More stories

  • in

    A novel approach for reliable qualitative and quantitative prey spectra identification of carnivorous plants combining DNA metabarcoding and macro photography

    A combined DNA metabarcoding/in-situ macro photography approach to reliably analyse carnivorous plant prey spectraResults indicate that DNA metabarcoding allows for reliable analysis of prey spectra composition in carnivorous plants at a taxonomic resolution and level of completeness unachievable by traditional morphology-based approaches (as performed, for example, by4,5,6,7,9,10,11). Even in remote tropical northern Western Australia, where many (if not most) arthropod species have not yet been accessioned into the BOLD or GenBank barcode reference libraries, this method identified over 90% of obtained OTUs from our sample set; most of them at family-level, but 41% to genus-level, and 17% even down to species rank (Supplementary Data S1). Lekesyte et al.27 were able to identify 80% of the analysed prey items found on D. rotundifolia in England to species-level. However, their sampling was performed in western Europe, whose entomofauna is comparatively well studied taxonomically and has an excellent coverage in the BOLD reference library of DNA barcodes41. New insect barcodes are regularly added to the BOLD library through large-scale initiatives such as the international Barcode of Life Project (iBOL; https://ibol.org/) and its Australian node Australian Barcode of Life Network (ABOLN), hence accuracy of future metabarcoding research performed in Australia can be expected to increase to similar levels soon.In-situ macro photography was found to provide a valuable plausibility control tool for the prey taxa identified by metabarcoding. While many of the smaller prey taxa detected by metabarcoding were impossible to identify in the in-situ macro photographs due to their tendency to quickly degenerate after digestion into small, shapeless “crumbs”8, this control method considerably reduced the amount of prey taxa detected which were not actually present as prey in the Drosera samples. This flaw of metabarcoding is most commonly a consequence of procedural errors resulting in cross-contamination within the DNA extraction procedure27, usually resulting in low read numbers. However, in-situ macro photographs may also fail to detect species if prey captured by the sundew escaped from the trap33,42, or was stolen by larger animals. In both cases, a DNA imprint left on the Drosera leaves as excretions, detached scales, hairs or, frequently, as autotomised (shedded) body parts42 could have been detected by metabarcoding. Additionally, some barcoding-detected taxa may not constitute prey if they were associated with another captured prey taxon (either as part of its diet, or as a parasite). The latter may explain some barcode hits for taxa not immediately apparent from the in-situ macro photographs, as they are (endo)parasites of captured prey taxa. This was likely the case in the detected Strepsiptera (stylops) which are frequently contained as larvae and adult females in their hymenopteran and orthopteran hosts43. However, insect endoparasites and other non-obvious prey taxa were by default not excluded by the very conservative approach of pictorial plausibility control. Additionally, in the case of endoparasites, these organisms would also contribute to plant nutrition as “bycatch” after being digested together with their host, despite not having been actively attracted to the carnivorous traps. Finally, the control method tested in this study showed that even heavily digested prey items in the samples had sufficient amounts of intact (mitochondrial) DNA present to be detected by metabarcoding, as we found no instance of any prey item being clearly identifiable in the macro photographs but not present in the barcoding data.Prey spectra composition of the studied Drosera speciesThe analysed prey spectra of the three studied species from D. sect. Arachnopus most commonly contained flying insects (especially of the orders Diptera and Hemiptera, both present in 100% of the samples; Fig. 3), thus confirming earlier in-situ macro photography-based studies of closely-related D. sect. Arachnopus species by Krueger et al.8. All members of D. sect. Arachnopus are characterised by a large, erect growth habit and thread-like aerial leaves which usually do not contact the ground8,32, thereby excluding most ground-dwelling arthropods as prey. This result is also similar to other prey spectra studies of erect-leaved Drosera from different geographic areas, where flying insects (particularly Diptera) unanimously comprised almost the entire recorded prey5,11,44. Furthermore, this study confirmed the result of Krueger et al.8 that Hemiptera—and within this order especially the Cicadellidae—are exceptionally common in the prey spectra of D. sect. Arachnopus compared with all other, previously studied Drosera. A possible explanation for this may be the relatively high abundance of Cicadellidae in tropical habitats45 compared to subtropical or temperate habitats where the above-mentioned previous Drosera prey spectra studies were conducted.Of the five most commonly detected orders, Lepidoptera generally comprised the largest prey items in terms of body size or wingspan, respectively. This prey order was exceptionally common in D. finlaysoniana, being present in 100% of samples and also visually conspicuous in the in-situ photographs. Since this Drosera species had by far the largest trapping leaves among the three species studied with an average leaf length of 10.4 ± 0.6 cm (Suppl Appendix S7), and exhibits the largest leaves in D. section Arachnopus32, this may represent an example of large prey items being more easily captured by species with larger trapping leaves33. Additionally, the sampled population of D. finlaysoniana was huge and dense (see Supplementary Figure S1), probably attracting larger prey and enabling capture of larger prey items by “collective” trapping46. Alternatively, Fleischmann30 suggested that captured Lepidoptera themselves could attract further individuals of the same species by pheromone release, potentially explaining the very high numbers of this insect order observed in D. finlaysoniana.Differences among observed prey spectraComparison of prey spectra between the three studied Drosera species revealed significant differences at arthropod family-level but not at the higher level of arthropod orders, indicating that at a coarse taxonomic resolution, the same five arthropod orders (Diptera, Hemiptera, Hymenoptera, Lepidoptera and Thysanoptera) generally comprise most of the prey in D. sect. Arachnopus, regardless of given Drosera species or habitat. However, as strong differences were discovered in the ANOSIM comparison at family-level, it can be concluded that differences might likely increase with finer taxonomic resolution of prey taxa, a conclusion also reached by the carnivorous plant prey spectra meta-analysis of Ellison & Gotelli47. While these differences may be partially attributed to different morphological traits of the three species such as leaf scent8,30 or eglandular appendages31, the very high ANOSIM R-values returned and the large number of prey families contributing nearly equally to dissimilarity (Table 2) indicate that the most likely explanation is very different available prey spectra at the three study sites. Indeed, significant differences among different study sites, even within the same species, were previously reported for Drosera rotundifolia by Lekesyte et al.27 and for four species from D. sect. Arachnopus by Krueger et al.8. Notably, the three study sites feature different habitat types and climate regimes (Supplementary Fig. S1).Analyses indicate that there is likely little specialisation in prey capture by the three studied Drosera species. For example, the relatively high detection rate of Lepidoptera in the samples of D. finlaysoniana and D. hartmeyerorum compared to D. margaritacea may be explained by the lake margin habitats of the former two species, while the latter species was found in a completely dry drainage channel lacking any nearby waterbodies (Supplementary Fig. S1). Lepidoptera are likely to occur in much higher concentrations near water sources, especially during the dry season (May to November) when the surrounding areas are lacking other water sources (G. Bourke in Fleischmann30).Estimating prey quantityIn addition to providing a plausibility control for the compositional prey analysis by metabarcoding, the in-situ macro photography method facilitated an estimation of prey quantity per sample. Metabarcoding by itself is currently not a reliable tool for prey quantification due to the lack of a linear relationship between the number of sequence reads and organism biomass26,27.In contrast to Krueger et al.8, who generally found more prey items on larger trapping leaves in species of D. sect. Arachnopus (even when values were compared as per cm of trapping leaf length), the species with the largest leaves studied here (D. finlaysoniana) captured significantly less prey items than the smaller-leaved species D. margaritacea and D. hartmeyerorum (Fig. 4). However, while Krueger et al.8 was able to compare sympatric species (thus minimising any potential effects of the habitat or region on prey spectra), the three species in this study were studied at three different, geographically distant sites. While it is possible that overall prey abundance in the habitat was much lower at the D. finlaysoniana study site (Site 1), it can be hypothesised that the low total prey capture observed in this species may be due to the very large and extremely dense population resulting in strong intraspecific competition for prey (see Supplementary Fig. S1). This effect of population structure on prey capture has also been observed by Gibson48 and Tagawa and Watanabe46 who found a significant negative correlation between total prey capture and population density in different species of Drosera.Conclusions and outlookOur study is the first to employ a DNA metabarcoding approach supported by controls for species presence to analyse carnivorous plant prey spectra. When combined with in-situ macro photography, this method is clearly superior in terms of taxonomic resolution and completeness for analysis of environmental bulk samples (containing different organisms in highly variable states of preservation), as used here for the reconstruction of prey spectra of carnivorous plants. The capability of this method increases with new reference barcodes being regularly added to DNA barcode libraries (such as BOLD and NCBI GenBank) and it thus has the potential to become the standard methodology for future carnivorous plant prey spectra research.Additional studies are needed to test this method for other carnivorous plant species and genera, especially those possessing different trap types. Within Western Australia, three additional trap types occur: snap traps (Aldrovanda), suction traps (Utricularia) and pitfall traps (Cephalotus). In particular, it might be expected that in-situ macro photography will not work as well for the extremely small, typically submerged traps of Aldrovanda and Utricularia (which also completely enclose their captured, microscopic prey items49), potentially necessitating usage of alternative control methods for metabarcoding data. Furthermore, even within Drosera (adhesive traps) some species may require adjustments to the methodology presented here as they accumulate captured prey in a central point via tentacle movement (e.g., many climbing tuberous Drosera) or their leaves may be very difficult to place on paper sheets with the sticky side facing upwards (e.g., all pygmy Drosera). The latter problem may be solved by using reverse action forceps and photographing the leaves while held in place by the forceps.Extensive sampling of sites with co-occurring species from D. sect. Arachnopus is clearly required to better understand the ecological role of trap scent and eglandular appendages in this section. For example, manipulation experiments involving the removal of all yellow blackberry-shaped appendages of D. hartmeyerorum (which have been hypothesised to function as visual prey attractants31) and subsequent metabarcoding prey spectra comparisons of mutilated plants lacking emergences with control plants are proposed. Potential effects of population density on prey spectra (as hypothesised here for D. finlaysoniana) could be studied by comparing prey spectra of individual plants from within mass populations with more exposed-growing individuals of the same population. More

  • in

    Metabarcoding analysis of the soil fungal community to aid the conservation of underexplored church forests in Ethiopia

    Balami, S., Vašutová, M., Godbold, D., Kotas, P. & Cudlín, P. Soil fungal communities across land use types. Forest Biogeosci. For. 13, 548–558 (2020).
    Google Scholar 
    Deacon, J. Fungal Biology (Wiley, 2009).
    Google Scholar 
    Ruiz-Almenara, C., Gándara, E. & Gómez-Hernández, M. Comparison of diversity and composition of macrofungal species between intensive mushroom harvesting and non-harvesting areas in Oaxaca, Mexico. PeerJ 7, e8325 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).ADS 

    Google Scholar 
    Egli, S. Mycorrhizal mushroom diversity and productivity—an indicator of forest health?. Ann. For. Sci. 68, 81–88 (2011).
    Google Scholar 
    Westover, K. M. & Bever, J. D. Mechanisms of plant species coexistence: Roles of rhizosphere bacteria and root fungal pathogens. Ecology 82, 3285–3294 (2001).
    Google Scholar 
    Deacon, J. Fungal Biology (Wiley, 2006).
    Google Scholar 
    Fernandez, C. W., Nguyen, N. H. U. H., Stefanski, A. & Han, Y. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Chang. Biol. 23, 1598–1609 (2017).ADS 
    PubMed 

    Google Scholar 
    Heilmann-Clausen, J. et al. A fungal perspective on conservation biology. Conserv. Biol. 29, 61–68 (2015).PubMed 

    Google Scholar 
    Shay, P.-E., Winder, R. S. & Trofymow, J. A. Nutrient-cycling microbes in coastal Douglas-fir forests: Regional-scale correlation between communities, in situ climate, and other factors. Front. Microbiol. 6, 5897 (2015).
    Google Scholar 
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 

    Google Scholar 
    Richter, A., Schöning, I., Kahl, T., Bauhus, J. & Ruess, L. Regional environmental conditions shape microbial community structure stronger than local forest management intensity. For. Ecol. Manag. 409, 250–259 (2018).
    Google Scholar 
    Monkai, J., Hyde, K. D., Xu, J. & Mortimer, P. E. Diversity and ecology of soil fungal communities in rubber plantations. Fungal Biol. Rev. 31, 1–11 (2017).
    Google Scholar 
    White, F. Vegetation of Africa—a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa, Natural Resources Research Report XX. U.N. Educational, Scientific and Cultural Organization, Paris (1983).Aynekulu, E. et al. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia. Folia Geobot. 51, 115–127 (2016).
    Google Scholar 
    Wassie, A., Sterck, F. J. & Bongers, F. Species and structural diversity of church forests in a fragmented Ethiopian Highland landscape. J. Veg. Sci. 21, 938–948 (2010).
    Google Scholar 
    Alem, D., Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Survey of macrofungal diversity and analysis of edaphic factors influencing the fungal community of church forests in Dry Afromontane areas of Northern Ethiopia. For. Ecol. Manag. 496, 119391 (2021).
    Google Scholar 
    Aerts, R. et al. Conservation of the Ethiopian church forests: Threats, opportunities and implications for their management. Sci. Total Environ. 551–552, 404–414 (2016).ADS 
    PubMed 

    Google Scholar 
    Wassie, A., Teketay, D. & Powell, N. Church forests in North Gonder administrative zone, Northern Ethiopia. For. Trees Livelihoods 15, 349–373 (2005).
    Google Scholar 
    Wsaaie, A., Teketay, D. & Powell, N. Church forests in North Gondar Administative Zone, Northern Ethioopia. For. Trees Livelihoods 15, 349–373 (2005).
    Google Scholar 
    Lemenih, M. & Bongers, F. Dry forests of Ethiopia and their silviculture. In Silviculture in the Tropics, Tropical Forestry 8 (ed. S. G€unter et al.) 261–272 (Springer, Heidelberg, 2011). https://doi.org/10.1007/978-3-642-19986-8_17.Fernández, A., Sánchez, S., García, P. & Sánchez, J. Macrofungal diversity in an isolated and fragmented Mediterranean Forest ecosystem. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 154, 139–148 (2020).
    Google Scholar 
    Peay, K. G. & Bruns, T. D. Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant-fungal interactions. New Phytol. 204, 180–191 (2014).PubMed 

    Google Scholar 
    Burgess, N. D., Hales, J. D. A., Ricketts, T. H. & Dinerstein, E. Factoring species, non-species values and threats into biodiversity prioritisation across the ecoregions of Africa and its islands. Biol. Conserv. 127, 383–401 (2006).
    Google Scholar 
    Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Fungal community succession and sporocarp production following fire occurrence in Dry Afromontane forests of Ethiopia. For. Ecol. Manag. 398, 37–47 (2017).
    Google Scholar 
    Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 1–14 (2020).
    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science (80-. ). 346 (2014).Hawksworth, D. L. Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate?. Biodivers. Conserv. 21, 2425–2433 (2012).
    Google Scholar 
    Crous, P. W. et al. How many species of fungi are there at the tip of Africa?. Stud. Mycol. 55, 13–33 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Martínez, M. L. et al. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. For. Ecol. Manag. 258, 1856–1863 (2009).
    Google Scholar 
    Phillips, H. et al. The effects of global change on soil faunal communities: a meta-analytic approach. Res. Ideas Outcomes 5 (2019).Riutta, T. et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol. Biochem. 49, 124–131 (2012).CAS 

    Google Scholar 
    Rantalainen, M., Haimi, J., Fritze, H., Pennanen, T. & Setala, T. Soil decomposer community as a model system in studying the effects of habitat fragmentation and habitat corridors. Soil Biol. Biochem. 40, 853–863 (2008).CAS 

    Google Scholar 
    Newsham, K. K. et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Chang. 6, 182–186 (2016).ADS 

    Google Scholar 
    Bahram, M., Põlme, S., Kõljalg, U., Zarre, S. & Tedersoo, L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol. 193, 465–473 (2012).PubMed 

    Google Scholar 
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).PubMed 

    Google Scholar 
    Krüger, C. et al. Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. Front. Microbiol. 8, 1–16 (2017).
    Google Scholar 
    Bahram, M., Peay, K. G. & Tedersoo, L. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 205, 1454–1463 (2015).CAS 
    PubMed 

    Google Scholar 
    Li, P. et al. Spatial variation in soil fungal communities across paddy fields in Subtropical China. mSystems 5 (2020).Grilli, G., Urcelay, C. & Galetto, L. Forest fragment size and nutrient availability: Complex responses of mycorrhizal fungi in native–exotic hosts. Plant Ecol. 213, 155–165 (2012).
    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. Shrub Resprouting Response After Fuel Reduction Treatments: Comparison of Prescribed Burning, Clearing and Mastication (Elsevier, 2013).
    Google Scholar 
    Tedersoo, L., Sadam, A., Zambrano, M., Valencia, R. & Bahram, M. Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME J. 4, 465–471 (2010).PubMed 

    Google Scholar 
    Glassman, S. I., Wang, I. J. & Bruns, T. D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol. 26, 6960–6973 (2017).CAS 
    PubMed 

    Google Scholar 
    Colwell, R. K. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates (2013).Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).CAS 
    PubMed 

    Google Scholar 
    Pan, W. et al. DNA polymerase preference determines PCR priming efficiency. BMC Biotechnol. 14, 10 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kirk, P. M., Cannon, P. F., Minter, D. W. & J.A, S. Dictionary of the Fungi (The Centre for Agriculture and Bioscience International (CABI), 2008).Rossman, A., Samuel, G., Rogerson, C. & Lowen, R. Genera of bionectriaceae, hypocreaceae and nectriaceae (hypocreales, ascomycetes). Stud. Mycol. 42, 1–260 (1999).
    Google Scholar 
    Samuels, G. Trichoderma: A review of biology and systematics of the genus. Mycol. Res. 923–935 (1996).Alem, D. et al. Soil fungal communities and succession following wildfire in Ethiopian dry Afromontane forests, a highly diverse underexplored ecosystem. For. Ecol. Manag. 474, 118328 (2020).
    Google Scholar 
    Muleta, D., Woyessa, D. & Teferi, Y. Mushroom consumption habits of Wacha Kebele residents, southwestern Ethiopia. Glob. Res. J. Agric. Biol. Sci. 4, 6–16 (2013).
    Google Scholar 
    Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Edible wild mushrooms of Ethiopia: Neglected non-timber forest products. Rev. Fitotec. Mex. 40, 391–397 (2017).
    Google Scholar 
    Tedersoo, L. et al. Disentangling global soil fungal diversity. Science (80-) 346, 1052–1053 (2014).
    Google Scholar 
    Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Fungal community succession and sporocarp production following fire occurrence in Dry Afromontane forests of Ethiopia. For. Ecol. Manag. 398 (2017).Dang, P. et al. Changes in soil fungal communities and vegetation following afforestation with Pinus tabulaeformis on the Loess Plateau. Ecosphere 9 (2018).Gilbert, G. S., Ferrer, A. & Carranza, J. Polypore fungal diversity and host density in a moist tropical forest. Biodivers. Conserv. 11, 947–957 (2002).
    Google Scholar 
    Kottke, I., Beck, A., Oberwinkler, F., Homeier, J. & Neill, D. Arbuscular endomycorrhizas are dominant in the organic soil of a neotropical montane cloud forest. J. Trop. Ecol. 20, 125–129 (2004).
    Google Scholar 
    Barnes, C. J., Van der Gast, C. J., Burns, C. A., McNamara, N. P. & Bending, G. D. Temporally variable geographical distance effects contribute to the assembly of root-associated fungal communities. Front. Microbiol. 7, 1–13 (2016).
    Google Scholar 
    Tian, J. et al. Environmental factors driving fungal distribution in freshwater lake sediments across the Headwater Region of the Yellow River, China. Sci. Rep. 8, 4–11 (2018).
    Google Scholar 
    Rosales-Castillo, J. et al. Fungal community and ligninolytic enzyme activities in Quercus deserticola Trel. litter from forest fragments with increasing levels of disturbance. Forests 9, 11 (2017).
    Google Scholar 
    Kuhar, F., Barroetaveña, C. & Rajchenberg, M. New species of Tomentella (Thelephorales) from the Patagonian Andes forests. Mycologia 108, 780–790 (2016).CAS 
    PubMed 

    Google Scholar 
    Alem, D., Dejene, T., Oria-de-Rueda, J. A., Geml, J. & Martín-Pinto, P. Soil fungal communities under Pinus patula Schiede ex Schltdl. & Cham. Plantation forests of different ages in Ethiopia. Forests 11, 1109 (2020).
    Google Scholar 
    Tedersoo, L. et al. Terrestrial and lignicolous macrofungi. ISME J. 10, 1228–1239 (2016).
    Google Scholar 
    Ruiz, R., Decock, C., Saikawa, M., Gene, J. & Guarro, J. Polyschema obclaviformis sp. Nov., and some new records of hyphomycetes from Cuba. Cryptogam. Mycol. 21, 215–220 (2000).
    Google Scholar 
    Kaygusuz, O. New locality records of Trichoglossum hirsutum (Geoglossales: Geoglossaceae) based on molecular analyses, and prediction of its potential distribution in Turkey. Curr. Res. Environ. Appl. Mycol. 10, 443–456 (2020).
    Google Scholar 
    Mayer, P. M. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient. Acta Oecol. 33, 222–230 (2008).ADS 

    Google Scholar 
    Krishna, M. P. & Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2, 236–249 (2017).
    Google Scholar 
    Kirschbaum, M. U. F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27, 753–760 (1995).CAS 

    Google Scholar 
    Mayer, P. M., Tunnell, S. J., Engle, D. M., Jorgensen, E. E. & Nunn, P. Invasive grass alters litter decomposition by influencing macrodetritivores. Ecosystems 8, 200–209 (2005).
    Google Scholar 
    Epstein, H. E., Burke, I. C. & Lauenroth, W. K. Regional patterns of decomposition and primary production rates in the U.S. great plains. Ecology 83, 320 (2002).
    Google Scholar 
    Sharon, R., Degani, G. & Warburg, M. Comparing the soil macro-fauna in two oak-wood forests: Does community structure differ under similar ambient conditions?. Pedobiologia (Jena). 45, 355–366 (2001).
    Google Scholar 
    Clocchiatti, A., Hannula, S. E., van den Berg, M., Korthals, G. & de Boer, W. The hidden potential of saprotrophic fungi in arable soil: Patterns of short-term stimulation by organic amendments. Appl. Soil Ecol. 147, 103434 (2020).
    Google Scholar 
    Drenovsky, R., Vo, D., Graham, K. & Scow, K. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48, 424–430 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lauber, C., Hamady, M., Knigh, R. & Fierer, N. Pyrosequencing based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ullah, S. et al. The response of soil fungal diversity and community composition to long-term fertilization. Appl. Soil Ecol. 140, 35–41 (2019).
    Google Scholar 
    Bååth, E. & Anderson, T.-H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35, 955–963 (2003).
    Google Scholar 
    Zhang, T., Wang, N.-F., Liu, H.-Y., Zhang, Y.-Q. & Yu, L.-Y. Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (high arctic). Front. Microbiol. 7 (2016).Tian, D. et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. Sci. Total Environ. 607–608, 1367–1375 (2017).ADS 
    PubMed 

    Google Scholar 
    Zhao, A. et al. Influences of canopy nitrogen and water addition on am fungal biodiversity and community composition in a mixed deciduous forest of China. Front. Plant Sci. 9 (2018).He, J. et al. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. FEMS Microbiol. Ecol. 93, 1–12 (2017).
    Google Scholar 
    Shi, L. et al. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers. 64, 305–315 (2014).
    Google Scholar 
    Gebeyehu, G., Soromessa, T., Bekele, T. & Teketay, D. Plant diversity and communities along environmental, harvesting and grazing gradients in dry afromontane forests of Awi Zone, northwestern Ethiopia. Taiwania 64, 307–320 (2019).
    Google Scholar 
    Zegeye, H., Teketay, D. & Kelbessa, E. Diversity and regeneration status of woody species in Tara Gedam and Abebaye forests, northwestern Ethiopia. J. For. Res. 22, 315–328 (2011).
    Google Scholar 
    Abere, F., Belete, Y., Kefalew, A. & Soromessa, T. Carbon stock of Banja forest in Banja district, Amhara region, Ethiopia: An implication for climate change mitigation. J. Sustain. For. 36, 604–622 (2017).
    Google Scholar 
    Masresha, G., Soromessa, T. & Kelbessa, E. Status and species diversity of Alemsaga Forest, Northwestern Ethiopia 14 (2015).Rudolph, S., Maciá-Vicente, J. G., Lotz-Winter, H., Schleuning, M. & Piepenbring, M. Temporal variation of fungal diversity in a mosaic landscape in Germany. Stud. Mycol. 89, 95–104 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De la Varga, H., Águeda, B., Martínez-Peña, F., Parladé, J. & Pera, J. Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity. Mycorrhiza 22, 59–68 (2012).PubMed 

    Google Scholar 
    Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).PubMed 

    Google Scholar 
    Reeuwijk, L. Procedures for Soil Analysis (International Soil Reference and Information Centre, 2002).
    Google Scholar 
    Walkley, A. & Black, I. A. An examination of the digestion method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 34, 29–38 (1934).ADS 

    Google Scholar 
    Kim, J., Kreller, C. R. & Greenberg, M. M. Preparation and analysis of oligonucleotides containing the C4’-oxidized abasic site and related mechanistic probes. J. Org. Chem. 70, 8122–8129 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, H. T. Soil sampling, preparation and analysis. 139–145 (1996).Bouyoucos, G. H. A reclamation of the hydrometer for making mechanical analysis. Soil. Agro. J. 43, 434–438 (1951).CAS 

    Google Scholar 
    Ihrmark, K., Bödeker, I. & Cruz-Martinez, K. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).CAS 
    PubMed 

    Google Scholar 
    White, T. ., Bruns, S., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315–322 (Academic Press, 1990).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).
    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).PubMed 

    Google Scholar 
    Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105 (2020).Hedberg, I. & Edwards, S. Flora of Ethiopia and Eritria (1989).Collins, C. G., Stajich, J. E., Weber, S. E., Pombubpa, N. & Diez, J. M. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol. Ecol. 27, 2461–2476 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Schön, M. E., Nieselt, K. & Garnica, S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS ONE 13, e0208493 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Castaño, C. et al. Changes in fungal diversity and composition along a chronosequence of Eucalyptus grandis plantations in Ethiopia. Fungal Ecol. 39, 328–335 (2019).
    Google Scholar 
    Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).MATH 

    Google Scholar 
    Kent, M. & Coker, P. Vegetation Description and Analysis: A Practical Approach (Belhaven Press, 1993).
    Google Scholar 
    Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).
    Google Scholar 
    Jost, L., Chao, A. & Chazdon, R. Compositional similarity and β (beta) diversity. in Biological Diversity. Frontiers in Measurement and Assessment (eds. A.E., Magurran & B.J., M.) 66–84 (Oxford University Press, 2011).Kindt, R. & Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. (World Agroforestry Centre (ICRAF), 2005).R Core Team. A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-128. http://CRAN.R-project.org/package=nlme (2016).Tóthmérész, B. Comparison of different methods for diversity ordering. J. Veg. Sci. 6, 283–290 (1995).
    Google Scholar 
    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation. (PRIMER-E, Plymouth, 2014).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar  More

  • in

    Identifying conservation technology needs, barriers, and opportunities

    Pimm, S. L. et al. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30, 685–696 (2015).Article 

    Google Scholar 
    Marvin, D. C. et al. Integrating technologies for scalable ecology and conservation. Glob. Ecol. Conserv. 7, 262–275 (2016).Article 

    Google Scholar 
    Wall, J., Wittemyer, G., Klinkenberg, B. & Douglas-Hamilton, I. Novel opportunities for wildlife conservation and research with real-time monitoring. Ecol. Appl. 24, 593–601 (2014).Article 

    Google Scholar 
    Snaddon, J., Petrokofsky, G., Jepson, P. & Willis, K. J. Biodiversity technologies: tools as change agents. Biol. Lett. 9, 20121029 (2013).Article 

    Google Scholar 
    Pettorelli, N., Safi, K., Turner, W. Satellite remote sensing, biodiversity research and conservation of the future. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130190 (2014).Ripperger, S. P. et al. Thinking small: Next-generation sensor networks close the size gap in vertebrate biologging. PLOS Biol. 18, e3000655 (2020).CAS 
    Article 

    Google Scholar 
    Xu, H., Wang, K., Vayanos, P. & Tambe, M. Strategic coordination of human patrollers and mobile sensors with signaling for security games. 8 (2018).Liu, Y. et al. AI for Earth: Rainforest conservation by acoustic surveillance. 2 (2019).Joppa, L. N. Technology for nature conservation: an industry perspective. Ambio 44, 522–526 (2015).Article 

    Google Scholar 
    Koh, L. P. & Wich, S. A. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 5, 121–132 (2012).Article 

    Google Scholar 
    Hahn, N. et al. Unmanned aerial vehicles mitigate human–elephant conflict on the borders of Tanzanian Parks: a case study. Oryx 51, 513–516 (2017).Article 

    Google Scholar 
    Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. GigaScience 7, (2018).Van Doren, B. M. & Horton, K. G. A continental system for forecasting bird migration. Science 361, 1115–1118 (2018).ADS 
    Article 

    Google Scholar 
    Howson, P. Building trust and equity in marine conservation and fisheries supply chain management with blockchain. Mar. Policy 115, 103873 (2020).Article 

    Google Scholar 
    Speaker, T. et al. A global community-sourced assessment of the state of conservation technology. Conserv. Biol. cobi. https://doi.org/10.1111/cobi.13871 (2022).Article 

    Google Scholar 
    Pearce, J. M. Building research equipment with free Open-Source Hardware. Science 337, 1303–1304 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Gibb, R., Browning, E., Glover-Kapfer, P. & Jones, K. E. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. 10, 169–185 (2019).Article 

    Google Scholar 
    current constraints and future priorities for development. Glover-Kapfer, P., Soto-Navarro, C. A. & Wearn, O. R. Camera-trapping version 3.0. Remote Sens. Ecol. Conserv. 5, 209–223 (2019).Article 

    Google Scholar 
    Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115, E5716–E5725 (2018).CAS 
    Article 

    Google Scholar 
    Berger-Tal, O. & Lahoz-Monfort, J. J. Conservation technology: the next generation. Conserv. Lett. 11, 1–6 (2018).Article 

    Google Scholar 
    Hill, A. P. et al. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 9, 1199–1211 (2018).Article 

    Google Scholar 
    Zárybnická, M., Kubizňák, P., Šindelář, J. & Hlaváč, V. Smart nest box: a tool and methodology for monitoring of cavity-dwelling animals. Methods Ecol. Evol. 7, 483–492 (2016).Article 

    Google Scholar 
    Kalmár, G. et al. Animal-Borne Anti-Poaching System. in Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services 91–102 (ACM, 2019). https://doi.org/10.1145/3307334.3326080.Weise, F. J. et al. Lions at the gates: Trans-disciplinary design of an early warning system to improve human-lion coexistence. Front. Ecol. Evol. 6, 242 (2019).Article 

    Google Scholar 
    Beery, S., Van Horn, G. & Perona, P. Recognition in Terra Incognita. in Proceedings of the European Conference on Computer Vision (ECCV) (eds. Ferrari, V., Hebert, M., Sminchisescu, C. & Weiss, Y.) 472–489 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-030-01270-0_28.Crego, R. D., Masolele, M. M., Connette, G. & Stabach, J. A. Enhancing animal movement analyses: spatiotemporal matching of animal positions with remotely sensed data using google earth engine and R. Remote Sens. 13, 4154 (2021).ADS 
    Article 

    Google Scholar 
    Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    Vulcan. EarthRanger. https://earthranger.com.Ahumada, J. A. et al. Wildlife insights: A platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environ. Conserv. 47, 1–6 (2020).MathSciNet 
    Article 

    Google Scholar 
    Lahoz-Monfort, J. J. et al. A call for international leadership and coordination to realize the potential of conservation technology. Bioscience 69, 823–832 (2019).Article 

    Google Scholar 
    Group Gets – AudioMoth. https://groupgets.com/manufacturers/open-acoustic-devices/products/audiomoth.Kulits, P., Wall, J., Bedetti, A., Henley, M. & Beery, S. ElephantBook: A semi-automated human-in-the-loop system for elephant re-identification. in ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS) 88–98 (ACM, 2021). https://doi.org/10.1145/3460112.3471947.Pardo, L. E. et al. Snapshot Safari: A large-scale collaborative to monitor Africa’s remarkable biodiversity. South Afr. J. Sci. 117, (2021).Iacona, G. et al. Identifying technology solutions to bring conservation into the innovation era. Front. Ecol. Environ. 17, 591–598 (2019).Article 

    Google Scholar 
    Cooper, R. G. What’s next?: After stage-gate. Res.-Technol. Manag. 57, 20–31 (2014).ADS 

    Google Scholar 
    Cooper, R. G. The drivers of success in new-product development. Ind. Mark. Manag. 76, 36–47 (2019).Article 

    Google Scholar 
    Pearce, J. M. The case for open source appropriate technology. Environ. Dev. Sustain. 14, 425–431 (2012).Article 

    Google Scholar 
    Mair, J., Battilana, J. & Cardenas, J. Organizing for society: A typology of social entrepreneuring models. J. Bus. Ethics 111, 353–373 (2012).Article 

    Google Scholar 
    Meissner, D. Public-private partnership models for science, technology, and innovation cooperation. J. Knowl. Econ. 10, 1341–1361 (2019).Article 

    Google Scholar 
    Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 22, 1–55.Mayer, A. L. & Wellstead, A. M. Questionable survey methods generate a questionable list of recommended articles. Nat. Ecol. Evol. 2, 1336–1337 (2018).Article 

    Google Scholar 
    Archie, K. M., Dilling, L., Milford, J. B. & Pampel, F. C. Climate Change and Western Public Lands: a Survey of U.S. Federal Land Managers on the Status of Adaptation Efforts. Ecol. Soc. 17 (2012).Jimenez, M. F. et al. Underrepresented faculty play a disproportionate role in advancing diversity and inclusion. Nat. Ecol. Evol. 3, 1030–1033 (2019).Article 

    Google Scholar 
    Christensen, R. ordinal – Regression Models for Ordinal Data. R package version 2019.12-10. (2019).R Core Team. R: A language and environment for statistical computing. (2020).Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar 
    QSR International Pty Ltd. Nvivo 12 Pro. (2020).Glesne, C. Making words fly: Developing understanding through interviewing. Becom. Qual. Res. Introd. 3, (2006).Creswell, J. W. & Creswell, J. D. Research design: Qualitative, quantitative, and mixed methods approaches. (Sage publications 2017). More

  • in

    Sociality predicts orangutan vocal phenotype

    Lipkind, D. et al. Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature 498, 104–108 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goldstein, M., King, A. P. & West, M. J. Social interaction shapes babbling: testing parallels between birdsong and speech. Proc. Natl Acad. Sci. USA 100, 8030–8035 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fehér, O., Ljubičić, I., Suzuki, K., Okanoya, K. & Tchernichovski, O. Statistical learning in songbirds: from self-tutoring to song culture. Phil. Trans. R. Soc. B 372, 20160053 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Tchernichovski, O., Lints, T., Mitra, P. P. & Nottebohm, F. Vocal imitation in zebra finches is inversely related to model abundance. Proc. Natl Acad. Sci. USA 96, 12901–12904 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tchernichovski, O. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569 (2001).CAS 

    Google Scholar 
    Fehér, O., Wang, H., Saar, S., Mitra, P. P. & Tchernichovski, O. De novo establishment of wild-type song culture in the zebra finch. Nature 459, 564–568 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, D. et al. The developmental dynamics of marmoset monkey vocal production. Science 349, 734–738 (2015).CAS 

    Google Scholar 
    Takahashi, D. Y., Liao, D. A. & Ghazanfar, A. A. Vocal learning via social reinforcement by infant marmoset monkeys. Curr. Biol. 27, 1844–1852.E6 (2017).Takahashi, D. Y., Fenley, A. R. & Ghazanfar, A. A. Early development of turn-taking with parents shapes vocal acoustics in infant marmoset monkeys. Phil. Trans. R. Soc. B 371, 20150370 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gultekin, Y. B. & Hage, S. R. Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys. Sci. Adv. 4, eaar4012 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Gultekin, Y. B. & Hage, S. R. Limiting parental feedback disrupts vocal development in marmoset monkeys. Nat. Commun. 8, 14046 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jarvis, E. D. Evolution of vocal learning and spoken language. Science 366, 50–54 (2019).CAS 

    Google Scholar 
    Snowdon, C. T. Learning from monkey “talk”. Science 355, 1120–1122 (2017).CAS 

    Google Scholar 
    Malik, K. Rights and wrongs. Nature 406, 675–676 (2000).
    Google Scholar 
    Wise, S. M. & Goodall, J. Rattling the Cage: Toward Legal Rights for Animals (Da Capo Press, 2017).Grayson, L. Animals in Research: For and Against (British Library, 2000).Nater, A. et al. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 27, 3487–3498.E10 (2017).CAS 

    Google Scholar 
    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3, e1600946 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ross, S. et al. Inappropriate use and portrayal of chimpanzees. Science 319, 1487 (2008).CAS 

    Google Scholar 
    Wich, S. A. et al. Land-cover changes predict steep declines for the Sumatran orangutan (Pongo abelii). Sci. Adv. 2, e1500789 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Understanding the impacts of land-use policies on a threatened species: is there a future for the Bornean orangutan? PLoS ONE 7, e49142 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Will oil palm’s homecoming spell doom for Africa’s great apes? Curr. Biol. https://doi.org/10.1016/j.cub.2014.05.077 (2014).Fitch, T. W. Empirical approaches to the study of language evolution. Psychon. Bull. Rev. 24, 3–33 (2017).Hauser, M. D. et al. The mystery of language evolution. Front. Psychol. https://doi.org/10.3389/fpsyg.2014.00401 (2014)Corballis, M. C. Crossing the Rubicon: behaviorism, language, and evolutionary continuity. Front. Psychol. 11, 653 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Berwick, R. C. & Chomsky, N. All or nothing: no half-merge and the evolution of syntax. PLoS Biol. 17, e3000539 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolhuis, J. J. & Wynne, C. D. Can evolution explain how minds work? Nature 458, 832–833 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayes, K. J. & Hayes, C. The intellectual development of a home-raised chimpanzee. Proc. Am. Phil. Soc. 95, 105–109 (1951).
    Google Scholar 
    Premack, D. Language in chimpanzee? Science 172, 808–822 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Terrace, H., Petitto, L., Sanders, R. & Bever, T. Can an ape create a sentence? Science 206, 891–902 (1979).CAS 

    Google Scholar 
    Patterson, F. & Linden, E. The Education of Koko (Holt, Rinehart and Winston, 1981).Leavens, D. A., Bard, K. A. & Hopkins, W. D. BIZARRE chimpanzees do not represent “the chimpanzee”. Behav. Brain Sci. 33, 100–101 (2010).
    Google Scholar 
    Lameira, A. R. Bidding evidence for primate vocal learning and the cultural substrates for speech evolution. Neurosci. Biobehav. Rev. 83, 429–439 (2017).
    Google Scholar 
    Lameira, A. R. et al. Speech-like rhythm in a voiced and voiceless orangutan call. PLoS ONE 10, e116136 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Shumaker, R. W. Orangutans show active voicing through a membranophone. Sci. Rep. 9, 12289 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R., Hardus, M. E., Mielke, A., Wich, S. A. & Shumaker, R. W. Vocal fold control beyond the species-specific repertoire in an orangutan. Sci. Rep. 6, 30315 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. et al. Orangutan (Pongo spp.) whistling and implications for the emergence of an open-ended call repertoire: a replication and extension. J. Acoust. Soc. Am. 134, 2326–2335 (2013).
    Google Scholar 
    Perlman, M. & Clark, N. Learned vocal and breathing behavior in an enculturated gorilla. Anim. Cogn. 18, 1165–1179 (2015).
    Google Scholar 
    Wich, S. et al. A case of spontaneous acquisition of a human sound by an orangutan. Primates 50, 56–64 (2009).
    Google Scholar 
    Lameira, A. R., Maddieson, I. & Zuberbuhler, K. Primate feedstock for the evolution of consonants. Trends Cogn. Sci. 18, 60–62 (2014).
    Google Scholar 
    Lameira, A. R. The forgotten role of consonant-like calls in theories of speech evolution. Behav. Brain Sci. 37, 559–560 (2014).
    Google Scholar 
    Boë, L.-J. et al. Which way to the dawn of speech? Reanalyzing half a century of debates and data in light of speech science. Sci. Adv. 5, eaaw3916 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Boë, L. J. et al. Evidence of a vocalic proto-system in the baboon (Papio papio) suggests pre-hominin speech precursors. PLoS ONE 12, e0169321 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fitch, T. W., Boer, B., Mathur, N. & Ghazanfar, A. A. Monkey vocal tracts are speech-ready. Sci. Adv. 2, e1600723 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, A. S., Kavanagh, E., Hobaiter, C., Slocombe, K. E. & Lameira, A. R. Chimpanzee lip-smacks confirm primate continuity for speech-rhythm evolution. Biol. Lett. 16, 20200232 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. et al. Proto-consonants were information-dense via identical bioacoustic tags to proto-vowels. Nat. Hum. Behav. 1, 0044 (2017).
    Google Scholar 
    Lameira, A. R. et al. Orangutan information broadcast via consonant-like and vowel-like calls breaches mathematical models of linguistic evolution. Biol. Lett. 17, 20210302 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Watson, S. K. et al. Nonadjacent dependency processing in monkeys, apes, and humans. Sci. Adv. 6, eabb0725 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Call, J. Time-space–displaced responses in the orangutan vocal system. Sci. Adv. 4, eaau3401 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Belyk, M. & Brown, S. The origins of the vocal brain in humans. Neurosci. Biobehav. Rev. 77, 177–193 (2017).
    Google Scholar 
    Crockford, C., Wittig, R. M. & Zuberbuhler, K. Vocalizing in chimpanzees is influenced by social-cognitive processes. Sci. Adv. 3, e1701742 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Taglialatela, J. P., Reamer, L., Schapiro, S. J. & Hopkins, W. D. Social learning of a communicative signal in captive chimpanzees. Biol. Lett. 8, 498–501 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Russell, J. L., Joseph, M., Hopkins, W. D. & Taglialatela, J. P. Vocal learning of a communicative signal in captive chimpanzees, Pan troglodytes. Brain Lang. 127, 520–525 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hopkins, W. D. et al. Genetic factors and orofacial motor learning selectively influence variability in central sulcus morphology in chimpanzees (Pan troglodytes). J. Neurosci. 37, 5475–5483 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Staes, N. et al. FOXP2 variation in great ape populations offers insight into the evolution of communication skills. Sci. Rep. 7, 16866 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Martins, P. T. & Boeckx, C. Vocal learning: beyond the continuum. PLoS Biol. 18, e3000672 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, S. K. et al. Vocal learning in the functionally referential food grunts of chimpanzees. Curr. Biol. 25, 495–499 (2015).CAS 

    Google Scholar 
    Hopkins, W. D., Taglialatela, J. P. & Leavens, D. A. Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Anim. Behav. 73, 281–286 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Bianchi, S., Reyes, L. D., Hopkins, W. D., Taglialatela, J. P. & Sherwood, C. C. Neocortical grey matter distribution underlying voluntary, flexible vocalizations in chimpanzees. Sci. Rep. 6, 34733 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wich, S. A. et al. Call cultures in orangutans? PLoS ONE 7, e36180 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crockford, C., Herbinger, I., Vigilant, L. & Boesch, C. Wild chimpanzees produce group-specific calls: a case for vocal learning? Ethology 110, 221–243 (2004).
    Google Scholar 
    Whiten, A. et al. Cultures in chimpanzees. Nature 399, 682–685 (1999).CAS 

    Google Scholar 
    van Schaik, C. P. et al. Orangutan cultures and the evolution of material culture. Science 299, 102–105 (2003).
    Google Scholar 
    Whiten, A. Culture extends the scope of evolutionary biology in the great apes. Proc. Natl Acad. Sci. USA 114, 7790–7797 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koops, K., Visalberghi, E. & van Schaik, C. The ecology of primate material culture. Biol. Lett. 10, 20140508 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kalan, A. K. et al. Chimpanzees use tree species with a resonant timbre for accumulative stone throwing. Biol. Lett. 15, 20190747 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hardus, M., Lameira, A. R., Van Schaik, C. P. & Wich, S. A. Tool use in wild orangutans modifies sound production: a functionally deceptive innovation? Proc. R. Soc. B https://doi.org/10.1098/rspb.2009.1027 (2009).Lameira, A. R. et al. Population-specific use of the same tool-assisted alarm call between two wild orangutan populations (Pongo pygmaeus wurmbii) indicates functional arbitrariness. PLoS ONE 8, e69749 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hohmann, G. & Fruth, B. Culture in bonobos? Between‐species and within‐species variation in behavior. Curr. Anthropol. 44, 563–571 (2003).
    Google Scholar 
    Robbins, M. M. et al. Behavioral variation in gorillas: evidence of potential cultural traits. PLoS ONE 11, e0160483 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kühl, H. S. et al. Human impact erodes chimpanzee behavioral diversity. Science 363, 1453–1455 (2019).
    Google Scholar 
    van Schaik, C. P. Fragility of Traditions: the disturbance hypothesis for the loss of local traditions in orangutans. Int. J. Primatol. 23, 527–538 (2002).
    Google Scholar 
    Delgado, R. A. & van Schaik, C. P. The behavioral ecology and conservation of the orangutan (Pongo pygmaeus): a tale of two islands. Evol. Anthropol. 9, 201–218 (2000).
    Google Scholar 
    van Schaik, C. The socioecology of fission–fusion sociality in orangutans. Primates 40, 69–86 (1999).
    Google Scholar 
    Nater, A. et al. Sex-biased dispersal and volcanic activities shaped phylogeographic patterns of extant orangutans (genus: Pongo). Mol. Biol. 28, 2275–2288 (2011).CAS 

    Google Scholar 
    Arora, N. et al. Parentage-based pedigree reconstruction reveals female matrilineal clusters and male-biased dispersal in nongregarious Asian great apes, the Bornean orangutans (Pongo pygmaeus). Mol. Ecol. 21, 3352–3362 (2012).CAS 

    Google Scholar 
    Kavanagh, E. et al. Dominance style is a key predictor of vocal use and evolution across nonhuman primates. R. Soc. Open Sci. 8, 210873 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Husson, S. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 6 (Oxford Univ. Press, 2009).van Noordwijk, M. A. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 12 (Oxford Univ Press, 2009).Singleton, I., Knott, C., Morrogh-Bernard, H., Wich, S. & van Schaik, C. P. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 13 (Oxford Univ. Press, 2009).Wich, S. et al. Life history of wild Sumatran orangutans (Pongo abelii). J. Hum. Evol. 47, 385–398 (2004).CAS 

    Google Scholar 
    Wich, S. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 5 (Oxford Univ. Press, 2009).Shumaker, R. W., Wich, S. A. & Perkins, L. Reproductive life history traits of female orangutans (Pongo spp.). Primate Reprod. Aging 36, 147–161 (2008).CAS 

    Google Scholar 
    Freund, C., Rahman, E. & Knott, C. Ten years of orangutan-related wildlife crime investigation in West Kalimantan, Indonesia. Am. J. Primatol. 79, 22620 (2016).
    Google Scholar 
    van Noordwijk, M. A. & van Schaik, C. P. Development of ecological competence in Sumatran orangutans. Am. J. Phys. Anthropol. 127, 79–94 (2005).
    Google Scholar 
    Knot, C. D. et al. The Gunung Palung Orangutan Project: Twenty-five years at the intersection of research and conservation in a critical landscape in Indonesia. Biol. Conserv. 255, 108856 (2021).
    Google Scholar 
    Guillermo, S.-B., Gershenson, C. & Fernández, N. A package for measuring emergence, self-organization, and complexity based on shannon entropy. Front. Robot. AI 4, 174102 (2017).
    Google Scholar 
    Santamaría-Bonfil, G., Fernández, N. & Gershenson, C. Measuring the complexity of continuous distributions. Entropy 18, 72 (2016).
    Google Scholar 
    Kalan, A. K., Mundry, R. & Boesch, C. Wild chimpanzees modify food call structure with respect to tree size for a particular fruit species. Anim. Behav. 101, 1–9 (2015).
    Google Scholar 
    Fedurek, P. & Slocombe, K. E. The social function of food-associated calls in male chimpanzees. Am. J. Primatol. 75, 726–739 (2013).
    Google Scholar 
    Luef, E., Breuer, T. & Pika, S. Food-associated calling in gorillas (Gorilla g. gorilla) in the wild. PLoS ONE 11, e0144197 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Clay, Z. & Zuberbuhler, K. Food-associated calling sequences in bonobos. Anim. Behav. 77, 1387–1396 (2009).
    Google Scholar 
    Hardus, M. E. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S. et al.) Ch. 4 (Oxford Univ. Press, 2009).Wich, S. A. et al. Forest fruit production is higher on Sumatra than on Borneo. PLoS ONE 6, e21278 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lameira, A. R. & Wich, S. Orangutan long call degradation and individuality over distance: a playback approach. Int. J. Primatol. 29, 615–625 (2008).
    Google Scholar 
    Lameira, A. R., Delgado, R. & Wich, S. Review of geographic variation in terrestrial mammalian acoustic signals: human speech variation in a comparative perspective. J. Evolut. Psychol. 8, 309–332 (2010).
    Google Scholar 
    Lameira, A. R. et al. Predator guild does not influence orangutan alarm call rates and combinations. Behav. Ecol. Sociobiol. 67, 519–528 (2013).
    Google Scholar 
    Derex, M. & Mesoudi, A. Cumulative cultural evolution within evolving population structures. Trends Cogn. Sci. 24, 654–667 (2020).
    Google Scholar 
    Scerri, E. M. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582–594 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bobe, R. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).
    Google Scholar 
    Zhu, D., Galbraith, E. D., Reyes-García, V. & Ciais, P. Global hunter-gatherer population densities constrained by influence of seasonality on diet composition. Nat. Ecol. Evol. 5, 1536–1545 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).
    Google Scholar 
    Mauricio, G.-F. & Gardner, A. Inference of ecological and social drivers of human brain-size evolution. Nature 557, 554–557 (2018).
    Google Scholar 
    Lindenfors, P., Wartel, A. & Lind, J. ‘Dunbar’s number’ deconstructed. Biol. Lett. 17, 20210158 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C., van Noordwijk, M., Atmoko, S. U. & van Schaik, C. Early sociability fosters later exploratory tendency in wild immature orangutans. Sci. Adv. 6, eaaw2685 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C. et al. Observational social learning and socially induced practice of routine skills in immature wild orangutans. Anim. Behav. 119, 87–98 (2016).
    Google Scholar 
    Jaeggi, A. V. et al. Social learning of diet and foraging skills by wild immature Bornean orangutans: implications for culture. Am. J. Primatol. 72, 62–71 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Schuppli, C. et al. The effects of sociability on exploratory tendency and innovation repertoires in wild Sumatran and Bornean orangutans. Sci. Rep. 7, 15464 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ehmann, B. et al. Immature wild orangutans acquire relevant ecological knowledge through sex-specific attentional biases during social learning. PLoS Biol. 19, e3001173 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meijaard, E. et al. Declining orangutan encounter rates from Wallace to the present suggest the species was once more abundant. PLoS ONE 5, e12042 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, A. J. et al. The blowgun is mightier than the chainsaw in determining population density of Bornean orangutans (Pongo pygmaeus morio) in the forests of East Kalimantan. Biol. Conserv. 129, 566–578 (2006).
    Google Scholar 
    Gail, C.-S., Miran, C.-S., Singleton, I. & Linkie, M. Raiders of the lost bark: orangutan foraging strategies in a degraded landscape. PLoS ONE 6, e20962 (2011).
    Google Scholar 
    Schuppli, C. & van Schaik, C. P. Animal cultures: how we’ve only seen the tip of the iceberg. Evol. Hum. Sci. 1, e2 (2019).
    Google Scholar 
    Langergraber, K. E. et al. Vigilant, generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández, N., Maldonado, C. & Gershenson, C. in Guided Self-Organization: Inception (ed Prokopenko, M.) 19–51 (Springer Berlin Heidelberg, 2014).JAST Team, JASP (Univ. of Amsterdam, 2020).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009).Auguie, B. gridExtra: Functions in grid graphics. R version 0.9.1 (2012).Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar 
    Korthauer, K. et al. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 20, 118 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Assessment of deep convolutional neural network models for species identification of forensically-important fly maggots based on images of posterior spiracles

    Of which at the third instar, the external morphology of larvae is quite similar; thus, the morphological identification used to differentiate between its genera or species, generally includes cephalophalyngeal skeleton, anterior spiracle, and posterior spiracles. The morphology of the posterior spiracle is one of the important characteristics for identification. A typical morphology of the posterior spiracle of third stage larvae was shown in Fig. 2. Based on studying under light microscopy, the posterior spiracle of M. domestica was clearly distinguished from the others. On the other hand, the morphology of the posterior spiracle of C. megacephala and A. rufifacies was quite similar. For C. megacephala and C. rufifacies, the peritreme, a structure encircling the three spiracular openings (slits), was incomplete and slits were straight as shown Fig. 2A,B, respectively. The complete peritreme encircling three slits was found in L. cuprina and M. domestica as shown in Fig. 2C,D, respectively. However, only the slits of M. domestica were sinuous like the M-letter (Fig. 2D). Their morphological characteristics found in this study were like the descriptions in the previous reports23,24,25.Figure 2Morphology of posterior spiracles of four different fly species after inverting the image colors; (A) Chrysomya (Achoetandrus) ruffifacies, (B) Chrysomya megacephala, (C) Lucilia cuprina, (D) Musca domestica.Full size imageFor model training, four of the CNN models used for species-level identification of fly maggots provided 100% accuracy rates and 0% loss. Number of parameter (#Params), model speed, model size, macro precision, macro recall, f1-score, and support value were also presented in Table 1. The result demonstrated that the AlexNet model provided the best performance in all indicators when compared among four models. The AlexNet model used the least number of parameters while the Resnet101 model used the most. For model speed, the AlexNet model provided the fastest speed, while the Densenet161 model provided the slowest speed. For the model size, the AlexNet model was the smallest, while the Resnet101 model was the largest which corresponded to the number of parameters used. Macro precision, macro recall, f1-score and support value of all models were the same.Table 1 Comparison of model size, speed, and performances of each studied model (The text in bold indicates the best value in each category).Full size tableAs the training results presented in the supplementary data (Fig. S1), all models provided 100% accuracy and 0% loss in the early stage of training ( More

  • in

    European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.)

    Hill, L. et al. The£ 15 billion cost of ash dieback in Britain. Curr. Biol. 29(9), R315–R316 (2019).CAS 
    PubMed 

    Google Scholar 
    Pliûra, A. & Heuertz, M. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Common Ash (Fraxinus excelsior) (Bioversity International, 2003).
    Google Scholar 
    Dufour, S. & Piégay, H. Geomorphological controls of Fraxinus excelsior growth and regeneration in floodplain forests. Ecology 89(1), 205–215 (2008).CAS 
    PubMed 

    Google Scholar 
    Mitchell, R. J. et al. Ash dieback in the UK: a review of the ecological and conservation implications and potential management options. Biol. Conserv. 175, 95–109 (2014).
    Google Scholar 
    Przybył, K. Fungi associated with necrotic apical parts of Fraxinus excelsior shoots. For. Pathol. 32(6), 387–394 (2002).
    Google Scholar 
    Vasaitis, R., & Enderle, R. Dieback of European ash (Fraxinus spp.)-consequences and guidelines for sustainable management. Dieback of European ash (Fraxinus spp.). Report on COST Action FP1103 FRAXBACK. ISBN978-91-576-8696-1. (SLU Swedish University of Agricultural Sciences, 2017).Børja, I. et al. Ash dieback in Norway-current situation. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 166–175 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Ghelardini, L. et al. From the Alps to the Apennines: Possible spread of ash dieback in Mediterranean areas. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 140–149 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Marçais, B., Husson, C., Godart, L. & Cael, O. Influence of site and stand factors on Hymenoscyphus fraxineus-induced basal lesions. Plant. Pathol. 65(9), 1452–1461 (2016).
    Google Scholar 
    Queloz, V., Hopf, S., Schoebel, C. N., Rigling, D. & Gross, A. Ash dieback in Switzerland: History and scientific achievements. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 68–78 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Orton, E. S. et al. Population structure of the ash dieback pathogen, Hymenoscyphus fraxineus, in relation to its mode of arrival in the UK. Plant. Pathol. 67(2), 255–264 (2018).CAS 
    PubMed 

    Google Scholar 
    Enderle, R., Stenlid, J. & Vasaitis, R. An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CAB Rev. 14, 1–12 (2019).
    Google Scholar 
    Heinze, B., Tiefenbacher, H., Litschauer, R. & Kirisits, T. Ash dieback in Austria: History, current situation and outlook. in Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management, 33–52 (2017).Coker, T. L. et al. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 1(1), 48–58 (2019).
    Google Scholar 
    Cleary, M., Nguyen, D., Stener, L. G., Stenlid, J., & Skovsgaard, J. P. Ash and ash dieback in Sweden: A review of disease history, current status, pathogen and host dynamics, host tolerance and management options in forests and landscapes. Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management, 195–208 (2017).Stocks, J. J., Buggs, R. J. & Lee, S. J. A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles. Sci. Rep. 7(1), 1–7 (2017).
    Google Scholar 
    Díaz-Yáñez, O. et al. The invasive forest pathogen Hymenoscyphus fraxineus boosts mortality and triggers niche replacement of European ash (Fraxinus excelsior). Sci. Rep. 10(1), 1–10 (2020).
    Google Scholar 
    Enderle, R., Metzler, B., Riemer, U. & Kändler, G. Ash dieback on sample points of the national forest inventory in south-western Germany. Forests 9(1), 25 (2018).
    Google Scholar 
    Klesse, S. et al. Spread and severity of ash dieback in Switzerland: Tree characteristics and landscape features explain varying mortality probability. Front. For. Glob. Change 4, 18 (2021).
    Google Scholar 
    Timmermann, V., Potočić, N., Ognjenović, M. & Kirchner, T. Tree crown condition in 2020. In Forest Condition in Europe: The 2021 Assessment ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention) (eds Michel, A. et al.) (Thünen Institute, 2021).
    Google Scholar 
    Chumanová, E. et al. Predicting ash dieback severity and environmental suitability for the disease in forest stands. Scand. J. For. Res. 34(4), 254–266 (2019).
    Google Scholar 
    Solheim, H. & Hietala, A. M. Spread of ash dieback in Norway. Balt. For. 23(1), 1–6 (2017).
    Google Scholar 
    Kjær, E. D. et al. Genetics of ash dieback resistance in a restoration context: Experiences from Denmark. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 106–114 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Madsen, C. L. et al. Combined progress in symptoms caused by Hymenoscyphus fraxineus and Armillaria species, and corresponding mortality in young and old ash trees. For. Ecol. Manage. 491, 119177 (2021).
    Google Scholar 
    Trapiello, E., Schoebel, C. N. & Rigling, D. Fungal community in symptomatic ash leaves in Spain. Balt. For. 23(1), 68–73 (2017).
    Google Scholar 
    Grosdidier, M., Ioos, R. & Marçais, B. Do higher summer temperatures restrict the dissemination of Hymenoscyphus fraxineus in France?. For. Pathol. 48(4), e12426. https://doi.org/10.1111/efp.12426 (2018).Article 

    Google Scholar 
    Stroheker, S., Queloz, V. & Nemesio-Gorriz, M. First report of Hymenoscyphus fraxineus causing ash dieback in Spain. New Dis. Rep. 44(2), e12054 (2021).
    Google Scholar 
    Chandelier, A., Gerarts, F., San Martin, G., Herman, M. & Delahaye, L. Temporal evolution of collar lesions associated with ash dieback and the occurrence of Armillaria in Belgian forests. For. Pathol. 46(4), 289–297. https://doi.org/10.1111/efp.12258 (2016).Article 

    Google Scholar 
    Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V. & Sieber, T. N. H ymenoscyphus pseudoalbidus, the causal agent of E uropean ash dieback. Mol. Plant Pathol. 15(1), 5–21 (2014).CAS 
    PubMed 

    Google Scholar 
    Clark, J. & Webber, J. The ash resource and the response to ash dieback in Great Britain. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 228–237 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Dandy, N., Marzano, M., Porth, E. F., Urquhart, J. & Potter, C. Who has a stake in ash dieback? A conceptual framework for the identification and categorisation of tree health stakeholders. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 15–26 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Kjær, E. D., McKinney, L. V., Nielsen, L. R., Hansen, L. N. & Hansen, J. K. Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evol. Appl. 5(3), 219–228 (2012).PubMed 

    Google Scholar 
    Plumb, W. J. et al. The viability of a breeding programme for ash in the British Isles in the face of ash dieback. Plants People Planet 2(1), 29–40 (2020).
    Google Scholar 
    Evans, M. R. Will natural resistance result in populations of ash trees remaining in British woodlands after a century of ash dieback disease?. R. Soc. Open Sci. 6(8), 190908 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buggs, R. J. A. Changing perceptions of tree resistance research. Plants People Planet 2, 2–4. https://doi.org/10.1002/ppp3.10089 (2020).Article 

    Google Scholar 
    Tomlinson, I. & Potter, C. ‘Too little, too late’? Science, policy and Dutch Elm Disease in the UK. J. Hist. Geogr. 36(2), 121–131 (2010).
    Google Scholar 
    Kelly, L. J. et al. Convergent molecular evolution among ash species resistant to the emerald ash borer. Nat. Ecol. Evol. 4, 1116–1128. https://doi.org/10.1038/s41559-020-1209-3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sollars, E. S. et al. Genome sequence and genetic diversity of European ash trees. Nature 541(7636), 212–216 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stocks, J. J. et al. Genomic basis of European ash tree resistance to ash dieback fungus. Nat. Ecol. Evol. 3(12), 1686–1696 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Volkovitsh, M. G., Bieńkowski, A. O. & Orlova-Bienkowskaja, M. J. Emerald ash borer approaches the borders of the european union and kazakhstan and is confirmed to infest European ash. Forests 12(6), 691 (2021).
    Google Scholar 
    Eichhorn, J. et al. Part IV: Visual Assessment of Crown Condition and Damaging Agents. in Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. (Thünen Institute of Forest Ecosystems, 2016). Annex http://www.icp-forests.org/manual.htm.Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality. Nat. Commun. 12(1), 1–13 (2021).
    Google Scholar 
    Taccoen, A. et al. Climate change impact on tree mortality differs with tree social status. For. Ecol. Manage. 489, 119048 (2021).
    Google Scholar 
    Therneau, T. A Package for Survival Analysis in R. https://cran.r-project.org/web/packages/survival/vignettes/survival.pdf. Accessed 26 May 2021Godaert, L. et al. Prognostic factors of inhospital death in elderly patients: A time-to-event analysis of a cohort study in Martinique (French West Indies). BMJ Open 8(1), e018838 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sargeran, K., Murtomaa, H., Safavi, S. M. R., Vehkalahti, M. M. & Teronen, O. Survival after diagnosis of cancer of the oral cavity. Br. J. Oral Maxillofac. Surg. 46(3), 187–191 (2008).PubMed 

    Google Scholar 
    Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. B 34(2), 187–202 (1972).MathSciNet 
    MATH 

    Google Scholar 
    Aalen, O. O. A linear regression model for the analysis of life times. Stat. Med. 8(8), 907–925 (1989).CAS 
    PubMed 

    Google Scholar 
    Therneau, T. M., & Grambsch, P. M. The cox model. In Modeling survival data: extending the Cox model, pp. 39–77. (Springer, 2000).Neumann, M., Mues, V., Moreno, A., Hasenauer, H. & Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 23(11), 4788–4797 (2017).ADS 

    Google Scholar 
    Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11(1), 1–8 (2020).
    Google Scholar 
    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, D20 (2008).
    Google Scholar 
    R Development Core Team. RStudio, R: A Language and Environment for Statistical Computing (R Development Core Team, 2017).Holt, C. C. Forecasting Trends and Season-Als by Exponentially Weighted Averages. (Carnegie Institute of Technology, Pittsburgh ONR memorandum no. 52, 1957)Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3), 1–22 (2008).
    Google Scholar  More

  • in

    Residual characteristics and safety assessment of the insecticides spiromesifen and chromafenozide in lettuce and perilla

    Chemicals and materialsAnalytical standard ( > 99% purity) of spiromesifen, BSN2060-enol, and chromafenozide were purchased from AB Solution Co., Ltd., Hwaseong-si, Gyeonggi-do, Republic of Korea. HPLC grade water and acetonitrile were supplied by Merck, Darmstadt, Germany. QuEChERS kit (4.0 g magnesium sulfate, 1.0 g sodium chloride, 1.0 g sodium citrate tribasic dihydrate, 0.5 g disodium citrate sesquihydrate) were obtained from Phenomenex, California, USA. Individual stock solutions of the target compounds were prepared in acetonitrile and stored at − 20 °C before use.Field experimentsThe trials were carried out in a greenhouse farm during the season 2018 at two different sites (with approximately 24 km distance between both sites) located in Chuncheon and Hongcheon-gun, Gangwon-do, Republic of Korea following the method described by the Organization for Economic Co-operation and Development (OECD)38. The field test of lettuce (Latuca sativa L.) crop was conducted in Chuncheon city, and perilla (Perilla frutescens (L.) Britton) crop in Hongcheon city. The area of each field was divided into two plots (treatment and control). The treatment plots were further divided into three replicates (subplots 33 m2). The control plot was separated by a buffer zone of 3 m2 from the treated site. To minimize spray overlap, buffer zones (1 m) were set up between subplots. The commercial products of spiromesifen 20% SC diluted 2000 times and chromafenozide 5% EC diluted 1000 times were sprayed twice at 7-days intervals using an automatic sprayer. After the second spray samples (lettuce and perilla leaves) were collected from each subplot at 0 (2 h after spraying), 1, 3, 5, and 7 days according to the Korean RDA23 method. Thirty samples 1.0 kg each from the collected crop were placed in polyethylene bag and labeled. After collection, the samples were transported to the laboratory, where they were chopped and homogenized. The homogenized samples were kept frozen at − 20 °C until analysis.We confirm all plant samples used in the current work comply with the IUCN Policy Statement on Research Involving Species at Risk of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora.Samples pretreatmentA QuEChERS method was used for the extraction of the targeted compounds from lettuce and perilla leaves. A 10 g of previously homogenized samples were weighed into a 50 mL polypropylene centrifuge tube and mixed with 10 mL of water followed by 10 mL of acetonitrile. The samples were shaken at 1500 rpm in a shaker machine for 10 min. Then commercial QuEChERS kit was added, and the mixtures were shaken vigorously for 2 min in a shaker. Subsequently, the samples were centrifuged at 3584 g-force for 10 min. After centrifugation, the supernatant was filtered with a 0.22 μm membrane filter and transferred into the glass vial for instrumental analysis.LC-MS/MS analysisQuantitative determination of the tested compounds was carried out by using HPLC system Dionex Ultimate 3000 (Thermo Science, USA) coupled with tandem mass spectrometry (MS/MS) (TSQ Quantum Access Max (Thermo Science, USA). Water (solvent A) and acetonitrile (solvent B) containing 0.1% formic acid and 5 mM ammonium format were used as mobile phase at a flow rate of 0.4 mL/min and injection volume 1.0 µL. To obtain desirable chromatographic peaks, two different instrumental conditions were used. The chromatographic separation of spiromesifen was separated by Capcell core-C18 (2.1 mm I.D. × 150 mm × 2.7 μm, Shiseido Co., Ltd., Tokyo, Japan) and BSN2060-enol was performed by C18 column (Poroshell 120 SB-Ag, 2.1 mm I.D. × 100 mm × 2.7-μm, Agilent Technologies, Santa Clara, California, USA) with a gradient elution as follows (mobile phase B%): 0.0 min, 5.0%; 2.0 min 5%; 2.5 min, 95%; 6.0 min, 95%; 6.5 min, 5.0%; 10 min, 5.0%. Likewise, chromafenozide was separated by C18 column (Imtakt Unison UK-C18, 2.0 mm I.D. × 100 mm × 3.0-μm, Imtakt, Portland, USA) with a gradient elution as follows (mobile phase B%): 0.0 min, 5%; 1.0 min, 5.0%; 1.5 min, 90%; 5.0 min, 90%; 7.0 min, 5.0%; 10 min, 5.0%. An MS/MS system (TSQ quantum ultra, Thermo Science, USA) equipped with an electrospray ionization source operating in positive mode (ESI+) was used. The MS/MS parameters and selected product ions are shown in supplementary Tables S2 and S3.The calculation of spiromesifen total residuesThe total residues in lettuce and perilla samples were calculated using Eq. (1)23.Total residues of spiromesifen (mg/kg) = spiromesifen + (BSN2060 residue × 1.36). The conversion factor was calculated as follow;$${1}.{36},{text{(conversion}},{text{factor)}} = frac{{370.49left( {{text{spiromesifen}},{text{MW}}} right)}}{{272.34{ }left( {{text{BSN}}2060,{text{MW}}} right)}}$$
    (1)
    where MW molecular weight.Initial deposition calculationThe initial residues of spiromesifen and chromafenozide deposition in lettuce and perilla leaves were calculated from 0-day according to Eq. (2) described by Kang et al.12 as follow;$${text{A }},({text{mg}}/{text{kg}}) = {text{B(mg}}/{text{kg)}} times frac{100}{{{text{C}}({text{% }})}} times frac{1}{{text{E}}} times 1000$$
    (2)
    A: Initial residue (mg/kg), B: Residues (mg/kg) on 0 day, C: active ingredients, E: dilution factor.Method validationThe analytical method was validated in terms of different performance criteria such as linearity, accuracy, precision, and method limit of quantitation (MLOQ). Matrix-matched standards were used to construct the calibration curve by evaporating (0.01, 0.05, 0.1, 0.2, 0.5, 0.7 and 1.0 mg/kg) working solution (1 mL) and re-dissolved in the extract of control sample. The linearity of the matrix-matched calibration curve was evaluated by the values of the correlation coefficient (R2). The accuracy and precision were obtained in terms of recovery (70–120%) and repeatability (n = 3). The recoveries were determined by spiking the analytes at two concentrations levels (0.1 mg/L) and (0.5 mg/L) in 10 g control samples and were quantified by comparing the response of analytes in samples with response in calibration standard solutions prepared in matrix. The repeatability expressed as the relative standard deviation (RSD) of the analyzed samples was calculated from three repetitions. The MLOQ was calculated by Eq. (3) taking into consideration the following factors: the instrument limit of detection, volume of extraction solvent, injection volume, dilution factor, and sample amount39,40.$${text{MLOQ}},{text{(mg}}/{text{kg)}} = {text{A(ng)}} times frac{{text{B(mL)}}}{{{text{C(}}upmu {text{L)}}}} times frac{{text{D}}}{{text{E(g)}}}$$
    (3)
    where A: instrument limit of detection, B: volume of extraction solvent, C: injection volume, D: dilution factor, E: sample amount.Half-life calculationThe dissipation patterns of spiromesifen and chromafenozide in lettuce and perilla leaves over time were found following the first-order kinetics model28. The half-life was determined by the following equation:$${text{C}}_{{text{t}}} = {text{C}}_{0} times {text{e}}^{{ – {text{kt}}}} ,{text{DT}}_{{{5}0}} = {text{ln2}}/{text{k}}$$where Ct is the concentration of the insecticide, C0 represents the initial residue concentration of insecticide, t is the time (days) after insecticide application, and k is the constant rate.Safety assessmentIn this study, the safety assessments (percent acceptable daily intake; %ADI) of the target insecticides that are consumed with lettuce and perilla leaves were calculated by the ratio of estimated daily intake (EDI) to acceptable daily intake (ADI). The EDI was calculated using insecticide concentration and average consumption of food commodities per person per day. In addition, the theoretical maximum daily intakes (TMDIs) of both insecticides were calculated using the maximum residue limits (MRLs) and average body weight (60 kg) of adults in Republic of Korea. TMDIs were calculated following the equation described by Kim et al.41.$$begin{aligned} & {text{ADI (mg}}/{text{person}}/{text{day)}} = {text{ADI}},({text{mg}}/{text{kg}}/{text{body weight}}/{text{day}}),{text{of target insecticide}} times {text{6}}0,({text{average body weight}}) \ & {text{EDI (mg}}/{text{kg}}/{text{person)}} = {text{concentration of target insecticide (mg}}/{text{kg)}} times {text{ daily food intake (g)}} \ & % {text{ADI}} = {text{EDI}}/{text{ADI}} times {text{1}}00 \ & {text{TMDI}}% = sum % {text{ADI of all registered crops}} \ end{aligned}$$ More

  • in

    Newly initiated carbon stock, organic soil accumulation patterns and main driving factors in the High Arctic Svalbard, Norway

    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar 
    Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).ADS 
    Article 

    Google Scholar 
    Danell, K. What Is the Arctic? In Which Ways Is the Arctic Different? In Arctic Ecology (ed. Thomas, D. N.) 1–22 (University of Helsinki, 2021).
    Google Scholar 
    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles 23(2), 1–11. https://doi.org/10.1029/2008GB003327 (2009).CAS 
    Article 

    Google Scholar 
    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. U.S.A. 117(34), 20438–20446. https://doi.org/10.1073/pnas.1916387117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24(9), 1028–1042. https://doi.org/10.1177/0959683614538073 (2014).ADS 
    Article 

    Google Scholar 
    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Chang. 8(10), 907–913. https://doi.org/10.1038/s41558-018-0271-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Yu, Z., Beilman, D. W. & Jones, M. C. Sensitivity of Northern Peatland carbon dynamics to holocene climate change. Carbon Cycl. Northern Peatl. C https://doi.org/10.1029/2008GM000822 (2009).Article 

    Google Scholar 
    Svendsen, J. & Mangerud, J. Paleoclimatic inferences from glacial fluctuations on Svalbard during the last 20 000 years. Clim. Dyn. 6(3–4), 213–220. https://doi.org/10.1007/BF00193533 (1992).Article 

    Google Scholar 
    Farnsworth, W. R. et al. Holocene glacial history of Svalbard: Status, perspectives and challenges. Earth Sci. Rev. 208(April), 103249. https://doi.org/10.1016/j.earscirev.2020.103249 (2020).CAS 
    Article 

    Google Scholar 
    D’Andrea, W. J. et al. Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40(11), 1007–1010. https://doi.org/10.1130/G33365.1 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Miller, G. H., Landvik, J. Y., Lehman, S. J. & Southon, J. R. Episodic Neoglacial snowline descent and glacier expansion on Svalbard reconstructed from the 14C ages of ice-entombed plants. Quatern. Sci. Rev. 155, 67–78. https://doi.org/10.1016/j.quascirev.2016.10.023 (2017).ADS 
    Article 

    Google Scholar 
    Røthe, T. O. et al. Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quatern. Sci. Rev. 109, 111–125. https://doi.org/10.1016/j.quascirev.2014.11.017 (2015).Article 

    Google Scholar 
    van der Bilt, W. G. M. et al. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quatern. Sci. Rev. 126, 201–218. https://doi.org/10.1016/j.quascirev.2015.09.003 (2015).ADS 
    Article 

    Google Scholar 
    Allaart, L. et al. Glacial history of the Åsgardfonna Ice Cap, NE Spitsbergen, since the last glaciation. Quatern. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106717 (2021).Article 

    Google Scholar 
    Humlum, O. et al. Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. Holocene 15(3), 396–407. https://doi.org/10.1191/0959683605hl817rp (2005).ADS 
    Article 

    Google Scholar 
    Yang, Z., Yang, W., Yuan, L., Wang, Y. & Sun, L. Evidence for glacial deposits during the Little Ice Age in Ny-Alesund, western Spitsbergen. J. Earth Syst. Sci. https://doi.org/10.1007/s12040-019-1274-7 (2020).Article 

    Google Scholar 
    AMAP – ARCTIC MONITORING AND ASSESSMENT PROGRAMME. (2019). Arctic Climate Change Update 2019: An update to key findings of Snow, Water, Ice, and Permafrost in the Arctic (SWIPA) 2017. Assessment Report, 12. https://www.amap.no/documents/doc/amap-climate-change-update-2019/1761.Nordli, Ø. et al. Polar Res. 39, 3614. https://doi.org/10.33265/polar.v39.3614 (2020).Article 

    Google Scholar 
    Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. Temperature and precipitation development at svalbard 1900–2100. Adv. Meteorol. 2011, 1–14. https://doi.org/10.1155/2011/893790 (2011).Article 

    Google Scholar 
    Van Der Knaap, W. O. (1988). A pollen diagram from Broggerhalvoya, Spitsbergen: changes in vegetation and environment from ca. 4400 to ca. 800 BP. Arctic & Alpine Research, 20(1), 106–116. Doi: https://doi.org/10.2307/1551703Rozema, J. et al. A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard. Plant Ecol. 182(1–2), 155–173. https://doi.org/10.1007/s11258-005-9024-0 (2006).Article 

    Google Scholar 
    Nakatsubo, T. et al. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration. Polar Sci. 9(2), 267–275. https://doi.org/10.1016/j.polar.2014.12.002 (2015).ADS 
    Article 

    Google Scholar 
    Magnússon, B., Magnússon, S. & Fridriksson, S. (2009). Developments in plant colonization and succession on Surtsey during 1999–2008. Surtsey Res. pp. 57–76.Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36(3), 363–372. https://doi.org/10.1007/s00300-012-1265-5 (2013).Article 

    Google Scholar 
    Leblans, N. I. W. et al. Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island Surtsey. Biogeosciences 11(22), 6237–6250. https://doi.org/10.5194/bg-11-6237-2014 (2014).ADS 
    Article 

    Google Scholar 
    Zmudczyńska-Skarbek, K. et al. Transfer of ornithogenic influence through different trophic levels of the Arctic terrestrial ecosystem of Bjørnøya (Bear Island), Svalbard. Soil Biol. Biochem. 115, 475–489. https://doi.org/10.1016/j.soilbio.2017.09.008 (2017).CAS 
    Article 

    Google Scholar 
    Hodkinson, I. D., Coulson, S. J. & Webb, N. R. Community assembly along proglacial chronosequences in the high arctic: vegetation and soil development in north-west Svalbard. J. Ecol. 91(4), 651–663. https://doi.org/10.1046/j.1365-2745.2003.00786.x (2003).Article 

    Google Scholar 
    Ravolainen, V. et al. High Arctic ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research. Ambio 49(3), 666–677. https://doi.org/10.1007/s13280-019-01310-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van der Wal, R. & Brooker, R. W. Mosses mediate grazer impacts on grass abundance in arctic ecosystems. Funct. Ecol. 18(1), 77–86. https://doi.org/10.1111/j.1365-2435.2004.00820.x (2004).Article 

    Google Scholar 
    Vanderpuye, A. W., Elvebakk, A. & Nilsen, L. Plant communities along environmental gradients of high-arctic mires in Sassendalen Svalbard. J. Veg. Sci. 13(6), 875–884. https://doi.org/10.1111/j.1654-1103.2002.tb02117.x (2002).Article 

    Google Scholar 
    Le Moullec, M., Pedersen, Å. Ø., Stien, A., Rosvold, J. & Hansen, B. B. A century of conservation: the ongoing recovery of svalbard reindeer. J. Wildl. Manag. 83(8), 1676–1686. https://doi.org/10.1002/jwmg.21761 (2019).Article 

    Google Scholar 
    Garfelt-Paulsen, I. M. et al. Don’t go chasing the ghosts of the past: habitat selection and site fidelity during calving in an Arctic ungulate. Wildl. Biol. https://doi.org/10.2981/wlb.00740 (2021).Article 

    Google Scholar 
    Moreau, M., Mercier, D., Laffly, D. & Roussel, E. Impacts of recent paraglacial dynamics on plant colonization: a case study on Midtre Lovénbreen foreland, Spitsbergen (79°N). Geomorphology 95(1–2), 48–60. https://doi.org/10.1016/j.geomorph.2006.07.031 (2008).ADS 
    Article 

    Google Scholar 
    Moreau, M., Laffly, D. & Brossard, T. Recent spatial development of Svalbard strandflat vegetation over a period of 31 years. Polar Res. 28(3), 364–375. https://doi.org/10.1111/j.1751-8369.2009.00119.x (2009).Article 

    Google Scholar 
    Wietrzyk, P., Wȩgrzyn, M. & Lisowska, M. Vegetation diversity and selected abiotic factors influencing the primary succession process on the foreland of Gåsbreen Svalbard. Pol. Polar Res. 37(4), 493–509. https://doi.org/10.1515/popore-2016-0026 (2016).Article 

    Google Scholar 
    Divine, D. et al. Thousand years of winter surface air temperature variations in Svalbard and northern norway reconstructed from ice-core data. Polar Res. 30(SUPPL.1), 1–12. https://doi.org/10.3402/polar.v30i0.7379 (2011).ADS 
    Article 

    Google Scholar 
    Van Pelt, W. et al. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). Cryosphere 13(9), 2259–2280. https://doi.org/10.5194/tc-13-2259-2019 (2019).ADS 
    Article 

    Google Scholar 
    Johansen, B. E., Karlsen, S. R. & Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 48(1), 47–63. https://doi.org/10.1017/S0032247411000647 (2012).Article 

    Google Scholar 
    Norwegian Polar Institute. Available online at: https://npolar.no (2021).Norwegian Meteorological Institute. Available online at: https://seklima.met.no (2019).Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468(November), 129–141. https://doi.org/10.1016/j.palaeo.2016.11.039 (2017).Article 

    Google Scholar 
    Estop-Aragonés, C. et al. Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands. Soil Biol. Biochem. 118, 115–129. https://doi.org/10.1016/j.soilbio.2017.12.010 (2018).CAS 
    Article 

    Google Scholar 
    Blaauw, M., Christen, J. A. & Aquino-Lopez, M. A. rplum: Bayesian Age-Depth Modelling of Cores Dated by Pb-210. R package version 0.2.2. https://CRAN.R-project.org/package=rplum (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020).Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 25(1), 101–110. https://doi.org/10.1023/A:1008119611481 (2001).ADS 
    Article 

    Google Scholar 
    Booth, R. K., Lamentowicz, M. & Charman, D. J. Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies. Mires and Peat 7(2), 1–7 (2010).
    Google Scholar 
    Charman, D., Hendon, D. & Woodland, W. A. The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats (Quaternary Research Association, 2000).
    Google Scholar 
    Siemensma, F. J. Microworld, world of Amoeboid Organisms. World-Wide Electronic Publication, Kortenhoef, the Netherlands. Available online at: https://www.arcella.nl (2019).Payne, R. J. & Mitchell, E. A. D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42(4), 483–495. https://doi.org/10.1007/s10933-008-9299-y (2009).ADS 
    Article 

    Google Scholar 
    Swindles, G. T. et al. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data. Q. Sci. Rev. 120, 107–117. https://doi.org/10.1016/j.quascirev.2015.04.019 (2015).ADS 
    Article 

    Google Scholar 
    Amesbury, M. J. et al. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quatern. Sci. Rev. 152, 132–151. https://doi.org/10.1016/j.quascirev.2016.09.024 (2016).ADS 
    Article 

    Google Scholar 
    Amesbury, M. J. et al. Towards a Holarctic synthesis of peatland testate amoeba ecology: Development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data. Quatern. Sci. Rev. 201, 483–500. https://doi.org/10.1016/j.quascirev.2018.10.034 (2018).ADS 
    Article 

    Google Scholar 
    Zhang, H. et al. Testate amoeba as palaeohydrological indicators in the permafrost peatlands of north-east European Russia and Finnish Lapland. J. Quat. Sci. 32(7), 976–988. https://doi.org/10.1002/jqs.2970 (2017).Article 

    Google Scholar 
    Sim, T. G. et al. Pathways for Ecological Change in Canadian High Arctic Wetlands Under Rapid Twentieth Century Warming. Geophys. Res. Lett. 46(9), 4726–4737. https://doi.org/10.1029/2019GL082611 (2019).ADS 
    Article 

    Google Scholar 
    Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecol. Lett. 15(2), 164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x (2012).Article 
    PubMed 

    Google Scholar 
    Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nat. Clim. Chang. 4(1), 51–55. https://doi.org/10.1038/nclimate2058 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bjorkman, A. D. et al. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 49(3), 678–692. https://doi.org/10.1007/s13280-019-01161-6 (2020).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Egli, M., Mavris, C., Mirabella, A. & Giaccai, D. Soil organic matter formation along a chronosequence in the Morteratsch proglacial area (Upper Engadine, Switzerland). CATENA 82(2), 61–69. https://doi.org/10.1016/j.catena.2010.05.001 (2010).CAS 
    Article 

    Google Scholar 
    Prach, K. & Rachlewicz, G. Succession of vascular plants in front of retreating glaciers in central Spitsbergen. Polish Polar Research 33(4), 319–328. https://doi.org/10.2478/v10183-012-0022-3 (2012).Article 

    Google Scholar 
    Låg, J. Special Peat Formations in Svalbard. Acta Agric. Scand. 30(2), 205–210. https://doi.org/10.1080/00015128009435267 (1980).Article 

    Google Scholar 
    Serebryannyy, L. P., Tishkov, A. A., Malyasova, Y. S., Solomina, O. N. & Il’ves, E. O.,. Reconstruction of the development of vegetation in Arctic high latitudes. Polar Geogr. Geol. 9(4), 308–320. https://doi.org/10.1080/10889378509377261 (1985).Article 

    Google Scholar 
    Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Punning, Y. M. K. Glacioclimatic conditions in the european arctic in the late holocene. Polar Geogr. Geol. 11(1), 50–57. https://doi.org/10.1080/10889378709377310 (1987).Article 

    Google Scholar 
    Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Troitskiy, Y. M. K. Changes in glacioclimatic conditions on svalbard during the subboreal period. Polar Geogr. Geol. 12(3), 221–226. https://doi.org/10.1080/10889378809377366 (1988).Article 

    Google Scholar 
    Låg, J. Peat Accumulation in Steep Hills at Alkhornet Spitsbergen. Acta Agric. Scand. 40(3), 217–219. https://doi.org/10.1080/00015129009438554 (1990).Article 

    Google Scholar 
    Oliva, M. et al. Sedimentological characteristics of ice-wedge polygon terrain in adventdalen (Svalbard) environmental and climatic implications for the late Holocene. Solid Earth 5(2), 901–914. https://doi.org/10.5194/se-5-901-2014 (2014).ADS 
    Article 

    Google Scholar 
    Van der Knaap, W. O. Past Vegetation and Reindeer on Edgeoya (Spitsbergen) Between c. 7900 and c. 3800 BP, Studied by Means of Peat Layers and Reindeer Faecal Pellets. J. Biogeogr. 16(4), 379. https://doi.org/10.2307/2845229 (1989).Article 

    Google Scholar 
    Røthe, T. O., Bakke, J., Støren, E. W. N. & Bradley, R. S. Reconstructing holocene glacier and climate fluctuations from lake sediments in Vårfluesjøen Northern Spitsbergen. Front. Earth Sci. 6(July), 1–20. https://doi.org/10.3389/feart.2018.00091 (2018).Article 

    Google Scholar 
    Alsos, I. G. et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene 26(4), 627–642. https://doi.org/10.1177/0959683615612563 (2016).ADS 
    Article 

    Google Scholar 
    Klimowicz, Z., Melke, J. & Uziak, S. Peat soils in the Bellsund region Spitsbergen. Pol. Polar Res. 18(1), 25–39 (1997).
    Google Scholar 
    Yang, Z. et al. Total photosynthetic biomass record between 9400 and 2200 BP and its link to temperature changes at a High Arctic site near Ny-Ålesund Svalbard. Polar Biol. 42(5), 991–1003. https://doi.org/10.1007/s00300-019-02493-5 (2019).Article 

    Google Scholar 
    Vickers, H. et al. Changes in greening in the high arctic: insights from a 30-year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/11/10/105004 (2016).Article 

    Google Scholar 
    Van Der Knaap, W. O. Human influence on natural Arctic vegetation in the 17th century and climatic change since AD 1600 in northwest Spitsbergen: a paleobotanical study. Arct. Alp. Res. 17(4), 371–387. https://doi.org/10.2307/1550863 (1985).Article 

    Google Scholar 
    Martín-Moreno, R., Allende Álvarez, F. & Hagen, J. O. ‘Little Ice Age’ glacier extent and subsequent retreat in Svalbard archipelago. Holocene 27(9), 1379–1390. https://doi.org/10.1177/0959683617693904 (2017).ADS 
    Article 

    Google Scholar 
    Rachlewicz, G., Szczuziński, W. & Ewertowski, M. Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen Svalbard. Pol. Polar Res. 28(3), 159–186 (2007).
    Google Scholar 
    Matthews, J. A. & Whittaker, R. J. Vegetation succession on the storbreen glacier foreland, Jotunheimen, Norway : a review. Arct. Alp. Res. 19(4), 385–395 (1987).Article 

    Google Scholar 
    Beyens, L. & Chardez, D. Evidence from testate amoebae for changes in some local hydrological conditions between c. 5000 BP and c. 3800 BP on Edgeøya (Svalbard). Polar Res. 5(2), 165–169. https://doi.org/10.1111/j.1751-8369.1987.tb00619.x (1987).Article 

    Google Scholar 
    Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/10/9/094011 (2015).Article 

    Google Scholar 
    Isaksen, K., Benestad, R. E., Harris, C. & Sollid, J. L. Recent extreme near-surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophys. Res. Lett. 34(17), 1–5. https://doi.org/10.1029/2007GL031002 (2007).Article 

    Google Scholar 
    Cable, S., Elberling, B. & Kroon, A. Holocene permafrost history and cryostratigraphy in the High-Arctic Adventdalen Valley, central Svalbard. Boreas 47(2), 423–442. https://doi.org/10.1111/bor.12286 (2018).Article 

    Google Scholar 
    König, M., Kohler, J. & Nuth, C. Glacier Area Outlines–Svalbard, v1.0, http://data.npolar.no/dataset/89f430f8-862f-11e2-8036-005056ad0004 Delivered by CryoClim service (2013).Box, J. E. et al. Key indicators of Arctic climate change: 1917–2017. Environ. Res. Lett. 14(4), 045010. https://doi.org/10.1088/1748-9326/aafc1b (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, H. et al. Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries. Glob. Change Biol. 26(4), 2435–2448. https://doi.org/10.1111/gcb.15005 (2020).ADS 
    Article 

    Google Scholar 
    Szymański, W., Wojtuń, B., Stolarczyk, M., Siwek, J. & Waścińska, J. Organic carbon and nutrients (N, P) in surface soil horizons in a non-glaciated catchment SW Spitsbergen. Pol. Polar Res. 37(1), 49–66. https://doi.org/10.1515/popore-2016-0006 (2016).Article 

    Google Scholar 
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11(23), 6573–6593. https://doi.org/10.5194/bg-11-6573-2014 (2014).ADS 
    Article 

    Google Scholar 
    Palmtag, J. et al. Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arct. Antarct. Alp. Res. 47(1), 71–88. https://doi.org/10.1657/AAAR0014-027 (2015).Article 

    Google Scholar 
    Siewert, M. B. et al. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. J. Geophys. Res. Biogeosci. 120, 1973–1994 (2015).CAS 
    Article 

    Google Scholar 
    Wojcik, R., Palmtag, J., Hugelius, G., Weiss, N. & Kuhry, P. Land cover and landform-based upscaling of soil organic carbon stocks on the Brøgger Peninsula, Svalbard. Arct. Antarct. Alp. Res. 51(1), 40–57. https://doi.org/10.1080/15230430.2019.1570784 (2019).Article 

    Google Scholar 
    Yoshitake, S. et al. Vegetation development and carbon storage on a glacier foreland in the High Arctic, Ny-Ålesund Svalbard. Polar Sci. 5(3), 391–397. https://doi.org/10.1016/j.polar.2011.03.002 (2011).ADS 
    Article 

    Google Scholar 
    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475(7357), 489–492. https://doi.org/10.1038/nature10283 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 180(1), 157–167. https://doi.org/10.1016/j.plantsci.2010.09.005 (2011).CAS 
    Article 
    PubMed 

    Google Scholar  More