More stories

  • in

    Maling bamboo (Yushania maling) overdominance alters forest structure and composition in Khangchendzonga landscape, Eastern Himalaya

    Badola, H. K. & Aitken, S. Potential biological resources for poverty alleviation in Indian Himalaya. Biodiver. 11(3–4), 8–18 (2010).
    Google Scholar 
    Pandey, A., Badola, H. K., Rai, S. & Singh, S. P. Timberline structure and woody taxa regeneration towards treeline along latitudinal gradients in Khangchendzonga National Park Eastern Himalaya. PLoS ONE 13(11), e0207762 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature https://doi.org/10.1038/nature22899 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hansen, A. J. et al. Global change in forests: Responses of species, communities, and biomes. Bio-Sciences 51, 765–779 (2001).
    Google Scholar 
    Gooden, B., French, K. O. & Turner, P. Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia. For. Ecol. Manag. 257(3), 960–967 (2009).
    Google Scholar 
    Xu, Q. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Global Ecol. Cons. https://doi.org/10.1016/j.gecco.2019.e00787 (2020).Article 

    Google Scholar 
    Dhar, U., Rawal, R. S. & Samant, S. S. Structural diversity and representativeness of forest vegetation in a protected area of Kumaun Himalaya, India: Implications for conservation. Biodiver. Cons. 6, 1045–1062 (1997).
    Google Scholar 
    Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710 (2000).
    Google Scholar 
    Tomimatsu, H. et al. Consequences of forest fragmentation in an understory plant community: Extensive range expansion of native dwarf bamboo. Plant Species Biol. 26, 3–12 (2011).
    Google Scholar 
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS 
    PubMed 

    Google Scholar 
    Royo, A. A. & Carson, W. P. On the formation of dense understory layers in forests worldwide: Consequences and implications for forest dynamics, biodiversity, and succession. Can. J. For. Res. 36, 1345–1362 (2006).
    Google Scholar 
    Royo, A. A., Stout, S. L. & Pierson, T. G. Restoring forest herb communities through landscape-level deer herd reductions: Is recovery limited by legacy effects?. Biol. Cons. 143, 2425–2434 (2010).
    Google Scholar 
    Taylor, A. H., Jinyan, H. & ShiQiang, Z. Canopy tree development and undergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China: A 12-year study. For. Ecol. Manag. 200(1), 347–360 (2004).
    Google Scholar 
    Zhou, X., Chen, L. & Lin, Q. Effects of chemical foaming agents on the physico-mechanical properties and rheological behavior of bamboo powder-polypropylene foamed composites. Bio Resour. 7(2), 2183–2198 (2012).CAS 

    Google Scholar 
    Lima, R. A., Rother, D. C., Muler, A. E., Lepsch, I. F. & Rodrigues, R. R. Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol. Conserv. 147, 32–39 (2012).
    Google Scholar 
    Tariyal, K. Bamboo as a successful carbon sequestration substrate in Uttarakhand: A brief analysis. Int. J. Curr. Adv. Res. 5(4), 736–738 (2016).
    Google Scholar 
    Badoni, A.K., Badola, H. K. & Sharma, S.P. Inter-disciplinary approach towards environmental management: A case study with wild bamboos in Garhwal Himalayas, In: Prakash R (Ed), Editor. Advances in Forestry Research in India, Vol. III, Intl. Book Distrib., Dehradun. pp 261–280 (1989).Bahadur, K. N. Bamboos in the service of man. Biol. Contemp. J. 1(2), 69–72 (1974).
    Google Scholar 
    Tomar, J. M. S., Hore, D. K. & Annadurai, A. Bamboos and their conservation in North-East India. Indian For. 135(6), 817–824 (2009).
    Google Scholar 
    Kumar, P. S., Kumari, K. U., Devi, M. P., Choudhary, V. K. & Sangeetha, A. Bamboo shoot as a source of nutraceuticals and bioactive compounds: a review. Indian J. Nat. Proc. Res. 8(1), 32–46 (2016).
    Google Scholar 
    Pradhan, S., Saha, G. K. & Khan, J. A. Ecology of the red panda Ailurus fulgens in the Singhalila National Park, Darjeeling, India. Biol. Cons. 98(1), 11–18 (2001).
    Google Scholar 
    Dorji, S., Vernes, K. & Rajaratnam, A. Habitat correlates of the Red Panda in the temperate forests of Bhutan. PLoS ONE 610, 1–11 (2011).
    Google Scholar 
    Mohan Ram, H. Y. & Tandon, R. Bamboos and rattans—from riches to rags. Proc. Natl. Sci. Acad. India 63(3), 245–267 (1997).
    Google Scholar 
    Sharma, R., Wahono, J. & Baral, H. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10, 4367 (2018).
    Google Scholar 
    Seethalakshmi, K.K. & Kumar, M.S.M. Bamboos of India: A Compendium. Bamboo Information Center, India, Kerala Forest Research Institute, Peechi and International Network for Bamboo and Ratten, Beijing (1998).Sarmah, A., Thomas, S., Goswami, M., Haridashan, K. & Borthakur, S. K. Rattan and bamboo flora of North-East India in a conservation perspective. In Sustainable Management of Forests (eds Arunachalan, A. & Khan, M. L.) 37–45 (International Book Distributors, 2000).
    Google Scholar 
    Das, M., Bhattacharya, S., Singh, P., Filgueiras, T. S. & Pal, A. Bamboo taxonomy and diversity in the era of molecular markers. Adv. Bot. Res. 47, 225–268 (2008).CAS 

    Google Scholar 
    Biswas, S. et al. Evidence of stress induced flowering in bamboo and comments on probable biochemical and molecular factors. J. Plant Biochem. Biotechnol. 30(4), 1020–1026 (2021).CAS 

    Google Scholar 
    Ray, P. K. Gregarious flowering of a common hill bamboo Arundinaria maling. Indian For. 78(2), 89–90 (1952).
    Google Scholar 
    Taylor, A. H. & Zisheng, Q. Culm dynamics and dry matter production of bamboos in the Wolong and Tangjiahe giant panda reserves, Sichuan, China. J. Appl. Ecol. 24, 419–433 (1987).
    Google Scholar 
    Okutomi, K., Shinoda, S. & Fukuda, H. Causal analysis of the invasion of broadleaved forest by bamboo in Japan. J. Veg. Sci. 7, 723–728 (1996).
    Google Scholar 
    Nath, A. J., Das, M. C. & Das, A. K. Gregarious flowering in woody bamboos: Does it mean end of life?. Curr. Sci. 106(1), 12–13 (2014).
    Google Scholar 
    Silveira, M. Ecological aspects of bamboo-dominated Forest in southwestern Amazonia: An ethnoscience perspective. Ecotropica 5, 213–216 (1999).
    Google Scholar 
    Song, Q. N. et al. Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Sci. Rep. 7(1), 1–10 (2017).ADS 

    Google Scholar 
    Rother, D. C., Rodrigues, R. R. & Pizo, M. A. Effects of bamboo stands on seed rain and seed limitation in a rainforest. For. Ecol. Manag. 257, 885–892 (2009).
    Google Scholar 
    Srivastava, V., Griess, V.C. & Padalia, H. Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecol Model 385:35–44 (2018).Roy, A., Bhattacharya, S., Ramprakash, M. & Kumar, A. S. Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach. Ecol. Model. 329, 77–85 (2016).
    Google Scholar 
    Stapleton, C. M. A. The morphology of woody bamboos. LinneanSocietySymposium Series 19 251–268 (Academic Press Limited, 1997).
    Google Scholar 
    Larpkern, P., Mor, S. R. & Totland, Q. Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia 165(1), 161–168 (2011).ADS 
    PubMed 

    Google Scholar 
    Tao, J. P., Shi, X. P. & Wang, Y. J. Effects of different bamboo densities on understory species diversity and trees regeneration in an Abies faxoniana forest, Southwest China. Sci. Res. Essays 7, 660–668 (2012).
    Google Scholar 
    Wang, W., Franklin, S. B., Ren, Y. & Ouellette, J. R. Growth of bamboo Fargesiaqinlingensis and regeneration of trees in a mixed hardwood-conifer forest in the Qinling Mountains, China. For. Ecol. Manag. 234(1–3), 107–115 (2006).
    Google Scholar 
    Gratzer, G., Rai, P. B. & Glatzel, G. The influence of the bamboo Yushaniamicrophylla on regeneration of Abies densa in central Bhutan. Can. J. For. Res. 29, 1518–1527 (1999).
    Google Scholar 
    Takahashi, K., Uemura, S., Suzuki, J. I. & Hara, T. Effect of understory dwarf bamboo on soil water and the growth of overstory trees in a dense secondary Betula ermanii forest, northern Japan. Ecol. Res. 18(6), 767–774 (2003).
    Google Scholar 
    Ito, H. & Hino, T. Effects of deer, mice and dwarf bamboo on the emergence, survival and growth of Abieshomolepis (Piceaceae) seedlings. Ecol. Res. 19(2), 217–223 (2004).
    Google Scholar 
    Tenzin, K. & Rinzin, A. Impact of Livestock Grazing on the Regeneration of Some Major Species of Plants in Conifer Forest (RNR-RC, 2003).
    Google Scholar 
    Darabant, A., Rai, P. B., Tenzin, K., Roder, W. & Gratzer, G. Cattle grazing facilitates tree regeneration in a conifer forest with palatable bamboo understory. For. Ecol. Manag. 252(1–3), 73–83 (2007).
    Google Scholar 
    Sinha, S. et al. Effect of altitude and climate in shaping the forest compositions of Singalila National Park in Khangchendzonga Landscape, Eastern Himalaya, India. J. Asia-Pac. Biodiver. 11(2), 267–275 (2018).
    Google Scholar 
    Zhang, W., Huang, D., Wang, R., Liu, J. & Du, N. Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of Northern China. PLoS ONE 11(7), e0159995. https://doi.org/10.1371/journal.pone.0159995 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, C. M., Mishra, A. K., Tiwari, O. P., Krishna, R. & Rana, Y. S. Effect of altitudinal gradients on forest structure and composition on ridge tops in Garhwal Himalaya. Energy Ecol. Environ. 2(6), 404–417. https://doi.org/10.1007/s40974-017-0067-6(2016) (2017).Article 

    Google Scholar 
    Silveira, M. Ecological aspects of bamboo-dominated forests in southwestern Amazonia: An ethnoscience perspective. Ecotropica 5, 213–216 (1999).
    Google Scholar 
    Franklin, D. C. Vegetation phenology and growth of a facultatively deciduous bamboo in a monsoonal climate. Biotropica 37, 343–350 (2005).
    Google Scholar 
    Nath, A. N., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Cons. 3, 654–663 (2015).
    Google Scholar 
    Venkatesh, M. S., Bhatt, B. P., Kumar, K., Majumdar, B. & Singh, K. Soil properties as influenced by some important edible bamboo species in the North Eastern Himalayan region. Indian J. Bamboo Rattan 4(3), 221–230 (2005).
    Google Scholar 
    ICIMOD, WCD, GBPNIHESD, RECAST Kangchenjunga landscape feasibility assessment report. ICIMOD Working Paper 2017/9. Kathmandu: ICIMOD (2017).Mueller-Dombois, A. & Ellenburg, A. Aims and Methods of Vegetation Ecology 48–50 (John Wiley Sons, 1974).
    Google Scholar 
    Polunin, O. & Stainton, A. Flowers of the Himalaya 580 (Oxford University Press, 2001).
    Google Scholar 
    Ghosh, D.K. & Mallick, J.K. Flora of darjeeling himalayas and foothills: Angiosperms. Research Circle, Forest Directorate, Government of West Bengal & Bishen Singh Mahendra Pal Singh (2014).Pradhan, U. C. & Lachungpa, M. L. Sikkim Himalayan Rhododendrons 130 (Primulaceae Books, 1990).
    Google Scholar 
    de Bello, F., Leps, J. & Sebastia, M. T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecograph 29, 801–810 (2006).
    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman and Hall, 1990).MATH 

    Google Scholar 
    Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Google Scholar 
    McCullagh, P. & Nelder, J. A. Generalized Linear Models 2nd edn. (Chapman and Hall, 1989).MATH 

    Google Scholar 
    Gaira, K. S., Dhar, U. & Belwal, O. K. Potential of herbarium records to sequence phenological pattern: A case study of Aconitum heterophyllum in the Himalaya. Biodiver. Cons. 20, 2201–2210 (2011).
    Google Scholar  More

  • in

    Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition

    Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.CAS 
    PubMed 

    Google Scholar 
    Danovaro R, Corinaldesi C, Dell’Anno A, Fuhrman JA, Middelburg JJ, Noble RT, et al. Marine viruses and global climate change. Fems Microbiol Rev. 2011;35:993–1034.CAS 
    PubMed 

    Google Scholar 
    Suttle CA. Marine viruses – major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 

    Google Scholar 
    Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.CAS 
    PubMed 

    Google Scholar 
    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2016;532:465–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.CAS 
    PubMed 

    Google Scholar 
    Peduzzi P, Weinbauer MG. Effect of Concentrating the Virus-Rich 2-200-Nm Size Fraction of Seawater on the Formation of Algal Flocs (Marine Snow). Limnol Oceanogr. 1993;38:1562–5.
    Google Scholar 
    Wilhelm SW, Suttle CA. Viruses and Nutrient Cycles in the Sea – Viruses play critical roles in the structure and function of aquatic food webs. Bioscience. 1999;49:781–8.
    Google Scholar 
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    Sullivan MB, Weitz JS, Wilhelm S. Viral ecology comes of age. Env Microbiol Rep. 2017;9:33–5.
    Google Scholar 
    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Starr EP, Nuccio EE, Pett-Ridge J, Banfield JF, Firestone MK. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc Natl Acad Sci USA. 2019;116:25900–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e0076–18.
    Google Scholar 
    Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol. 2017;4:201–19.CAS 
    PubMed 

    Google Scholar 
    Emerson JB. Soil viruses: a new hope. mSystems. 2019;4:e00120–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liang XL, Zhang YY, Wommack KE, Wilhelm SW, DeBruyn JM, Sherfy AC, et al. Lysogenic reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity. Soil Biol Biochem. 2020;144:107767.CAS 

    Google Scholar 
    Liang XL, Wang YS, Zhang Y, Zhuang J, Radosevich M. Viral abundance, community structure and correlation with bacterial community in soils of different cover plants. Appl Soil Ecol. 2021;168:104138.
    Google Scholar 
    Roy K, Ghosh D, DeBruyn JM, Dasgupta T, Wommack KE, Liang X, et al. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front. Microbiol. 2020;11:1494.PubMed 
    PubMed Central 

    Google Scholar 
    Williamson KE, Radosevich M, Wommack KE. Abundance and diversity of viruses in six Delaware soils. Appl Environ Microb. 2005;71:3119–25.CAS 

    Google Scholar 
    Lee S, Sieradzki ET, Nicolas AM, Walker RL, Firestone MK, Hazard C, et al. Methane-derived carbon flows into host-virus networks at different trophic levels in soil. Proc Natl Acad Sci USA. 2021;118:e2105124118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    ter Horst AM, Santos-Medellin C, Sorensen JW, Zinke LA, Wilson RM, Johnston ER, et al. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Microbiome. 2021;9:233.PubMed 
    PubMed Central 

    Google Scholar 
    Wu RN, Davison MR, Gao YQ, Nicora CD, Mcdermott JE, Burnum-Johnson KE, et al. Moisture modulates soil reservoirs of active DNA and RNA viruses. Commun Biol. 2021;4:992.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trubl G, Kimbrel J, Liquet-Gonzalez J, Nuccio E, Weber P, Pett-Ridge J, et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome. 2021;9:1–15.
    Google Scholar 
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. Mbio. 2019;10:e02287–19.PubMed 
    PubMed Central 

    Google Scholar 
    Braga LPP, Spor A, Kot W, Breuil MC, Hansen LH, Setubal JC, et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome. 2020;8:52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8:64–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos-Medellin C, Zinke LA, Ter Horst AM, Gelardi DL, Parikh SJ, Emerson JB. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. 2021;15:1956–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Srinivasiah S, Lovett J, Ghosh D, Roy K, Fuhrmann JJ, Radosevich M, et al. Dynamics of autochthonous soil viral communities parallels dynamics of host communities under nutrient stimulation. Fems Microbiol Ecol. 2015;91:fiv063.PubMed 

    Google Scholar 
    Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature. 2001;414:169–72.CAS 
    PubMed 

    Google Scholar 
    Glassman SI, Weihe C, Li JH, Albright MBN, Looby CI, Martiny AC, et al. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci USA. 2018;115:11994–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strickland MS, Lauber C, Fierer N, Bradford MA. Testing the functional significance of microbial community composition. Ecology. 2009;90:441–51.PubMed 

    Google Scholar 
    Matulich KL, Martiny JBH. Microbial composition alters the response of litter decomposition to environmental change. Ecology. 2015;96:154–63.PubMed 

    Google Scholar 
    Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:348.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anthony MA, Crowther TW, Maynard DS, van den Hoogen J, Averill C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth. 2020;2:349–60.
    Google Scholar 
    Albright MBN, Johansen R, Thompson J, Lopez D, Gallegos-Graves LV, Kroeger ME, et al. Soil bacterial and fungal richness forecast patterns of early pine litter decomposition. Front Microbiol. 2020;11:542220.PubMed 
    PubMed Central 

    Google Scholar 
    Kuzyakov Y, Mason-Jones K. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol Biochem. 2018;127:305–17.CAS 

    Google Scholar 
    Trubl G, Hyman P, Roux S, Abedon ST. Coming-of-age characterization of soil viruses: a user’s guide to virus isolation, detection within metagenomes, and viromics. Soil Syst. 2020;4:23.CAS 

    Google Scholar 
    Goller PC, Haro-Moreno JM, Rodriguez-Valera F, Loessner MJ, Gomez-Sanz E. Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil. Microbiome. 2020;8:17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nat Protoc. 2009;4:470–83.CAS 
    PubMed 

    Google Scholar 
    Lo CC, Chain PSG. Rapid evaluation and quality control of next generation sequencing data with FaQCs. Bmc Bioinform. 2014;15:366.
    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Current protocols in bioinformatics. 2020;70:e102.CAS 
    PubMed 

    Google Scholar 
    Kieft K, Zhou ZC, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39:578–85.CAS 
    PubMed 

    Google Scholar 
    Nayfach S, Paez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol. 2021;6:960–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNair K, Zhou C, Dinsdale EA, Souza B, Edwards RA. PHANOTATE: a novel approach to gene identification in phage genomes. Bioinformatics. 2019;35:4537–42.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60.CAS 
    PubMed 

    Google Scholar 
    de Souza RS, Okura VK, Armanhi JS, Jorrin B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774.PubMed 
    PubMed Central 

    Google Scholar 
    Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, MacPhee R, et al. Microbiome profiling by illumina sequencing of combinatorial sequencetagged PCR products. PLoS ONE. 2010;5:e15406.PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 

    Google Scholar 
    Albright MBN, Sevanto S, Gallegos-Graves L, Dunbar J. Biotic interactions are more important than propagule pressure in microbial community invasions. Mbio. 2020;11:e02089–20.PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2020. R package version 2.5-7. https://CRAN.Rproject.org/package=veganTeam RC R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.De Caceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.PubMed 

    Google Scholar 
    Frank E Harrell Jr. wcfCDamo. Hmisc: Harrell Miscellaneous. 2021. R packageversion 4.6-0. https://CRAN.R-project.org/package=HmiscKuhn M, Jackson S, Cimentada J corrr: Correlations in R. 2020. R package version 0.4.3. https://CRAN.R-project.org/package=corrrSpearman C. The7proof and measurement of association7between two things. Am J Psychol. 1904;15:72–101.
    Google Scholar 
    Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: network visualizations of relationships in psychometric data. J Stat Softw. 2012;48:1–18.
    Google Scholar 
    Kimura M, Jia ZJ, Nakayama N, Asakawa S. Ecology of viruses in soils: Past, present and future perspectives. Soil Sci Plant Nutr. 2008;54:1–32.
    Google Scholar 
    Williamson KE, Schnitker JB, Radosevich M, Smith DW, Wommack KE. Cultivationbased assessment of lysogeny among soil bacteria. Microb Ecol. 2008;56:437–47.PubMed 

    Google Scholar 
    Berns AE, Philipp H, Narres HD, Burauel P, Vereecken H, Tappe W. Effect of gammasterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur J Soil Sci. 2008;59:540–50.CAS 

    Google Scholar 
    Tian QX, He HB, Cheng WX, Zhang XD. Pulse-dynamic and monotonic decline patterns of soil respiration in long term laboratory microcosms. Soil Biol Biochem. 2014;68:329–36.CAS 

    Google Scholar 
    Emerson JB, Adams RI, Roman CMB, Brooks B, Coil DA, Dahlhausen K, et al. Schrodinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome. 2017;5:86.PubMed 
    PubMed Central 

    Google Scholar 
    Halgasova N, Ugorcakova J, Gerova M, Timko J, Bukovska G. Isolation and characterization of bacteriophage PhiBP from Paenibacillus polymyxa CCM 7400. FEMS Microbiol Lett. 2010;305:128–35.CAS 
    PubMed 

    Google Scholar 
    Klyczek KK, Bonilla JA, Jacobs-Sera D, Adair TL, Afram P, Allen KG, et al. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages. PLoS ONE. 2017;12:e0180517.PubMed 
    PubMed Central 

    Google Scholar 
    Li P, Bhattacharjee P, Wang S, Zhang L, Ahmed I, Guo L. Mycoviruses in fusarium species: an update. Front Cell Infect Microbiol. 2019;9:257.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghabrial SA, Caston JR, Jiang DH, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479:356–68.PubMed 

    Google Scholar 
    Lopez-Mondejar R, Zuhlke D, Vetrovsky T, Becher D, Riedel K, Baldrian P. Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels. 2016;9:104.PubMed 
    PubMed Central 

    Google Scholar 
    Thakur V, Kumar V, Kumar S, Singh D. Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya. Can J Microbiol. 2018;64:798–808.CAS 
    PubMed 

    Google Scholar 
    Panagiotou G, Kekos D, Macris BJ, Christakopoulos P. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crop. Prod. 2003;18:37–45.CAS 

    Google Scholar 
    Zheng HP, Yang TJ, Bao YZ, He PP, Yang KM, Mei XL, et al. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biol Biochem. 2021;157:108230.CAS 

    Google Scholar 
    Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol Biochem. 2017;115:433–41.CAS 

    Google Scholar 
    Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25:193.PubMed 
    PubMed Central 

    Google Scholar 
    Carreira C, Lonborg C, Kuhl M, Lillebo AI, Sandaa RA, Villanueva L, et al. Fungi and viruses as important players in microbial mats. Fems Microbiol Ecol. 2020;96(11):fiaa187.CAS 
    PubMed 

    Google Scholar 
    Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.PubMed 
    PubMed Central 

    Google Scholar 
    Sieradzki ET, Ignacio-Espinoza JC, Needham DM, Fichot EB, Fuhrman JA. Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes. Nat Commun. 2019;10:1169.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Forest protection: invest in professionals and their careers

    CORRESPONDENCE
    15 March 2022

    Forest protection: invest in professionals and their careers

    Douglas Sheil

     ORCID: http://orcid.org/0000-0002-1166-6591

    0
    &

    J. Doland Nichols

    1

    Douglas Sheil

    Wageningen University and Research, Wageningen, the Netherlands.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    J. Doland Nichols

    Southern Cross University, Lismore, Australia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    The protection and restoration of forests has major implications for the world’s climate, biodiversity and economic and societal development. But high-level commitments — such as those made by 141 nations at the COP26 climate summit in Glasgow, UK, last year — are being undermined by a dearth of people trained to fulfil those pledges.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 603, 393 (2022)
    doi: https://doi.org/10.1038/d41586-022-00706-2

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Policy

    Forestry

    Conservation biology

    Careers

    Latest on:

    Policy

    Paul Farmer (1959–2022)
    Obituary 10 MAR 22

    Chile’s science transformation gains steam with new president
    News 10 MAR 22

    Taiwan’s pandemic vice-president — from lab bench to public office and back
    World View 08 MAR 22

    Forestry

    Ancient oaks of Europe are archives — protect them
    Correspondence 22 JUN 21

    Controversial forestry experiment will be largest-ever in United States
    News 20 MAY 21

    Concerns about reported harvests in European forests
    Matters Arising 28 APR 21

    Jobs

    Faculty Position in Cancer Immunology

    Mayo Clinic
    Scottsdale, AZ, United States

    MOBILE AND TECHNOLOGICAL SOLUTIONS FOR OCCUPATIONAL DRIVERS (MILESTONE)

    KU Leuven
    Leuven, Belgium

    Associate or Senior Editor, Nature Materials

    Springer Nature
    London, Greater London, United Kingdom

    Postdoctoral Research Scientist

    Cancer Research UK Beatson Institute
    Glasgow, United Kingdom More

  • in

    Studying pauses and pulses in human mobility and their environmental impacts

    I propose a basic classification scheme for human pauses based on how widespread (spatial extent), sustained (duration) and pronounced (magnitude) reductions in human mobility are (Fig. 1b). Importantly, I recommend that the label anthropause be reserved for events of high magnitude at continental to global scale (and of any duration; Fig. 1b, Supplementary Note 1). According to this definition, the Black Death pandemic and early COVID-19 lockdowns caused anthropauses, while the Chernobyl disaster was followed by a regional human pause. A schematic classification cube can be used to compare these and other events (Fig. 1b); but first, a few points need clarifying.First, it is crucial to ensure that terminology is firmly tied to underlying processes. Some authors have used the word anthropause as a synonym for positive environmental change caused by lockdowns. While an initial focus on potential benefits is understandable, conflating cause (change in human mobility) and effect (environmental responses) is unhelpful when using the term in a scientific context. Indeed, the way the anthropause concept was originally framed, it makes no assumptions about the sign of environmental responses and any associated conservation impacts1 (Fig. 1a). Emerging empirical evidence from the COVID-19 pandemic indicates a broad range of lockdown effects2,3.Second, human mobility must be defined. COVID-19 lockdowns caused notable reductions in pedestrian counts and road, water and air traffic (and associated pollutant outputs), all of which likely caused environmental impacts1,2,3,4. For modern human pauses, it is reasonable to consider changes across the full range of human-mobility metrics, but comparisons with pre-industrial events inevitably need to focus on the environmental presence of people. In this context it is worth noting that humans might disappear from an area because they shelter, move elsewhere or perish, and that changes in human mobility can be driven by a variety of factors, including disease, natural and anthropogenic disasters, and conflict5. The ultimate drivers and proximate mechanisms affecting changes in human mobility are important research targets, but not part of the classification scheme itself (Fig. 1b). It is important to be mindful of the fact that many events will be associated with human tragedy and suffering1.Third, operational definitions are required for the scheme’s spatio-temporal scales. While human pauses are easily ordered according to their duration, classifying their spatial extent is more challenging, for both conceptual and practical reasons7. The categories proposed here are pragmatic — spanning four orders of magnitude (Fig. 1b) — and will enable meaningful comparison of the environmental impacts caused by different types of human pauses.Finally, it is important to clarify how the magnitude of events should be measured. Since human mobility dramatically increased over the past centuries, and will likely change further in the future, the magnitude of human pauses should be assessed against baseline levels for the time period and area under consideration, rather than in absolute terms. As illustrated by the COVID-19 pandemic, human mobility is not necessarily reduced to zero during an anthropause, and there can be substantial spatio-temporal variation in response levels. Preliminary analyses indicate that ~57% of the world’s population were under partial or full lockdown in early April 20202, and there were conspicuous local spikes in mobility once governments started allowing personal exercise1. More

  • in

    Metabolic plasticity improves lobster’s resilience to ocean warming but not to climate-driven novel species interactions

    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470. https://doi.org/10.5194/bg-17-3439-2020 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101. https://doi.org/10.1038/ncomms16101 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian current. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030393 (2007).Article 

    Google Scholar 
    Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859. https://doi.org/10.1038/nclimate2743 (2015).ADS 
    Article 

    Google Scholar 
    Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400, 7–16. https://doi.org/10.1016/j.jembe.2011.02.021 (2011).Article 

    Google Scholar 
    Straub, S. C. et al. Resistance, extinction, and everything in between: The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00763 (2019).Article 

    Google Scholar 
    Roman-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA 117, 4211–4217. https://doi.org/10.1073/pnas.1913007117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180186. https://doi.org/10.1098/rstb.2018.0186 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).Article 
    PubMed 

    Google Scholar 
    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Annu. Rev. Mar. Sci. 12, 153–179. https://doi.org/10.1146/annurev-marine-010419-010916 (2020).ADS 
    Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059. https://doi.org/10.1038/s41559-020-1198-2 (2020).Article 
    PubMed 

    Google Scholar 
    Smith, K. E. et al. Climate change and the threat of novel marine predators in Antarctica. Ecosphere 8, e02017. https://doi.org/10.1002/ecs2.2017 (2017).Article 

    Google Scholar 
    Aguilera, M. A., Valdivia, N., Broitman, B. R., Jenkins, S. R. & Navarrete, S. A. Novel co-occurrence of functionally redundant consumers induced by range expansion alters community structure. Ecology 101, e03150. https://doi.org/10.1002/ecy.3150 (2020).Article 
    PubMed 

    Google Scholar 
    Alexander, J. M., Diez, J. M., Hart, S. P. & Levine, J. M. When climate reshuffles competitors: A call for experimental macroecology. Trends Ecol. Evol. 31, 831–841. https://doi.org/10.1016/j.tree.2016.08.003 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66. https://doi.org/10.1038/nclimate2457 (2015).ADS 
    Article 

    Google Scholar 
    Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920. https://doi.org/10.1242/jeb.037473 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitan-Espitia, J. D. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174. https://doi.org/10.1098/rstb.2018.0174 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kroeker, K. J. & Sanford, E. Ecological leverage points: Species interactions amplify the physiological effects of global environmental change in the ocean. Annu. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-042021-051211 (2021).Article 

    Google Scholar 
    Norin, T. & Metcalfe, N. B. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180180. https://doi.org/10.1098/rstb.2018.0180 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sokolova, I. M. & Pörtner, H.-O. Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes. J. Exp. Biol. 206, 195–207. https://doi.org/10.1242/jeb.00054 (2003).Article 
    PubMed 

    Google Scholar 
    Oellermann, M., Pörtner, H. O. & Mark, F. C. Mitochondrial dynamics underlying thermal plasticity of cuttlefish (Sepia officinalis) hearts. J. Exp. Biol. 215, 2992–3000. https://doi.org/10.1242/jeb.068163 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Guderley, H. & Johnston, I. Plasticity of fish muscle mitochondria with thermal acclimation. J. Exp. Biol. 199, 1311–1317. https://doi.org/10.1242/jeb.199.6.1311 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Han, G., Zhang, S. & Dong, Y. Anaerobic metabolism and thermal tolerance: The importance of opine pathways on survival of a gastropod after cardiac dysfunction. Integr. Zool. 12, 361–370. https://doi.org/10.1111/1749-4877.12229 (2017).Article 
    PubMed 

    Google Scholar 
    Verberk, W. C., Sommer, U., Davidson, R. L. & Viant, M. R. Anaerobic metabolism at thermal extremes: A metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integr. Comp. Biol. 53, 609–619. https://doi.org/10.1093/icb/ict015 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dunn, J. F. & Johnston, I. A. Metabolic constraints on burst-swimming in the Antarctic teleost Notothenia neglecta. Mar. Biol. 91, 433–440. https://doi.org/10.1007/BF00392593 (1986).CAS 
    Article 

    Google Scholar 
    Pörtner, H. O. Physiological basis of temperature-dependent biogeography: Trade-offs in muscle design and performance in polar ectotherms. J. Exp. Biol. 205, 2217–2230. https://doi.org/10.1242/jeb.205.15.2217 (2002).Article 
    PubMed 

    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83, 70–84. https://doi.org/10.1111/1365-2656.12081 (2014).Article 
    PubMed 

    Google Scholar 
    Chown, S. L., Slabber, S., McGeouch, M., Janion, C. & Leinaas, H. P. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Philos. Trans. R. Soc. Lond. B Biol. Sci. 274, 2531–2537. https://doi.org/10.1098/rspb.2007.0772 (2007).Article 

    Google Scholar 
    Phillips, B. Lobsters: Biology, Management, Aquaculture and Fisheries (Wiley, 2008).
    Google Scholar 
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. USA 106, 22341–22345. https://doi.org/10.1073/pnas.0907529106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, L. M. et al. Decision support for the ecosystem-based management of a range-extending species in a global marine hotspot presents effective strategies and challenges. Ecosystems https://doi.org/10.1007/s10021-020-00560-1 (2020).Article 

    Google Scholar 
    Pearce, J. & Balcom, N. The 1999 Long Island Sound lobster mortality event: Findings of the comprehensive research initiative. J. Shellfish Res. 24, 691–698. https://doi.org/10.2983/0730-8000(2005)24[691:TLISLM]2.0.CO;2 (2005).Article 

    Google Scholar 
    Wahle, R. A., Dellinger, L., Olszewski, S. & Jekielek, P. American lobster nurseries of southern New England receding in the face of climate change. ICES J. Mar. Sci. 72, i69–i78. https://doi.org/10.1093/icesjms/fsv093 (2015).Article 

    Google Scholar 
    Fitzgibbon, Q. P., Ruff, N., Tracey, S. R. & Battaglene, S. C. Thermal tolerance of the nektonic puerulus stage of spiny lobsters and implications of ocean warming. Mar. Ecol. Prog. Ser. 515, 173–186. https://doi.org/10.3354/meps10979 (2014).ADS 
    Article 

    Google Scholar 
    Spanier, E. et al. A concise review of lobster utilization by worldwide human populations from prehistory to the modern era. ICES J. Mar. Sci. 72, i7–i21. https://doi.org/10.1093/icesjms/fsv066 (2015).Article 

    Google Scholar 
    Lalancette, A. Creeping in? Neoliberalism, indigenous realities and tropical rock lobster (kaiar) management in Torres Strait Australia. Mar. Policy 80, 47–59. https://doi.org/10.1016/j.marpol.2016.02.020 (2017).Article 

    Google Scholar 
    Pereira, G. & Josupeit, H. The world lobster market. Report No. 1014–9546, (FAO, Rome, Italy, 2017).Holthuis, L. FAO species catalogue v. 13: Marine lobsters of the world. An annotated and illustrated catalogue of species of interest to fisheries known to date. Rome FAO Fish. Synop. (FAO) 125(13), 292 (1991).
    Google Scholar 
    Boavida-Portugal, J. et al. Climate change impacts on the distribution of coastal lobsters. Mar. Biol. https://doi.org/10.1007/s00227-018-3441-9 (2018).Article 

    Google Scholar 
    Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425. https://doi.org/10.1007/s11160-013-9326-6 (2014).Article 

    Google Scholar 
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953. https://doi.org/10.1111/ele.12474 (2015).Article 
    PubMed 

    Google Scholar 
    Robinson, L. M. et al. Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Global. Environ. Chang. 31, 28–37. https://doi.org/10.1016/j.gloenvcha.2014.12.003 (2015).Article 

    Google Scholar 
    Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Glob. Ecol. Biogeogr. 20, 58–72. https://doi.org/10.1111/j.1466-8238.2010.00575.x (2011).Article 

    Google Scholar 
    Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: Inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731. https://doi.org/10.1111/j.1365-2486.2008.01734.x (2009).ADS 
    Article 

    Google Scholar 
    Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: A continental-scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. 27, 3200–3217. https://doi.org/10.1111/gcb.15634 (2021).Article 

    Google Scholar 
    Jeffs, A. G., Gardner, C. & Cockcroft, A. Jasus and Sagmariasus Species. In Lobsters: Biology, Management, Aquaculture and Fisheries, Second Edition, 259–288 (2013).Pecl, G. et al. The east coast Tasmanian rock lobster fishery: Vulnerability to climate change impacts and adaptation response options. 114 (Australian Government: Department of Climate Change, 2009).Thomas, C. W., Crear, B. J. & Hart, P. R. The effect of temperature on survival, growth, feeding and metabolic activity of the southern rock lobster Jasus edwardsii. Aquaculture 185, 73–84. https://doi.org/10.1016/S0044-8486(99)00341-5 (2000).Article 

    Google Scholar 
    Twiname, S. et al. Mismatch of thermal optima between performance measures, life stages and species of spiny lobster. Sci. Rep. 10, 21235. https://doi.org/10.1038/s41598-020-78052-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130. https://doi.org/10.1016/j.pocean.2018.02.007 (2018).ADS 
    Article 

    Google Scholar 
    Oellermann, M., Hickey, A. J. R., Fitzgibbon, Q. P. & Smith, G. Thermal sensitivity links to cellular cardiac decline in three spiny lobsters. Sci. Rep. 10, 202. https://doi.org/10.1038/s41598-019-56794-0 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hooker, S. H., Jeffs, A. G., Creese, R. G. & Sivaguru, K. Growth of captive Jasus edwardsii (Hutton) (Crustacea: Palinuridae) in north–eastern New Zealand. Mar. Freshw. Res. 48, 903–910. https://doi.org/10.1071/MF97156 (1998).Article 

    Google Scholar 
    Yeruham, E., Shpigel, M., Abelson, A. & Rilov, G. Ocean warming and tropical invaders erode the performance of a key herbivore. Ecology 101, e02925. https://doi.org/10.1002/ecy.2925 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Groner, M. L., Shields, J. D., Landers, D. F. Jr., Swenarton, J. & Hoenig, J. M. Rising temperatures, molting phenology, and epizootic shell disease in the American lobster. Am. Nat. 192, E163–E177. https://doi.org/10.1086/699478 (2018).Article 
    PubMed 

    Google Scholar 
    Behringer, D. C. & Hart, J. E. Competition with stone crabs drives juvenile spiny lobster abundance and distribution. Oecologia 184, 205–218. https://doi.org/10.1007/s00442-017-3844-1 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    Rossong, M. A., Williams, P. J., Comeau, M., Mitchell, S. C. & Apaloo, J. Agonistic interactions between the invasive green crab, Carcinus maenas (Linnaeus) and juvenile American lobster, Homarus americanus (Milne Edwards). J. Exp. Mar. Biol. Ecol. 329, 281–288. https://doi.org/10.1016/j.jembe.2005.09.007 (2006).Article 

    Google Scholar 
    Fitzgibbon, Q. P., Simon, C. J., Smith, G. G., Carter, C. G. & Battaglene, S. C. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 207, 13–20. https://doi.org/10.1016/j.cbpa.2017.02.003 (2017).CAS 
    Article 

    Google Scholar 
    Lo, S. & Andrews, S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front Psychol 6, 1171. https://doi.org/10.3389/fpsyg.2015.01171 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyle, K. L., Dillaman, R. M. & Kinsey, S. T. Mitochondrial distribution and glycogen dynamics suggest diffusion constraints in muscle fibers of the blue crab Callinectes sapidus. J. Exp. Zool. 297, 1–16. https://doi.org/10.1002/jez.a.10227 (2003).Article 

    Google Scholar 
    Lee, C. G., Farrell, A. P., Lotto, A., Hinch, S. G. & Healey, M. C. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming. J. Exp. Biol. 206, 3253–3260. https://doi.org/10.1242/jeb.00548 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Briceno, F. A., Fitzgibbon, Q. P., Polymeropoulos, E. T., Hinojosa, I. A. & Pecl, G. T. Temperature alters the physiological response of spiny lobsters under predation risk. Conserv. Physiol. 8, coaa065. https://doi.org/10.1093/conphys/coaa065 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Powell, M. L. & Watts, S. A. Effect of temperature acclimation on metabolism and hemocyanin binding affinities in two crayfish, Procambarus clarkii and Procambarus zonangulus. Comp Biochem. Physiol. Part A Mol. Integr. Physiol. 144, 211–217. https://doi.org/10.1016/j.cbpa.2006.02.032 (2006).CAS 
    Article 

    Google Scholar 
    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447. https://doi.org/10.1038/ncomms11447 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodgers, E. M. & Franklin, C. E. Aerobic scope and climate warming: Testing the “plastic floors and concrete ceilings” hypothesis in the estuarine crocodile (Crocodylus porosus). J. Exp. Zool. Part A 335, 108–117. https://doi.org/10.1002/jez.2412 (2021).CAS 
    Article 

    Google Scholar 
    Farrell, A. P. Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids. J. Exp. Biol. 212, 3771–3780. https://doi.org/10.1242/jeb.023671 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hedrick, M. S., Hancock, T. V. & Hillman, S. S. in Compr. Physiol. 1677–1703 (2015).Frederich, M. & Pörtner, H. O. Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1531–R1538. https://doi.org/10.1152/ajpregu.2000.279.5.R1531 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Verberk, W. C. E. P. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 192, 64–78. https://doi.org/10.1016/j.cbpa.2015.10.020 (2016).CAS 
    Article 

    Google Scholar 
    Boldsen, M. M., Norin, T. & Malte, H. Temporal repeatability of metabolic rate and the effect of organ mass and enzyme activity on metabolism in European eel (Anguilla anguilla). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 165, 22–29. https://doi.org/10.1016/j.cbpa.2013.01.027 (2013).CAS 
    Article 

    Google Scholar 
    Klymasz-Swartz, A. K. et al. Impact of climate change on the American lobster (Homarus americanus): Physiological responses to combined exposure of elevated temperature and pCO2. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 235, 202–210. https://doi.org/10.1016/j.cbpa.2019.06.005 (2019).CAS 
    Article 

    Google Scholar 
    Seebacher, F. & Wilson, R. S. Fighting fit: thermal plasticity of metabolic function and fighting success in the crayfish Cherax destructor. Funct. Ecol. 20, 1045–1053. https://doi.org/10.1111/j.1365-2435.2006.01194.x (2006).Article 

    Google Scholar 
    Jimenez, A. G., Dasika, S. K., Locke, B. R. & Kinsey, S. T. An evaluation of muscle maintenance costs during fiber hypertrophy in the lobster Homarus americanus: Are larger muscle fibers cheaper to maintain?. J. Exp. Biol. 214, 3688–3697. https://doi.org/10.1242/jeb.060301 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jimenez, A. G., Locke, B. R. & Kinsey, S. T. The influence of oxygen and high-energy phosphate diffusion on metabolic scaling in three species of tail-flipping crustaceans. J. Exp. Biol. 211, 3214–3225. https://doi.org/10.1242/jeb.020677 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Johnson, L. K., Dillaman, R. M., Gay, D. M., Blum, J. E. & Kinsey, S. T. Metabolic influences of fiber size in aerobic and anaerobic locomotor muscles of the blue crab, Callinectes sapidus. J. Exp. Biol. 207, 4045–4056. https://doi.org/10.1242/jeb.01224 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Speed, S. R., Baldwin, J., Wong, R. J. & Wells, R. M. G. Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport. Comp. Biochem. Phys. B 128, 435–444. https://doi.org/10.1016/S1096-4959(00)00340-7 (2001).CAS 
    Article 

    Google Scholar 
    England, W. & Baldwin, J. Anaerobic energy metabolism in the tail musculature of the Australian yabby Cherax destructor (Crustacea, Decapoda, Parastacidae): Role of phosphagens and anaerobic glycolysis during escape behavior. Physiol. Zool. 56, 614–622. https://doi.org/10.1086/physzool.56.4.30155884 (1983).CAS 
    Article 

    Google Scholar 
    Head, G. & Baldwin, J. Energy metabolism and the fate of lactate during recovery from exercise in the Australian freshwater crayfish Cherax destructor. Mar. Freshw. Res. 37, 641–646. https://doi.org/10.1071/MF9860641 (1986).CAS 
    Article 

    Google Scholar 
    Goncalves, R., Lund, I. & Gesto, M. Interactions of temperature and dietary composition on juvenile European lobster (Homarus gammarus, L.) energy metabolism and performance. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 260, 111019. https://doi.org/10.1016/j.cbpa.2021.111019 (2021).CAS 
    Article 

    Google Scholar 
    Baldwin, J., Gupta, A. & Iglesias, X. Scaling of anaerobic energy metabolism during tail flipping behaviour in the freshwater crayfish Cherax destructor. Mar. Freshw. Res. 50, 183–187. https://doi.org/10.1071/MF98110 (1999).Article 

    Google Scholar 
    Lund, H. S. et al. Recovery by the Norway lobster Nephrops norvegicus (L) from the physiological stresses of trawling: Influence of season and live-storage position. J. Exp. Mar. Biol. Ecol. 373, 124–132. https://doi.org/10.1016/j.jembe.2009.04.004 (2009).Article 

    Google Scholar 
    Shields, J. D. Climate change enhances disease processes in crustaceans: case studies in lobsters, crabs, and shrimps. J. Crustac. Biol. 39, 673–683. https://doi.org/10.1093/jcbiol/ruz072 (2019).Article 

    Google Scholar 
    Mai, T. T. & Hovel, K. A. Influence of local-scale and landscape-scale habitat characteristics on California spiny lobster (Panulirus interruptus) abundance and survival. Mar. Freshw. Res. 58, 419–428. https://doi.org/10.1071/MF06141 (2007).Article 

    Google Scholar 
    Ling, S. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130269. https://doi.org/10.1098/rstb.2013.0269 (2015).Article 
    PubMed Central 

    Google Scholar 
    Sabino, M. A. et al. Habitat degradation increases interspecific trophic competition between three spiny lobster species in Seychelles. Estuar. Coast. Shelf Sci. 256, 107368. https://doi.org/10.1016/j.ecss.2021.107368 (2021).CAS 
    Article 

    Google Scholar 
    Twiname, S. et al. Resident lobsters dominate food competition with range-shifting lobsters in an ocean warming hotspot. Mar. Ecol. Prog. Ser https://doi.org/10.3354/meps13984 (2021).Article 

    Google Scholar 
    Briones-Fourzan, P., Lozano-Alvarez, E., Negrete-Soto, F. & Barradas-Ortiz, C. Enhancement of juvenile Caribbean spiny lobsters: An evaluation of changes in multiple response variables with the addition of large artificial shelters. Oecologia 151, 401–416. https://doi.org/10.1007/s00442-006-0595-9 (2007).ADS 
    Article 
    PubMed 

    Google Scholar 
    Norin, T. & Clark, T. D. Measurement and relevance of maximum metabolic rate in fishes. J. Fish Biol. 88, 122–151. https://doi.org/10.1111/jfb.12796 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marzloff, M. P. et al. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management. Glob. Change Biol. 22, 2462–2474. https://doi.org/10.1111/gcb.13285 (2016).ADS 
    Article 

    Google Scholar 
    Taylor, N. G. & Dunn, A. M. Predatory impacts of alien decapod Crustacea are predicted by functional responses and explained by differences in metabolic rate. Biol. Invasions 20, 2821–2837. https://doi.org/10.1007/s10530-018-1735-y (2018).Article 

    Google Scholar 
    Seth, H. et al. Metabolic scope and interspecific competition in sculpins of Greenland are influenced by increased temperatures due to climate change. PLoS One 8, e62859. https://doi.org/10.1371/journal.pone.0062859 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoffels, R. J., Richardson, A. J., Vogel, M. T., Coates, S. P. & Muller, W. J. What do metabolic rates tell us about thermal niches? Mechanisms driving crayfish distributions along an altitudinal gradient. Oecologia 180, 45–54. https://doi.org/10.1007/s00442-015-3463-7 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    Briceño, F. A., Polymeropoulos, E. T., Fitzgibbon, Q. P., Dambacher, J. M. & Pecl, G. T. Changes in metabolic rate of spiny lobster under predation risk. Mar. Ecol. Prog. Ser. 598, 71–84. https://doi.org/10.3354/meps12644 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Twiname, S. et al. A cross-scale framework to support a mechanistic understanding and modelling of marine climate-driven species redistribution, from individuals to communities. Ecography 43, 1764–1778. https://doi.org/10.1111/ecog.04996 (2020).Article 

    Google Scholar 
    Mazur, M. D., Friedland, K. D., McManus, M. C. & Goode, A. G. Dynamic changes in American lobster suitable habitat distribution on the Northeast U.S. Shelf linked to oceanographic conditions. Fish. Oceanogr. 29, 349–365. https://doi.org/10.1111/fog.12476 (2020).Article 

    Google Scholar 
    Stobart, B., Mayfield, S., Mundy, C., Hobday, A. J. & Hartog, J. R. Comparison of in situ and satellite sea surface-temperature data from South Australia and Tasmania: How reliable are satellite data as a proxy for coastal temperatures in temperate southern Australia?. Mar. Freshw. Res. https://doi.org/10.1071/mf14340 (2016).Article 

    Google Scholar 
    Montgomery, S. S., Liggins, G. W., Craig, J. R. & McLeod, J. R. Growth of the spiny lobster Jasus verreauxi (Decapoda: Palinuridae) off the east coast of Australia. N. Z. J. Mar. Freshw. Res. 43, 113–123. https://doi.org/10.1080/00288330909509986 (2009).Article 

    Google Scholar 
    Oellermann, M. et al. Harnessing the benefits of open electronics in science. arXiv preprint, https://arxiv.org/abs/2106.15852 (2021).Havird, J. C. et al. Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to Q10 effects: Why methodology matters. Funct. Ecol. 34, 1015–1028. https://doi.org/10.1111/1365-2435.13534 (2020).Article 

    Google Scholar 
    Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: Respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782. https://doi.org/10.1242/jeb.084251 (2013).Article 
    PubMed 

    Google Scholar 
    Jensen, M. A., Fitzgibbon, Q. P., Carter, C. G. & Adams, L. R. Effect of body mass and activity on the metabolic rate and ammonia-N excretion of the spiny lobster Sagmariasus verreauxi during ontogeny. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 166, 191–198. https://doi.org/10.1016/j.cbpa.2013.06.003 (2013).CAS 
    Article 

    Google Scholar 
    Svendsen, M. B. S., Bushnell, P. G. & Steffensen, J. F. Design and setup of intermittent-flow respirometry system for aquatic organisms. J. Fish Biol. 88, 26–50. https://doi.org/10.1111/jfb.12797 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    R: A language and environment for statistical computing. (Vienna, Austria, 2021).Rstudio: Integrated development environment for R. (Boston, MA, USA, 2021).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    emmeans: Estimated Marginal Means, aka Least-Squares Means. v. 1.6.2–1 (2021).Magnusson, A. et al. Package ‘glmmTMB’. R Package Version 0.2. 0 (2017). More

  • in

    The ecological roles of bacterial chemotaxis

    Wadhwa, N. & Berg, H. C. Bacterial motility: machinery and mechanisms. Nat. Rev. Microbiol. 20, 161–173 (2022). This recent review provides an excellent overview of the diversity in bacterial propulsion mechanisms.CAS 
    PubMed 

    Google Scholar 
    Burrows, L. L. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol. 66, 493–520 (2012).CAS 
    PubMed 

    Google Scholar 
    Dufrêne, Y. F. & Persat, A. Mechanomicrobiology: how bacteria sense and respond to forces. Nat. Rev. Microbiol. 18, 227–240 (2020).PubMed 

    Google Scholar 
    Jarrell, K. F. & McBride, M. J. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466–476 (2008).CAS 
    PubMed 

    Google Scholar 
    Berg, H. C. E. coli in Motion (Springer, 2004).Bi, S. & Sourjik, V. Stimulus sensing and signal processing in bacterial chemotaxis. Curr. Opin. Microbiol. 45, 22–29 (2018).CAS 
    PubMed 

    Google Scholar 
    Parkinson, J. S., Hazelbauer, G. L. & Falke, J. J. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol. 23, 257–266 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porter, S. L., Wadhams, G. H. & Armitage, J. P. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9, 153–165 (2011).CAS 
    PubMed 

    Google Scholar 
    Colin, R. & Sourjik, V. Emergent properties of bacterial chemotaxis pathway. Curr. Opin. Microbiol. 39, 24–33 (2017).CAS 
    PubMed 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527 (2020).
    Google Scholar 
    Hein, A. M., Carrara, F., Brumley, D. R., Stocker, R. & Levin, S. A. Natural search algorithms as a bridge between organisms, evolution, and ecology. Proc. Natl Acad. Sci. USA 113, 9413–9420 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong-Ng, J., Celani, A. & Vergassola, M. Exploring the function of bacterial chemotaxis. Curr. Opin. Microbiol. 45, 16–21 (2018).CAS 
    PubMed 

    Google Scholar 
    Colin, R., Ni, B., Laganenka, L. & Sourjik, V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol. Rev. 45, fuab038 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schweinitzer, T. & Josenhans, C. Bacterial energy taxis: a global strategy? Arch. Microbiol. 192, 507–520 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Somavanshi, R., Ghosh, B. & Sourjik, V. Sugar influx sensing by the phosphotransferase system of Escherichia coli. PLoS Biol. 14, e2000074 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Cremer, J. et al. Chemotaxis as a navigation strategy to boost range expansion. Nature 575, 658–663 (2019). This work uses a quantitative approach to describe the classic assay of bacterial growth and migration in soft agar, and elucidates the distinct roles of attractant and nutrient in colony expansion.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019). This study presents a comprehensive overview of the role of bacterial motility and chemotaxis in establishing and maintaining symbiotic relationships.CAS 
    PubMed 

    Google Scholar 
    Matilla, M. A. & Krell, T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol. Rev. 42, fux052 (2018). This work presents an extensive review of the role of bacterial motility and chemotaxis in host pathogenicity from plants to animals.
    Google Scholar 
    Perkins, A., Tudorica, D. A., Amieva, M. R., Remington, S. J. & Guillemin, K. Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. PLoS Biol. 17, e3000395 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tohidifar, P. et al. The unconventional cytoplasmic sensing mechanism for ethanol chemotaxis in Bacillus subtilis. mBio 11, e02177-20 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).CAS 
    PubMed 

    Google Scholar 
    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).CAS 
    PubMed 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).CAS 
    PubMed 

    Google Scholar 
    Savageau, M. A. Escherichia coli habitats, cell types and molecular mechanisms of gene control. Am. Nat. 122, 732–744 (1983).CAS 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).CAS 
    PubMed 

    Google Scholar 
    Scharf, B. E., Hynes, M. F. & Alexandre, G. M. Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant. Mol. Biol. 90, 549–559 (2016).CAS 
    PubMed 

    Google Scholar 
    Stocker, R. & Seymour, J. R. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol. Mol. Biol. Rev. 76, 792–812 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbara, G. M. & Mitchell, J. G. Bacterial tracking of motile algae. FEMS Microbiol. Ecol. 44, 79–87 (2003).CAS 
    PubMed 

    Google Scholar 
    Garren, M. et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 8, 999–1007 (2014).CAS 
    PubMed 

    Google Scholar 
    Szurmant, H. & Ordal, G. W. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68, 301–319 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wuichet, K. & Zhulin, I. B. Origins and diversification of a complex signal transduction system in prokaryotes. Sci. Signal. 3, ra50 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Zehr, J. P., Weitz, J. S. & Joint, I. How microbes survive in the open ocean. Science 357, 646–647 (2017).CAS 
    PubMed 

    Google Scholar 
    McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).CAS 

    Google Scholar 
    Yawata, Y., Carrara, F., Menolascina, F. & Stocker, R. Constrained optimal foraging by marine bacterioplankton on particulate organic matter. Proc. Natl Acad. Sci. USA 117, 25571–25579 (2020). This study reveals that a marine bacterium foraging on particulate nutrient hotspots optimizes nutrient uptake using rapid switches between chemotactic and non-motile lifestyles.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paul, K., Nieto, V., Carlquist, W. C., Blair, D. F. & Harshey, R. M. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol. Cell 38, 128–139 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fenchel, T. Microbial behavior in a heterogeneous world. Science 296, 1068–1071 (2002).CAS 
    PubMed 

    Google Scholar 
    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628–633 (2012).CAS 

    Google Scholar 
    McDonald, D. E., Pethick, D. W., Mullan, B. P. & Hampson, D. J. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. Br. J. Nutr. 86, 487–498 (2001).CAS 
    PubMed 

    Google Scholar 
    Berg, H. C. & Turner Movement of microorganisms in viscous environments. Nature 278, 349–351 (1979).CAS 
    PubMed 

    Google Scholar 
    Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat. Commun. 9, 769 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE 9, e87217 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Env. Microbiol. 69, 9 (2003).
    Google Scholar 
    Fernandez, V. I., Yawata, Y. & Stocker, R. A foraging mandala for aquatic microorganisms. ISME J. 13, 563–575 (2019).PubMed 

    Google Scholar 
    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 10 (1977).
    Google Scholar 
    Dusenbery, D. B. Living at Micro Scale: The Unexpected Physics of Being Small (Harvard Univ. Press, 2011).Phillips, R. & Milo, R. Cell Biology by the Numbers (Garland Science, 2015).Darnton, N. C., Turner, L., Rojevsky, S. & Berg, H. C. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189, 1756–1764 (2007).CAS 
    PubMed 

    Google Scholar 
    Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–446 (2000).CAS 
    PubMed 

    Google Scholar 
    Chattopadhyay, S., Moldovan, R., Yeung, C. & Wu, X. L. Swimming efficiency of bacterium Escherichia coli. Proc. Natl Acad. Sci. USA 103, 13712–13717 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sowa, Y., Hotta, H., Homma, M. & Ishijima, A. Torque–speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J. Mol. Biol. 327, 1043–1051 (2003).CAS 
    PubMed 

    Google Scholar 
    Taylor, J. R. & Stocker, R. Trade-offs of chemotactic foraging in turbulent water. Science 338, 675–679 (2012).CAS 
    PubMed 

    Google Scholar 
    Govern, C. C. & ten Wolde, P. R. Optimal resource allocation in cellular sensing systems. Proc. Natl Acad. Sci. USA 111, 17486–17491 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sourjik, V. & Berg, H. C. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 99, 12669–12674 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy–speed–accuracy trade-off in sensory adaptation. Nat. Phys. 8, 422–428 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stouthamer, A. H. & Bettenhaussen, C. W. A continuous culture study of an ATPase-negative mutant of Escherichia coli. Arch. Microbiol. 113, 185–189 (1977).CAS 
    PubMed 

    Google Scholar 
    Macnab, R. M. in Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology Vol. 1 (eds Nerdhardt, F. et al.) 732–759 (American Society for Microbiology, 1987).Kempes, C. P. et al. Drivers of bacterial maintenance and minimal energy requirements. Front. Microbiol. 8, 31 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690–15695 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoehler, T. M. & Jørgensen, B. B. Microbial life under extreme energy limitation. Nat. Rev. Microbiol. 11, 83–94 (2013).CAS 
    PubMed 

    Google Scholar 
    Boehm, A. et al. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141, 107–116 (2010).CAS 
    PubMed 

    Google Scholar 
    Fang, X. & Gomelsky, M. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility: c-di-GMP-dependent flagellum rotation bias. Mol. Microbiol. 76, 1295–1305 (2010).CAS 
    PubMed 

    Google Scholar 
    Sathyamoorthy, R. et al. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. ISME J. 15, 109–123 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Adler, J. & Templeton, B. The effect of environmental conditions on the motility of Escherichia coli. J. Gen. Microbiol. 46, 175–184 (1967).CAS 
    PubMed 

    Google Scholar 
    Berg, H. C. & Tedesco, P. M. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl Acad. Sci. USA 72, 3235–3239 (1975).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mitchell, J. G. The influence of cell size on marine bacterial motility and energetics. Microb. Ecol. 22, 227–238 (1991).CAS 
    PubMed 

    Google Scholar 
    Castro-Sowinski, S., Burdman, S., Matan, O. & Okon, Y. in Plastics from Bacteria Vol. 14 (ed. Chen, G. G.-Q.) 39–61 (Springer, 2010).Walter, J. M., Greenfield, D., Bustamante, C. & Liphardt, J. Light-powering Escherichia coli with proteorhodopsin. Proc. Natl Acad. Sci. USA 104, 2408–2412 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gude, S. et al. Bacterial coexistence driven by motility and spatial competition. Nature 578, 588–592 (2020). This work presents evidence for a trade-off between motility and growth, which supports bacterial diversity through spatial segregation.CAS 
    PubMed 

    Google Scholar 
    Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020). This work systematically compares the cost and benefit of chemotaxis in spatially extended and well-mixed environments.CAS 
    PubMed 

    Google Scholar 
    Li, M. & Hazelbauer, G. L. Cellular stoichiometry of the components of the chemotaxis signaling complex. J. Bacteriol. 186, 3687–3694 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neumann, S., Hansen, C. H., Wingreen, N. S. & Sourjik, V. Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis. EMBO J. 29, 3484–3495 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Akashi, H. & Gojobori, T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl Acad. Sci. USA 99, 3695–3700 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ni, B. et al. Evolutionary remodeling of bacterial motility checkpoint control. Cell Rep. 18, 866–877 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fraebel, D. T. et al. Environment determines evolutionary trajectory in a constrained phenotypic space. eLife 6, e24669 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Honda, T. et al. Coordination of gene expression with cell size enables Escherichia coli to efficiently maintain motility across conditions. Preprint at bioRxiv https://doi.org/10.1101/2021.05.12.443892 (2021).Article 

    Google Scholar 
    Zampieri, M., Hörl, M., Hotz, F., Müller, N. F. & Sauer, U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat. Commun. 10, 3354 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, Z. et al. Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging. Nat. Commun. 9, 1885 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zhuang, X. et al. Live‐cell fluorescence imaging reveals dynamic production and loss of bacterial flagella. Mol. Microbiol. 114, 279–291 (2020).CAS 
    PubMed 

    Google Scholar 
    Chevance, F. F. V. & Hughes, K. T. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008). This work presents a classic overview of the gene regulatory pathway that controls flagella assembly in Gram-negative bacteria.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amsler, C. D., Cho, M. & Matsumura, P. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J. Bacteriol. 175, 6238–6244 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lopes, J. G. & Sourjik, V. Chemotaxis of Escherichia coli to major hormones and polyamines present in human gut. ISME J. 12, 2736–2747 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, J. et al. Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proc. Natl Acad. Sci. USA 117, 6114–6120 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matz, C. & Jürgens, K. High motility reduces grazing mortality of planktonic bacteria. Appl. Environ. Microbiol. 71, 921–929 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cummings, L. A., Wilkerson, W. D., Bergsbaken, T. & Cookson, B. T. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol. Microbiol. 61, 795–809 (2006).CAS 
    PubMed 

    Google Scholar 
    Yuan, J. & Berg, H. C. Ultrasensitivity of an adaptive bacterial motor. J. Mol. Biol. 425, 1760–1764 (2013).CAS 
    PubMed 

    Google Scholar 
    Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frankel, N. W. et al. Adaptability of non-genetic diversity in bacterial chemotaxis. eLife 3, e03526 (2014).PubMed Central 

    Google Scholar 
    Goldbeter, A. & Koshland, D. E. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA 78, 6840–6844 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waite, A. J. et al. Non‐genetic diversity modulates population performance. Mol. Syst. Biol. 12, 895 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fu, X. et al. Spatial self-organization resolves conflicts between individuality and collective migration. Nat. Commun. 9, 2177 (2018). This sophisticated microfluidic study reveals that a chemotactic population may travel as a cohesive unit despite strong phenotypic heterogeneity within the population.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Long, Z., Quaife, B., Salman, H. & Oltvai, Z. N. Cell–cell communication enhances bacterial chemotaxis toward external attractants. Sci. Rep. 7, 12855 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Laganenka, L., Colin, R. & Sourjik, V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat. Commun. 7, 12984 (2016). This study demonstrates that bacteria may chase self-generated gradients by producing quorum-sensing molecules.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Park, S. et al. Influence of topology on bacterial social interaction. Proc. Natl Acad. Sci. USA 100, 13910–13915 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phan, T. V. et al. Bacterial route finding and collective escape in mazes and fractals. Phys. Rev. X 10, 031017 (2020).CAS 

    Google Scholar 
    Waite, A. J., Frankel, N. W. & Emonet, T. Behavioral variability and phenotypic diversity in bacterial chemotaxis. Annu. Rev. Biophys. 47, 595–616 (2018). This work presents a review of the mechanisms underlying behavioural variation in bacterial chemotaxis and the consequences for chemotactic performance.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).CAS 
    PubMed 

    Google Scholar 
    Bódi, Z. et al. Phenotypic heterogeneity promotes adaptive evolution. PLoS Biol. 15, e2000644 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).CAS 
    PubMed 

    Google Scholar 
    Weber, L., Gonzalez‐Díaz, P., Armenteros, M. & Apprill, A. The coral ecosphere: a unique coral reef habitat that fosters coral–microbial interactions. Limnol. Oceanogr. 64, 2373–2388 (2019).CAS 

    Google Scholar 
    Salek, M. M., Carrara, F., Fernandez, V., Guasto, J. S. & Stocker, R. Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity. Nat. Commun. 10, 1877 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Ford, R. M. & Lauffenburger, D. A. Measurement of bacterial random motility and chemotaxis coefficients: II. Application of single-cell-based mathematical model. Biotechnol. Bioeng. 37, 661–672 (1991).CAS 
    PubMed 

    Google Scholar 
    Lambert, B. S., Fernandez, V. I. & Stocker, R. Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol. Oceanogr. Lett. 4, 113–118 (2019).
    Google Scholar 
    Słomka, J., Alcolombri, U., Secchi, E., Stocker, R. & Fernandez, V. I. Encounter rates between bacteria and small sinking particles. N. J. Phys. 22, 043016 (2020).
    Google Scholar 
    Hein, A. M. & Martin, B. T. Information limitation and the dynamics of coupled ecological systems. Nat. Ecol. Evol. 4, 82–90 (2020).PubMed 

    Google Scholar 
    Kiorboe, T., Grossart, H.-P., Ploug, H. & Tang, K. Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68, 3996–4006 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999).CAS 
    PubMed 

    Google Scholar 
    Korobkova, E., Emonet, T., Vilar, J. M. G., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578 (2004).CAS 
    PubMed 

    Google Scholar 
    Tu, Y. & Grinstein, G. How white noise generates power-law switching in bacterial flagellar motors. Phys. Rev. Lett. 4, 208101 (2005).
    Google Scholar 
    Huo, H., He, R., Zhang, R. & Yuan, J. Swimming Escherichia coli explore the environment by Lévy walk. Appl. Environ. Microbiol. 87, e02429–20 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keegstra, J. M. et al. Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET. eLife 6, e27455 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Colin, R. & Sourjik, V. Multiple sources of slow activity fluctuations in a bacterial chemosensory network. eLife 6, e26796 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Karin, O. & Alon, U. Temporal fluctuations in chemotaxis gain implements a simulated tempering strategy for efficient navigation in complex environments. SSRN Electron. J. 24, 102796 (2021).CAS 

    Google Scholar 
    Carey, J. N. et al. Regulated stochasticity in a bacterial signaling network permits tolerance to a rapid environmental change. Cell 173, 196–207.e14 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamino, K., Keegstra, J. M., Long, J., Emonet, T. & Shimizu, T. S. Adaptive tuning of cell sensory diversity without changes in gene expression. Sci. Adv. 6, eabc1087 (2020). This study shows that a bacterial population increases chemotactic bed-hedging when environmental signals are unavailable, but suppresses the sensory diversity when a traceable signal is presented.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).CAS 
    PubMed 

    Google Scholar 
    Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Budrene, E. O. & Berg, H. C. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995).CAS 
    PubMed 

    Google Scholar 
    Ben-Jacob, E., Cohen, I. & Levine, H. Cooperative self-organization of microorganisms. Adv. Phys. 49, 395–554 (2000).CAS 

    Google Scholar 
    Adler, J. Chemotaxis in bacteria. Science 153, 708–716 (1966).CAS 
    PubMed 

    Google Scholar 
    Keller, E. F. & Segel, L. A. Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971).CAS 
    PubMed 

    Google Scholar 
    Saragosti, J. et al. Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc. Natl Acad. Sci. USA 108, 16235–16240 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattingly & Emonet, T. The balancing act of growth and expansion. Nature 575, 602–603 (2019).CAS 
    PubMed 

    Google Scholar 
    Liu, W., Cremer, J., Li, D., Hwa, T. & Liu, C. An evolutionarily stable strategy to colonize spatially extended habitats. Nature 575, 664–668 (2019). This study reveals that chemotactic strains selected for different speeds of range expansion in semi-solid agar can stably coexist.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 11, 784 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Maser, A., Peebo, K., Vilu, R. & Nahku, R. Amino acids are key substrates to Escherichia coli BW25113 for achieving high specific growth rate. Res. Microbiol. 171, 185–193 (2020).CAS 
    PubMed 

    Google Scholar 
    Yang, Y. et al. Relation between chemotaxis and consumption of amino acids in bacteria. Mol. Microbiol. 96, 1272–1282 (2015). This study is a pioneering work on the relation between chemotaxis and metabolism, where the relationship between amino acid uptake preference and chemotactic affinity in E. coli and B. subtilis is studied.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cadotte, M. W. et al. On testing the competition–colonization trade-off in a multispecies assemblage. Am. Nat. 168, 704–709 (2006).PubMed 

    Google Scholar 
    Amarasekare, P. Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6, 1109–1122 (2003).
    Google Scholar 
    Levins, R. & Culver, D. Regional coexistence of species and competition between rare species. Proc. Natl Acad. Sci. USA 68, 1246–1248 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yawata, Y. et al. Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc. Natl Acad. Sci. USA 111, 5622–5627 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Narla, A. V., Cremer, J. & Hwa, T. A traveling-wave solution for bacterial chemotaxis with growth. Proc. Natl Acad. Sci. USA 118, e2105138118 (2021). This work develops a comprehensive mathematical framework describing migrating bands of bacteria driven by growth and chemotaxis that is applicable to many environments.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bassler, B. L., Gibbons, P. J., Yu, C. & Roseman, S. Chemotaxis to chitin oligosaccharides by Vibrio furnissi. J. Biol. Chem. 266, 24268–24275 (1991).CAS 
    PubMed 

    Google Scholar 
    Konishi, H., Hio, M., Kobayashi, M., Takase, R. & Hashimoto, W. Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci. Rep. 10, 3977 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775–780 (2021).CAS 

    Google Scholar 
    D’Souza, G. G., Povolo, V. R., Keegstra, J. M., Stocker, R. & Ackermann, M. Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations. ISME J. 1, 1 (2021).
    Google Scholar 
    Nesper, J. et al. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. eLife 6, e28842 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, J. et al. A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations. Nat. Commun. 12, 3662 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cordero, O. X. & Datta, M. S. Microbial interactions and community assembly at microscales. Curr. Opin. Microbiol. 31, 227–234 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rusconi, R., Garren, M. & Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).CAS 
    PubMed 

    Google Scholar 
    Clerc, E. E., Raina, J.-B., Lambert, B. S., Seymour, J. & Stocker, R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. J. Vis. Exp. 159, e61062 (2020).
    Google Scholar 
    Pleška, M., Jordan, D., Frentz, Z., Xue, B. & Leibler, S. Nongenetic individuality, changeability, and inheritance in bacterial behavior. Proc. Natl Acad. Sci. USA 118, e2023322118 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Figueroa-Morales, N. et al. 3D spatial exploration by E. coli echoes motor temporal variability. Phys. Rev. X 10, 021004 (2020).CAS 

    Google Scholar 
    Hazelbauer, G. L. Bacterial chemotaxis: the early years of molecular studies. Annu. Rev. Microbiol. 66, 285–303 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adler, J., Hazelbauer, G. L. & Dahl, M. M. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 115, 824–847 (1973).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mesibov, R. & Adler, J. Chemotaxis toward amino acids in Escherichia coli. J. Bacteriol. 112, 12 (1972).
    Google Scholar 
    Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588–592 (2005).CAS 
    PubMed 

    Google Scholar 
    Erickson, D. W. et al. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature 551, 119–123 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Berg, H. C. & Purcell, E. M. Physics of chemoreception. Biophys. J. 20, 193–219 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mora, T. & Wingreen, N. S. Limits of sensing temporal concentration changes by single cells. Phys. Rev. Lett. 104, 248101 (2010).PubMed 

    Google Scholar 
    Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattingly, H. H., Kamino, K., Machta, B. B. & Emonet, T. Escherichia coli chemotaxis is information limited. Nat. Phys. 17, 1426–1431 (2021).CAS 
    PubMed 

    Google Scholar 
    Clausznitzer, D., Micali, G., Neumann, S., Sourjik, V. & Endres, R. G. Predicting chemical environments of bacteria from receptor signaling. PLoS Comput. Biol. 10, e1003870 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Flores, M., Shimizu, T. S., ten Wolde, P. R. & Tostevin, F. Signaling noise enhances chemotactic drift of E. coli. Phys. Rev. Lett. 109, 148101 (2012).PubMed 

    Google Scholar 
    Okubo, A. & Levin, S. A. Diffusion and Ecological Problems: Modern Perspectives Vol. 14 (Springer, 2001).Fisher, R. A. The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937).
    Google Scholar 
    Kolmogorov, A., Petrovskii, I. & Piskunov, N. Study of a diffusion equation that is related to the growth of a quality of matter and its application to a biological problem. Mosc. Univ. Math. Bull. 1, 1–26 (1937).
    Google Scholar 
    Giometto, A., Rinaldo, A., Carrara, F. & Altermatt, F. Emerging predictable features of replicated biological invasion fronts. Proc. Natl Acad. Sci. USA 111, 297–301 (2014).CAS 
    PubMed 

    Google Scholar 
    Gandhi, S. R., Yurtsev, E. A., Korolev, K. S. & Gore, J. Range expansions transition from pulled to pushed waves as growth becomes more cooperative in an experimental microbial population. Proc. Natl Acad. Sci. USA 113, 6922–6927 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Painter, K. J. Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162–182 (2019).PubMed 

    Google Scholar  More

  • in

    Freeze–thaw cycle frequency affects root growth of alpine meadow through changing soil moisture and nutrients

    Morphological distribution of alpine meadow rootsAs shown in Fig. 2, in XM, the alpine meadow roots are mainly distributed at the level of 0–20 cm. The distribution of alpine meadow roots is wider than that of CM, which is mainly distributed from 0 to 40 cm. The alpine meadow roots in XM have a larger surface area, a larger projected area, and a larger volume than that in CM. In XM, the distribution law of alpine meadow roots is horizontal divergence, while the distribution of alpine meadow roots in CM shows vertical extension, but the alpine meadow roots all decrease gradually from the top to the bottom in the XM and CM. At the same soil depth, the total length, total surface area, total projected area, and total volume of alpine meadow roots in XM are larger than those in CM.Figure 2Distribution of alpine meadow roots at CM and XM. The figure is generated with use of Excel 2019 (https://www.microsoft.com/zh-cn/microsoft-365/excel).Full size imageAccording to the diameter of the roots, the alpine meadow roots in the Nagqu River Basin can be divided into three types: 0–0.5, 0.5–1, and 1–1.5 mm (Figs. 3 and 4). In CM and XM the length of the alpine meadow roots decreases with the increase in the soil depth. Additionally, at a soil depth of 0–60 cm, roots with a length of 0–0.5 mm account for the largest proportion, while roots with a length of 1–1.5 mm account for the smallest proportion. With the increase in soil depth, the proportion of the roots with lengths of 0.5–1 and 1–1.5 mm roots gradually decreases or even disappears, while the proportion with a length of 0–0.5 mm gradually increases.Figure 3Distribution of root length, surface area, projected area and volume. The figure is generated with use of Excel 2019 (https://www.microsoft.com/zh-cn/microsoft-365/excel).Full size imageFigure 4Distribution and ratio of root length, surface area, projected area and volume. The figure is generated with use of Excel 2019 (https://www.microsoft.com/zh-cn/microsoft-365/excel).Full size imageAs shown in Figs. 3 and 4, the surface area and the projected area of the alpine meadow roots in the Nagqu River Basin experience similar changes with depth. In CM, with the increase in soil depth, the proportion of roots with a surface area of 0–0.5 mm gradually increases and the proportion of roots with a surface area of 0.5–1 and 1–1.5 mm gradually decreases. In the 10–15 cm soil, roots with a surface area of 0.5–1 mm account for the largest proportion in CM; meanwhile, in XM the roots with a surface area of 0–0.5 mm account for the largest proportion in the 10–20 cm soil.In CM, the roots with a volume of 0.5–1 mm roots account for the largest proportion in the 10–20 cm soil. However, the roots with a volume of 0.5–1 mm account for the largest proportion in the 10–15 cm soil, while the roots with a volume of 0–0.5 mm account for the largest proportion in the 15–20 cm soil.In short, with the increase in soil depth, the length, surface area, projected area, and volume of the alpine meadow roots gradually decrease in the Nagqu River Basin, the proportion of 0–0.5 mm roots increases while the proportion of 0.5–1 mm roots decreases. The distribution of alpine meadow roots in CM shows a vertical extension, while in XM it shows horizontal divergence. In addition, compared with CM, the total length, total surface area, and total volume of 0–0.5 mm roots in XM increase by 20.95 cm, 1.90 cm2, and 0.014 cm3, and the corresponding specific gravity increases by 9.09%, 13.50%, and 12.14%. The total length, total surface area, and total volume of 0.5–1 and 1–1.5 mm roots in XM show smaller changes, and the corresponding specific gravity decreases.Distribution of soil moisture and nutrientsAs shown in Fig. 5, at the same soil depth, compared with LFM, the moisture in the 0–20, 20–40, and 40–60 cm soil in HFM was reduced by 30.74%, 52.89%, and 47.52%, and even the maximum soil moisture in the HFM was lower than that in the minimum soil moisture in LFM.Figure 5Soil moisture distribution in LFM and HFM. The figure is generated with use of Excel 2019 (https://www.microsoft.com/zh-cn/microsoft-365/excel).Full size imageIn LFM, as the soil depth increases, the soil moisture gradually increases. The 10–20 cm soil had the lowest moisture content in LFM of around 9.11%, the 20–40 cm soil moisture increased by 27.4%, and the 40–60 cm soil moisture increased by 45.9%. In HFM, the moisture content was 6.31% in the 0–20 cm soil. The moisture was the highest in the 40–60 cm soil. Compared with the 0–20 cm, the moisture was increased by 10.6%. The moisture was the lowest in the 20–40 cm soil, being reduced by 13.3% compared to the 0–20 cm soil. Therefore, HFM and LFM have different soil moisture distributions. In the 0–60 cm soil layer of HFM, the middle soil (20–40 cm) had a lower moisture content, while the surface (0–20 cm) and deep soil layers (40–60 cm) had higher moisture contents.In contrast to the distribution of soil moisture, the distribution of soil nutrients in HFM and LFM was the same: the soil nutrients gradually decreased from the surface to the bottom (Fig. 6). In LFM, the 0–20 cm-depth soil had the highest nutrient content, and the available phosphorous (AP), hydrolysable nitrogen (HN), available K (AK), and microbial biomass carbon (MBC) contents were 2.7, 109.83, 140.11, and 149.38 mg/kg, respectively. With the increase in soil depth, compared with the 0–20 cm soil, the contents of AP, HN, AK, and MBC in the 20–40 cm-depth soil were reduced by 33.33%, 33.44%, 5.45%, and 55.64%, while the content of AP, HN, AK, and MBC in the 40–60 cm-depth soil were reduced by 31.48%, 31.83%, 11.13%, and 66.28%, respectively. In HFM, the nutrient content in the 0–20 cm soil layer was also the largest, and the AP, HN, AK, and MBC has contents of 3.7, 86.17, 107.42, and 120.11 mg/kg, respectively. Compared with the 0–20 cm soil, the contents of AP, HN, AK, and MBC in the 20–40 cm-depth soil decreased by 43.24%, 29.11%, 27.07%, and 60.26%, respectively, while the contents of AP, HN, AK, and MBC in the 40–60 cm-depth soil decreased by 64.86%, 82.79%, 53.04%, and 83.88%, respectively.Figure 6Soil nutrients distribution in LFM and HFM, HN is hydrolysable nitrogen, AP is available phosphorus, AK is available K, MBC is microbial biomass carbon. The figure is generated with use of Excel 2019 (https://www.microsoft.com/zh-cn/microsoft-365/excel).Full size imageMeanwhile, in the same depth of soil, in LFM the content of HN, AK, and MBC is greater than that in HFM. Compared with the LFM, the contents of HN, AK, and MBC in the 0–20 cm soil layer in HFM are reduced by 21.54%, 23.33%, and 19.59%; the HN, AK, and MBC in the 20–40 cm are decreased by 16.43%, 40.86%, and 27.98%; and the HN, AK, and MBC in the 40–60 cm decreased by 80.19%, 59.49%, 61.56%, respectively. However, the AP in the 0–20 and 20–40 cm depths in the HFM is greater than in the LFM. It may be that the higher FTCF causes more damage to Bradyrhizobium, Mesorhizobium, and Pseudomonas in the soil of the Nagqu River Basin, the competitiveness of Bacillus decreases and the abundance increases, while the phosphate-dissolving ability of Bacillus may lead to an increase in the phosphorus content in the soil26.Correlation analysisAs shown in Fig. 7, the NFTC, FTCD, FTCF, and daily average temperature difference (DATD) all have a significant negative correlation with the top soil moisture in the Nagqu River Basin. This shows that the top soil moisture is not just affected by repeated FTC. Additionally, the effect of FTC on the top soil moisture is not transient; the longer FTC exists, the greater the impact on the top soil moisture will be.Figure 7Correlation between FTCF and top soil moisture and nutrients content, HN is hydrolysable nitrogen, AP is available phosphorus, AK is available K, MBC is microbial biomass carbon, SM is soil moisture, FTCF is the freeze–thaw cycle frequency, FTCD is the number of freezing–thawing cycle days, NFTC is the number of freezing–thawing cycles, DATD is the daily average temperature difference, and *indicate the correlation coefficient is statistically significant at the P = 0.05 level. The figure is generated with use of R language 3.6.3 (https://www.r-project.org/) and Visio 2019 (https://www.microsoft.com/zh-cn/microsoft-365/visio/flowchart-software).Full size imageMeanwhile, the contents of HN, AK, and MBC in the top soil have no obvious correlation with NFTC and FTCD but have a significant negative correlation with FTCF. This shows that, compared with NFTC and FTCD, FTCF is more suitable for measuring the influence of FTC characteristics on soil properties. With the increase in FTCF, the damage to the soil structure increases and the contents of HN, AK, and MBC in the top soil significantly decrease, but the AP shows different changes under the influence of microorganisms28. More

  • in

    Africa: sequence 100,000 species to safeguard biodiversity

    Download PDF

    Sleeper fish (Bostrychus africanus) are a staple food in West Africa. Harvesting them provides an important source of income for hundreds of communities across the Gulf of Guinea in the Atlantic Ocean. Yet little is known about the genetics of this fish — information that is crucial to safeguarding its genetic diversity, and to enhancing its resilience in the face of climate change and other pressures.This situation is all too familiar across Africa. Consider orphan crops, which have a crucial role in regional food security, even though they are not typically traded internationally. More than 50% of these have not had their genomes sequenced — from the fluted pumpkin (Telfairia occidentalis) to the marama bean (Tylosema esculentum). The same is true of more than 95% of the continent’s known endangered species (see ‘Africa’s neglected genomes’).

    Sources: Analysis by T. E. Ebenezer et al./Ref. 1/S. Hotaling et al. Proc. Natl Acad. Sci. USA 118, e2109019118 (2021)

    What’s more, by our estimate, around 70% of the 35 or so projects that have focused on studying, conserving or improving biological diversity in Africa over the past 15 years have been led from outside the continent. In fact, among the plant genomes sequenced globally over the past 20 years, almost all of the African species were sequenced elsewhere — mainly in the United States, China and Europe1. This offshoring slows down the much-needed building of expertise and resources in genomics and bioinformatics in Africa (see ‘Africa left out of global genomics efforts’).The African BioGenome Project (AfricaBP) is an effort to sequence the genomes of 105,000 endemic species: plants, animals, fungi, protists and other eukaryotes. It currently involves 109 African scientists (87 of whom work in Africa) and 22 African organizations.This store of reference genomes — built in Africa, for Africa — will help plant and animal breeders to produce resilient and sustainable food systems. It will inform biodiversity conservation across the continent. And it will strengthen Africa’s ability to deliver on the goals of the post-2020 global biodiversity framework of the Convention on Biodiversity (CBD). These goals, one of which is to maintain at least 90% of genetic diversity for all known species by 2030, are to be agreed on next month at a meeting in Kunming, China.
    Africa left out of global genomics efforts

    Most projects that aim to study, conserve or improve biological diversity in Africa have been led by researchers outside the continent.
    Projects to sequence biodiversity rarely meet the needs of people in Africa or align with its countries’ science agendas4,14–16 (such as on agricultural technologies15). Take the Human Genome Project. Less than 2% of genomes analysed in the two decades since the project began are from African individuals, even though Africa harbours more human genetic diversity than any other continent.
    African researchers who contribute to data collection in such projects are not always credited for their work. A 2021 study17 revealed that about 15% of 32,061 articles on global health research conducted in sub-Saharan Africa had no authors based in the country in which the research took place.
    Currently, the International Nucleotide Sequence Database Collaboration, the core infrastructure for the collection and sharing of the world’s nucleotide sequence data and metadata, names only those who have submitted samples or sequence data, not the primary owners or custodians of the sample. In practice, this means that if an African scientist collects samples from Bioko squeaker frogs (Athroleptis bioko) in Equatorial Guinea, for example, and sends them to a colleague in Canada who then submits a sequence to the database, only the Canadian researcher will receive recognition for the data. Recent efforts by the consortium and others18 will help to address some of these gaps. By December this year, the consortium will make it mandatory for those submitting sequence data to declare the country or region in which the sample was collected. But it is still unclear whether the credit given to sample custodians will be similar to that of sample submitters.
    Besides the lack of recognition, African researchers rarely retain access to the data they help to collect, nor do they receive related benefits — either from royalties resulting from specific discoveries in genetics, or those stemming from technological advances and growth in scientific capability that such projects can bring.
    For instance, during the 2014–16 Ebola epidemic in West Africa, around 269,000 blood samples were obtained from patients for diagnosis. Thousands of those samples were shipped overseas, including to Europe and North America. None of the genomics researchers working in Africa knows where these samples are now housed19 and, as far as the African human-genetics community knows, the sample providers never received the results of their blood collections.

    An AfricaBP pilot project was launched in June 2021. In this, researchers are sequencing 2,500 indigenous African species, including the Boyle’s beaked blind snake (Rhinotyphlops boylei) from southern Africa and the red mangrove tree (Rhizophora mangle) from Nigeria. They are also mapping out the ethical, legal and social issues raised by a major biodiversity sequencing project — because of cultural sensitivities around certain species, or questions around who has access to the data and who benefits from any resulting discoveries.For AfricaBP to be scaled up and sustained over the next decade, agencies and organizations need to allocate long-term investments to the project. Such groups include the African Union Commission, national and regional scientific agencies (such as the African Academy of Sciences), and international partners and organizations, including the US National Science Foundation and the UK research funder Wellcome. By our calculations, this will require at least US$100 million per year for the next 10 years (see ‘AfricaBP: structure and costs’).Some might argue that $1 billion would be better spent on combating malnutrition and disease in impoverished communities across Africa. Yet consider the Human Genome Project, which cost around $3 billion in 2003. By 2019, the human genetics and genomics sector alone was contributing $265 billion annually to the US economy2. Likewise, the World Bank invested millions of dollars in outbreak preparedness from 2017, some of which was used to fund the African Centre of Excellence for Genomics of Infectious Diseases in Ede, Nigeria. This investment meant that Africa was much better equipped to meet the challenges presented by the COVID-19 pandemic.
    AfricaBP: structure and costs

    The African BioGenome Project (AfricaBP) will involve researchers and organizations from all economic regions in the African Union, and will cost US$100 million per year.
    AfricaBP will convene 55 African researchers and policymakers from genomics, bioinformatics, biodiversity and agriculture — 11 for each of the 5 African Union geographical regions (northern, eastern, southern, central and western Africa). Another 165 people will be involved in the project (33 for each geographical region), including academic and industrial researchers, policymakers, and staff from governmental organizations, such as the National Institute of Agricultural Research of Morocco.
    Ultimately, these people will feed genome sequences into various national or regional facilities. These include the National Gene Bank of Tunisia, which is using genetics to promote the conservation and sustainable use of Africa’s plants, animals, fungi and protists, and the International Center for Research and Development on Livestock in the Subhumid Zone in Bobo-Dioulasso, Burkina Faso, which was established in 1994 to reduce poverty by improving food and nutritional security.
    We estimate that producing high-quality reference genomes for around 105,000 endemic African species will cost around $850 million to sequence, and around $20 million to store, download, transfer and process the data (using high-performance computing and a mix of cloud platforms).
    We reach this sum using our estimate of average genome sizes for plants and animals — 2.5 and 1.5 gigabases, respectively — and because the average cost per species per gigabase is $4,200 (taking into account the price differences between North America and Africa for consumables, shipments and other overheads). We estimate the costs of sample collection, including permits, consultations and workshops, at $41 million. Lastly, using the Newton International Fellowship as a benchmark, AfricaBP’s early-career research fellowships will cost roughly $90 million over a 10-year period.

    Species sidelined Thousands of African species have been ignored by the global genomics community. Only 20 of the 798 plant genomes sequenced globally over the past 20 years are native to Africa1, for example. Yet sub-Saharan Africa alone, which is home to at least 45,000 plant species3, is the second-largest contributor to global plant diversity after South America. Last year, researchers reported that 60% of these species are endemic, and that many could have potential applications in agriculture or drug development4. Evidence suggests, for instance, that African ginger (Siphonochilus aethiopicus) could be used to treat asthma and influenza, among other conditions5,6.Most of the genomics and bioinformatics expertise that does exist across Africa, including the sequencing facilities, is concentrated in private and non-governmental organizations, such as Inqaba Biotechnical Industries in Pretoria, South Africa, and Redeemer’s University in Nigeria. This means that, although the national research institutes are given the responsibility of setting the country’s scientific agenda, the tools needed to actually improve public health, agriculture and conservation are outside their control7.
    Sequence three million genomes across Africa
    AfricaBP will focus on endemic African species that have economic, scientific and cultural significance for African communities.Sustained government investment in genomics — including the creation of permanent university positions — will help to ensure that African scientists who have received training through African-coordinated genomics projects stay in Africa.National and regional expansion of tissue-sample collection, taxonomic identification, biobanking of samples and cataloguing of metadata will make it much easier for researchers to monitor species — and ultimately to protect them. Species discovered as a result of the genomics project could be added to the CBD 2030 targets.Lastly, if the African Union Commission includes AfricaBP in the suite of schemes it is currently backing, the project could enable the commission to achieve at least three of the development goals encapsulated in the African Union Agenda 2063: The Africa We Want. These are: the use of modern techniques and technology to increase agricultural productivity sustainably; the sustainable use of ocean resources to drive economic growth; and the development of environmentally sustainable and climate-resilient economies. (Agenda 2063 is the blueprint for the continent’s transformation into a global powerhouse, as laid out by leaders of the 55 African Union member states in 2013.)Key prioritiesAfricaBP will bring together national and regional institutions, countries and corporations, including already recognized genomics infrastructures, such as the National Institute for Biomedical Research in Kinshasa in the Democratic Republic of the Congo. The project has three main goals.Improve food systems. The first goal is to provide a resource that enables plant and animal breeders to use various approaches (from conventional breeding to gene editing) to build resilient and sustainable food systems. A 2021 genome analysis8 of 245 Ethiopian indigenous chickens, for instance, revealed the genetic basis of various adaptations that enable the chickens to tolerate harsh environmental conditions (from cold temperatures to water scarcity) — crucial information for poultry producers worldwide. To help achieve this goal, AfricaBP will partner with the African Plant Breeding Academy and the African Animal Breeding Network, both of which were established in the past decade to improve African breeders’ training and research practices.Improve conservation. The second goal is to make it easier for researchers to identify species and populations that are at risk of extinction, and to design and implement effective conservation strategies. A 2020 study9 on the genetic structure of African savannah elephant populations, for example, revealed that the long-term survival of the elephants requires establishing at least 14 wildlife corridors between 16 of the protected areas in Tanzania. Similarly, a genome study10 of 13 individuals representing 2 subspecies of eastern gorilla showed that inbreeding has led to the purging of severely harmful recessive mutations from one of the subspecies (Gorilla beringei beringei, or mountain gorillas). The accumulation of such damaging mutations in eastern gorillas over the past 100,000 years has reduced their resilience to environmental change and pathogen evolution.

    A technician checks cassava plants in a research laboratory near Abidjan, Côte d’Ivoire.Credit: Sia Kambou/AFP via Getty

    Improve sharing of data and benefits. The third goal is to kick-start a process in which existing multilateral agreements around data sharing are improved and harmonized across the continent — to ensure that the benefits derived from genetic resources are shared equitably across Africa.In 2010, nations adopted the Nagoya Protocol on Access and Benefits Sharing to ensure that the benefits arising from the use of biological resources are shared fairly. Certainly, any benefit derived from the genetic resources obtained through AfricaBP should be shared by the people of Africa — whether it be a superior strain of drought-resistant sugar beet (Beta macrocarpa Guss) or a new drug derived from the rooibos plant (Aspalathus linearis).As written, however, the Nagoya Protocol has gaps when it comes to Africa. It fails to take into account the customs and practices of the diverse ethnic groups across the continent. These might not be documented or written into law, but have shaped how people interact with certain plants or animals for hundreds — sometimes thousands — of years. In West Africa, for example, some communities forbid the cutting down or harming of iroko trees, which are thought to have supernatural powers.
    The next chapter for African genomics
    There are also inconsistencies in how the Nagoya Protocol is applied in different countries. The African Union guidelines for the implementation of the Nagoya Protocol in Africa states that those countries that are not parties to the Nagoya Protocol should be refused access to the genetic resources of other African member states. But only some countries follow this; South Africa grants non-parties access to the nation’s genetic resources, whereas Ethiopia does not.Likewise, not all countries require researchers wanting to extract genetic resources to consult community protocols. These include the rules and standards around the handling of biological specimens — as laid out by communities under the guidance of the custodians of customary laws (local chiefs and community heads). These custodians, in turn, work closely with state and national governments; sometimes, community protocols will refer to state, national or international laws. In Benin, for example, such protocols state that researchers cannot enter Gbévozoun forest or take any specimens from it because it houses the deity Gbévo, which protects the community.Ultimately, it is the responsibility of the African Union Commission to improve and harmonize the treaties and guidelines around data and benefit sharing. Doing this would make it easier for AfricaBP researchers to obtain sampling permits, in accordance with the Nagoya Protocol and material transfer agreements (the legal documents required to send biological materials from one organization to another, or from one country to another).But AfricaBP will enable the African Union, the CBD and other African agencies, such as the African Academy of Sciences, to integrate genomic information into their policymaking around biological diversity across Africa. This in itself will raise awareness about the Nagoya Protocol, and so encourage greater harmonization in its use.Furthermore, the 109 scientists championing AfricaBP will coordinate with the African Group of Negotiators on Biodiversity (researchers, policymakers and other stakeholders who represent the continent in CBD negotiations) to ensure that sequencing information is specifically included in the post-2020 global biodiversity framework.

    An iroko tree in Benin. Some West African communities forbid the cutting down of these trees, which locally are thought to have supernatural powers.Credit: Wolfgang Kaehler

    Currently, the Nagoya Protocol specifies that ‘biological samples’ can be exchanged for scientific training or technology transfer. The inclusion of sequencing information would mean that early-career researchers who are members of an Indigenous community, such as the Amhara people in Ethiopia, could negotiate to receive training in genome sequencing and analysis if researchers from South Africa, say, wanted to collect tissue samples from their country.Lastly, everyone involved in the AfricaBP project — now and over the next decade — will engage local chiefs and other custodians of traditional knowledge in the project from the outset. One way for researchers to engage with local communities or Indigenous peoples is through monthly meetings with government officials involved in Africa’s Access and Benefit Sharing National Focal Points. These individuals are specifically tasked with guiding compliance between the producers of biological resources, such as the Bedouin community in Egypt, and the users of those resources, such as researchers at the Pasteur Institute of Tunis in Tunisia. Another way this could be achieved is through AfricaBP ethics committees surveying thousands of people in a particular community — such as through town-hall meetings, electronic messages or telecommunications.Making it happenSince 2009, $22 million has been spent on building bioinformatics capacity across Africa through the Pan African Bioinformatics Network for H3Africa (H3ABioNet) project — including through training 150 researchers in core bioinformatics approaches and technologies. But around 10–15% of the trainees in this Africa-led project have relocated to North America or Europe, and there is no guarantee that they will return. What’s more, H3ABioNet funding winds down this year, and there are few permanent positions for trained bioinformatics personnel in African institutions. Because of this, up to 50% of the researchers who have received training through H3ABioNet could leave Africa.In the case of AfricaBP, around 600 eligible early-career African researchers (those pursuing PhDs or postdocs) will be granted 3-year fellowships over the next 10 years. They will be able to work with AfricaBP’s global partners11, such as the Wellcome Sanger Institute in Hinxton, UK, through exchange programmes. But they will be based mainly in national and regional AfricaBP facilities, to ensure that any skills they acquire are fed back into the continent.Cloud-based computing and data storage will need to be coordinated to meet regional needs. Exchange programmes involving AfricaBP partners could help those regions or countries that lack resources; there are currently 87 genomic infrastructures in southern Africa, but only 8 in Central Africa7, for instance. These would be similar to the Newton International Fellowships, which enable early-career researchers from overseas to work for two years at a UK institution.
    Why some researchers oppose unrestricted sharing of coronavirus genome data
    The 374 state-of-the-art Pacific Biosciences HiFi genome-sequencing machines that currently exist worldwide (as of 31 December 2021) can produce high-quality sequence data for more than 350 species per day12. But although the city of Cambridge, UK, alone has 12 of these machines, there are only 2 in the entire African continent. Building genomics capacity on the ground is a huge challenge in Africa because of the difficulty of transporting intact samples in countries that have poor transport infrastructure and hot climates, and because of Africa’s expensive and low-quality Internet service.To achieve such a massive sequencing feat, African researchers need state-of-the-art genome technologies. They also need mobile (albeit less accurate13) sequencing technologies that are less reliant on electricity and Internet connectivity, such as the Oxford Nanopore Technologies MinION machine. These are easily transportable and can be used in remote areas; they are roughly the size of a mobile phone13, whereas the Pacific Biosciences HiFi machines are about the size of a household refrigerator.The 109 scientists spearheading AfricaBP are currently in discussion with leading institutions about the development of mobile sequencing platforms and integrated mobile laboratories. Encouragingly, portable, low-cost computing platforms, such as Raspberry Pi and eBioKit, are already being used in Africa, for instance at Makerere University in Kampala, Uganda, in bioinformatics training programmes.We ask all African life-science agencies to join AfricaBP. We also ask the African Union Commission and the African Academy of Sciences to provide the core funds — US$100 million per year for the next 10 years. In our view, this investment will be dwarfed by the economic and other pay-offs that will stem from AfricaBP-enabled innovations and discoveries.

    Nature 603, 388-392 (2022)
    doi: https://doi.org/10.1038/d41586-022-00712-4

    ReferencesMarks, R. A., Hotaling, S., Frandsen, P. B. & VanBuren, R. Nature Plants 7, 1571–1578 (2021).PubMed 
    Article 

    Google Scholar 
    Tripp, S. & Grueber, M. The Economic Impact and Functional Applications of Human Genetics and Genomics (American Society of Human Genetics & TEConomy Partners, 2021).
    Google Scholar 
    Linder, H. P. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2014.00038 (2014).Article 

    Google Scholar 
    Ghazal, H. et al. Plant J. 107, 21–36 (2021).PubMed 
    Article 

    Google Scholar 
    Street, R. A. & Prinsloo, G. J. Chem. 2013, 205048 (2013).Article 

    Google Scholar 
    Gericke, N. S. Afr. J. Bot. 77, 850–856 (2011).Article 

    Google Scholar 
    Inzaule, S. C., Tessema, S. K., Kebede, Y., Ogwell Ouma, A. E. & Nkengasong, J. N. Lancet Infect. Dis. 21, E281–E289 (2021).PubMed 
    Article 

    Google Scholar 
    Gheyas, A. A. et al. Mol. Biol. Evol. 38, 4268–4285 (2021).PubMed 
    Article 

    Google Scholar 
    Lohay, G. G., Weathers, T. C., Estes, A. B., McGrath, B. C. & Cavener, D. R. Ecol. Evol. 10, 11069–11089 (2020).PubMed 
    Article 

    Google Scholar 
    Xue, Y. et al. Science 348, 242–245 (2015).PubMed 
    Article 

    Google Scholar 
    Lewin, H. A. et al. Proc. Natl Acad. Sci. USA 119, e2115635118 (2022).PubMed 
    Article 

    Google Scholar 
    Rhie, A. et al. Nature 592, 737–746 (2021).PubMed 
    Article 

    Google Scholar 
    Tedersoo, L., Albertsen, M., Anslan, S. & Callahan, B. Appl. Environ. Microbiol. 87, e0062621 (2021).PubMed 
    Article 

    Google Scholar 
    Dandara, C. et al. AAS Open Res. 2, 19 (2019).PubMed 
    Article 

    Google Scholar 
    Marshall, K. et al. Front. Genet. 10, 297 (2019).PubMed 
    Article 

    Google Scholar 
    Mulder, N. et al. Annu. Rev. Biomed. Data Sci. 4, 57–81 (2021).PubMed 
    Article 

    Google Scholar 
    Rees, C. A. et al. BMJ Glob. Health 6, e006982 (2021).PubMed 
    Article 

    Google Scholar 
    Lange, M. et al. GigaScience 10, giab084 (2021).PubMed 
    Article 

    Google Scholar 
    Yakubu, A., Munung, N. S. & De Vries, J. AMA J. Ethics 22, E156–E163 (2020).PubMed 
    Article 

    Google Scholar 
    Download references

    Supplementary Information

    List of co-signatories

    Competing Interests
    J.K. is a full-time employee and stock holder of Pacific Biosciences, a company mentioned in the article that is developing single-molecule sequencing technologies.

    Related Articles

    Sequence three million genomes across Africa

    Why some researchers oppose unrestricted sharing of coronavirus genome data

    The next chapter for African genomics

    Subjects

    Biodiversity

    Conservation biology

    Genomics

    Latest on:

    Biodiversity

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    Apply Singapore Index on Cities’ Biodiversity at scale
    Correspondence 22 FEB 22

    Do not downplay biodiversity loss
    Matters Arising 26 JAN 22

    Genomics

    Wide-ranging genetic study of severe COVID finds common risk factors
    News 10 MAR 22

    The evolution, evolvability and engineering of gene regulatory DNA
    Article 09 MAR 22

    How to protect the first ‘CRISPR babies’ prompts ethical debate
    News 25 FEB 22

    Jobs

    Faculty Position in Cancer Immunology

    Mayo Clinic
    Scottsdale, AZ, United States

    MOBILE AND TECHNOLOGICAL SOLUTIONS FOR OCCUPATIONAL DRIVERS (MILESTONE)

    KU Leuven
    Leuven, Belgium

    Associate or Senior Editor, Nature Materials

    Springer Nature
    London, Greater London, United Kingdom

    Postdoctoral Research Scientist

    Cancer Research UK Beatson Institute
    Glasgow, United Kingdom More