per lineage; Supplementary Table 3) in an outdoor aviary (same as above). In replicate 1 (W1 – D1, starting December 2018), birds were 172 ± 44 days old at the start of the experiment (range: 131–195 days); in replicate 2 (W2 – D2, starting January 2019), birds were 191 ± 40 days old (range: 122–230 days). During 14 days, two observers recorded all pair-bond behaviours as described under ‘breeding experiment Generation 1’. In total, we observed 3378 instances of pair-bond behaviour involving 137 individuals (Supplementary Table 3). As above, we defined a pair-bond when a male-female dyad was observed in pair-bonding behaviour at least five times during the entire experiment (mean: 18 ± 11 SD, range: 5 – 47; Supplementary Fig. 8). We identified 82 pair bonds (37 in replicate 1 and 45 in replicate 2). Of all males, 34, 16, 4 and 1 had a pair-bond with 1, 2, 3 and 4 females, respectively (17 males remained unpaired). Conversely, 42, 16, 1 and 1 females had a pair-bond with 1, 2, 3 and 5 males, respectively (12 females remained unpaired).Morphological measurementsAfter birds had reached sexual maturity ( >100 days of age), we measured body mass (to the nearest 0.1 g), tarsus length (to the nearest 0.1 mm), and wing length (to the nearest 0.5 mm) of all individuals (all measured by WF). We included these three variables in a principal component analysis (PCA) and used the first principal component (PC1, 67% of variation explained) as a measure of body size.Song recording and analysis approachWe recorded the songs of the parental males from Generation 1 (16 aviaries x 8 males = 128 males, of which 122 were successfully recorded between November and December in 2017) and of their offspring (Generation 2; 146 out of 152 males were successfully recorded between March and May 2018). To elicit courtship song, each male was placed together with an unfamiliar female in a metal wire cage (50 cm × 30 cm × 40 cm) equipped with three perches and containing food and water. The cage was placed within one of two identical sound-attenuated chambers. We mounted a Behringer condenser microphone (TC20, Earthworks, USA) at a 45° angle between the ceiling and the side wall of the chamber, such that the distance to each perch was approximately 35 cm. The microphone was connected to a PR8E amplifier (SM Pro Audio, Melbourne, Australia) from which we recorded directly through a M-Audio Delta 44 sound card (AVID Technology GmbH, Hallbergmoos, Germany) onto the hard drive of a computer.Previous studies that quantified differentiation of songs between zebra finch populations using specific song parameters (e.g., duration and frequency measures) largely failed to detect prominent differences12,49,50. We, therefore, used the following two approaches (Sound Analysis Pro and Machine Learning) to quantify the extent to which a given male’s song resembled the songs of other males.Song similarity analysis with SAPUsing Sound Analysis Pro (SAP) version 2011.10427, we quantified song similarity (ranging from 0 to 100) by direct pairwise comparison of song motifs (the main part of a male’s song that is stereotypically repeated and about 0.8 s long, excluding introductory syllables). Pair-wise comparisons of two males (based on one representative motif recording per male) revealed higher within-population similarity than between-population similarity (Supplementary Table 2, data from Generation 1). Further, for offspring that were cross-fostered between populations (N = 73 males from Generation 2) song similarity to their foster father was higher than song similarity to their genetic father (80 versus 68, paired t-test: p  More

  • in

    An expert-curated global database of online newspaper articles on spiders and spider bites

    Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, FinlandStefano Mammola, Jagoba Malumbres-Olarte, Pedro Cardoso, Caroline S. Fukushima, Tuuli Korhonen, Marija Miličić & Joni A. SaarinenMolecular Ecology Group (MEG), Water Research Institute, National Research Council of Italy (CNR-IRSA), Largo Tonolli 50, 28922, Verbania Pallanza, ItalyStefano Mammola & Alejandro MartínezCE3C – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Angra do Heroísmo, Azores, PortugalJagoba Malumbres-OlarteAlbert Katz International School for Desert Studies, Ben-Gurion University of the Negev, Sede Boqer Campus, Beersheba, IsraelValeria ArabeskyBlaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beersheba, IsraelValeria Arabesky & Yael LubinColección Nacional de Arácnidos, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, MexicoDiego Alejandro Barrales-AlcaláEnvironmental Biology Division, Institute of Biological Sciences, College of Arts and Sciences and Museum of Natural History, University of the Philippines Los Banos, 4031, Los Baños, PhilippinesAimee Lynn Barrion-DupoCentro Universitario de Rivera, Universidad de la República, Montevideo, UruguayMarco Antonio BenamúLab. Ecotoxicología de Artrópodos Terrestres, Centro Univeritario de Rivera, Universidad de la República, Montevideo, UruguayMarco Antonio BenamúLaboratorio Ecología del Comportamiento, Instituto de Investigaciones Biológicas clemente Estable (IIBCE), Montevideo, UruguayMarco Antonio BenamúDitsong National Museum of Natural History, PO Box 4197, Pretoria, 0001, South AfricaTharina L. BirdDepartment of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South AfricaTharina L. BirdFreelance translator, Verbania Pallanza, ItalyMaria BogomolovaDepartment of Molecular Biology and Genetics, Democritus University of Thrace, Komotini, GreeceMaria ChatzakiDepartment of Life sciences, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung City, 402204, TaiwanRen-Chung Cheng & Tien-Ai ChuDepartment of Biology, Macelwane Hall, 3507 Laclede Avenue, Saint Louis University, St. Louis, MO, 63103, USALeticia M. Classen-RodríguezCroatian Biospeleological Society, Rooseveltov trg 6, Zagreb, CroatiaIva Čupić & Martina PavlekProgram Sarjana, Fakultas Biologi, Universitas Gadjah Mada, Yogyakarta, IndonesiaNaufal Urfi Dhiya’ulhaqInsectarium de Montréal, Espace pour la vie, 4101, rue Sherbrooke Est, Montréal, Québec, H1X 2B2, CanadaAndré-Philippe Drapeau PicardSerket, Arachnid Collection of Egypt (ACE), Cairo, EgyptHisham K. El-HennawyErzincan Binali Yıldırım University, Faculty of Science and Arts, Biology Department, 24002, Erzincan, TurkeyMert ElvericiThe National Natural History Collections, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, IsraelZeana Ganem & Efrat Gavish-RegevThe Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, IsraelZeana GanemBotswana International University of Science and Technology, Palapye, BotswanaNaledi T. GonnyeUMR CNRS 6553 Ecobio, Université de Rennes, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, FranceAxel Hacala & Julien PétillonDepartment of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South AfricaCharles R. Haddad & Zingisile MboDepartment of Zoology, University of Oxford, Oxford, OX1 3PS, United KingdomThomas HesselbergDepartment of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, SingaporeTammy Ai Tian HoDepartment of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 12121, ThailandThanakorn Into & Booppa PetcharadDept. of Life Science and Systems Biology, University of Torino, Via Accademia Albertina, 13 – 10123, Torino, ItalyMarco Isaia & Veronica NanniUnit of Conservation Biology, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, IndiaDharmaraj JayaramanNational Museum of Namibia, Windhoek, NamibiaNanguei Karuaera5A Sagar Sangeet, SBS Marg, Mumbai, 400005, IndiaRajashree Khalap & Kiran KhalapDepartment of Biological Sciences, Ajou University, Suwon, Republic of KoreaDongyoung KimResearch Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Ljubljana, SloveniaSimona Kralj-FišerUniversity of Greifswald, Zoological Institute and Museum, General and Systematic Zoology, Loitzerstrasse 26, 17489, Greifswald, GermanyHeidi Land, Shou-Wang Lin & Gabriele UhlDepartment of Natural Resource Sciences, McGill University, 21 111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, CanadaSarah Loboda & Catherine ScottDepartment of Biological Science, Macquarie University, Sydney, NSW, 2122, AustraliaElizabeth LoweMitrani Department of Desert Ecology, University in Midreshet Ben-Gurion, Midreshet Ben-Gurion, IsraelYael LubinBioSense Institute – Research Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Đinđića 1, 21000, Novi Sad, SerbiaMarija MiličićNational Museums of Kenya, Museum Hill, P.O. BOX 40658- 00100, Nairobi, KenyaGrace Mwende KiokoSchool for Advanced Studies IUSS, Science, Technology and Society Department, 25100, Pavia, ItalyVeronica NanniInstitute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, MalaysiaYusoff Norma-RashidDepartment of Animal and Environmental Biology, Federal University, Oye-Ekiti, Ekiti State, NigeriaDaniel NwankwoTe Aka Mātuatua School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New ZealandChristina J. PaintingIndependent researcher, Toronto, CanadaAleck PangMuseo Civico di Scienze Naturali “E. Caffi”, Piazza Cittadella, 10, I-24129, Bergamo, ItalyPaolo PantiniRuđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, CroatiaMartina PavlekBiodiversity Research Laboratory, Moreton Morrell, Warwickshire College University Centre, Warwickshire, United KingdomRichard PearceInstitute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South AfricaJulien PétillonDepartment of Entomology, University of Antananrivo, Antananarivo, MadagascarOnjaherizo Christian RaberahonaSchool of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United StatesLaura Segura-HernándezDepartment of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, CanadaLenka SentenskáNatural Sciences, Auckland War Memorial Museum, Parnell, Auckland, 1010, New ZealandLeilani WalkerTe Pūnaha Matatini, University of Auckland, Auckland, New ZealandLeilani WalkerMurang’a University of Technology, Department of Physical & Biological Sciences, P.O.Box 75-10200, Murang’a, KenyaCharles M. WaruiInstitute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22a, 76-200, Słupsk, PolandKonrad WiśniewskiZoological Museum, Biodiversity Unit, FI-20014, University of Turku, Turku, FinlandAlireza ZamaniDepartment of Psychology, University of Tennessee, Knoxville, Tennessee, USAAngela ChuangDepartment of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USAAngela ChuangConceptualization: SM, JM-O, CS, AC; Data collection & validation: all authors; Data management: SM, VN, AC; Data analysis & visualization (Figs. 2–5): SM; Summary illustration (Fig. 1): JM-O; Writing (first draft): SM; Writing, contributions: JM-O, CS, AC; All authors read the text, provided comments, suggestions, and corrections, and approved the final version. More

  • in

    Publisher Correction: Heterogeneity within and among co-occurring foundation species increases biodiversity

    Marine Ecology Research Group and Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New ZealandMads S. Thomsen, Luca Mondardini, David R. Schiel & Alfonso SicilianoDepartment of Bioscience, Aarhus University, 4000, Roskilde, DenmarkMads S. ThomsenSmithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of PanamaAndrew H. Altieri, Viktoria M. M. Frühling, Seamus B. Harrison & Gerhard ZotzEnvironmental Engineering Sciences, University of Florida, Gainesville, FL, USAAndrew H. Altieri & Christine AngeliniDepartment of Biological Sciences, Macquarie University, Sydney, NSW, AustraliaMelanie J. Bishop & Semonn OleksynDipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, ItalyFabio Bulleri & Joachim LangeneckMarine Sciences, University of Georgia, Athens, GA, USARoxanne FarhanCentre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, AustraliaPaul E. Gribben & Brendan S. LanhamSydney Institute of Marine Science, Chowder Bay Road, Mosman, 2088, Sydney, NSW, AustraliaPaul E. Gribben & Brendan S. LanhamCoastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, 200438, Shanghai, ChinaQiang HeInstitute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, GermanyMoritz Klinghardt, Tristan Schneider & Gerhard ZotzSchool of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, AustraliaYannick Mulders & Thomas WernbergDepartment of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USAAaron P. RamusNicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC, USABrian R. Silliman & Stacy ZhangMarine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UKDan A. SmaleCawthron Institute, Nelson, New ZealandPaul M. South More

  • in

    Mapping the purple menace: spatiotemporal distribution of purple loosestrife (Lythrum salicaria) along roadsides in northern New York State

    Lázaro-Lobo, A. & Ervin, G. N. A global examination on the differential impacts of roadsides on native versus exotic and weedy plant species. Glob. Ecol. Conserv. 17(e00555), 1–13 (2019).
    Google Scholar 
    Christen, D. C. & Matlack, G. R. The habitat and conduit functions of roads in the spread of three invasive plant species. Biol. Invasions 11(2), 453–465 (2009).Article 

    Google Scholar 
    Mortensen, D. A., Rauschert, E. S., Nord, A. N. & Jones, B. P. Forest roads facilitate the spread of invasive plants. Invasive Plant Sci. Manag. 2(3), 191–199 (2009).Article 

    Google Scholar 
    Lemke, A., Kowarik, I. & von der Lippe, M. How traffic facilitates population expansion of invasive species along roads: The case of common ragweed in Germany. J. Appl. Ecol. 56(2), 413–422 (2019).Article 

    Google Scholar 
    Rauschert, E. S., Mortensen, D. A. & Bloser, S. M. Human-mediated dispersal via rural road maintenance can move invasive propagules. Biol. Invasions 19(7), 2047–2058 (2017).Article 

    Google Scholar 
    Meunier, G. & Lavoie, C. Roads as corridors for invasive plant species: New evidence from smooth bedstraw (Galium mollugo). Invasive Plant Sci. Manag. 5(1), 92–100 (2012).Article 

    Google Scholar 
    Mohit, S., Johnson, T. B. & Arnott, S. E. Recreational watercraft decontamination: Can current recommendations reduce aquatic invasive species spread?. Manag. Biol. Invasions 12(1), 148–164 (2021).Article 

    Google Scholar 
    Ferguson, L., Duncan, C. L., & Snodgrass, K. Backcountry road maintenance and weed management. United States: U.S. Department of Agriculture, Forest Service, Technology & Development Program. 22pp (2003). At https://www.google.com/books/edition/Backcountry_Road_Maintenance_and_Weed_Ma/y2amRwT1rIsC?hl=en&gbpv=0.Lelong, B., Lavoie, C., Jodoin, C. & Belzile, F. Expansion pathways of the exotic common reed (Phragmites australis): A historical and genetic analysis. Divers. Distrib. 13, 430–437 (2007).Article 

    Google Scholar 
    Joly, M. et al. Paving the way for invasive species: Road type and the spread of common ragweed (Ambrosia artemisiifolia). Environ. Manag. 48(3), 514–522 (2011).ADS 
    Article 

    Google Scholar 
    Thompson, D. Q., Stuckey, R. L. & Thompson, E. B. Spread, impact, and control of purple loosestrife (Lythrum salicaria) in North American wetlands. U. S. Fish and Wildlife Service (1987). At http://stoppinginvasives.com/dotAsset/670d2f92-cd0c-41ab-9955-7204f1a9a192.pdf.Stuckey, R. L. Distributional history of Lythrum salicaria (purple loosestrife) in North America. Bartonia 47, 3–20 (1980).
    Google Scholar 
    Blossey, B., Skinner, L. C. & Taylor, J. Impact and management of purple loosestrife (Lythrum salicaria) in North America. Biodivers. Conserv. 10(10), 1787–1807 (2001).Article 

    Google Scholar 
    Wilcox, D. A. Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors. Environ. Manag. 13(3), 365–370 (1989).ADS 
    Article 

    Google Scholar 
    St. Louis, E., Stastny, M. & Sargent, R. D. The impacts of biological control on the performance of Lythrum salicaria 20 years post-release. Biol. Control. 140, 104–123 (2020).Article 

    Google Scholar 
    NYSDOT Environmental Science Bureau. Environmental Handbook for Transportation Operations: A Summary of the Environmental Requirements and Best Practices for Maintaining the Constructing Highways and Transportation Systems. Prepared by NYSDOT Environmental Science Bureau, (2011) At https://www.dot.ny.gov/divisions/engineering/environmental-analysis/repository/oprhbook.pdf.Blossey, B., Schroeder, D., Hight, S. D. & Malecki, R. A. Host specificity and environmental impact of two leaf beetles (Galerucella calmariensis and G. pusilla) for biological control of purple loosestrife (Lythrum salicaria). Weed Sci. 42, 134–140 (1994).Article 

    Google Scholar 
    Blossey, B. Before, during and after: The need for long-term monitoring in invasive plant species management. Biol. Invasions 1, 301–311 (1999).Article 

    Google Scholar 
    Blossey, B. & Hunt, T. R. Mass rearing methods for Galerucella calmariensis and G. pusilla (Coleoptera: Chrysomelidae), biological control agents of Lythrum salicaria (Lythraceae). J. Econ. Entomol. 92(2), 325–334 (1999).CAS 
    Article 

    Google Scholar 
    Grevstad, F. S. Ten-year impacts of the biological control agents Galerucella pusilla and G. calmariensis (Coleoptera: Chrysomelidae) on purple loosestrife (Lythrum salicaria) in Central New York State. Biol. Control 39(1), 1–8 (2006).Article 

    Google Scholar 
    Boag, A. E. & Eckert, C. G. The effect of host abundance on the distribution and impact of biocontrol agents on purple loosestrife (Lythrum salicaria, Lythraceae). Écoscience 20(1), 90–99 (2013).Article 

    Google Scholar 
    Lakoba, V. T., Brooks, R. K., Haak, D. C. & Barney, J. N. An Analysis of US State regulated weed lists: A discordance between biology and policy. Bioscience 70(9), 804–813 (2020).Article 

    Google Scholar 
    Welling, C. H. & Becker, R. L. Seed bank dynamics of Lythrum salicaria L.: Implications for control of this species in North America. Aquat. Bot. 38, 303–309 (1990).Article 

    Google Scholar 
    Brown, B. J. & Wickstrom, C. E. Adventitious root production and survival of purple loosestrife (Lythrum salicaria) shoot sections. Ohio J. Sci. 97, 2–4 (1997).
    Google Scholar 
    Farnsworth, E. J. & Ellis, D. R. Is purple loosestrife (Lythrum salicaria) an invasive threat to freshwater wetlands? Conflicting evidence from several ecological metrics. Wetlands 21(2), 199–209 (2001).Article 

    Google Scholar 
    Mahaney, W. M., Smemo, K. A. & Yavitt, J. B. Impacts of Lythrum salicaria invasion on plant community and soil properties in two wetlands in central New York, USA. Botany 84(3), 477–484 (2006).
    Google Scholar 
    Treberg, M. A. & Husband, B. C. Relationship between the abundance of Lythrum salicaria (purple loosestrife) and plant species richness along the Bar River Canada. Wetlands 19(1), 118–125 (1999).Article 

    Google Scholar 
    Hager, H. & Vinebrooke, R. E. Positive relationships between invasive purple loosestrife (Lythrum salicaria) and plant species diversity and abundance in Minnesota wetlands. Can. J. Bot. 82(6), 763–773 (2004).Article 

    Google Scholar 
    Lavoie, C. Should we care about purple loosestrife? The history of an invasive plant in North America. Biol. Invasions 12(7), 1967–1999 (2010).Article 

    Google Scholar 
    Fickbohm, S. S. & Zhu, W. X. Exotic purple loosestrife invasion of native cattail freshwater wetlands: Effects on organic matter distribution and soil nitrogen cycling. Appl. Soil. Ecol. 32(1), 123–131 (2006).Article 

    Google Scholar 
    Ramula, S. Annual mowing has the potential to reduce the invasion of herbaceous Lupinus polyphyllus. Biol. Invasions 22(10), 3163–3173 (2020).Article 

    Google Scholar 
    Milakovic, I., Fiedler, K. & Karrer, G. Management of roadside populations of invasive Ambrosia artemisiifolia by mowing. Weed Res. 54(3), 256–264 (2014).Article 

    Google Scholar 
    Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: The contribution of traffic and mowing machines. Neobiota 8, 53–60 (2009).
    Google Scholar 
    Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29(1), 207–231 (1998).Article 

    Google Scholar 
    Milt, A. W. et al. Minimizing opportunity costs to aquatic connectivity restoration while controlling an invasive species. Conserv. Biol. 32(4), 894–904 (2018).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC. (2021). URL http://www.rstudio.com/.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021). https://www.R-project.org/.U. S. Fish and Wildlife Service. National Wetlands Inventory. http://www.fws.gov/wetlands/ (2020).Yakimowski, S. B., Hager, H. A. & Eckert, C. G. Limits and effects of invasion by the nonindigenous wetland plant Lythrum salicaria (purple loosestrife): A seed bank analysis. Biol. Invasions 7, 687–698 (2005).Article 

    Google Scholar 
    Thomas, S. M. & Moloney, K. A. Combining the effects of surrounding land-use and propagule pressure to predict the distribution of an invasive plant. Biol. Invasions 17, 477–495 (2015).Article 

    Google Scholar 
    Barbier, E. B., Knowler, D., Gwatipedza, J., Reichard, S. H. & Hodges, A. R. Implementing policies to control invasive plant species. Bioscience 63(2), 132–138 (2013).Article 

    Google Scholar 
    Blossey, B. Measuring and Evaluating Ecological Outcomes of Biological Control Introductions. In Integrating Biological Control into Conservation Practice (eds Van Driesche, R. et al.) 161–188 (Wiley, 2016).Chapter 

    Google Scholar 
    Rowell, N. Warren County Purple Loosestrife Management Program Final Report. (2015). At https://www.warrenswcd.org/reports.html.Vanneste, T. et al. Plant diversity in hedgerows and road verges across Europe. J. Appl. Ecol. 57(7), 1244–1257 (2020).Article 

    Google Scholar 
    Auffret, A. G. & Lindgren, E. Roadside diversity in relation to age and surrounding source habitat: Evidence for long time lags in valuable green infrastructure. Ecol. Solut. Evid. 1(1), e12005 (2020).Article 

    Google Scholar 
    Mccleery, R. A., Holdorf, A. R., Hubbard, L. L. & Peer, B. D. Maximizing the wildlife conservation value of road right-of-ways in an agriculturally dominated lands. Plos one 10(3), e0120375 (2015).Article 

    Google Scholar 
    New York Invasive Species Information (NYISI). Purple Loosestrife. (2019). at http://nyis.info/invasive_species/purple-loosestrife.Rogers, J. Controlling purple loosestrife (Lythrum Salicaria) along roadsides in St. Lawrence County: Monitoring and biological controls. Adirondack J. Environ. Stud. 23(1), 5 (2019).
    Google Scholar 
    New York State Department of Transportation. Clear Zones. (2021). At https://www.dot.ny.gov/divisions/engineering/environmental-analysis/landscape/trees/rs-lsf-plant-photos.ESRI. ArcGIS Pro: Version 2.9: Environmental System Research Institute. (2021). At https://pro.arcgis.com/en/pro-app/latest/get-started/get-started.htm.IBM Corp. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp. Released 2017. More

  • in

    Western boundary currents drive sun-coral (Tubastraea spp.) coastal invasion from oil platforms

    Katsanevakis, S. et al. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquat. Invasions 9, 391–423 (2014).
    Google Scholar 
    Huxel, G. R. Rapid displacement of native species by invasive species: Effects of hybridization. Biol. Conserv. 89, 143–152 (1999).
    Google Scholar 
    Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).
    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 

    Google Scholar 
    Ferreira, C. E. L., Gonçalves, J. E. A. & Coutinho, R. Ship hulls and oil platforms as potential vectors to marine species introduction. J. Coast. Res. SI 39 (Pro), 1341–1346 (2006).
    Google Scholar 
    Glasby, T. M., Connell, S. D., Holloway, M. G. & Hewitt, C. L. Nonindigenous biota on artificial structures: Could habitat creation facilitate biological invasions?. Mar. Biol. 151, 887–895 (2007).
    Google Scholar 
    Hedge, L. H. & Johnston, E. L. Propagule pressure determines recruitment from a commercial shipping pier. Biofouling 28, 73–85 (2012).PubMed 

    Google Scholar 
    Capel, K. C. C., Creed, J., Kitahara, M. V., Chen, C. A. & Zilberberg, C. Multiple introductions and secondary dispersion of Tubastraea spp. in the Southwestern Atlantic. Sci. Rep. 9, 1–11 (2019).CAS 

    Google Scholar 
    De Paula, A. F. & Creed, J. C. Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: A case of accidental introduction. Bull. Mar. Sci. 74, 175–183 (2004).
    Google Scholar 
    Lages, B. G., Fleury, B. G., Menegola, C. & Creed, J. C. Change in tropical rocky shore communities due to an alien coral invasion. Mar. Ecol. Prog. Ser. 438, 85–96 (2011).ADS 

    Google Scholar 
    Mantelatto, M. C., Creed, J. C., Mourão, G. G., Migotto, A. E. & Lindner, A. Range expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis in the Southwest Atlantic. Coral Reefs 30, 397–397 (2011).ADS 

    Google Scholar 
    do Santos, L. A. H., Ribeiro, F. V. & Creed, J. C. Antagonism between invasive pest corals Tubastraea spp. and the native reef-builder Mussismilia hispida in the southwest Atlantic. J. Exp. Mar. Biol. Ecol. 449, 69–76 (2013).
    Google Scholar 
    Miranda, R. J., Cruz, I. C. S. & Barros, F. Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef. Mar. Biol. 163, 1–12 (2016).CAS 

    Google Scholar 
    Silva, A. G., Lima, R. P., Gomes, A. N., Fleury, B. G. & Creed, J. C. Expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis into the tamoios ecological station marine protected area, Brazil. Aquat. Invasions 6, S105–S110 (2011).
    Google Scholar 
    Mizrahi, D., Navarrete, S. A. & Flores, A. A. V. Groups travel further: Pelagic metamorphosis and polyp clustering allow higher dispersal potential in sun coral propagules. Coral Reefs 33, 443–448 (2014).ADS 

    Google Scholar 
    De Paula, A. F., De Oliveira Pires, D. & Creed, J. C. Reproductive strategies of two invasive sun corals (Tubastraea spp.) in the southwestern Atlantic. J. Mar. Biol. Assoc. UK 94, 481–492 (2014).
    Google Scholar 
    Capel, K. C. C. et al. Clone wars: Asexual reproduction dominates in the invasive range of Tubastraea spp. (Anthozoa: Scleractinia) in the South-Atlantic Ocean. PeerJ 2017, 1–21 (2017).
    Google Scholar 
    Luz, B. L. P., Di Domenico, M., Migotto, A. E. & Kitahara, M. V. Life-history traits of Tubastraea coccinea: Reproduction, development, and larval competence. Ecol. Evol. 10, 6223–6238 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kitahara, M. V. Species richness and distribution of azooxanthellate scleractinia in Brazil. Bull. Mar. Sci. 81, 497–518 (2007).
    Google Scholar 
    da Silva, A. G., de Paula, A. F., Fleury, B. G. & Creed, J. C. Eleven years of range expansion of two invasive corals (Tubastraea coccinea and Tubastraea tagusensis) through the southwest Atlantic (Brazil). Estuar. Coast. Shelf Sci. 141, 9–16 (2014).ADS 

    Google Scholar 
    Creed, J. C. et al. The invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world: History, pathways and vectors. Biol. Invasions 19, 283–305 (2017).
    Google Scholar 
    Mantelatto, M. C., Pires, L. M., de Oliveira, G. J. G. & Creed, J. C. A test of the efficacy of wrapping to manage the invasive corals Tubastraea tagusensis and T. coccinea. Manag. Biol. Invasions 6, 367–374 (2015).
    Google Scholar 
    Crivellaro, M. S. et al. Fighting on the edge: Reproductive effort and population structure of the invasive coral Tubastraea coccinea in its southern Atlantic limit of distribution following control activities. Biol. Invasions 23, 811–823 (2021).
    Google Scholar 
    Creed, J. C., Casares, F. A., Oigman-Pszczol, S. S. & Masi, B. P. Multi-site experiments demonstrate that control of invasive corals (Tubastraea spp.) by manual removal is effective. Ocean Coast. Manag. 207, 105616 (2021).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D., Boland, G. S., Sinclair, J. & Lirette, A. Geographic expansion of hermatypic and ahermatypic corals in the Gulf of Mexico, and implications for dispersal and recruitment. J. Exp. Mar. Biol. Ecol. 436–437, 36–49 (2012).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D. & Boland, G. S. Coral settlement on oil/gas platforms in the northern Gulf of Mexico: Preliminary evidence of rarity. Gulf Mex. Sci. 32, 11–23 (2014).
    Google Scholar 
    López, C. et al. Invasive Tubastraea spp. and Oculina patagonica and other introduced scleractinians corals in the Santa Cruz de Tenerife (Canary Islands) harbor: Ecology and potential risks. Reg. Stud. Mar. Sci. 29, 100713 (2019).
    Google Scholar 
    Yeo, D. C. J. et al. Semisubmersible oil platforms: Understudied and potentially major vectors of biofouling-mediated invasions. Biofouling 26, 179–186 (2009).
    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. M. The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 15, 904–910 (2009).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D. & Boland, G. S. Expansion of coral communities within the Northern Gulf of Mexico via offshore oil and gas platforms. Mar. Ecol. Prog. Ser. 280, 129–143 (2004).ADS 

    Google Scholar 
    Macreadie, P. I., Fowler, A. M. & Booth, D. J. Rigs-to-reefs: Will the deep sea benefit from artificial habitat?. Front. Ecol. Environ. 9, 455–461 (2011).
    Google Scholar 
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies. Biol. Rev. 80, 205–225 (2005).PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 

    Google Scholar 
    Peterson, R. G. & Stramma, L. Upper-level circulation in the South Atlantic Ocean. Prog. Oceanogr. 26, 1–73 (1991).ADS 

    Google Scholar 
    Johns, W. E. et al. Annual cycle and variability of the North Brazil current. J. Phys. Oceanogr. 28, 103–128 (1998).ADS 

    Google Scholar 
    Silveira, I. C. A. et al. Brazil current off the eastern Brazilian coast. Rev. Brasil. Oceanog. 48, 171–183 (2000).
    Google Scholar 
    Soutelino, R. G., Gangopadhyay, A. & da Silveira, I. C. A. The roles of vertical shear and topography on the eddy formation near the site of origin of the Brazil Current. Cont. Shelf Res. 70, 46–60 (2013).ADS 

    Google Scholar 
    D’Agostini, A., Gherardi, D. F. M. & Pezzi, L. P. Connectivity of marine protected areas and its relation with total kinetic energy. PLoS ONE 10, 1–19 (2015).
    Google Scholar 
    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 1–11 (2019).
    Google Scholar 
    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).ADS 
    CAS 

    Google Scholar 
    López-Duarte, P. C. et al. What controls connectivity? An empirical, multi-species approach. Integr. Comp. Biol. 52, 511–524 (2012).PubMed 

    Google Scholar 
    Batista, D. et al. Distribution of the invasive orange cup coral tubastraea coccinea lesson, 1829 in an upwelling area in the South Atlantic Ocean fifteen years after its first record. Aquat. Invasions 12, 23–32 (2017).
    Google Scholar 
    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. USA. 104, 1266–1271 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cairns, S. Studies on the natural history of the Caribbean region. Stud. Fauna Curaçao other Caribb. … IXl, (2000).De Paula, A. F. & Creed, J. C. Spatial distribution and abundance of nonindigenous coral genus Tubastraea (Cnidaria, Scleractinia) around Ilha Grande, Brazil. Braz. J. Biol. 65, 661–673 (2005).CAS 
    PubMed 

    Google Scholar 
    Papacostas, K. J. et al. Biological mechanisms of marine invasions. Mar. Ecol. Prog. Ser. 565, 251–268 (2017).ADS 

    Google Scholar 
    Loureiro, T. G., Silva Gentil Anastácio, P. M., Souty-Grosset, C., Araujo, P. B. & Pereira Almerão, M. Red swamp crayfish: Biology, ecology and invasion—an overview. Nauplius 23, 1–19 (2015).
    Google Scholar 
    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).
    Google Scholar 
    Siegel, D. A. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. USA. 105, 8974–8979 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viard, F., Ellien, C. & Dupont, L. Dispersal ability and invasion success of Crepidula fornicata in a single gulf: Insights from genetic markers and larval-dispersal model. Helgol. Mar. Res. 60, 144–152 (2006).ADS 

    Google Scholar 
    Rodrigues, R. R., Rothstein, L. M. & Wimbush, M. Seasonal variability of the South Equatorial Current bifurcation in the Atlantic Ocean: A numerical study. J. Phys. Oceanogr. 37, 16–30 (2007).ADS 

    Google Scholar 
    Fenner, D. Biogeography of three Caribbean corals (Scleractinia) and the invasion of Tubastraea coccinea into the Gulf of Mexico. Bull. Mar. Sci. 69, 1175–1189 (2001).
    Google Scholar 
    Gouveia, M. B. et al. Persistent meanders and eddies lead to quasi-steady Lagrangian transport patterns in a weak western boundary current. Sci. Rep. 11, 1–18 (2021).
    Google Scholar 
    Campos, E. J., Gonçalves, J. & Ikeda, Y. Water mass characteristics and geostrophic circulation in the South Brazil bight: Summer of 1991. J. Geophys. Res. Oceans 100, 18537–18550. https://doi.org/10.1029/95jc01724 (1995).ADS 
    Article 

    Google Scholar 
    Silveira, I. C. A. et al. Is the meander growth in the Brazil Current system off Southeast Brazil due to baroclinic instability?. Dyn. Atmos. Ocean. 45, 187–207 (2008).ADS 

    Google Scholar 
    Lima, L. S. et al. Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Sci. Rep. 11, 1–12 (2021).
    Google Scholar 
    Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity?. Progr. Oceanogr. 165, 110–122 (2018).ADS 

    Google Scholar 
    Ellien, C., Thiébaut, E., Dumas, F., Salomon, J. C. & Nival, P. A modelling study of the respective role of hydrodynamic processes and larval mortality on larval dispersal and recruitment of benthic invertebrates: Example of Pectinaria koreni (Annelida: Polychaeta) in the Bay of Seine (English Channel). J. Plankton Res. 26, 117–132 (2004).
    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and coral reefs of Brazil. In Latin American Coral Reefs (ed. Cortés, J.) 9–52 (Elsevier Science, 2003).
    Google Scholar 
    Dutra, G. F., Allen, G. R., Werner, T., et al. A rapid marine biodiversity assessment of the Abrolhos Bank, Bahia, Brazil. In RAP Bull. Mar. Biol. Assessment, Vol. 38 (Conservation International, 2005).Costa, T. J. F. et al. Expansion of an invasive coral species over Abrolhos Bank, Southwestern Atlantic. Mar. Pollut. Bull. 85, 252–253 (2014).CAS 
    PubMed 

    Google Scholar 
    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, 1–12 (2016).
    Google Scholar 
    Soares, M. O., Davis, M. & de Macêdo Carneiro, P. B. Northward range expansion of the invasive coral (Tubastraea tagusensis) in the southwestern Atlantic. Mar. Biodivers. 48, 1651–1654 (2018).
    Google Scholar 
    Rocha, L. A. & Rosa, I. L. Baseline assessment of reef fish assemblages of Parcel Manuel Luiz Marine State Park, Maranhão, north-east Brazil. J. Fish Biol. 58, 985–998 (2001).
    Google Scholar 
    Luz, B. L. P. & Kitahara, M. V. Could the invasive scleractinians Tubastraea coccinea and T. tagusensis replace the dominant zoantharian Palythoa caribaeorum in the Brazilian subtidal?. Coral Reefs 36, 875 (2017).ADS 

    Google Scholar 
    Cordeiro, C. A. M. M. et al. Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luís. Coral Reefs 40, 165–185 (2021).
    Google Scholar 
    Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).
    Google Scholar 
    Cruz, R. et al. Life cycle and connectivity of the spiny lobster, Panulirus spp.: Case studies from Brazil and the Wider Caribbean (Decapoda, Achelata). Crustaceana 94, 603–645 (2021).
    Google Scholar 
    Castro, B. D., Lorenzzetti, J., Silveira, I. D. & Miranda, L. D. Estrutura termohalina e circulação na região entre o cabo de são tomé (rj) eo chuí (rs). O ambiente oceanográfco da plataforma continental e do talude na região sudeste-sul do Brasil 1, 11–120 (2006).
    Google Scholar 
    Dias, D. F., Pezzi, L. P., Gherardi, D. F. M. & Camargo, R. Modeling the spawning strategies and larval survival of the Brazilian sardine (Sardinella brasiliensis). Prog. Oceanogr. 123, 38–53 (2014).ADS 

    Google Scholar 
    Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).PubMed 

    Google Scholar 
    Vinagre, C. et al. Food web organization following the invasion of habitat-modifying Tubastraea spp. corals appears to favour the invasive borer bivalve Leiosolenus aristatus. Ecol. Indic. 85, 1204–1209 (2018).
    Google Scholar 
    Capel, K. C. C., Creed, J. C. & Kitahara, M. V. Invasive corals trigger seascape changes in the southwestern Atlantic. Bull. Mar. Sci. 96, 217–218 (2020).
    Google Scholar 
    Silva, R. et al. Sun coral invasion of shallow rocky reefs: Effects on mobile invertebrate assemblages in Southeastern Brazil. Biol. Invasions 21, 1339–1350 (2019).
    Google Scholar 
    Creed, J. C. & De Paula, A. F. Substratum preference during recruitment of two invasive alien corals onto shallow-subtidal tropical rocky shores. Mar. Ecol. Prog. Ser. 330, 101–111 (2007).ADS 

    Google Scholar 
    Glynn, P. W. et al. Reproductive ecology of the azooxanthellate coral Tubastraea coccinea in the Equatorial Eastern Pacific: Part V. Dendrophylliidae. Mar. Biol. 153, 529–544 (2008).
    Google Scholar 
    Eckman, J. E. Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates. J. Exp. Mar. Biol. Ecol. 200, 207–237 (1996).
    Google Scholar 
    Cairns, S. D. & Zibrowius, H. Azooxanthellate Scleractinia from the Philippines and Indonesian regions. Mémoires du Muséum national d’Histoire naturelle, Vol. 172, (1997).Saura, S., Bodin, Ö. & Fortin, M. J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Faria, L. C. & Kitahara, M. V. Invasive corals hitchhiking in the Southwestern Atlantic. Ecology 101, 1–3 (2020).
    Google Scholar 
    Mantelatto, M. C., Póvoa, A. A., Skinner, L. F., de Araujo, F. V. & Creed, J. C. Marine litter and wood debris as habitat and vector for the range expansion of invasive corals (Tubastraea spp.). Mar. Pollut. Bull. 160, 111659 (2020).CAS 
    PubMed 

    Google Scholar 
    Braga, M. D. A. et al. Retirement risks: Invasive coral on old oil platform on the Brazilian equatorial continental shelf. Mar. Pollut. Bull. 165, 112156 (2021).CAS 
    PubMed 

    Google Scholar 
    IMO. Anti-fouling systems. Online (2019). https://www.imo.org/en/OurWork/Environment/Pages/Anti-fouling.aspx. (Accessed 01 May 2021).Vander Zanden, M. J., Hansen, G. J. A., Higgins, S. N. & Kornis, M. S. A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. J. Great Lakes Res. 36, 199–205 (2010).
    Google Scholar 
    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84(1), 1–20 (2001).
    Google Scholar 
    Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404 (2005).ADS 

    Google Scholar 
    Shchepetkin, A. F. & McWilliams, J. C. Correction and commentary for “ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by haidvogel et al., j. comp. phys. 227, pp. 3595–3624. J. Comput. Phys. 228, 8985–9000 (2009).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Lett, C. et al. A Lagrangian tool for modelling ichthyoplankton dynamics. Environ. Model. Sofw. 23, 1210–1214 (2008).
    Google Scholar 
    Gouveia, M. B., Gherardi, D. F. M., Lentini, C. A. D., Dias, D. F. & Campos, P. C. Do the Brazilian sardine commercial landings respond to local ocean circulation?. PLoS ONE 12, 1–19 (2017).
    Google Scholar 
    Saha, S. et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1057 (2010).ADS 

    Google Scholar 
    Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: A new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).ADS 

    Google Scholar 
    Flather, R. A. A tidal model of the northeast pacific. Atmos. Ocean 25, 22–45 (1987).
    Google Scholar 
    Chapman, D. C. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr. 15(8), 1060–1075 (1985).ADS 

    Google Scholar 
    Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3, 1–20 (2001).ADS 

    Google Scholar 
    Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183–204 (2002).ADS 

    Google Scholar 
    Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Equilibrium structure and dynamics of the California current system. J. Phys. Oceanogr. 33, 753–783 (2003).ADS 

    Google Scholar 
    Mizrahi, D., Navarrete, S. A. & Flores, A. A. V. Uneven abundance of the invasive sun coral over habitat patches of different orientation: An outcome of larval or later benthic processes?. J. Exp. Mar. Biol. Ecol. 452, 22–30 (2014).
    Google Scholar 
    Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman and Hall, 1986).MATH 

    Google Scholar  More

  • in

    Squid adjust their body color according to substrate

    Endler, J. A. Interactions between predators and prey. In Behavioural Ecology: An Evolutionary Approach 3rd edn (eds Krebs, J. R. & Davies, N. B.) 169–196 (Blackwell, 1991).
    Google Scholar 
    Stevens, M. & Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R Soc. Lond. B 364, 423–427 (2009).
    Google Scholar 
    Stevens, M. & Merilaita, S. Animal camouflage: Function and mechanisms. In Animal Camouflage: Mechanisms and Function (eds Stevens, M. & Merilaita, S.) 1–17 (Cambridge University Press, 2011).
    Google Scholar 
    Reiter, S. & Laurent, G. Visual perception and cuttlefish camouflage. Curr. Opin. Neurobiol. 260, 47–54 (2020).
    Google Scholar 
    Cott, H. B. Adaptive Coloration in Animals (Methuen, 1940).
    Google Scholar 
    Cloney, R. A. & Florey, E. Ultrastructure of cephalopod chromatophore organs. Z. Zellforsch. Mikrosk. Anat. 89, 250–280 (1968).CAS 
    PubMed 

    Google Scholar 
    Borrelli, L., Gherardi, F. & Fiorito, G. A. Catalogue of Body Patterning in Cephalopoda (Firenze University Press, 2006).
    Google Scholar 
    Reiter, S. et al. Elucidating the control and development of skin patterning in cuttlefish. Nature 562, 361–366 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbosa, A., Allen, J. J., Mäthger, L. M. & Hanlon, R. T. Cuttlefish use visual cues to determine arm postures for camouflage. Proc. R Soc. B Biol. Sci. 279, 84–90 (2012).
    Google Scholar 
    Hanlon, R. T. Cephalopod dynamic camouflage. Curr. Biol. 17, R400-404 (2007).CAS 
    PubMed 

    Google Scholar 
    Hill, A. V. & Solandt, D. Y. Myograms from the chromatophores of Sepia. J. Physiol. Lond. 83, 13–14 (1935).
    Google Scholar 
    Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10, 1–5 (2019).
    Google Scholar 
    Hanlon, R. T. et al. Rapid adaptive camouflage in cephalopods. In Animal Camouflage: Mechanisms and Functions (eds Stevens, M. & Merilaita, S.) 145–163 (Cambridge Univ Press, 2011).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Adaptive coloration in young cuttlefish (Sepia officinalis L.): The morphology and development of body patterns and their relation to behavior. Philos. Trans. R Soc. Lond. B 320, 437–487 (1988).ADS 

    Google Scholar 
    Ferguson, G., Messenger, J. B. & Budelmann, B. Gravity and light influence the countershading reflexes of the cuttlefish Sepia officinalis. J. Exp. Biol. 191, 247–256 (1994).CAS 
    PubMed 

    Google Scholar 
    Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. & Osorio, D. Cuttlefish responses to visual orientation of substrates, water flow and a model of motion camouflage. J. Exp. Biol. 209, 4717–4723 (2006).CAS 
    PubMed 

    Google Scholar 
    Barbosa, A. et al. Disruptive coloration in cuttlefish: A visual perception mechanism that regulates ontogenetic adjustment of skin patterning. J. Exp. Biol. 210, 1139–1147 (2007).PubMed 

    Google Scholar 
    Chiao, C. C., Chubb, C. & Hanlon, R. T. Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish. Vis. Res. 47, 2223–2235 (2007).PubMed 

    Google Scholar 
    Nakajima, R. & Ikeda, Y. A catalog of the chromatic, postural, and locomotor behaviors of the pharaoh cuttlefish (Sepia pharaonis) from Okinawa Island, Japan. Mar. Biodivers. 47, 735–753 (2017).
    Google Scholar 
    Packard, A. Chromatophore fields in the skin of the octopus. J. Physiol. 238, 38–40 (1974).
    Google Scholar 
    Caldwell, R. L., Ross, R., Rodaniche, A. F. & Huffard, C. L. Behavior and body patterns of the larger pacific striped octopus. PLoS ONE 10, e0134152 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gutnick, T., Shomrat, T., Mather, J. A. & Kuba, M. J. The cephalopod brain: Motion control, learning, and cognition. In Physiology of Molluscs: A Collection of Selected Reviews Vol. 2 (eds Salleudin, S. & Mukai, S.) 139–177 (Apple Academic Press, 2016).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour 2nd edn. (Cambridge University Press, 2018).
    Google Scholar 
    Cloney, R. & Brocco, S. Chromatophore organs, reflector cells, iridocytes, and leucophores. Am. Zool. 23, 581–592 (1983).
    Google Scholar 
    Mäthger, L. M. & Hanlon, R. T. Malleable skin coloration in cephalopods: Selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res. 329, 179 (2007).PubMed 

    Google Scholar 
    Josef, N., Berenshtein, I., Fiorito, G., Sykes, A. V. & Shashar, N. Camouflage during movement in the European cuttlefish (Sepia officinalis). J. Exp. Biol. 218, 3391–3398 (2015).PubMed 

    Google Scholar 
    Josef, N. et al. Size matters: Observed and modeled camouflage response of European Cuttlefish (Sepia officinalis) to different substrate patch sizes during movement. Front. Physiol. 7, 671 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1890).
    Google Scholar 
    Zhang, Y. & Richardson, J. S. Unidirectional prey–predator facilitation: Apparent prey enhance predators’ foraging success on cryptic prey. Biol. Lett. 3, 348–351 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Troscianko, T., Benton, C. P., Lovell, P. G., Tolhurst, D. J. & Pizlo, Z. Camouflage and visual perception. Philos. Trans. R Soc. B 364, 449–461 (2009).
    Google Scholar 
    Land, M. F. & Nilsson, D. E. Animal Eyes (Oxford University Press, 2012).
    Google Scholar 
    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology (Princeton University Press, 2014).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour (Cambridge University Press, 1996).
    Google Scholar 
    Staudinger, M. D., Hanlon, R. T. & Juanes, F. Primary and secondary defences of squid to cruising and ambush fish predators: Variable tactics and their survival value. Anim. Behav. 81, 585–594 (2011).
    Google Scholar 
    Ferguson, G. P. & Messenger, J. B. A countershading reflex in cephalopods. Proc. R. Soc. B 243, 63–67 (1991).ADS 

    Google Scholar 
    Zylinski, S. & Johnsen, S. Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Curr. Biol. 21, 1937–1941 (2011).CAS 
    PubMed 

    Google Scholar 
    Young, R. E. & Roper, C. F. E. Bioluminescent countershading in mid water animals: Evidence from living squid. Science 191, 1046–1048 (1976).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jereb, P. & Roper, C. F. E. Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Myopsid and Oegopsid Squids Vol. 2 (FAO, 2010).
    Google Scholar 
    Okutani, T. Life history of the oval squid, Sepioteuthis lessoniana. Saibai Giken 13, 69–75 (1984) ((in Japanese)).
    Google Scholar 
    Segawa, S. Food consumption, food conversion and growth rates of the oval squid Sepioteuthis lessoniana by laboratory experiments. Nippon Suisan Gakkai Shi 56, 217–222 (1990).
    Google Scholar 
    Izuka, T., Segawa, S., Okutani, T. & Numachi, K. Evidence on the existence of three species in the oval squid Sepioteuthis lessoniana complex in Ishigaki Island, Okinawa, southwestern Japan, by isozyme analyses. Venus Jpn. J. Malacol/Kairuigaku Zasshi 53, 217–228 (1994).
    Google Scholar 
    Izuka, T. Biochemical study of the population heterogeneity and distribution of the oval squid Sepioteuthis lessoniana complex in southwestern Japan. Am. Malac. Bull. 12, 129–135 (1996).
    Google Scholar 
    Imai, H., & Aoki, M. Genetic diversity and genetic heterogeneity of bigfin reef squid “Sepioteuthis lessoniana” species complex in northwestern Pacific Ocean. in Analysis of Genetic Variation in Animals (Caliskan, M. ed). 151–166. (InTech, 2012).Cheng, S. H. et al. Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans. Hydrobiologia 725, 165–188 (2014).CAS 

    Google Scholar 
    Tomano, S. et al. Contribution of Sepioteuthis sp. 1 and Sepioteuthis sp. 2 to oval squid fishery stocks in western Japan. Fish Sci 82, 585–596 (2016).CAS 

    Google Scholar 
    Okutani, T. Past, present and future studies on cephalopod diversity in tropical west Pacific. Phuket Mar. Biol. Center Res. Bull. 66, 39–50 (2005).
    Google Scholar 
    Lee, P. G., Turk, P. E., Yang, W. T. & Hanlon, R. T. Biological characteristics and biomedical applications of the squid Sepioteuthis lessoniana cultured through multiple generations. Biol. Bull. 186, 328–341 (1994).CAS 
    PubMed 

    Google Scholar 
    Nabhitabhata, J. & Ikeda, Y. Sepioteuthis lessoniana. In Cephalopod Culture (eds Iglesias, J. et al.) 315–347 (Springer, 2014).
    Google Scholar 
    Lajbner, Z. et al. Captive breeding of the oval squid (Aori-ika; Sepioteuthis sp.). in Cephalopod International Advisory Council Conference 2018, Book of Abstracts, St. Petersburg. 152. (2018)Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, i01 (2015).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org (R Foundation for Statistical Computing, 2019).RStudio Team. RStudio: Integrated Development for R. http://www.rstudio.com (RStudio, Inc., 2019)Kenward, M. & Roger, J. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–997 (1997).CAS 
    PubMed 
    MATH 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, C. Y., Tsai, Y. C. & Chiao, C. C. Quantitative analysis of dynamic body patterning reveals the grammar of visual signals during the reproductive behavior of the oval squid Sepioteuthis lessoniana. Front. Ecol. Evol. 5, 30 (2017).
    Google Scholar 
    Chung, W. S., Kurniawan, N. D. & Marshall, N. J. Toward an MRI-based mesoscale connectome of the squid brain. Iscience 23, 100816 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Messenger, J. B. Cephalopod chromatophores: Neurobiology and natural history. Biol. Rev. Camb. Philos. Soc. 76, 473–528 (2001).CAS 
    PubMed 

    Google Scholar 
    York, C. A. & Bartol, I. K. Anti-predator behavior of squid throughout ontogeny. J. Exp. Mar. Biol. Ecol. 480, 26–35 (2016).
    Google Scholar 
    Suzuki, M., Kimura, T., Ogawa, H., Hotta, K. & Oka, K. Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: Contributions of miniature oscillation. PLoS ONE 6, e18244 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y.C., Wang, W.C., & Grasse, B. Electrical coupling between chromatophore muscle fibers allows for versatile control of chromatophore expansion in squid. bioRxiv 2020.02.17.951715 (2020).Hadjisolomou, S. P., El-Haddad, R. W., Kloskowski, K., Chavarga, A. & Abramov, I. Quantifying the speed of chromatophore activity at the single-organ level in response to a visual startle stimulus in living, intact squid. Front. Physiol. 12, 675252. https://doi.org/10.3389/fphys.2021.675252 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Spatial ecology, activity patterns, and habitat use by giant pythons (Simalia amethistina) in tropical Australia

    Seigel, R. A. & Ford, N. B. Reproductive ecology in Snakes: Ecology and Evolutionary Biology (eds. Seigel, R. A., Collins, J. T. &. Novak, S. S.). 210–252. (MacMillan Publishing, 1987).Kremen, C., Merenlender, A. M. & Murphy, D. D. Ecological monitoring: A vital need for integrated conservation and development programs in the tropics. Conserv. Biol. 8, 388–397 (1994).
    Google Scholar 
    Shine, R. & Bonnet, X. Snakes: A new ‘model organism’ in ecological research?. Trends Ecol. Evol. 15, 221–222 (2000).CAS 
    PubMed 

    Google Scholar 
    Vilela, B., Villalobos, F., Rodríguez, M. Á. & Terribile, L. C. Body size, extinction risk and knowledge bias in New World snakes. PLoS ONE 9, e113429 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mathies, T. Reproductive cycles of tropical snakes. in Reproductive Biology and Phylogeny of Snakes (eds. Sever, D. & Aldridge, R.). 523–562. (CRC Press, 2016).Shine, R., Harlow, P. S. & Keogh, J. S. The allometry of life-history traits: Insights from a study of giant snakes (Python reticulatus). J. Zool. 244, 405–414 (1998).
    Google Scholar 
    Natusch, D. J., Lyons, J. A., Riyanto, A., Khadiejah, S. & Shine, R. Detailed biological data are informative, but robust trends are needed for informing sustainability of wildlife harvesting: A case study of reptile offtake in Southeast Asia. Biol. Conserv. 233, 83–92 (2019).
    Google Scholar 
    Freeman, A. & Freeman, A. Habitat use in a large rainforest python (Morelia kinghorni) in the wet tropics of north Queensland, Australia. Herpetol. Conserv. Biol. 4, 252–260 (2009).
    Google Scholar 
    Smith, S. N., Jones, M. D., Marshall, B. M. & Strine, C. T. Native Burmese pythons exhibit site fidelity and preference for aquatic habitats in an agricultural mosaic. Sci. Rep. 11, 7014 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999).
    Google Scholar 
    Spong, G. Space use in lions, Panthera leo, in the Selous Game Reserve: Social and ecological factors. Behav. Ecol. Sociobiol. 52, 303–307 (2002).
    Google Scholar 
    Webb, J. K. & Shine, R. A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biol. Conserv. 82, 203–217 (1997).
    Google Scholar 
    Fearn, S. & Sambono, J. A reliable size record for the scrub python Morelia amethistina (Serpentes: Pythonidae) in north east Queensland. Herpetofauna 30, 2–6 (2000).
    Google Scholar 
    Grow, D., Wheeler, S. & Clark, B. Reproduction of the Amethystine python Python amethystinus kinghorni at the Oklahoma City Zoo. Int. Zoo Year. 27, 241–244 (1988).
    Google Scholar 
    Feldman, A. & Meiri, S. Length–mass allometry in snakes. Biol. J. Linn. Soc. 108, 161–172 (2013).
    Google Scholar 
    Harvey, M. B., Barker, D. G., Ammerman, L. K. & Chippindale, P. T. Systematics of pythons of the Morelia amethistina complex (Serpentes: Boidae) with the description of three new species. Herpetol. Monogr. 14, 139–185 (2000).
    Google Scholar 
    Fearn, S., Schwarzkopf, L. & Shine, R. Giant snakes in tropical forests: A field study of the Australian scrub python, Morelia kinghorni. Wildl. Res. 32, 193–201 (2005).
    Google Scholar 
    Natusch, D. J. D., Lyons, J. A. & Shine, R. Rainforest pythons flexibly adjust foraging ecology to exploit seasonal concentrations of prey. J. Zool. 313, 114–123 (2021).
    Google Scholar 
    Martin, R. W. Field observation of predation on Bennett’s tree-kangaroo (Dendrolagus bennettianus) by an amethystine python (Morelia amethistina). Herpetol. Rev. 26, 74–75 (1995).
    Google Scholar 
    Natusch, D., Lyons, J., Mears, L. A. & Shine, R. Biting off more than you can chew: Attempted predation on a human by a giant snake (Simalia amethistina). Austral. Ecol. 46, 159–162 (2021).
    Google Scholar 
    Neldner, V. J. & Clarkson, J. R. Vegetation of Cape York Peninsula. (Department of Environment and Heritage, 1995).Bureau of Meteorology. Climate Data Online. http://www.bom.gov.au/climate/data/. Accessed 17 July 2020 (2020).Whitaker, P. B. & Shine, R. A radiotelemetric study of movements and shelter-site selection by free-ranging brownsnakes (Pseudonaja textilis, Elapidae). Herpetol. Monogr. 17, 130–144 (2003).
    Google Scholar 
    Harris, S. et al. Home-range analysis using radio-tracking data–A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123 (1990).
    Google Scholar 
    Fearn, S. & Sambono, J. Some ambush predation postures of the Scrub Python Morelia amethistina (Serpentes: Pythonidae) in north east Queensland. Herpetofauna 30, 39–44 (2000).
    Google Scholar 
    Caswell, H. Theory and models in ecology: A different perspective. Ecol. Model. 43, 33–44 (1988).
    Google Scholar 
    Silva, I., Crane, M., Marshall, B. M. & Strine, C. T. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian bridge movement models. Move. Ecol. 8, 43 (2020).
    Google Scholar 
    Row, J. R. & Blouin-Demers, G. Kernels are not accurate estimators of home-range size for herpetofauna. Copeia 2006, 797–802 (2006).
    Google Scholar 
    Newman, P., Dwyer, R. G., Belbin, L. & Campbell, H. A. ZoaTrack—An online tool to analyse and share animal location data: User engagement and future perspectives. Aust. Zool. 41, 12–18. https://zoatrack.org/toolkit/doi (2020).Pearson, D. J. & Shine, R. Expulsion of interperitoneally-implanted radiotransmitters by Australian pythons. Herpetol. Rev. 33, 261–263 (2002).
    Google Scholar 
    Hale, V. L. et al. Radio transmitter implantation and movement in the wild timber rattlesnake (Crotalus horridus). J. Wildl. Dis. 53, 591–595 (2017).PubMed 

    Google Scholar 
    Martin, A. E., Jørgensen, D. & Gates, C. C. Costs and benefits of straight versus tortuous migration paths for Prairie Rattlesnakes (Crotalus viridis viridis) in seminatural and human-dominated landscapes. Can. J. Zool. 95, 921–928 (2017).
    Google Scholar 
    Glaudas, X., Rice, S. E., Clark, R. W. & Alexander, G. J. Male energy reserves, mate-searching activities, and reproductive success: Alternative resource use strategies in a presumed capital breeder. Oecologia 194, 415–425 (2020).ADS 
    PubMed 

    Google Scholar 
    Glaudas, X., Rice, S. E., Clark, R. W. & Alexander, G. J. The intensity of sexual selection, body size and reproductive success in a mating system with male–male combat: is bigger better?. Oikos 129, 998–1011 (2020).
    Google Scholar 
    Gannon, V. P. J. & Secoy, D. M. Seasonal and daily activity patterns in a Canadian population of the prairie rattlesnake, Crotalus viridus viridis. Can. J. Zool. 63, 86–91 (1985).
    Google Scholar 
    Heard, G. W., Black, D. & Robertson, P. Habitat use by the inland carpet python (Morelia spilota metcalfei: Pythonidae): Seasonal relationships with habitat structure and prey distribution in a rural landscape. Austral. Ecol. 29, 446–460 (2004).
    Google Scholar 
    Madsen, T. & Shine, R. Seasonal migration of predators and prey—A study of pythons and rats in tropical Australia. Ecology 77, 149–156 (1996).
    Google Scholar 
    Graves, B. M. & Duvall, D. Reproduction, rookery use, and thermoregulation in free-ranging, pregnant Crotalus v. viridis. J. Herpetol. 27, 33–41 (1993).
    Google Scholar 
    Chiaraviglio, M. The effects of reproductive condition on thermoregulation in the Argentina boa constrictor (Boa constrictor occidentalis) (Boidae). Herpetol. Monogr. 20, 172–177 (2006).
    Google Scholar 
    Smith, C. F., Schuett, G. W., Earley, R. L. & Schwenk, K. The spatial and reproductive ecology of the copperhead (Agkistrodon contortrix) at the northeastern extreme of its range. Herpetol. Monogr. 23, 45–73 (2009).
    Google Scholar 
    Shine, R. & Fitzgerald, M. Large snakes in a mosaic rural landscape: The ecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Biol. Conserv. 76, 113–122 (1996).
    Google Scholar 
    Heard, G. W. et al. Canid predation: A potentially significant threat to relic populations of the Inland Carpet Python ‘Morelia spilota metcalfei’ (Pythonidae) in Victoria. Vic. Nat. 123, 68–74 (2006).
    Google Scholar 
    Downes, S. & Shine, R. Sedentary snakes and gullible geckos: Predator–prey coevolution in nocturnal rock-dwelling reptiles. Anim. Behav. 55, 1373–1385 (1998).CAS 
    PubMed 

    Google Scholar 
    Miller, A. K., Maritz, B., McKay, S., Glaudas, X. & Alexander, G. J. An ambusher’s arsenal: chemical crypsis in the puff adder (Bitis arietans). Proc. R. Soc. B 282, 20152182 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Maritz, B. & Alexander, G. J. Dwarfs on the move: Spatial ecology of the world’s smallest viper, Bitis schneideri. Copeia 2012, 115–120 (2012).
    Google Scholar 
    Stirrat, S. C. Seasonal changes in home-range area and habitat use by the agile wallaby (Macropus agilis). Wildl. Res. 30, 593–600 (2003).
    Google Scholar 
    Ayers, D. Y. & Shine, R. Thermal influences on foraging ability: Body size, posture and cooling rate of an ambush predator, the python Morelia spilota. Funct. Ecol. 11, 342–347 (1997).
    Google Scholar 
    Pearson, D., Shine, R. & Williams, A. Spatial ecology of a threatened python (Morelia spilota imbricata) and the effects of anthropogenic habitat change. Austral. Ecol. 30, 261–274 (2005).
    Google Scholar 
    Freeman, A. A study in power and grace: The amethystine python. Wildl. Aust. 53, 27–29 (2016).
    Google Scholar 
    Silva, I., Crane, M., Suwanwaree, P., Strine, C. & Goode, M. Using dynamic Brownian bridge movement models to identify home range size and movement patterns in king cobras. PLoS ONE 13, e0203449 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, B. M. et al. Space fit for a king: Spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphibia-Reptilia 40, 163–178 (2019).
    Google Scholar 
    Udyawer, V., Simpfendorfer, C. A., Heupel, M. R. & Clark, T. D. Temporal and spatial activity-associated energy partitioning in free-swimming sea snakes. Funct. Ecol. 31, 1739–1749 (2017).
    Google Scholar 
    Smaniotto, N. P., Moreira, L. F., Rivas, J. A. & Strüssmann, C. Home range size, movement, and habitat use of yellow anacondas (Eunectes notaeus). Salamandra 56, 159–167 (2020).
    Google Scholar 
    Low, M. R. Rescue, rehabilitation and release of reticulated pythons in Singapore. in Global Reintroduction Perspectives: 2018. Case Studies from Around the Globe (ed. Soorae, P. S.) 78–81 (IUCN/SSC Reintroduction Specialist Group, 2018).Alexander, G. J. & Maritz, B. Sampling interval affects the estimation of movement parameters in four species of African snakes. J. Zool. 297, 309–318 (2015).
    Google Scholar 
    Smith, B. J. et al. Betrayal: Radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18, 3239–3250 (2016).
    Google Scholar  More