More stories

  • in

    Post-lockdown changes of age-specific susceptibility and its correlation with adherence to social distancing measures

    Stochastic age-specific transmission modelWe formulate a stochastic age-specific transmission model in the general Susceptible(S)-Exposed(E)-Reported(I)-Unreported(U)-Recovered(R) framework. For a particular age group (i) at time (t-1) ((i=1) corresponding to the 0–17 years, (i=2) to 18–44, (i=3) to 45–64 and (i=4) to 65+), we have$$begin{array}{l}{S}_{i}(t)= {S}_{i}(t-1)-{n}_{S{E}_{i}}(t)\ {E}_{i}(t)= {E}_{i}(t-1)+{n}_{S{E}_{i}}(t)-\ {n}_{E{I}_{i}}(t)-{n}_{E{U}_{i}}(t)\ {I}_{i}(t)= {I}_{i}(t-1)+{n}_{E{I}_{i}}(t)-{n}_{I{R}_{i}}(t)\ {U}_{i}(t)= {U}_{i}(t-1)+{n}_{E{U}_{i}}(t)-{n}_{U{R}_{i}}(t)\ {R}_{i}(t)= {R}_{i}(t-1)+{n}_{I{R}_{i}}(t)+{n}_{U{R}_{i}}(t),end{array}$$
    (1)
    where ({n}_{{XY}_{i}}(t)) represents number of transitions between a class X and class Y for age group (i) at time (t).The number of transitions from the susceptible to exposed class for group (i) at time (t) is modelled by$$begin{aligned}{n}_{S{E}_{i}}(t)&sim Poi({S}_{i}(t-1)times {gamma }_{i}(t)times \ & quad sum_{j=1}beta (t)times {c}_{j,i}(t)times {{I}_{j}(t-1)+{U}_{j}(t-1)}).end{aligned}$$
    (2)
    Here, (beta (t)) denotes the average infectiousness of an infectious individual and ({c}_{j,i}(t)) is the average number of contacts per day made by age group (j) to (i). Also note that the product (beta (t)times {c}_{j,i}(t)) may represent age-specific transmissibility (of age group (j)) accounting for contacts. We allow and infer two change points of (beta (t)) (one potentially correlates to changes due to the implementation of lockdown and another one to changes due to the lifting of lockdown), i.e.,$$beta left(tright)=left{begin{array}{ll}{beta }_{0},&quad if; tle {T}_{1}\ {beta }_{1}={omega }_{1}times {beta }_{0},&quad if ;{T}_{1}{T}_{2},end{array}right.$$
    (3)
    where ({T}_{1}) and ({T}_{2}) are the two change points to be inferred (({T}_{2}ge {T}_{1})). ({gamma }_{i}(t)) denotes the susceptibility of group (i) relative to the oldest age group (i.e., ({gamma }_{4}=1)), which is also allowed to change proportionally after lifting the lockdown. Note that ({gamma }_{i}(t)) implicitly incorporates any behavioral effects (e.g., potential reduction of risk of getting infection due to facemask wearing). Transitions between other classes are modelled as:$$begin{aligned}{n}_{E{U}_{i}}(t)sim & Bin({n}_{S{E}_{i}}(t-{D}_{EU}),{p}_{{U}_{i}}(t-{D}_{EU}))\ {n}_{E{I}_{i}}(t)=& {n}_{S{E}_{i}}(t-{D}_{EI})-{n}_{E{U}_{i}}(t)\ {n}_{I{R}_{i}}(t)=& {n}_{E{I}_{i}}(t-{D}_{IR})\ {n}_{U{R}_{i}}(t)=& {n}_{E{U}_{i}}(t-{D}_{UR}),end{aligned}$$
    (4)
    where ({D}_{EI}), ({D}_{EU}), ({D}_{IR}) and ({D}_{UR}) denote the mean waiting times between the indicated two classes. We assume that ({D}_{EI})= ({D}_{EU})=7 days and ({D}_{IR})= ({D}_{UR})=14 days. ({p}_{{U}_{i}}(t)) represents probability that an infection is unreported at times (t) for age group (i), we assume$${p}_{{U}_{i}}(t)=1-frac{{e}^{{f}_{i}(t)}}{1+{e}^{{f}_{i}(t)}}.$$
    (5)
    ({f}_{i}(.)) is an increasing function with ({f}_{i}(t)={a}_{i}+{b}_{i}times t), where (-infty More

  • in

    The Terrific Skink bite force suggests insularity as a likely driver to exceptional resource use

    Case, T. J., Bolger, D. T. & Richman, A. D. Reptilian extinctions: The last ten thousand years. In Conservation Biology (eds Fiedler, P. L. & Jain, S. K.) 91–125 (Springer, 1992).
    Google Scholar 
    Shivanna, K. R. The sixth mass extinction crisis and its impact on biodiversity and human welfare. Resonance 25, 93–109 (2020).
    Google Scholar 
    Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M. & Palmer, T. M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, (2015)Lawler, J. J. et al. Conservation science: A 20-year report card. Front. Ecol. Environ. 4, 473–480 (2006).
    Google Scholar 
    Sodhi, N. S., Brook, B. W. & Bradshaw, C. J. A. Tropical Conservation Biology (Wiley-Blackwell, 2007).
    Google Scholar 
    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: Back from the brink?. PLoS ONE 6, 1–8 (2011).
    Google Scholar 
    Ineich I. Bocourt’s terrific skink, Phoboscincus bocourti Brocchi, 1876 (Squamata, Scincidae, Lygosominae). In 7. Biodiversity studies in New Caledonia.Mémoires du Muséum National d’Histoire Naturelle (ed. Grancolas, P.) vol. 198, 149–174, Muséum National d’Histoire Naturelle, (2009).Holden, M. & Ineich, I. scinque terrifiant terrifié. Le Courrier de la Nat. 312, 4 (2018).
    Google Scholar 
    Sadlier, R. A., Deuss, M., Bauer, A. M. & Jourdan, H. Kuniesaurus albiauris, a new genus and species of scincid lizard from the Île des Pins, New Caledonia, with comments on the diversity and affinities of the region’s lizard fauna. Pac. Sci. 73, 123–141 (2019).Bauer, A. M. & Sadlier, R. A. Lizard discoveries and rediscoveries in the New Caledonian region. In Flores, O., Ah-Peng, C., & Wilding, N. Island Biology 2019. Third International Conference on Island Ecology, Evolution and Conservation: Book of Abstracts. Island Biology 2019, Jul 2019, Saint Denis, France. 2020. ffhal-02633975v2 243 (2019).Ineich, I., Sadlier, R. A., Bauer, A. M., Jackman, T. R. & Smith, S. A. Bocourt’s terrific skink, Phoboscincus bocourti (Brocchi, 1876), and the monophyly of the genus Phoboscincus Greer, 1974. In Zoologia Neocaledonica 8. Biodiversity studies in New Caledonia. Mémoires du Muséum National d’Histoire Naturelle (eds Guilbert, E. et al.) 69–78 Muséum National d’Histoire naturelle, (2014).
    Google Scholar 
    Caut, S., Holden, M., Jowers, M. J., Boistel, R. & Ineich, I. Is Bocourt’s terrific skink really so terrific? Trophic myth and reality. PLoS One 8, e78638 (2013).Sagonas, K. et al. Insularity affects head morphology, bite force and diet in a Mediterranean lizard. Biol. J. Linn. Soc. 112, 469–484 (2014).
    Google Scholar 
    Tseng, W.-H. et al. Opsin gene expression regulated by testosterone level in a sexually dimorphic lizard. Sci. Rep. 8, 16055 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avramo, V. et al. Evaluating the island effect on phenotypic evolution in the Italian wall lizard, Podarcis siculus (Reptilia: Lacertidae). Biol. J. Linn. Soc. 132, 655–665 (2021).
    Google Scholar 
    Siliceo-Cantero, H. H., Benítez-Malvido, J. & Suazo-Ortuño, I. Insularity effects on the morphological space and sexual dimorphism of a tropical tree lizard in western Mexico. J. Zool. 311, 277–285 (2020).
    Google Scholar 
    Pérez-Mellado, V. & Corti, C. Dietary adaptations and herbivory in lacertid lizards of the genus Podarcis from western Mediterranean islands (Reptilia: Sauria). Bonner Zool. Beiträge 44, 193–220 (1993).
    Google Scholar 
    Castilla, A. M., Vanhooydonck, B. & Catenazzi, A. Feeding behavior of the Columbretes lizard Podarcis atrata, in relation to the marine species, Ligia italica (Isopoda, Crustaceae). Belgian J. Zool. 138, 146–148 (2008).
    Google Scholar 
    Castilla, A. M. & Herrel, A. The scorpion Buthus occitanus as a profitable prey for the endemic lizard Podarcis atrata in the volcanic Columbretes islands (Mediterranean, Spain). J. Arid Environ. 73, 378–380 (2009).ADS 

    Google Scholar 
    Van Damme, R. Evolution of herbivory in lacertid lizards: Effects of insularity and body size. J. Herpetol. 33, 663 (1999).
    Google Scholar 
    Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    D’Amore, D. C. et al. Increasing dietary breadth through allometry: Bite forces in sympatric Australian skinks. Herpetol. Notes 11, 179–187 (2018).
    Google Scholar 
    Taverne, M. et al. Proximate and ultimate drivers of variation in bite force in the insular lizards Podarcis melisellensis and Podarcis sicula. Biol. J. Linn. Soc. 131, 88–108 (2020).
    Google Scholar 
    Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).
    Google Scholar 
    Itescu, Y., Foufopoulos, J., Pafilis, P. & Meiri, S. The diverse nature of island isolation and its effect on land bridge insular faunas. Glob. Ecol. Biogeogr. 29, 262–280 (2020).
    Google Scholar 
    Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).
    Google Scholar 
    Donihue, C. M., Brock, K. M., Foufopoulos, J. & Herrel, A. Feed or fight: Testing the impact of food availability and intraspecific aggression on the functional ecology of an island lizard. Funct. Ecol. 30, 566–575 (2016).
    Google Scholar 
    Runemark, A., Sagonas, K. & Svensson, E. I. Ecological explanations to island gigantism: Dietary niche divergence, predation, and size in an endemic lizard. Ecology 96, 2077–2092 (2015).PubMed 

    Google Scholar 
    Verwaijen, D., Van Damme, R. & Herrel, A. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct. Ecol. 16, 842–850 (2002).
    Google Scholar 
    Herrel, A., O’Reilly, J. C. & Richmond, A. M. Evolution of bite performance in turtles. J. Evol. Biol. 15, 1083–1094 (2002).
    Google Scholar 
    Herrel, A., Vanhooydonck, B., Joachim, R. & Irschick, D. J. Frugivory in polychrotid lizards: Effects of body size. Oecologia 140, 160–168 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Vanhooydonck, B. & Van Damme, R. Omnivory in lacertid lizards: Adaptive evolution or constraint?. J. Evol. Biol. 17, 974–984 (2004).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Bite performance and morphology in a population of Darwin’s finches: Implications for the evolution of beak shape. Funct. Ecol. 19, 43–48 (2005).
    Google Scholar 
    Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Evolution of bite force in Darwin’s finches: A key role for head width. J. Evol. Biol. 18, 669–675 (2005).CAS 
    PubMed 

    Google Scholar 
    Aguirre, L. F., Herrel, A., Van Damme, R. & MatThysen, E. The implications of food hardness for diet in bats. Funct. Ecol. 17, 201–212 (2003).
    Google Scholar 
    Herrel, A. & Holanova, V. Cranial morphology and bite force in Chamaeleolis lizards—Adaptations to molluscivory?. Zoology 111, 467–475 (2008).PubMed 

    Google Scholar 
    Greer, A. E. Distribution of maximum snout-vent length among species of scincid lizards. J. Herpetol. 35, 383 (2001).
    Google Scholar 
    Burggren, W. W. & McMahon, B. R. Biology of the Land Crabs, Cambridge University Press, (1988).
    Google Scholar 
    Grubb, P. Ecology of terrestrial decapod crustaceans on Aldabra. Philos. Trans. R. Soc. Lond. B Biol. Sci. 260, 411–416 (1971)Wineski, L. E. & Gans, C. Morphological basis of the feeding mechanics in the shingle-back lizard Trachydosaurus rugosus (Scincidae, Reptilia). J. Morphol. 181, 271–295 (1984).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Verstappen, M. & De Vree, F. Modulatory complexity of the feeding repertoire in scincid lizards. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 501–518 (1999).Herrel, A., Aerts, P. & De Vree, F. Ecomorphology of the lizard feeding apparatus: A modelling approach. Neth. J. Zool. 48, 1–25 (1998).
    Google Scholar 
    Hartnoll, R. G. Evolution, systematics, and geographical distribution. In Biology of the Land Crabs (eds Burggren, W. W. & McMahon, B. R.) 6–54, (Cambridge University Press, 1988).
    Google Scholar 
    Ben-David, M. & Schell, D. M. Mixing models in analyses of diet using multiple stable isotopes: A response. Oecologia 127, 180–184 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Caut, S., Angulo, E. & Courchamp, F. Caution on isotopic model use for analyses of consumer diet. Can. J. Zool. 86, 438–445 (2008).CAS 

    Google Scholar 
    Warne, R. W., Gilman, C. A. & Wolf, B. O. Tissue-carbon incorporation rates in lizards: Implications for ecological studies using stable isotopes in terrestrial ectotherms. Physiol. Biochem. Zool. 83, 608–617 (2010).PubMed 

    Google Scholar 
    Steinitz, R., Lemm, J. M., Pasachnik, S. A. & Kurle, C. M. Diet-tissue stable isotope (Δ13C and Δ15N) discrimination factors for multiple tissues from terrestrial reptiles. Rapid Commun. Mass Spectrom. 30, 9–21 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lattanzio, M. & Miles, D. Stable carbon and nitrogen isotope discrimination and turnover in a small-bodied insectivorous lizard. Isot. Environ. Health Stud. 52, 673–681 (2016).CAS 

    Google Scholar 
    Durso, A. M., Smith, G. D., Hudson, S. B. & French, S. S. Stoichiometric and stable isotope ratios of wild lizards in an urban landscape vary with reproduction, physiology, space and time. Conserv. Physiol. 8, 1–14 (2020).
    Google Scholar 
    Warne, R. W. & Wolf, B. O. Nitrogen stable isotope turnover and discrimination in lizards. Rapid Commun. Mass Spectrom. 35, e9030 (2021).Aerts, P., De Vree, F. & Herrel, A. Ecomorphology of the lizard feeding apparatus: A modelling approach. Neth. J. Zool. 48, 1–25 (1997).
    Google Scholar 
    Herrel, A., Schaerlaeken, V., Meyers, J. J., Metzger, K. A. & Ross, C. F. The evolution of cranial design and performance in squamates: Consequences of skull-bone reduction on feeding behavior. Integr. Comp. Biol. 47, 107–117 (2007).PubMed 

    Google Scholar 
    Beuttner, A. & Koch, C. Analysis of diet composition and morphological characters of the Peruvian lizard Microlophus stolzmanni (Squamata: Tropiduridae). Phyllomedusa J. Herpetol. 18, 47–62 (2019).
    Google Scholar 
    Herrel, A., Aerts, P. & Vree, D. Static biting in lizards: Functional morphology of the temporal ligaments. J. Zool. 244, 135–143 (1998).
    Google Scholar 
    Greer, A. The genetic relationships of the scincid lizard genus Leiolopisma and its relatives. Aust. J. Zool. Suppl. Ser. 22, 1–67 (1974).
    Google Scholar 
    Shirley, M. H., Carr, A. N., Nestler, J. H., Vliet, K. A. & Brochu, C. A. Systematic revision of the living African slender-snouted crocodiles (Mecistops Gray, 1844). Zootaxa 4504, 151 (2018).PubMed 

    Google Scholar 
    Yoshioka, S. & Kimura, T. What does the red-eared slider eat on the tidal flats? Comparing the diet of the invasive alien species Trachemys scripta elegans inhabiting the tidal flat and freshwaters. Jpn. J. Benthol. 72, 83–93 (2018).
    Google Scholar 
    Bernal, S. & Magda, S. Análisis de los contenidos estomacales de las tortugas y cachirres de la Reserva Natural Privada de la Sociedad Civil Bojonawi (Puerto Carreño, Vichada). (Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2020).Murphy, J. C. Homalopsid Snakes, Evolution in the Mud (Krieger Publishing Company, 2007).
    Google Scholar 
    Chen, P. Z. An observation of crab predation by a Gerard’s water snake, Gerarda prevostiana (Reptilia: Squamata: Homalopsidae) in the wild at Sungei Buloh, Singapore. Nat. Singap. 3, 195–197 (2010).
    Google Scholar 
    Jayne, B. C., Voris, H. K. & Ng, P. K. L. Snake circumvents constraints on prey size. Nature 418, 143–143 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jayne, B. C., Voris, H. K. & Ng, P. K. L. How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behaviour affect prey size and feeding performance. Biol. J. Linn. Soc. 123, 636–650 (2018).
    Google Scholar 
    Murphy, J. C. & Voris, H. K. Aquatic snakes with crustacean-eating habits elude herpetologists for two centuries. Litt. Serpentium 22, 107–114 (2002).
    Google Scholar 
    Voris, H. K. & Murphy, J. C. The prey and predators of Homalopsine snakes. J. Nat. Hist. 36, 1621–1632 (2002).
    Google Scholar 
    Wai-Neng, L. & Melville, D. S. Notes on the feeding of Enhydris bennetti (Gray) (Reptilia, Squamata, Colubridae) in Hong Kong. Mem. Hong Kong Nat. Hist. Soc. 19, 117 (2020).
    Google Scholar 
    López-Hurtado, Y., García-Padrón, L. Y., González, A., Díaz, L. M. & Rodríguez-Cabrera, T. M. Notes on the feeding habits of the Caribbean watersnake, Tretanorhinus variabilis (Dipsadidae). Reptil. Amphib. 27, 147–153 (2020).
    Google Scholar 
    Gripshover, N. D. & Jayne, B. C. Crayfish eating in snakes: Testing how anatomy and behavior affect prey size and feeding performance. Integr. Org. Biol. 3, 1–16 (2021).
    Google Scholar 
    Naish, D. The Madagascan skink Amphiglossus eats crabs. Sci. Am. Blog Netw. https://blogs.scientificamerican.com/tetrapod-zoology/the-madagascan-skink-amphiglossus-eats-crabs/ (2016).Hediger, H. Beitrag zur herpetologie und zoogeographie Neu Britanniens und einiger umliegender gebiete. Zool. Jahrbücher. Abteilung für Syst. Geogr. und Biol. der Tiere 65, 441–582 (1934).McCoy, M. W. Reptiles of the Solomon Islands, (Pensoft Publishers, 2006).
    Google Scholar 
    Huang, W. S. Ecology and reproductive patterns of the littoral skink Emoia atrocostata on an East Asian tropical rainforest island. Zool. Stud. 50, 506–512 (2011).
    Google Scholar 
    Anderson, C. Decapod crustacean species of Aride Island, Seychelles. Phelsuma 2(12), 36–49 (1994).
    Google Scholar 
    Paulay, G. & Starmer, J. Evolution, insular restriction, and extinction of oceanic land crabs, exemplified by the loss of an endemic Geograpsus in the Hawaiian Islands. PLoS ONE 6, e19916 (2011).Cleuren, J., Aerts, P. & de Vree, F. Bite and joint force analysis in Caiman crocodilus. Belgian J. Zool. 125, 79–94 (1995).
    Google Scholar 
    Meyers, J. J., Nishikawa, K. C. & Herrel, A. The evolution of bite force in horned lizards: The influence of dietary specialization. J. Anat. 232, 214–226 (2018).PubMed 

    Google Scholar 
    Van Damme, R., De Vree, F. & Herrel, A. Sexual dimorphism of head size in Podarcis hispanica atrata: Testing the dietary divergence hypothesis by bite force analysis. Neth. J. Zool. 46, 253–262 (1995).
    Google Scholar 
    Gröning, F. et al. The importance of accurate muscle modelling for biomechanical analyses: A case study with a lizard skull. J. R. Soc. Interface 10, 1–10 (2013).
    Google Scholar 
    Vanhooydonck, B., Boistel, R., Fernandez, V. & Herrel, A. Push and bite: Trade-offs between burrowing and biting in a burrowing skink (Acontias percivali). Biol. J. Linn. Soc. 102, 91–99 (2011).
    Google Scholar 
    Handschuh, S. et al. Cranial kinesis in the miniaturised lizard Ablepharus kitaibelii (Squamata: Scincidae). J. Exp. Biol. 222, 1–15 (2019).
    Google Scholar 
    Le Guilloux, M. et al. Trade-offs between burrowing and biting force in fossorial scincid lizards?. Biol. J. Linn. Soc. 130, 310–319 (2020).
    Google Scholar 
    Herrel, A, Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).
    Google Scholar 
    Herrel, A., De Grauw, E. & Lemos-Espinal, J. A. Head shape and bite performance in xenosaurid lizards. J. Exp. Zool. 290, 101–107 (2001).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Petrochic, S. & Draud, M. Sexual dimorphism, bite force and diet in the diamondback terrapin. J. Zool. 304, 217–224 (2018).
    Google Scholar  More

  • in

    Bioaccumulation and potential human health risks of metals in commercially important fishes and shellfishes from Hangzhou Bay, China

    Okogwu, O. I., Nwonumara, G. N. & Okoh, F. A. Evaluating heavy metals pollution and exposure risk through the consumption of four commercially important fish species and water from cross river ecosystem, Nigeria. Bull. Environ. Contam. Toxicol. 102, 867–872. https://doi.org/10.1007/s00128-019-02610-4 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fuentes-Gandara, F., Pinedo-Hernández, J., Marrugo-Negrete, J. & Díez, S. Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environ. Geochem. Health 40, 229–242. https://doi.org/10.1007/s10653-016-9896-z (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, X. et al. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Total Environ. 463, 530–540 (2013).PubMed 

    Google Scholar 
    Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371. https://doi.org/10.1038/nature15371 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, R.-J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222. https://doi.org/10.1038/nature13774 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rajeshkumar, S. et al. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 191, 626–638. https://doi.org/10.1016/j.chemosphere.2017.10.078 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gao, X. & Chen, C.-T.A. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res. 46, 1901–1911. https://doi.org/10.1016/j.watres.2012.01.007 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naser, H. A. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Mar. Pollut. Bull. 72, 6–13. https://doi.org/10.1016/j.marpolbul.2013.04.030 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y. et al. Heavy metals in aquatic organisms of different trophic levels and their potential human health risk in Bohai Bay, China. Environ. Sci. Pollut. Res. 23, 17801–17810 (2016).CAS 

    Google Scholar 
    Wei, M., Yanwen, Q., Zheng, B. & Zhang, L. Heavy metal pollution in Tianjin Bohai bay, China. J. Environ. Sci. 20, 814–819 (2008).
    Google Scholar 
    Zhao, B. et al. Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in Xiangshan Bay, China (2011–2016). Chemosphere 212, 1163–1171. https://doi.org/10.1016/j.chemosphere.2018.09.020 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, Y. & Fang, X. Analysis of the impact of heavy metal on the Chinese aquaculture and the ecological hazard. GuangDong 836, 156.152 (2016).
    Google Scholar 
    Pini, J., Richir, J. & Watson, G. Metal bioavailability and bioaccumulation in the polychaete Nereis (Alitta) virens (Sars): The effects of site-specific sediment characteristics. Mar. Pollut. Bull. 95, 565–575 (2015).CAS 
    PubMed 

    Google Scholar 
    Amoozadeh, E. et al. Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ. Sci. Pollut. Res. 21, 2386–2395 (2014).CAS 

    Google Scholar 
    Gu, Y.-G., Huang, H.-H., Liu, Y., Gong, X.-Y. & Liao, X.-L. Non-metric multidimensional scaling and human risks of heavy metal concentrations in wild marine organisms from the Maowei Sea, the Beibu Gulf, South China Sea. Environ. Toxicol. Pharmacol. 59, 119–124. https://doi.org/10.1016/j.etap.2018.03.002 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kennedy, A., Martinez, K., Chuang, C.-C., LaPoint, K. & McIntosh, M. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: Mechanisms of action and implications. J. Nutr. 139, 1–4. https://doi.org/10.3945/jn.108.098269 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hao, Z. et al. Heavy metal distribution and bioaccumulation ability in marine organisms from coastal regions of Hainan and Zhoushan, China. Chemosphere 226, 340–350. https://doi.org/10.1016/j.chemosphere.2019.03.132 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Golden, C. D. et al. Nutrition: Fall in fish catch threatens human health. Nat. News 534, 317 (2016).
    Google Scholar 
    Bosch, A. C., O’Neill, B., Sigge, G. O., Kerwath, S. E. & Hoffman, L. C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 96, 32–48 (2016).CAS 
    PubMed 

    Google Scholar 
    Burger, J., Gochfeld, M., Jeitner, C., Pittfield, T. & Donio, M. Heavy metals in fish from the Aleutians: Interspecific and locational differences. Environ. Res. 131, 119–130. https://doi.org/10.1016/j.envres.2014.02.016 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Anandkumar, A., Nagarajan, R., Prabakaran, K., Chua Han, B. & Rajaram, R. Human health risk assessment and bioaccumulation of trace metals in fish species collected from the Miri coast, Sarawak, Borneo. Mar. Pollut. Bull. 133, 655–663. https://doi.org/10.1016/j.marpolbul.2018.06.033 (2018).CAS 
    Article 

    Google Scholar 
    Murtala, B. A., Abdul, W. O. & Akinyemi, A. A. Bioaccumulation of heavy metals in fish (Hydrocynus forskahlii, Hyperopisus bebe occidentalis and Clarias gariepinus) organs in downstream Ogun coastal water, Nigeria. J. Agric. Sci. 4, 51 (2012).
    Google Scholar 
    Ahmed, A. S. S., Rahman, M., Sultana, S., Babu, S. M. O. F. & Sarker, M. S. I. Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications. Mar. Pollut. Bull. 145, 436–447. https://doi.org/10.1016/j.marpolbul.2019.06.035 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sun, X. et al. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment. Environ. Pollut. 241, 938–949. https://doi.org/10.1016/j.envpol.2018.05.050 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dadar, M., Adel, M., NasrollahzadehSaravi, H. & Fakhri, Y. Trace element concentration and its risk assessment in common kilka (Clupeonella cultriventris caspia Bordin, 1904) from southern basin of Caspian Sea. Toxin Rev. 36, 222–227 (2017).CAS 

    Google Scholar 
    Chakraborty, P., Raghunadh Babu, P. V., Acharyya, T. & Bandyopadhyay, D. Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC. Chemosphere 80, 548–553. https://doi.org/10.1016/j.chemosphere.2010.04.039 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Handy, R. Seminar Series-Society for Experimental Biology 29–60 (Cambridge University Press, 1997).
    Google Scholar 
    Ahmed, M. K. et al. Human health risks from heavy metals in fish of Buriganga river, Bangladesh. Springerplus 5, 1–12 (2016).
    Google Scholar 
    WHO. Heavy metals-environmental aspects. Environment Health Criteria. No. 85. (1989).Xu, H. et al. Long-term study of heavy metal pollution in the northern Hangzhou Bay of China: Temporal and spatial distribution, contamination evaluation, and potential ecological risk. Environ. Sci. Pollut. Res. 28, 10718–10733 (2021).CAS 

    Google Scholar 
    El-Moselhy, K. M., Othman, A. I., AbdEl-Azem, H. & El-Metwally, M. E. A. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypti. J. Basic Appl. Sci. 1, 97–105. https://doi.org/10.1016/j.ejbas.2014.06.001 (2014).Article 

    Google Scholar 
    Jezierska, B. & Witeska, M. Soil and Water Pollution Monitoring, Protection and Remediation 107–114 (Springer, 2006).
    Google Scholar 
    Bawuro, A. A., Voegborlo, R. B. & Adimado, A. A. Bioaccumulation of heavy metals in some tissues of fish in Lake Geriyo, Adamawa State, Nigeria. J. Environ. Public Health 2018, 1854892. https://doi.org/10.1155/2018/1854892 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhuang, P., McBride, M. B., Xia, H., Li, N. & Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 407, 1551–1561. https://doi.org/10.1016/j.scitotenv.2008.10.061 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hosseini, M., Nabavi, S. M. B., Nabavi, S. N. & Pour, N. A. Heavy metals (Cd Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: Risk assessment for the consumers. Environ. Monit. Assess. 187, 237. https://doi.org/10.1007/s10661-015-4464-z (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Prabhakaran, K., Nagarajan, R., MerlinFranco, F. & AnandKumar, A. Biomonitoring of Malaysian aquatic environments: A review of status and prospects. Ecohydrol. Hydrobiol. 17, 134–147. https://doi.org/10.1016/j.ecohyd.2017.03.001 (2017).Article 

    Google Scholar 
    Meche, A. et al. Determination of heavy metals by inductively coupled plasma-optical emission spectrometry in fish from the Piracicaba River in Southern Brazil. Microchem. J. 94, 171–174 (2010).CAS 

    Google Scholar 
    Zhang, Y. et al. Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay. J. Environ. Sci. 44, 57–68. https://doi.org/10.1016/j.jes.2015.11.023 (2016).CAS 
    Article 

    Google Scholar 
    Huang, L. et al. Quantifying the spatiotemporal dynamics of industrial land uses through mining free access social datasets in the Mega Hangzhou Bay Region, China. Sustainability 10, 3463 (2018).
    Google Scholar 
    Pang, H.-J. et al. Contamination, distribution, and sources of heavy metals in the sediments of Andong tidal flat, Hangzhou bay, China. Continental Shelf Res. 110, 72–84. https://doi.org/10.1016/j.csr.2015.10.002 (2015).Article 

    Google Scholar 
    National Bureau of Statstics. Zhejiang Statistical Yearbook-2017 (China Statistics Press, 2017).
    Google Scholar 
    Chen, W., Zheng, Y., Chen, Y. & Mathews, C. An assessment of fishery yields from the East China Sea ecosystem. Mar. Fish. Rev. 59, 1–7 (1997).
    Google Scholar 
    Zhejiang Provincial Development and Reform Commission. Zhejiang Zhoushan Islands New Area Development Plan (In Chinese). (2021).Che, Y., He, Q. & Lin, W.-Q. The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou Bay, China. Mar. Pollut. Bull. 46, 123–131 (2003).CAS 
    PubMed 

    Google Scholar 
    Li, R. et al. Environmental health and ecological risk assessment of soil heavy metal pollution in the coastal cities of Estuarine Bay—a case study of Hangzhou Bay, China. Toxics 8, 75 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Bergami, E., Manno, C., Cappello, S., Vannuccini, M. L. & Corsi, I. Nanoplastics affect moulting and faecal pellet sinking in Antarctic krill (Euphausia superba) juveniles. Environ. Int. 143, 105999. https://doi.org/10.1016/j.envint.2020.105999 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fang, H., Huang, L., Wang, J., He, G. & Reible, D. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China. J. Hazard. Mater. 302, 447–457 (2016).CAS 
    PubMed 

    Google Scholar 
    Zhu, G. et al. Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches. Environ. Pollut. 264, 114791. https://doi.org/10.1016/j.envpol.2020.114791 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Li, F. et al. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China. Environ. Sci. Pollut. Res. 25, 855–866. https://doi.org/10.1007/s11356-017-0425-0 (2018).CAS 
    Article 

    Google Scholar 
    Liu, L., Huang, X., Cao, W. & Yang, Y. Pollution load characteristics of the Hangzhou Bay and its surrounding areas. Ocean Dev. Manage 5, 108–112 (2012).
    Google Scholar 
    He, Z., Li, F., Dominech, S., Wen, X. & Yang, S. Heavy metals of surface sediments in the Changjiang (Yangtze River) Estuary: Distribution, speciation and environmental risks. J. Geochem. Explor. 198, 18–28. https://doi.org/10.1016/j.gexplo.2018.12.015 (2019).CAS 
    Article 

    Google Scholar 
    Jin, X., Zhao, X., Meng, T. & Cui, Y. The Fishery Resources and the Environment of the Bohai Sea and Yellow Sea (Science Press, 2005).
    Google Scholar 
    Huang, Z. The Species and Distribution of Marine Organisms of China (Ocean Press, Beijing, 1994) (In Chinese).
    Google Scholar 
    Schram, F. R. Checklist of Marine Biota of China Seas. J. Crustac. Biol. 30, 339–339. https://doi.org/10.1651/09-3228.1 (2010).Article 

    Google Scholar 
    AQSIQ, P. in GB 17378.6–2007 (General Administration of Quality Supervision, Inspection and Quarantine of People’s Republic of China, 2007).Zhang, L. et al. Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China. Mar. Pollut. Bull. 101, 930–937. https://doi.org/10.1016/j.marpolbul.2015.10.041 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhong, W. et al. Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicol. Environ. Saf. 157, 343–349. https://doi.org/10.1016/j.ecoenv.2018.03.048 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, Q. et al. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China. Sci. Total Environ. 598, 814–820. https://doi.org/10.1016/j.scitotenv.2017.04.167 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arnot, J. A. & Gobas, F. A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 14, 257–297 (2006).CAS 

    Google Scholar 
    Duan, X., Zhao, X., Wang, B., Chen, Y. & Cao, S. Exposure Factors Handbook of Chinese Population (Adults) (China Environmental Science Press, 2013).
    Google Scholar 
    Chauhan, G. & Chauhan, U. Human health risk assessment of heavy metals via dietary intake of vegetables grown in wastewater irrigated area of Rewa, India. Int. J. Sci. Res. Publ. 4, 1–9 (2014).
    Google Scholar 
    USEPA. (Philadelphia PA; Washington, DC, 2007).Wang, X., Sato, T., Xing, B. & Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350, 28–37. https://doi.org/10.1016/j.scitotenv.2004.09.044 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    USEPA. (2015).FAO/WHO. Wastewater Use in Agriculture. 988 (World Health Organization).Ahmed, A. S. S. et al. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS One 14, e0219336. https://doi.org/10.1371/journal.pone.0219336 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saha, N., Mollah, M. Z. I., Alam, M. F. & Safiur Rahman, M. Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control 70, 110–118. https://doi.org/10.1016/j.foodcont.2016.05.040 (2016).CAS 
    Article 

    Google Scholar 
    Yin, S., Feng, C., Li, Y., Yin, L. & Shen, Z. Heavy metal pollution in the surface water of the Yangtze Estuary: A 5-year follow-up study. Chemosphere 138, 718–725. https://doi.org/10.1016/j.chemosphere.2015.07.060 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    USEPA. Risk-based concentration table. United States Environmental Protection Agency, Washington DC, Philadelphia (2000).Hu, B. et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 14, 1042 (2017).PubMed Central 

    Google Scholar 
    USEPA. in United States Environmental Protection Agency, Washington DC, Philadelphia (2010).Kwok, C. K. et al. Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China. Ecotoxicol. Environ. Saf. 106, 62–67. https://doi.org/10.1016/j.ecoenv.2014.04.016 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yu, T., Zhang, Y., Hu, X. & Meng, W. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol. Environ. Saf. 81, 55–64. https://doi.org/10.1016/j.ecoenv.2012.04.014 (2012).CAS 
    Article 

    Google Scholar 
    Qiu, Y.-W., Lin, D., Liu, J.-Q. & Zeng, E. Y. Bioaccumulation of trace metals in farmed fish from South China and potential risk assessment. Ecotoxicol. Environ. Saf. 74, 284–293. https://doi.org/10.1016/j.ecoenv.2010.10.008 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arulkumar, A., Paramasivam, S. & Rajaram, R. Toxic heavy metals in commercially important food fishes collected from Palk Bay, Southeastern India. Mar. Pollut. Bull. 119, 454–459. https://doi.org/10.1016/j.marpolbul.2017.03.045 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jonathan, M. P. et al. Metal concentrations in demersal fish species from Santa Maria Bay, Baja California Sur, Mexico (Pacific coast). Mar. Pollut. Bull. 99, 356–361. https://doi.org/10.1016/j.marpolbul.2015.07.032 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, H., Yang, J. & Gan, J. Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China. Arch. Environ. Contam. Toxicol. 59, 593–601. https://doi.org/10.1007/s00244-010-9521-6 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, W. X. et al. Copper and zinc contamination in oysters: Subcellular distribution and detoxification. Environ. Toxicol. Chem. 30, 1767–1774 (2011).CAS 
    PubMed 

    Google Scholar 
    de FreitasRebelo, M., do Amaral, M. C. R. & Pfeiffer, W. C. High Zn and Cd accumulation in the oyster Crassostrea rhizophorae, and its relevance as a sentinel species. Mar. Pollut. Bull. 46, 1354–1358 (2003).
    Google Scholar 
    AQSIQ, P. in GB 18421–2001 (General administration of quality supervision, inspection and quarantine of People’s Republic of China, 2001).FAO/WHO. in Fifth Session [displayed 10 February 2014]. ftp://ftp.fao.org/codex/meetings/CCCF/cccf5/cf05_INF.pdf.Nauen, C. E. Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular (FAO). no. 764. (1983).Rajeshkumar, S. & Li, X. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 5, 288–295. https://doi.org/10.1016/j.toxrep.2018.01.007 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baki, M. A. et al. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol. Environ. Saf. 159, 153–163. https://doi.org/10.1016/j.ecoenv.2018.04.035 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vu, C. T., Lin, C., Yeh, G. & Villanueva, M. C. Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: Assessment and possible human health implications. Environ. Sci. Pollut. Res. 24, 19422–19434. https://doi.org/10.1007/s11356-017-9590-4 (2017).CAS 
    Article 

    Google Scholar 
    Sharma, B., Singh, S. & Siddiqi, N. J. Biomedical implications of heavy metals induced imbalances in redox systems. BioMed Res. Int. 20, 14 (2014).
    Google Scholar 
    Feng, W., Wang, Z., Xu, H., Chen, L. & Zheng, F. Trace metal concentrations in commercial fish, crabs, and bivalves from three lagoons in the South China Sea and implications for human health. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-019-06712-8 (2020).Article 

    Google Scholar 
    Ruiz-Fernández, A. C. et al. A comparative study on metal contamination in Estero de Urias lagoon, Gulf of California, using oysters, mussels and artificial mussels: Implications on pollution monitoring and public health risk. Environ. Pollut. 243, 197–205 (2018).PubMed 

    Google Scholar 
    Bergstad, O. A. In Encyclopedia of Ocean Sciences (Second Edition) (ed. Steele, J. H.) 458–466 (Academic Press, 2009).
    Google Scholar 
    Mauchline, J. & Gordon, J. Foraging strategies of deep-sea fish. Mar. Ecol. Prog. Ser. 27, 227–238 (1986).
    Google Scholar 
    Li, J., He, M., Han, W. & Gu, Y. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. J. Hazard. Mater. 164, 976–981. https://doi.org/10.1016/j.jhazmat.2008.08.112 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yu, P. Applications of hierarchical cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based Fourier transform infrared (FTIR) microspectroscopy. J. Agric. Food Chem. 53, 7115–7127 (2005).CAS 
    PubMed 

    Google Scholar 
    Kara, D. Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis. Food Chem. 114, 347–354 (2009).CAS 

    Google Scholar 
    Chai, X. et al. Distribution, sources and assessment of heavy metals in surface sediments of the Hangzhou Bay and its adjacent areas. Acta Sci. Circum. 35, 3906–3916 (2015).CAS 

    Google Scholar 
    Mackay, D. & Fraser, A. Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environ. Pollut. 110, 375–391. https://doi.org/10.1016/S0269-7491(00)00162-7 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    ATSDR, T. ATSDR (Agency for toxic substances and disease registry). Prepared by Clement International Corp., under contract 205, 88–0608 (2000).Traina, A. et al. Heavy metals concentrations in some commercially key species from Sicilian coasts (Mediterranean Sea): Potential human health risk estimation. Ecotoxicol. Environ. Saf. 168, 466–478. https://doi.org/10.1016/j.ecoenv.2018.10.056 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ozmen, M., Ayas, Z., Güngördü, A., Ekmekci, G. F. & Yerli, S. Ecotoxicological assessment of water pollution in Sariyar Dam Lake, Turkey. Ecotoxicol. Environ. Saf. 70, 163–173. https://doi.org/10.1016/j.ecoenv.2007.05.011 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jeffrey, B. & Alison, G. Guidance for assessing chemical contaminant data for use in fish advisories. v. 1. Fish sampling and analysis-v. 4. Risk communication. (1993).Regulations, U. S. E. P. A. O. o. W. Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual. (US Environmental Protection Agency, 1989).Liu, Q., Liao, Y. & Shou, L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Mar. Pollut. Bull 131, 356–364. https://doi.org/10.1016/j.marpolbul.2018.04.041 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abtahi, M. et al. Heavy metals (As, Cr, Pb, Cd and Ni) concentrations in rice (Oryza sativa) from Iran and associated risk assessment: A systematic review. Toxin Rev. 36, 331–341 (2017).CAS 

    Google Scholar 
    WHO. WHO Technical Report Series. Evaluation of Certain Food Additives and Contaminants. Fifty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). http://www.Who.Int/foodsafety/publications/jecfa-reports/en/ (2000).USEPA. USEPA Regional Screening Level (RSL) summary table: November 2011. (2011).Farkas, A., Salánki, J. & Specziár, A. Age-and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res. 37, 959–964 (2003).CAS 
    PubMed 

    Google Scholar 
    Canpolat, Ö. & Çalta, M. Heavy metals in some tissues and organs of Capoeta capoeta umbla(Heckel, 1843) fish species in relation to body size, age, sex and seasons. Fresenius Environ. Bull. 12, 961–966 (2003).CAS 

    Google Scholar 
    Hosseini, M., Nabavi, S. M. B., Nabavi, S. N. & Pour, N. A. Heavy metals (Cd Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: Risk assessment for the consumers. Environ. Monit. Assess. 187, 1–7 (2015).CAS 

    Google Scholar 
    Jiang, X. et al. Assessment of heavy metal accumulation in freshwater fish of Dongting Lake, China: Effects of feeding habits, habitat preferences and body size. J. Environ. Sci. 112, 355–365 (2022).
    Google Scholar 
    Yi, Y., Tang, C., Yi, T., Yang, Z. & Zhang, S. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecotoxicol. Environ. Saf. 145, 295–302 (2017).CAS 
    PubMed 

    Google Scholar 
    USEPA. Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual. (US Environmental Protection Agency, 1989).Means, B. Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final). (Environmental Protection Agency, Washington, DC (USA). Office of Solid Waste …, 1989).Raknuzzaman, M. et al. Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment. Environ. Sci. Pollut. Res. 23, 17298–17310. https://doi.org/10.1007/s11356-016-6918-4 (2016).CAS 
    Article 

    Google Scholar 
    Kalantzi, I. et al. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem. 194, 659–670. https://doi.org/10.1016/j.foodchem.2015.08.072 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sarkar, S., Mukherjee, S., Chattopadhyay, A. & Bhattacharya, S. Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide. Ecotoxicol. Environ. Saf. 135, 173–182. https://doi.org/10.1016/j.ecoenv.2016.09.025 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mandal, B. K. & Suzuki, K. T. Arsenic round the world: A review. Talanta 58, 201–235. https://doi.org/10.1016/S0039-9140(02)00268-0 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kibria, G., Hossain, M. M., Mallick, D., Lau, T. C. & Wu, R. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts. Mar. Pollut. Bull. 105, 393–402. https://doi.org/10.1016/j.marpolbul.2016.02.021 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fang, Y. et al. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem. 147, 147–151. https://doi.org/10.1016/j.foodchem.2013.09.116 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vannoort, R. & Thomson, B. New Zealand Total Diet Study—Agricultural Compound Residues (Selected Contaminant and Nutrient Elements. Ministry for Primary Industries, 2009).
    Google Scholar 
    Praveena, S. M., Pradhan, B. & Ismail, S. N. S. Spatial assessment of heavy metals in surface soil from Klang District (Malaysia): An example from a tropical environment. Hum. Ecol. Risk Assess. Int. J. 21, 1980–2003 (2015).CAS 

    Google Scholar  More

  • in

    Grass species identity shapes communities of root and leaf fungi more than elevation

    Study sitesWe sampled foliar fungal endophytes and root fungi (root endophytes and AM fungi) in the Colorado Rockies at the Rocky Mountain Biological Laboratory, Gunnison Co., Colorado, USA (38°57’N, 106°59’W). This region has predictable decreases in air temperature (c. 0.8 °C per 100 m; [40]) and declines in soil nutrients with altitude [41], but increases in precipitation, mainly as snow [42]. The entire region is warming at rates of 0.5–1.0 °C per decade [43].To capture environmental, spatial, and grass-host specific variation in fungal guilds, we sampled 66 sites encompassing 9–13 elevations from each of six altitudinal gradients in July 2014 (Supplementary Table S1, Supplementary Fig. S1). Elevational gradients represented separate mountains in the Gunnison Basin and were located within 20 km of each other. We created a regional climate model to interpolate average number of growing degree days (GDD, base 0 °C), mean annual temperature (MAT), maximum temperature (Tmax), minimum temperature (Tmin), mean annual precipitation (MAP), and mean snow depth (MSD) for each site based on data from 29 local meteorological stations [44]. At each site, soil edaphic parameters were measured on dried soil at the UC Davis soils lab (see [24] for more details) and soil nutrients at Western Ag (Saskatoon, Canada). Soil pH was measured in a 1:1 solution with diH2O, and soil moisture was measured gravimetrically. Physical characteristics of each site (e.g., aspect, soil depth, elevation) were measured as described in Lynn et al. [44]. Environmental variation across sites was large. For example, MAT varied from 7.1 to 13.3 °C, MAP from 563 to 1171 mm, and Total N from 2 to 316 ug/g dry soil (Table S1).Host plant speciesWe focused on grasses because grasslands cover ~20% of Earth’s land surface [45] and dominate subalpine meadows of the Rocky Mountains. In addition, individual grass species spanned the entire elevational range of our study system [46], whereas tree, shrub, and forb species did not. At each location, we sampled nine adult individuals from up to 13 grass species representing five genera (Poaceae, subfamily Pooideae; Supplementary Table S1). Many sites had fewer than 13 grass species present, but all sites, except for two, had at least two grass species. Samples were composited by tissue type (leaves v. roots) and grass species within each site.Fungal compositionCollected root and leaf samples were surface sterilized (1 min in 95% ethanol, 2 min in 1% sodium hypochlorite solution, and 2 min in 70% ethanol) over ice to focus on the endophytic fungal community [34]. Following surface sterilization, samples were rinsed in purified water (Milli-Q Integral Water Purification System, EMD Millipore Corporation, Billerica, MA), stored in RNAlater, and refrigerated. All samples were then frozen in liquid nitrogen and ground using a mortar and pestle. Total DNA was extracted from ~50 mg of ground sample using QIAGEN DNeasy plant extraction kits (QIAGEN Inc., Valencia, CA).Fungal composition was characterized using barcoded primers targeting the ITS2 region for leaf and root endophytes [47], and FLR3-FLR4 primers targeting ~300 bp in the 28S region for AMF [48]. Each PCR contained 5 μL of ~1–10 ng/μL DNA template, 21.5 μL of Platinum PCR SuperMix (Thermo Fisher Scientific Inc., Waltham, MA), 1.25 μL of each primer (10 μM), 1.25 μL of 20 mg/mL BSA, and 0.44 μL of 25 mM MgCl2. For the ITS2 primers, the reactions included an initial denaturing step at 96 °C for 2 min, followed by 24 cycles of 94 °C for 30 sec, 51 °C for 40 s, and 72 °C for 2 min, with a final extension at 72 °C for 10 min. For the 28S primers, reactions started with an initial denaturing step at 93 °C for 5 min, followed by 33 cycles of 93 °C for 1 min, 55 °C for 1 min, and 72 °C for 1 min, with a final extension at 72 °C for 10 min.Three PCR replicates from each sample were pooled and then cleaned and concentrated using a ZR-96 DNA Clean & Concentrator-5 (Zymo Research Corporation, Irvine, CA). PCR was then carried out on all samples to add dual indexes and Illumina sequencing adaptors; each reaction began with an initial denaturing step at 98 °C for 30 s, followed by 7 cycles of 98 °C for 30 s, 62 °C for 30 s, and 72 °C for 30 s, with a final extension at 72 °C for 5 min. Sequencing was performed by the Genomic Sequencing and Analysis Facility at The University of Texas at Austin using paired-end 250 base Illumina MiSeq v.3 chemistry (Illumina, Inc., San Diego, CA). We aimed to obtain a minimum of 30,000 reads/sample for the ITS2 region and 20,000 reads/sample for the 28S region. All sequences are deposited in the NCBI SRA database under accession number (PRJNA639093).BioinformaticsWe processed reads to generate OTUs using commands from USEARCH (v9.2.64). Reads from previous studies [24] and this study were clustered together to improve OTU delineations for a total of 36,754,931 reads. We merged paired-end reads using the fastq_mergepairs from USEARCH with “fastq_maxdiffs” set to 20 and “fastq_maxdiffpct” set to 10 to ensure proper merging at a low error rate. The merged reads and the forward unmerged reads were trimmed at the primer sites using cutadapt with “e” set to 0.2, “m” set to 200, and untrimmed reads were discarded. Merged reads were filtered using fastq_filter from USEARCH with “fastq_maxee” set to 1.0. The forward reads were first trimmed to 230 using fastx_truncate from USEARCH with “trunclen” set to 230 and then filtered by fastq_filter from USEARCH with “fastq_maxee” set to 1.0. We then concatenated the merged and forward reads into one file and de-replicated using fastx_uniques from USEARCH with “minuniquesize” set to 2. After these steps, 11,357,274 sequences remained. We clustered these sequences to form OTUs at 97% similarity [49] using cluster_otus command from UPARSE. The reads (all reads before filtering step) of each sample were mapped to OTUs with usearch_global from USEARCH with “id” set to 0.97. We determined taxonomy for the representative OTUs using sintax from USEARCH with the database set to UNITE all eukaryotes (v. 8.2) “strand” set to both and “sintax_cutoff” set to 0.8 [50]. Representative OTUs were also blasted against Genbank with “perc_identity” set to 80 and “max_target_seqs” set to 50. All OTUs identified as “fungi” were retained, and OTUs labeled as “unknown” or “unidentified” were manually inspected based on blast results to determine retention. Our filtering criteria left between 5 and 418 OTUs per sample (Supplementary Table S2).Due to low fungal abundance in leaves [34], many leaf samples were dominated by plant sequences (average ~78% plant reads). Therefore, fungal sequence numbers in leaf samples were low, despite adequate sequencing depth to capture trends in fungal endophyte communities across sites based on prior analyses [24, 34, 35]. We included only samples that contained at least 50 fungal sequences after data processing (Leaves N = 192, Roots N = 191, AMF N = 251), and most samples had much greater sequencing depth, especially for roots (Supplementary Table S2). Nevertheless, there were no correlations between sequence read depth and richness, alpha diversity, or evenness of our samples (P  > 0.05 in all cases), and plant species did not differ in the average sequencing depth for samples (P  > 0.05). Data for each fungal OTU were transformed to the proportion of total sequence abundance to minimize any differences in sampling effort [51].Diversity and compositionWe calculated the alpha diversity metrics of richness, Shannon’s Diversity, Inverse Simpson’s Diversity, and Pielou’s Evenness. For each fungal guild, differences among plant species and elevation in alpha diversity were first determined using a general linear mixed effects model with plant species (categorical) and elevation (continuous) as fixed effects and site nested within elevation gradient (e.g., mountain identity, Supplementary Table S1, Supplementary Fig. S1) as random effects to account for the lack of statistical independence among plant species sampled at the same site and among sites located within the same mountain elevation gradient (Supplementary Fig. S1). Models were constructed using the lmer function in R package lme4 [52, 53]. To address, do fungal community patterns along environmental gradients differ among guilds: leaf endophytes, root endophytes, or arbuscular mycorrhizal fungi?, we then compared alpha diversity metrics among fungal guilds using a general linear mixed effects model with fungal guild, plant species, and elevation as fixed effects and site nested within elevation gradient as random effects. In all models, we evaluated parameter fit with analysis of deviance using Wald chi-square tests and corrected for multiple comparisons using a false discovery alpha of 0.05. Differences among grass species were determined using Tukey post-hoc tests.Because elevation is a good proxy for variation in both climate and soil parameters (Supplementary Table S1), in all community analyses, we first ran models with grass species and elevation to parse biotic versus abiotic influences on fungal OTUs, then secondly ran full variance partitioning models with all environmental covariates (Supplementary Table S1, climate, physical, soil) in addition to grass species identity and space (gradient location, Supplementary Fig. S1). Because leaf and root endophytes were sequenced using different primers than AM fungi, we could not compare composition among the three guilds directly. Instead, we compared the relative influence of biotic and abiotic drivers on fungal composition within each guild to compare patterns among guilds. To do so, we first used distance-based redundancy analysis (dbRDA) to analyze the effects of plant host species and elevation on fungal composition for general fungal communities in leaves and roots and separately for AM fungal communities in roots. All models were run on quantitative Jaccard indices of fungal composition for each guild and included site nested within elevation gradient (e.g., mountain side, Supplementary Fig. S1) as random effects. Second, to evaluate which environmental variables most strongly influenced fungal composition, we further partitioned variance in fungal composition due to grass species, climate variables (MAP, MAT, MSD, Tmax, Tmin, and GDD), soil variables (total nitrogen, total phosphorus, nitrate, ammonium, calcium, magnesium, potassium, iron, manganese, sulfur, aluminum, soil pH, soil gravimetric moisture content), physical variables (aspect degree, aspect category (e.g., cardinal direction), slope, soil depth, and elevation) and spatial variables (latitude and longitude) using the varpart function in Vegan v. 2–5.3 [54]. Plots of fungal composition by plant host were also generated using dbRDA separately for each fungal guild. Spatial variables were de-trended and tested for spatial autocorrelation using the ade4 package v. 1.7–16 [55]. When we detected significant spatial autocorrelation eigenvectors, we included these in the spatial variable matrix. To characterize how many fungal taxa occurred in multiple plant taxa and elevations, we used the VennDiagram package v. 1.6.20 [56].Turnover and rewiringTo evaluate whether fungal composition was driven by grasses associating with different fungal taxa or differing relative abundances of the same fungal taxa, we first performed a beta partitioning analysis using betapart v. 1.5.3 [57]. Each fungal guild was analyzed separately. Next, to examine turnover in the abundances of fungal functional groups (pathogens, saprotrophs, mutualists), we defined groups using the FungalTrait database, which merges previous databases into one cohesive framework of 17 functional trait types (referred to here as functional groups; [58]). We recognize that fungal functions are highly environmentally dependent and therefore these functional groups may represent potential function more than actual function. Functional group identity was ascribed to 60% of leaf endophyte and 62% of root endophyte fungal taxa. Then, cumulative abundance of proportionally transformed sequence reads in each functional group was analyzed using a general linear mixed effects model with grass species and elevation as fixed effects and site nested within elevation gradient as random effects, as above. Finally, we defined indicator species within the OTUs that comprised at least 1% of the total abundance of each fungal guild by grass host, gradient, and elevation classes (rounded to the nearest 100 m) using the indicspecies package v. 1.7.9 [59]. Functional group assignments using the FungalTrait database from above were assigned to each indicator taxon [58]. A large percentage of significant indicator taxa out of the total number of OTUs would confirm that turnover in the species identity of fungal associations is stronger than turnover in the relative abundances of the same fungal taxa.Network propertiesTo address does grass-fungal network structure track elevation?, we analyzed four properties that encompass different facets of ecological networks at the site level. First, we calculated network nestedness, or the propensity for specialists to interact with the same plant species as generalists, using the weighted NODF (Nestedness metric based on Overlap and Decreasing Fill; [60]). Second, we calculated complexity as linkage density or the average number of interactions per plant species [61]. Third, to characterize specialization, we used the H2’ Index [62]. Finally, network evenness was calculated as Alatalo’s interaction evenness [63]. In all cases, these network metrics were weighted indices to increase accuracy [64], and calculations were performed in the Bipartite package v. 2.15 [65]. To address, how much do fungal guilds differ in altitudinal variation in network structure?, we compared network-level statistics among fungal guilds using a general linear mixed effects model with fungal guild as a fixed effect, number of grass hosts as a fixed effect, and gradient as a random effect (function lmer in lme4 [52],). We compared relationships with elevation separately for each fungal guild, using general linear mixed effects models with elevation as a fixed, continuous effect, number of grass hosts within the network as a fixed, continuous effect, and gradient identity as a random effect (Supplementary Table S1, Supplementary Fig. S2). We evaluated parameter fit with analysis of deviance using Wald chi-square tests using the car package 3.0–10 in R [66].All data met model assumptions of normality of residuals and homogeneity of variance. All analyses were performed in R v. 3.5.0 [53]. More

  • in

    Maling bamboo (Yushania maling) overdominance alters forest structure and composition in Khangchendzonga landscape, Eastern Himalaya

    Badola, H. K. & Aitken, S. Potential biological resources for poverty alleviation in Indian Himalaya. Biodiver. 11(3–4), 8–18 (2010).
    Google Scholar 
    Pandey, A., Badola, H. K., Rai, S. & Singh, S. P. Timberline structure and woody taxa regeneration towards treeline along latitudinal gradients in Khangchendzonga National Park Eastern Himalaya. PLoS ONE 13(11), e0207762 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature https://doi.org/10.1038/nature22899 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hansen, A. J. et al. Global change in forests: Responses of species, communities, and biomes. Bio-Sciences 51, 765–779 (2001).
    Google Scholar 
    Gooden, B., French, K. O. & Turner, P. Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia. For. Ecol. Manag. 257(3), 960–967 (2009).
    Google Scholar 
    Xu, Q. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Global Ecol. Cons. https://doi.org/10.1016/j.gecco.2019.e00787 (2020).Article 

    Google Scholar 
    Dhar, U., Rawal, R. S. & Samant, S. S. Structural diversity and representativeness of forest vegetation in a protected area of Kumaun Himalaya, India: Implications for conservation. Biodiver. Cons. 6, 1045–1062 (1997).
    Google Scholar 
    Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710 (2000).
    Google Scholar 
    Tomimatsu, H. et al. Consequences of forest fragmentation in an understory plant community: Extensive range expansion of native dwarf bamboo. Plant Species Biol. 26, 3–12 (2011).
    Google Scholar 
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS 
    PubMed 

    Google Scholar 
    Royo, A. A. & Carson, W. P. On the formation of dense understory layers in forests worldwide: Consequences and implications for forest dynamics, biodiversity, and succession. Can. J. For. Res. 36, 1345–1362 (2006).
    Google Scholar 
    Royo, A. A., Stout, S. L. & Pierson, T. G. Restoring forest herb communities through landscape-level deer herd reductions: Is recovery limited by legacy effects?. Biol. Cons. 143, 2425–2434 (2010).
    Google Scholar 
    Taylor, A. H., Jinyan, H. & ShiQiang, Z. Canopy tree development and undergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China: A 12-year study. For. Ecol. Manag. 200(1), 347–360 (2004).
    Google Scholar 
    Zhou, X., Chen, L. & Lin, Q. Effects of chemical foaming agents on the physico-mechanical properties and rheological behavior of bamboo powder-polypropylene foamed composites. Bio Resour. 7(2), 2183–2198 (2012).CAS 

    Google Scholar 
    Lima, R. A., Rother, D. C., Muler, A. E., Lepsch, I. F. & Rodrigues, R. R. Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol. Conserv. 147, 32–39 (2012).
    Google Scholar 
    Tariyal, K. Bamboo as a successful carbon sequestration substrate in Uttarakhand: A brief analysis. Int. J. Curr. Adv. Res. 5(4), 736–738 (2016).
    Google Scholar 
    Badoni, A.K., Badola, H. K. & Sharma, S.P. Inter-disciplinary approach towards environmental management: A case study with wild bamboos in Garhwal Himalayas, In: Prakash R (Ed), Editor. Advances in Forestry Research in India, Vol. III, Intl. Book Distrib., Dehradun. pp 261–280 (1989).Bahadur, K. N. Bamboos in the service of man. Biol. Contemp. J. 1(2), 69–72 (1974).
    Google Scholar 
    Tomar, J. M. S., Hore, D. K. & Annadurai, A. Bamboos and their conservation in North-East India. Indian For. 135(6), 817–824 (2009).
    Google Scholar 
    Kumar, P. S., Kumari, K. U., Devi, M. P., Choudhary, V. K. & Sangeetha, A. Bamboo shoot as a source of nutraceuticals and bioactive compounds: a review. Indian J. Nat. Proc. Res. 8(1), 32–46 (2016).
    Google Scholar 
    Pradhan, S., Saha, G. K. & Khan, J. A. Ecology of the red panda Ailurus fulgens in the Singhalila National Park, Darjeeling, India. Biol. Cons. 98(1), 11–18 (2001).
    Google Scholar 
    Dorji, S., Vernes, K. & Rajaratnam, A. Habitat correlates of the Red Panda in the temperate forests of Bhutan. PLoS ONE 610, 1–11 (2011).
    Google Scholar 
    Mohan Ram, H. Y. & Tandon, R. Bamboos and rattans—from riches to rags. Proc. Natl. Sci. Acad. India 63(3), 245–267 (1997).
    Google Scholar 
    Sharma, R., Wahono, J. & Baral, H. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10, 4367 (2018).
    Google Scholar 
    Seethalakshmi, K.K. & Kumar, M.S.M. Bamboos of India: A Compendium. Bamboo Information Center, India, Kerala Forest Research Institute, Peechi and International Network for Bamboo and Ratten, Beijing (1998).Sarmah, A., Thomas, S., Goswami, M., Haridashan, K. & Borthakur, S. K. Rattan and bamboo flora of North-East India in a conservation perspective. In Sustainable Management of Forests (eds Arunachalan, A. & Khan, M. L.) 37–45 (International Book Distributors, 2000).
    Google Scholar 
    Das, M., Bhattacharya, S., Singh, P., Filgueiras, T. S. & Pal, A. Bamboo taxonomy and diversity in the era of molecular markers. Adv. Bot. Res. 47, 225–268 (2008).CAS 

    Google Scholar 
    Biswas, S. et al. Evidence of stress induced flowering in bamboo and comments on probable biochemical and molecular factors. J. Plant Biochem. Biotechnol. 30(4), 1020–1026 (2021).CAS 

    Google Scholar 
    Ray, P. K. Gregarious flowering of a common hill bamboo Arundinaria maling. Indian For. 78(2), 89–90 (1952).
    Google Scholar 
    Taylor, A. H. & Zisheng, Q. Culm dynamics and dry matter production of bamboos in the Wolong and Tangjiahe giant panda reserves, Sichuan, China. J. Appl. Ecol. 24, 419–433 (1987).
    Google Scholar 
    Okutomi, K., Shinoda, S. & Fukuda, H. Causal analysis of the invasion of broadleaved forest by bamboo in Japan. J. Veg. Sci. 7, 723–728 (1996).
    Google Scholar 
    Nath, A. J., Das, M. C. & Das, A. K. Gregarious flowering in woody bamboos: Does it mean end of life?. Curr. Sci. 106(1), 12–13 (2014).
    Google Scholar 
    Silveira, M. Ecological aspects of bamboo-dominated Forest in southwestern Amazonia: An ethnoscience perspective. Ecotropica 5, 213–216 (1999).
    Google Scholar 
    Song, Q. N. et al. Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Sci. Rep. 7(1), 1–10 (2017).ADS 

    Google Scholar 
    Rother, D. C., Rodrigues, R. R. & Pizo, M. A. Effects of bamboo stands on seed rain and seed limitation in a rainforest. For. Ecol. Manag. 257, 885–892 (2009).
    Google Scholar 
    Srivastava, V., Griess, V.C. & Padalia, H. Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecol Model 385:35–44 (2018).Roy, A., Bhattacharya, S., Ramprakash, M. & Kumar, A. S. Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach. Ecol. Model. 329, 77–85 (2016).
    Google Scholar 
    Stapleton, C. M. A. The morphology of woody bamboos. LinneanSocietySymposium Series 19 251–268 (Academic Press Limited, 1997).
    Google Scholar 
    Larpkern, P., Mor, S. R. & Totland, Q. Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia 165(1), 161–168 (2011).ADS 
    PubMed 

    Google Scholar 
    Tao, J. P., Shi, X. P. & Wang, Y. J. Effects of different bamboo densities on understory species diversity and trees regeneration in an Abies faxoniana forest, Southwest China. Sci. Res. Essays 7, 660–668 (2012).
    Google Scholar 
    Wang, W., Franklin, S. B., Ren, Y. & Ouellette, J. R. Growth of bamboo Fargesiaqinlingensis and regeneration of trees in a mixed hardwood-conifer forest in the Qinling Mountains, China. For. Ecol. Manag. 234(1–3), 107–115 (2006).
    Google Scholar 
    Gratzer, G., Rai, P. B. & Glatzel, G. The influence of the bamboo Yushaniamicrophylla on regeneration of Abies densa in central Bhutan. Can. J. For. Res. 29, 1518–1527 (1999).
    Google Scholar 
    Takahashi, K., Uemura, S., Suzuki, J. I. & Hara, T. Effect of understory dwarf bamboo on soil water and the growth of overstory trees in a dense secondary Betula ermanii forest, northern Japan. Ecol. Res. 18(6), 767–774 (2003).
    Google Scholar 
    Ito, H. & Hino, T. Effects of deer, mice and dwarf bamboo on the emergence, survival and growth of Abieshomolepis (Piceaceae) seedlings. Ecol. Res. 19(2), 217–223 (2004).
    Google Scholar 
    Tenzin, K. & Rinzin, A. Impact of Livestock Grazing on the Regeneration of Some Major Species of Plants in Conifer Forest (RNR-RC, 2003).
    Google Scholar 
    Darabant, A., Rai, P. B., Tenzin, K., Roder, W. & Gratzer, G. Cattle grazing facilitates tree regeneration in a conifer forest with palatable bamboo understory. For. Ecol. Manag. 252(1–3), 73–83 (2007).
    Google Scholar 
    Sinha, S. et al. Effect of altitude and climate in shaping the forest compositions of Singalila National Park in Khangchendzonga Landscape, Eastern Himalaya, India. J. Asia-Pac. Biodiver. 11(2), 267–275 (2018).
    Google Scholar 
    Zhang, W., Huang, D., Wang, R., Liu, J. & Du, N. Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of Northern China. PLoS ONE 11(7), e0159995. https://doi.org/10.1371/journal.pone.0159995 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, C. M., Mishra, A. K., Tiwari, O. P., Krishna, R. & Rana, Y. S. Effect of altitudinal gradients on forest structure and composition on ridge tops in Garhwal Himalaya. Energy Ecol. Environ. 2(6), 404–417. https://doi.org/10.1007/s40974-017-0067-6(2016) (2017).Article 

    Google Scholar 
    Silveira, M. Ecological aspects of bamboo-dominated forests in southwestern Amazonia: An ethnoscience perspective. Ecotropica 5, 213–216 (1999).
    Google Scholar 
    Franklin, D. C. Vegetation phenology and growth of a facultatively deciduous bamboo in a monsoonal climate. Biotropica 37, 343–350 (2005).
    Google Scholar 
    Nath, A. N., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Cons. 3, 654–663 (2015).
    Google Scholar 
    Venkatesh, M. S., Bhatt, B. P., Kumar, K., Majumdar, B. & Singh, K. Soil properties as influenced by some important edible bamboo species in the North Eastern Himalayan region. Indian J. Bamboo Rattan 4(3), 221–230 (2005).
    Google Scholar 
    ICIMOD, WCD, GBPNIHESD, RECAST Kangchenjunga landscape feasibility assessment report. ICIMOD Working Paper 2017/9. Kathmandu: ICIMOD (2017).Mueller-Dombois, A. & Ellenburg, A. Aims and Methods of Vegetation Ecology 48–50 (John Wiley Sons, 1974).
    Google Scholar 
    Polunin, O. & Stainton, A. Flowers of the Himalaya 580 (Oxford University Press, 2001).
    Google Scholar 
    Ghosh, D.K. & Mallick, J.K. Flora of darjeeling himalayas and foothills: Angiosperms. Research Circle, Forest Directorate, Government of West Bengal & Bishen Singh Mahendra Pal Singh (2014).Pradhan, U. C. & Lachungpa, M. L. Sikkim Himalayan Rhododendrons 130 (Primulaceae Books, 1990).
    Google Scholar 
    de Bello, F., Leps, J. & Sebastia, M. T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecograph 29, 801–810 (2006).
    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman and Hall, 1990).MATH 

    Google Scholar 
    Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Google Scholar 
    McCullagh, P. & Nelder, J. A. Generalized Linear Models 2nd edn. (Chapman and Hall, 1989).MATH 

    Google Scholar 
    Gaira, K. S., Dhar, U. & Belwal, O. K. Potential of herbarium records to sequence phenological pattern: A case study of Aconitum heterophyllum in the Himalaya. Biodiver. Cons. 20, 2201–2210 (2011).
    Google Scholar  More

  • in

    Limited increases in savanna carbon stocks over decades of fire suppression

    Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grace, J., José, J. S., Meir, P., Miranda, H. S. & Montes, R. A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).
    Google Scholar 
    Van Der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).ADS 

    Google Scholar 
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).ADS 
    CAS 

    Google Scholar 
    Russell-Smith, J. et al. Opportunities and challenges for savanna burning emissions abatement in southern Africa. J. Environ. Manage. 288, 112414 (2021).CAS 
    PubMed 

    Google Scholar 
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, C. et al. Historical and future global burned area with changing climate and human demography. One Earth 4, 517–530 (2021).
    Google Scholar 
    Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Higgins, S. I. et al. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88, 1119–1125 (2007).
    Google Scholar 
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).ADS 
    CAS 

    Google Scholar 
    Pellegrini, A. F. A., Hedin, L. O., Staver, A. C. & Govender, N. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96, 1275–1285 (2015).PubMed 

    Google Scholar 
    Tilman, D. et al. Fire suppression and ecosystem carbon storage. Ecology 81, 2680–2685 (2000).
    Google Scholar 
    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).ADS 

    Google Scholar 
    de Miranda, S. D. C. et al. Regional variations in biomass distribution in Brazilian savanna woodland. Biotropica 46, 125–138 (2014).
    Google Scholar 
    Wigley, B. J., Cramer, M. D. & Bond, W. J. Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecol. 203, 1 (2009).
    Google Scholar 
    Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Staver, A. C., Botha, J. & Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. New Phytol. 216, 1151–1160 (2017).CAS 
    PubMed 

    Google Scholar 
    Zhou, Y., Wigley, B. J., Case, M. F., Coetsee, C. & Staver, A. C. Rooting depth as a key woody functional trait in savannas. New Phytol. 227, 1350–1361 (2020).PubMed 

    Google Scholar 
    Govender, N., Trollope, W. S. W., Van, & Wilgen, B. W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).
    Google Scholar 
    Colgan, M. S., Asner, G. P. & Swemmer, T. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas. Ecol. Appl. 23, 1170–1184 (2013).PubMed 

    Google Scholar 
    Davies, A. B. & Asner, G. P. Elephants limit aboveground carbon gains in African savannas. Glob. Change Biol. 25, 1368–1382 (2019).ADS 

    Google Scholar 
    Butnor, J. R. et al. Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci. Soc. Am. J. 67, 1607–1615 (2003).ADS 
    CAS 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).
    Google Scholar 
    Ryan, C. M., Williams, M. & Grace, J. Above- and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).
    Google Scholar 
    Swezy, D. M. & Agee, J. K. Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine. Can. J. For. Res. 21, 626–634 (1991).
    Google Scholar 
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coetsee, C., Bond, W. J. & February, E. C. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162, 1027–1034 (2010).ADS 
    PubMed 

    Google Scholar 
    Holdo, R. M., Mack, M. C. & Arnold, S. G. Tree canopies explain fire effects on soil nitrogen, phosphorus and carbon in a savanna ecosystem. J. Veg. Sci. 23, 352–360 (2012).
    Google Scholar 
    Lloyd, J. et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiol. 28, 451–468 (2008).PubMed 

    Google Scholar 
    Wigley, B. J., Augustine, D. J., Coetsee, C., Ratnam, J. & Sankaran, M. Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna. Ecology 101, e03008 (2020).PubMed 

    Google Scholar 
    Khomo, L., Trumbore, S., Bern, C. R. & Chadwick, O. A. Timescales of carbon turnover in soils with mixed crystalline mineralogies. Soil 3, 17–30 (2017).ADS 
    CAS 

    Google Scholar 
    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).CAS 

    Google Scholar 
    Abreu, R. C. R. et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).PubMed 

    Google Scholar 
    West, T. A., Börner, J. & Fearnside, P. M. Climatic benefits from the 2006–2017 avoided deforestation in Amazonian Brazil. Front. For. Glob. Change 2, 52 (2019).
    Google Scholar 
    Aleman, J. C., Blarquez, O. & Staver, C. A. Land-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa. Glob. Change Biol. 22, 3013–3025 (2016).ADS 

    Google Scholar 
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).ADS 

    Google Scholar 
    Ratajczak, Z., Nippert, J. B. & Collins, S. L. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93, 697–703 (2012).PubMed 

    Google Scholar 
    Smit, I. P. & Prins, H. H. Predicting the effects of woody encroachment on mammal communities, grazing biomass and fire frequency in African savannas. PLoS One 10, e0137857 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Huxman, T. E. et al. Ecohydrological implications of woody plant encroachment. Ecology 86, 308–319 (2005).
    Google Scholar 
    Hermoso, V., Regos, A., Morán-Ordóñez, A., Duane, A. & Brotons, L. Tree planting: a double-edged sword to fight climate change in an era of megafires. Glob. Change Biol. 27, 3001–3003 (2021).
    Google Scholar 
    Venter F. A. Classification of Land for Management Planning in the Kruger National Park. PhD thesis, Univ. South Africa (1990).Biggs, R., Biggs, H. C., Dunne, T. T., Govender, N. & Potgieter, A. L. F. Experimental burn plot trial in the Kruger National Park: history, experimental design and suggestions for data analysis. Koedoe 46, 15 (2003).
    Google Scholar 
    Codron, J. et al. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J. Archaeol. Sci. 32, 1757–1772 (2005).
    Google Scholar 
    Zhou, Y., Boutton, T. W. & Ben Wu, X. Soil carbon response to woody plant encroachment: importance of spatial heterogeneity and deep soil storage. J. Ecol. 105, 1738–1749 (2017).CAS 

    Google Scholar 
    Sheldrick B. & Wang C. In Soil Sampling and Methods of Analysis (ed. Carter, M. R.) 499–511 (CRC Press, 1993).Butnor, J. R. et al. Surface-based GPR underestimates below-stump root biomass. Plant Soil 402, 47–62 (2016).CAS 

    Google Scholar 
    Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage—an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hirano, Y. et al. Limiting factors in the detection of tree roots using ground-penetrating radar. Plant Soil 319, 15–24 (2009).CAS 

    Google Scholar 
    Popescu, S. C. & Wynne, R. H. Seeing the trees in the forest. Photogramm. Eng. Remote Sensing 70, 589–604 (2004).
    Google Scholar 
    Case, M. F., Wigley-Coetsee, C., Nzima, N., Scogings, P. F. & Staver, A. C. Severe drought limits trees in a semi-arid savanna. Ecology 100, e02842 (2019).PubMed 

    Google Scholar 
    Beucher S. & Meyer F. In Mathematical Morphology in Image Processing (ed. Dougherty, E. R.) 433–481 (CRC Press, 1993).Nickless, A., Scholes, R. J. & Archibald, S. A method for calculating the variance and confidence intervals for tree biomass estimates obtained from allometric equations. S. Afr. J. Sci. 107, 1–10 (2011).
    Google Scholar 
    Plowright A. & Roussel J.-R. ForestTools: analyzing remotely sensed forest data. R package version 0.2.1. https://CRAN.R-project.org/package=ForestTools (2020).Hijmans R. J. raster: geographic data analysis and modeling. R package version 3.3-7. https://CRAN.R-project.org/package=raster (2020).Penman J. et al. (eds) Good Practice Guidance for Land Use, Land-Use Change and Forestry (Intergovernmental Panel on Climate Change, 2003).Kuznetsova, A., Brockhoff, P. & Christensen, R. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar  More

  • in

    VKORC1 mutations in rodent populations of a tropical city-state as an indicator of anticoagulant rodenticide resistance

    Costa, F. et al. Global morbidity and mortality of leptospirosis: A systematic review. PLoS Negl. Trop. Dis. 9, e0003898. https://doi.org/10.1371/journal.pntd.0003898 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cosson, J.-F. et al. Epidemiology of Leptospira transmitted by rodents in southeast Asia. PLoS Negl. Trop. Dis. 8, e2902. https://doi.org/10.1371/journal.pntd.0002902 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on Hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 23, 412–441. https://doi.org/10.1128/CMR.00062-09 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaheri, A. et al. Uncovering the mysteries of Hantavirus infections. Nat. Rev. Microbiol. 11, 539–550. https://doi.org/10.1038/nrmicro3066 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Peniche Lara, G., Dzul-Rosado, K. R., Zavala Velázquez, J. E. & Zavala-Castro, J. Murine typhus: Clinical and epidemiological aspects. Colomb. Med. (Cali) 43, 175–180 (2012).Article 

    Google Scholar 
    Pimentel, D., Lach, L., Zuniga, R. & Morrison, D. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50, 53–65. https://doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2 (2000).Article 

    Google Scholar 
    Smith, R. & Meyer, A. Rodent control methods: Non-chemical and non-lethal chemical, with special reference to food stores. in Rodent Pests and Their Control (Buckle, A.P., Smith, R. eds.). 2nd edn. 101–122. (CAB International, 2015).Himsworth, C. G., Jardine, C. M., Parsons, K. L., Feng, A. Y. T. & Patrick, D. M. The characteristics of wild rat (Rattus spp.) populations from an inner-city neighborhood with a focus on factors critical to the understanding of rat-associated zoonoses. PLoS ONE 9, e91654. https://doi.org/10.1371/journal.pone.0091654 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mari Saez, A. et al. Rodent control to fight Lassa fever: Evaluation and lessons learned from a 4-year study in Upper Guinea. PLoS Negl. Trop. Dis. 12, e0006829–e0006829. https://doi.org/10.1371/journal.pntd.0006829 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baldwin, R., Quinn, N., Davis, D. & Engeman, R. Effectiveness of rodenticides for managing invasive roof rats and native deer mice in orchards. Environ. Sci. Pollut. Res. 21, 5795–5802. https://doi.org/10.1007/s11356-014-2525-4 (2014).CAS 
    Article 

    Google Scholar 
    Hadler, M. R. & Buckle, A. P. Forty five years of anticoagulant rodenticides—Past, present and future trends. Proc. Vertebr. Pest Conf. 15, 149–155 (1992).
    Google Scholar 
    Rost, S. et al. Novel mutations in the VKORC1 gene of wild rats and mice – A response to 50 years of selection pressure by warfarin?. BMC Genet. 10, 4. https://doi.org/10.1186/1471-2156-10-4 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buckle, A., Prescott, C. & Ward, K. J. Resistance to the first and second generation anticoagulant rodenticides – A new perspective. Proc. Verebr. Pest Conf. 16, 138–144 (1994).
    Google Scholar 
    Goulois, J., Lambert, V., Legros, L., Benoit, E. & Lattard, V. Adaptative evolution of the Vkorc1 gene in Mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecol. Evol. 7, 2767–2776. https://doi.org/10.1002/ece3.2829 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meerburg, B. G., van Gent-Pelzer, M. P. E., Schoelitsz, B. & van der Lee, T. A. J. Distribution of anticoagulant rodenticide resistance in Rattus norvegicus in the Netherlands according to Vkorc1 mutations. Pest Manag. Sci. 70, 1761–1766. https://doi.org/10.1002/ps.3809 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lund, M. Rodent resistance to the anticoagulant rodenticides, with particular reference to Denmark. Bull. World Health Organ. 47, 611–618 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, M. J. et al. Effects of culling on Leptospira interrogans carriage by rats. Emerg. Infect. Dis. 24, 356–360. https://doi.org/10.3201/eid2402.171371 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greaves, J. H. Resistance to anticoagulant rodenticides. in Rodent Pests and Their Control (Buckle, A.P., Smith, R. eds.). 2nd edn. 187–208. (CAB International, 2015).Lefebvre, S. B., Benoit, E. & Lattard, V. Comparative biology of the resistance to vitamin K antagonists: An overview of the resistance mechanisms in Anticoagulation Therapy (Basaran, O., Biteker, M. eds.). 20–45. (Intech Open, 2016).Grandemange, A. et al. Consequences of the Y139F Vkorc1 mutation on resistance to AVKs: In-vivo investigation in a 7th generation of congenic Y139F strain of rats. Pharmacogenet. Genomics. 19, 742–750. https://doi.org/10.1097/FPC.0b013e32832ee55b (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sadowski, J. A., Esmon, C. T. & Suttie, J. W. Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system. J. Biol. Chem. 251, 2770–2776 (1976).CAS 
    Article 

    Google Scholar 
    Mooney, J. et al. VKORC1 sequence variants associated with resistance to anticoagulant rodenticides in Irish populations of Rattus norvegicus and Mus musculus domesticus. Sci. Rep. 8, 4535. https://doi.org/10.1038/s41598-018-22815-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thijssen, H. H. W. Warfarin-based rodenticides: Mode of action and mechanism of resistance. Pestic. Sci. 43, 73–78. https://doi.org/10.1002/ps.2780430112 (1995).CAS 
    Article 

    Google Scholar 
    Bell, R. G. & Caldwell, P. T. Mechanism of warfarin resistance. Warfarin and the metabolism of vitamin K1. Biochemistry 12, 1759–1762. https://doi.org/10.1021/bi00733a015 (1973).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pelz, H.-J. et al. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847. https://doi.org/10.1534/genetics.104.040360 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baert, K., Stuyck, J., Breyne, P., Maes, D. & Casaer, J. Distribution of anticoagulant resistance in the brown rat in Belgium. Belg. J. Zool. 142, 39–48 (2012).
    Google Scholar 
    Prescott, C. V., Buckle, A. P., Gibbings, J. G., Allan, E. N. W. & Stuart, A. M. Anticoagulant resistance in Norway rats (Rattus norvegicus Berk.) in Kent – A VKORC1 single nucleotide polymorphism, tyrosine139phenylalanine, new to the UK. Int. J. Pest Manag. 57, 61–65. https://doi.org/10.1080/09670874.2010.523124 (2010).CAS 
    Article 

    Google Scholar 
    Grandemange, A., Lasseur, R., Longin-Sauvageon, C., Benoit, E. & Berny, P. Distribution of VKORC1 single nucleotide polymorphism in wild Rattus norvegicus in France. Pest Manag. Sci. 66, 270–276. https://doi.org/10.1002/ps.1869 (2009).CAS 
    Article 

    Google Scholar 
    Goulois, J. et al. Evidence of a target resistance to antivitamin K rodenticides in the roof rat Rattus rattus: Identification and characterisation of a novel Y25F mutation in the Vkorc1 gene. Pest Manag. Sci. 72, 544–550. https://doi.org/10.1002/ps.4020 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Endepols, S., Klemann, N., Jacob, J. & Buckle, A. P. Resistance tests and field trials with bromadiolone for the control of Norway rats (Rattus norvegicus) on farms in Westphalia, Germany. Pest Manag. Sci. 68, 348–354. https://doi.org/10.1002/ps.2268 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Andru, J., Cosson, J.-F., Caliman, J.-P. & Benoit, E. Coumatetralyl resistance of Rattus tanezumi infesting oil palm plantations in Indonesia. Ecotoxicology 22, 377–386. https://doi.org/10.1007/s10646-012-1032-y (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Department of Statistics Singapore. Population and Population Structure. https://www.singstat.gov.sg/find-data/search-by-theme/population/population-and-population-structure/latest-data (2020).Department of Statistics Singapore. Environment. https://www.singstat.gov.sg/find-data/search-by-theme/society/environment/latest-data (2020).Department of Statistics Singapore. M890531—Licensed Food Establishments (End of Period), Annual. https://www.tablebuilder.singstat.gov.sg/publicfacing/createDataTable.action?refId=14624 (2021).QGIS Development Team. QGIS Geographic Information System. QGIS Association. https://www.qgis.org/en/site/ (2021).Ivanova, N. V., Clare, E. L. & Borisenko, A. V. in DNA Barcodes: Methods and Protocols (John Kress, W. & Erickson, D.L. eds.) 153–182 (Humana Press, 2012).Pagès, M. et al. Revisiting the taxonomy of the Rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evol. Biol. 10, 184. https://doi.org/10.1186/1471-2148-10-184 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pagès, M. et al. Cytonuclear discordance among Southeast Asian black rats (Rattus rattus complex). Mol. Ecol. 22, 1019–1034. https://doi.org/10.1111/mec.12149 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rungrojn, A. et al. Prevalence and molecular characterization of Rickettsia spp. from wild small mammals in public parks and urban areas of Bangkok metropolitan, Thailand. Trop. Med. Infect. Dis. https://doi.org/10.3390/tropicalmed6040199 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wulandhari, S. A. et al. High prevalence and low diversity of chigger infestation in small mammals found in Bangkok metropolitan parks. Med. Vet. Entomol. 35, 534–546. https://doi.org/10.1111/mve.12531 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cowan, P. E. et al. Vkorc1 sequencing suggests anticoagulant resistance in rats in New Zealand. Pest Manag. Sci. 73, 262–266. https://doi.org/10.1002/ps.4304 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rost, S. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427, 537–541. https://doi.org/10.1038/nature02214 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wong, T. W. et al. Hantavirus infections in humans and commensal rodents in Singapore. Trans. R. Soc. Trop. Med. Hyg. 83, 248–251. https://doi.org/10.1016/0035-9203(89)90666-4 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dubock, A. Pulsed baiting – A new technique for high potency, slow acting rodenticides. Proc. Vertebr. Pest Conf. 10, 123–136 (1982).
    Google Scholar 
    Garg, N., Singla, N., Jindal, V. & Babbar, B. Studies on bromadiolone resistance in Rattus rattus populations from Punjab, India. Pestic. Biochem. Physiol. 139, 24–31 (2017).CAS 
    Article 

    Google Scholar 
    Song, Y., Lan, Z. & Kohn, M. H. Mitochondrial DNA phylogeography of the Norway rat. PLoS ONE 9, e88425. https://doi.org/10.1371/journal.pone.0088425 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aplin, K. P. et al. Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS ONE 6, e26357. https://doi.org/10.1371/journal.pone.0026357 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyle, C. M. Case of apparent resistance of Rattus norvegicus Berkenhout to anticoagulant poisons. Nature 188, 517. https://doi.org/10.1038/188517a0 (1960).ADS 
    Article 

    Google Scholar 
    Jackson, W. B. & Kaukeinen, D. Resistance of wild Norway rats in North Carolina to warfarin rodenticide. Science 176, 1343 (1972).ADS 
    CAS 
    Article 

    Google Scholar 
    Ma, X. et al. Low warfarin resistance frequency in Norway rats in two cities in China after 30 years of usage of anticoagulant rodenticides. Pest Manag. Sci. 74, 2555–2560. https://doi.org/10.1002/ps.5040 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Markussen, M. D. K., Heiberg, A.-C., Fredholm, M. & Kristensen, M. Differential expression of cytochrome P450 genes between bromadiolone-resistant and anticoagulant-susceptible Norway rats: A possible role for pharmacokinetics in bromadiolone resistance. Pest Manag. Sci. 64, 239–248. https://doi.org/10.1002/ps.1506 (2008).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition

    Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.CAS 
    PubMed 

    Google Scholar 
    Danovaro R, Corinaldesi C, Dell’Anno A, Fuhrman JA, Middelburg JJ, Noble RT, et al. Marine viruses and global climate change. Fems Microbiol Rev. 2011;35:993–1034.CAS 
    PubMed 

    Google Scholar 
    Suttle CA. Marine viruses – major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 

    Google Scholar 
    Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.CAS 
    PubMed 

    Google Scholar 
    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2016;532:465–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.CAS 
    PubMed 

    Google Scholar 
    Peduzzi P, Weinbauer MG. Effect of Concentrating the Virus-Rich 2-200-Nm Size Fraction of Seawater on the Formation of Algal Flocs (Marine Snow). Limnol Oceanogr. 1993;38:1562–5.
    Google Scholar 
    Wilhelm SW, Suttle CA. Viruses and Nutrient Cycles in the Sea – Viruses play critical roles in the structure and function of aquatic food webs. Bioscience. 1999;49:781–8.
    Google Scholar 
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    Sullivan MB, Weitz JS, Wilhelm S. Viral ecology comes of age. Env Microbiol Rep. 2017;9:33–5.
    Google Scholar 
    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Starr EP, Nuccio EE, Pett-Ridge J, Banfield JF, Firestone MK. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc Natl Acad Sci USA. 2019;116:25900–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e0076–18.
    Google Scholar 
    Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol. 2017;4:201–19.CAS 
    PubMed 

    Google Scholar 
    Emerson JB. Soil viruses: a new hope. mSystems. 2019;4:e00120–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liang XL, Zhang YY, Wommack KE, Wilhelm SW, DeBruyn JM, Sherfy AC, et al. Lysogenic reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity. Soil Biol Biochem. 2020;144:107767.CAS 

    Google Scholar 
    Liang XL, Wang YS, Zhang Y, Zhuang J, Radosevich M. Viral abundance, community structure and correlation with bacterial community in soils of different cover plants. Appl Soil Ecol. 2021;168:104138.
    Google Scholar 
    Roy K, Ghosh D, DeBruyn JM, Dasgupta T, Wommack KE, Liang X, et al. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front. Microbiol. 2020;11:1494.PubMed 
    PubMed Central 

    Google Scholar 
    Williamson KE, Radosevich M, Wommack KE. Abundance and diversity of viruses in six Delaware soils. Appl Environ Microb. 2005;71:3119–25.CAS 

    Google Scholar 
    Lee S, Sieradzki ET, Nicolas AM, Walker RL, Firestone MK, Hazard C, et al. Methane-derived carbon flows into host-virus networks at different trophic levels in soil. Proc Natl Acad Sci USA. 2021;118:e2105124118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    ter Horst AM, Santos-Medellin C, Sorensen JW, Zinke LA, Wilson RM, Johnston ER, et al. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Microbiome. 2021;9:233.PubMed 
    PubMed Central 

    Google Scholar 
    Wu RN, Davison MR, Gao YQ, Nicora CD, Mcdermott JE, Burnum-Johnson KE, et al. Moisture modulates soil reservoirs of active DNA and RNA viruses. Commun Biol. 2021;4:992.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trubl G, Kimbrel J, Liquet-Gonzalez J, Nuccio E, Weber P, Pett-Ridge J, et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome. 2021;9:1–15.
    Google Scholar 
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. Mbio. 2019;10:e02287–19.PubMed 
    PubMed Central 

    Google Scholar 
    Braga LPP, Spor A, Kot W, Breuil MC, Hansen LH, Setubal JC, et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome. 2020;8:52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8:64–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos-Medellin C, Zinke LA, Ter Horst AM, Gelardi DL, Parikh SJ, Emerson JB. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. 2021;15:1956–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Srinivasiah S, Lovett J, Ghosh D, Roy K, Fuhrmann JJ, Radosevich M, et al. Dynamics of autochthonous soil viral communities parallels dynamics of host communities under nutrient stimulation. Fems Microbiol Ecol. 2015;91:fiv063.PubMed 

    Google Scholar 
    Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature. 2001;414:169–72.CAS 
    PubMed 

    Google Scholar 
    Glassman SI, Weihe C, Li JH, Albright MBN, Looby CI, Martiny AC, et al. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci USA. 2018;115:11994–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strickland MS, Lauber C, Fierer N, Bradford MA. Testing the functional significance of microbial community composition. Ecology. 2009;90:441–51.PubMed 

    Google Scholar 
    Matulich KL, Martiny JBH. Microbial composition alters the response of litter decomposition to environmental change. Ecology. 2015;96:154–63.PubMed 

    Google Scholar 
    Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:348.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anthony MA, Crowther TW, Maynard DS, van den Hoogen J, Averill C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth. 2020;2:349–60.
    Google Scholar 
    Albright MBN, Johansen R, Thompson J, Lopez D, Gallegos-Graves LV, Kroeger ME, et al. Soil bacterial and fungal richness forecast patterns of early pine litter decomposition. Front Microbiol. 2020;11:542220.PubMed 
    PubMed Central 

    Google Scholar 
    Kuzyakov Y, Mason-Jones K. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol Biochem. 2018;127:305–17.CAS 

    Google Scholar 
    Trubl G, Hyman P, Roux S, Abedon ST. Coming-of-age characterization of soil viruses: a user’s guide to virus isolation, detection within metagenomes, and viromics. Soil Syst. 2020;4:23.CAS 

    Google Scholar 
    Goller PC, Haro-Moreno JM, Rodriguez-Valera F, Loessner MJ, Gomez-Sanz E. Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil. Microbiome. 2020;8:17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nat Protoc. 2009;4:470–83.CAS 
    PubMed 

    Google Scholar 
    Lo CC, Chain PSG. Rapid evaluation and quality control of next generation sequencing data with FaQCs. Bmc Bioinform. 2014;15:366.
    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Current protocols in bioinformatics. 2020;70:e102.CAS 
    PubMed 

    Google Scholar 
    Kieft K, Zhou ZC, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39:578–85.CAS 
    PubMed 

    Google Scholar 
    Nayfach S, Paez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol. 2021;6:960–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNair K, Zhou C, Dinsdale EA, Souza B, Edwards RA. PHANOTATE: a novel approach to gene identification in phage genomes. Bioinformatics. 2019;35:4537–42.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60.CAS 
    PubMed 

    Google Scholar 
    de Souza RS, Okura VK, Armanhi JS, Jorrin B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774.PubMed 
    PubMed Central 

    Google Scholar 
    Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, MacPhee R, et al. Microbiome profiling by illumina sequencing of combinatorial sequencetagged PCR products. PLoS ONE. 2010;5:e15406.PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 

    Google Scholar 
    Albright MBN, Sevanto S, Gallegos-Graves L, Dunbar J. Biotic interactions are more important than propagule pressure in microbial community invasions. Mbio. 2020;11:e02089–20.PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2020. R package version 2.5-7. https://CRAN.Rproject.org/package=veganTeam RC R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.De Caceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.PubMed 

    Google Scholar 
    Frank E Harrell Jr. wcfCDamo. Hmisc: Harrell Miscellaneous. 2021. R packageversion 4.6-0. https://CRAN.R-project.org/package=HmiscKuhn M, Jackson S, Cimentada J corrr: Correlations in R. 2020. R package version 0.4.3. https://CRAN.R-project.org/package=corrrSpearman C. The7proof and measurement of association7between two things. Am J Psychol. 1904;15:72–101.
    Google Scholar 
    Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: network visualizations of relationships in psychometric data. J Stat Softw. 2012;48:1–18.
    Google Scholar 
    Kimura M, Jia ZJ, Nakayama N, Asakawa S. Ecology of viruses in soils: Past, present and future perspectives. Soil Sci Plant Nutr. 2008;54:1–32.
    Google Scholar 
    Williamson KE, Schnitker JB, Radosevich M, Smith DW, Wommack KE. Cultivationbased assessment of lysogeny among soil bacteria. Microb Ecol. 2008;56:437–47.PubMed 

    Google Scholar 
    Berns AE, Philipp H, Narres HD, Burauel P, Vereecken H, Tappe W. Effect of gammasterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur J Soil Sci. 2008;59:540–50.CAS 

    Google Scholar 
    Tian QX, He HB, Cheng WX, Zhang XD. Pulse-dynamic and monotonic decline patterns of soil respiration in long term laboratory microcosms. Soil Biol Biochem. 2014;68:329–36.CAS 

    Google Scholar 
    Emerson JB, Adams RI, Roman CMB, Brooks B, Coil DA, Dahlhausen K, et al. Schrodinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome. 2017;5:86.PubMed 
    PubMed Central 

    Google Scholar 
    Halgasova N, Ugorcakova J, Gerova M, Timko J, Bukovska G. Isolation and characterization of bacteriophage PhiBP from Paenibacillus polymyxa CCM 7400. FEMS Microbiol Lett. 2010;305:128–35.CAS 
    PubMed 

    Google Scholar 
    Klyczek KK, Bonilla JA, Jacobs-Sera D, Adair TL, Afram P, Allen KG, et al. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages. PLoS ONE. 2017;12:e0180517.PubMed 
    PubMed Central 

    Google Scholar 
    Li P, Bhattacharjee P, Wang S, Zhang L, Ahmed I, Guo L. Mycoviruses in fusarium species: an update. Front Cell Infect Microbiol. 2019;9:257.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghabrial SA, Caston JR, Jiang DH, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479:356–68.PubMed 

    Google Scholar 
    Lopez-Mondejar R, Zuhlke D, Vetrovsky T, Becher D, Riedel K, Baldrian P. Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels. 2016;9:104.PubMed 
    PubMed Central 

    Google Scholar 
    Thakur V, Kumar V, Kumar S, Singh D. Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya. Can J Microbiol. 2018;64:798–808.CAS 
    PubMed 

    Google Scholar 
    Panagiotou G, Kekos D, Macris BJ, Christakopoulos P. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crop. Prod. 2003;18:37–45.CAS 

    Google Scholar 
    Zheng HP, Yang TJ, Bao YZ, He PP, Yang KM, Mei XL, et al. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biol Biochem. 2021;157:108230.CAS 

    Google Scholar 
    Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol Biochem. 2017;115:433–41.CAS 

    Google Scholar 
    Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25:193.PubMed 
    PubMed Central 

    Google Scholar 
    Carreira C, Lonborg C, Kuhl M, Lillebo AI, Sandaa RA, Villanueva L, et al. Fungi and viruses as important players in microbial mats. Fems Microbiol Ecol. 2020;96(11):fiaa187.CAS 
    PubMed 

    Google Scholar 
    Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.PubMed 
    PubMed Central 

    Google Scholar 
    Sieradzki ET, Ignacio-Espinoza JC, Needham DM, Fichot EB, Fuhrman JA. Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes. Nat Commun. 2019;10:1169.PubMed 
    PubMed Central 

    Google Scholar  More