More stories

  • in

    Simultaneous sulfate and nitrate reduction in coastal sediments

    Boudreau BP, Huettel M, Forster S, Jahnke RA, McLachlan A, Middelburg JJ, et al. Permeable marine sediments: Overturning an old paradigm. Eos, Trans Am Geophys Union. 2001;82:133–6.Article 

    Google Scholar 
    Cook PL, Wenzhöfer F, Rysgaard S, Galaktionov OS, Meysman FJ, Eyre BD, et al. Quantification of denitrification in permeable sediments: Insights from a two‐dimensional simulation analysis and experimental data. Limnol Oceanogr Methods. 2006;4:294–307.Article 
    CAS 

    Google Scholar 
    Evrard V, Glud RN, Cook PL. The kinetics of denitrification in permeable sediments. Biogeochemistry. 2013;113:563–72.Article 

    Google Scholar 
    Huettel M, Berg P, Kostka JE. Benthic exchange and biogeochemical cycling in permeable sediments. Ann Rev Marine Sci. 2014;6:23–51.Article 

    Google Scholar 
    Rao AMF, McCarthy MJ, Gardner WS, Jahnke RA. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: Rates of carbon and nitrogen cycling from sediment column experiments. Continental Shelf Res. 2007;27:1801–19.Article 

    Google Scholar 
    Billerbeck M, Werner U, Polerecky L, Walpersdorf E, de Beer D, Huettel M Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Marine Ecol Progr Series. 2006;326:61–76.Jansen S, Walpersdorf E, Werner U, Billerbeck M, Böttcher ME, de Beer D. Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment. Ocean Dyn. 2009;59:317–32.Article 

    Google Scholar 
    de Beer D, Wenzhöfer F, Ferdelman TG, Boehme SE, Huettel M, van Beusekom JEE, et al. Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr. 2005;50:113–27.Article 

    Google Scholar 
    Gao H, Matyka M, Liu B, Khalili A, Kostka JE, Collins G, et al. Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol Oceanogr. 2012;57:185–98.Article 
    CAS 

    Google Scholar 
    Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, et al. Aerobic denitrification in permeable Wadden Sea sediments. ISME J. 2009;4:417.Article 
    PubMed 

    Google Scholar 
    Elliott AH, Brooks NH. Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resour Res. 1997;33:123–36.Article 
    CAS 

    Google Scholar 
    Precht E, Huettel M. Advective pore‐water exchange driven by surface gravity waves and its ecological implications. Limnol Oceanogr. 2003;48:1674–84.Article 

    Google Scholar 
    Ahmerkamp S, Marchant HK, Peng C, Probandt D, Littmann S, Kuypers MM, et al. The effect of sediment grain properties and porewater flow on microbial abundance and respiration in permeable sediments. Sci Rep. 2020;10:1–12.Article 

    Google Scholar 
    Ahmerkamp S, Winter C, Krämer K, Beer DD, Janssen F, Friedrich J, et al. Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean. Limnol Oceanogr. 2017;62:1935–54.Article 
    CAS 

    Google Scholar 
    Cardenas MB, Wilson JL Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resour Res. 2007;43:W08412.Santos IR, Eyre BD, Huettel M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine, Coastal Shelf Sci. 2012;98:1–15.Article 

    Google Scholar 
    Probandt D, Eickhorst T, Ellrott A, Amann R, Knittel K. Microbial life on a sand grain: from bulk sediment to single grains. ISME J. 2018;12:623–33.Article 
    PubMed 

    Google Scholar 
    Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchant HK, Holtappels M, Lavik G, Ahmerkamp S, Winter C, Kuypers MMM. Coupled nitrification–denitrification leads to extensive N loss in subtidal permeable sediments. Limnol Oceanogr. 2016;61:1033–48.Article 

    Google Scholar 
    Marchant HK, Tegetmeyer HE, Ahmerkamp S, Holtappels M, Lavik G, Graf J, et al. Metabolic specialization of denitrifiers in permeable sediments controls N2O emissions. Environ Microbiol. 2018;20:4486–502.Article 
    CAS 
    PubMed 

    Google Scholar 
    Laverman AM, Pallud C, Abell J, Van, Cappellen P. Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments. Geochimica et Cosmochimica Acta. 2012;77:474–88.Article 
    CAS 

    Google Scholar 
    Fenchel T, Jørgensen B. Detritus food chains of aquatic ecosystems: the role of bacteria. Adv Microb Ecol. 1977;1:1–58.Article 
    CAS 

    Google Scholar 
    Canfield DE, Kristensen E, Thamdrup B Aquatic Geomicrobiology: Elsevier Science; 2005.Froelich PN, Klinkhammer G, Bender ML, Luedtke N, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et cosmochimica Acta. 1979;43:1075–90.Article 
    CAS 

    Google Scholar 
    Eckford RE, Fedorak PM. Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced waters from three western Canadian oil fields. J Ind Microbiol Biotechnol. 2002;29:243–54.Article 
    CAS 
    PubMed 

    Google Scholar 
    Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, et al. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol. 2008;74:4324.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hubert C, Nemati M, Jenneman G, Voordouw G. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Progr. 2003;19:338–45.Article 
    CAS 

    Google Scholar 
    Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol. 2003;5:607–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wolfe BM, Lui SM, Cowan JA. Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough) Purification, characterization, kinetics and EPR studies. Eur J Biochem. 1994;223:79–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, et al. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature. 1995;374:713–15.Article 
    CAS 

    Google Scholar 
    Jørgensen BB. Big sulfur bacteria. ISME J. 2010;4:1083.Article 
    PubMed 

    Google Scholar 
    Marzocchi U, Trojan D, Larsen S, Louise Meyer R, Peter Revsbech N, Schramm A, et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J. 2014;8:1682.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Londry KL, Suflita JM. Use of nitrate to control sulfide generation by sulfate-reducing bacteria associated with oily waste. J Ind Microbiol Biotechnol. 1999;22:582–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    McInerney MJ, Bhupathiraju VK, Sublette KL. Evaluation of a microbial method to reduce hydrogen sulfide levels in a porous rock biofilm. J Ind Microbiol. 1992;11:53–8.Article 
    CAS 

    Google Scholar 
    Schwermer CU, Ferdelman TG, Stief P, Gieseke A, Rezakhani N, Van Rijn J, et al. Effect of nitrate on sulfur transformations in sulfidogenic sludge of a marine aquaculture biofilter. FEMS Microbiol Ecol. 2010;72:476–84.Article 
    CAS 
    PubMed 

    Google Scholar 
    Thamdrup B, Fossing H, Jørgensen BB. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta. 1994;58:5115–29.Article 
    CAS 

    Google Scholar 
    Al-Raei AM, Bosselmann K, Böttcher ME, Hespenheide B, Tauber F. Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn. 2009;59:351–70.Article 

    Google Scholar 
    Dyksma S, Pjevac P, Ovanesov K, Mussmann M. Evidence for H2 consumption by uncultured Desulfobacterales in coastal sediments. Environ Microbiol. 2018;20:450–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, van Beusekom JEE, et al. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Syst Appl Microbiol. 2006;29:333–48.Article 
    PubMed 

    Google Scholar 
    Mußmann M, Ishii K, Rabus R, Amann R. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol. 2005;7:405–18.Article 
    PubMed 

    Google Scholar 
    Dyksma S, Lenk S, Sawicka JE, Mußmann M. Uncultured gammaproteobacteria and desulfobacteraceae account for major acetate assimilation in a coastal marine sediment. Front Microbiol. 2018;9:3124Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen J, Hanke A, Tegetmeyer HE, Kattelmann I, Sharma R, Hamann E, et al. Impacts of chemical gradients on microbial community structure. ISME J. 2017;11:920.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saad S, Bhatnagar S, Tegetmeyer HE, Geelhoed JS, Strous M, Ruff SE. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations. Environ Microbiol. 2017;19:4866–81.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brunet RC, Garcia-Gil LJ. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol Ecol. 1996;21:131–8.Article 
    CAS 

    Google Scholar 
    Murphy AE, Bulseco AN, Ackerman R, Vineis JH, Bowen JL. Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. Environ Microbiol. 2020;22:2124–39.Article 
    CAS 
    PubMed 

    Google Scholar 
    Krekeler D, Cypionka H. The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiol Ecol. 1995;17:271–7.Article 
    CAS 

    Google Scholar 
    Seitz H-J, Cypionka H. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol. 1986;146:63–7.Article 
    CAS 

    Google Scholar 
    Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marietou A. Nitrate reduction in sulfate-reducing bacteria. FEMS Microbiol Lett. 2016;363:fnw155.Article 
    PubMed 

    Google Scholar 
    Marietou A, Griffiths L, Cole J. Preferential reduction of the thermodynamically less favorable electron acceptor, sulfate, by a nitrate-reducing strain of the sulfate-reducing bacterium Desulfovibrio desulfuricans 27774. J Bacteriol. 2009;191:882–889.Article 
    CAS 
    PubMed 

    Google Scholar 
    Korte HL, Saini A, Trotter VV, Butland GP, Arkin AP, Wall JD. Independence of nitrate and nitrite inhibition of Desulfovibrio vulgaris Hildenborough and use of nitrite as a substrate for growth. Environ Sci Technol. 2015;49:924–931.Article 
    CAS 
    PubMed 

    Google Scholar 
    Pereira IA, LeGall J, Xavier AV, Teixeira M. Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochimica et Biophysica Acta (BBA)-Protein Struct Mol Enzymol. 2000;1481:119–130.Article 
    CAS 

    Google Scholar 
    Werner U, Billerbeck M, Polerecky L, Franke U, Huettel M, van Beusekom JEE, et al. Spatial and temporal patterns of mineralization rates and oxygen distribution in a permeable intertidal sand flat (Sylt, Germany). Limnol Oceanogr. 2006;51:2549–63.Article 
    CAS 

    Google Scholar 
    Marchant HK, Lavik G, Holtappels M, Kuypers MMM. The fate of nitrate in intertidal permeable sediments. PLOS ONE. 2014;9:e104517.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Canfield DE. Reactive iron in marine sediments. Geochimica et cosmochimica acta. 1989;53:619–632.Article 
    CAS 
    PubMed 

    Google Scholar 
    Billerbeck M, Werner U, Bosselmann K, Walpersdorf E, Huettel M. Nutrient release from an exposed intertidal sand flat. Marine Ecol Progr Series. 2006;316:35–51.Article 
    CAS 

    Google Scholar 
    Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean Coast. Science. 2010;330:1375.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G. Control of biogenic H2S production with nitrite and molybdate. J Ind Microbiol Biotechnol. 2001;26:350–355.Article 
    CAS 
    PubMed 

    Google Scholar 
    Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G. Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite. J Bacteriol. 2004;186:7944–7950.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrendt A, de Beer D, Stief P. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosciences. 2013;10:7509–23.Article 

    Google Scholar 
    Findlay AJ, Pellerin A, Laufer K, Jørgensen BB. Quantification of sulphide oxidation rates in marine sediment. Geochimica et Cosmochimica Acta. 2020;280:441–52.Article 
    CAS 

    Google Scholar 
    Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evolut Microbiol. 2020;70:5972–6016.Article 
    CAS 

    Google Scholar 
    Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–1953.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mußmann M. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol. 2011;13:758–774.Article 
    CAS 
    PubMed 

    Google Scholar 
    An S, Gardner W S. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Marine Ecol Progr Series. 2002;237:41–50.Article 
    CAS 

    Google Scholar 
    Wankel SD, Ziebis W, Buchwald C, Charoenpong C, de Beer D, Dentinger J, et al. Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. Nat Commun. 2017;8:15595.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moura I, Bursakov S, Costa C, Moura JJ. Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe. 1997;3:279–290.Article 
    CAS 
    PubMed 

    Google Scholar 
    Song G, Liu S, Zhang J, Zhu Z, Zhang G, Marchant HK, et al. Response of benthic nitrogen cycling to estuarine hypoxia. Limnol Oceanogr. 2021;66:652–66.Article 
    CAS 

    Google Scholar 
    Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA. Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek. 1983;48:569–583.Article 

    Google Scholar 
    Strohm TO, Griffin B, Zumft WG, Schink B. Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol. 2007;73:1420–1424.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rütting T, Boeckx P, Müller C, Klemedtsson L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences. 2011;8:1779–91.Article 

    Google Scholar 
    Røy H, Lee JS, Jansen S, de Beer D. Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr. 2008;53:1521–30.Article 

    Google Scholar 
    Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters 1. Limnol Oceanogr. 1969;14:454–458.Article 
    CAS 

    Google Scholar 
    Viollier E, Inglett P, Hunter K, Roychoudhury A, Van, Cappellen P. The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Appl Geochem. 2000;15:785–90.Article 
    CAS 

    Google Scholar 
    Røy H, Weber HS, Tarpgaard IH, Ferdelman TG, Jørgensen BB. Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive 35S tracer. Limnol Oceanogr Methods. 2014;12:196–211.Article 

    Google Scholar 
    García-Robledo E, Corzo A, Papaspyrou S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Marine Chem. 2014;162:30–36.Article 

    Google Scholar 
    Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71.Article 
    CAS 
    PubMed 

    Google Scholar 
    Holtappels M, Lavik G, Jensen MM, Kuypers MMM Chapter ten – 15N-Labeling Experiments to Dissect the Contributions of Heterotrophic Denitrification and Anammox to Nitrogen Removal in the OMZ Waters of the Ocean. In: Klotz MG, editor. Methods in Enzymology. 486: Academic Press; 2011. p. 223-251.Preisler A, De Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment.ISME J. 2007;1:341–353.Article 
    CAS 
    PubMed 

    Google Scholar 
    Warembourg FR 5 – Nitrogen fixation in soil and plant systems. In: Knowles R, Blackburn TH, editors. Nitrogen Isotope Techniques. San Diego: Academic Press; 1993. p. 127-156.Orellana LH, Rodriguez-R LM, Konstantinidis KT. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res. 2016;45:e14–e14.PubMed Central 

    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watanabe T, Kojima H, Fukui M. Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase. Sci Rep. 2016;6:36262.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Future riverine impact

    Shuang Gao from Bjerkens Center for Climate Research in Norway, and colleagues from Germany and the United States explored future changes in marine primary production and carbon uptake under climate scenarios using the Norwegian Earth-system model, with four river transport configurations incorporating established future economic development and nutrient-use efficiency pathways. The researchers find that riverine nutrient inputs lessen nutrient limitation under warmer conditions. In the future, the effect of increased riverine carbon may be larger than the effect of nutrient inputs on the projections of ocean carbon uptake. In the historical period, increased nutrient inputs are considered the most prominent driver of carbon uptake. The results of this study are subject to model limitations, and high-resolution models should be used to assess the future impact. More

  • in

    Interpreting random forest analysis of ecological models to move from prediction to explanation

    Random forest: feature importance and interactivityOur random forests produced highly accurate predictions of local stability when trained on model output from the full dataset (e.g., AUC = 0.998 across all 5 parameters, see Fig. 2A) and all tested subsets. Running random forests on the full results set with all five parameters as predictors indicated both demographic and trophic rates were important to understanding resultant model stability. Moreover, results reveal that whether in multi-stage (red line; Fig. 2A) or single stage herbivory (e.g., ({a}_{2}) = 0, ({a}_{F}) ≥ 0; blue line Fig. 2A), parameters’ contribution to predictive power is related to their interactivity with other parameters (blue line; Fig. 2A). Note, a similar analysis with ({a}_{2})  > 0 and ({a}_{F}) = 0 is not possible because this type of herbivory is always stable.This interactivity was apparent in our attempts to understand how our specific parameters affected the behavior of our model in Eq. (1) via studying their effects as features in driving random forest predictions. Initial investigations into individual feature effects revealed that the effect of any single feature (parameter) on trophic dynamics could change substantially based on the values of our other features (parameters). Specifically, the average marginal effects (e.g., PD plots; Fig. S3) on simulation dynamics belied a high degree of variability in feature effects throughout the simulation data (e.g., ICE plots; Fig. S3).Breaking down results into further subsets of set specific attack rates with varying demographic rates revealed that this variability in feature effects was largely based on the changes in feature importance and effect over different allocations of herbivory on ontogenetic stages. This breakdown affected the relationship between importance and interactivity (Fig. 2A) such that it was inconsistent but still visible in aggregate across our simulation parameters (Fig. 2B,C). Figure 2D–F depict how different allocations and intensity of herbivory across plant ontogeny change the influence of each demographic parameter in driving model stability.Given how the influence of plant demographic rates over model behavior changed across trophic allocation (Fig. 2D–F), we first focused in depth analysis on variable demographic rates across static allocations of herbivore attack rates. By limiting the number of varying features, we use multivariate analysis to develop a fuller understanding of dynamics in subsections of the data which functioned as a scaffolding for further investigation. Specifically, we took a hierarchical approach, first developing an understanding of single-stage herbivory as a basis to study single-stage dominant herbivory (Fig. 3), which then leads us to a better overall understanding of our system’s dynamics across all trophic rates.Figure 3Interactive feature effects on model behavior. Across different herbivory allocations, partial dependence (PD) plots (A,C,E) show interactive effects between maturation rates on categorical simulation stability. Threshold plots (B,D,F) extend this analysis to include gradations of seed production rates. (A,B) Herbivory allocation ({a}_{F}) = 1.0 and ({a}_{2}) = 0.0. (A) Partial dependence plot shows probability of stability across all values of ({r}_{F}). (B) Threshold plot shows the location of the threshold between stable and unstable dynamics in {({g}_{12}),({g}_{2F})} parameter space as a function of seed production levels (({r}_{F})). (C,D) Herbivory allocation ({a}_{F}) = 0.2 and ({a}_{2}) = 1.0. (C) Partial dependence plot shows probability of stability across all values of ({r}_{F}). (D) Threshold plot shows the location of the threshold between stable and unstable dynamics in {({g}_{12}), ({g}_{2F})} parameter space as a function of seed production levels (({r}_{F})). (E,F) Herbivory allocation ({a}_{F}) = 1.0 and ({a}_{2}) = 0.2. (E) Partial dependence plot shows probability of stability across all values of ({r}_{F}). (F) Threshold plot shows the location of the threshold between stable and unstable dynamics in {({g}_{12}), ({g}_{2F})} parameter space as a function of seed production levels (({r}_{F})).Full size imageSingle stage consumptionIn the case of the seedling-only herbivore (({S}_{2}); via ({a}_{2})  > 0 and ({a}_{F}) = 0), all simulations produced stable trophic dynamics. This occurs because density loss in the seedling stage means more juveniles never reach maturity and reproduce themselves19. This essentially reduces the effective reproduction rate, limits the reproductive plant density, and decreases resources available to the herbivore (similar to lowering intrinsic reproduction in the classic Lotka–Volterra model). In fact, seedling herbivory only induced oscillations at higher handling times, a common effect of high handling time (results not shown).On the other hand, concentrating consumption on the fecund stage ((F)) can induce both stable and oscillating trajectories (Fig. S4). Consumption of (F) does not induce the same regulation of reproductive potential that stabilizes under seedling-only consumption, and so is vulnerable to boom/bust populations cycles. We chose the two most consistently important (Fig. 2B) and interactive (Fig. 2C and Fig. S5) parameters, ({g}_{12}) and ({g}_{2F}), in order to search for dominant effects on model behavior and their interactions. These parameters functioned as focal axes for our two-dimensional PD plots36. These PD plots depict the estimates of marginal effect of each parameter on random forest predictions, which in this case is categorical stability (Fig. 3A). We can see that stability estimates are increased by lowering either or both per-capita germination and/or maturation rates (({g}_{12}) and ({g}_{2F})). Demographically, reduced maturation rates shift the ratio of plant population density across its ontogeny, creating a larger juvenile population shielded from consumer pressure. Trophically, this restricts resources for the herbivore, thereby limiting losses in plant density due to herbivory (({theta }_{F})) relative to the overall plant density.This mechanism is so influential in determining trophic dynamics, its effect on stability is statistically detectable pre-simulation via equilibrium values. Losses in plant density due to herbivory are labeled under brackets in Eq. (1) as ({theta }_{F}) and ({theta }_{2}), which we can represent as ({theta }_{F}^{*}) and ({theta }_{2}^{*}) at equilibria. Relative to overall plant density we can define a ratio for plants of consumptive losses to total density (L:D ratio) such that:$$mathrm{L}:mathrm{D ratio}=({theta }_{F}^{*}+ {theta }_{2}^{*})/({S}_{1}^{*} +{S}_{2}^{*}+{F}^{*}).$$
    (2)
    When applied as a predictor variable on the same adult-herbivory subsection presented in Fig. 3A via a simple linear regression, we can see that L:D ratio alone explains ~ 45% of the variance of the maximum eigenvalue in simple linear models (F-statistic: 4578 on 1 and 5598 DF, p-value:  More

  • in

    Vole outbreaks may induce a tularemia disease pit that prevents Iberian hare population recovery in NW Spain

    Study siteOur study site is in an intensive agricultural landscape in NW Spain known as “Tierra de Campos”, which occupies part of three out of nine provinces of Castilla-y-León region (Palencia, Valladolid, and Zamora). This area is considered the main “hot-spot” of tularemia in Spain and Southern Europe16 and is characterized by higher-than-average vole abundances during outbreaks17.Iberian hare abundance indexYearly occurrence of vole outbreaks in NW Spain between 1996 and 2020 (i.e., 1997, 1998, 2007, 2008, 2014, 2019) were identified based on reports in the news (historical reconstruction18) and more recently (from 2009 onward) using common vole abundance indices obtained from live-trapping monitoring (i.e.4,19).To study the Iberian hare population trends we used regional hunting statistics available from the regional government (Junta de Castilla-y-León, CAZDATA Project, https://medioambiente.jcyl.es/web/es/caza-pesca/cazdata-banco-datos-actividad.html [Cited 2022 Sep 23]), which included hunting records as well as the number of hunting licences from 1974 to 2020. We used the number of hunted hares divided by the number of hunting licences each year as an abundance index for hares in “Tierra de Campos” (compiling data from the provinces of Palencia, Zamora and Valladolid). CAZDATA Project is an initiative proposed by the Hunting Federation of Castilla y León, which has the support of the regional government and, more importantly, the commitment of almost 60% of the hunting societies in the community to implement a system for monitoring hunting activity. Since this information is gathered by hunters for the benefit of the hunting activity, we are confidence on its reliability to carry out the present study.
    Francisella tularensis prevalence in Iberian haresWe compiled data on F. tularensis prevalence in Iberian hares from 2007 to 2016 using previously published information from a passive surveillance program carried out by the “Regional Network of Epidemiological Surveillance” (Red de Vigilancia Epidemiológica de la Dirección General de Salud Pública) of Castilla-y-León region20. This provided us with information on hare tularemia prevalence (amount of positives/number of screened individual) each year within the three provinces from “Tierra de Campos”.Statistical analysesTo study Iberian hare population trends, we calculated an index of yearly hare population instantaneous growth rate (PGR) using the hunting bag data (hare abundance index) from 1996 to 2020. Hare PGR was calculated as follows:$$PGR= lnleft(frac{{AI}_{t}}{{AI}_{t+1}}right)$$where ln stands for natural logarithm, AIt is Iberian hare abundance index on year t. and AIt+1 is the Iberian hare abundance index on year t + 1. PGRs were estimated yearly from 1996 to 2019. This dependent variable was fitted to a Generalized Linear Mixed Model using the glmmTMB function (GLMMTMB, package glmmTMB21) and a gaussian family distribution and identity link function. The categorical variable vole outbreak year (i.e., with two levels: years with (1) or without vole outbreak (0), hereafter “Vole”) and “Province” (i.e., with three levels: Palencia, Valladolid and Zamora), and their interaction were used as explanatory variables. “Year” of sampling was included as a random factor (i.e., 1996–2019). Significance of the fixed effects in the models was calculated with Type II tests using the function Anova in the car package22. We previously checked the model for overdispersion and distribution fitting using function simulateResiduals (package DHARMa23, simulations = 999). The variable PGR expresses the change between year t and t + 1. We included AI at t as a covariate in the model, in order to take into account density-dependence in hare PGR (the extent to which the abundance changes in between year t and t + 1 depends on the abundance during year t). For this to make biological sense, we rescaled the covariable AI so that it has mean equal to zero. Thus, the effect of the other predictor variables in the model (i.e., “Vole” and “Province”) was interpreted as the effect that these variables have on PGR when the abundance value is at 0. Thus, the effect of “Vole” and “Province” on PGR will be obtained by the mean value of abundance.We assessed the effect of vole outbreak years on the Iberian hare’s population PGR by running a multiple Pearson correlation (function ggscatter) between PGR and AI, considering both, PGR for all the years of the study period (i.e., 1996–2019) and only those years where vole outbreaks were detected (i.e., 1997, 1998, 2007, 2008, 2014, 2019).Finally, we tested for difference in the prevalence of F. tularensis on Iberian hare’s during years with or without vole outbreaks using a GLMMTMB21 with a binomial family distribution and a logit link function, where prevalence of F. tularensis in hares was the dependent variable, and “Vole” outbreak years and “Province” (i.e. Palencia, Valladolid and Zamora) were the responses variables. In this case, the variable “Vole” outbreak years included three levels (i.e. 0 = no vole outbreak, 1 = vole outbreak year, 2 = one year after vole outbreak), to assess if F. tularensis prevalence in hare also persist one year after a vole outbreak. “Year” of sampling was included as a random factor (i.e., 2007–2016). Due to the limited sample size, we did not include the interaction between “Vole” and “Province” to not overfit the model. We also previously checked the model for overdispersion and distribution fitting using function simulateResiduals (package DHARMa23, simulations = 999). All analysis were carried out using the R statistical computing environment24. More

  • in

    Competition’s role

    Decline in organism size is seen as a major biological response to climate change, and can be particularly pronounced in aquatic ectotherms such as fish, with subsequent implications for fishery yield and food security. However, as well as being modulated by climate factors, the fish population size structure can also be impacted by biotic (competition, predation) and other human factors (harvesting). For migrating species such as salmon, while smaller size may represent reduced size at maturity, it may also indicate faster maturation. More

  • in

    Diel variations in planktonic ciliate community structure in the northern South China Sea and tropical Western Pacific

    Lynn, D. H. Ciliated Protozoa: Characterization, Classification, and Guide to the Literature 3rd edn, 1–455 (Springer, 2008).
    Google Scholar 
    Stoecker, D. K., Michaels, A. E. & Davis, L. H. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. J. Plankton Res. 9, 901–915 (1987).Article 

    Google Scholar 
    Dolan, J. R., Vidussi, F. & Claustre, H. Planktonic ciliates in the Mediterranean Sea: Longitudinal trends. Deep-Sea Res. I(46), 2025–2039 (1999).Article 

    Google Scholar 
    Gómez, F. Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecol. 32, 188–202 (2007).Article 
    ADS 

    Google Scholar 
    Azam, F. et al. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).Article 
    ADS 

    Google Scholar 
    Pierce, R. W. & Turner, J. T. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6, 139–181 (1992).
    Google Scholar 
    Calbet, A. & Saiz, E. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157–167 (2005).Article 

    Google Scholar 
    Kim, Y. O. et al. Tintinnid species as biological indicators for monitoring intrusion of the warm oceanic waters into Korean coastal waters. Ocean Sci. J. 47, 161–172 (2012).Article 
    ADS 

    Google Scholar 
    Wang, C. F. et al. Impact of the warm eddy on planktonic ciliate, with an emphasis on tintinnids as bioindicator species. Ecol. Indic. 133, 108441 (2021).Article 

    Google Scholar 
    Wang, C. F. et al. Planktonic tintinnid community structure variations in different water masses of the Arctic Basin. Front. Mar. Sci. 8, 775653 (2022).Article 

    Google Scholar 
    Haney, J. F. Diel patterns of zooplankton behavior. Bull. Mar. Sci. 43, 583–603 (1988).ADS 

    Google Scholar 
    Vaulot, D. & Marie, D. Diel variability of photosynthetic picoplankton in the equatorial Pacific. J. Geophys. Res-Oceans 104, 3297–3310 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Hays, G. C., Webb, P. I. & Frears, S. L. Diet changes in the carbon and nitrogen content of the copepod Metridia lucens. J. Plankton Res. 4, 727–737 (1998).Article 

    Google Scholar 
    Hays, G. C., Harris, R. P. & Head, R. N. Diel changes in the near-surface biomass of zooplankton and the carbon content of vertical migrants. Deep-Sea Res. II(48), 1063–1068 (2001).ADS 

    Google Scholar 
    Anna, A., Enric, S. & Albert, C. Towards an understanding of diel feeding phythms in marine protists: Consequences of light manipulation. Microb. Ecol. 79, 64–72 (2020).Article 

    Google Scholar 
    Vaulot, D., Marie, D., Olson, R. J. & Chisholm, S. W. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268, 1480–1482 (1995).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Binder, B. J. & DuRand, M. D. Diel cycles in surface waters of the equatorial Pacific. Deep-Sea Res. II(49), 2601–2617 (2002).ADS 

    Google Scholar 
    Li, C. L. et al. Quasi-antiphase diel patterns of abundance and cell size/biomass of picophytoplankton in the oligotrophic ocean. Geophys. Res. Lett. 49, e2022GL097753 (2022).ADS 

    Google Scholar 
    Ohman, M. D. The demographic benefits of diel vertical migration by zooplankton. Ecol. Monogr. 60, 257–281 (1990).Article 

    Google Scholar 
    Ringelberg, J. The photo behavior of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol. Rev. 74, 397–423 (1999).Article 

    Google Scholar 
    Tarling, G. A., Jarvis, T., Emsley, S. M. & Matthews, J. B. L. Midnight sinking behaviour in Calanus finmarchicus: A response to satiation or krill predation?. Mar. Ecol. Prog. 240, 183–194 (2002).Article 

    Google Scholar 
    Cohen, J. H. & Forward, R. B. Diel vertical migration of the marine copepod Calanopia americana. I. Twilight DVM and its relationship to the diel light cycle. Mar. Biol. 147, 387–398 (2005).Article 

    Google Scholar 
    Cohen, J. H. & Forward, R. B. Diel vertical migration of the marine copepod Calanopia americana. II. Proximate role of exogenous light cues and endogenous rhythms. Mar. Biol. 147, 399–410 (2005).Article 

    Google Scholar 
    Ringelberg, J. Diel Vertical Migration of Zooplankton in Lakes and Oceans 1–347 (Springer, 2010).
    Google Scholar 
    Liu, H. J., Zhu, M. L., Guo, S. J., Zhao, X. H. & Sun, X. X. Effects of an anticyclonic eddy on the distribution and community structure of zooplankton in the South China Sea northern slope. J. Mar. Syst. 205, 103311 (2020).Article 

    Google Scholar 
    Tao, Z. C. et al. The diel vertical distribution and carbon biomass of the zooplankton community in the Caroline Seamount area of the western tropical Pacific Ocean. Sci. Rep. 12, 18908 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dale, T. Diel vertical distribution of planktonic ciliates in Lindåspollene, Western Norway. Mar. Microb. Food Webs 2, 15–28 (1987).
    Google Scholar 
    Jonsson, P. R. Vertical distribution of planktonic ciliates–an experimental analysis of swimming behavior. Mar. Ecol. Prog. Ser. 52, 39–53 (1989).Article 
    ADS 

    Google Scholar 
    Stocker, D. K., Taniguchi, A. & Michaels, A. E. Abundance of autotrophic, mixotrophic and heterotrophic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50, 241–254 (1989).Article 
    ADS 

    Google Scholar 
    Passow, U. Vertical migration of Gonyaulax catenata and Mesodinium rubrum. Mar. Biol. 110, 455–463 (1991).Article 

    Google Scholar 
    Suzuki, T. & Taniguchi, A. Temporal change of clustered distribution of planktonic ciliates in Toyama Bay in summers of 1989 and 1990. J. Oceanogr. 53, 35–40 (1997).Article 
    CAS 

    Google Scholar 
    Olli, K. Diel vertical migration of phytoplankton and heterotrophic flagellates in the Gulf of Riga. J. Mar. Syst. 23, 145–163 (1999).Article 

    Google Scholar 
    Pérez, M. T., Dolan, J. R., Vidussi, F. & Fukai, E. Diel vertical distribution of planktonic ciliates within the surface layer of the NW Mediterrean (May 1995). Deep-Sea Res. I(47), 479–503 (2000).Article 

    Google Scholar 
    Rossberg, M. & Wickham, S. A. Ciliate vertical distribution and diel vertical migration in a eutrophic lake. Fund. Appl. Limnol. 171, 1–14 (2008).Article 

    Google Scholar 
    Gu, B. W. et al. High dynamics of ciliate community revealed via short-term, high-frequency sampling in a subtropical estuarine ecosystem. Front. Microbiol. 13, 797638 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Su, J. L. Overview of the South China Sea circulation and its influence on the coastal physical oceanography near the Pearl River Estuary. Cont. Shelf Res. 24, 1745–1760 (2004).Article 

    Google Scholar 
    Cravatte, S., Delcroix, T., Zhang, D., Mcphaden, M. & Leloup, J. Observed freshening and warming of the western pacific warm pool. Clim. Dyn. 33, 565–589 (2009).Article 

    Google Scholar 
    Feng, M. P., Zhang, W. C., Yu, Y., Xiao, T. & Sun, J. Horizontal distribution of tintinnids in the western South China Sea during summer 2007. J. Trop. Oceanogr. 32, 86–92 (2013).
    Google Scholar 
    Liu, H. X. et al. Composition and distribution of planktonic ciliates in the southern South China Sea during late summer: Comparison between surface and 75 m deep layer. J. Ocean Univ. China 15, 171–176 (2016).Article 
    ADS 

    Google Scholar 
    Wang, C. F. et al. Vertical distribution of planktonic ciliates in the oceanic and slope areas of the western Pacific Ocean. Deep-Sea Res. II(167), 70–78 (2019).
    Google Scholar 
    Sun, P., Zhang, S. L., Wang, Y. & Huang, B. Q. Biogeographic role of the Kuroshio Current Intrusion in the microzooplankton community in the boundary zone of the northern South China Sea. Microorganisms 9, 1104 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sohrin, R., Imazawa, M., Fukuda, H. & Suzuki, Y. Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean. Deep-Sea Res. II(57), 1537–1550 (2010).ADS 

    Google Scholar 
    Wang, C. F. et al. Difference of planktonic ciliate communities of the tropical West Pacific, the Bering Sea and the Arctic Ocean. Acta Oceanol. Sin. 39, 9–17 (2020).Article 
    CAS 

    Google Scholar 
    Wang, C. F. et al. Planktonic ciliate trait structure variation over Yap, Mariana and Caroline seamounts in the tropical western Pacific Ocean. J. Oceanol. Limnol. 39, 1705–1717 (2021).Article 
    ADS 

    Google Scholar 
    McLaren, I. A. Demographic strategy of vertical migration by a marine copepod. Amer. Nat. 108, 91–102 (1974).Article 

    Google Scholar 
    Loose, C. J., Von Elert, E. & Dawidowicz, P. Chemically-induced diel vertical migration in Daphnia: A new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126, 329–337 (1993).Article 

    Google Scholar 
    Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V. & Eiane, K. Two hundred years of zooplankton vertical migration research. Biol. Rev. 96, 1–43 (2021).Article 

    Google Scholar 
    Oubelkheir, K. & Sciandra, A. Diel variations in particle stocks in the oligotrophic waters of the Ionian Sea (Mediterranean). J. Mar. Syst. 74, 364–371 (2008).Article 

    Google Scholar 
    Yang, E. J., Choi, J. K. & Hyun, J. H. Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Mar. Biol. 146, 1–15 (2004).Article 

    Google Scholar 
    Wang, C. F. et al. Planktonic ciliate community structure and its distribution in the oxygen minimum zones in the Bay of Bengal (Eastern Indian Ocean). J. Sea Res. 190, 102311 (2022).Article 

    Google Scholar 
    Daro, M. H. Migratory and grazing behavior of copepods and vertical distribution of phytoplankton. Bull. Mar. Sci. 43, 710–729 (1988).
    Google Scholar 
    Ursella, L., Cardin, V., Batistić, M., Garić, R. & Gačić, M. Evidence of zooplankton vertical migration from continuous Southern Adriatic buoy current-meter records. Prog. Oceanogr. 167, 78–96 (2018).Article 
    ADS 

    Google Scholar 
    Roman, M. R., Dam, H. G., Le Borgne, R. & Zhang, X. Latitudinal comparisons of equatorial Pacific zooplankton. Deep-Sea Res. II(49), 2695–2711 (2002).ADS 

    Google Scholar 
    Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II(55), 1615–1635 (2008).ADS 

    Google Scholar 
    Isla, A., Scharek, R. & Latasa, M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015).Article 

    Google Scholar 
    Dolan, J. R. Morphology and ecology in tintinnid ciliates of the marine plankton: Correlates of lorica dimensions. Acta Protozoologica 49, 235–244 (2010).
    Google Scholar 
    Jacquet, S., Partensky, F., Lennon, J. F. & Vaulot, D. Diel patterns of growth and division in marine picoplankton in culture. J. Phycol. 37, 357–369 (2001).Article 

    Google Scholar 
    Pitta, P., Giannakourou, A. & Christaki, U. Planktonic ciliates in the oligotrophic Mediterranean Sea: Longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquat. Microb. Ecol. 24, 297–311 (2001).Article 

    Google Scholar 
    Weisse, T. & Montagnes, D. J. S. Ecology of planktonic ciliates in a changing world: Concepts, methods, and challenges. J. Eukaryot. Microbiol. 69, e12879 (2022).Article 
    PubMed 

    Google Scholar 
    Heinbokel, J. F. Diel periodicities and rates of reproduction in natural populations of tintinnines in the oligotrophic waters off Hawaii, September 1982. Mar. Microb. Food Webs 2, 1–14 (1987).
    Google Scholar 
    Tsai, A. Y., Chiang, K. P., Chang, J. & Gong, G. C. Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol. Oceanogr. 50, 1221–1231 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Ribalet, F. et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc. Natl. Acad. Sci. U. S. A. 112, 8008–8012 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Connell, P. E., Ribalet, F., Armbrust, E. V., White, A. & Caron, D. A. Diel oscillations in the feeding activity of heterotrophic and mixotrophic nanoplankton in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 85, 167–181 (2020).Article 

    Google Scholar 
    Cheung, K. C., Poon, B., Lan, C. Y. & Wong, M. H. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 52, 1431–1440 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Huang, X. P., Huang, L. M. & Yue, W. Z. The characteristics of nutrients and eutrophication in the Pearl River estuary. South China. Mar. Pollut. Bull. 47, 30–36 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, S. M. et al. Nutrient dynamics in the winter thermohaline frontal zone of the northern shelf region of the South China Sea. J. Geophys. Res. 115, C11020 (2010).Article 
    ADS 

    Google Scholar 
    Shu, Y. Q., Wang, Q. & Zu, T. T. Progress on shelf and slope circulation in the northern South China Sea. Sci. China Earth Sci. 61, 560–571 (2018).Article 
    ADS 

    Google Scholar 
    Dai, S. et al. The effects of a warm-core eddy on chlorophyll a distribution and phytoplankton community structure in the northern South China Sea in spring 2017. J. Mar. Syst. 210, 103396 (2020).Article 

    Google Scholar 
    He, X. Q. et al. Eddy-entrained Pearl River plume into the oligotrophic basin of the South China Sea. Cont. Shelf Res. 124, 117–124 (2016).Article 
    ADS 

    Google Scholar 
    Pan, X. J. et al. Remote sensing of surface [nitrite + nitrate] in river-influenced shelf-seas: The northern South China Sea Shelf-sea. Remote Sens. Environ. 210, 1–11 (2018).Article 
    ADS 

    Google Scholar 
    Xu, J. et al. Phosphorus limitation in the northern South China Sea during late summer: Influence of the Pearl River. Deep-Sea Res. I. 55, 1330–1342 (2008).Article 
    CAS 

    Google Scholar 
    Caron, D. Inorganic nutrients, bacteria, and the microbial loop. Microb. Ecol. 28, 295–298 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kirchman, D. The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol. 28, 255–271 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Song, J. M. Biogeochemical Processes of Biogenic Elements in China Marginal Seas 1–657 (Springer, 2011).
    Google Scholar 
    Zhang, W. C. et al. Review of nutrient (nitrogen and phosphorus) regeneration in the marine pelagic microbial food web. Mar. Sci. Bull. 35, 241–251 (2016).CAS 

    Google Scholar 
    Ma, J. et al. Effects of Y3 seamount on nutrients influencing the ecological environment in the Western Pacific Ocean. Earth Sci. Front. 27, 322–331 (2020).
    Google Scholar 
    Li, H. B. et al. Tintinnid diversity in the tropical West Pacific Ocean. Acta Oceanol. Sin. 37, 218–228 (2018).Article 
    CAS 

    Google Scholar 
    Dolan, J. R., Ritchie, M. E. & Ras, J. The, “neutral” community structure of planktonic herbivores, tintinnid ciliates of the microzooplankton, across the SE Tropical Pacific Ocean. Biogeosciences 4, 297–310 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Dolan, J. R., Ritchie, M. E., Tunin-Ley, A. & Pizay, M. Dynamics of core and occasional species in the marine plankton: Tintinnid ciliates in the north-west Mediterranean Sea. J. Biogeogr. 36, 887–895 (2009).Article 

    Google Scholar 
    Dolan, J. R. & Marrasé, C. Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, NW Mediterranean, June 1993. Deep-Sea Res. I(42), 1965–1987 (1995).Article 

    Google Scholar 
    Suzuki, T. & Taniguchi, A. Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132, 375–382 (1998).Article 

    Google Scholar 
    Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton Methodik. Mit. Int. Ver. Theor. Angew. Limnol. 9, 1–38 (1958).
    Google Scholar 
    Lund, J. W. G., Kipling, C. & Cren, E. D. L. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143–170 (1958).Article 

    Google Scholar 
    Kofoid, C. A. & Campbell, A. S. A Conspectus of the Marine and Fresh-Water Ciliata Belonging to the Suborder Tintinnoinea: With Descriptions of New Species Principally from the Agassiz Expedition to the Eastern Tropical Pacific 1904–1905 (University of California Press, 1929).
    Google Scholar 
    Kofoid, C. A., & Campbell, A. S. Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge to Alexander Agassiz, by US Fish commission steamer “Albatross”, from October 1904 to March 1905, The Ciliata: The Tintinnoinea (Bulletin of the Museum of Comparative Zoology of Harvard College), vol. XXXVII. Cambridge University, Harvard (Lieut.-Commander LM Garrett, USN commanding) (1939).Zhang, W. C., Feng, M. P., Yu, Y., Zhang, C. X. & Xiao, T. An Illustrated Guide to Contemporary Tintinnids in the World 1–499 (Science Press, 2012).
    Google Scholar 
    Paranjape, M. A. & Gold, K. Cultivation of marine pelagic protozoa. Ann. Inst. Oceanogr. Paris 58, 143–150 (1982).
    Google Scholar 
    Alder, V. A. Tintinnoinea. In South Atlantic zooplankton (ed. Boltovskoy, D.) 321–384 (Backhuys, 1999).
    Google Scholar 
    Verity, P. G. & Langdon, C. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton R. 6, 859–868 (1984).Article 
    CAS 

    Google Scholar 
    Putt, M. & Stoecker, D. K. An experimentally determined carbon: Volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34, 1097–1103 (1989).Article 
    ADS 

    Google Scholar 
    Yu, Y. et al. Basin-scale variation in planktonic ciliate distribution: A detailed temporal and spatial study of the Yellow Sea. Mar. Biol. Res. 10, 641–654 (2014).Article 

    Google Scholar 
    Wang, C. F. et al. Hydrographic feature variation caused pronounced differences of planktonic ciliate community in the Pacific Arctic Region in summer 2016 and 2019. Front. Microbiol. 13, 881048 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Dolan, J. R. & Pierce, R. W. Diversity and distributions of tintinnid ciliates. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, J. R. et al.) 214–243 (Wiley-Blackwell, 2013).
    Google Scholar 
    Xu, Z. L. & Chen, Y. Q. Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea. J. Ecol. 8, 13–15 (1989).
    Google Scholar 
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (PRIMER-E, 2008).
    Google Scholar 
    Jiang, Y., Xu, G. & Xu, H. Use of multivariate dispersion to assess water quality based on species composition data. Environ. Sci. Pollut. Res. 23, 3267–3272 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    The terrestrial isopod symbiont ‘Candidatus Hepatincola porcellionum’ is a potential nutrient scavenger related to Holosporales symbionts of protists

    McCutcheon JP, Boyd BM, Dale C. The life of an insect endosymbiont from the cradle to the grave. Curr Biol. 2019;29:R485–95.Article 
    CAS 
    PubMed 

    Google Scholar 
    McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10:13–26.Article 
    CAS 

    Google Scholar 
    Latorre A, Manzano-Marin A. Dissecting genome reduction and trait loss in insect endosymbionts. Ann N Y Acad Sci. 2017;1389:52–75.Article 
    PubMed 

    Google Scholar 
    Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol. 2021;19:375–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, et al. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe. 2021;29:879–93.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pilgrim J, Thongprem P, Davison HR, Siozios S, Baylis M, Zakharov EV, et al. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Gigascience. 2021;10:giab021.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pilgrim J, Ander M, Garros C, Baylis M, Hurst GDD, Siozios S. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ Microbiol. 2017;19:4238–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ Microbiol. 1999;1:357–67.Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulz F, Lagkouvardos I, Wascher F, Aistleitner K, Kostanjsek R, Horn M. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME J. 2014;8:1634–44.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schulz F, Martijn J, Wascher F, Lagkouvardos I, Kostanjsek R, Ettema TJ, et al. A Rickettsiales symbiont of amoebae with ancient features. Environ Microbiol. 2016;18:2326–42.Article 
    CAS 
    PubMed 

    Google Scholar 
    Hess S, Suthaus A, Melkonian M. “Candidatus Finniella” (Rickettsiales, Alphaproteobacteria), Novel Endosymbionts of Viridiraptorid Amoeboflagellates (Cercozoa, Rhizaria). Appl Environ Microbiol. 2016;82:659–70.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castelli M, Sabaneyeva E, Lanzoni O, Lebedeva N, Floriano AM, Gaiarsa S, et al. Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales. ISME J. 2019;13:2280–94.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Floriano AM, Castelli M, Krenek S, Berendonk TU, Bazzocchi C, Petroni G, et al. The genome sequence of “Candidatus Fokinia solitaria”: insights on reductive evolution in Rickettsiales. Genome Biol Evol. 2018;10:1120–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    George EE, Husnik F, Tashyreva D, Prokopchuk G, Horak A, Kwong WK, et al. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr Biol. 2020;30:925–33.e3.Article 
    CAS 
    PubMed 

    Google Scholar 
    Midha S, Rigden DJ, Siozios S, Hurst GDD, Jackson AP. Bodo saltans (Kinetoplastida) is dependent on a novel Paracaedibacter-like endosymbiont that possesses multiple putative toxin-antitoxin systems. ISME J. 2021;15:1680–94.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castelli M, Lanzoni O, Giovannini M, Lebedeva N, Gammuto L, Sassera D, et al. ‘Candidatus Gromoviella agglomerans’, a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. Environ Microbiol Rep. 2022;14:34–49.Article 
    CAS 
    PubMed 

    Google Scholar 
    Klinges JG, Rosales SM, McMinds R, Shaver EC, Shantz AA, Peters EC, et al. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME J. 2019;13:2938–53.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kroer P, Kjeldsen KU, Nyengaard JR, Schramm A, Funch P. A novel extracellular gut symbiont in the marine worm Priapulus caudatus (Priapulida) reveals an Alphaproteobacterial symbiont clade of the ecdysozoa. Front Microbiol. 2016;7:539.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yurchenko T, Sevcikova T, Pribyl P, El Karkouri K, Klimes V, Amaral R, et al. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME J. 2018;12:2163–75.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM. New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS ONE. 2013;8:e83383.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Szokoli F, Castelli M, Sabaneyeva E, Schrallhammer M, Krenek S, Doak TG, et al. Disentangling the taxonomy of Rickettsiales and description of two novel symbionts (“Candidatus Bealeia paramacronuclearis” and “Candidatus Fokinia cryptica”) sharing the cytoplasm of the ciliate protist Paramecium biaurelia. Appl Environ Microbiol. 2016;82:7236–47.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munoz-Gomez SA, Hess S, Burger G, Lang BF, Susko E, Slamovits CH, et al. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. eLife. 2019;8:e42535.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sassera D, Beninati T, Bandi C, Bouman EA, Sacchi L, Fabbi M, et al. ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int J Syst Evol Microbiol. 2006;56:2535–40.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fokin SI, Görtz HD, Diversity of Holospora bacteria in Paramecium and their characterization. In: Fujishima M, editor. Endosymbionts in Paramecium. Microbiology Monographs, vol 12. Berlin: Springer; 2009. https://doi.org/10.1007/978-3-540-92677-1_7.Min CK, Yang JS, Kim S, Choi MS, Kim IS, Cho NH. Genome-based construction of the metabolic pathways of Orientia tsutsugamushi and comparative analysis within the Rickettsiales order. Comp Funct Genomics. 2008;2008:623145.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garushyants SK, Beliavskaia AY, Malko DB, Logacheva MD, Rautian MS, Gelfand MS. Comparative genomic analysis of Holospora spp., intranuclear symbionts of paramecia. Front Microbiol. 2018;9:738.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boscaro V, Fokin SI, Schrallhammer M, Schweikert M, Petroni G. Revised systematics of Holospora-like bacteria and characterization of “Candidatus Gortzia infectiva”, a novel macronuclear symbiont of Paramecium jenningsi. Microb Ecol. 2013;65:255–67.Article 
    CAS 
    PubMed 

    Google Scholar 
    Serra V, Fokin SI, Castelli M, Basuri CK, Nitla V, Verni F, et al. “Candidatus Gortzia shahrazadis”, a novel endosymbiont of Paramecium multimicronucleatum and a revision of the biogeographical distribution of Holospora-like bacteria. Front Microbiol. 2016;7:1704.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takeshita K, Yamada T, Kawahara Y, Narihiro T, Ito M, Kamagata Y, et al. Tripartite symbiosis of an anaerobic scuticociliate with two hydrogenosome-associated endosymbionts, a Holospora-related Alphaproteobacterium and a Methanogenic Archaeon. Appl Environ Microbiol. 2019;85:e00854–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang Y, Brune A, Zimmer M. Bacterial symbionts in the hepatopancreas of isopods: diversity and environmental transmission. FEMS Microbiol Ecol. 2007;61:141–52.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang Y, Stingl U, Anton-Erxleben F, Zimmer M, Brune A. ‘Candidatus Hepatincola porcellionum’ gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch Microbiol. 2004;181:299–304.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fraune S, Zimmer M. Host-specificity of environmentally transmitted Mycoplasma-like isopod symbionts. Environ Microbiol. 2008;10:2497–504.Article 
    CAS 
    PubMed 

    Google Scholar 
    Dittmer J, Lesobre J, Moumen B, Bouchon D. Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod Armadillidium vulgare. FEMS Microbiol Ecol. 2016;92:fiw063.Article 
    PubMed 

    Google Scholar 
    Zimmer M, Topp W. Microorganisms and cellulose digestion in the gut of the woodlouse Porcellio scaber. J Chem Ecol. 1998;24:1397–408.Article 
    CAS 

    Google Scholar 
    Zimmer M, Danko JP, Pennings SC, Danford AR, Ziegler A, Uglow RF, et al. Hepatopancreatic endosymbionts in coastal isopods (Crustacea: Isopoda), and their contribution to digestion. Mar Biol. 2001;138:955–63.Article 

    Google Scholar 
    Bouchon D, Zimmer M, Dittmer J. The terrestrial isopod microbiome: an all-in-one toolbox for animal-microbe interactions of ecological relevance. Front Microbiol. 2016;7:1472.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dittmer J, Beltran-Bech S, Lesobre J, Raimond M, Johnson M, Bouchon D. Host tissues as microhabitats for Wolbachia and quantitative insights into the bacterial community in terrestrial isopods. Mol Ecol. 2014;23:2619–35.Article 
    CAS 
    PubMed 

    Google Scholar 
    Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Vaser R, Sovic I, Nagarajan N, Sikic M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol. 2022;18:e1009802.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bredon M, Dittmer J, Noel C, Moumen B, Bouchon D. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Microbiome. 2018;6:162.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bredon M, Herran B, Bertaux J, Greve P, Moumen B, Bouchon D. Isopod holobionts as promising models for lignocellulose degradation. Biotechnol Biofuels. 2020;13:49.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics. 2020;70:e102.Article 
    CAS 
    PubMed 

    Google Scholar 
    Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Badawi M, Moumen B, Giraud I, Greve P, Cordaux R. Investigating the molecular genetic basis of cytoplasmic sex determination caused by Wolbachia endosymbionts in terrestrial isopods. Genes. 2018;9:290.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom. 2017;3:e000132.PubMed 
    PubMed Central 

    Google Scholar 
    Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods. 2020;17:1103–10.Article 
    CAS 
    PubMed 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:W327–31.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.Article 
    CAS 
    PubMed 

    Google Scholar 
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28:464–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.Article 
    CAS 
    PubMed 

    Google Scholar 
    Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol. 2021;6:3–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Abby SS, Cury J, Guglielmini J, Neron B, Touchon M, Rocha EP. Identification of protein secretion systems in bacterial genomes. Sci Rep. 2016;6:23080.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40:1023–5.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbourne LD, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2017;45:D320–4.Article 
    CAS 
    PubMed 

    Google Scholar 
    Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–35.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schrallhammer M, Castelli M, Petroni G. Phylogenetic relationships among endosymbiotic R-body producer: bacteria providing their host the killer trait. Syst Appl Microbiol. 2018;41:213–20.Article 
    PubMed 

    Google Scholar 
    Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, et al. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev. 2015;39:47–80.CAS 
    PubMed 

    Google Scholar  More

  • in

    Climate, landscape, and life history jointly predict multidecadal community mosquito phenology

    Visser, M. E. & Holleman, L. J. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. Biol. Sci. 268, 289–294 (2001).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duchenne, F. et al. Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. Nat. Ecol. Evol. 4, 115–121 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl. Acad. Sci. U. S. A. 108, 20645–20649 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    Organization, W. H. et al. Global vector control response 2017–2030. In Global Vector Control Response 2017–2030 (2017).Reisen, W. K. et al. Effects of warm winter temperature on the abundance and gonotrophic activity of Culex (Diptera: Culicidae) in California. J. Med. Entomol. 47, 230–237 (2010).Article 
    PubMed 

    Google Scholar 
    Denlinger, D. L. & Armbruster, P. A. Mosquito diapause. Annu. Rev. Entomol. 59, 73–93 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mullen, G. R. & Durden, L. A. Medical and Veterinary Entomology. (Academic Press, 2009).Messenger, P. S. Bioclimatic studies with insects. Annu. Rev. Entomol. 4, 183–206 (1959).Article 

    Google Scholar 
    Hard, J. J., Bradshaw, W. E. & Holzapfel, C. M. The genetic basis of photoperiodism and its evolutionary divergence among populations of the pitcher-plant mosquito, Wyeomyia smithii. Am. Nat. 142, 457–473 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Danilevskii, A. S. et al. Photoperiodism and seasonal development of insects. In Photoperiodism and Seasonal Development of Insects (1965).Nietschke, B. S., Magarey, R. D., Borchert, D. M., Calvin, D. D. & Jones, E. A developmental database to support insect phenology models. Crop Prot. 26, 1444–1448 (2007).Article 

    Google Scholar 
    Vinogradova, E. B. Diapause in aquatic insects, with emphasis on mosquitoes. In Diapause in Aquatic Invertebrates Theory and Human Use (eds. Alekseev, V. R., de Stasio, B. T. & Gilbert, J. J.) 83–113 (Springer Netherlands, 2007).Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: Ecological and evolutionary contexts. Adv. Insect Phys. 33, 50–152 (2006).Article 

    Google Scholar 
    Belitz, M. W. et al. Climate drivers of adult insect activity are conditioned by life history traits. Ecol. Lett. 24, 2687–2699 (2021).Article 
    PubMed 

    Google Scholar 
    Townroe, S. & Callaghan, A. British container breeding mosquitoes: The impact of urbanisation and climate change on community composition and phenology. PLoS ONE 9, e95325 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westby, K. M., Adalsteinsson, S. A., Biro, E. G., Beckermann, A. J. & Medley, K. A. Aedes albopictus populations and larval habitat characteristics across the landscape: Significant differences exist between urban and rural land use types. Insects 12, 196 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, D., Stucky, B. J., Deck, J., Baiser, B. & Guralnick, R. P. The effect of urbanization on plant phenology depends on regional temperature. Nat. Ecol. Evol. 3, 1661–1667 (2019).Article 
    PubMed 

    Google Scholar 
    Diniz, D. F. A., de Albuquerque, C. M. R., Oliva, L. O., de Melo-Santos, M. A. V. & Ayres, C. F. J. Diapause and quiescence: Dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit. Vectors 10, 310 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rund, S. S. C., Moise, I. K., Beier, J. C. & Martinez, M. E. Rescuing troves of hidden ecological data to tackle emerging mosquito-borne diseases. J. Am. Mosq. Control Assoc. 35, 75–83 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewitz, J., U.S. Geological Survey. National Land Cover Database (NLCD) 2019 Products (ver. 2. 0, June 2021): U.S. Geological Survey data release (ver. 2. 0, June 2021): U.S. Geological Survey data release.Woodring, J. et al. Diapause, transovarial transmission, and filial infection rates in geographic strains of La Crosse virus-infected Aedes triseriatus. Am. J. Trop. Med. Hyg. 58, 587–588 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ellwood, E. R. et al. Disentangling the paradox of insect phenology: Are temporal trends reflecting the response to warming?. Oecologia 168, 1161–1171 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Degaetano, A. T. Meteorological effects on adult mosquito (Culex) populations in metropolitan New Jersey. Int. J. Biometeorol. 49, 345–353 (2005).Article 
    ADS 
    PubMed 

    Google Scholar 
    Su, T., Webb, J. P., Meyer, R. P. & Mulla, M. S. Spatial and temporal distribution of mosquitoes in underground storm drain systems in Orange County, California. J. Vector Ecol. 28, 79–89 (2003).PubMed 

    Google Scholar 
    Harbison, J. E., Henry, M., Xamplas, C. & Dugas, L. R. Evaluation of Culex pipiens populations in a residential area with a high density of catch basins in a suburb of Chicago, Illinois. J. Am. Mosq. Control Assoc. 30, 228–230 (2014).Article 
    PubMed 

    Google Scholar 
    Wang, X. et al. Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California. Sci. Rep. 11, 12667 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geery, P. R. & Holub, R. E. Seasonal abundance and control of Culex spp. in catch basins in Illinois. J. Am. Mosq. Control Assoc. 5, 537–540 (1989).CAS 
    PubMed 

    Google Scholar 
    Nelms, B. M., Macedo, P. A., Kothera, L., Savage, H. M. & Reisen, W. K. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. J. Med. Entomol. 50, 773–790 (2013).Article 
    PubMed 

    Google Scholar 
    Becker, N. et al. Mosquitoes and Their Control (Springer, 2010).Book 

    Google Scholar 
    Bartlett-Healy, K., Crans, W. & Gaugler, R. Temporal and spatial synchrony of Culex territans (Diptera: Culicidae) with their amphibian hosts. J. Med. Entomol. 45, 1031–1038 (2008).Article 
    PubMed 

    Google Scholar 
    Reeves, L. E. et al. Identification of Uranotaenia sapphirina as a specialist of annelids broadens known mosquito host use patterns. Commun. Biol. 1, 92 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burkett-Cadena, N. D. et al. Host reproductive phenology drives seasonal patterns of host use in mosquitoes. PLoS One 6, e17681 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Strien, A. J., Plantenga, W. F., Soldaat, L. L., van Swaay, C. A. M. & Wallisdevries, M. F. Bias in phenology assessments based on first appearance data of butterflies. Oecologia 156, 227–235 (2008).Article 
    ADS 
    PubMed 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giraldo-Calderón, G. I. et al. Vectorbase.org updates: Bioinformatic resources for invertebrate vectors of human pathogens and related organisms. Curr. Opin. Insect Sci. 50, 100860 (2022).Article 
    PubMed 

    Google Scholar 
    Wickham, François, Henry & Müller. dplyr: A grammar of data manipulation. R package version 0.4.Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    Johnson, M. climateR: climateR. R package version 0.1.0. https://github.com/mikejohnson51/climateR.Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar 
    Schmucki, R., Harrower, C. A. & Dennis, E. B.. rbms: Computing generalised abundance indices for butterfly monitoring count data. R package version.Belitz, M. W., Larsen, E. A., Shirey, V., Li, D. & Guralnick, R. P. Phenological research based on natural history collections: Practical guidelines and a lepidopteran case study. Funct. Ecol. https://doi.org/10.1111/1365-2435.14173 (2022).Article 

    Google Scholar 
    Larsen, E. A., Belitz, M. W., Guralnick, R. P. & Ries, L. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data. Sci. Rep. 12, 13370 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models Usinglme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression. (SAGE Publications, 2018).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).Article 
    ADS 

    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lüdecke, D. sjPlot: Data visualization for statistics in social science. R package version. More