The accumulation of microplastic pollution in a commercially important fishing ground
PlasticsEurope. Plastics – the Facts 2019, Avenue E. van Nieuwenhuyse 4/3, 1160 Brussels. Belgium: PlasticsEurope. https://www.plasticseurope.org/de/resources/publications/4312-plastics-facts-2020 (2020).Mattsson, K., Jocic, S., Doverbratt, I. & Hansson, L. A. In Nanoplastics in the Aquatic Environment: Microplastic Contamination in Aquatic Environments (ed. Zheng, E. Y.) 379–399 (Elsevier, 2018).Chapter
Google Scholar
Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947. https://doi.org/10.1038/srep14947 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Waller, C. L. et al. Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total. Environ. 598, 220–227. https://doi.org/10.1016/j.scitotenv.2017.03.283 (2017).ADS
CAS
Article
PubMed
Google Scholar
Thompson, R. C. et al. Lost at sea: where is all the plastic?. Sci. 304, 838–838 (2004).CAS
Article
Google Scholar
Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041 (2015).CAS
Article
PubMed
Google Scholar
Kroon, F. J., Motti, C. E., Jensen, L. H. & Berry, K. L. Classification of marine microdebris: A review and case study on fish from the Great Barrier Reef, Australia. Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-34590-6 (2018).CAS
Article
Google Scholar
Cunningham, E. M. & Sigwart, J. D. Environmentally accurate microplastic levels and their absence from exposure studies. Integr. Comp. Biol. 59, 1485–1496. https://doi.org/10.1093/icb/icz068 (2019).Article
PubMed
Google Scholar
Welden, N. A. & Cowie, P. R. Long-term microplastic retention causes reduced body condition in the langoustine Nephrops norvegicus. Environ. Pollut. 218, 895–900. https://doi.org/10.1016/j.envpol.2016.08.020 (2016).CAS
Article
PubMed
Google Scholar
Green, D. S., Colgan, T. J., Thompson, R. C. & Carolan, J. C. Exposure to microplastics reduces attachment strength and alters the haemolymph proteome of blue mussels (Mytilus edulis). Environ. Pollut. 246, 423–434. https://doi.org/10.1016/j.envpol.2018.12.017 (2019).CAS
Article
PubMed
Google Scholar
Schéré, C. M., Dawson, T. P. & Schreckenberg, K. Multiple conservation designations: what impact on the effectiveness of marine protected areas in the Irish Sea?. Int. J. Sustain. Dev. 27, 596–610. https://doi.org/10.1080/13504509.2019.1706058 (2020).Article
Google Scholar
Ungfors, A. et al. Nephrops fisheries in European waters. In Advances in Marine Biology 247–314 (Academic Press, 2013).
Google Scholar
ICES. Celtic Seas Ecosystem—Fisheries Overview. In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, Section 7.2. 40 pp https://doi.org/10.17895/ices.advice.5708. (2019).Becker, C., Dick, J. T., Cunningham, E. M., Schmitt, C. & Sigwart, J. D. The crustacean cuticle does not record chronological age: New evidence from the gastric mill ossicles. Arthropod. Struct. Dev. 47, 498–512. https://doi.org/10.1016/j.asd.2018.07.002 (2018).Article
PubMed
Google Scholar
Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317. https://doi.org/10.1098/rsos.140317 (2014).ADS
Article
PubMed
PubMed Central
Google Scholar
Yin, J., Li, J. Y., Craig, N. J. & Su, L. Microplastic pollution in wild populations of decapod crustaceans: A review. Chemosphere https://doi.org/10.1016/j.chemosphere.2021.132985 (2021).Article
PubMed
PubMed Central
Google Scholar
Cau, A. et al. Benthic crustacean digestion can modulate the environmental fate of microplastics in the deep sea. Environ. Sci. Technol. 54, 4886–4892. https://doi.org/10.1021/acs.est.9b07705 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Hara, J., Frias, J. & Nash, R. Quantification of microplastic ingestion by the decapod crustacean Nephrops norvegicus from Irish waters. Mar. Pollut. Bull. 152, 110905. https://doi.org/10.1016/j.marpolbul.2020.110905 (2020).CAS
Article
PubMed
Google Scholar
Hill, A. E., Durazo, R. & Smeed, D. A. Observations of a cyclonic gyre in the western Irish Sea. Cont. Shelf Res. 14, 479–490. https://doi.org/10.1016/0278-4343(94)90099-X (1994).ADS
Article
Google Scholar
Horsburgh, K. J. & Hill, A. E. A three-dimensional model of density-driven circulation in the Irish Sea. J. Phys. Oceanogr. 33, 343–365. https://doi.org/10.1175/1520-0485(2003)033%3c0343:ATDMOD%3e2.0.CO;2 (2003).ADS
Article
Google Scholar
Hill, A.E., Brown, J., & Fernand, L. The western Irish Sea gyre: a retention system for Norway lobster (Nephrops norvegicus)? Oceanol. Acta. 19, 357–368. (1996). https://archimer.ifremer.fr/doc/00094/20493/Lebreton, L. et al. Evidence that the great pacific garbage patch is rapidly accumulating plastic. Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-22939-w (2018).CAS
Article
Google Scholar
Charlesworth, M., Mitchell, S. H. & Oliver, W. T. Metals in surficial sediments of the north-west Irish Sea. Bull. Environ. Contam. Toxicol. 62, 40–47. https://doi.org/10.1007/s001289900839 (1999).CAS
Article
PubMed
Google Scholar
Charlesworth, M. E., Service, M. & Gibson, C. E. The distribution and transport of Sellafield derived 137Cs and 241Am to western Irish Sea sediments. Sci. Total. Environ. 354, 83–92. https://doi.org/10.1016/j.scitotenv.2004.12.062 (2006).ADS
CAS
Article
PubMed
Google Scholar
Global Monitoring and Forecasting Center. Atlantic-European North West Shelf – Ocean Physics Analysis and Forecast, E.U Copernicus Marine Service Information . Available at: https://resources.marine.copernicus.eu/product-detail/NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013/INFORMATION (Accessed: 8th December 2021).Cunningham, E. M. et al. High abundances of microplastic pollution in deep-sea sediments: Evidence from antarctica and the Southern Ocean. Environ. Sci. Technol. 54, 13661–13671. https://doi.org/10.1021/acs.est.0c03441 (2020).ADS
CAS
Article
PubMed
Google Scholar
Zhang, S. et al. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total. Environ. 616, 1056–1065. https://doi.org/10.1016/j.scitotenv.2017.10.213 (2018).ADS
CAS
Article
PubMed
Google Scholar
Martin, J., Lusher, A., Thompson, R. C. & Morley, A. The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish continental shelf. Sci. Rep. 7, 10772. https://doi.org/10.1038/s41598-017-11079-2 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Google Scholar
Nor, N. H. M. & Obbard, J. P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bullet. 79, 278–283. https://doi.org/10.1016/j.marpolbul.2013.11.025 (2014).CAS
Article
Google Scholar
Lacerda, A. L. D. F. et al. Plastics in sea surface waters around the Antarctic Peninsula. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-40311-4 (2019).MathSciNet
CAS
Article
Google Scholar
Tata, T., Belabed, B. E., Bououdina, M. & Bellucci, S. Occurrence and characterization of surface sediment microplastics and litter from North African coasts of Mediterranean Sea: Preliminary research and first evidence. Sci. Total. Environ. 713, 136664. https://doi.org/10.1016/j.scitotenv.2020.136664 (2020).ADS
CAS
Article
PubMed
Google Scholar
Lorenz, C. et al. Spatial distribution of microplastics in sediments and surface waters of the southern North Sea. Environ. Pollut. 252, 1719–1729 (2019).CAS
Article
Google Scholar
Chouchene, K. et al. Microplastics on Barra beach sediments in Aveiro, Portgal. Mar. Pollut. Bull. 167, 112264. https://doi.org/10.1016/j.marpolbul.2021.112264 (2021).CAS
Article
PubMed
Google Scholar
Kane, I. A. et al. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 368, 1140–1145. https://doi.org/10.1126/science.aba5899 (2020).ADS
CAS
Article
PubMed
Google Scholar
Gaylarde, C. C., Neto, J. A. B. & da Fonseca, E. M. Paint fragments as polluting microplastics: A brief review. Mar. Pollut. Bull. 162, 111847. https://doi.org/10.1016/j.marpolbul.2020.111847 (2021).CAS
Article
PubMed
Google Scholar
Sait, S. T. L. et al. Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content. Environ. Pollut. 268, 115745. https://doi.org/10.1016/j.envpol.2020.115745 (2021).CAS
Article
PubMed
Google Scholar
Chen, Q. et al. Bioassay guided analysis coupled with non-target chemical screening in polyethylene plastic shopping bag fragments after exposure to simulated gastric juice of Fish. J. Hazard. Mater. 401, 123421. https://doi.org/10.1016/j.jhazmat.2020.123421 (2021).CAS
Article
PubMed
Google Scholar
Wu, X. et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water. Res. 188, 116456. https://doi.org/10.1016/j.watres.2020.116456 (2021).CAS
Article
PubMed
Google Scholar
Zabaniotou, A. & Kassidi, E. Life cycle assessment applied to egg packaging made from polystyrene and recycled paper. J. Clean. Prod. 11, 549–559. https://doi.org/10.1016/S0959-6526(02)00076-8 (2003).Article
Google Scholar
Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 34351. https://doi.org/10.1038/srep34351 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Biamis, C., O’Driscoll, K. & Hardiman, G. Microplastic toxicity: A review of the role of marine sentinel species in assessing the environmental and public health impacts. CSCEE. https://doi.org/10.1016/j.cscee.2020.100073 (2020).Article
Google Scholar
Bakir, A., Rowland, S. J. & Thompson, R. C. Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar. Coast. 140, 14–21. https://doi.org/10.1016/j.ecss.2014.01.004 (2014).CAS
Article
Google Scholar
Nelson, A. M. & Long, T. E. A perspective on emerging polymer technologies for bisphenol-A replacement. Polym. Int. 61, 1485–1491. https://doi.org/10.1002/pi.4323 (2012).CAS
Article
Google Scholar
Le Bihanic, F. et al. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar. Pollut. Bull. 154, 111059. https://doi.org/10.1016/j.marpolbul.2020.111059 (2020).CAS
Article
PubMed
Google Scholar
Murray, F. & Cowie, P. R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 62, 1207–1217. https://doi.org/10.1016/j.marpolbul.2011.03.032 (2011).CAS
Article
PubMed
Google Scholar
Cobb, J. S. & Phillips, B. F. (eds) The Biology and Management of Lobsters, Physiology and Behaviour 2–61 (Academic Press Inc., 1980).
Google Scholar
Quintana, M. M., Motova, A., Wilkie, O., Patience, N. Seafish: Economics of the UK fishing fleet 2020. Seafish Report No. SR758. Edinburgh, UK. https://www.seafish.org/document/?id=d9e7982d-e374-4de7-85a4-ca80c35f5666 (2021). More