More stories

  • in

    Forest structure determines nest box use by Central European boreal owls

    Mikusiński, G., Roberge, J. M. & Fuller, R. J. Ecology and Conservation of Forest Birds (Cambridge University Press, 2018).Book 

    Google Scholar 
    Newton, I. The role of nest sites in limiting the numbers of hole-nesting birds: a review. Biol. Conserv. 70, 265–276. https://doi.org/10.1016/0006-3207(94)90172-4 (1994).Article 

    Google Scholar 
    Korpimäki, E. & Hakkarainen, H. The Boreal Owl: Ecology, Behaviour and Conservation of a Forest-Dwelling Predator (Cambridge University Press, 2012).Book 

    Google Scholar 
    Glutz von Blotzheim, U. N. & Bauer, K. M. Handbuch der Vögel Mitteleuropas. Band 9. (Akademische Verlagsgesellschaft, 1980).Newton, I. Population Limitation in Birds (Academic press, 1998).
    Google Scholar 
    Moning, C. & Müller, J. Environmental key factors and their thresholds for the avifauna of temperate montane forests. For. Ecol. Manag. 256, 1198–1208. https://doi.org/10.1016/j.foreco.2008.06.018 (2008).Article 

    Google Scholar 
    Walankiewicz, W., Czeszczewik, D., Stański, T., Sahel, M. & Ruczyński, I. Tree cavity resources in spruce-pine managed and protected stands of the Białowieża Forest, Poland. Nat. Areas J. 34, 423–428. https://doi.org/10.3375/043.034.0404 (2014).Article 

    Google Scholar 
    Lambrechts, M. M. et al. The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithol. 45, 1–26. https://doi.org/10.3161/000164510X516047 (2010).Article 

    Google Scholar 
    Lambrechts, M. M. et al. Nest box design for the study of diurnal raptors and owls is still an overlooked point in ecological, evolutionary and conservation studies: a review. J. Ornithol. 153, 23–34. https://doi.org/10.1007/s10336-011-0720-3 (2012).Article 

    Google Scholar 
    Zárybnická, M., Kubizňák, P., Šindelář, J. & Hlaváč, V. Smart nest box: a tool and methodology for monitoring of cavity-dwelling animals. Methods Ecol. Evol. 7, 483–492. https://doi.org/10.1111/2041-210X.12509 (2016).Article 

    Google Scholar 
    Kubizňák, P. et al. Designing network-connected systems for ecological research and education. Ecosphere 10(6), e02761. https://doi.org/10.1002/ecs2.2761 (2019).Article 

    Google Scholar 
    Mänd, R., Tilgar, V., Lõhmus, A. & Leivits, A. Providing nest boxes for hole-nesting birds—Does habitat matter?. Biodivers. Conserv. 14, 1823–1840. https://doi.org/10.1007/s10531-004-1039-7 (2005).Article 

    Google Scholar 
    König, C. & Weick, F. Owls of the World 2nd ed. (Christopher Helm, 2008).
    Google Scholar 
    Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386. https://doi.org/10.1002/ece3.5419 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ševčík, R., Riegert, J., Šťastný, K., Zárybnický, J. & Zárybnická, M. The effect of environmental variables on owl distribution in Central Europe: A case study from the Czech Republic. Ecol. Inform. 64, 101375. https://doi.org/10.1016/j.ecoinf.2021.101375 (2021).Article 

    Google Scholar 
    Brambilla, M. et al. Species interactions and climate change: How the disruption of species co-occurrence will impact on an avian forest guild. Glob. Change Biol. 26, 1212–1224. https://doi.org/10.1111/gcb.14953 (2020).ADS 
    Article 

    Google Scholar 
    Hayward, G. D., Hayward, P. H. & Garton, E. O. Ecology of boreal owl in the northern Rocky-Mountains, USA. Wildl. Monogr. 124, 3–59 (1993).
    Google Scholar 
    Zárybnická, M., Riegert, J. & Šťastný, K. The role of Apodemus mice and Microtus voles in the diet of the Tengmalm’s owl in Central Europe. Popul. Ecol. 55, 353–361. https://doi.org/10.1007/s10144-013-0367-4 (2013).Article 

    Google Scholar 
    Zárybnická, M., Sedláček, O., Salo, P., Šťastný, K. & Korpimäki, E. Reproductive responses of temperate and boreal Tengmalm’s owl Aegolius funereus populations to spatial and temporal variation in prey availability. Ibis 157, 369–383. https://doi.org/10.1111/ibi.12244 (2015).Article 

    Google Scholar 
    Mossop, D. H. The importance of old growth refugia in the Yukon boreal forest to cavity-nesting owls in Biology and Conservation of Owls of the Northern Hemisphere (eds. Duncan, J. R., Johnson, D. H. & Nicholls, T. H.) 584–586 (Forest Service General Technical Report GTR-NC-190, 1997).Domahidi, Z., Nielsen, S., Bayne, E. & Spence, J. Boreal owl (Aegolius funereus) and northern saw-whet owl (Aegolius acadicus) breeding records in managed boreal forests. Can. Field-Nat. 134, 125–131. https://doi.org/10.22621/cfn.v134i2.2146 (2020).Whitman, J. S. Diets of nesting boreal owls, Aegolius funereus, in western interior Alaska. Can. Field-Nat. 115, 476–479 (2001).
    Google Scholar 
    Whitman, J. S. Post-fledging estimation of annual productivity in boreal owls based on prey detritus mass. J. Raptor Res. 42, 58–60. https://doi.org/10.3356/JRR-06-88.1 (2008).Article 

    Google Scholar 
    Anderson, A. G. Wildfire impacts on nest provisioning and survival of Alaskan boreal owls. Master thesis, Miami University, Ohio (2017).Hayward, G. D., Steinhorst, R. K. & Hayward, P. H. Monitoring boreal owl populations with nest boxes: sample size and cost. J. Wildl. Manage. 56, 777–785. https://doi.org/10.2307/3809473 (1992).Article 

    Google Scholar 
    Koopman, M. E., McDonald, D. B. & Hayward, G. D. Microsatellite analysis reveals genetic monogamy among female boreal owls. J. Raptor Res. 41, 314–318. https://doi.org/10.3356/0892-1016(2007)41[314:MARGMA]2.0.CO;2 (2007).Article 

    Google Scholar 
    Fang, Y., Tang, S.-H., Gu, Y. & Sun, Y.-H. Conservation of Tengmalm’s owl and Sichuan wood owl in Lianhuashan Mountain, Gansu, China. Ardea 97, 649–649. https://doi.org/10.5253/078.097.0437 (2009).Article 

    Google Scholar 
    Löfgren, O., Hörnfeldt, B. & Carlsson, B. Site tenacity and nomadism in Tengmalm’s owl (Aegolius funereus (L.)) in relation to cyclic food production. Oecologia 69, 321–326. https://doi.org/10.1007/BF00377051 (1986).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hörnfeldt, B. & Nyholm, N. E. I. Breeding performance of Tengmalm’s owl in a heavy metal pollution gradient. J. Appl. Ecol. 33, 377–386. https://doi.org/10.2307/2404759 (1996).Article 

    Google Scholar 
    Hipkiss, T., Hörnfeldt, B., Eklund, U. & Berlin, S. Year-dependent sex-biased mortality in supplementary-fed Tengmalm’s owl nestlings. J. Anim. Ecol. 71, 693–699. https://doi.org/10.1046/j.1365-2656.2002.t01-1-00635.x (2002).Article 

    Google Scholar 
    Hipkiss, T., Gustafsson, J., Eklund, U. & Hörnfeldt, B. Is the long-term decline of boreal owls in Sweden caused by avoidance of old boxes?. J. Raptor Res. 47, 15–20. https://doi.org/10.3356/JRR-11-91.1 (2013).Article 

    Google Scholar 
    Korpimäki, E. Selection for nest-hole shift and tactics of breeding dispersal in Tengmalm’s owl Aegolius funereus. J. Anim. Ecol. 56, 185–196. https://doi.org/10.2307/4808 (1987).Article 

    Google Scholar 
    Drdáková-Zárybnická, M. Breeding biology of the Tengmalm’s owl (Aegolius funereus) in air-pollution damaged areas of the Krušné hory Mts. Sylvia 39, 35–51 (2003).
    Google Scholar 
    Zárybnická, M., Riegert, J., Kloubec, B. & Obuch, J. The effect of elevation and habitat cover on nest box occupancy and diet composition of boreal owls Aegolius funereus. Bird Study 64, 222–231. https://doi.org/10.1080/00063657.2017.1316236 (2017).Article 

    Google Scholar 
    Zárybnická, M., Kloubec, B., Obuch, J. & Riegert, J. Fledgling productivity in relation to diet composition of Tengmalm’s owl Aegolius funereus in Central Europe. Ardeola 62, 163–171. https://doi.org/10.13157/arla.62.1.2015.163 (2015).Article 

    Google Scholar 
    Kloubec, B. Breeding of Tengmalm’s owls (Aegolius funereus) in nest-boxes in Šumava Mts.: a summary from the years 1978–2002. Buteo 13, 75–86 (2003).
    Google Scholar 
    Flousek, J. Ochrana sov v Krkonošském národním parku in Sovy 1986 (eds. Sitko, J. & Trpák, P.) 33–34 (Státní ústav památkové péče a ochrany přírody, Přerov, 1988).Ravussin, P.-A. et al. Quel avenir pour la Chouette de Tengmalm Aegolius funereus dans le massif du Jura? Bilan de trente années de suivi. Nos Oiseaux 62, 5–28 (2015).
    Google Scholar 
    Schelper, W. Zur Brutbiologie, Ernährung und Populationsdynamik des Rauhfusskauzes Aegolius funereus im Kaufunger Wald (Südniedersachsen). Vogelkundliche Berichte aus Niedersachsen 21, 33–53 (1989).
    Google Scholar 
    Schwerdtfeger, O. The dispersion dynamics of Tengmalm’s owl Aegolius funereus in Central Europe in Raptor Conservation Today (eds. Meyburg, B. U. & Chancellor, R. C.) 543–550 (World Working Group on Birds of Prey and Pica Press, 1994).Hunke, W. Versuch eine Population des Raufußkauzes Aegolius funereus durch Anbringen von Nistkästen in den Jahren 1980 bis 2010 zu fördern. Charadrius 47, 93–101 (2011).
    Google Scholar 
    Mezzavilla, F. & Lombardo, S. Indagini sulla biologia riproduttiva della civetta capogrosso Aegolius funereus: anni 1987–2012 in Atti Secondo Convegno Italiano Rapaci Diurni e Notturni Vol. 3 (eds. Mezzavilla, F. & Scarton, F.) 261–270 (Associazione Faunisti Veneti, Quaderni Faunistici, 2013).Rajković, D. Diet composition and prey diversity of Tengmalm’s owl Aegolius funereus (Linnaeus, 1758; Aves: Strigidae) in central Serbia during breeding. Turk. J. Zool. 42, 346–351. https://doi.org/10.3906/zoo-1709-28 (2018).Article 

    Google Scholar 
    Zárybnická, M., Riegert, J. & Šťastný, K. Non-native spruce plantations represent a suitable habitat for Tengmalm’s owl (Aegolius funereus) in the Czech Republic, Central Europe. J. Ornithol. 156, 457–468. https://doi.org/10.1007/s10336-014-1145-6 (2015).Article 

    Google Scholar 
    Kopáček, J. & Veselý, J. Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos. Environ. 39, 2179–2188. https://doi.org/10.1016/j.atmosenv.2005.01.002 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Kloubec, B., Hora, J. & Šťastný, K. (eds.). Ptáci jižních Čech (Jihočeský kraj, 2015).Ševčík, R., Riegert, J., Šindelář, J. & Zárybnická, M. Vocal activity of the Central European boreal owl population in relation to varying environmental conditions. Ornis Fenn. 96, 1–12 (2019).
    Google Scholar 
    Savický, J. AM Services – Play Spectrogram Screens v. 4v7 (Czech Republic, 2009).Korpimäki, E. Diet of breeding Tengmalm’s owls Aegolius funereus: long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 65, 21–30 (1988).
    Google Scholar 
    Kouba, M. et al. Home range size of Tengmalm’s owl during breeding in Central Europe is determined by prey abundance. PLoS ONE 12, e0177314. https://doi.org/10.1371/journal.pone.0177314 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zárybnická, M., Sedláček, O. & Korpimäki, E. Do Tengmalm’s owls alter parental feeding effort under varying conditions of main prey availability?. J. Ornithol. 150, 231–237. https://doi.org/10.1007/s10336-008-0342-6 (2009).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).ter Braak, C. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, version 5.10. (Microcomputer Power, 2018).Kosiński, Z. & Kempa, M. Density, distribution and nest-sites of woodpeckers Picidae, in a managed forest of Western Poland. Pol. J. Ecol. 55, 519–533 (2007).
    Google Scholar 
    Miller, K. E. Nest-site limitation of secondary cavity-nesting birds in even-age southern pine forests. Wilson J. Ornithol. 122, 126–134. https://doi.org/10.1676/07-130.1 (2010).Article 

    Google Scholar 
    Sonerud, G. A. Nest hole shift in Tengmalm’s owl Aegolius funereus as defence against nest predation involving long-term memory in the predator. J. Anim. Ecol. 54, 179–192. https://doi.org/10.2307/4629 (1985).Article 

    Google Scholar 
    Sonerud, G. A. Reduced predation by pine martens on nests of Tengmalm’s owl in relocated boxes. Anim. Behav. 37, 332–334. https://doi.org/10.1016/0003-3472(89)90122-X (1989).Article 

    Google Scholar 
    Sonerud, G. A. Win – and stay, but not too long: cavity selection by boreal owls to minimize nest predation by pine marten. J. Ornithol. 162, 839–855. https://doi.org/10.1007/s10336-021-01876-y (2021).Article 

    Google Scholar 
    Korpimäki, E. Does nest-hole quality, poor breeding success or food depletion drive the breeding dispersal of Tengmalm’s owls?. J. Anim. Ecol. 62, 606–613. https://doi.org/10.2307/5382 (1993).Article 

    Google Scholar 
    Hruška, F. The boreal owl (Aegolius funereus) – breeding distribution, numbers, ringing results and notes on the breeding biology and feeding ecology of this species in the central part of the Jihlavské vrchy Hills. Crex 38, 112–150 (2020).
    Google Scholar 
    Broughton, R. et al. Nest-site competition between bumblebees (Bombidae), social wasps (Vespidae) and cavity-nesting birds in Britain and the Western Palearctic. Bird Study 62, 427–437. https://doi.org/10.1080/00063657.2015.1046811 (2015).Article 

    Google Scholar 
    Pawlikowski, T. & Pawlikowski, K. Nesting interactions of the social wasp Dolichovespula saxonica [F.] (Hymenoptera: Vespinae) in wooden nest boxes for birds in the forest reserve „Las Piwnicki” in the Chełmno Land (Northern Poland). Ecol. Quest. 13, 67–72. https://doi.org/10.2478/v10090-010-0017-9 (2010).Langowska, A., Ekner-Grzyb, A., Skórka, P., Tobółka, M. & Tryjanowski, P. Nest-site tenacity and dispersal patterns of Vespa crabro colonies located in bird nest-boxes. Sociobiology 56, 375–382 (2010).
    Google Scholar 
    Meyer, W. Mit welchem Erfolg nutzt der Rauhfusskauz Aegolius funereus (L.) Natruhölen und Nistkästen zur Brut. Vogelwelt 124, 325–331 (2003).
    Google Scholar 
    López, B. C. et al. Nest-box use by boreal owls (Aegolius funereus) in the Pyrenees Mountains in Spain. J. Raptor Res. 44, 40–49. https://doi.org/10.3356/JRR-09-32.1 (2010).ADS 
    Article 

    Google Scholar 
    Zárybnická, M., Riegert, J. & Kouba, M. Indirect food web interactions affect predation of Tengmalm’s owls Aegolius funereus nests by pine martens Martes martes according to the alternative prey hypothesis. Ibis 157, 459–467. https://doi.org/10.1111/ibi.12265 (2015).Article 

    Google Scholar 
    Zárybnická, M. & Vojar, J. Effect of male provisioning on the parental behavior of female boreal owls Aegolius funereus. Zool. Stud. 52, 36. https://doi.org/10.1186/1810-522X-52-36 (2013).Article 

    Google Scholar 
    Llambías, P. & Fernandez, G. Effects of nestboxes on the breeding biology of southern house wrens Troglodytes aedon bonariae in the southern temperate zone. Ibis 151, 113–121. https://doi.org/10.1111/j.1474-919X.2008.00868.x (2009).Article 

    Google Scholar 
    Vrezec, A. Breeding density and altitudinal distribution of the Ural, tawny, and boreal owls in North Dinaric Alps (Central Slovenia). J. Raptor Res. 37, 55–62 (2003).
    Google Scholar  More

  • in

    Validation of leaf area index measurement system based on wireless sensor network

    Study areaWith the advanced observational techniques, abundant data accumulation, and ability to carry on multi-scale experiments, the Huailai Remote Sensing Station and around (for short Huailai Station), located in Huailai, Hebei province, China (40.349°N, 115.785°E), becomes one of the ideal study areas for the observation and validation of the LAI27. The Huailai Station is mainly covered by corn and some weeds. So, we mainly use LAIS to monitor the growth cycle of corn (in April 2015, we submitted an application for plant collection permission to Huailai Remote Sensing Station and obtained approval.)Huailai WSN vegetation monitoring system includes 6 sets of monitoring equipment, and its distribution is shown in Fig. 1 as follows, in which red dot represents LAIS Node, purple frame represents MODIS pixel, red frame represents observation area. The observation system is designed for the application of remote sensing pixel scale authenticity tests. The observation scale is a 1 km MODIS pixel on the pixel scale, and the actual coverage area is 2 km * 1.5 km. The six sets of equipment cover the core area of the test station and the surrounding typical growth plot, which is a good representative of the 1 km pixel scale.Figure 1Equipment distribution of WSN vegetation monitoring network in Huailai (red dot represents LAIS Node; purple frame represents the footprint of a MODIS pixel.Full size imageEach piece of equipment consists of two cameras which were only one camera with two different angles in previous work23 set up at a height of 2.5–4 m above the ground (Fig. 2), one for vertical downward observation and the other for inclined observation, which can take canopy photos regularly every day at its fixed position. The observation system obtained the photos of the corn canopy from May to August, but the corn did not grow in August. Therefore, in this study, we selected the photos taken by the vertical observation camera of the corn sample plot in the experimental station from May to July 2015.Figure 2The design of the LAIS node.Full size imageRelated work—data acquisitionData collection using LAISThe data collection complies with the plant guidelines statement: “LAI-2000 Plant Canopy Analyzer Instrution Manual” (Supplementary Information 2) (https://www.licor.com/env/, Last visit time: 21 October 2021). Existing facilities such as the high poles and the wireless sensor network in the experimental station have proved convenient for the installation of the LAI measurement system. LAIS uses the GEO001 digital serial camera that is suitable for a variety of embedded image acquisition modes. The specification of the camera includes: the total field of view is 120°, the maximum image size is 2176 * 1920 (approximately 5 million pixels), mounted at a height of 3 m, the spatial resolution at ground level is about 3 mm. The acquired image is simultaneously stored in a flash card in two formats: the JPEG format merits in less file size thus suitable for quick wireless transfer; the RAW format, which is the user data in our analysis, contains 3 channel binary image in 10 bits bit-depth. Compared to our previous work, an important new feature of this camera is the programmable cut-off filter. As we know, unlike scientific sensor which has the precise spectral response to each band, the digital camera is cheap and can only acquire the so-called RGB image. Usual digital cameras have one NIR cut-off filter to exclude the near-infrared light. The GEO001 camera, which was a commercial camera produced by Zhongshan Yunteng Photographic Equipment Co., Ltd, has two cut-off filters: one is the NIR cut-off filter, another is a blue cut-off filter. Switching on the NIR cut-off filter results in an ordinary color image as in a usual household digital camera. While the blue cut-off filter is switched on and NIR cut-off filter is switched off, near-infrared light is allowed to reach the detector array and blue light is blocked, resulting in false-color images as in Fig. 3b. Adding near-infrared light can increase illumination in the shadow area, and blocking blue light can alleviate the disturbance of sun glint, so, switching to a blue cut-off filter helps to improve the image quality when the direct sunlight is strong such as around noon time.Figure 3Three images on July 2 of site 1: (a) and (c) are true-color images obtained at 05:31 a.m. and 6:32 p.m., and (b) is a false-color image when the blue filter is removed at 1:28 p.m.Full size imageTo acquire an image in the best illumination condition and avoid the influence of rain or other unsuitable weather, the image acquisition device based on WSN was set up to acquire images three times per day: 5:30 a.m., 1:30 p.m., and 6:30 p.m. According to our experience, when the canopy is open (sparse vegetation), usually images acquired at 6:30 p.m. are the best for classification because the direct sunlight is weak; when the canopy is closed (dense vegetation), the illumination on the soil background is very poor in all time, and classification is difficult. So, the camera is programmed to switch to a blue cut-off filter when acquiring images at 1:30 p.m., while the images acquired at other times were with NIR cut-off filter, resulting in true color images, as shown in Fig. 3.LAILLW data and LAI2000 dataTo evaluate the accuracy of the improved finite length averaging method proposed in this study, a field experiment was carried out to measure LAI by manual sampling (Supplementary Information 3,4). A field sampling scheme covering the corn growing season (late May to early July) was designed (Supplementary Information 1). The LAI of corn in the experimental area was measured by the quadrat harvesting method, and the validation data of LAI of corn in each growth period were obtained. Considering the rapid growth of the corn, the sampling experiment period was set as 1 week, but due to the actual work in summer and the influence of rainfall, six effective measurements were carried out in the field experiment: May 30, June 7, June 13, June 20, July 4 and July 16.The LAILLW method, which is also known as the shape factor method, involves outdoor and indoor measurements. The formulas are:$${text{L}} = {text{S}}*{text{N}}$$
    (1)
    $${text{f}} = {{text{S}} /{left( {sumlimits_{i = 1}^m {{text{len}}*{text{wid}}} } right)}}$$
    (2)

    where L represents the leaf area index, S refers to the area of a single plant, and N refers to the number of plants in a unit area. The shape factor ƒ is the ratio of the S to the value multiplied by the length and width of all leaves in the plant.To reduce measurement errors, 10 plants were selected in the sample, and the length and width of each leaf on each corn were recorded with a ruler. To obtain the shape factor, representative corn plants were cut next to the sample (not in the image coverage area) and the true area of each leaf was obtained by software, and the shape factor was derived from this23. Through the length and width of 10 strains measured in the field, and the shape factor obtained, the total leaf area of 10 corns can be calculated, and the average leaf area of one plant is finally obtained. The LAI value under the LAILLW method is obtained.Using the difference between the solar radiation values of the upper and lower canopies, the LAI2000 canopy analyzer can obtain LAI and set up a corresponding point folder to save the measured data for subsequent collation. 10 measurement points were selected for each site, and the average value was the final result for each site. To reduce the effects of the solar altitude angle on measurement accuracy, the experiments were repeated every two hours.To make it easier to record the date of data acquisition, the data were summarized in the order day of the year (DOY). For example, 30 May 2015 is the 150th day in the year and its DOY is 150. The DOY information of data acquisition using the LAILLW method and LAI2000 is specifically shown in Table 1.Table 1 The DOY information of data acquisition using the LAILLW and LAI2000.Full size tableMODIS LAI dataMODIS leaf area index data was downloaded from the United States Geological Survey (https://modis.gsfc.nasa.gov/data/dataprod/mod15.php), named MCD15A2Hv006. It is an 8-day composite dataset with a 500-m pixel size. The algorithm chooses the best pixel available from all the acquisitions of both MODIS sensors located on NASA’s Terra and Aqua satellites from within the 8 days.In the comparison of MODIS LAI data, as the pixel of the satellite product is in 500 m resolution, it is not recommended to directly compare single node LAIS measurement with the MODIS LAI product because of the scale mismatch. Though complicated upscaling approaches have been discussed and implemented in Huailai station for other parameters28, it is not the purpose of this study So, we simply averaged the LAI in all the LAIS nodes to compare to the average MODIS LAI product in the 3 * 3 nearest pixels (1.5 km * 1.5 km), referred to as MODIS LAI_Mean in a later context, which approximately covers the area of all LAIS nodes. Time matching was carried out by selecting the date of the MODIS product closest to the date of the handheld LAI2000 measurement. The following Table 2 is obtained by taking 3 * 3 pixels closest to the LAIS Nodes.Table 2 MODIS leaf area index of 3 * 3 pixels around Huailai experimental station.Full size tableImproved LAIS methodsIn previous work, we have deployed sensors and cameras, and also have an automatic image processing and preliminary method of calculating LAI23. Figure 4 is a flow chart of our work. The previous articles focused on hardware and system implementation but did not pay much attention to performance. On this basis, we upgrade the image classification method and LAI calculation method, which will be explained in detail below.Figure 4Flow chart of leaf area index measurement system based on WSN.Full size imageImage preprocessing and classification methodsBecause of weather-related factors such as water vapor and dust or inaccurate exposure, a small number of the photographs are not clear. Besides, some of the image data cannot be decoded because of unstable communications and other factors. Therefore, it is necessary to check and select the photographs that meet the processing requirements before binary image processing. Currently, the selection process is carried out by human visual inspection based on the following principles: (1) when the canopy is open (sparse vegetation), the image at 6:30 p.m. is preferred, when the vegetation the canopy is closed (sparse vegetation), the image at 1:30 p.m. is preferred; (2) if the preferred image is not clear, other clear image acquired on the same day should be used; if all the images are not clear, then this day is marked as a failure.If we decided to use the image acquired at 1:30 p.m. It is also necessary to convert it from a false-color image to a true-color-like image (as shown in Fig. 3b) in which the leaves are shown in green color. The conversion is carried out by multiplying the vector of DN (digital number) of 3 bands with a coefficient matrix which is provided by the camera manufacturer. Another preprocessing is to choose the near nadir-view area of the image for further processing. As the off-nadir-view area of the image is subject to large geometric distortion as well as saturation of fraction of vegetation cover (FVC), they are not used in this study. The images are clipped to an ROI (region of interest) of about 2 * 2 square meters in ground area, with a maximum view zenith angle less than 30°.The study of the color spatial distributions of the crop images is helpful for the classification of the images and extraction of the image information. The color of the image pixel is the most direct and effective element that can be used to describe the image29. Because the red–green–blue (RGB) color space has the characteristic of a clear and convenient expression of information. When corn leaves are small, the crops in the fields are sparse, and most of them are soil background in the images. The soil in a lower hue is similar to the corn in terms of R and B components, while it has an overlap with the corn in G components when soil is in a higher hue. This makes it difficult to classify sparse corn scenes only by RGB space, so it is necessary to consider the characteristics of hue, luminosity, and saturation (HLS) spatial components.Statistical analysis showed that the component values of the crop leave in the RGB color space were in the ranges of G  > R and G  > B while the corresponding values for the soil follow the law that B  More

  • in

    Impact of different enzymes on biofilm formation and mussel settlement

    Zobell, C. E. & Allen, E. C. The significance of marine bacteria in the fouling of submerged surfaces. J. Bacteriol. 29, 239–251 (1935).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flemming, H. C. et al. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).CAS 
    PubMed 

    Google Scholar 
    Shikuma, N. J. & Hadfield, M. G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 26, 39–46 (2010).CAS 
    PubMed 

    Google Scholar 
    Maki, J., Rittschof, D., Schmidt, A., Snyder, A. & Mitchell, R. Factors controlling attachment of bryozoan larvae: A comparison of bacterial films and unfilmed surfaces. Biol. Bull. 177, 295–302 (1989).
    Google Scholar 
    Satuito, C. G., Natoyama, K., Yamazaki, M. & Fusetani, N. Inductin of attachment and metamorphosis of laboratory cultures mussel Mytilus edulis galloprovincialis larvae by microbial film. Fish. Sci. 61, 223–227 (1995).CAS 

    Google Scholar 
    Bao, W., Yang, J., Satuito, C. G. & Kitamura, H. Larval metamorphosis of the mussel Mytilus galloprovincialis in response to Alteromonas sp. 1: Evidence for two chemical cues?. Mar. Biol. 152, 657–666 (2007).
    Google Scholar 
    Liang, X. et al. Polyurethane, epoxy resin and polydimethylsiloxane altered biofilm formation and mussel settlement. Chemosphere 218, 599–608 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Huggett, M. J., Williamson, J. E., De Nys, R., Kjelleberg, S. & Steinberg, P. D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149, 604–619 (2006).ADS 
    PubMed 

    Google Scholar 
    Yang, J. et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29, 247–259 (2013).CAS 
    PubMed 

    Google Scholar 
    Qian, P. Y., Thiyagarajan, V., Lau, S. C. K. & Cheung, S. C. K. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat. Microb. Ecol. 33, 225–237 (2003).
    Google Scholar 
    Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C. & Combes, D. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24, 11–22 (2008).CAS 
    PubMed 

    Google Scholar 
    Beigbeder, A. et al. On the effect of carbon nanotubes on the wettability and surface morphology of hydrosilylation-curing silicone coatings. Nanostruct. Polym. Nanocomp 5, 37–43 (2009).
    Google Scholar 
    Lee, S. H., Pumprueg, S., Moudgil, B. & Sigmund, W. Inactivation of bacterial endospores by photocatalytic nanocomposites. Colloids Surf. B Biointerfaces 40, 93–98 (2005).CAS 
    PubMed 

    Google Scholar 
    Alzieu, C. Tributyltin: Case study of a chronic contaminant in the coastal environment. Ocean Coast. Manag. 40, 23–36 (1998).
    Google Scholar 
    Yang, J. L. et al. Chromosome-level genome assembly of the hard-shelled mussel Mytilus coruscus, a widely distributed species from the temperate areas of East Asia. GigaScience 10, giab024 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Liang, X. et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis. Int. J. Mol. Sci. 21, 710 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Liang, X. et al. Bacterial cellulose synthesis gene regulates cellular c-di-GMP that control biofilm formation and mussel larval settlement. Int. Biodeterior. Biodegrad. 165, 105330 (2021).CAS 

    Google Scholar 
    Peng, L. H. et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus. Biofouling 36, 753–765 (2020).CAS 
    PubMed 

    Google Scholar 
    Chang, R. H. et al. Complete genome sequence of Shewanella marisflavi ECSMB14101, a red pigment synthesizing bacterium isolated from the East China Sea. Mar. Genom. 58, 100846 (2021).
    Google Scholar 
    Sutherland, I. W. Polysaccharide lyases. FEMS Microbiol. Rev. 16, 323–347 (1995).CAS 
    PubMed 

    Google Scholar 
    Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).CAS 
    PubMed 

    Google Scholar 
    Kristensen, J. B. et al. Antifouling enzymes and the biochemistry of marine settlement. Biotechnol. Adv. 26, 471–481 (2008).CAS 
    PubMed 

    Google Scholar 
    Pettitt, M., Henry, S., Callow, M., Callow, J. & Clare, A. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling 20, 299–311 (2004).CAS 
    PubMed 

    Google Scholar 
    McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: Mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).CAS 

    Google Scholar 
    Boyd, A. & Chakrabarty, A. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60, 2355–2359 (1994).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaplan, J. B., Ragunath, C., Velliyagounder, K., Fine, D. H. & Ramasubbu, N. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 48, 2633–2636 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, J., Bradshaw, D., Fulford, M. & Marsh, P. Microbiological evaluation of a range of disinfectant products to control mixed-species biofilm contamination in a laboratory model of a dental unit water system. Appl. Environ. Microbiol. 69, 3327–3332 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiater, A., Szczodrak, J. & Rogalski, J. Hydrolysis of mutan and prevention of its formation in streptococcal films by fungal α-d-glucanases. Process Biochem. 39, 1481–1489 (2004).CAS 

    Google Scholar 
    Dobretsov, S., Xiong, H., Xu, Y., Levin, L. A. & Qian, P.-Y. Novel antifoulants: Inhibition of larval attachment by proteases. Mar. Biotechnol. 9, 388–397 (2007).CAS 

    Google Scholar 
    Carl, C. et al. Enhancing the efficacy of fouling-release coatings against fouling by Mytilus galloprovincialis using nanofillers. Biofouling 28, 1077–1091 (2012).CAS 
    PubMed 

    Google Scholar 
    Patel, P., Callow, M. E., Joint, I. & Callow, J. A. Specificity in the settlement–modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ. Microbiol. 5, 338–349 (2003).CAS 
    PubMed 

    Google Scholar 
    Thostenson, E. T., Ren, Z. & Chou, T. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899–1912 (2001).CAS 

    Google Scholar 
    Beigbeder, A. et al. Marine fouling release silicone/carbon nanotube nanocomposite coatings: On the importance of the nanotube dispersion state. J. Nanosci. Nanotechnol. 10, 2972–2978 (2010).CAS 
    PubMed 

    Google Scholar 
    Frogley, M. D., Ravich, D. & Wagner, H. D. Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63, 1647–1654 (2003).CAS 

    Google Scholar 
    G., A. Seawater Composition. Online edition. SBCC Marine Science. Santa Barbara City College. http://www.marinebio.net/marinescience/02ocean/swcomposition.htm. (2004).Shipovskov, S., Ferapontova, E. E., Gazaryan, I. & Ruzgas, T. Recombinant horseradish peroxidase-and cytochrome c-based two-electrode system for detection of superoxide radicals. Bioelectrochemistry 63, 277–280 (2004).CAS 
    PubMed 

    Google Scholar 
    Aehle, W. Enzymes in Industry: Production and Applications (Wiley, 2007).
    Google Scholar 
    Walker, G. Larval settlement: Historical and future perspectives. Crustacean Issues 10, 69–86 (1995).
    Google Scholar 
    Tomarelli, R., Charney, J. & Harding, M. L. The use of azoalbumin as a substrate in the colorimetric determination or peptic and tryptic activity. J. Lab. Clin. Med. 34, 428–433 (1949).CAS 
    PubMed 

    Google Scholar 
    Somogyi, M. Modifications of two methods for the assay of amylase. Clin. Chem. 6, 23–35 (1960).CAS 
    PubMed 

    Google Scholar 
    Sinegani, A. A. S. & Emtiazi, G. The relative effects of some elements on the DNS method in cellulase assay. J. Appl. Sci. Environ. Manag. 10, 93–96 (2006).
    Google Scholar 
    Li, Y. et al. Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 433, 434–441 (2014).
    Google Scholar 
    Yang, J. et al. Effects of biofilms on settlement of plantigrades of the mussel Mytilus coruscus. J. Fish. China 37, 904–909 (2013) ((In Chinese with English Abstract)).
    Google Scholar 
    Hu, X. M. et al. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition. Biofouling 37, 911–921 (2021).CAS 
    PubMed 

    Google Scholar  More

  • in

    Nodulation competitiveness and diversification of symbiosis genes in common beans from the American centers of domestication

    In the work reported here, we have examined the interaction of symbiotic partners representative of the three major diversification centers. Although P. vulgaris could establish symbiosis with diverse rhizobial lineages, Rhizobium etli seemed to predominate in nature in the bean nodules collected from the Americas8,9, while the Americas is where the origin and diversification of the host have been experimentally supported19,20. Genotypes other than R. etli that also induce nodule formation in the bean have already been taxonomically defined as species, for instance Rhizobium tropici and Rhizobium ecuadorense, both of which were isolated from areas in northwestern South America, namely Ecuador, Brazil, and Colombia.American-bean rhizobia, from soil samples retrieved by the common bean as well as isolates from nodules found in nature have possessed polymorphism in the nodC gene, disclosing three nodC genotypes namely α, (upgamma), and (updelta)9. The different nodC alleles in American strains exhibit a varying predominance in their regional distributions in correlation with the centers of bean genetic diversification. The nodC types α and (upgamma) were detected both in bean nodules and in soils from Mexico, whereas the nodC type (updelta) was clearly predominant in soil and nodules from the Southern Andes (i. e., in Bolivia and northwest Argentina9). A quantitatively balanced representation of rhizobia with nodC type α and (upgamma) was detected in soils from Ecuador, but the nodC type (upgamma) had been found to be predominantly isolated from nodules formed in nature in that area5,9,10. It should be noted that we have reported finding of equal distribution of allele nodC type α and γ among the nine R etli isolates from bean in Mexico reported by Silva et al.7,9. The occurrence of this polymorphism proved to contribute to examining rhizobial populations inhabiting the Americas and characterizing the interaction with beans in BGD centers from Mexico to the northwest of Argentina. In performing our nodC analysis, we were aware that rhizobia genes for symbiosis are carried on plasmids which might mediate horizontal transfer, however in agreement with Silva et al.7 we assumed that although genetic exchange could be important, it is not so extensive to prevent epidemic clones from arising at significant frequency. Similar findings were found in R. leguminosarum bv trifolii associated with native Trifolium species growing in nature21.Investigations in the last decade have proposed an evolutionary pathway for the host bean that provided us with a framework for examining our results on rhizobia-bean interactions and facilitated an interpretation of the results. The current model proposes the occurrence of a Mesoamerican origin from where dispersion by independent migrations over time led to the Mesoamerican and Andean gene pools and to the Ecuador-Peru wild common-bean populations2,19,20. We found a balanced competition between α and (upgamma) nodC types in beans from Mesoamerica and the southern Andes, whereas the beans from Ecuador and Peru revealed a clear affinity for nodulation with strains of nodC type α rather than with the sympatric strains nodC type (upgamma) that we assayed (R. ecuadorense, CIAT894 and Bra-5). Nevertheless, we have previously reported that native strains and isolates with respectively both nodC types α and (upgamma) were found in soils and bean nodules from Mexico9, whereas lineages harboring nodC type (upgamma) were found to be predominant in beans from the northern and central regions of Ecuador-Peru8,9. The present results, however, indicated a clear affinity of the Ecuadorean-Peruvian—i. e., AHD—beans for strains nodC type α when assessed for competition against nodC type (upgamma) (Fig. 2A). We also found that nodC type (updelta) displayed a clear predominant occupancy of nodules of the AHD beans in contrast to the scarce occupancy of nodules of the Mesoamerican and Andean beans (Fig. 2B). Taken together, these results indicate no affinity of AHD beans for sympatric rhizobial strains containing nodC type (upgamma)—despite the finding that rhizobia of nodC type (upgamma) appear to predominate in isolates of nodules formed in Ecuador9,10.We conclude that although rhizobial type nodC (upgamma) was previously found to predominate in bean nodules from Ecuador, the competitiveness of that rhizobial strain for nodulation compared to other genotypes of bean rhizobia was relatively low. A possible explanation could be that seeds might be assumed to play a key role as carriers during the dissemination of the bean throughout the American regions. Thus, we can hypothesize that at the time of bean dissemination both R. etli nodC types α and (upgamma) (R. ecuadorense and other lineages) moved in conjunction with the host from Mesoamerica to northern Ecuador-Peru, but the strains bearing nodC type (upgamma) achieved an adaptation—probably due to edaphic characteristics, environmental stresses, and other features—in such a way that that strain predominated in soils and succeeded in nodulation.Alternatively, that prevalence might arise from a host selection for a rhizobium that is more effective in nitrogen fixation in a new and different environment. A poor relationship, however, between competitiveness and efficiency was found in the pea22. In line with the concept of adaptation, the bean had been found to be preferentially nodulated by species of R. tropici in acidic soils in regions of Brazil and Africa4,23. Since the environment could also be a major influence on the host and its symbiotic interactions, the Andean area represents a cooler climate for the growth of the bean than the Mesoamerican region24,25. Furthermore, since our assays were performed in laboratory environment parameters, we do not rule out the effect -if any- by the diverse and complex soil microbial community coexisting with bean rhizobia. Within this context, two contrasting soils from Argentina which differ in geolocation and edaphic properties and the perlite substrate were assayed side by side in nodule occupancy of Negro Xamapa after inoculation with a mixture of strains nodC type α and γ (Results not shown). Our results showed that the predominance of nodC type γ in the occupation of the nodules of this variety (about 80% occupation) is not affected by the type of substrate (p = 0.5566). Yet, we assume that the performance in diverse soil and ecosystems should be further evaluated in situ. In agreement, a good coevolution of rhizobia strains with nodC type (upgamma) was detected in nodules of bean varieties from the Mesoamerica and Andean genetic pools inoculated with soil samples from Mexico, Ecuador, and Northwest of Argentina, respectively (see Table 2 in Aguilar et al., 2004) [9].With respect to the interaction in the southern Andes, we propose another interpretation that takes into consideration the bottleneck that occurred before domestication in the Andes, as was indicated by Bitocchi et al.26, which scenario enables the assumption that the adaptation and concomitant diversification involved a coevolution of the symbioses. Therefore, similar profiles of competitiveness for nodulation in Mesoamerican and Andean beans were found between nodC type (upgamma) versus nodC types α and (updelta), but a significant occupancy by the nodC type (updelta) was recorded in the Andean beans.Our work suggests that the genetics of both the host and the bacteria determine the mutual affinity and additionally indicates that symbiotic interaction is another trait of legumes sensitive to the effects of evolution and ecological adaptation to the locale environment such as the characteristics of the soil and the climate.The analysis of the genetic sequences of the bean that encode genes associated with symbiosis, revealed variation of NFR1, NFR5 and NIN over the representative accessions of the Mesoamerican, the Andean, and the AHD gene pools. It is proposed that a receptor complex composed of NFR1 and NFR5 initiates signal transduction in response to Nod-factor synthesized and released by rhizobia27. Although the variation consisted mainly in neutral-amino-acid substitutions, thus suggesting only minimal changes in the functionality, if any at all; we could cite the convincing and relevant evidence reported by Radutoiu et al.27 that the amino-acid residue 118 of the second LysM module of NFR5 is essential for the recognition of rhizobia by species of Lotus japonicus and Lotus filicaulis. Our finding that the Mesoamerican-bean NFR5 has glutamine (Q) in position 151, whereas the Andean and the AHD both have proline (P)—neither of which amino acids is neutral—would merit further investigation to evaluate if such a mutation might play a role in nodulation preference. Although this result must be considered with caution, we found that the conserved polymorphism in the NFR1 and NFR5 proteins has caused the beans representative of the genetic pool Ecuador-Peru—i. e., the AHD—to be grouped in a cluster separate from those of Mesoamerica and the Andes. What we found to be interesting was that the phylogenetic and RMSD profiles of grouping the sequences are consistent with different evolutionary pathways in beans from the AHD and the Andean areas. This observation agrees with the proposal of Randón-Anaya et al.2 that those former beans from northern Peru-Ecuador originated from an ancestral form earlier than that of Mesoamerican- and Andean-bean genotypes. In addition, by applying a suppressive subtractive hybridization approach a set of bean genes were identified in our laboratory to be expressed in early step of infection by the cognate rhizobia28. Taken these results together, we conclude that genomic regions and patterns of expression in the host appear associated with an affinity for nodulation.Within a broader context, we believe that our results on the biogeography of bean-rhizobia interactions in the region where the origin and domestication of the host plants occurred provide novel useful issues to be considered in inoculation programs, for instance those involving selection of strains and cultivars, and invite to validate these findings in follow up field trials. More

  • in

    Active hydrothermal vents in the Woodlark Basin may act as dispersing centres for hydrothermal fauna

    German, C. R. & Von Damm, K. L. Treatise on Geochemistry (eds Heinrich, D. H. & Karl, K. T.) 181–222 (Pergamon, 2003).Van Dover, C. The Ecology of Deep-Sea Hydrothermal Vents (Princeton University Press, 2000).Spiess, F. N. et al. East Pacific rise: Hot springs and geophysical experiments. Science 207, 1421–1433 (1980).CAS 

    Google Scholar 
    Haymon, R. M. et al. Hydrothermal vent distribution along the East Pacific Rise crest 9° 09’–54’ N and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planetary Sci. Lett. 104, 513–534 (1991).
    Google Scholar 
    Edmonds, H. N. et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic Ocean. Nature 421, 252–256 (2003).CAS 

    Google Scholar 
    German, C. R. et al. Hydrothermal activity and seismicity at Teahitia Seamount: Reactivation of the society islands hotspot? Front. Mar. Sci 7, 73 (2020).
    Google Scholar 
    de Ronde, C. E. J. et al. Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planetary Sci. Lett. 193, 359–369 (2001).
    Google Scholar 
    Ishibashi, J. & Urabe, T. Backarc Basins: Tectonics and Magmatism (ed Taylor, B.) 451–495 (Springer, 1995).Fouquet, Y. et al. Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature 349, 778–781 (1991).CAS 

    Google Scholar 
    Boschen, R. E., Rowden, A. A., Clark, M. R. & Gardner, J. P. A. Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks, and management strategies. Ocean Coastal Manage. 84, 54–67 (2013).
    Google Scholar 
    Lisitsyn, A. P. et al. Active hydrothermal activity at Franklin Seamount, Western Woodlark Sea (Papua New Guinea). Int. Geol. Rev. 33, 914–929 (1991).
    Google Scholar 
    Laurila, T. E. et al. Tectonic and magmatic controls on hydrothermal activity in the Woodlark Basin: Hydrothermalism in the Woodlark Basin. Geochem. Geophys. Geosyst. 13, Q09006 (2012).Goodliffe, A. M. et al. Synchronous reorientation of the Woodlark Basin spreading center. Earth Planetary Sci. Lett. 146, 233–242 (1997).CAS 

    Google Scholar 
    Martínez, F., Taylor, B. & Goodliffe, A. M. Contrasting styles of seafloor spreading in the Woodlark Basin: Indications of rift-induced secondary mantle convection. J. Geophys. Res. 104, 12909–12926 (1999).
    Google Scholar 
    Taylor, B., Goodliffe, A., Martinez, F. & Hey, R. Continental rifting and initial sea-floor spreading in the Woodlark Basin. Nature 374, 534–537 (1995).CAS 

    Google Scholar 
    Schellart, W. P., Lister, G. S. & Toy, V. G. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth-Sci. Rev. 76, 191–233 (2006).
    Google Scholar 
    Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).
    Google Scholar 
    Breusing, C. et al. Allopatric and sympatric drivers of speciation in Alviniconcha hydrothermal vent snails. Mol. Biol. Evol. 37, 3469–3484 (2020).CAS 

    Google Scholar 
    Ondréas, H., Scalabrin, C., Fouquet, Y. & Godfroy, A. Recent high-resolution mapping of Guaymas hydrothermal fields (Southern Trough). BSGF – Earth Sci. Bull. 189, 6 (2018).
    Google Scholar 
    Nakamura, K. et al. Water column imaging with multibeam echo-sounding in the mid-Okinawa Trough: Implications for distribution of deep-sea hydrothermal vent sites and the cause of acoustic water column anomaly. Geochem. J. 49, 579–596 (2015).CAS 

    Google Scholar 
    Xu, G., Jackson, D. R. & Bemis, K. G. The relative effect of particles and turbulence on acoustic scattering from deep sea hydrothermal vent plumes revisited. J. Acoust. Soc. Am. 141, 1446–1458 (2017).
    Google Scholar 
    Park, S.-H. et al. Petrogenesis of basalts along the eastern Woodlark spreading center, equatorial western Pacific. Lithos 316–317, 122–136 (2018).
    Google Scholar 
    Chadwick, J. et al. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth Planetary Sci. Lett. 279, 293–302 (2009).CAS 

    Google Scholar 
    Fouquet, Y. et al. Geodiversity of Hydrothermal Processes Along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit (eds Rona, P. A., Devey, C. W., Dyment, J. & Murton, B. J.) Vol. 188, 321–367 (American Geophysical Union, 2010).Von Damm, K. et al. Chemistry of submarine hydrothermal solutions at 21N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).
    Google Scholar 
    Seyfried, W. E. & Bischoff, J. L. Experimental seawater-basalt interaction at 300 °C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim. Cosmochim. Acta 45, 135–147 (1981).CAS 

    Google Scholar 
    Pester, N. J., Rough, M., Ding, K. & Seyfried, W. E. A new Fe/Mn geothermometer for hydrothermal systems: Implications for high-salinity fluids at 13°N on the East Pacific Rise. Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2011.08.043 (2011).Podowski, E. L., Moore, T. S., Zelnio, K. A., Luther, G. W. & Fisher, C. R. Distribution of diffuse flow megafauna in two sites on the Eastern Lau Spreading Center, Tonga. Deep Sea Res. Part I: Oceanogr. Res. Papers 56, 2041–2056 (2009).CAS 

    Google Scholar 
    Collins, P., Kennedy, R. & Van Dover, C. A biological survey method applied to seafloor massive sulphides (SMS) with contagiously distributed hydrothermal-vent fauna. Mar. Ecol. Prog. Ser. 452, 89–107 (2012).CAS 

    Google Scholar 
    Desbruyères, D., Hashimoto, J. & Fabri, M.-C. Composition and biogeography of hydrothermal vent communities in Western Pacific back-arc basins. Geophys. Monogr. Ser. 166, 215–234 (2006).Reid, W. D. K. et al. Spatial differences in East scotia ridge hydrothermal vent food webs: Influences of chemistry, microbiology, and predation on trophodynamics. PLoS One 8, e65553 (2013).CAS 

    Google Scholar 
    Van Audenhaege, L., Fariñas-Bermejo, A., Schultz, T. & Lee Van Dover, C. An environmental baseline for food webs at deep-sea hydrothermal vents in Manus Basin (Papua New Guinea). Deep Sea Res. Part I: Oceanogr. Res. Papers https://doi.org/10.1016/j.dsr.2019.04.018 (2019).Erickson, K. L., Macko, S. A. & Van Dover, C. L. Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin). Deep-Sea Res. Part II: Top. Stud. Oceanogr. 56, 1577–1585 (2009).CAS 

    Google Scholar 
    Comeault, A., Stevens, C. J. & Juniper, S. K. Mixed photosynthetic-chemosynthetic diets in vent obligate macroinvertebrates at shallow hydrothermal vents on Volcano 1, South Tonga Arc—evidence from stable isotope and fatty acid analyses. Cahiers de Biologie Marine 51, 351–359 (2010).
    Google Scholar 
    Bennett, S. A., Dover, C. V., Breier, J. A. & Coleman, M. Effect of depth and vent fluid composition on the carbon sources at two neighboring deep-sea hydrothermal vent fields (Mid-Cayman Rise). Deep-Sea Res. Part I: Oceanogr. Res. Papers 104, 122–133 (2015).CAS 

    Google Scholar 
    Levin, L. A. et al. Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Front. Marine Sci. 3, 1–23 (2016).
    Google Scholar 
    Hügler, M. & Sievert, S. M. Beyond the Calvin cycle: Autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3, 261–289 (2011).
    Google Scholar 
    Wang, X., Li, C., Wang, M. & Zheng, P. Stable isotope signatures and nutritional sources of some dominant species from the PACManus hydrothermal area and the Desmos caldera. PLoS One 13, e0208887 (2018).
    Google Scholar 
    Tunnicliffe, V. & Southward, A. J. Growth and breeding of a primitive stalked barnacle Leucolepas longa (Cirripedia: Scalpellomorpha: Eolepadidae: Neolepadinae) inhabiting a volcanic seamount off Papua New Guinea. J. Mar. Biol. Ass. 84, 121–132 (2004).
    Google Scholar 
    Auzende, J. M., Pelletier, B. & Lafoy, Y. Twin active spreading ridges in the North Fiji Basin (southwest Pacific). Geology 22, 63–66 (1994).
    Google Scholar 
    Parson, L. M. & Wright, I. C. The Lau-Havre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading. Tectonophysics 263, 1–22 (1996).
    Google Scholar 
    Thaler, A. D. et al. Comparative population structure of two deep-sea hydrothermal-vent-associated decapods (Chorocaris sp. 2 and Munidopsis lauensis) from Southwestern Pacific back-arc basins. PLoS One 9, e101345 (2014).
    Google Scholar 
    Lee, W.-K., Kim, S.-J., Hou, B. K., Van Dover, C. L. & Ju, S.-J. Population genetic differentiation of the hydrothermal vent crab Austinograea alayseae (Crustacea: Bythograeidae) in the Southwest Pacific Ocean. PLoS One 14, e0215829 (2019).CAS 

    Google Scholar 
    Plouviez, S. et al. Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet. Ecol. Evol. https://doi.org/10.1002/ece3.5235 (2019).Tran Lu Y, A. et al. Fine-scale genomic patterns of connectivity in the deep sea hydrothermal gastropod Ifremeria nautilei over its species range using outlier scans and demo-genetic inferences. Mol. Ecol. (In Revision).Yearsley, J. M. & Sigwart, J. D. Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations. PLoS One 6, e23063 (2011).CAS 

    Google Scholar 
    Mitarai, S., Watanabe, H., Nakajima, Y., Shchepetkin, A. F. & McWilliams, J. C. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. Proc. Natl Acad. Sci. USA 113, 2976–2981 (2016).CAS 

    Google Scholar 
    Marsh, L. et al. Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the southern ocean. PLoS One 7, e48348 (2012).CAS 

    Google Scholar 
    Jollivet, D. et al. The Biospeedo cruise: A new survey of hydrothermal vents along the south East Pacific Rise from 7°24’ S to 21°33’ S. InterRidge News 13, 20–26 (2005).Girard, F. et al. Currents and topography drive assemblage distribution on an active hydrothermal edifice. Prog. Oceanogr. 187, 102397 (2020).
    Google Scholar 
    Hessler, R. R. & Lonsdale, P. F. Biogeography of Mariana Trough hydrothermal vent communities. Deep Sea Res. Part A. Oceanogr. Res. Papers 38, 185–199 (1991).
    Google Scholar 
    Fujikura, K. Biology and earth scientific investigation by the submersible ‘Shinkai 6500’ system of deep-sea hydrothermal and lithosphere in the Mariana back-arc basin. JAMSTEC J. Deep Sea Res. 13, 1–20 (1997).
    Google Scholar 
    Connelly, D. P. et al. Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre. Nat. Commun. 3, 620 (2012).
    Google Scholar 
    Cline, J. D. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14, 454–458 (1969).CAS 

    Google Scholar 
    Craddock, P. R., Rouxel, O. J., Ball, L. A. & Bach, W. Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chem. Geol. 253, 102–113 (2008).CAS 

    Google Scholar 
    Mateo, M. A., Serrano, O., Serrano, L. & Michener, R. H. Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: Implications for food web studies using stable isotopes. Oecologia 157, 105–115 (2008).
    Google Scholar 
    Hedges, J. I. & Stern, J. H. Carbon and nitrogen determinations of carbonate-containing solids1. Limnol. Oceanogr. 29, 657–663 (1984).CAS 

    Google Scholar 
    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results: Guidelines and recommended terms for expressing stable isotope results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).CAS 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 

    Google Scholar 
    Methou, P., Michel, L. N., Segonzac, M., Cambon-Bonavita, M.-A. & Pradillon, F. Integrative taxonomy revisits the ontogeny and trophic niches of Rimicaris vent shrimps. R. Soc. Open Sci. 7, 200837 (2020).CAS 

    Google Scholar 
    Leigh, J. W. & Bryant, D. Popart: Full‐feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Google Scholar  More

  • in

    Evolutionary divergence impact on de-extinction

    De-extinction efforts that use genome editing aim to identify the genome sequence of extinct species and then edit the genome of a closely related, living species. Lin et al. explored the feasibility of this approach by sequencing ancient DNA samples of the extinct Christmas Island rat (Rattus macleari), which had been originally collected between 1900–1902. The authors then mapped the resulting sequence to reference genomes of different living Rattus species. Even when using the high-quality Norway brown rat (Rattus norvegicus) as a reference, the team found that nearly 5% of the genome sequence was unmappable owing to evolutionary divergence of the two species. Of note, the incompletely covered genomic regions were not random but disproportionately affected immune response and olfaction genes, which would have implications for the biology of any reconstructed animals. More

  • in

    The Terrific Skink bite force suggests insularity as a likely driver to exceptional resource use

    Case, T. J., Bolger, D. T. & Richman, A. D. Reptilian extinctions: The last ten thousand years. In Conservation Biology (eds Fiedler, P. L. & Jain, S. K.) 91–125 (Springer, 1992).
    Google Scholar 
    Shivanna, K. R. The sixth mass extinction crisis and its impact on biodiversity and human welfare. Resonance 25, 93–109 (2020).
    Google Scholar 
    Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M. & Palmer, T. M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, (2015)Lawler, J. J. et al. Conservation science: A 20-year report card. Front. Ecol. Environ. 4, 473–480 (2006).
    Google Scholar 
    Sodhi, N. S., Brook, B. W. & Bradshaw, C. J. A. Tropical Conservation Biology (Wiley-Blackwell, 2007).
    Google Scholar 
    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: Back from the brink?. PLoS ONE 6, 1–8 (2011).
    Google Scholar 
    Ineich I. Bocourt’s terrific skink, Phoboscincus bocourti Brocchi, 1876 (Squamata, Scincidae, Lygosominae). In 7. Biodiversity studies in New Caledonia.Mémoires du Muséum National d’Histoire Naturelle (ed. Grancolas, P.) vol. 198, 149–174, Muséum National d’Histoire Naturelle, (2009).Holden, M. & Ineich, I. scinque terrifiant terrifié. Le Courrier de la Nat. 312, 4 (2018).
    Google Scholar 
    Sadlier, R. A., Deuss, M., Bauer, A. M. & Jourdan, H. Kuniesaurus albiauris, a new genus and species of scincid lizard from the Île des Pins, New Caledonia, with comments on the diversity and affinities of the region’s lizard fauna. Pac. Sci. 73, 123–141 (2019).Bauer, A. M. & Sadlier, R. A. Lizard discoveries and rediscoveries in the New Caledonian region. In Flores, O., Ah-Peng, C., & Wilding, N. Island Biology 2019. Third International Conference on Island Ecology, Evolution and Conservation: Book of Abstracts. Island Biology 2019, Jul 2019, Saint Denis, France. 2020. ffhal-02633975v2 243 (2019).Ineich, I., Sadlier, R. A., Bauer, A. M., Jackman, T. R. & Smith, S. A. Bocourt’s terrific skink, Phoboscincus bocourti (Brocchi, 1876), and the monophyly of the genus Phoboscincus Greer, 1974. In Zoologia Neocaledonica 8. Biodiversity studies in New Caledonia. Mémoires du Muséum National d’Histoire Naturelle (eds Guilbert, E. et al.) 69–78 Muséum National d’Histoire naturelle, (2014).
    Google Scholar 
    Caut, S., Holden, M., Jowers, M. J., Boistel, R. & Ineich, I. Is Bocourt’s terrific skink really so terrific? Trophic myth and reality. PLoS One 8, e78638 (2013).Sagonas, K. et al. Insularity affects head morphology, bite force and diet in a Mediterranean lizard. Biol. J. Linn. Soc. 112, 469–484 (2014).
    Google Scholar 
    Tseng, W.-H. et al. Opsin gene expression regulated by testosterone level in a sexually dimorphic lizard. Sci. Rep. 8, 16055 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avramo, V. et al. Evaluating the island effect on phenotypic evolution in the Italian wall lizard, Podarcis siculus (Reptilia: Lacertidae). Biol. J. Linn. Soc. 132, 655–665 (2021).
    Google Scholar 
    Siliceo-Cantero, H. H., Benítez-Malvido, J. & Suazo-Ortuño, I. Insularity effects on the morphological space and sexual dimorphism of a tropical tree lizard in western Mexico. J. Zool. 311, 277–285 (2020).
    Google Scholar 
    Pérez-Mellado, V. & Corti, C. Dietary adaptations and herbivory in lacertid lizards of the genus Podarcis from western Mediterranean islands (Reptilia: Sauria). Bonner Zool. Beiträge 44, 193–220 (1993).
    Google Scholar 
    Castilla, A. M., Vanhooydonck, B. & Catenazzi, A. Feeding behavior of the Columbretes lizard Podarcis atrata, in relation to the marine species, Ligia italica (Isopoda, Crustaceae). Belgian J. Zool. 138, 146–148 (2008).
    Google Scholar 
    Castilla, A. M. & Herrel, A. The scorpion Buthus occitanus as a profitable prey for the endemic lizard Podarcis atrata in the volcanic Columbretes islands (Mediterranean, Spain). J. Arid Environ. 73, 378–380 (2009).ADS 

    Google Scholar 
    Van Damme, R. Evolution of herbivory in lacertid lizards: Effects of insularity and body size. J. Herpetol. 33, 663 (1999).
    Google Scholar 
    Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    D’Amore, D. C. et al. Increasing dietary breadth through allometry: Bite forces in sympatric Australian skinks. Herpetol. Notes 11, 179–187 (2018).
    Google Scholar 
    Taverne, M. et al. Proximate and ultimate drivers of variation in bite force in the insular lizards Podarcis melisellensis and Podarcis sicula. Biol. J. Linn. Soc. 131, 88–108 (2020).
    Google Scholar 
    Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).
    Google Scholar 
    Itescu, Y., Foufopoulos, J., Pafilis, P. & Meiri, S. The diverse nature of island isolation and its effect on land bridge insular faunas. Glob. Ecol. Biogeogr. 29, 262–280 (2020).
    Google Scholar 
    Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).
    Google Scholar 
    Donihue, C. M., Brock, K. M., Foufopoulos, J. & Herrel, A. Feed or fight: Testing the impact of food availability and intraspecific aggression on the functional ecology of an island lizard. Funct. Ecol. 30, 566–575 (2016).
    Google Scholar 
    Runemark, A., Sagonas, K. & Svensson, E. I. Ecological explanations to island gigantism: Dietary niche divergence, predation, and size in an endemic lizard. Ecology 96, 2077–2092 (2015).PubMed 

    Google Scholar 
    Verwaijen, D., Van Damme, R. & Herrel, A. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct. Ecol. 16, 842–850 (2002).
    Google Scholar 
    Herrel, A., O’Reilly, J. C. & Richmond, A. M. Evolution of bite performance in turtles. J. Evol. Biol. 15, 1083–1094 (2002).
    Google Scholar 
    Herrel, A., Vanhooydonck, B., Joachim, R. & Irschick, D. J. Frugivory in polychrotid lizards: Effects of body size. Oecologia 140, 160–168 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Vanhooydonck, B. & Van Damme, R. Omnivory in lacertid lizards: Adaptive evolution or constraint?. J. Evol. Biol. 17, 974–984 (2004).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Bite performance and morphology in a population of Darwin’s finches: Implications for the evolution of beak shape. Funct. Ecol. 19, 43–48 (2005).
    Google Scholar 
    Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Evolution of bite force in Darwin’s finches: A key role for head width. J. Evol. Biol. 18, 669–675 (2005).CAS 
    PubMed 

    Google Scholar 
    Aguirre, L. F., Herrel, A., Van Damme, R. & MatThysen, E. The implications of food hardness for diet in bats. Funct. Ecol. 17, 201–212 (2003).
    Google Scholar 
    Herrel, A. & Holanova, V. Cranial morphology and bite force in Chamaeleolis lizards—Adaptations to molluscivory?. Zoology 111, 467–475 (2008).PubMed 

    Google Scholar 
    Greer, A. E. Distribution of maximum snout-vent length among species of scincid lizards. J. Herpetol. 35, 383 (2001).
    Google Scholar 
    Burggren, W. W. & McMahon, B. R. Biology of the Land Crabs, Cambridge University Press, (1988).
    Google Scholar 
    Grubb, P. Ecology of terrestrial decapod crustaceans on Aldabra. Philos. Trans. R. Soc. Lond. B Biol. Sci. 260, 411–416 (1971)Wineski, L. E. & Gans, C. Morphological basis of the feeding mechanics in the shingle-back lizard Trachydosaurus rugosus (Scincidae, Reptilia). J. Morphol. 181, 271–295 (1984).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Verstappen, M. & De Vree, F. Modulatory complexity of the feeding repertoire in scincid lizards. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 501–518 (1999).Herrel, A., Aerts, P. & De Vree, F. Ecomorphology of the lizard feeding apparatus: A modelling approach. Neth. J. Zool. 48, 1–25 (1998).
    Google Scholar 
    Hartnoll, R. G. Evolution, systematics, and geographical distribution. In Biology of the Land Crabs (eds Burggren, W. W. & McMahon, B. R.) 6–54, (Cambridge University Press, 1988).
    Google Scholar 
    Ben-David, M. & Schell, D. M. Mixing models in analyses of diet using multiple stable isotopes: A response. Oecologia 127, 180–184 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Caut, S., Angulo, E. & Courchamp, F. Caution on isotopic model use for analyses of consumer diet. Can. J. Zool. 86, 438–445 (2008).CAS 

    Google Scholar 
    Warne, R. W., Gilman, C. A. & Wolf, B. O. Tissue-carbon incorporation rates in lizards: Implications for ecological studies using stable isotopes in terrestrial ectotherms. Physiol. Biochem. Zool. 83, 608–617 (2010).PubMed 

    Google Scholar 
    Steinitz, R., Lemm, J. M., Pasachnik, S. A. & Kurle, C. M. Diet-tissue stable isotope (Δ13C and Δ15N) discrimination factors for multiple tissues from terrestrial reptiles. Rapid Commun. Mass Spectrom. 30, 9–21 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lattanzio, M. & Miles, D. Stable carbon and nitrogen isotope discrimination and turnover in a small-bodied insectivorous lizard. Isot. Environ. Health Stud. 52, 673–681 (2016).CAS 

    Google Scholar 
    Durso, A. M., Smith, G. D., Hudson, S. B. & French, S. S. Stoichiometric and stable isotope ratios of wild lizards in an urban landscape vary with reproduction, physiology, space and time. Conserv. Physiol. 8, 1–14 (2020).
    Google Scholar 
    Warne, R. W. & Wolf, B. O. Nitrogen stable isotope turnover and discrimination in lizards. Rapid Commun. Mass Spectrom. 35, e9030 (2021).Aerts, P., De Vree, F. & Herrel, A. Ecomorphology of the lizard feeding apparatus: A modelling approach. Neth. J. Zool. 48, 1–25 (1997).
    Google Scholar 
    Herrel, A., Schaerlaeken, V., Meyers, J. J., Metzger, K. A. & Ross, C. F. The evolution of cranial design and performance in squamates: Consequences of skull-bone reduction on feeding behavior. Integr. Comp. Biol. 47, 107–117 (2007).PubMed 

    Google Scholar 
    Beuttner, A. & Koch, C. Analysis of diet composition and morphological characters of the Peruvian lizard Microlophus stolzmanni (Squamata: Tropiduridae). Phyllomedusa J. Herpetol. 18, 47–62 (2019).
    Google Scholar 
    Herrel, A., Aerts, P. & Vree, D. Static biting in lizards: Functional morphology of the temporal ligaments. J. Zool. 244, 135–143 (1998).
    Google Scholar 
    Greer, A. The genetic relationships of the scincid lizard genus Leiolopisma and its relatives. Aust. J. Zool. Suppl. Ser. 22, 1–67 (1974).
    Google Scholar 
    Shirley, M. H., Carr, A. N., Nestler, J. H., Vliet, K. A. & Brochu, C. A. Systematic revision of the living African slender-snouted crocodiles (Mecistops Gray, 1844). Zootaxa 4504, 151 (2018).PubMed 

    Google Scholar 
    Yoshioka, S. & Kimura, T. What does the red-eared slider eat on the tidal flats? Comparing the diet of the invasive alien species Trachemys scripta elegans inhabiting the tidal flat and freshwaters. Jpn. J. Benthol. 72, 83–93 (2018).
    Google Scholar 
    Bernal, S. & Magda, S. Análisis de los contenidos estomacales de las tortugas y cachirres de la Reserva Natural Privada de la Sociedad Civil Bojonawi (Puerto Carreño, Vichada). (Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2020).Murphy, J. C. Homalopsid Snakes, Evolution in the Mud (Krieger Publishing Company, 2007).
    Google Scholar 
    Chen, P. Z. An observation of crab predation by a Gerard’s water snake, Gerarda prevostiana (Reptilia: Squamata: Homalopsidae) in the wild at Sungei Buloh, Singapore. Nat. Singap. 3, 195–197 (2010).
    Google Scholar 
    Jayne, B. C., Voris, H. K. & Ng, P. K. L. Snake circumvents constraints on prey size. Nature 418, 143–143 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jayne, B. C., Voris, H. K. & Ng, P. K. L. How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behaviour affect prey size and feeding performance. Biol. J. Linn. Soc. 123, 636–650 (2018).
    Google Scholar 
    Murphy, J. C. & Voris, H. K. Aquatic snakes with crustacean-eating habits elude herpetologists for two centuries. Litt. Serpentium 22, 107–114 (2002).
    Google Scholar 
    Voris, H. K. & Murphy, J. C. The prey and predators of Homalopsine snakes. J. Nat. Hist. 36, 1621–1632 (2002).
    Google Scholar 
    Wai-Neng, L. & Melville, D. S. Notes on the feeding of Enhydris bennetti (Gray) (Reptilia, Squamata, Colubridae) in Hong Kong. Mem. Hong Kong Nat. Hist. Soc. 19, 117 (2020).
    Google Scholar 
    López-Hurtado, Y., García-Padrón, L. Y., González, A., Díaz, L. M. & Rodríguez-Cabrera, T. M. Notes on the feeding habits of the Caribbean watersnake, Tretanorhinus variabilis (Dipsadidae). Reptil. Amphib. 27, 147–153 (2020).
    Google Scholar 
    Gripshover, N. D. & Jayne, B. C. Crayfish eating in snakes: Testing how anatomy and behavior affect prey size and feeding performance. Integr. Org. Biol. 3, 1–16 (2021).
    Google Scholar 
    Naish, D. The Madagascan skink Amphiglossus eats crabs. Sci. Am. Blog Netw. https://blogs.scientificamerican.com/tetrapod-zoology/the-madagascan-skink-amphiglossus-eats-crabs/ (2016).Hediger, H. Beitrag zur herpetologie und zoogeographie Neu Britanniens und einiger umliegender gebiete. Zool. Jahrbücher. Abteilung für Syst. Geogr. und Biol. der Tiere 65, 441–582 (1934).McCoy, M. W. Reptiles of the Solomon Islands, (Pensoft Publishers, 2006).
    Google Scholar 
    Huang, W. S. Ecology and reproductive patterns of the littoral skink Emoia atrocostata on an East Asian tropical rainforest island. Zool. Stud. 50, 506–512 (2011).
    Google Scholar 
    Anderson, C. Decapod crustacean species of Aride Island, Seychelles. Phelsuma 2(12), 36–49 (1994).
    Google Scholar 
    Paulay, G. & Starmer, J. Evolution, insular restriction, and extinction of oceanic land crabs, exemplified by the loss of an endemic Geograpsus in the Hawaiian Islands. PLoS ONE 6, e19916 (2011).Cleuren, J., Aerts, P. & de Vree, F. Bite and joint force analysis in Caiman crocodilus. Belgian J. Zool. 125, 79–94 (1995).
    Google Scholar 
    Meyers, J. J., Nishikawa, K. C. & Herrel, A. The evolution of bite force in horned lizards: The influence of dietary specialization. J. Anat. 232, 214–226 (2018).PubMed 

    Google Scholar 
    Van Damme, R., De Vree, F. & Herrel, A. Sexual dimorphism of head size in Podarcis hispanica atrata: Testing the dietary divergence hypothesis by bite force analysis. Neth. J. Zool. 46, 253–262 (1995).
    Google Scholar 
    Gröning, F. et al. The importance of accurate muscle modelling for biomechanical analyses: A case study with a lizard skull. J. R. Soc. Interface 10, 1–10 (2013).
    Google Scholar 
    Vanhooydonck, B., Boistel, R., Fernandez, V. & Herrel, A. Push and bite: Trade-offs between burrowing and biting in a burrowing skink (Acontias percivali). Biol. J. Linn. Soc. 102, 91–99 (2011).
    Google Scholar 
    Handschuh, S. et al. Cranial kinesis in the miniaturised lizard Ablepharus kitaibelii (Squamata: Scincidae). J. Exp. Biol. 222, 1–15 (2019).
    Google Scholar 
    Le Guilloux, M. et al. Trade-offs between burrowing and biting force in fossorial scincid lizards?. Biol. J. Linn. Soc. 130, 310–319 (2020).
    Google Scholar 
    Herrel, A, Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).
    Google Scholar 
    Herrel, A., De Grauw, E. & Lemos-Espinal, J. A. Head shape and bite performance in xenosaurid lizards. J. Exp. Zool. 290, 101–107 (2001).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Petrochic, S. & Draud, M. Sexual dimorphism, bite force and diet in the diamondback terrapin. J. Zool. 304, 217–224 (2018).
    Google Scholar  More

  • in

    Bioaccumulation and potential human health risks of metals in commercially important fishes and shellfishes from Hangzhou Bay, China

    Okogwu, O. I., Nwonumara, G. N. & Okoh, F. A. Evaluating heavy metals pollution and exposure risk through the consumption of four commercially important fish species and water from cross river ecosystem, Nigeria. Bull. Environ. Contam. Toxicol. 102, 867–872. https://doi.org/10.1007/s00128-019-02610-4 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fuentes-Gandara, F., Pinedo-Hernández, J., Marrugo-Negrete, J. & Díez, S. Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environ. Geochem. Health 40, 229–242. https://doi.org/10.1007/s10653-016-9896-z (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, X. et al. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Total Environ. 463, 530–540 (2013).PubMed 

    Google Scholar 
    Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371. https://doi.org/10.1038/nature15371 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, R.-J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222. https://doi.org/10.1038/nature13774 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rajeshkumar, S. et al. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 191, 626–638. https://doi.org/10.1016/j.chemosphere.2017.10.078 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gao, X. & Chen, C.-T.A. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res. 46, 1901–1911. https://doi.org/10.1016/j.watres.2012.01.007 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naser, H. A. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Mar. Pollut. Bull. 72, 6–13. https://doi.org/10.1016/j.marpolbul.2013.04.030 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y. et al. Heavy metals in aquatic organisms of different trophic levels and their potential human health risk in Bohai Bay, China. Environ. Sci. Pollut. Res. 23, 17801–17810 (2016).CAS 

    Google Scholar 
    Wei, M., Yanwen, Q., Zheng, B. & Zhang, L. Heavy metal pollution in Tianjin Bohai bay, China. J. Environ. Sci. 20, 814–819 (2008).
    Google Scholar 
    Zhao, B. et al. Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in Xiangshan Bay, China (2011–2016). Chemosphere 212, 1163–1171. https://doi.org/10.1016/j.chemosphere.2018.09.020 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, Y. & Fang, X. Analysis of the impact of heavy metal on the Chinese aquaculture and the ecological hazard. GuangDong 836, 156.152 (2016).
    Google Scholar 
    Pini, J., Richir, J. & Watson, G. Metal bioavailability and bioaccumulation in the polychaete Nereis (Alitta) virens (Sars): The effects of site-specific sediment characteristics. Mar. Pollut. Bull. 95, 565–575 (2015).CAS 
    PubMed 

    Google Scholar 
    Amoozadeh, E. et al. Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ. Sci. Pollut. Res. 21, 2386–2395 (2014).CAS 

    Google Scholar 
    Gu, Y.-G., Huang, H.-H., Liu, Y., Gong, X.-Y. & Liao, X.-L. Non-metric multidimensional scaling and human risks of heavy metal concentrations in wild marine organisms from the Maowei Sea, the Beibu Gulf, South China Sea. Environ. Toxicol. Pharmacol. 59, 119–124. https://doi.org/10.1016/j.etap.2018.03.002 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kennedy, A., Martinez, K., Chuang, C.-C., LaPoint, K. & McIntosh, M. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: Mechanisms of action and implications. J. Nutr. 139, 1–4. https://doi.org/10.3945/jn.108.098269 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hao, Z. et al. Heavy metal distribution and bioaccumulation ability in marine organisms from coastal regions of Hainan and Zhoushan, China. Chemosphere 226, 340–350. https://doi.org/10.1016/j.chemosphere.2019.03.132 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Golden, C. D. et al. Nutrition: Fall in fish catch threatens human health. Nat. News 534, 317 (2016).
    Google Scholar 
    Bosch, A. C., O’Neill, B., Sigge, G. O., Kerwath, S. E. & Hoffman, L. C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 96, 32–48 (2016).CAS 
    PubMed 

    Google Scholar 
    Burger, J., Gochfeld, M., Jeitner, C., Pittfield, T. & Donio, M. Heavy metals in fish from the Aleutians: Interspecific and locational differences. Environ. Res. 131, 119–130. https://doi.org/10.1016/j.envres.2014.02.016 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Anandkumar, A., Nagarajan, R., Prabakaran, K., Chua Han, B. & Rajaram, R. Human health risk assessment and bioaccumulation of trace metals in fish species collected from the Miri coast, Sarawak, Borneo. Mar. Pollut. Bull. 133, 655–663. https://doi.org/10.1016/j.marpolbul.2018.06.033 (2018).CAS 
    Article 

    Google Scholar 
    Murtala, B. A., Abdul, W. O. & Akinyemi, A. A. Bioaccumulation of heavy metals in fish (Hydrocynus forskahlii, Hyperopisus bebe occidentalis and Clarias gariepinus) organs in downstream Ogun coastal water, Nigeria. J. Agric. Sci. 4, 51 (2012).
    Google Scholar 
    Ahmed, A. S. S., Rahman, M., Sultana, S., Babu, S. M. O. F. & Sarker, M. S. I. Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications. Mar. Pollut. Bull. 145, 436–447. https://doi.org/10.1016/j.marpolbul.2019.06.035 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sun, X. et al. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment. Environ. Pollut. 241, 938–949. https://doi.org/10.1016/j.envpol.2018.05.050 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dadar, M., Adel, M., NasrollahzadehSaravi, H. & Fakhri, Y. Trace element concentration and its risk assessment in common kilka (Clupeonella cultriventris caspia Bordin, 1904) from southern basin of Caspian Sea. Toxin Rev. 36, 222–227 (2017).CAS 

    Google Scholar 
    Chakraborty, P., Raghunadh Babu, P. V., Acharyya, T. & Bandyopadhyay, D. Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC. Chemosphere 80, 548–553. https://doi.org/10.1016/j.chemosphere.2010.04.039 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Handy, R. Seminar Series-Society for Experimental Biology 29–60 (Cambridge University Press, 1997).
    Google Scholar 
    Ahmed, M. K. et al. Human health risks from heavy metals in fish of Buriganga river, Bangladesh. Springerplus 5, 1–12 (2016).
    Google Scholar 
    WHO. Heavy metals-environmental aspects. Environment Health Criteria. No. 85. (1989).Xu, H. et al. Long-term study of heavy metal pollution in the northern Hangzhou Bay of China: Temporal and spatial distribution, contamination evaluation, and potential ecological risk. Environ. Sci. Pollut. Res. 28, 10718–10733 (2021).CAS 

    Google Scholar 
    El-Moselhy, K. M., Othman, A. I., AbdEl-Azem, H. & El-Metwally, M. E. A. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypti. J. Basic Appl. Sci. 1, 97–105. https://doi.org/10.1016/j.ejbas.2014.06.001 (2014).Article 

    Google Scholar 
    Jezierska, B. & Witeska, M. Soil and Water Pollution Monitoring, Protection and Remediation 107–114 (Springer, 2006).
    Google Scholar 
    Bawuro, A. A., Voegborlo, R. B. & Adimado, A. A. Bioaccumulation of heavy metals in some tissues of fish in Lake Geriyo, Adamawa State, Nigeria. J. Environ. Public Health 2018, 1854892. https://doi.org/10.1155/2018/1854892 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhuang, P., McBride, M. B., Xia, H., Li, N. & Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 407, 1551–1561. https://doi.org/10.1016/j.scitotenv.2008.10.061 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hosseini, M., Nabavi, S. M. B., Nabavi, S. N. & Pour, N. A. Heavy metals (Cd Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: Risk assessment for the consumers. Environ. Monit. Assess. 187, 237. https://doi.org/10.1007/s10661-015-4464-z (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Prabhakaran, K., Nagarajan, R., MerlinFranco, F. & AnandKumar, A. Biomonitoring of Malaysian aquatic environments: A review of status and prospects. Ecohydrol. Hydrobiol. 17, 134–147. https://doi.org/10.1016/j.ecohyd.2017.03.001 (2017).Article 

    Google Scholar 
    Meche, A. et al. Determination of heavy metals by inductively coupled plasma-optical emission spectrometry in fish from the Piracicaba River in Southern Brazil. Microchem. J. 94, 171–174 (2010).CAS 

    Google Scholar 
    Zhang, Y. et al. Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay. J. Environ. Sci. 44, 57–68. https://doi.org/10.1016/j.jes.2015.11.023 (2016).CAS 
    Article 

    Google Scholar 
    Huang, L. et al. Quantifying the spatiotemporal dynamics of industrial land uses through mining free access social datasets in the Mega Hangzhou Bay Region, China. Sustainability 10, 3463 (2018).
    Google Scholar 
    Pang, H.-J. et al. Contamination, distribution, and sources of heavy metals in the sediments of Andong tidal flat, Hangzhou bay, China. Continental Shelf Res. 110, 72–84. https://doi.org/10.1016/j.csr.2015.10.002 (2015).Article 

    Google Scholar 
    National Bureau of Statstics. Zhejiang Statistical Yearbook-2017 (China Statistics Press, 2017).
    Google Scholar 
    Chen, W., Zheng, Y., Chen, Y. & Mathews, C. An assessment of fishery yields from the East China Sea ecosystem. Mar. Fish. Rev. 59, 1–7 (1997).
    Google Scholar 
    Zhejiang Provincial Development and Reform Commission. Zhejiang Zhoushan Islands New Area Development Plan (In Chinese). (2021).Che, Y., He, Q. & Lin, W.-Q. The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou Bay, China. Mar. Pollut. Bull. 46, 123–131 (2003).CAS 
    PubMed 

    Google Scholar 
    Li, R. et al. Environmental health and ecological risk assessment of soil heavy metal pollution in the coastal cities of Estuarine Bay—a case study of Hangzhou Bay, China. Toxics 8, 75 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Bergami, E., Manno, C., Cappello, S., Vannuccini, M. L. & Corsi, I. Nanoplastics affect moulting and faecal pellet sinking in Antarctic krill (Euphausia superba) juveniles. Environ. Int. 143, 105999. https://doi.org/10.1016/j.envint.2020.105999 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fang, H., Huang, L., Wang, J., He, G. & Reible, D. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China. J. Hazard. Mater. 302, 447–457 (2016).CAS 
    PubMed 

    Google Scholar 
    Zhu, G. et al. Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches. Environ. Pollut. 264, 114791. https://doi.org/10.1016/j.envpol.2020.114791 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Li, F. et al. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China. Environ. Sci. Pollut. Res. 25, 855–866. https://doi.org/10.1007/s11356-017-0425-0 (2018).CAS 
    Article 

    Google Scholar 
    Liu, L., Huang, X., Cao, W. & Yang, Y. Pollution load characteristics of the Hangzhou Bay and its surrounding areas. Ocean Dev. Manage 5, 108–112 (2012).
    Google Scholar 
    He, Z., Li, F., Dominech, S., Wen, X. & Yang, S. Heavy metals of surface sediments in the Changjiang (Yangtze River) Estuary: Distribution, speciation and environmental risks. J. Geochem. Explor. 198, 18–28. https://doi.org/10.1016/j.gexplo.2018.12.015 (2019).CAS 
    Article 

    Google Scholar 
    Jin, X., Zhao, X., Meng, T. & Cui, Y. The Fishery Resources and the Environment of the Bohai Sea and Yellow Sea (Science Press, 2005).
    Google Scholar 
    Huang, Z. The Species and Distribution of Marine Organisms of China (Ocean Press, Beijing, 1994) (In Chinese).
    Google Scholar 
    Schram, F. R. Checklist of Marine Biota of China Seas. J. Crustac. Biol. 30, 339–339. https://doi.org/10.1651/09-3228.1 (2010).Article 

    Google Scholar 
    AQSIQ, P. in GB 17378.6–2007 (General Administration of Quality Supervision, Inspection and Quarantine of People’s Republic of China, 2007).Zhang, L. et al. Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China. Mar. Pollut. Bull. 101, 930–937. https://doi.org/10.1016/j.marpolbul.2015.10.041 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhong, W. et al. Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicol. Environ. Saf. 157, 343–349. https://doi.org/10.1016/j.ecoenv.2018.03.048 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, Q. et al. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China. Sci. Total Environ. 598, 814–820. https://doi.org/10.1016/j.scitotenv.2017.04.167 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arnot, J. A. & Gobas, F. A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 14, 257–297 (2006).CAS 

    Google Scholar 
    Duan, X., Zhao, X., Wang, B., Chen, Y. & Cao, S. Exposure Factors Handbook of Chinese Population (Adults) (China Environmental Science Press, 2013).
    Google Scholar 
    Chauhan, G. & Chauhan, U. Human health risk assessment of heavy metals via dietary intake of vegetables grown in wastewater irrigated area of Rewa, India. Int. J. Sci. Res. Publ. 4, 1–9 (2014).
    Google Scholar 
    USEPA. (Philadelphia PA; Washington, DC, 2007).Wang, X., Sato, T., Xing, B. & Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350, 28–37. https://doi.org/10.1016/j.scitotenv.2004.09.044 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    USEPA. (2015).FAO/WHO. Wastewater Use in Agriculture. 988 (World Health Organization).Ahmed, A. S. S. et al. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS One 14, e0219336. https://doi.org/10.1371/journal.pone.0219336 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saha, N., Mollah, M. Z. I., Alam, M. F. & Safiur Rahman, M. Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control 70, 110–118. https://doi.org/10.1016/j.foodcont.2016.05.040 (2016).CAS 
    Article 

    Google Scholar 
    Yin, S., Feng, C., Li, Y., Yin, L. & Shen, Z. Heavy metal pollution in the surface water of the Yangtze Estuary: A 5-year follow-up study. Chemosphere 138, 718–725. https://doi.org/10.1016/j.chemosphere.2015.07.060 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    USEPA. Risk-based concentration table. United States Environmental Protection Agency, Washington DC, Philadelphia (2000).Hu, B. et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 14, 1042 (2017).PubMed Central 

    Google Scholar 
    USEPA. in United States Environmental Protection Agency, Washington DC, Philadelphia (2010).Kwok, C. K. et al. Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China. Ecotoxicol. Environ. Saf. 106, 62–67. https://doi.org/10.1016/j.ecoenv.2014.04.016 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yu, T., Zhang, Y., Hu, X. & Meng, W. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol. Environ. Saf. 81, 55–64. https://doi.org/10.1016/j.ecoenv.2012.04.014 (2012).CAS 
    Article 

    Google Scholar 
    Qiu, Y.-W., Lin, D., Liu, J.-Q. & Zeng, E. Y. Bioaccumulation of trace metals in farmed fish from South China and potential risk assessment. Ecotoxicol. Environ. Saf. 74, 284–293. https://doi.org/10.1016/j.ecoenv.2010.10.008 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arulkumar, A., Paramasivam, S. & Rajaram, R. Toxic heavy metals in commercially important food fishes collected from Palk Bay, Southeastern India. Mar. Pollut. Bull. 119, 454–459. https://doi.org/10.1016/j.marpolbul.2017.03.045 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jonathan, M. P. et al. Metal concentrations in demersal fish species from Santa Maria Bay, Baja California Sur, Mexico (Pacific coast). Mar. Pollut. Bull. 99, 356–361. https://doi.org/10.1016/j.marpolbul.2015.07.032 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, H., Yang, J. & Gan, J. Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China. Arch. Environ. Contam. Toxicol. 59, 593–601. https://doi.org/10.1007/s00244-010-9521-6 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, W. X. et al. Copper and zinc contamination in oysters: Subcellular distribution and detoxification. Environ. Toxicol. Chem. 30, 1767–1774 (2011).CAS 
    PubMed 

    Google Scholar 
    de FreitasRebelo, M., do Amaral, M. C. R. & Pfeiffer, W. C. High Zn and Cd accumulation in the oyster Crassostrea rhizophorae, and its relevance as a sentinel species. Mar. Pollut. Bull. 46, 1354–1358 (2003).
    Google Scholar 
    AQSIQ, P. in GB 18421–2001 (General administration of quality supervision, inspection and quarantine of People’s Republic of China, 2001).FAO/WHO. in Fifth Session [displayed 10 February 2014]. ftp://ftp.fao.org/codex/meetings/CCCF/cccf5/cf05_INF.pdf.Nauen, C. E. Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular (FAO). no. 764. (1983).Rajeshkumar, S. & Li, X. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 5, 288–295. https://doi.org/10.1016/j.toxrep.2018.01.007 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baki, M. A. et al. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol. Environ. Saf. 159, 153–163. https://doi.org/10.1016/j.ecoenv.2018.04.035 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vu, C. T., Lin, C., Yeh, G. & Villanueva, M. C. Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: Assessment and possible human health implications. Environ. Sci. Pollut. Res. 24, 19422–19434. https://doi.org/10.1007/s11356-017-9590-4 (2017).CAS 
    Article 

    Google Scholar 
    Sharma, B., Singh, S. & Siddiqi, N. J. Biomedical implications of heavy metals induced imbalances in redox systems. BioMed Res. Int. 20, 14 (2014).
    Google Scholar 
    Feng, W., Wang, Z., Xu, H., Chen, L. & Zheng, F. Trace metal concentrations in commercial fish, crabs, and bivalves from three lagoons in the South China Sea and implications for human health. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-019-06712-8 (2020).Article 

    Google Scholar 
    Ruiz-Fernández, A. C. et al. A comparative study on metal contamination in Estero de Urias lagoon, Gulf of California, using oysters, mussels and artificial mussels: Implications on pollution monitoring and public health risk. Environ. Pollut. 243, 197–205 (2018).PubMed 

    Google Scholar 
    Bergstad, O. A. In Encyclopedia of Ocean Sciences (Second Edition) (ed. Steele, J. H.) 458–466 (Academic Press, 2009).
    Google Scholar 
    Mauchline, J. & Gordon, J. Foraging strategies of deep-sea fish. Mar. Ecol. Prog. Ser. 27, 227–238 (1986).
    Google Scholar 
    Li, J., He, M., Han, W. & Gu, Y. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. J. Hazard. Mater. 164, 976–981. https://doi.org/10.1016/j.jhazmat.2008.08.112 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yu, P. Applications of hierarchical cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based Fourier transform infrared (FTIR) microspectroscopy. J. Agric. Food Chem. 53, 7115–7127 (2005).CAS 
    PubMed 

    Google Scholar 
    Kara, D. Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis. Food Chem. 114, 347–354 (2009).CAS 

    Google Scholar 
    Chai, X. et al. Distribution, sources and assessment of heavy metals in surface sediments of the Hangzhou Bay and its adjacent areas. Acta Sci. Circum. 35, 3906–3916 (2015).CAS 

    Google Scholar 
    Mackay, D. & Fraser, A. Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environ. Pollut. 110, 375–391. https://doi.org/10.1016/S0269-7491(00)00162-7 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    ATSDR, T. ATSDR (Agency for toxic substances and disease registry). Prepared by Clement International Corp., under contract 205, 88–0608 (2000).Traina, A. et al. Heavy metals concentrations in some commercially key species from Sicilian coasts (Mediterranean Sea): Potential human health risk estimation. Ecotoxicol. Environ. Saf. 168, 466–478. https://doi.org/10.1016/j.ecoenv.2018.10.056 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ozmen, M., Ayas, Z., Güngördü, A., Ekmekci, G. F. & Yerli, S. Ecotoxicological assessment of water pollution in Sariyar Dam Lake, Turkey. Ecotoxicol. Environ. Saf. 70, 163–173. https://doi.org/10.1016/j.ecoenv.2007.05.011 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jeffrey, B. & Alison, G. Guidance for assessing chemical contaminant data for use in fish advisories. v. 1. Fish sampling and analysis-v. 4. Risk communication. (1993).Regulations, U. S. E. P. A. O. o. W. Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual. (US Environmental Protection Agency, 1989).Liu, Q., Liao, Y. & Shou, L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Mar. Pollut. Bull 131, 356–364. https://doi.org/10.1016/j.marpolbul.2018.04.041 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abtahi, M. et al. Heavy metals (As, Cr, Pb, Cd and Ni) concentrations in rice (Oryza sativa) from Iran and associated risk assessment: A systematic review. Toxin Rev. 36, 331–341 (2017).CAS 

    Google Scholar 
    WHO. WHO Technical Report Series. Evaluation of Certain Food Additives and Contaminants. Fifty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). http://www.Who.Int/foodsafety/publications/jecfa-reports/en/ (2000).USEPA. USEPA Regional Screening Level (RSL) summary table: November 2011. (2011).Farkas, A., Salánki, J. & Specziár, A. Age-and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res. 37, 959–964 (2003).CAS 
    PubMed 

    Google Scholar 
    Canpolat, Ö. & Çalta, M. Heavy metals in some tissues and organs of Capoeta capoeta umbla(Heckel, 1843) fish species in relation to body size, age, sex and seasons. Fresenius Environ. Bull. 12, 961–966 (2003).CAS 

    Google Scholar 
    Hosseini, M., Nabavi, S. M. B., Nabavi, S. N. & Pour, N. A. Heavy metals (Cd Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: Risk assessment for the consumers. Environ. Monit. Assess. 187, 1–7 (2015).CAS 

    Google Scholar 
    Jiang, X. et al. Assessment of heavy metal accumulation in freshwater fish of Dongting Lake, China: Effects of feeding habits, habitat preferences and body size. J. Environ. Sci. 112, 355–365 (2022).
    Google Scholar 
    Yi, Y., Tang, C., Yi, T., Yang, Z. & Zhang, S. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecotoxicol. Environ. Saf. 145, 295–302 (2017).CAS 
    PubMed 

    Google Scholar 
    USEPA. Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual. (US Environmental Protection Agency, 1989).Means, B. Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final). (Environmental Protection Agency, Washington, DC (USA). Office of Solid Waste …, 1989).Raknuzzaman, M. et al. Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment. Environ. Sci. Pollut. Res. 23, 17298–17310. https://doi.org/10.1007/s11356-016-6918-4 (2016).CAS 
    Article 

    Google Scholar 
    Kalantzi, I. et al. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem. 194, 659–670. https://doi.org/10.1016/j.foodchem.2015.08.072 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sarkar, S., Mukherjee, S., Chattopadhyay, A. & Bhattacharya, S. Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide. Ecotoxicol. Environ. Saf. 135, 173–182. https://doi.org/10.1016/j.ecoenv.2016.09.025 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mandal, B. K. & Suzuki, K. T. Arsenic round the world: A review. Talanta 58, 201–235. https://doi.org/10.1016/S0039-9140(02)00268-0 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kibria, G., Hossain, M. M., Mallick, D., Lau, T. C. & Wu, R. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts. Mar. Pollut. Bull. 105, 393–402. https://doi.org/10.1016/j.marpolbul.2016.02.021 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fang, Y. et al. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem. 147, 147–151. https://doi.org/10.1016/j.foodchem.2013.09.116 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vannoort, R. & Thomson, B. New Zealand Total Diet Study—Agricultural Compound Residues (Selected Contaminant and Nutrient Elements. Ministry for Primary Industries, 2009).
    Google Scholar 
    Praveena, S. M., Pradhan, B. & Ismail, S. N. S. Spatial assessment of heavy metals in surface soil from Klang District (Malaysia): An example from a tropical environment. Hum. Ecol. Risk Assess. Int. J. 21, 1980–2003 (2015).CAS 

    Google Scholar  More