More stories

  • in

    Changes in trophic structure of an exploited fish community at the centennial scale are linked to fisheries and climate forces

    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Luong, A. D., Dewulf, J. & De Laender, F. Quantifying the primary biotic resource use by fisheries: A global assessment. Sci. Total Environ. 719, 137352 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauly, D. How the global fish market contributes to human micronutrient deficiencies. Nature 574, 41–42 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture 2020 (FAO, 2020). https://doi.org/10.4060/ca9229en.Book 

    Google Scholar 
    Shin, Y.-J., Rochet, M.-J., Jennings, S., Field, J. G. & Gislason, H. Using size-based indicators to evaluate the ecosystem effects of fishing. ICES J. Mar. Sci. 62, 384–396 (2005).
    Google Scholar 
    Perry, A. L. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Novaglio, C., Smith, A. D. M., Frusher, S. & Ferretti, F. Identifying historical baseline at the onset of exploitation to improve understanding of fishing impacts. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30, 475–485 (2020).
    Google Scholar 
    Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl. Acad. Sci. 112, 13272–13277 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Ullah, H. & Connell, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 832, 829–832 (2020).ADS 

    Google Scholar 
    Lemoine, N. P. & Burkepile, D. E. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93, 2483–2489 (2012).PubMed 

    Google Scholar 
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wing, S. R., Durante, L. M., Connolly, A. J., Sabadel, A. J. M. & Wing, L. C. Overexploitation and decline in kelp forests inflate the bioenergetic costs of fisheries. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13448 (2021).Article 

    Google Scholar 
    Maureaud, A. et al. Global change in the trophic functioning of marine food webs. PLoS One 12, e0182826 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 

    Google Scholar 
    Chown, S. L. Marine food webs destabilized. Science 369, 770–771 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: Confirmations from the past. PLoS One 9, 1–13 (2014).
    Google Scholar 
    Gilby, B. L. et al. Human actions alter tidal marsh seascapes and the provision of ecosystem services. Estuaries Coasts https://doi.org/10.1007/s12237-020-00830-0 (2020).Article 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durante, L. M., Beentjes, M. P. & Wing, S. R. Shifting trophic architecture of marine fisheries in New Zealand: Implications for guiding effective ecosystem-based management. Fish Fish. 21, 813–830 (2020).
    Google Scholar 
    Shears, N. T. & Bowen, M. M. Half a century of coastal temperature records reveal complex warming trends in western boundary currents. Sci. Rep. 7, 1–9 (2017).CAS 

    Google Scholar 
    Wing, S. R. & Wing, E. Prehistoric fisheries in the Caribbean. Coral Reefs 20, 1–8 (2001).
    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Irwin, G. & Walrond, C. ‘When was New Zealand first settled?—Extinction and decline’. Te Ara—the Encyclopedia of New Zealand 8 (2016). http://www.teara.govt.nz/en/when-was-new-zealand-first-settled/page-7. Accessed 4 June 2019.Johnson, D. & Haworth, J. Hooked—The Sory of New Zealand Fishing Industry (Hazard Press, 2004).
    Google Scholar 
    Urlich, S. C. & Handley, S. J. From ‘clean and green’ to ‘brown and down’: A synthesis of historical changes to biodiversity and marine ecosystems in the Marlborough Sounds, New Zealand. Ocean Coast. Manage. 198, 105349 (2020).
    Google Scholar 
    Ramos, R. & González-Solís, J. Trace me if you can: The use of intrinsic biogeochemical markers in marine top predators. Front. Ecol. Environ. 10, 258–266 (2012).
    Google Scholar 
    Graham, D. H. Food of fishes of Otago Harbour and Adjacent Sea. R. Soc. N. Z. 20, 421–436 (1939).
    Google Scholar 
    Hanchet, S. Diet of spiny dogfish, Squalus acanthias Linnaeus, on the east coast, South Island, New Zealand. J. Fish Biol. 39, 313–323 (1991).
    Google Scholar 
    Connell, A., Dunn, M. & Forman, J. Diet and dietary variation of New Zealand hoki Macruronus novaezelandiae. NZ J. Mar. Freshw. Res. 44, 289–308 (2010).
    Google Scholar 
    Forman, J. & Dunn, M. The influence of ontogeny and environment on the diet of lookdown dory, Cyttus traversi. NZ J. Mar. Freshw. Res. 44, 329–342 (2010).
    Google Scholar 
    Horn, P. L., Forman, J. S. & Dunn, M. R. Dietary partitioning by two sympatric fish species, red cod (Pseudophycis bachus) and sea perch ( Helicolenus percoides), on Chatham Rise, New Zealand. Mar. Biol. Res. 8, 624–634 (2012).
    Google Scholar 
    Fisheries New Zealand. Fisheries Assessment Plenary, May 2020: Stock Assessments and Stock Status (2020).Ladds, M., Pinkerton, M. H., Jones, E., Durante, L. & Dunn, M. Relationship between morphometrics and trophic levels in deep-sea fishes. Mar. Ecol. Prog. Ser. 637, 225–235 (2020).ADS 

    Google Scholar 
    Durante, L. M. et al. Oceanographic transport along frontal zones forms carbon, nitrogen, and oxygen isoscapes on the east coast of New Zealand : Implications for ecological studies. Cont. Shelf Res. 216, 1–15 (2021).
    Google Scholar 
    Funes, M., Irigoyen, A. J., Trobbiani, G. A. & Galván, D. E. Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs 17, 1–9 (2018).
    Google Scholar 
    Zeldis, J. R. & Jillett, J. B. Aggregation of pelagic Munida gregaria (Fabricius) (Decapoda, Anomura) by coastal fronts and internal waves. J. Plankton Res. 4, 839–857 (1982).
    Google Scholar 
    Durante, L. M., Beentjes, M. P. & Wing, S. R. Decadal changes in exploited fish communities and their relationship with temperature, fisheries exploitation, and ecological traits in New Zealand waters. NZ J. Mar. Freshw. Res. 10, 1–27 (2021).
    Google Scholar 
    Prugh, L. R. et al. The rise of the mesopredator. Bioscience 59, 779–791 (2009).
    Google Scholar 
    Chiswell, S. M. & Sutton, P. J. H. Relationships between long-term ocean warming, marine heat waves and primary production in the New Zealand region. NZ J. Mar. Freshw. Res. https://doi.org/10.1080/00288330.2020.1713181 (2020).Article 

    Google Scholar 
    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 1–10 (2019).
    Google Scholar 
    Pinkerton, M. H. et al. Changes to the food-web of the Hauraki Gulf during the period of human occupation: A mass-balance model approach. New Zealand Aquatic Environment and Biodiversity Report No. 160. (2015).Garrison, L. Fishing effects on spatial distribution and trophic guild structure of the fish community in the Georges Bank region. ICES J. Mar. Sci. 57, 723–730 (2000).
    Google Scholar 
    Link, J. S. & Garrison, L. P. Changes in piscivory associated with fishing induced changes to the finfish community on Georges Bank. Fish. Res. 55, 71–86 (2002).
    Google Scholar 
    Wainright, S. C., Fogarty, M. J., Greenfield, R. C. & Fry, B. Long-term changes in the Georges Bank food web: Trends in stable isotopic compositions of fish scales. Mar. Biol. 115, 481–493 (1993).
    Google Scholar 
    Udy, J. A. et al. Regional differences in supply of organic matter from kelp forests drive trophodynamics of temperate reef fish. Mar. Ecol. Prog. Ser. 621, 19–32 (2019).ADS 

    Google Scholar 
    Koenigs, C., Miller, R. & Page, H. Top predators rely on carbon derived from giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 537, 1–8 (2015).ADS 
    CAS 

    Google Scholar 
    Clark, M. R., Anderson, O. F., Chris Francis, R. I. C. & Tracey, D. M. The effects of commercial exploitation on orange roughy (Hoplostethus atlanticus) from the continental slope of the Chatham Rise, New Zealand, from 1979 to 1997. Fish. Res. 45, 217–238 (2000).
    Google Scholar 
    Fenaughty, J. M. & Bagley, N. M. WJ Scott New Zealand Trawling Survey—South Island East Coast. Technical Report 157. (1981).Brodeur, R. & Pearcy, W. Effects of environmental variability on trophic interactions and food web structure in a pelagic upwelling ecosystem. Mar. Ecol. Prog. Ser. 84, 101–119 (1992).ADS 

    Google Scholar 
    Tam, J., Purca, S., Duarte, L. O., Blaskovic, V. & Espinoza, P. Changes in the diet of hake associated with El Niño 1997–1998 in the northern Humboldt Current ecosystem. Adv. Geosci. 6, 63–67 (2006).
    Google Scholar 
    Murphy, R. J., Pinkerton, M. H., Richardson, K. M., Bradford-Grieve, J. M. & Boyd, P. W. Phytoplankton distributions around New Zealand derived from SeaWiFS remotely-sensed ocean colour data. NZ J. Mar. Freshw. Res. 35, 343–362 (2001).
    Google Scholar 
    Zeldis, J. Ecology of Munida gregaria (Decapoda, Anomura) distribution and abundance, population dynamics and fisheries. Mar. Ecol. Prog. Ser. 22, 77–99 (1985).ADS 

    Google Scholar 
    Williams, B. G. The effect of the environment on the morphology of Munida Gregaria (Fabricius) (Decapoda, Anomura). Crustaceana 24, 197–210 (1973).
    Google Scholar 
    Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Udy, J. A. et al. Organic matter derived from kelp supports a large proportion of biomass in temperate rocky reef fish communities: Implications for ecosystem-based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1503–1519 (2019).
    Google Scholar 
    Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 

    Google Scholar 
    Kirby, R. R., Beaugrand, G. & Lindley, J. A. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12, 548–561 (2009).
    Google Scholar 
    MacGibbon, D. J., Beentjes, M. P., Lyon, W. L. & Ladroit, Y. Inshore trawl survey of Canterbury Bight and Pegasus Bay, April–June 2018 (KAH1803). New Zealand Fisheries Assessment Report 2019/03. (2019).Stevens, W. D., O’Driscoll, R. L., Ballara, S. L. & Schimel, A. C. G. Trawl survey of hoki and middle-depth species on the Chatham Rise, January 2018 (TAN1801). New Zealand Fisheries Assessment Report 2018/41. (2018).Durante, L. M., Sabadel, A. J. M., Frew, R. D., Ingram, T. & Wing, S. R. Effects of fixatives on stable isotopes of fish muscle tissue: Implications for trophic studies on preserved specimens. Ecol. Appl. 30, 1–16 (2020).
    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).
    Google Scholar 
    Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).ADS 
    PubMed 

    Google Scholar 
    Verburg, P. The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. J. Paleolimnol. 37, 591–602 (2007).ADS 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 2, 229–300 (1979).CAS 

    Google Scholar 
    Sabadel, A., Durante, L. & Wing, S. Stable isotopes of amino acids from reef fishes uncover Suess and nitrogen enrichment effects on local ecosystems. Mar. Ecol. Prog. Ser. 647, 149–160 (2020).ADS 
    CAS 

    Google Scholar 
    Eide, M., Olsen, A., Ninnemann, U. S. & Eldevik, T. A global estimate of the full oceanic 13C Suess effect since the preindustrial. Glob. Biogeochem. Cycles 31, 492–514 (2017).ADS 
    CAS 

    Google Scholar 
    McMahon, K. W. & McCarthy, M. D. Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, 1–26 (2016).
    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).CAS 

    Google Scholar 
    Whiteman, J. P., Smith, E. A. E., Besser, A. C. & Newsome, S. D. A guide to using compound-specific stable isotope analysis to study the fates of molecules in organisms and ecosystems. Diversity 11, 1–18 (2019).
    Google Scholar 
    Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin. Glob. Change Biol. 12, 611–625 (2006).ADS 

    Google Scholar 
    Lorrain, A. et al. Nitrogen and carbon isotope values of individual amino acids: A tool to study foraging ecology of penguins in the Southern Ocean. Mar. Ecol. Prog. Ser. 391, 293–306 (2009).ADS 
    CAS 

    Google Scholar 
    Quillfeldt, P. & Masello, J. F. Compound-specific stable isotope analyses in Falkland Islands seabirds reveal seasonal changes in trophic positions. BMC Ecol. 20, 1–12 (2020).
    Google Scholar 
    Sabadel, A. J. M., Woodward, E. M. S., Van Hale, R. & Frew, R. D. Compound-specific isotope analysis of amino acids: A tool to unravel complex symbiotic trophic relationships. Food Webs 6, 9–18 (2016).
    Google Scholar 
    Styring, A. K. et al. Practical considerations in the determination of compound-specific amino acid δ15N values in animal and plant tissues by gas chromatography-combustion-isotope ratio mass spectrometry, following derivatisation to their N-acetylisopropyl e. Rapid Commun. Mass Spectrom. 26, 2328–2334 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Phillips, D. L. & Gregg, J. W. J. W. Uncertainty in source partitioning using stable isotopes. Oecologia 127, 171–179 (2001).ADS 
    PubMed 

    Google Scholar 
    Jack, L. & Wing, S. R. Individual variability in trophic position and diet of a marine omnivore is linked to kelp bed habitat. Mar. Ecol. Prog. Ser. 443, 129–139 (2011).ADS 
    CAS 

    Google Scholar 
    McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).CAS 

    Google Scholar 
    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).PubMed 

    Google Scholar 
    McMahon, K. W., Thorrold, S. R., Elsdon, T. S. & Mccarthy, M. D. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol. Oceanogr. 60, 1076–1087 (2015).ADS 
    CAS 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 

    Google Scholar 
    Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).PubMed 

    Google Scholar 
    Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001).CAS 

    Google Scholar 
    Anderson, M., Gorley, R. N. & Clarke, K. R. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. 1, 1:218 (2008).Mullan, A. Influence of Southern Oscillation on New Zealand Weather. In Proceedings of Western Pacific International Meeting and Workshop on TOGA-COARE (1996).Francis, M. P., Hurst, R. J., McArdle, B. H., Bagley, N. W. & Anderson, O. F. New Zealand demersal fish assemblages. Environ. Biol. Fishes 65, 215–234 (2002).
    Google Scholar 
    Beentjes, M. P., Bull, B., Hurst, R. J. & Bagley, N. W. Demersal fish assemblages along the continental shelf and upper slope of the east coast of the South Island, New Zealand. NZ J. Mar. Freshw. Res. 36, 197–223 (2002).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).SAS Institute. JMP. (2018).Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial. (PRIMER-E, 2006). More

  • in

    Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota

    European Commission. Report from the commission to the European Parliament and the council on the implementation of the measures concerning the apiculture sector of Regulation (EU) No 1308/2013 of the European Parliament and of the Council establishing a common organisation of the markets in agricultural products. p. 1–16. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:52016DC0776 (2016).Motta, E. V. S. & Moran, N. A. Impact of glyphosate on the honey bee gut microbiota: Effects of intensity, duration, and timing of exposure. msystems 5, e00268-e1220. https://doi.org/10.1128/mSystems.00268-20 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B-Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).Article 

    Google Scholar 
    Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 (2017).Article 

    Google Scholar 
    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. PNAS 103, 13890–13895. https://doi.org/10.1073/pnas.0600929103 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, I. H. The dependence of crop production within the European Union on pollination by honey bees. Agric. Zool. Rev. 20, 20 (1994).
    Google Scholar 
    Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22. https://doi.org/10.3896/ibra.1.49.1.02 (2010).Article 

    Google Scholar 
    Vanengelsdorp, D., Hayes, J., Underwood, R. M. & Pettis, J. A survey of honey bee colony losses in the US, fall 2007 to spring 2008. PLoS One 3, 6. https://doi.org/10.1371/journal.pone.0004071 (2008).CAS 
    Article 

    Google Scholar 
    Chagnon, M. Fédération Canadienne de la Faune (Bureau régional du Québec, 2008).
    Google Scholar 
    Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37, 616–626. https://doi.org/10.1016/j.foodpol.2012.06.003 (2012).Article 

    Google Scholar 
    Haber, A. I., Steinhauer, N. A. & vanEngelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in US beekeeping operations. J. Econ. Entomol. https://doi.org/10.1093/jee/toz088 (2019).Article 
    PubMed 

    Google Scholar 
    Le Conte, Y., Ellis, M. & Ritter, W. Varroa mites and honey bee health: Can Varroa explain part of the colony losses?. Apidologie 41, 353–363. https://doi.org/10.1051/apido/2010017 (2010).Article 

    Google Scholar 
    Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and colony collapse disorder in the United States. J. Apic. Res. 49, 134–136. https://doi.org/10.3896/IBRA.1.49.1.30 (2010).Article 

    Google Scholar 
    Chauzat, M. P. et al. Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environ. Entomol 38, 514–523. https://doi.org/10.1603/022.038.0302 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Juan-Borras, M., Domenech, E. & Escriche, I. Mixture-risk-assessment of pesticide residues in retail polyfloral honey. Food Control 67, 127–134. https://doi.org/10.1016/j.foodcont.2016.02.051 (2016).CAS 
    Article 

    Google Scholar 
    Kasiotis, K. M., Anagnostopoulos, C., Anastasiadou, P. & Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: Reported death incidents in honeybees. Sci. Total. Environ 485–486, 633–642. https://doi.org/10.1016/j.scitotenv.2014.03.042 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mullin, C. A. et al. High levels of miticides and agrochemicals in north american apiaries: Implications for honey bee health. PLoS One 5, 19. https://doi.org/10.1371/journal.pone.0009754 (2010).CAS 
    Article 

    Google Scholar 
    Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Buchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect. Physiol. 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alptekin, S. et al. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes. Insect Mol. Biol. 25, 171–180. https://doi.org/10.1111/imb.12211 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tesovnik, T. et al. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. Environ. Pollut. 256, 113443. https://doi.org/10.1016/j.envpol.2019.113443 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gregore, A. et al. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Sci. Rep. https://doi.org/10.1038/s41598-018-33348-4 (2018).Article 

    Google Scholar 
    Schneider, C. W., Tautz, J., Grunewald, B. & Fuchs, S. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7, 9. https://doi.org/10.1371/journal.pone.0030023 (2012).CAS 
    Article 

    Google Scholar 
    Vazquez, D. E., Ilina, N., Pagano, E. A., Zavala, J. A. & Farina, W. M. Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS One https://doi.org/10.1371/journal.pone.0205074 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vázquez, D. E., Latorre-Estivalis, J. M., Ons, S. & Farina, W. M. Chronic exposure to glyphosate induces transcriptional changes in honey bee larva: A toxicogenomic study. Environ. Pollut. https://doi.org/10.1016/j.envpol.2020.114148 (2020).Article 
    PubMed 

    Google Scholar 
    Farina, W. M., Balbuena, M., Herbert, L. T., Mengoni Goñalons, C. & Vázquez, D. E. Effects of the herbicide glyphosate on honey bee sensory and cognitive abilities: Individual impairments with implications for the hive. Insects 10, 354. https://doi.org/10.3390/insects10100354 (2019).Article 
    PubMed Central 

    Google Scholar 
    Wang, Y. H., Zhu, Y. C. & Li, W. H. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). Ecotox. Environ. Safe 190, 10. https://doi.org/10.1016/j.ecoenv.2019.110100 (2020).CAS 
    Article 

    Google Scholar 
    Kretschmann, A., Gottardi, M., Dalhoff, K. & Cedergreen, N. The synergistic potential of the azole fungicides prochloraz and propiconazole toward a short α-cypermethrin pulse increases over time in Daphnia magna. Aquat. Toxicol. 162, 94–101. https://doi.org/10.1016/j.aquatox.2015.02.011 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yuan, X. et al. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere https://doi.org/10.1016/j.chemosphere.2019.04.088 (2019).Article 
    PubMed 

    Google Scholar 
    Yang, Y. et al. Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environ. Pollut. 249, 860–867. https://doi.org/10.1016/j.envpol.2019.03.077 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628. https://doi.org/10.1111/j.1365-294X.2010.04959.x (2011).Article 
    PubMed 

    Google Scholar 
    Corby-Harris, V., Maes, P. & Anderson, K. E. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 9, 13. https://doi.org/10.1371/journal.pone.0095056 (2014).CAS 
    Article 

    Google Scholar 
    Moran, N. A., Hansen, A. K., Powell, J. E. & Sabree, Z. L. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One https://doi.org/10.1371/journal.pone.0036393 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76. https://doi.org/10.1016/j.mib.2017.12.009 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384. https://doi.org/10.1038/nrmicro.2016.43 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814. https://doi.org/10.1038/s41396-019-0568-8 (2020).Article 
    PubMed 

    Google Scholar 
    Killer, J., Dubná, S., Sedláček, I. & Švec, P. Lactobacillus apis sp. Nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int. J. Syst. Evol. Microbiol. 64, 152–157. https://doi.org/10.1099/ijs.0.053033-0 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Forsgren, E., Olofsson, T. C., Váasquez, A. & Fries, I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41, 99–108. https://doi.org/10.1051/apido/2009065 (2010).Article 

    Google Scholar 
    Schwarz, R. S., Huang, Q. & Evans, J. D. Hologenome theory and the honey bee pathosphere. Curr. Opin. Insect Sci. 10, 1–7. https://doi.org/10.1016/j.cois.2015.04.006 (2015).Article 
    PubMed 

    Google Scholar 
    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. PNAS 109, 11002–11007. https://doi.org/10.1073/pnas.1202970109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kešnerová, L. et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 15, 28. https://doi.org/10.1371/journal.pbio.2003467 (2017).CAS 
    Article 

    Google Scholar 
    Kwong, W. K., Engel, P., Koch, H. & Moran, N. A. Genomics and host specialization of honey bee and bumble bee gut symbionts. PNAS 111, 11509–11514. https://doi.org/10.1073/pnas.1405838111 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17, 796–815. https://doi.org/10.1111/1462-2920.12526 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. PNAS 115, 10305–10310. https://doi.org/10.1073/pnas.1803880115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blot, N., Veillat, L., Rouze, R. & Delatte, H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS One 14, 16. https://doi.org/10.1371/journal.pone.0215466 (2019).CAS 
    Article 

    Google Scholar 
    Raymann, K. et al. Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Appl. Environ. Microbiol. 84, 13. https://doi.org/10.1128/aem.00545-18 (2018).CAS 
    Article 

    Google Scholar 
    Rouze, R., Mone, A., Delbac, F., Belzunces, L. & Blot, N. The honeybee gut microbiota is altered after chronic exposure to different families of insecticides and infection by Nosema ceranae. Microbes Environ. 34, 226–233. https://doi.org/10.1264/jsme2.ME18169 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeGrandi-Hoffman, G., Corby-Harris, V., DeJong, E. W., Chambers, M. & Hidalgo, G. Honey bee gut microbial communities are robust to the fungicide PristineA (R) consumed in pollen. Apidologie 48, 340–352. https://doi.org/10.1007/s13592-016-0478-y (2017).CAS 
    Article 

    Google Scholar 
    Liu, Y. J. et al. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. J. Hazard. Mater. 389, 11. https://doi.org/10.1016/j.jhazmat.2019.121818 (2020).CAS 
    Article 

    Google Scholar 
    Syromyatnikov, M. Y., Isuwa, M. M., Savinkova, O. V., Derevshchikova, M. I. & Popov, V. N. The effect of pesticides on the microbiome of animals. Agriculture 10, 79. https://doi.org/10.3390/agriculture10030079 (2020).CAS 
    Article 

    Google Scholar 
    Thompson, H. M. et al. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr. Environ. Assess. Manag. 10, 463–470. https://doi.org/10.1002/ieam.1529 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motta, E. V. S. et al. Oral and topical exposure to glyphosate in herbicide formulation impact the gut microbiota and survival rates of honey bees. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01150-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berg, C. J. et al. Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees. PLoS ONE 13, e0198876. https://doi.org/10.1371/journal.pone.0198876 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rubio, F., Guo, E. & Kamp, L. Survey of glyphosate residues in honey, corn, and soy products. Abstr. Pap. Am. Chem. Soc. https://doi.org/10.4172/2161-0525.1000249 (2015).Article 

    Google Scholar 
    El Agrebi, N. et al. Honeybee and consumer’s exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. Sci. Total. Environ. 704, 135312. https://doi.org/10.1016/j.scitotenv.2019.135312 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kubik, M. et al. Residues of captan (contact) and difenoconazole (systemic) fungicides in bee products from an apple orchard. Apidologie 31, 531–541 (2000).CAS 
    Article 

    Google Scholar 
    Lopez, S. H., Lozano, A., Sosa, A., Hernando, M. D. & Fernandez-Alba, A. R. Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study. Chemosphere 163, 44–53. https://doi.org/10.1016/j.chemosphere.2016.07.008 (2016).CAS 
    Article 

    Google Scholar 
    Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8, 9. https://doi.org/10.1371/journal.pone.0070182 (2013).CAS 
    Article 

    Google Scholar 
    Abdallah, O. I., Hanafi, A., Ghani, S. B. A., Ghisoni, S. & Lucini, L. Pesticides contamination in Egyptian honey samples. J. Consum. Prot. Food Sci. 12, 317–327. https://doi.org/10.1007/s00003-017-1133-x (2017).CAS 
    Article 

    Google Scholar 
    Blaga, G. V. et al. Antifungal residues analysis in various Romanian honey samples analysis by high resolution mass spectrometry. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes https://doi.org/10.1080/03601234.2020.1724016 (2020).Article 

    Google Scholar 
    Piechowicz, B., Wos, I., Podbielska, M. & Grodzicki, P. The transfer of active ingredients of insecticides and fungicides from an orchard to beehives. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes 53, 18–24. https://doi.org/10.1080/03601234.2017.1369320 (2018).CAS 
    Article 

    Google Scholar 
    Almasri, H. et al. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol. Environ. Saf. 203, 111013. https://doi.org/10.1016/j.ecoenv.2020.111013 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Babendreier, D., Joller, D., Romeis, J., Bigler, F. & Widmer, F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59, 600–610. https://doi.org/10.1111/j.1574-6941.2006.00249.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590. https://doi.org/10.1111/mec.14058 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yanez, O., Gauthier, L., Chantawannakul, P. & Neumann, P. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw147 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tornisielo, V. L., Botelho, R. G., Alves, P. A. T., Bonfleur, E. J. & Monteiro, S. H. Pesticide tank mixes: an environmental point of view. in Herbicides-Current Research and Case Studies in Use. 473–487 (InTech, 2013).

    Google Scholar 
    Kanga, L. H., Siebert, S. C., Sheikh, M. & Legaspi, J. C. Pesticide residues in conventionally and organically managed Apiaries in South and North Florida. Curre. Investig. Agric. Curr. Res. https://doi.org/10.32474/CIACR.2019.07.000262 (2019).Article 

    Google Scholar 
    Lambert, O. et al. Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of western France. PLoS One 8, 12. https://doi.org/10.1371/journal.pone.0067007 (2013).CAS 
    Article 

    Google Scholar 
    Mullins, J. W. Pest Control with Enhanced Environmental Safety, Vol 524 ACS Symposium Series, Vol. 13 183–198 (American Chemical Society, 1993).Book 

    Google Scholar 
    Nguyen, B. K. et al. Does imidacloprid seed-treated maize have an impact on honey bee mortality?. J. Econ. Entomol. 102, 616–623. https://doi.org/10.1603/029.102.0220 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pollak, P. Fine chemicals–the industry and the business. Chem. Int. 29, 22. https://doi.org/10.1515/ci.2007.29.5.22b (2007).Article 

    Google Scholar 
    Amrhein, N., Deus, B., Gehrke, P. & Steinrücken, H. C. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant. Physiol. 66, 830–834. https://doi.org/10.1104/pp.66.5.830 (1980).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cao, G. et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS One 7, e38718. https://doi.org/10.1371/journal.pone.0038718 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hitchcock, C. A., Dickinson, K., Brown, S. B., Evans, E. G. V. & Adams, D. J. Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14α-sterol demethylase purified from Candida albicans. Biochem. J. 266, 475–480. https://doi.org/10.1042/bj2660475 (1990).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberoni, D., Favaro, R., Baffoni, L., Angeli, S. & Di Gioia, D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144116 (2021).Article 
    PubMed 

    Google Scholar 
    Xu, C. et al. Changes in gut microbiota may be early signs of liver toxicity induced by epoxiconazole in rats. Chemotherapy 60, 135–142. https://doi.org/10.1159/000371837 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yang, C., Hamel, C., Vujanovic, V. & Gan, Y. Fungicide: Modes of action and possible impact on nontarget microorganisms. ISRN Ecol. https://doi.org/10.5402/2011/130289 (2011).Article 

    Google Scholar 
    Coupe, R. H., Kalkhoff, S. J., Capel, P. D. & Gregoire, C. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag. Sci. 68, 16–30. https://doi.org/10.1002/ps.2212 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howe, C. M. et al. Toxicity of glyphosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 23, 1928–1938. https://doi.org/10.1002/etc.2268 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wagner, N., Reichenbecher, W., Teichmann, H., Tappeser, B. & Lötters, S. Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ. Toxicol. Chem. 32, 1688–1700. https://doi.org/10.1002/etc.2268 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pareja, L. et al. Evaluation of glyphosate and AMPA in honey by water extraction followed by ion chromatography mass spectrometry. A pilot monitoring study. Anal. Methods 11, 2123–2128. https://doi.org/10.1039/c9ay00543a (2019).CAS 
    Article 

    Google Scholar 
    Thompson, T. S., van den Heever, J. P. & Limanowka, R. E. Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry.. Food. Addit. Contam. Part A Chem. Anal. Control. Expo. Risk. Assess 36, 434–446. https://doi.org/10.1080/19440049.2019.1577993 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dai, P. et al. The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro. J. Agric. Food Chem. 66, 7786–7793. https://doi.org/10.1021/acs.jafc.8b02212 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. PNAS 114, 4775–4780. https://doi.org/10.1073/pnas.1701819114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    du Rand, E. E. et al. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci. Rep. https://doi.org/10.1038/srep11779 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao, W. J. et al. Modulation of the pentose phosphate pathway alters phase I metabolism of testosterone and dextromethorphan in HepG2 cells. Acta Pharmacol. Sin. 36, 259–267. https://doi.org/10.1038/aps.2014.137 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renzi, M. T. et al. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotox. Environ. Safe. 127, 205–213. https://doi.org/10.1016/j.ecoenv.2016.01.028 (2016).CAS 
    Article 

    Google Scholar 
    Singh, A., Gupta, V., Siddiqi, N., Tiwari, S. & Gopesh, A. Time course studies on impact of low temperature exposure on the levels of protein and enzymes in fifth instar larvae of Eri Silkworm, Philosamia ricini (Lepidoptera: satuniidae). Biochem. Anal. Biochem. 6, 6. https://doi.org/10.4172/2161-1009.1000321 (2017).CAS 
    Article 

    Google Scholar 
    Vlahović, M., Lazarević, J., Perić-Mataruga, V., Ilijin, L. & Mrdaković, M. Plastic responses of larval mass and alkaline phosphatase to cadmium in the gypsy moth larvae. Ecotox. Environ. Safe 72, 1148–1155. https://doi.org/10.1016/j.ecoenv.2008.03.012 (2009).CAS 
    Article 

    Google Scholar 
    Coleman, J. E. Structure and mechanism of alkaline-phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21, 441–483. https://doi.org/10.1146/annurev.bb.21.060192.002301 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bates, J. M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382. https://doi.org/10.1016/j.chom.2007.10.010 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. Insect Immunol. 1, 69–96. https://doi.org/10.1016/B978-012373976-6.50006-9 (2008).Article 

    Google Scholar 
    Collison, E., Hird, H., Cresswell, J. & Tyler, C. Interactive effects of pesticide exposure and pathogen infection on bee health—a critical analysis. Biol. Rev. 91, 1006–1019. https://doi.org/10.1111/brv.12206 (2016).Article 
    PubMed 

    Google Scholar 
    Helmer, S. H., Kerbaol, A., Aras, P., Jumarie, C. & Boily, M. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environ. Sci. Pollut. Res. 22, 8010–8021. https://doi.org/10.1007/s11356-014-2879-7 (2015).CAS 
    Article 

    Google Scholar 
    Efferth, T., Schwarzl, S. M., Smith, J. & Osieka, R. Role of glucose-6-phosphate dehydrogenase for oxidative stress and apoptosis. Cell Death Differ. 13, 527–528. https://doi.org/10.1038/sj.cdd.4401807 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Corona, M. & Robinson, G. E. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol. 15, 687–701. https://doi.org/10.1111/j.1365-2583.2006.00695.x (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Field, L. M., Devonshire, A. L., Ffrench-Constant, R. H. & Forde, B. G. Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Lett. 243, 323–327. https://doi.org/10.1016/0014-5793(89)80154-1 (1989).CAS 
    Article 

    Google Scholar 
    Ma, M. et al. Isolation of carboxylesterase (esterase FE4) from Apis cerana cerana and its role in oxidative resistance during adverse environmental stress. Biochimie 144, 85–97. https://doi.org/10.1016/j.biochi.2017.10.022 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zou, F., Guo, Q., Shen, B. & Zhu, C. A cluster of CYP6 gene family associated with the major quantitative trait locus is responsible for the pyrethroid resistance in Culex pipiens pallen. Insect Mol. Biol. 28, 528–536. https://doi.org/10.1111/imb.12571 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lang, M. L., Braun, C. L., Kanost, M. R. & Gorman, M. J. Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster. PNAS 109, 13337–13342. https://doi.org/10.1073/pnas.1208703109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Habineza, P. et al. The promoting effect of gut microbiota on growth and development of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01212 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003. https://doi.org/10.1098/rsos.170003 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, D., Berail, G., Bonmatin, J. M. & Belzunces, L. P. Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal. Bioanal. Chem 406, 621–633. https://doi.org/10.1007/s00216-013-7483-z (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wiest, L. et al. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J. Chromatogr. A 1218, 5743–5756. https://doi.org/10.1016/j.chroma.2011.06.079 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zufelato, M. S., Lourenco, A. P., Simoes, Z. L. P., Jorge, J. A. & Bitondi, M. M. G. Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochem. Mol. Biol. 34, 1257–1268. https://doi.org/10.1016/j.ibmb.2004.08.005 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gallup, J. M. qPCR inhibition and amplification of difficult templates. in PCR troubleshooting and optimization: the essential guide. 23–65 (Horizon Scientific Press, 2011).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
    PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226. https://doi.org/10.1186/s40168-018-0605-2 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schliep, K. P. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593. https://doi.org/10.1093/bioinformatics/btq706 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425 (2008).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Belzunces, L. P., Theveniau, M., Masson, P. & Bounias, M. Membrane acetylcholinesterase from Apis mellifera head solubilized by phosphatidylinositol-specific phospholipase-C interacts with an anti-CRD antibody. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 95, 609–612. https://doi.org/10.1016/0305-0491(90)90029-s (1990).Article 

    Google Scholar 
    Bergmeyer, H. U. & Gawehn, K. Principles of Enzymatic Analysis (Verlag Chemie, 1978).
    Google Scholar 
    Al-Lawati, H., Kamp, G. & Bienefeld, K. Characteristics of the spermathecal contents of old and young honeybee queens. J. Insect Physiol. 55, 117–122. https://doi.org/10.1016/j.jinsphys.2008.10.010 (2009).CAS 
    Article 

    Google Scholar 
    Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione s-transferases—first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).CAS 
    Article 

    Google Scholar 
    Bounias, M., Kruk, I., Nectoux, M. & Popeskovic, D. Toxicology of cupric salts on honeybees. V. Gluconate and sulfate action on gut alkaline and acid phosphatases. Ecotox. Envirom. Safe 35, 67–76. https://doi.org/10.1006/eesa.1996.0082 (1996).CAS 
    Article 

    Google Scholar 
    Alaux, C. et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12, 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Therneau, T. “Survival”: A Package for Survival Analysis in S. R package version 2.38. https://CRAN.R-project.org/package=survival. (2015).Kassambara, A. & Kosinski, M. “Survminer”: Drawing Survival Curves using “ggplot2”. R package version 0.4.2. https://CRAN.R-project.org/package=survminer. (2018).de Mendiburu, F. Statistical Procedures for Agricultural Research. Package “Agricolae” Version 1.44. Comprehensive R Archive Network. Institute for Statistics and Mathematics, Vienna, Austria. http://cran.r-project.org/web/packages/agricolae/agricolae.pdf (2013).Caraux, G. & Pinloche, S. PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21, 1280–1281. https://doi.org/10.1093/bioinformatics/bti141 (2004).Article 
    PubMed 

    Google Scholar  More

  • in

    Publisher Correction: Natural selection for imprecise vertical transmission in host–microbiota systems

    AffiliationsDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USAMarjolein Bruijning, Lucas P. Henry, Simon K. G. Forsberg, C. Jessica E. Metcalf & Julien F. AyrolesLewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USALucas P. Henry, Simon K. G. Forsberg & Julien F. AyrolesAuthorsMarjolein BruijningLucas P. HenrySimon K. G. ForsbergC. Jessica E. MetcalfJulien F. AyrolesCorresponding authorCorrespondence to
    Marjolein Bruijning. More

  • in

    Spatiotemporal variations of air pollutants based on ground observation and emission sources over 19 Chinese urban agglomerations during 2015–2019

    Daily change in primary pollutantsTo elucidate the change trend of primary pollutants under the 13th Five-Year Plan, we calculated the daily primary pollutants in 2015 and 2019 based on formula (1) and formula (2). Such diurnal comparisons can reduce the effects of seasonal weather to some extent. From the 19 UAs (224 prefecture-level cities), the heat diagram of the daily change transfer matrix of primary pollutants from 2015 to 2019 is shown in Fig. 2, including six primary pollutants and clean day conditions.Figure 2Transfer change matrix heatmap of primary pollutants from 2015 to 2019.Full size imageFrom the sum of the diagonal numbers, 37% of the primary pollutants had no shift during the 13th Five-Year Plan period. PM2.5, PM10 and O3 were the main primary pollutants, especially PM2.5. More primary pollutants were diverted to ozone pollution, indicating that the proportion of O3 as the primary pollutant is gradually increasing. In addition, the proportion of clean air has increased significantly, which shows that pollution control has been effectively reflected during the 13th Five-Year Plan period. However, the proportion of NO2 before and after metastasis was approximately the same, with approximately 5% NO2 pollution. This may imply that the governance of NO2 pollution was rendered nonsignificant. It is noteworthy that ozone pollution in China has become an increasingly prominent task in recent years. Similar to Xiao’s16 research on ozone pollution, they argue that present-day ozone levels in major Chinese cities are comparable to or even higher than the 1980 levels in the United States. Taken together, ozone and PM2.5 have become the top two air pollution pollutants in China.Monthly distribution of primary pollutantsTo further explore the spatiotemporal distribution of the primary pollutants across the UAs, we obtained the most primary pollutants per month by dividing the number of days with the most pollutants by the number of cities in each UA from the 2019 data. In Fig. 3, the UAs location was plotted on the abscissa, and the monthly variance of the primary pollutant was plotted on the ordinate. As shown in Fig. 3, PM2.5 appeared as dark green, PM10 appeared as light green, O3 appeared as orange, NO2 appeared as yellow, and clean days appear as dark blue. The main pollutants in the 19 UAs are PM2.5, PM10 and O3. NO2, as the primary pollutant, only appeared in the HBOY UA in January. Ordos, located in HBOY, possess rich oil and coal resources, with coal mining as its leading industry38. According to the China Energy Statistical Yearbook 2019, nearly 250 million tons of raw coal were used for thermal power generation in Inner Mongolia Autonomous Region, making it the region with the largest amount of raw coal for thermal power generation in China39. To a certain extent, the increase of heating40 and the imperfect denitration technology41 are both contributing to the increase of NO2 pollution in the atmosphere. CO and SO2 did not become major pollutants. Clean days (where AQI  More

  • in

    Weather fluctuation can override the effects of integrated nutrient management on fungal disease incidence in the rice fields in Taiwan

    Plant materialRice (Oryza sativa L.) plants used for the experiment were from the collection of Taiwan Agricultural Research Institute. The rice variety (Tainan No. 11) used in this study has enhanced resistance to rice blast. The use of plant materials complies with international, national, and/or institutional guidelines and legislation.Field areaThis study was carried out in experimental rice fields under low-external-input and conventional farming in central Taiwan (23.5859 N, 120.4083 E; 8.0 ha). The annual average temperature ranged from 23 to 25 °C, the annual average relative humidity ranged from 75 to 92%, and the annual rainfall ranged from 1020 to 2873 mm year−1 (average data between 2006 and 2016 measured at a nearby weather station; Fig. 1). The experimental paddy plots were defined by considering the typical dimensions of the agricultural fields in Taiwan (0.5 to 1.0 ha). A long-term experiment was conducted from 2006 to 2016 to study the effects of different agronomic management on biodiversity, productivity, and environment, including traceability system, soil fertility, nitrogen leaching, production costs, disease incidence and severity, the abundance of pest and beneficial insects, and weed dynamics.The treatments consisted of conventional farming with high chemical fertilizer input (CF) and low-external-input farming with low fertilizer input (LF). In the CF farming, we followed the fertilizer recommendations that are constructed to meet the nutrient requirements of the crop. In the LF farming, the chemical fertilizers were largely reduced compared to the recommendation (see next paragraph for the details). The experiment was conducted as a randomized complete block design (RCBD) with four replicates. In agricultural experiments, the RCBD is a standard procedure by grouping experimental units into blocks. For example, the design can control variation in the experiments by considering spatial influences and adjusting the effects of target factors in fields. Each experimental unit consisted of a 0.58 ± 0.16 ha of the area of the field. Additional nutrient management in the LF system includes (1) nitrogen-fixing and cover crops, (2) manure and compost applications, (3) plant and soil nutrient analyses for adjusting fertilization, and (4) reduced tillage. Soil-available potassium gradually decreased during the 10-year study period in the area of the LF system. Over the study period, the LF system achieved the similar level of crop production as that of the CF system (Fig. S1).In our study area, there were two growing seasons within a year: one in the first half of the year (from February to June) and one in the second half (from August to December). The ground fertilizers were applied before rice seedlings were transplanted, followed by additional fertilizations during the tillering and boosting stages. The total amount of fertilizers used for the CF system included 140–180 and 120–140 kg N ha−1, 70–72 and 60 kg P2O5 ha−1, and 85 and 60 kg K2O ha−1 for the first and second seasons, respectively. For the LF system, 100 and 80 kg N ha−1, 30 and 30 kg P2O5 ha−1, and 30 and 30 kg K2O ha−1 were applied in the first and second seasons, respectively. The larger amount of fertilizers for the first season was due to its longer duration. For each rice growing season, fungicides were applied to both farming systems once during the boosting stage. During the fungicide application, a 10% mixture of Cartap plus Probenazole or 6% probenazole for rice blast (both 30 kg ha−1) and 1.5% Furametpyr for sheath blight (20 kg ha−1) were used.Rice disease monitoringThe major rice disease (rice blast; Fig. S2) was monitored biweekly in the CF and LF systems over the two growing seasons per year, with each growing season including (in chronological order) the tillering, flowering, and maturing stages. There was a total of 123 occasions during our study. The plants were disease free when planted out. When the lesion of the rice blast began to appear in the fields from the tillering stage to the maturing stage, the effects of the two treatments (CF and LF systems) in the paddy fields on the disease incidence of rice blast (caused by Pyricularia oryzae) were investigated. For each plot (or experimental unit), the incidence of rice disease was randomly examined at 5 points and for 25 plexuses (i.e., each derived from one primary tiller) per point. The disease incidence was quantified as the percentage of infected plexuses that were determined based on the presence of infected leaves.The area under the disease progress curve (AUDPC) was used to quantify disease incidences over time, and the relative AUDPC ((RAUDPC)) was used because of unequal sampling duration in the growing seasons during our study period. For each plot (or experimental unit), we used the (RAUDPC) to summarize the incidences of disease during each growing season as follows:$$RAUDPC=frac{sum_{i=1}^{n-1}frac{{y}_{i}+{y}_{i+1}}{2}times left({t}_{i+1}-{t}_{i}right)}{100 times left({t}_{n}-{t}_{1}right)},$$
    (1)
    where ({y}_{i}) and ({t}_{i}) are the disease incidence (%) and time (day) at the (i)th observation, respectively, and (n) is the total number of observations.Bayesian modelingWe built a mechanistic model that was applied to assess the interplay within a network of relationships among weather fluctuation, farming system, and disease incidence in the paddy fields. The model describes how (1) temperature and relative humidity together influence the development of primary inoculum, (2) rainfall detaches the fungal spores on the host tissues, and (3) rainfall and wind catch the airborne spores onto the leaf area. These environmental processes determine the disease incidence in the model. In addition, this model considers that farming systems can suppress or accelerate disease incidence. By fitting our model to the observed incidence, Bayesian inference was used as the parameter estimation technique for the models. In addition, we tested the alternative mechanistic hypotheses based on a model-selection criterion and cross vaidation (see subsequent paragraphs).With a linearity assumption, the incidences of disease (RAUDPC) were modeled as an inverse-logit function of the progress rate of the development of primary inoculum ((IP) with values between 0 and 1) and the net catchment of the airborne spores by rainfall and wind ((CT) with values between 0 and 1; when subtracting the detachment of spores by rainfall from the host tissue) as follows:$$RAUDPC=invLogitleft({a}_{f}+{b}_{1}bullet logitleft(avg_IPright)+{b}_{2}bullet logitleft(avg_IPbullet avg_CTright)right),$$
    (2)
    where ({a}_{f}), ({b}_{1}), and ({b}_{2}) describe the constant baseline for different farming systems ((f) = the CF or LF system), the direct effect size of (avg_IP), and the mediating effect size of (avg_CT) through (IP), respectively. The two parameters ((avg_IP) and (avg_CT)) are averaged (IP) and (CT) during the growing season, respectively (see below for details). The effect sizes ({b}_{1}) and ({b}_{2}) have values more than zero. The constant baseline allows the management-specific acting in the model when they can influence the disease incidence.The process rate (IP) was simulated as a function of the temperature response ((fleft(Tright)) with values between 0 and 1) and hourly air relative humidity ((RH,) %) as follows20:$$IP= left{begin{array}{ll}0& mathrm{if}, RH 0) are the steepness and midpoint parameters to control the portion of spores caught by the wind, respectively.The Bayesian framework ‘Stan’49 and its R interface ‘RStan’50 were used to construct and fit the models. There were two competing models: either considering the difference between the CF and LF systems by not fixed to the same values of the constant baseline ({a}_{f}) in Formula (2) or not. For each model, four Markov Chain Monte Carlo (MCMC) chains (for numerical approximations of Bayesian inference) ran, each with 5,000 iterations, and the first half of the iterations of each chain were discarded as burn-in. The R-hat statistic of each parameter approaches a value of 1, indicating model convergence. With a total of 2,000 samples, collected as one sample for every 5 iterations for each chain, the model parameters and their posterior distribution were estimated. To compare the two competing models, we calculated the widely applicable information criterion (WAIC) using the R package ‘loo’51. The best model was determined based on the lowest WAIC. By using the same R package, we also performed the approximate leave-one-out cross-validation (LOO-CV) to estimate the predictive ability of the two Bayesian models. Here, we used the expected log predictive density (ELPD) to be the predictive performance.Compliance with ethical standardsThe authors declare that they have no conflict of interest. This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors. More

  • in

    DNA- and RNA-based bacterial communities and geochemical zonation under changing sediment porewater dynamics on the Aldabra Atoll

    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science (New York, N.Y.) 320, 1034–1039 (2008).ADS 
    CAS 

    Google Scholar 
    Jørgensen, B. B. & Kasten, S. in Marine Geochemistry, edited by H. D. Schulz & M. Zabel (Springer, 2006), 271–309.Broman, E., Sjöstedt, J., Pinhassi, J. & Dopson, M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5, 96 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Billerbeck, M. et al. Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar. Ecol. Prog. Ser. 326, 61–76 (2006).ADS 
    CAS 

    Google Scholar 
    Booth, J. M., Fusi, M., Marasco, R., Mbobo, T. & Daffonchio, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9, 3749 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Torti, A., Lever, M. A. & Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24(Pt 3), 185–196 (2015).
    Google Scholar 
    Starke, R., Pylro, V. S. & Morais, D. K. 16S rRNA gene copy number normalization does not provide more reliable conclusions in metataxonomic surveys. Microb. Ecol. 81, 535–539 (2021).CAS 
    PubMed 

    Google Scholar 
    Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 7, 2061–2068 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Vrieze, J., Pinto, A. J., Sloan, W. T. & Ijaz, U. Z. The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome 6, 63 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y., Zhao, Z., Dai, M., Jiao, N. & Herndl, G. J. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol. Ecol. 23, 2260–2274 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, K. M., Petersen, I. A. B., Tobi, E., Korte, L. & Bohannan, B. J. M. Use of RNA and DNA to identify mechanisms of bacterial community homogenization. Front. Microbiol. 10, 2066 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Petro, C., Starnawski, P., Schramm, A. & Kjeldsen, K. U. Microbial community assembly in marine sediments. Aquat. Microb. Ecol. 79, 177–195 (2017).
    Google Scholar 
    Walsh, E. A. et al. Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment. Appl. Environ. Microbiol. 82, 4994–4999 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3, e1584 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmitt, S. et al. Salinity, microbe and carbonate mineral relationships in brackish and hypersaline lake sediments: A case study from the tropical Pacific coral atoll of Kiritimati. Depositional Rec. 5, 212–229 (2019).
    Google Scholar 
    Schneider, D., Arp, G., Reimer, A., Reitner, J. & Daniel, R. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. PLoS ONE 8, e66662 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, B. et al. Sediment microbial communities and their potential role as environmental pollution indicators in Xuande Atoll, South China Sea. Front. Microbiol. 11, 1011 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Galand, P. E. et al. Phylogenetic and functional diversity of Bacteria and Archaea in a unique stratified lagoon, the Clipperton atoll (N Pacific). FEMS Microbiol. Ecol. 79, 203–217 (2012).CAS 
    PubMed 

    Google Scholar 
    Stoddart, D. R. The conservation of Aldabra. Geogr. J. 134, 471 (1968).
    Google Scholar 
    Farrow, G. E. & Brander, K. M. Tidal studies on Aldabra. Phil. Trans. R. Soc. Lond. B 260, 93–121 (1971).ADS 

    Google Scholar 
    Gaillard, C., Bernier, P. & Gruet, Y. L. lagon d’Aldabra (Seychelles, Océan indien), un modèle pour le paléoenvironnement de Cerin (Kimméridgien supérieur, Jura méridional, France). Geobios 27, 331–348 (1994).
    Google Scholar 
    Hamylton, S., Spencer, T. & Hagan, A. B. Spatial modelling of benthic cover using remote sensing data in the Aldabra lagoon, western Indian Ocean. Mar. Ecol. Prog. Ser. 460, 35–47 (2012).ADS 

    Google Scholar 
    Braithwaite, C. J. R. Last interglacial changes in sea level on Aldabra, western Indian Ocean. Sedimentology 67, 3236–3258 (2020).
    Google Scholar 
    Haverkamp, P. J. et al. Giant tortoise habitats under increasing drought conditions on Aldabra Atoll—Ecological indicators to monitor rainfall anomalies and related vegetation activity. Ecol. Ind. 80, 354–362 (2017).
    Google Scholar 
    Hughes, R. N. & Gamble, J. C. A quantitative survey of the biota of intertidal soft substrata on Aldabra Atoll, Indian Ocean. Phil. Trans. R. Soc. Lond. B 279, 327–355 (1977).ADS 

    Google Scholar 
    Braithwaite, C., Casanova, J., Frevert, T. & Whitton, B. A. Recent stromatolites in landlocked pools on Aldabra, Western Indian Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69, 145–165 (1989).
    Google Scholar 
    Potts, M. & Whitton, B. A. Nitrogen fixation by blue-green algal communities in the intertidal zone of the lagoon of Aldabra Atoll. Oecologia 27, 275–283 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Potts, M. & Whitton, B. A. Vegetation of the intertidal zone of the lagoon of Aldabra, with particular reference to the photosynthetic prokaryotic communities. Proc. R. Soc. Lond. B. 208, 13–55 (1980).ADS 

    Google Scholar 
    Meyers, P. A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289–302 (1994).ADS 
    CAS 

    Google Scholar 
    Choi, A., Lee, K., Oh, H.-M., Feng, J. & Cho, J.-C. Litoricola marina sp. nov.. Int. J. Syst. Evolut. Microbiol. 60, 1303–1306 (2010).CAS 

    Google Scholar 
    Durham, B. P. et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand Genom. Sci. 9, 632–645 (2014).
    Google Scholar 
    Boehm, A. B., Yamahara, K. M. & Sassoubre, L. M. Diversity and transport of microorganisms in intertidal sands of the California coast. Appl. Environ. Microbiol. 80, 3943–3951 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Probandt, D., Eickhorst, T., Ellrott, A., Amann, R. & Knittel, K. Microbial life on a sand grain: From bulk sediment to single grains. ISME J. 12, 623–633 (2018).PubMed 

    Google Scholar 
    Wong, H. L., Smith, D.-L., Visscher, P. T. & Burns, B. P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dupraz, C., Visscher, P. T., Baumgartner, L. K. & Reid, R. P. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51, 745–765 (2004).ADS 
    CAS 

    Google Scholar 
    Diaz, M. R., Piggot, A. M., Eberli, G. P. & Klaus, J. S. Bacterial community of oolitic carbonate sediments of the Bahamas Archipelago. Mar. Ecol. Prog. Ser. 485, 9–24 (2013).ADS 

    Google Scholar 
    Cui, H., Yang, K., Pagaling, E. & Yan, T. Spatial and temporal variation in enterococcal abundance and its relationship to the microbial community in Hawaii beach sand and water. Appl. Environ. Microbiol. 79, 3601–3609 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petriglieri, F., Nierychlo, M., Nielsen, P. H. & McIlroy, S. J. In situ visualisation of the abundant Chloroflexi populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS ONE 13, e0206255 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wietz, M., Gram, L., Jørgensen, B. & Schramm, A. Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat. Microb. Ecol. 61, 179–189 (2010).
    Google Scholar 
    Wemheuer, B. et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol. Ecol. 87, 378–389 (2014).CAS 
    PubMed 

    Google Scholar 
    Heywood, K. J., Stevens, D. P. & Bigg, G. R. Eddy formation behind the tropical island of Aldabra. Deep Sea Res. Part I 43, 555–578 (1996).
    Google Scholar 
    Pérez-Cataluña, A. et al. Revisiting the taxonomy of the genus Arcobacter: Getting order from the chaos. Front. Microbiol. 9, 2077 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Revsbech, N. P. & Jørgensen, B. B. Microelectrodes: Their Use in Microbial Ecology. In Advances in Microbial Ecology (ed. Marshall, K. C.) 293–352 (Springer, 1989).
    Google Scholar 
    Watson, J. et al. Reductively debrominating strains of Propionigenium maris from burrows of bromophenol-producing marine infauna. Int. J. Syst. Evol. Microbiol. 50(Pt 3), 1035–1042 (2000).CAS 
    PubMed 

    Google Scholar 
    Sasi, J. T. S., Rahul, K., Ramaprasad, E. V. V., Sasikala, C. & Ramana, C. V. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. Int. J. Syst. Evolut. Microbiol. 63, 4619–4625 (2013).
    Google Scholar 
    Rinke, C. et al. High genetic similarity between two geographically distinct strains of the sulfur-oxidizing symbiont ‘Candidatus Thiobios zoothamnicoli’. FEMS Microbiol. Ecol. 67, 229–241 (2009).CAS 
    PubMed 

    Google Scholar 
    Vartoukian, S. R., Palmer, R. M. & Wade, W. G. The division “Synergistes”. Anaerobe 13, 99–106 (2007).CAS 
    PubMed 

    Google Scholar 
    Janssen, P. H. & Liesack, W. Succinate decarboxylation by Propionigenium maris sp. nov., a new anaerobic bacterium from an estuarine sediment. Arch. Microbiol. 164, 29–35 (1995).CAS 
    PubMed 

    Google Scholar 
    Shiozaki, T. et al. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME J. 10, 2184–2197 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    González-Domenech, C. M., Martínez-Checa, F., Béjar, V. & Quesada, E. Denitrification as an important taxonomic marker within the genus Halomonas. Syst. Appl. Microbiol. 33, 85–93 (2010).PubMed 

    Google Scholar 
    Farmer, J. J., Michael, J. J., Brenner, F. W., Cameron, D. N. & Birkhead, K. M. The Book. In Bergey’s Manual of Systematics of Archaea and Bacteria (eds Whitman, W. B. et al.) 1–79 (Wiley, 2016).
    Google Scholar 
    Ventosa, A. & Haba, R. R. in Bergey’s Manual of Systematics of Archaea and Bacteria, edited by W. B. Whitman, et al. (Wiley, 2015), 1–16.Lloyd, K. G. Time as a microbial resource. Environ. Microbiol. Rep. 13, 18–21 (2021).PubMed 

    Google Scholar 
    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 33, 265–278 (2001).CAS 

    Google Scholar 
    Nanca, C. L., Neri, K. D., Ngo, A. C. R., Bennett, R. M. & Dedeles, G. R. Degradation of polycyclic aromatic hydrocarbons by moderately halophilic bacteria from Luzon salt beds. J. Health Pollut. 8, 180915 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bird, J. T. et al. Uncultured microbial phyla suggest mechanisms for multi-thousand-year subsistence in Baltic Sea sediments. MBio 10, 1002 (2019).
    Google Scholar 
    Moulton, O. M. et al. Microbial associations with macrobiota in coastal ecosystems: Patterns and implications for nitrogen cycling. Front. Ecol. Environ. 14, 200–208 (2016).
    Google Scholar 
    Park, S., Park, J.-M., Kang, C.-H. & Yoon, J.-H. Aestuariispira insulae gen. nov., sp. nov., a lipolytic bacterium isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 64, 1841–1846 (2014).CAS 
    PubMed 

    Google Scholar 
    Evans, M. V. et al. Members of Marinobacter and Arcobacter influence system biogeochemistry during early production of hydraulically fractured natural gas wells in the Appalachian Basin. Front. Microbiol. 9, 2646 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wilhelm, R. C. Following the terrestrial tracks of Caulobacter – redefining the ecology of a reputed aquatic oligotroph. ISME J. 12, 3025–3037 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Suzuki, D., Ueki, A., Amaishi, A. & Ueki, K. Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int. J. Syst. Evol. Microbiol. 57, 520–526 (2007).CAS 
    PubMed 

    Google Scholar 
    Dawson, K. S., Scheller, S., Dillon, J. G. & Orphan, V. J. Stable isotope phenotyping via cluster analysis of nanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment. Front. Microbiol. 7, 774 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fadhlaoui, K. et al. Fusibacter fontis sp. nov., a sulfur-reducing, anaerobic bacterium isolated from a mesothermic Tunisian spring. Int. J. Syst. Evol. Microbiol. 65, 3501–3506 (2015).CAS 
    PubMed 

    Google Scholar 
    Kjeldsen, K. U. et al. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol. Ecol. 60, 287–298 (2007).CAS 
    PubMed 

    Google Scholar 
    Schneider, D., Wemheuer, F., Pfeiffer, B. & Wemheuer, B. Extraction of total DNA and RNA from marine filter samples and generation of a cDNA as universal template for marker gene studies. Methods Mol. Biol. Clifton N J 1539, 13–22 (2017).CAS 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 

    Google Scholar 
    Berkelmann, D., Schneider, D., Hennings, N., Meryandini, A. & Daniel, R. Soil bacterial community structures in relation to different oil palm management practices. Sci. Data 7, 421 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    von Hoyningen-Huene, A. J. E. et al. Bacterial succession along a sediment porewater gradient at Lake Neusiedl in Austria. Sci. data 6, 163 (2019).
    Google Scholar 
    Tange, O. Gnu parallel-the command-line power tool. login: The USENIX Mag. 36, 42–47 (2011).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England) 34, i884–i890 (2018).
    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina paired-end read merger. Bioinformatics (Oxford, England) 30, 614–620 (2014).CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).
    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing (2016).Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    SILVAngs. SILVAngs – rDNA-based microbial community analysis using next-generation sequencing (NGS) data – user guide. Available at https://www.arb-silva.de/fileadmin/silva_databases/sngs/SILVAngs_User_Guide.pdf (2017).McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. GigaScience 1, 7 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree – tree figure drawing tool (2018).R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: integrated development for R (RStudio Inc., 2021).Chen, L. et al. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ 6, e4600 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, M. B., Wallroth, M., Jonsson, V. & Kristiansson, E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genom. 19, 274 (2018).
    Google Scholar 
    Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data (2018).Oksanen, J. et al. vegan: Community ecology package (2018).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England) 26, 1463–1464 (2010).CAS 

    Google Scholar 
    Harrel Jr, F. E., with contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous (2021).Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation (2021).de Cáceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 

    Google Scholar 
    Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esri Inc. ArcGIS Desktop (Esri Inc., 2019).Inkscape Developers. Inkscape (2020).Fussmann, D. et al. Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria. Biogeosciences 17, 2085–2106 (2020).ADS 
    CAS 

    Google Scholar 
    Parkhurst, D. L. & Appelo, C. A. in U.S. Geological Survey Techniques and Methods (2013), Vol. 6, pp. 2328–7055. More

  • in

    A comprehensive catalogue of plant-pollinator interactions for Chile

    In recent years there has been an increasing concern regarding the global decline of pollinators and pollination services1,2,3. Recent studies estimate that over 87% of the flowering plant species rely on biotic pollination4. Pollination is a mutualistic interaction, and plants provide pollinators with various rewards, including nectar, oil, or excess pollen to feed upon5,6. Although bees are the most well-known pollinator group, pollination can be performed by a wide variety of species, including mammals, birds, reptiles, and other insects.Plant-pollinator interactions are among the key processes that generate and maintain biodiversity7,8. The coevolutionary processes involved in animal pollination have helped maintain the structure and function of entire communities and species’ networks. Wild plant species and natural ecosystems provide several products and services, including nutrient cycling, medicine, food, a source of pollinators for domesticated crops, and alternative food and shelter sources for agricultural pollinators9. However, the complex web of interactions and the large number of species involved (ca. 400,000 species globally) makes it challenging to estimate pollinators’ value in natural ecosystems, particularly when the life history of so many pollinator species remains little studied and understood10.Pollinators also provide highly valuable ecosystem services to crops11,12. More than 70% of the world’s crops depend directly on insect pollination, making pollination key to food security11,13. The European honeybee (Apis mellifera) is likely the most economically important pollinator of crops worldwide13,14. Honeybees are adaptable, easy to manage, and cost-efficient. However, in recent years, ‘colony collapse’ caused by several factors, including parasitic mites and the excessive use of pesticides and herbicides, have led to a decline in managed honeybee colonies in many parts of the world15,16,17. Similarly, habitat loss and fragmentation have detrimental effects on both native and commercial pollinators. In degraded habitats, pollinators struggle to find resources and nesting sites18,19,20.In Chile, pollination represents a multimillion-dollar business. Between January and October 2020, the export of Chilean fruit reached USD 4.149 million, while fresh vegetables generated USD 347 million during the same period21. Although agricultural pollinators have been well studied, native pollinators remain largely unknown. With over 460 species of native bees in Chile, approximately 70% are endemic; researchers have only begun to understand the relationships between native plants and their pollinators22,23,24. Also, managed honeybees and bumblebees introduced to Chile for crop pollination are highly invasive and easily leave croplands to forage in neighbouring native ecosystems25,26, competing directly with native pollinators for the ever-diminishing resources in native grasslands and forests posing a threat to Chile’s unique ecoregions25,27.Because of the importance of pollination in the maintenance of biodiversity and the economic benefits of agricultural crop production, there is an urgent need to understand the causes behind the current decline in pollinator species. In this sense, collating and reviewing existing information on pollinators and making this information easily accessible in the form of a user-friendly database is of immeasurable value. In this study, we compiled the information available about pollination and pollinators (sensu lato) for Chile, aiming to understand plant-pollinator interactions, identify knowledge and geographic gaps, and provide a baseline from which to carry out further studies. We aimed to make a datasheet with a format that was adaptable to different regions and other countries by allowing it to be easily understood, easy to access and find and aiming to avoid duplicity of data. This study represents the first systematic effort to compile the available information on pollination and pollinators for Chile. This pollination catalogue for Chile adds to other international efforts of systematising this information as, for example, the Catalogue of Afrotropical Bees28 and the CPC Plant Pollinators Database29. More

  • in

    Confronting the water potential information gap

    Brutsaert, W. Hydrology: An Introduction (Cambridge Univ. Press, 2005).Philip, J. Plant water relations: some physical aspects. Annu. Rev. Plant Physiol. 17, 245–268 (1966).
    Google Scholar 
    Ghezzehei, T. A., Sulman, B., Arnold, C. L., Bogie, N. A. & Berhe, A. A. On the role of soil water retention characteristic on aerobic microbial respiration. Biogeosciences 16, 1187–1209 (2019).
    Google Scholar 
    Boyer, J. Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean. Plant Physiol. 46, 236–239 (1970).
    Google Scholar 
    Jarvis, P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. R. Soc. Lond. B 273, 593–610 (1976).
    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
    Google Scholar 
    Tyree, M. T. & Sperry, J. S. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Biol. 40, 19–36 (1989).
    Google Scholar 
    Whalley, W., Ober, E. & Jenkins, M. J. J. Measurement of the matric potential of soil water in the rhizosphere. J. Exp. Biol. 64, 3951–3963 (2013).
    Google Scholar 
    Yu, H., Yang, P. & Lin, H. Spatiotemporal patterns of soil matric potential in the Shale Hills Critical Zone Observatory. Vadose Zone J. https://doi.org/10.2136/vzj2014.11.0167 (2015).Campbell, G. S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117, 311–314 (1974).
    Google Scholar 
    van Genuchten, M. T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).
    Google Scholar 
    Dorigo, W. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698 (2011).Scott, B. L. et al. New soil property database improves Oklahoma Mesonet soil moisture estimates. J. Atmos. Ocean. Technol. 30, 2585–2595 (2013).
    Google Scholar 
    Campbell, G. S. Soil water potential measurement: an overview. Irrig. Sci. 9, 265–273 (1988).
    Google Scholar 
    Van Looy, K. et al. Pedotransfer functions in Earth system science: challenges and perspectives. Rev. Geophys. 55, 1199–1256 (2017).
    Google Scholar 
    Clapp, R. B. & Hornberger, G. M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–604 (1978).
    Google Scholar 
    Cosby, B., Hornberger, G., Clapp, R. & Ginn, T. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20, 682–690 (1984).
    Google Scholar 
    Zhang, Y. & Schaap, M. G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 547, 39–53 (2017).
    Google Scholar 
    Fatichi, S. et al. Soil structure is an important omission in Earth system models. Nat. Commun. 11, 522 (2020).
    Google Scholar 
    Ghezzehei, T. A. & Albalasmeh, A. A. Spatial distribution of rhizodeposits provides built-in water potential gradient in the rhizosphere. Ecol. Modell. 298, 53–63 (2015).
    Google Scholar 
    Leung, A. K., Garg, A. & Ng, C. W. W. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 193, 183–197 (2015).
    Google Scholar 
    Caplan, J. S. et al. Decadal-scale shifts in soil hydraulic properties as induced by altered precipitation. Sci. Adv. 5, eaau6635 (2019).
    Google Scholar 
    Peña-Sancho, C., López, M., Gracia, R. & Moret-Fernández, D. Effects of tillage on the soil water retention curve during a fallow period of a semiarid dryland. Soil Res. 55, 114–123 (2017).
    Google Scholar 
    Stoof, C. R., Wesseling, J. G. & Ritsema, C. J. Effects of fire and ash on soil water retention. Geoderma 159, 276–285 (2010).
    Google Scholar 
    Gutmann, E. & Small, E. The effect of soil hydraulic properties vs. soil texture in land surface models. Geophys. Res. Lett. 32, L02402 (2005).
    Google Scholar 
    Weihermüller, L. et al. Choice of pedotransfer functions matters when simulating soil water balance fluxes. J. Adv. Model. Earth Syst. 13, e2020MS002404 (2021).
    Google Scholar 
    Shi, Y., Davis, K. J., Zhang, F. & Duffy, C. J. Evaluation of the parameter sensitivities of a coupled land surface hydrologic model at a critical zone observatory. J. Hydrometeorol. 15, 279–299 (2014).
    Google Scholar 
    Shi, Y., Davis, K. J., Zhang, F., Duffy, C. J. & Yu, X. J. Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: a multivariate real-data experiment. Adv. Water Res. 83, 421–427 (2015).
    Google Scholar 
    Shi, Y. et al. Simulating high‐resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model. Hydrol. Process. 29, 4624–4637 (2015).
    Google Scholar 
    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001).
    Google Scholar 
    Boucher, O. et al. Presentation and evaluation of the IPSL‐CM6A‐LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).
    Google Scholar 
    Lurton, T. et al. Implementation of the CMIP6 forcing data in the IPSL‐CM6A‐LR model. J. Adv. Model. Earth Syst. 12, e2019MS001940 (2020).
    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).
    Google Scholar 
    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).
    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).
    Google Scholar 
    Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D. & Entekhabi, D. Satellite‐based assessment of land surface energy partitioning–soil moisture relationships and effects of confounding variables. Water Resour. Res. 55, 10657–10677 (2019).
    Google Scholar 
    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. N. Phytol. 218, 1430–1449 (2018).
    Google Scholar 
    Baldocchi, D. D., Xu, L. & Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric. For. Meteorol. 123, 13–39 (2004).
    Google Scholar 
    Trugman, A. T., Anderegg, L. D., Shaw, J. D. & Anderegg, W. R. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proc. Natl Acad. Sci. USA 117, 8532–8538 (2020).
    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).
    Google Scholar 
    Martínez-Vilalta, J. et al. Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. New Phytol. 232, 404–417 (2021).Taiz, L., Zeiger, E., Møller, I. M. & Murphy, A. Plant Physiology and Development 6th edn (Sinauer Associates, 2015).Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. & Hammel, H. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148, 339–346 (1965).
    Google Scholar 
    Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. N. Phytol. 204, 105–115 (2014).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Matheny, A. M. et al. Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere https://doi.org/10.1890/es15-00170.1 (2015).Wood, J. D., Knapp, B. O., Muzika, R.-M., Stambaugh, M. C. & Gu, L. The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region. Environ. Res. Lett. 13, 015004 (2018).
    Google Scholar 
    Hinckley, T. M., Lassoie, J. P. & Running, S. W. Temporal and spatial variations in the water status of forest trees. For. Sci. 24, a0001–z0001 (1978).
    Google Scholar 
    Marks, C. O. & Lechowicz, M. J. The ecological and functional correlates of nocturnal transpiration. Tree Physiol. 27, 577–584 (2007).
    Google Scholar 
    O’Keefe, K. & Nippert, J. B. Drivers of nocturnal water flux in a tallgrass prairie. Funct. Ecol. 32, 1155–1167 (2018).
    Google Scholar 
    Donovan, L., Linton, M. & Richards, J. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia 129, 328–335 (2001).
    Google Scholar 
    Kannenberg, S. A. et al. Opportunities, challenges and pitfalls in characterizing plant water‐use strategies. Funct. Ecol. 36, 24–37 (2022).Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).Feng, X. et al. Beyond isohydricity: the role of environmental variability in determining plant drought responses. Plant Cell Environ. 42, 1104–1111 (2019).
    Google Scholar 
    Guo, J. S., Hultine, K. R., Koch, G. W., Kropp, H. & Ogle, K. Temporal shifts in iso/anisohydry revealed from daily observations of plant water potential in a dominant desert shrub. N. Phytol. 225, 713–726 (2020).
    Google Scholar 
    Hochberg, U., Rockwell, F. E., Holbrook, N. M. & Cochard, H. Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends Plant Sci. 23, 112–120 (2018).
    Google Scholar 
    Novick, K. A., Konings, A. G. & Gentine, P. Beyond soil water potential: an expanded view on isohydricity including land–atmosphere interactions and phenology. Plant Cell Environ. 42, 1802–1815 (2019).
    Google Scholar 
    McCulloh, K. A. et al. A dynamic yet vulnerable pipeline: integration and coordination of hydraulic traits across whole plants. Plant Cell Environ. 42, 2789–2807 (2019).
    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Mirfenderesgi, G., Matheny, A. M. & Bohrer, G. Hydrodynamic trait coordination and cost–benefit trade‐offs throughout the isohydric–anisohydric continuum in trees. Ecohydrology 12, e2041 (2019).
    Google Scholar 
    Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter‐annual variations of vegetation dynamics in seasonally dry tropical forests. N. Phytol. 212, 80–95 (2016).
    Google Scholar 
    De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).
    Google Scholar 
    Meinzer, F. C. et al. Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol. 24, 919–928 (2004).
    Google Scholar 
    Scott, R. L., Cable, W. L. & Hultine, K. R. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resour. Res. 44, W02440 (2008).
    Google Scholar 
    Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. N. Phytol. 119, 345–360 (1991).
    Google Scholar 
    Johnson, D. M. et al. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiol. 36, 983–993 (2016).
    Google Scholar 
    Lehto, T. & Zwiazek, J. J. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21, 71–90 (2011).
    Google Scholar 
    Bezerra-Coelho, C. R., Zhuang, L., Barbosa, M. C., Soto, M. A. & Van Genuchten, M. T. Further tests of the HYPROP evaporation method for estimating the unsaturated soil hydraulic properties. J. Hydrol. Hydromech. 66, 161–169 (2018).
    Google Scholar 
    Wullschleger, S., Dixon, M. & Oosterhuis, D. Field measurement of leaf water potential with a temperature‐corrected in situ thermocouple psychrometer. Plant Cell Environ. 11, 199–203 (1988).
    Google Scholar 
    Holtzman, N. M. et al. L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences 18, 739–753 (2021).
    Google Scholar 
    Nagy, R. C. et al. Harnessing the NEON data revolution to advance open environmental science with a diverse and data‐capable community. Ecosphere 12, e03833 (2021).
    Google Scholar 
    Novick, K. A. et al. The AmeriFlux network: a coalition of the willing. Agric. For. Meteorol. 249, 444–456 (2018).
    Google Scholar 
    Baldocchi, D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1–26 (2008).
    Google Scholar 
    Poyatos, R. et al. Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst. Sci. Data 13, 2607–2649 (2021).Jackson, T. & Schmugge, T. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).
    Google Scholar 
    Konings, A. G., Rao, K. & Steele‐Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. N. Phytol. 223, 1166–1172 (2019).
    Google Scholar 
    Konings, A. G. et al. Detecting forest response to droughts with global observations of vegetation water content. Glob. Change Biol. https://doi.org/10.1111/gcb.15872 (2021).Momen, M. et al. Interacting effects of leaf water potential and biomass on vegetation optical depth. J. Geophys. Res. Biogeosci. 122, 3031–3046 (2017).
    Google Scholar 
    Simunek, J., Van Genuchten, M. T. & Sejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media (Dept Environ. Sci. Univ. California Riverside, 2005).Naylor, S., Letsinger, S., Ficklin, D., Ellett, K. & Olyphant, G. A hydropedological approach to quantifying groundwater recharge in various glacial settings of the mid‐continental USA. Hydrol. Process. 30, 1594–1608 (2016).
    Google Scholar 
    Urbanski, S. et al. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res. Biogeosci. 112, G02020 (2007).
    Google Scholar 
    Thum, T. et al. Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots pine forest. Tellus B 59, 874–890 (2007).
    Google Scholar 
    Ardö, J., Mölder, M., El-Tahir, B. A. & Elkhidir, H. A. M. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan. Carbon Balance Manage. 3, 7 (2008).
    Google Scholar 
    Roman, D. T. et al. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179, 641–654 (2015).
    Google Scholar 
    Fu, C. et al. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites. Hydrol. Earth Syst. Sci. 20, 2001–2018 (2016).
    Google Scholar 
    Liang, J. et al. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geosci. Model Dev. 12, 1601–1612 (2019).Herman, J. & Usher, W. SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. https://doi.org/10.21105/joss.00097 (2017). More