More stories

  • in

    Assessment of global health risk of antibiotic resistance genes

    Global patterns of ARG distributionWe used a set of 4572 metagenomic samples to illustrate the global patterns of ARG distribution (Supplementary Data 1). These samples were collected from six types of habitats: air, aquatic, terrestrial, engineered, humans and other hosts (Fig. 1a and Supplementary Data 1). From these samples, we identified a total of 2561 ARGs that conferred resistance to 24 drug classes of antibiotics based on the Comprehensive Antibiotic Research Database (CARD). Of these, 2401 were genes conferring resistance to only one drug class, and 160 conferred resistances to multiple drug classes (Supplementary Data 2). Twenty-five ARGs were found in more than 75% samples, however, the frequency of most ARGs (2313/2561) were More

  • in

    Long-distance, synchronized and directional fall movements suggest migration in Arctic hares on Ellesmere Island (Canada)

    Jeltsch, F. et al. Integrating movement ecology with biodiversity research—Exploring new avenues to address spatiotemporal biodiversity dynamics. Mov. Ecol. 1, 6 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Dingle, H. Migration: The Biology of Life on the Move Migration (Oxford University Press, 2014).Joly, K. et al. Longest terrestrial migrations and movements around the world. Sci. Rep. 9, 15333 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).
    Google Scholar 
    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 

    Google Scholar 
    Nifong, J. C., Layman, C. A. & Silliman, B. R. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator. J. Anim. Ecol. 84, 35–48 (2015).PubMed 

    Google Scholar 
    Giroux, M.-A. et al. Benefiting from a migratory prey: Spatio-temporal patterns in allochthonous subsidization of an arctic predator. J. Anim. Ecol. 81, 533–542 (2012).PubMed 

    Google Scholar 
    Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 155 (2016).
    Google Scholar 
    Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: Individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2011).PubMed 

    Google Scholar 
    Teitelbaum, C. S. & Mueller, T. Beyond migration: Causes and consequences of nomadic animal movements. Trends Ecol. Evol. 34, 569–581 (2019).PubMed 

    Google Scholar 
    Berg, J. E., Hebblewhite, M., St. Clair, C. C. & Merrill, E. H. Prevalence and mechanisms of partial migration in ungulates. Front. Ecol. Evol. 7, 325 (2019).
    Google Scholar 
    Avgar, T., Street, G. & Fryxell, J. M. On the adaptive benefits of mammal migration. Can. J. Zool. 92, 481–490 (2014).
    Google Scholar 
    Barbour, M. G. & Billings, W. D. North American Terrestrial Vegetation (Cambridge University Press, 2000).
    Google Scholar 
    Smith, S. L., Throop, J. & Lewkowicz, A. G. Recent changes in climate and permafrost temperatures at forested and polar desert sites in northern Canada. Can. J. Earth Sci. 49, 914–924 (2012).ADS 

    Google Scholar 
    Lévesque, E. Plant Distribution and Colonization in Extreme Polar Deserts, Ellesmere Island, Canada (University of Toronto, 1997).
    Google Scholar 
    Bliss, L. C., Svoboda, J. & Bliss, D. I. Polar deserts, their plant cover and plant production in the Canadian High Arctic. Holarctic Ecol. 7, 305–324 (1984).
    Google Scholar 
    Berteaux, D. et al. Effects of changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arctic Sci. 3, 65–90 (2017).
    Google Scholar 
    Duchesne, D., Gauthier, G. & Berteaux, D. Habitat selection, reproduction and predation of wintering lemmings in the Arctic. Oecologia 167, 967–980 (2011).ADS 
    PubMed 

    Google Scholar 
    Fuglei, E., Blanchet, M.-A., Unander, S., Ims, R. A. & Pedersen, Å. Ø. Hidden in the darkness of the Polar night: A first glimpse into winter migration of the Svalbard rock ptarmigan. Wildl. Biol. 2017, SP1 (2017).
    Google Scholar 
    Schmidt, N. M. et al. Ungulate movement in an extreme seasonal environment: Year-round movement patterns of high-arctic muskoxen. Wildl. Biol. 22, 253–267 (2016).
    Google Scholar 
    Berteaux, D. & Lai, S. Walking on water: Terrestrial mammal migrations in the warming Arctic. Anim. Migr. 8, 65–73 (2021).
    Google Scholar 
    Gnanadesikan, G. E., Pearse, W. D. & Shaw, A. K. Evolution of mammalian migrations for refuge, breeding, and food. Ecol. Evol. 7, 5891–5900 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Best, T. L. & Henry, T. H. Lepus arcticus. Mamm. Species 1–9 (1994).Dalerum, F. et al. Exploring the diet of arctic wolves (Canis lupus arctos) at their northern range limit. Can. J. Zool. 96, 277–281 (2018).
    Google Scholar 
    Mech, L. D. Annual arctic wolf pack size related to arctic hare numbers. Arctic 60, 309–311 (2007).
    Google Scholar 
    Small, R. J., Keith, L. B. & Barta, R. M. Demographic responses of Arctic hares Lepus arcticus placed on two predominantly forested islands in Newfoundland. Ecography 15, 161–165 (1992).
    Google Scholar 
    Small, R. J., Keith, L. B. & Barta, R. M. Dispersion of introduced arctic hares (Lepus arcticus) on islands off Newfoundland’s south coast. Can. J. Zool. 69, 2618–2623 (1991).
    Google Scholar 
    Hearn, B. J., Keith, L. B. & Rongstad, O. J. Demography and ecology of the arctic hare (Lepus arcticus) in southwestern Newfoundland. Can. J. Zool. 65, 852–861 (1987).
    Google Scholar 
    Harper, F. The Mammals of Keewatin Vol. 12 (Miscellaneaous Publications, Museum of Natural History, University of Kansas, 1956).
    Google Scholar 
    Dalerum, F. et al. Spatial variation in Arctic hare (Lepus arcticus) populations around the Hall Basin. Polar Biol. 40, 2113–2118 (2017).
    Google Scholar 
    Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150 (2018).
    Google Scholar 
    CAFF. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri (2013).Desjardins, É. et al. Survey of the vascular plants of Alert (Ellesmere Island, Canada), a polar desert at the northern tip of the Americas. CheckList 17, 181–225 (2021).
    Google Scholar 
    Keith, L. B., Meslow, E. C. & Rongstad, O. J. Techniques for snowshoe hare population studies. J. Wildl. Manag. 32, 801–812 (1968).
    Google Scholar 
    Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 370, 712–715 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wikelski, M., Davidson, S. C. & Kays, R. Movebank: Archive, analysis and sharing of animal movement data. Hosted by the Max Planck Institute of Animal Behavior. http://www.movebank.org (2021).Berteaux, D. Data from: Study ‘Arctic hare Alert—Argos tracking’. MoveBank Data Repository https://doi.org/10.5441/001/1.d5d912c4 (2021).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).Christin, S., St-Laurent, M.-H. & Berteaux, D. Evaluation of Argos telemetry accuracy in the High-Arctic and implications for the estimation of home-range size. PLoS One 10, e0141999 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    QGIS Association. QGIS Geographic Information System (2021).Harris, S. et al. Home-range analysis using radio-tracking data? A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123 (1990).
    Google Scholar 
    Le Corre, M., Dussault, C. & Côté, S. D. Detecting changes in the annual movements of terrestrial migratory species: Using the first-passage time to document the spring migration of caribou. Mov. Ecol. 2, 19 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Nicholson, K. L., Arthur, S. M., Horne, J. S., Garton, E. O. & Vecchio, P. A. D. Modeling caribou movements: Seasonal ranges and migration routes of the central Arctic herd. PLoS One 11, e0150333 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Nelson, M. E., Mech, L. D. & Frame, P. F. Tracking of white-tailed deer migration by global positioning system. J. Mammal. 85, 505–510 (2004).
    Google Scholar 
    Singh, N. J. & Ericsson, G. Changing motivations during migration: Linking movement speed to reproductive status in a migratory large mammal. Biol. Lett. 10, 20140379 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Jakes, A. F. et al. Classifying the migration behaviors of pronghorn on their northern range. J. Wildl. Manag. 82, 1229–1242 (2018).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. (2015).Duong, T. ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007).
    Google Scholar 
    Gitzen, R. A., Millspaugh, J. J. & Kernohan, B. J. Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J. Wildl. Manag. 70, 1334–1344 (2006).
    Google Scholar 
    Austin, R. E. et al. Patterns of at-sea behaviour at a hybrid zone between two threatened seabirds. Sci. Rep. 9, 14720 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gillis, E. A. & Krebs, C. J. Natal dispersal of snowshoe hares during a cyclic population increase. J. Mammal. 80, 933–939 (1999).
    Google Scholar 
    Dahl, F. & Willebrand, T. Natal dispersal, adult home ranges and site fidelity of mountain hares (Lepus timidus) in the boreal forest of Sweden. Wildl. Biol. 11, 309–317 (2005).
    Google Scholar 
    Angerbjörn, A. & Flux, J. E. C. Lepus timidus. Mamm. Species 495, 1–11 (1995).
    Google Scholar 
    Smith, G. W., Stoddart, L. C. & Knowlton, F. F. Long-distance movements of black-tailed jackrabbits. J. Wildl. Manag. 66, 463 (2002).
    Google Scholar 
    Cote, J. et al. Behavioural synchronization of large-scale animal movements—Disperse alone, but migrate together?. Biol. Rev. 92, 1275–1296 (2017).PubMed 

    Google Scholar 
    Bauer, S., McNamara, J. M. & Barta, Z. Environmental variability, reliability of information and the timing of migration. Proc. R. Soc. B 287, 20200622 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Couzin, I. D. Collective animal migration. Curr. Biol. 28, R976–R980 (2018).CAS 
    PubMed 

    Google Scholar 
    Lai, S. et al. Unsuspected mobility of Arctic hares revealed by longest journey ever recorded in a lagomorph. Ecology 103(3), e3620 https://doi.org/10.1002/ecy.3620 (2022).PubMed 

    Google Scholar 
    Abrahms, B. et al. Suite of simple metrics reveals common movement syndromes across vertebrate taxa. Mov. Ecol. 5, 12 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).
    Google Scholar 
    Singh, N. J., Börger, L., Dettki, H., Bunnefeld, N. & Ericsson, G. From migration to nomadism: Movement variability in a northern ungulate across its latitudinal range. Ecol. Appl. 22, 2007–2020 (2012).PubMed 

    Google Scholar 
    Bastille-Rousseau, G. et al. Flexible characterization of animal movement pattern using net squared displacement and a latent state model. Mov. Ecol. 4, 15 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—From individual behaviors to population distributions. Oikos 117, 654–664 (2008).
    Google Scholar 
    Krebs, C. J., Boonstra, R. & Boutin, S. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America. J. Anim. Ecol. 87, 87–100 (2018).PubMed 

    Google Scholar 
    Reid, N. & Harrison, A. Post-release GPS tracking of hand-reared Irish hare Lepus timidus hibernicus leverets, Slemish, Co. Antrim, Northern Ireland. J. Wildl. Rehabil. 31, 25 (2011).
    Google Scholar 
    Weterings, M. J. A. et al. Strong reactive movement response of the medium-sized European hare to elevated predation risk in short vegetation. Anim. Behav. 115, 107–114 (2016).
    Google Scholar 
    Krebs, C. J., Boutin, S. & Boonstra, R. Ecosystem Dynamics of the Boreal Forest: The Kluane Project (Oxford University Press, 2001).
    Google Scholar 
    Feierabend, D. & Kielland, K. Movements, activity patterns, and habitat use of snowshoe hares (Lepus americanus) in interior Alaska. J. Mammal. 95, 525–533 (2014).
    Google Scholar 
    Levänen, R., Pohjoismäki, J. L. O. & Kunnasranta, M. Home ranges of semi-urban brown hares (Lepus europaeus) and mountain hares (Lepus timidus) at northern latitudes. Ann. Zool. Fenn. 56, 107–120 (2019).
    Google Scholar 
    Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. U.S.A. 105, 19052–19059 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed 

    Google Scholar 
    France, R. L. The Lake Hazen trough: A late winter oasis in a polar desert. Biol. Conserv. 63, 149–151 (1993).
    Google Scholar 
    Jenkins, D. A., Campbell, M., Hope, G., Goorts, J. & McLoughlin, P. Recent trends in abundance of Peary caribou (Rangifer tarandus pearyi) and muskoxen (Ovibos moschatus) in the Canadian Arctic Archipelago, Nunavut 233.Mech, L. Proportion of calves and adult muskoxen, Ovibos moschatus killed by gray wolves, Canis lupus, in July on Ellesmere Island (USGS Northern Prairie Wildlife Research Center, 2010).
    Google Scholar 
    Gunn, A., Miller, F., Barry, S. & Buchan, A. A near-total decline in caribou on Prince of Wales, Somerset, and Russell Islands, Canadian Arctic. Arctic 59, 1–13 (2006).
    Google Scholar 
    Edwards, J. Diet shifts in moose due to predator avoidance. Oecologia 60, 185–189 (1983).ADS 
    PubMed 

    Google Scholar 
    Gustine, D. D., Parker, K. L., Lay, R. J., Gillingham, M. P. & Heard, D. C. Calf survival of woodland caribou in a multi-predator ecosystem. Wildl. Monogr. 165, 1–32 (2006).
    Google Scholar 
    Klein, D. & Bay, C. Diet selection by vertebrate herbivores in the High Arctic of Greenland. Ecography 14, 152–155 (1991).
    Google Scholar 
    Parks Canada. Resource Description and Analysis—Ellesmere Island National Park Reserve Vol. 1 (Natural Resource Conservation Section, Parks Canada, Department of Canadian Heritage, 1994).
    Google Scholar 
    Parks Canada. Quttinirpaaq National Park of Canada: Management plan 76. https://www.pc.gc.ca/en/pn-np/nu/quttinirpaaq/info/index/gestion-management-2009 (2009).Winkler, D. W. et al. Cues, strategies, and outcomes: How migrating vertebrates track environmental change. Mov. Ecol. 2, 10 (2014).
    Google Scholar 
    Robinson, R. et al. Travelling through a warming world: Climate change and migratory species. Endang. Species Res. 7, 87–99 (2009).ADS 

    Google Scholar  More

  • in

    Measuring protected-area effectiveness using vertebrate distributions from leech iDNA

    This section provides an overview of methods. The Supplementary Information provides additional detailed descriptions of the leech collections, laboratory processing, bioinformatics pipeline, and site-occupancy modelling. Code for our bioinformatics pipeline is available at Ji72 and Yu73. Code for our site-occupancy modelling and analysis is available at Baker et al.74.Leech collectionsSamples were collected during the rainy season, from July to September 2016, by park rangers from the Ailaoshan Forestry Bureau. The nature reserve is divided into 172 non-overlapping patrol areas defined by the Yunnan Forestry Survey and Planning Institute. These areas range in size from 0.5 to 12.5 km2 (mean 3.9 ± sd 2.5 km2), in part reflecting accessibility (smaller areas tend to be more rugged). These patrol areas pre-existed our study, and are used in the administration of the reserve. The reserve is divided into six parts, which are managed by six cities or autonomous counties (NanHua, ChuXiong, JingDong, ZhenYuan, ShuangBai, XinPing) which assign patrol areas to the villages within their jurisdiction based on proximity. The villages establish working groups to carry out work within the patrol areas. Thus, individual park rangers might change every year, but the patrol areas and the villages responsible for them are fixed.Each ranger was supplied with several small bags containing tubes filled with RNAlater preservative. Rangers were asked to place any leeches they could collect opportunistically during their patrols (e.g. from the ground or clothing) into the tubes, in exchange for a one-off payment of RMB 300 ( ~USD 45) for participation, plus RMB 100 if they caught one or more leeches. Multiple leeches could be placed into each tube, but the small tube sizes generally required the rangers to use multiple tubes for their collections.A total of 30,468 leeches were collected in 3 months by 163 rangers across all 172 patrol areas. When a bag of tubes contained  More

  • in

    Subaqueous foraging among carnivorous dinosaurs

    Kelley, N. P. & Pyenson, N. D. Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science 348, aaa3716 (2015).PubMed 

    Google Scholar 
    Gutarra, S. & Rahman, I. A. The locomotion of extinct secondarily aquatic tetrapods. Biol. Rev. 97, 67–98 (2022).PubMed 

    Google Scholar 
    Owen, R. A description of a portion of the skeleton of the Cetiosaurus, a gigantic extinct saurian reptile occurring in the oolitic formations of different portions of England. Proc. Geol. Soc. Lond. 3, 457–462 (1841).
    Google Scholar 
    Cope, E. On the characters of the skull in the Hadrosauridae. Proc. Natl Acad. Nat. Sci. USA 35, 97–107 (1883).
    Google Scholar 
    Bidar, A., Demay, L. & Thomel, G. Compsognathus corallestris, une nouvelle espèce de dinosaurien théropode du Portlandien de Canjuers (Sud-Est de la France). Annales Muséum d’Histoire Naturelle de Nice 1, 9–40 (1972).
    Google Scholar 
    Norell, M. A., Makovicky, P. J. & Currie, P. J. The beaks of ostrich dinosaurs. Nature 412, 873–874 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tereschenko, V. S. Adaptive features of protoceratopoids (Ornithischia: Neoceratopsia). Paleontol. J. 42, 273–286 (2008).
    Google Scholar 
    Lee, Y. N. et al. Resolving the long-standing enigmas of a giant ornithomimosaur Deinocheirus mirificus. Nature 515, 257–260 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ibrahim, N. et al. Semiaquatic adaptations in a giant predatory dinosaur. Science 345, 1613–1616 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cau, A. et al. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395–399 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ibrahim, N. et al. Tail-propelled aquatic locomotion in a theropod dinosaur. Nature 581, 67–70 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Henderson, D. M. A buoyancy, balance and stability challenge to the hypothesis of a semi-aquatic Spinosaurus Stromer, 1915 (Dinosauria: Theropoda). PeerJ 6, e5409 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hone, D. W. E. & Holtz, T. R. Jr Evaluating the ecology of Spinosaurus: shoreline generalist or aquatic pursuit specialist? Palaeontol. Electronica 24, a03 (2021).
    Google Scholar 
    Thewissen, J. G., Cooper, L. N., Clementz, M. T., Bajpai, S. & Tiwari, B. N. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450, 1190–1194 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Houssaye, A. Bone histology of aquatic reptiles: what does it tell us about secondary adaptation to an aquatic life? Biol. J. Linn. Soc. 108, 3–21 (2013).
    Google Scholar 
    Motani, R. et al. A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature 517, 485–488 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rauhut, O. W. & Pol, D. Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs. Sci. Rep. 9, 1–9 (2019).
    Google Scholar 
    You, H. L. et al. A nearly modern amphibious bird from the Early Cretaceous of northwestern China. Science 312, 1640–1643 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, L. E. & Chin, K. Comparative osteohistology of Hesperornis with reference to pygoscelid penguins: the effects of climate and behaviour on avian bone microstructure. R. Soc. Open Sci. 1, 140245 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gatesy, S. M. & Dial, K. P. Locomotor modules and the evolution of avian flight. Evolution 50, 331–340 (1996).PubMed 

    Google Scholar 
    Amiot, R. et al. Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods. Geology 38, 139–142 (2010).ADS 
    CAS 

    Google Scholar 
    Hassler, A. et al. Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs. Proc. R. Soc. B 285, 20180197 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Larramendi, A., Paul, G. S. & Hsu, S. Y. A review and reappraisal of the specific gravities of present and past multicellular organisms, with an emphasis on tetrapods. Anat. Rec. 304, 1833–1888 (2021).
    Google Scholar 
    Charig, A. J. & Milner, A. C. Baryonyx, a remarkable new theropod dinosaur. Nature 324, 359–361 (1986).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Houssaye, A. “Pachyostosis” in aquatic amniotes: a review. Integr. Zool. 4, 325–340 (2009).PubMed 

    Google Scholar 
    Houssaye, A., Sander, M. P. & Klein, N. Adaptive patterns in aquatic amniote bone microanatomy—more complex than previously thought. Integr. Comp. Biol. 56, 1349–1369 (2016).PubMed 

    Google Scholar 
    Quemeneur, S., De Buffrenil, V. & Laurin, M. Microanatomy of the amniote femur and inference of lifestyle in limbed vertebrates. Biol. J. Linn. Soc. 109, 644–655 (2013).
    Google Scholar 
    Canoville, A., de Buffrénil, V. & Laurin, M. Microanatomical diversity of amniote ribs: an exploratory quantitative study. Biol. J. Linn. Soc. 118, 706–733 (2016).
    Google Scholar 
    Amson, E., de Muizon, C., Laurin, M., Argot, C. & de Buffrénil, V. Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proc. R. Soc. B 281, 20140192 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. B 326, 119–157 (1989).ADS 
    CAS 

    Google Scholar 
    Liem, K. F. Adaptive significance of intra-and interspecific differences in the feeding repertoires of cichlid fishes. Am. Zool. 20, 295–314 (1980).
    Google Scholar 
    Turner, A. H., Pol, D., Clarke, J. A., Erickson, G. M. & Norell, M. A. A basal dromaeosaurid and size evolution preceding avian flight. Science 317, 1378–1381 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Voeten, D. F. et al. Wing bone geometry reveals active flight in Archaeopteryx. Nat. Commun. 9, 1319 (2018).
    Google Scholar 
    Houssaye, A., Martin, F., Boisserie, J. R. & Lihoreau, F. Paleoecological inferences from long bone microanatomical specializations in Hippopotamoidea (Mammalia, Artiodactyla). J. Mamm. Evol. 28, 847–870 (2021).
    Google Scholar 
    Amson, E. & Bibi, F. Differing effects of size and lifestyle on bone structure in mammals. BMC Biol. 19, 87 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malafaia, E. et al. A new spinosaurid theropod (Dinosauria: Megalosauroidea) from the upper Barremian of Vallibona, Spain: Implications for spinosaurid diversity in the Early Cretaceous of the Iberian Peninsula. Cret. Res. 106, 104221 (2020).
    Google Scholar 
    Sereno, P. C. et al. A long-snouted predatory dinosaur from Africa and the evolution of spinosaurids. Science 282, 1298–1302 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Aureliano, T. et al. Semi-aquatic adaptations in a spinosaur from the Lower Cretaceous of Brazil. Cret. Res. 90, 283–295 (2018).
    Google Scholar 
    Barker, C. T. et al. New spinosaurids from the Wessex Formation (Early Cretaceous, UK) and the European origins of Spinosauridae. Sci. Rep. 11, 19340 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taquet, P. Géologie et Paléontologie du Gisement de Gadoufaoua (Aptien du Niger) (Éditions du Centre national de la Recherche Scientifique, 1976).Rayfield, E. J., Milner, A. C., Xuan, V. B. & Young, P. G. Functional morphology of spinosaur ‘crocodile-mimic’ dinosaurs. J. Vertebr. Paleontol. 27, 892–901 (2007).
    Google Scholar 
    Benson, R. B., Butler, R. J., Carrano, M. T. & O’Connor, P. M. Air‐filled postcranial bones in theropod dinosaurs: physiological implications and the ‘reptile’–bird transition. Biol. Rev. 87, 168–193 (2012).PubMed 

    Google Scholar 
    Reid, R. E. H. Zonal “growth rings” in dinosaurs. Mod. Geol. 15, 19–48 (1990).
    Google Scholar 
    Chinsamy, A. & Raath, M. A. Preparation of fossil bone for histological examination. Palaeont. Afr. 29, 39–44 (1992).
    Google Scholar 
    Griffin, C. T. et al. Assessing ontogenetic maturity in extinct saurian reptiles. Biol. Rev. 96, 470–525 (2021).
    Google Scholar 
    Carrano, M. T., Benson, R. B. & Sampson, S. D. The phylogeny of Tetanurae (Dinosauria: Theropoda). J. Syst. Palaeontol. 10, 211–300 (2012).
    Google Scholar 
    Ibrahim, N. et al. Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco. ZooKeys 928, 1–216 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Smyth, R. S., Ibrahim, N. & Martill, D. M. Sigilmassasaurus is Spinosaurus: a reappraisal of African spinosaurines. Cret. Res. 114, 104520 (2020).
    Google Scholar 
    Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).
    Google Scholar 
    Erickson, G. M. Assessing dinosaur growth patterns: a microscopic revolution. Trends Ecol. Evol. 20, 677–684 (2005).PubMed 

    Google Scholar 
    Hayashi, S. et al. Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). PLoS ONE 8, e59146 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Straehl, F. R., Scheyer, T. M., Forasiepi, A. M., MacPhee, R. D. E. & Sánchez-Villagra, M. R. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones. PLoS ONE 8, e69275 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houssaye, A., Tafforeau, P., de Muizon, C. & Gingerich, P. D. Transition of Eocene whales from land to sea: evidence from bone microstructure. PLoS ONE 10, e0118409 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Girondot, M. & Laurin, M. Bone profiler: a tool to quantify, model, and statistically compare bone-section compactness profiles. J. Vertebr. Paleontol. 23, 458–461 (2003).
    Google Scholar 
    De Ricqlès, A. J., Padian, K., Horner, J. R., Lamm, E. T. & Myhrvold, N. Osteohistology of Confuciusornis sanctus (Theropoda: Aves). Journ. Vertebr. Paleontol. 23, 373–386 (2003).
    Google Scholar 
    Maddison, W. P. Mesquite: a modular system for evolutionary analysis. Evolution 62, 1103–1118 (2008).
    Google Scholar 
    Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simoes, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706–709 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nesbitt, S. J. et al. The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544, 484–487 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Langer, M. C. et al. Untangling the dinosaur family tree. Nature 551, E1–E3 (2017).PubMed 

    Google Scholar 
    Brusatte, S. L., Lloyd, G. T., Wang, S. C. & Norell, M. A. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr. Biol. 24, 2386–2392 (2014).CAS 
    PubMed 

    Google Scholar 
    Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).
    Google Scholar 
    Schmitz, L. & Motani, R. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332, 705–708 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Motani, R. & Schmitz, L. Phylogenetic versus functional signals in the evolution of form–function relationships in terrestrial vision. Evolution 65, 2245–2257 (2011).PubMed 

    Google Scholar  More

  • in

    Loss of a globally unique kelp forest from Oman

    Wernberg, T., Krumhansl, K. A., Filbee-Dexter, K. & Pedersen, M. Status and trends for the world’s kelp forests. In World Seas: An Environmental Evaluation (ed. Sheppard, C.) 57–78 (Elsevier, 2019).Chapter 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).ADS 
    Article 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172. https://doi.org/10.1126/science.aad8745 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Coleman, M. A., Minne, A. J. P., Vranken, S. & Wernberg, T. Genetic tropicalisation following a marine heatwave. Sci. Rep. UK 10, 12726. https://doi.org/10.1038/s41598-020-69665-w (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790. https://doi.org/10.1073/pnas.1606102113 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00499 (2019).Article 

    Google Scholar 
    Tanaka, K., Taino, S., Haraguchi, H., Prendergast, G. & Hiraoka, M. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol. Evol. 2, 2854–2865. https://doi.org/10.1002/ece3.391 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep. UK 8, 1851. https://doi.org/10.1038/s41598-018-20009-9 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Graham, M. H., Kinlan, B. P., Druehl, L. D., Garske, L. E. & Banks, S. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc. Natl. Acad. Sci. 104, 16576. https://doi.org/10.1073/pnas.0704778104 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marzinelli, E. M. et al. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS ONE 10, e0118390. https://doi.org/10.1371/journal.pone.0118390 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varela, R., Rodríguez-Díaz, L., de Castro, M. & Gómez-Gesteira, M. Influence of Eastern Upwelling systems on marine heatwaves occurrence. Glob. Planet Change 196, 103379. https://doi.org/10.1016/j.gloplacha.2020.103379 (2021).Article 

    Google Scholar 
    Assis, J. et al. Deep reefs are climatic refugia for genetic diversity of marine forests. J. Biogeogr. 43, 833–844. https://doi.org/10.1111/jbi.12677 (2016).Article 

    Google Scholar 
    Lourenço, C. R. et al. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 43, 1595–1607. https://doi.org/10.1111/jbi.12744 (2016).Article 

    Google Scholar 
    Vranken, S. et al. Genotype-environment mismatch of kelp forests under climate change. Mol. Ecol. 30, 3730–3746. https://doi.org/10.1111/mec.15993 (2021).Article 
    PubMed 

    Google Scholar 
    Wood, G. et al. Genomic vulnerability of a dominant seaweed points to future-proofing pathways for Australia’s underwater forests. Glob. Change Biol. 27, 2200–2212. https://doi.org/10.1111/gcb.15534 (2021).ADS 
    Article 

    Google Scholar 
    Wernberg, T. et al. Biology and ecology of the globally significant kelp Ecklonia radiata. Oceanogr. Mar. Biol.: An Annu. Rev. 57, 265–324 (2019).Article 

    Google Scholar 
    Durrant, H. M. S., Barrett, N. S., Edgar, G. J., Coleman, M. A. & Burridge, C. P. Shallow phylogeographic histories of key species in a biodiversity hotspot. Phycologia 54, 556–565. https://doi.org/10.2216/15-24.1 (2015).Article 

    Google Scholar 
    Rothman, M. D. et al. A molecular investigation of the genus Ecklonia (Phaeophyceae, Laminariales) with special focus on the southern hemisphere. J. Phycol. 51, 236–246. https://doi.org/10.1111/jpy.12264 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Starko, S. et al. A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem. Mol. Phylogenetics Evol. 136, 138–150. https://doi.org/10.1016/j.ympev.2019.04.012 (2019).Article 

    Google Scholar 
    Shepherd, S. A. & Edgar, G. J. In (eds Shepherd, S. A. & Edgar, G. J.) (CSIRO Publishing, 2013).Guiry, M. D. et al. AlgaeBase: An on-line resource for algae. Cryptogam. Algol. 35, 105–115, 111 (2014).Barratt, L., Ormond, R. F. G. & Wrathall, T. J. Ecological studies of southern Oman kelp communities. Part 1. Ecology and productivity of the sublittoral algae Ecklonia radiata and Sargassopsis zanardinii (Council for the conservation of the environment and water resources, and regional organisation for the protection of the marine environment, Muscat and Kuwait, 1986).Barratt, L. et al. An ecological study of the rocky shores on the south coast of Oman. Report of IUCN to UNEP’s regional seas programme, Vol. 104 (Tropical Marine Research Unit, York, 1984).Klaus, R. & Turner, J. R. The marine biotopes of the Socotra Archipelago. Fauna Arab. 20, 45–116 (2004).
    Google Scholar 
    Claereboudt, M. R. Oman. In World Seas: An Environmental Evaluation, (ed. Sheppard, C.) 25–47 (Academic Press, 2019).Savidge, G., Lennon, H. J. & Matthews, A. D. A shore based survey of oceanographic variables in the Dhofar region of southern Oman, August–October 1985. In Ecological Studies of Southern Oman Kelp Communities. Summary Report, 4–21. ROPME/GC-6/001 (1988).Hatcher, B. G., Kirkman, H. & Wood, W. F. Growth of the kelp Ecklonia-radiata near the northern limit of its range in Western-Australia. Mar. Biol. 95, 63–73. https://doi.org/10.1007/Bf00447486 (1987).Article 

    Google Scholar 
    Veenhof, R. et al. Kelp gametophytes in changing oceans. Oceanogr. Mar. Biol. Annu. Rev. 60 (in press).Goes, J. I., Thoppil, P. G., Gomes, H. D. R. & Fasullo, J. T. Warming of the Eurasian landmass is making the Arabian sea more productive. Science 308, 545. https://doi.org/10.1126/science.1106610 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Roxy, M. K. et al. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett. 43, 826–833. https://doi.org/10.1002/2015GL066979 (2016).ADS 
    Article 

    Google Scholar 
    Watanabe, T. K., Watanabe, T., Yamazaki, A., Pfeiffer, M. & Claereboudt, M. R. Oman coral δ18O seawater record suggests that Western Indian Ocean upwelling uncouples from the Indian Ocean Dipole during the global-warming hiatus. Sci. Rep. UK 9, 1887. https://doi.org/10.1038/s41598-018-38429-y (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Watanabe, T. K. et al. Past summer upwelling events in the Gulf of Oman derived from a coral geochemical record. Sci. Rep. UK 7, 4568. https://doi.org/10.1038/s41598-017-04865-5 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Edwards, M. & Estes, J. A. Catastrophe, recovery and range limitation in NE Pacific kelp forests: a large-scale perspective. Mar. Ecol. Prog. Ser. 320, 79–87 (2006).ADS 
    Article 

    Google Scholar 
    Glynn, P. W. Monsoonal upwelling and episodic Acanthaster predation as probable controls of coral reef distribution and community structure in Oman, Indian Ocean. Atoll Res. Bull. 379, 1–66 (1993).Article 

    Google Scholar 
    Hiscock, S., Barratt, L. & Ormond, R. The marine algae of Dhofar, Oman-an upwelling system in the Arabian Sea. Br. Phycol. J. 19, 194 (1984).Article 

    Google Scholar 
    Kirkman, H. The 1st year in the life-history and the survival of the juvenile marine macrophyte, Ecklonia-radiata (Turn) J Agardh. J. Exp. Mar. Biol. Ecol. 55, 243–254. https://doi.org/10.1016/0022-0981(81)90115-5 (1981).Article 

    Google Scholar 
    Maeda, T., Kawai, T., Nakaoka, M. & Yotsukura, N. Effective DNA extraction method for fragment analysis using capillary sequencer of the kelp, Saccharina. J. Appl. Phycol. 25, 337–347 (2013).CAS 
    Article 

    Google Scholar 
    Voisin, M., Engel, C. R. & Viard, F. Differential shuffling of native genetic diversity across introduced regions in a brown alga: Aquaculture vs. maritime traffic effects. Proc. Natl. Acad. Sci. USA 102, 5432. https://doi.org/10.1073/pnas.0501754102 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lane, C. E., Lindstrom, S. C. & Saunders, G. W. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol. Phylogenetics Evol. 44, 634–648 (2007).CAS 
    Article 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, M. et al. NCBI BLAST: A better web interface. Nucl. Acids Res. 36, W5–W9 (2008).CAS 
    Article 

    Google Scholar 
    Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucl. Acids Res. 44, W232–W235 (2016).CAS 
    Article 

    Google Scholar 
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    Article 

    Google Scholar 
    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008. https://doi.org/10.1093/sysbio/syw037 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS 
    Article 

    Google Scholar 
    Rambaut, A. & Drummond, A. FigTree: Tree Figure Drawing Tool, Version 1.2. 2 (Institute of Evolutionary Biology, University of Edinburgh, 2008).
    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Leigh, J. W. & Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. 113, 13791–13796. https://doi.org/10.1073/pnas.1610725113 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, G. et al. Using genetics to test provenance effects and to optimise seaweed restoration. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13707 (2020).Article 

    Google Scholar 
    Wynne, M. J. A checklist of the benthic marine algae of the Northern Arabian Sea coast of the Sultanate of Oman. Bot. Mar. 61, 481–498. https://doi.org/10.1515/bot-2018-0035 (2018).Richards, G. & Wynne, M. J. 57 (2003).Schils, T. Marine Plant Communities of Upwelling Areas Within the Arabian Sea: A Taxonomic, Ecological ABD Biogeographic Case Study on the Marine Flora of the Socotra Archipelago (Yemen) and Masirah Island (Oman). PhD thesis (2002).Schils, T. & Coppejans, E. Phytogeography of upwelling areas in the Arabian Sea. J. Biogeogr. 30, 1339–1356. https://doi.org/10.1046/j.1365-2699.2003.00933.x (2003).Article 

    Google Scholar 
    Schils, T. & Wilson, S. C. temperature threshold as a biogeographic barrier in northern Indian Ocean Macroalgae. J. Phycol. 42, 749–756. https://doi.org/10.1111/j.1529-8817.2006.00242.x (2006).Article 

    Google Scholar 
    Wiggert, J. D., Hood, R. R., Banse, K. & Kindle, J. C. Monsoon-driven biogeochemical processes in the Arabian Sea. Prog. Oceanogr. 65, 176–213. https://doi.org/10.1016/j.pocean.2005.03.008 (2005).ADS 
    Article 

    Google Scholar 
    Serisawa, Y., Imoto, Z., Ishikawa, T. & Ohno, M. Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish. Sci. 70, 189–191. https://doi.org/10.1111/j.0919-9268.2004.00788.x (2004).CAS 
    Article 

    Google Scholar 
    Nelson, W., Duffy, C., Trnski, T. & Stewart, R. Mesophotic Ecklonia radiata (Laminariales) at Rangitāhua, Kermadec Islands, New Zealand. Phycologia 57, 534–538. https://doi.org/10.2216/18-9.1 (2018).Article 

    Google Scholar 
    Richmond, S. & Stevens, T. Classifying benthic biotopes on sub-tropical continental shelf reefs: How useful are abiotic surrogates?. Estuar. Coast. Shelf Sci. 138, 79–89. https://doi.org/10.1016/j.ecss.2013.12.012 (2014).ADS 
    Article 

    Google Scholar 
    Davis, T. R., Champion, C. & Coleman, M. A. Climate refugia for kelp within an ocean warming hotspot revealed by stacked species distribution modelling. Mar. Environ. Res. 166, 105267. https://doi.org/10.1016/j.marenvres.2021.105267 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jooste, C. M., Oliver, J., Emami-Khoyi, A. & Teske, P. R. Is the Wild Coast in eastern South Africa a distinct marine bioregion?. Helgol. Mar. Res. 72, 6. https://doi.org/10.1186/s10152-018-0509-3 (2018).Article 

    Google Scholar 
    Bolton, J. J. et al. Where is the western limit of the tropical Indian Ocean seaweed flora? An analysis of intertidal seaweed biogeography on the east coast of South Africa. Mar. Biol. 144, 51–59. https://doi.org/10.1007/s00227-003-1182-9 (2004).Article 

    Google Scholar 
    Bolton, J. J. The biogeography of kelps (Laminariales, Phaeophyceae): A global analysis with new insights from recent advances in molecular phylogenetics. Helgol. Mar. Res. 64, 263–279. https://doi.org/10.1007/s10152-010-0211-6 (2010).ADS 
    Article 

    Google Scholar 
    Bolton JJ, De Clerck O, John DM (2003). Seaweed diversity patterns in Sub-Saharan Africa. In Proceedings of the Marine Biodiversity in Sub-Saharan Africa: The Known and the Unknown. (eds. Decker, C. et al. ) Cape Town, South Africa, pp. 229–241 (2003).Wood, M. et al. Zanzibar and Indian Ocean trade in the first millennium CE: The glass bead evidence. Archaeol. Anthropol. Sci. 9, 879–901. https://doi.org/10.1007/s12520-015-0310-z (2017).Article 

    Google Scholar 
    Pollard, E., Bates, R., Ichumbaki, E. B. & Bita, C. Shipwreck evidence from Kilwa, Tanzania. Int. J. Naut. Archaeol. 45, 352–369. https://doi.org/10.1111/1095-9270.12185 (2016).Article 

    Google Scholar 
    Staples, M. In Oman. A Maritime History (eds Al Salimi, A. & Staples, E.) Chap. 4, 81–116 (Georg Olms Verlag, 2017).Assis, J. et al. Past climate changes and strong oceanographic barriers structured low-latitude genetic relics for the golden kelp Laminaria ochroleuca. J. Biogeogr. 45, 2326–2336. https://doi.org/10.1111/jbi.13425 (2018).Article 

    Google Scholar 
    Wade, R. et al. Macroalgal germplasm banking for conservation, food security, and industry. PLoS Biol. 18, e3000641. https://doi.org/10.1371/journal.pbio.3000641 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coleman, M. A. et al. Restore or redefine: Future trajectories for restoration. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00237 (2020).Article 

    Google Scholar  More

  • in

    Mandible shape variation and feeding biomechanics in minks

    This is the first study analyzing mandible shape in both mink species and, together with a previous study on their cranial shape38, it has revealed how small morphological differences in highly similar species can lead to substantial biomechanical differences (see breakdown below). As with cranial shape, mandible shape in minks is influenced by the complex interaction of size and sexual dimorphism both at the inter- and intraspecific levels. However, while in cranial shape both species had divergent shape allometries and parallel interspecific sexual allometries, the opposite was true for mandible shape.Differences in mandible shape between European and American mink were summarized by PC1 (Fig. 2, Fig. S1) and can be mainly related to muscle size and jaw biomechanics (i.e., in-levers and out-levers). The relatively taller and slightly wider coronoid process of European minks suggests a relatively larger temporalis muscle, while the anteriorly expanded masseteric fossa of American mink is indicative of a relatively larger masseter complex17,22,25. The relatively enlarged angular process of European mink provides a larger attachment area for the superficial masseter, with both mink species having a distinctive fossa on the lateral side of the angular process where this muscle attaches. This angular fossa is not present in European polecats (Gálvez-López, pers. obs.), part of the sister clade to European mink41.Regarding jaw biomechanics, the particular morphology of the American mink illustrates the compromise between maximizing both bite force efficiency and increased gape. The MAs for all masticatory muscles were higher in European mink due to their relatively longer in-levers (and also shorter out-levers if measured on PC1 configurations), with the exception of the MA of the deep masseter which was considerably higher in American mink (Table S2; Fig. 1D). These findings indicate that American mink exhibit features that allow them to produce larger forces at wide gape, which is particularly useful for holding and killing terrestrial vertebrates22,42. In agreement with this, a short moment arm of the superficial masseter (as observed in American mink) has been associated with increased gape in other mammals43. It is also worth noting that low MAs for the posterior temporalis and superficial masseter have also been associated with fish capture, as they indicate a relatively longer mandible relative to the muscle in-levers, which in turn allows the mouth to close faster when trying to catch elusive prey underwater21. In contrast, the characteristic features of European mink are indicative of stronger bites at the carnassials, which would allow them to cut through relatively tougher tissues and also to crush harder objects (e.g. shells of aquatic prey). Favoring carnassial over anterior bites could also be advantageous to feeding on fish. Mink catch fish underwater by grabbing them by the fins or back with their anterior teeth, and then dragging them to the surface where they are processed using cheek (carnassial) bites (Gálvez-López, pers. obs.).In our previous study on cranial shape in mink38, morphological differences between both species indicated relatively larger muscle volumes overall in the American mink (temporalis: more developed sagittal and nuchal crests, narrower braincase; masseter: longer and more curved zygomatic arches, larger infratemporal fossa), which suggested that bite forces both at the anterior dentition and at the carnassials were larger in this species. However, when combined with the MA results from this study on mandible shape, the relationship between muscle volume and force production becomes less straightforward. In the case of the European mink, the relatively smaller temporalis has a larger attachment site on the mandible (i.e., a broader and taller coronoid) and becomes more efficient (i.e., has higher MAs) due to the relatively longer in-lever. Similarly, in the American mink the effective length of the superficial masseter is increased by the marked curvature of the zygomatic arches, which mitigates the dorsal displacement of the angular process. However, the efficiency of the relatively larger temporalis is diminished by a smaller coronoid (i.e., reduced attachment area and shorter in-levers). The remaining differences in cranial morphology align with differences in mandible shape. Namely, the relatively broader zygomatic arches of the European mink support a strong superficial masseter, while the larger infratemporal fossae of American mink account for their enlarged deep masseter. On a final note, another finding common to both cranial and mandible shape was the relatively larger crushing dentition of American mink.Thus, after combining the results of cranial and mandible shape, it appears that, while the characteristic features of European mink indeed allow stronger carnassial bites, American mink present morphological indicators of both strong killing bites at wide gapes and powerful carnassial bites with a marked crushing component.The allometric effect on mandible size common to both species was represented by PC2 (Fig. 2, Fig. S3), which complements the common allometric trend recovered for both mink species in cranial shape38. The relative expansion of the masseteric fossa and the angular process with increasing size suggests that larger mink present a larger masseter complex. However, most of the allometric shape changes are related to muscle in-levers and out-levers. With increasing size, the length of both the out-lever at the anterior teeth and the in-levers of its related muscles (anterior temporalis, deep masseter) increases (Table S2), but the in-levers scale faster than the out-lever (Table S2). Thus, the mechanical advantages of both muscles at the anterior teeth also increase with size (Table S2), indicating that larger mink have markedly stronger and more efficient killing bites (particularly true for the deep masseter, which also becomes larger with size). This, together with their relatively larger anterior dentition (both in the mandible and the cranium) and taller anterior corpus, can be related to feeding on larger prey as size increases (i.e., stronger bites to perforate tougher skulls and hold onto stronger struggling prey, which would also require more robust teeth and corpora to resist the stresses placed on them). Similar features have been described for felids18, which also kill prey in this way22,32.Note, however, that one of the shape changes along PC2 does not accurately reflect the common allometric pattern: the lever arm of the superficial masseter, which slightly decreases along PC2 (Fig. 2; Table S2) and results in a decrease of the mechanical advantage of the superficial masseter and hence bite force at the carnassials along this axis (Table S2). In contrast, this lever arm significantly increases with size in the original specimens (Table S2), in agreement with the common allometric trend in cranial shape suggesting stronger bites at all teeth with increasing size38. A likely explanation for this phenomenon is that the common allometric trend is being confounded with interspecific shape differences, as American mink have significantly shorter superficial masseter in-levers than European mink (Fig. 1F; Table S2) yet their males are significantly larger than all other specimens (Fig. 1A). As mentioned above, the relative decrease in MA might reflect the trade-off between producing strong bite forces at the anterior teeth and having a wider gape to capture larger prey43, both of which are heavily supported by other morphological features in this common allometric trend.Sexual dimorphism in mandible shape was significant both within each species, and when grouping sexes from both species together. In her study of Palearctic mustelids, Romaniuk28 also found evidence for interspecific sexual dimorphism in mandible shape, but within species it was only significant for the Siberian weasel (Mustela sibirica). The different results for the European mink in that study might be related to its smaller sample. Note, however, that Hernández-Romero et al.40 did not find evidence for sexual dimorphism in mandible shape within Neotropical otters (Lontra longicaudis) even though their sample sizes were equivalent to those in the present study.Overall, the results of the present study reveal that mandible shape differences between males and females are the consequence of a complex interaction between sex and size at both inter- and intraspecific levels. For instance, each sex in each species has a mandible shape significantly different from each other (Table 1), but allometric shape changes within each of them are similar (except maybe female American mink; Fig. S5A). Additionally, while trajectory analysis indicates that the degree of sexual dimorphism in mandible shape is similar within each species, the specific differences between sexes are different in each species (i.e., same magnitude, different orientation; Table 2, Fig. S5B). While at the interspecific level, male and female mandible shapes change differently with increasing size even though the change per unit size is similar in both sexes (Tables 1, 2; Fig. S5C,D), and some of the allometric changes are common to both species and sexes (see section above; PC2 in Fig. 2). Finally, another set of shape changes related to sexual dimorphism and common to both species are those related to sexual dimorphism in mandible size, illustrated by PC3 (Figs. 2, Fig. S4).Shape changes related to sexual dimorphism in size are represented along PC3 and can be related to an overall increase in bite force (i.e., at all teeth), as higher scores on this axis correspond to increased muscle attachment areas and longer in-levers (taller and wider coronoid, anteriorly expanded masseteric fossa, ventrally expanded angular process), shorter out-levers (particularly at the anterior teeth), and a more robust corpus (dorsoventrally and mediolaterally expanded). This interpretation of shape changes along PC3 is supported by the results of the ANOVAs on the lever arms and MAs measured on the PC3 configurations (Table S2). These variables were only related to sex and size, with female mink having longer out-levers and male mink presenting longer in-levers and higher MAs, while out-levers decreased with increasing size and in-levers and MAs increased in both sexes (no significant interaction between sex and size indicates parallel allometric trajectories in both sexes). This trend is consistent with the common sexual allometry described for cranial shape, which suggested that larger males have bigger masticatory muscles than smaller females and thus produce higher bite forces38. Additionally, even though the relative length of the toothrow decreases, the size of the canine markedly increases and there is no change in molar size or the relative proportions in its shearing and crushing regions. Although this might be interpreted as reinforcing the canines to cope with killing larger prey while maintaining an otherwise similar dietary regime20, it is worth noting that larger canines have been long described as a feature of sexual size dimorphism in mustelids19,44,45.In terms of interspecific differences in sexual allometry, with increasing size the following shape changes were observed in females but not in males (Fig. S5C): a dorsoventrally more robust corpus, a ventral expansion of the angular process, longer in-levers for all masticatory muscles, larger incisors, and an increase in the shearing portion of m1 relative to the crushing portion. Most of these shape changes are similar to those described for PC3, which suggests that the female interspecific allometry bridges the bite force gap caused by sexual dimorphism in size. The changes to the female dentition suggest a shift in diet from crushing tough food items (e.g. aquatic invertebrates) towards slicing meat, which makes sense since these changes occur simultaneously with the common allometric trend (related to improved capabilities for killing larger vertebrate prey). However, as noted earlier, the increased shearing component is also advantageous for a piscivorous diet. Shape changes in male mandibles not observed in females seem to emphasize the common allometric trend (i.e., stronger killing bite at larger gapes) (Fig. S5D): a wider coronoid process for more muscle attachment, a dorsally displaced angular process to allow wider gapes, and mediolateral expansion of the corpus to increase its strength. Regarding their dentition, the opposite trend to females was observed (i.e., slightly smaller anterior teeth and a longer crushing molar portion), suggesting a larger durophagous component in the diet of larger males.As expected, variation in mandible shape could be linked to potential dietary differences between European and American mink, and also between sexes. In summary, the results of the present study show that:

    American mink are better equipped for preying on terrestrial vertebrates, as they can achieve relatively larger gapes and their mandibles are able to produce larger forces during the killing bite (i.e., at the anterior teeth and with an open mouth).

    European mink, on the other hand, can produce relatively stronger bites at the carnassials, suggesting that they rely more on tougher prey and/or fish.

    Regardless of species and sex, morphological features in larger mink demonstrate increased capabilities for feeding on larger terrestrial prey (stronger killing bites and more robust anterior teeth and corpora to resist the stresses caused by struggling prey).

    Due to their larger size, male mink of both species have stronger bites than females at both the anterior teeth and the carnassials. However, with increasing size, females bridge the gap by developing relatively stronger bites overall while shifting their diet from tougher or harder prey (probably aquatic invertebrates) towards less mechanically demanding food items (e.g. terrestrial vertebrates and/or fish). In contrast, increasing size in males leads to even more specialization towards feeding on larger terrestrial prey while tough items become more relevant in their diets (probably crushing bones of small prey).

    These findings confirm our original predictions based on previous results on cranial shape differences, but do they agree with observed dietary preferences in minks? Diet studies in American mink are numerous, and provide a wide picture of seasonal and regional variation8,11 as well as intraspecific dietary competition6,7,12. However, studies on European mink diet are scarcer9,14, particularly those comparing the sexes13. Additionally, a few studies have compared diets of sympatric European and American mink10,15. All these studies can be summarized as: A, male American mink favor medium-sized mammals and birds usually heavier than themselves; B, female American mink favor aquatic prey, but are displaced towards small mammals and birds when seasonal changes in prey availability shift the males’ diet towards aquatic prey; C, European mink favor aquatic prey, particularly fish and crayfish; but D, they are displaced towards amphibians and small mammals when sympatric with American mink. From these, our results on mandible shape variation support A and somewhat B and C, but provide no information on the interspecific competition scenario or on potential seasonal or local dietary differences. Additionally, there is no information on size-related dietary changes in either species that could validate our findings on sexual allometry in mandible shape. Thus, while mandible shape is very useful for identifying broad dietary indicators even between highly similar species, its ability to provide accurate information on their potential prey is limited.As a final note on mink diets, our previous study on cranial shape38, suggested a gradient in muscle force (and potential dietary range) from female European mink to male American mink. Based on those results and studies on social interactions between and within species35,46, we hypothesized that competition between both mink species could be displacing female European mink towards narrower and poorer diets, which could affect their survivability and ability to successfully reproduce. Fortunately, the results of the present study not only propose that there might be less overlap in diets between species and sexes than suggested by dietary studies7,10,13,15, but also indicate that dietary competition seems to be higher for small terrestrial vertebrates, not aquatic prey (on which female European mink are particularly well equipped to feed). More

  • in

    Genetic variation in released gametes produces genetic diversity in the offspring of the broadcast spawning coral Acropora tenuis

    Barton, N. Evolutionary biology. The geometry of adaptation. Nature 395, 751–752. https://doi.org/10.1038/27338 (1998).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Otto, S. P. & Lenormand, T. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3, 252–261. https://doi.org/10.1038/nrg761 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Becks, L. & Agrawal, A. F. Higher rates of sex evolve in spatially heterogeneous environments. Nature 468, 89–92. https://doi.org/10.1038/nature09449 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. Biol. Sci. 276, 2893–2901. https://doi.org/10.1098/rspb.2009.0591 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422. https://doi.org/10.1126/science.1204794 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13 (2000).CAS 
    Article 

    Google Scholar 
    Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trend Ecol. Evol. 10, 228–231 (1995).CAS 
    Article 

    Google Scholar 
    Baird, A., Guest, J. & Willis, B. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571. https://doi.org/10.1146/Annurev.Ecolsys.110308.120220 (2009).Article 

    Google Scholar 
    Wei, N. V. et al. Reproductive isolation among Acropora species (Scleractinia: Acroporidae) in a marginal coral assemblage. Zool. Stud. 51, 85–92 (2012).
    Google Scholar 
    Kitanobo, S., Isomura, N., Fukami, H., Iwao, K. & Morita, M. The reef-building coral Acropora conditionally hybridize under sperm limitation. Biol. Lett. 12, 20160511. https://doi.org/10.1098/rsbl.2016.0511 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mercier, A. & Hamel, J.-F. Synchronized breeding events in sympatric marine invertebrates: Role of behavior and fine temporal windows in maintaining reproductive isolation. Behav. Ecol. Sociobiol. 64, 1749–1765 (2010).Article 

    Google Scholar 
    Levitan, D. R. et al. Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58, 308–323 (2004).Article 

    Google Scholar 
    Willis, B. L., Babcock, R. C., Harrison, P. L. & Wallace, C. C. Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 16, S53–S65 (1997).Article 

    Google Scholar 
    Nozawa, Y., Isomura, N. & Fukami, H. Influence of sperm dilution and gamete contact time on the fertilization rate of scleractinian corals. Coral Reefs 34, 1199–1206. https://doi.org/10.1007/s00338-015-1338-3 (2015).ADS 
    Article 

    Google Scholar 
    Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: Sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417. https://doi.org/10.2307/1542017 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Coma, R. & Lasker, H. R. Small-scale heterogeneity of fertilization success in a broadcast spawning octocoral. J. Exp. Mar. Biol. Ecol. 214, 107–120. https://doi.org/10.1016/S0022-0981(97)00017-8 (1997).Article 

    Google Scholar 
    Teo, A. & Todd, P. A. Simulating the effects of colony density and intercolonial distance on fertilisation success in broadcast spawning scleractinian corals. Coral Reefs 37, 891–900. https://doi.org/10.1007/s00338-018-1715-9 (2018).ADS 
    Article 

    Google Scholar 
    Marshall, D. J. In situ measures of spawning synchrony and fertilization success in an intertidal, free-spawning invertebrate. Mar. Ecol. Prog. Ser. 236, 113–119 (2002).ADS 
    Article 

    Google Scholar 
    Babcock, R. C., Mundy, C. N. & Whitehead, D. Sperm diffusion-models and in-situ confirmation of long-distance fertilization in the free-spawning asteroid Acanthaster planci. Biol. Bull. 186, 17–28 (1994).CAS 
    Article 

    Google Scholar 
    Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999. An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706. https://doi.org/10.4319/lo.2001.46.3.0704 (2001).ADS 
    Article 

    Google Scholar 
    Levitan, D. R., Fogarty, N. D., Jara, J., Lotterhos, K. E. & Knowlton, N. Genetic, spatial, and temporal components of precise spawning synchrony in reef building corals of the Montastraea annularis species complex. Evolution 65, 1254–1270. https://doi.org/10.1111/j.1558-5646.2011.01235.x (2011).Article 
    PubMed 

    Google Scholar 
    Fukami, H., Omori, M., Shimoike, K., Hayashibara, T. & Hatta, M. Ecological and genetic aspects of reproductive isolation by different spawning times in Acropora corals. Mar. Biol. 142, 679–684. https://doi.org/10.1007/S00227-002-1001-8 (2003).Article 

    Google Scholar 
    Morita, M. et al. Reproductive strategies in the intercrossing corals Acropora donei and A. tenuis to prevent hybridization. Coral Reefs 38, 1211–1223. https://doi.org/10.1007/s00338-019-01839-z (2019).ADS 
    Article 

    Google Scholar 
    Shinzato, C. et al. Development of novel, cross-species microsatellite markers for Acropora corals using next-generation sequencing technology. Front. Mar. Sci. 1, 11 (2014).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Albright, R. & Mason, B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS One 8, e56468. https://doi.org/10.1371/journal.pone.0056468 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iguchi, A., Morita, M., Nakajima, Y., Nishikawa, A. & Miller, D. In vitro fertilization efficiency in coral Acropora digitifera. Zygote 17, 225–227. https://doi.org/10.1017/S096719940900519X (2009).Article 
    PubMed 

    Google Scholar 
    Morita, M. et al. Eggs regulate sperm flagellar motility initiation, chemotaxis and inhibition in the coral Acropora digitifera, A. gemmifera and A. tenuis. J. Exp. Biol. 209, 4574–4579. https://doi.org/10.1242/jeb.02500 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chan, W. Y., Hoffmann, A. A. & van Oppen, M. J. H. Hybridization as a conservation management tool. Conserv. Lett. https://doi.org/10.1111/conl.12652 (2019).Article 

    Google Scholar  More

  • in

    Enhancing multiple scales of seafloor biodiversity with mussel restoration

    Lees, A. C., Attwood, S., Barlow, J. & Phalan, B. Biodiversity scientists must fight the creeping rise of extinction denial. Nat. Ecol. Evol. 4, 1440–1443 (2020).PubMed 

    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
    Google Scholar 
    Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. 2, 775–781 (2018).PubMed 

    Google Scholar 
    Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 

    Google Scholar 
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 6219 (2015).
    Google Scholar 
    Sala, E. & Knowlton, N. Global marine biodiversity trends. Annu. Rev. Environ. Resour. 31, 93–122 (2006).
    Google Scholar 
    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beaumont, N. et al. Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach. Mar. Pollut. Bull. 54, 253–265 (2007).CAS 
    PubMed 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    Turpie, J. K. The existence value of biodiversity in South Africa: How interest, experience, knowledge, income and perceived level of threat influence local willingness to pay. Ecol. Econ. 46, 199–216 (2003).
    Google Scholar 
    Ruiz-Frau, A., Hinz, H., Edwards-Jones, G. & Kaiser, M. Spatially explicit economic assessment of cultural ecosystem services: Non-extractive recreational uses of the coastal environment related to marine biodiversity. Mar. Policy 38, 90–98 (2013).
    Google Scholar 
    Thrush, S. F., Gray, J. S., Hewitt, J. E. & Ugland, K. I. Predicting the effects of habitat homogenization on marine biodiversity. Ecol. Appl. 16, 1636–1642 (2006).PubMed 

    Google Scholar 
    Gillies, C. L. et al. Australian shellfish ecosystems: Past distribution, current status and future direction. PLoS ONE 13, e0190914 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Commito, J. A., Como, S., Grupe, B. M. & Dow, W. E. Species diversity in the soft-bottom intertidal zone: Biogenic structure, sediment, and macrofauna across mussel bed spatial scales. J. Exp. Mar. Biol. Ecol. 366, 70–81 (2008).
    Google Scholar 
    Tokeshi, M. Species Coexistence: Ecological and Evolutionary Perspectives (Wiley, Hoboken, 2009).
    Google Scholar 
    Paul, L. J. A history of the Firth of Thames dredge fishrey for mussels: Use and abuse of a coastal resource. Report No. 94, (Wellington, New Zealand, 2012).Enderlein, P. & Wahl, M. Dominance of blue mussels versus consumer-mediated enhancement of benthic diversity. J. Sea Res. 51, 145–155 (2004).ADS 

    Google Scholar 
    Lejart, M. & Hily, C. Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal of the Bay of Brest, France. J. Sea Res. 65, 84–93 (2011).ADS 

    Google Scholar 
    Norling, P. & Kautsky, N. Patches of the mussel Mytilus sp. are islands of high biodiversity in subtidal sediment habitats in the Baltic Sea. Aquat. Biol. 4, 75–87 (2008).
    Google Scholar 
    Norling, P., Lindegarth, M., Lindegarth, S. & Strand, Å. Effects of live and post-mortem shell structures of invasive Pacific oysters and native blue mussels on macrofauna and fish. Mar. Ecol. Prog. Ser. 518, 123–138 (2015).ADS 

    Google Scholar 
    McLeod, I., Parsons, D., Morrison, M., Van Dijken, S. & Taylor, R. Mussel reefs on soft sediments: A severely reduced but important habitat for macroinvertebrates and fishes in New Zealand. N. Z. J. Mar. Freshw. Res. 48, 48–59 (2014).CAS 

    Google Scholar 
    Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N. & Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71, 648–665 (2014).
    Google Scholar 
    zu Ermgassen, P. S., Grabowski, J. H., Gair, J. R. & Powers, S. P. Quantifying fish and mobile invertebrate production from a threatened nursery habitat. J. Appl. Ecol. 53, 596–606 (2016).
    Google Scholar 
    Grabowski, J. H. The influence of trophic interactions, habitat complexity, and landscape setting on community dynamics and restoration of oyster reefs. Ph.D., The University of North Carolina at Chapel Hill (2002).Harding, J. M., Allen, D. M., Haffey, E. R. & Hoffman, K. M. Site fidelity of oyster reef blennies and gobies in saltmarsh tidal creeks. Estuaries Coasts 43, 409–423 (2020).CAS 

    Google Scholar 
    Parsons, D. et al. Snapper (Chrysophrys auratus): A review of life history and key vulnerabilities in New Zealand. N. Z. J. Mar. Freshw. Res. 48, 256–283 (2014).
    Google Scholar 
    Callier, M. D., Richard, M., McKindsey, C. W., Archambault, P. & Desrosiers, G. Responses of benthic macrofauna and biogeochemical fluxes to various levels of mussel biodeposition: An in situ “benthocosm” experiment. Mar. Pollut. Bull. 58, 1544–1553. https://doi.org/10.1016/j.marpolbul.2009.05.010 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ysebaert, T., Hart, M. & Herman, P. M. Impacts of bottom and suspended cultures of mussels Mytilus spp. on the surrounding sedimentary environment and macrobenthic biodiversity. Helgol. Mar. Res. 63, 59–74 (2009).ADS 

    Google Scholar 
    Sea, M. A., Thrush, S. F. & Hillman, J. R. Environmental predictors of sediment denitrification rates within restored green-lipped mussel (Perna canaliculus) beds. Mar. Ecol. Prog. Ser. 667, 1–13 (2021).ADS 
    CAS 

    Google Scholar 
    Hillman, J. R., O’Meara, T. A., Lohrer, A. M., & Thrush, S. F. Influence of restored mussel reefs on denitrification in
    marine sediments. J. Sea Res. 175, 102099 (2021).
    Google Scholar 
    Bacheler, N. M. et al. Comparison of trap and underwater video gears for indexing reef fish presence and abundance in the southeast United States. Fish. Res. 143, 81–88 (2013).
    Google Scholar 
    Wells, R. D., Boswell, K. M., Cowan, J. H. Jr. & Patterson, W. F. III. Size selectivity of sampling gears targeting red snapper in the northern Gulf of Mexico. Fish. Res. 89, 294–299 (2008).
    Google Scholar 
    Emslie, M. J., Cheal, A. J., MacNeil, M. A., Miller, I. R. & Sweatman, H. P. Reef fish communities are spooked by scuba surveys and may take hours to recover. PeerJ 6, e4886 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Piggott, C. V., Depczynski, M., Gagliano, M. & Langlois, T. J. Remote video methods for studying juvenile fish populations in challenging environments. J. Exp. Mar. Biol. Ecol. 532, 151454 (2020).
    Google Scholar 
    Dean, W. E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. J. Sediment. Res. 44, 242–248 (1974).CAS 

    Google Scholar 
    Lorenzen, C. J. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 12, 343–346 (1967).ADS 
    CAS 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).
    Google Scholar 
    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial (2015).Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to software and statistical methods (2008).R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).Saier, B. Subtidal and intertidal mussel beds (Mytilus edulis L.) in the Wadden Sea: Diversity differences of associated epifauna. Helgol. Mar. Res. 56, 44–50 (2002).ADS 

    Google Scholar 
    Peterson, C. H., Grabowski, J. H. & Powers, S. P. Estimated enhancement of fish production resulting from restoring oyster reef habitat: Quantitative valuation. Mar. Ecol. Prog. Ser. 264, 249–264 (2003).ADS 

    Google Scholar 
    Gutiérrez, J. L., Jones, C. G., Strayer, D. L. & Iribarne, O. O. Mollusks as ecosystem engineers: The role of shell production in aquatic habitats. Oikos 101, 79–90 (2003).
    Google Scholar 
    Norkko, A., Hewitt, J. E., Thrush, S. F. & Funnell, T. Benthic-pelagic coupling and suspension-feeding bivalves: Linking site-specific sediment flux and biodeposition to benthic community structure. Limnol. Oceanogr. 46, 2067–2072 (2001).ADS 

    Google Scholar 
    Russell, B. The food and feeding habits of rocky reef fish of north-eastern New Zealand. N. Z. J. Mar. Freshw. Res. 17, 121–145 (1983).
    Google Scholar 
    Gillies, C., Creighton, C. & McLeod, I. Shellfish reef habitats: A synopsis to underpin the repair and conservation of Australia’s environmentally, socially and economically important bays and estuaries. Report to the National Environmental Science Programme, Marine Biodiversity Hub, Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) Publication, James Cook University, Townsville, Qld, Australia (2015).Lenihan, H. S. et al. Cascading of habitat degradation: Oyster reefs invaded by refugee fishes escaping stress. Ecol. Appl. 11, 764–782 (2001).
    Google Scholar 
    Connell, S. & Jones, G. The influence of habitat complexity on postrecruitment processes in a temperate reef fish population. J. Exp. Mar. Biol. Ecol. 151, 271–294 (1991).
    Google Scholar 
    Usmar, N. Ontogeny and Ecology of Snapper (Pagrus auratus) in an estuary, the Mahurangi Harbour (University of Auckland, 2009).
    Google Scholar 
    Willis, T. J. & Anderson, M. J. Structure of cryptic reef fish assemblages: Relationships with habitat characteristics and predator density. Mar. Ecol. Prog. Ser. 257, 209–221 (2003).ADS 

    Google Scholar 
    Thompson, S. Homing in a territorial reef fish. Copeia 1983, 832–834 (1983).
    Google Scholar 
    Thrush, S. F., Schultz, D., Hewitt, J. E. & Talley, D. Habitat structure in soft-sediment environments and abundance of juvenile snapper Pagrus auratus. Mar. Ecol. Prog. Ser. 245, 273–280 (2002).ADS 

    Google Scholar 
    Pickering, H. & Whitmarsh, D. Artificial reefs and fisheries exploitation: A review of the ‘attraction versus production’debate, the influence of design and its significance for policy. Fish. Res. 31, 39–59 (1997).
    Google Scholar 
    Karp, M. A., Seitz, R. D. & Fabrizio, M. C. Faunal communities on restored oyster reefs: Effects of habitat complexity and environmental conditions. Mar. Ecol. Prog. Ser. 590, 35–51 (2018).ADS 

    Google Scholar 
    Hanke, M. H., Posey, M. H. & Alphin, T. D. The effects of intertidal oyster reef habitat characteristics on faunal utilization. Mar. Ecol. Prog. Ser. 581, 57–70 (2017).ADS 

    Google Scholar 
    Cranfield, H., Rowden, A., Smith, D., Gordon, D. & Michael, K. Macrofaunal assemblages of benthic habitat of different complexity and the proposition of a model of biogenic reef habitat regeneration in Foveaux Strait, New Zealand. J. Sea Res. 52, 109–125 (2004).ADS 

    Google Scholar 
    Norling, P. & Kautsky, N. Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Mar. Ecol. Prog. Ser. 351, 163–175 (2007).ADS 

    Google Scholar 
    Jaunatre, R. et al. New synthetic indicators to assess community resilience and restoration success. Ecol. Indicators 29, 468–477 (2013).
    Google Scholar 
    O’Meara, T. A., Hewitt, J. E., Thrush, S. F., Douglas, E. J. & Lohrer, A. M. Denitrification and the role of macrofauna across estuarine gradients in nutrient and sediment loading. Estuaries Coasts 43, 1394–1405. https://doi.org/10.1007/s12237-020-00728-x (2020).CAS 
    Article 

    Google Scholar 
    McCann, L. D. Oligochaete influence on settlement, growth and reproduction in a surface-deposit-feeding polychaete. J. Exp. Mar. Biol. Ecol. 131, 233–253 (1989).
    Google Scholar 
    Hope, J. A., Paterson, D. M. & Thrush, S. F. The role of microphytobenthos in soft-sediment ecological networks and their contribution to the delivery of multiple ecosystem services. J. Ecol. 108, 815–830 (2020).
    Google Scholar 
    Christianen, M. J. et al. Benthic primary producers are key to sustain the Wadden Sea food web: Stable carbon isotope analysis at landscape scale. Ecology 98, 1498–1512 (2017).CAS 
    PubMed 

    Google Scholar 
    Commito, J. A. & Dankers, N. M. Dynamics of spatial and temporal complexity in European and North American soft-bottom mussel beds. In Ecological Comparisons of Sedimentary Shores, 39–59 (Springer, Berlin, 2001).Arribas, L. P., Donnarumma, L., Palomo, M. G. & Scrosati, R. A. Intertidal mussels as ecosystem engineers: Their associated invertebrate biodiversity under contrasting wave exposures. Mar. Biodivers. 44, 203–211 (2014).
    Google Scholar 
    Walles, B., Salvador de Paiva, J., van Prooijen, B. C., Ysebaert, T. & Smaal, A. C. The ecosystem engineer Crassostrea gigas affects tidal flat morphology beyond the boundary of their reef structures. Estuaries Coasts 38, 941–950 (2015).
    Google Scholar 
    Tsuchiya, M. & Nishihira, M. Islands of Mytilus edulis as a habitat for small intertidal animals: Effect of Mytilus age structure on the species composition of the associated fauna and community organization. Mar. Ecol. Prog. Ser. 31, 171–178 (1986).ADS 

    Google Scholar 
    Craeymeersch, J. A. & Jansen, H. M. Bivalve assemblages as hotspots for biodiversity. In Goods and Services of Marine Bivalves, 275–294 (Springer, Cham, 2019).Buschbaum, C. et al. Mytilid mussels: Global habitat engineers in coastal sediments. Helgol. Mar. Res. 63, 47–58 (2009).ADS 

    Google Scholar  More