More stories

  • in

    Limited increases in savanna carbon stocks over decades of fire suppression

    Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grace, J., José, J. S., Meir, P., Miranda, H. S. & Montes, R. A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).
    Google Scholar 
    Van Der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).ADS 

    Google Scholar 
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).ADS 
    CAS 

    Google Scholar 
    Russell-Smith, J. et al. Opportunities and challenges for savanna burning emissions abatement in southern Africa. J. Environ. Manage. 288, 112414 (2021).CAS 
    PubMed 

    Google Scholar 
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, C. et al. Historical and future global burned area with changing climate and human demography. One Earth 4, 517–530 (2021).
    Google Scholar 
    Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Higgins, S. I. et al. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88, 1119–1125 (2007).
    Google Scholar 
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).ADS 
    CAS 

    Google Scholar 
    Pellegrini, A. F. A., Hedin, L. O., Staver, A. C. & Govender, N. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96, 1275–1285 (2015).PubMed 

    Google Scholar 
    Tilman, D. et al. Fire suppression and ecosystem carbon storage. Ecology 81, 2680–2685 (2000).
    Google Scholar 
    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).ADS 

    Google Scholar 
    de Miranda, S. D. C. et al. Regional variations in biomass distribution in Brazilian savanna woodland. Biotropica 46, 125–138 (2014).
    Google Scholar 
    Wigley, B. J., Cramer, M. D. & Bond, W. J. Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecol. 203, 1 (2009).
    Google Scholar 
    Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Staver, A. C., Botha, J. & Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. New Phytol. 216, 1151–1160 (2017).CAS 
    PubMed 

    Google Scholar 
    Zhou, Y., Wigley, B. J., Case, M. F., Coetsee, C. & Staver, A. C. Rooting depth as a key woody functional trait in savannas. New Phytol. 227, 1350–1361 (2020).PubMed 

    Google Scholar 
    Govender, N., Trollope, W. S. W., Van, & Wilgen, B. W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).
    Google Scholar 
    Colgan, M. S., Asner, G. P. & Swemmer, T. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas. Ecol. Appl. 23, 1170–1184 (2013).PubMed 

    Google Scholar 
    Davies, A. B. & Asner, G. P. Elephants limit aboveground carbon gains in African savannas. Glob. Change Biol. 25, 1368–1382 (2019).ADS 

    Google Scholar 
    Butnor, J. R. et al. Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci. Soc. Am. J. 67, 1607–1615 (2003).ADS 
    CAS 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).
    Google Scholar 
    Ryan, C. M., Williams, M. & Grace, J. Above- and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).
    Google Scholar 
    Swezy, D. M. & Agee, J. K. Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine. Can. J. For. Res. 21, 626–634 (1991).
    Google Scholar 
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coetsee, C., Bond, W. J. & February, E. C. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162, 1027–1034 (2010).ADS 
    PubMed 

    Google Scholar 
    Holdo, R. M., Mack, M. C. & Arnold, S. G. Tree canopies explain fire effects on soil nitrogen, phosphorus and carbon in a savanna ecosystem. J. Veg. Sci. 23, 352–360 (2012).
    Google Scholar 
    Lloyd, J. et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiol. 28, 451–468 (2008).PubMed 

    Google Scholar 
    Wigley, B. J., Augustine, D. J., Coetsee, C., Ratnam, J. & Sankaran, M. Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna. Ecology 101, e03008 (2020).PubMed 

    Google Scholar 
    Khomo, L., Trumbore, S., Bern, C. R. & Chadwick, O. A. Timescales of carbon turnover in soils with mixed crystalline mineralogies. Soil 3, 17–30 (2017).ADS 
    CAS 

    Google Scholar 
    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).CAS 

    Google Scholar 
    Abreu, R. C. R. et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).PubMed 

    Google Scholar 
    West, T. A., Börner, J. & Fearnside, P. M. Climatic benefits from the 2006–2017 avoided deforestation in Amazonian Brazil. Front. For. Glob. Change 2, 52 (2019).
    Google Scholar 
    Aleman, J. C., Blarquez, O. & Staver, C. A. Land-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa. Glob. Change Biol. 22, 3013–3025 (2016).ADS 

    Google Scholar 
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).ADS 

    Google Scholar 
    Ratajczak, Z., Nippert, J. B. & Collins, S. L. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93, 697–703 (2012).PubMed 

    Google Scholar 
    Smit, I. P. & Prins, H. H. Predicting the effects of woody encroachment on mammal communities, grazing biomass and fire frequency in African savannas. PLoS One 10, e0137857 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Huxman, T. E. et al. Ecohydrological implications of woody plant encroachment. Ecology 86, 308–319 (2005).
    Google Scholar 
    Hermoso, V., Regos, A., Morán-Ordóñez, A., Duane, A. & Brotons, L. Tree planting: a double-edged sword to fight climate change in an era of megafires. Glob. Change Biol. 27, 3001–3003 (2021).
    Google Scholar 
    Venter F. A. Classification of Land for Management Planning in the Kruger National Park. PhD thesis, Univ. South Africa (1990).Biggs, R., Biggs, H. C., Dunne, T. T., Govender, N. & Potgieter, A. L. F. Experimental burn plot trial in the Kruger National Park: history, experimental design and suggestions for data analysis. Koedoe 46, 15 (2003).
    Google Scholar 
    Codron, J. et al. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J. Archaeol. Sci. 32, 1757–1772 (2005).
    Google Scholar 
    Zhou, Y., Boutton, T. W. & Ben Wu, X. Soil carbon response to woody plant encroachment: importance of spatial heterogeneity and deep soil storage. J. Ecol. 105, 1738–1749 (2017).CAS 

    Google Scholar 
    Sheldrick B. & Wang C. In Soil Sampling and Methods of Analysis (ed. Carter, M. R.) 499–511 (CRC Press, 1993).Butnor, J. R. et al. Surface-based GPR underestimates below-stump root biomass. Plant Soil 402, 47–62 (2016).CAS 

    Google Scholar 
    Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage—an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hirano, Y. et al. Limiting factors in the detection of tree roots using ground-penetrating radar. Plant Soil 319, 15–24 (2009).CAS 

    Google Scholar 
    Popescu, S. C. & Wynne, R. H. Seeing the trees in the forest. Photogramm. Eng. Remote Sensing 70, 589–604 (2004).
    Google Scholar 
    Case, M. F., Wigley-Coetsee, C., Nzima, N., Scogings, P. F. & Staver, A. C. Severe drought limits trees in a semi-arid savanna. Ecology 100, e02842 (2019).PubMed 

    Google Scholar 
    Beucher S. & Meyer F. In Mathematical Morphology in Image Processing (ed. Dougherty, E. R.) 433–481 (CRC Press, 1993).Nickless, A., Scholes, R. J. & Archibald, S. A method for calculating the variance and confidence intervals for tree biomass estimates obtained from allometric equations. S. Afr. J. Sci. 107, 1–10 (2011).
    Google Scholar 
    Plowright A. & Roussel J.-R. ForestTools: analyzing remotely sensed forest data. R package version 0.2.1. https://CRAN.R-project.org/package=ForestTools (2020).Hijmans R. J. raster: geographic data analysis and modeling. R package version 3.3-7. https://CRAN.R-project.org/package=raster (2020).Penman J. et al. (eds) Good Practice Guidance for Land Use, Land-Use Change and Forestry (Intergovernmental Panel on Climate Change, 2003).Kuznetsova, A., Brockhoff, P. & Christensen, R. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar  More

  • in

    VKORC1 mutations in rodent populations of a tropical city-state as an indicator of anticoagulant rodenticide resistance

    Costa, F. et al. Global morbidity and mortality of leptospirosis: A systematic review. PLoS Negl. Trop. Dis. 9, e0003898. https://doi.org/10.1371/journal.pntd.0003898 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cosson, J.-F. et al. Epidemiology of Leptospira transmitted by rodents in southeast Asia. PLoS Negl. Trop. Dis. 8, e2902. https://doi.org/10.1371/journal.pntd.0002902 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on Hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 23, 412–441. https://doi.org/10.1128/CMR.00062-09 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaheri, A. et al. Uncovering the mysteries of Hantavirus infections. Nat. Rev. Microbiol. 11, 539–550. https://doi.org/10.1038/nrmicro3066 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Peniche Lara, G., Dzul-Rosado, K. R., Zavala Velázquez, J. E. & Zavala-Castro, J. Murine typhus: Clinical and epidemiological aspects. Colomb. Med. (Cali) 43, 175–180 (2012).Article 

    Google Scholar 
    Pimentel, D., Lach, L., Zuniga, R. & Morrison, D. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50, 53–65. https://doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2 (2000).Article 

    Google Scholar 
    Smith, R. & Meyer, A. Rodent control methods: Non-chemical and non-lethal chemical, with special reference to food stores. in Rodent Pests and Their Control (Buckle, A.P., Smith, R. eds.). 2nd edn. 101–122. (CAB International, 2015).Himsworth, C. G., Jardine, C. M., Parsons, K. L., Feng, A. Y. T. & Patrick, D. M. The characteristics of wild rat (Rattus spp.) populations from an inner-city neighborhood with a focus on factors critical to the understanding of rat-associated zoonoses. PLoS ONE 9, e91654. https://doi.org/10.1371/journal.pone.0091654 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mari Saez, A. et al. Rodent control to fight Lassa fever: Evaluation and lessons learned from a 4-year study in Upper Guinea. PLoS Negl. Trop. Dis. 12, e0006829–e0006829. https://doi.org/10.1371/journal.pntd.0006829 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baldwin, R., Quinn, N., Davis, D. & Engeman, R. Effectiveness of rodenticides for managing invasive roof rats and native deer mice in orchards. Environ. Sci. Pollut. Res. 21, 5795–5802. https://doi.org/10.1007/s11356-014-2525-4 (2014).CAS 
    Article 

    Google Scholar 
    Hadler, M. R. & Buckle, A. P. Forty five years of anticoagulant rodenticides—Past, present and future trends. Proc. Vertebr. Pest Conf. 15, 149–155 (1992).
    Google Scholar 
    Rost, S. et al. Novel mutations in the VKORC1 gene of wild rats and mice – A response to 50 years of selection pressure by warfarin?. BMC Genet. 10, 4. https://doi.org/10.1186/1471-2156-10-4 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buckle, A., Prescott, C. & Ward, K. J. Resistance to the first and second generation anticoagulant rodenticides – A new perspective. Proc. Verebr. Pest Conf. 16, 138–144 (1994).
    Google Scholar 
    Goulois, J., Lambert, V., Legros, L., Benoit, E. & Lattard, V. Adaptative evolution of the Vkorc1 gene in Mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecol. Evol. 7, 2767–2776. https://doi.org/10.1002/ece3.2829 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meerburg, B. G., van Gent-Pelzer, M. P. E., Schoelitsz, B. & van der Lee, T. A. J. Distribution of anticoagulant rodenticide resistance in Rattus norvegicus in the Netherlands according to Vkorc1 mutations. Pest Manag. Sci. 70, 1761–1766. https://doi.org/10.1002/ps.3809 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lund, M. Rodent resistance to the anticoagulant rodenticides, with particular reference to Denmark. Bull. World Health Organ. 47, 611–618 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, M. J. et al. Effects of culling on Leptospira interrogans carriage by rats. Emerg. Infect. Dis. 24, 356–360. https://doi.org/10.3201/eid2402.171371 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greaves, J. H. Resistance to anticoagulant rodenticides. in Rodent Pests and Their Control (Buckle, A.P., Smith, R. eds.). 2nd edn. 187–208. (CAB International, 2015).Lefebvre, S. B., Benoit, E. & Lattard, V. Comparative biology of the resistance to vitamin K antagonists: An overview of the resistance mechanisms in Anticoagulation Therapy (Basaran, O., Biteker, M. eds.). 20–45. (Intech Open, 2016).Grandemange, A. et al. Consequences of the Y139F Vkorc1 mutation on resistance to AVKs: In-vivo investigation in a 7th generation of congenic Y139F strain of rats. Pharmacogenet. Genomics. 19, 742–750. https://doi.org/10.1097/FPC.0b013e32832ee55b (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sadowski, J. A., Esmon, C. T. & Suttie, J. W. Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system. J. Biol. Chem. 251, 2770–2776 (1976).CAS 
    Article 

    Google Scholar 
    Mooney, J. et al. VKORC1 sequence variants associated with resistance to anticoagulant rodenticides in Irish populations of Rattus norvegicus and Mus musculus domesticus. Sci. Rep. 8, 4535. https://doi.org/10.1038/s41598-018-22815-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thijssen, H. H. W. Warfarin-based rodenticides: Mode of action and mechanism of resistance. Pestic. Sci. 43, 73–78. https://doi.org/10.1002/ps.2780430112 (1995).CAS 
    Article 

    Google Scholar 
    Bell, R. G. & Caldwell, P. T. Mechanism of warfarin resistance. Warfarin and the metabolism of vitamin K1. Biochemistry 12, 1759–1762. https://doi.org/10.1021/bi00733a015 (1973).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pelz, H.-J. et al. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847. https://doi.org/10.1534/genetics.104.040360 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baert, K., Stuyck, J., Breyne, P., Maes, D. & Casaer, J. Distribution of anticoagulant resistance in the brown rat in Belgium. Belg. J. Zool. 142, 39–48 (2012).
    Google Scholar 
    Prescott, C. V., Buckle, A. P., Gibbings, J. G., Allan, E. N. W. & Stuart, A. M. Anticoagulant resistance in Norway rats (Rattus norvegicus Berk.) in Kent – A VKORC1 single nucleotide polymorphism, tyrosine139phenylalanine, new to the UK. Int. J. Pest Manag. 57, 61–65. https://doi.org/10.1080/09670874.2010.523124 (2010).CAS 
    Article 

    Google Scholar 
    Grandemange, A., Lasseur, R., Longin-Sauvageon, C., Benoit, E. & Berny, P. Distribution of VKORC1 single nucleotide polymorphism in wild Rattus norvegicus in France. Pest Manag. Sci. 66, 270–276. https://doi.org/10.1002/ps.1869 (2009).CAS 
    Article 

    Google Scholar 
    Goulois, J. et al. Evidence of a target resistance to antivitamin K rodenticides in the roof rat Rattus rattus: Identification and characterisation of a novel Y25F mutation in the Vkorc1 gene. Pest Manag. Sci. 72, 544–550. https://doi.org/10.1002/ps.4020 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Endepols, S., Klemann, N., Jacob, J. & Buckle, A. P. Resistance tests and field trials with bromadiolone for the control of Norway rats (Rattus norvegicus) on farms in Westphalia, Germany. Pest Manag. Sci. 68, 348–354. https://doi.org/10.1002/ps.2268 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Andru, J., Cosson, J.-F., Caliman, J.-P. & Benoit, E. Coumatetralyl resistance of Rattus tanezumi infesting oil palm plantations in Indonesia. Ecotoxicology 22, 377–386. https://doi.org/10.1007/s10646-012-1032-y (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Department of Statistics Singapore. Population and Population Structure. https://www.singstat.gov.sg/find-data/search-by-theme/population/population-and-population-structure/latest-data (2020).Department of Statistics Singapore. Environment. https://www.singstat.gov.sg/find-data/search-by-theme/society/environment/latest-data (2020).Department of Statistics Singapore. M890531—Licensed Food Establishments (End of Period), Annual. https://www.tablebuilder.singstat.gov.sg/publicfacing/createDataTable.action?refId=14624 (2021).QGIS Development Team. QGIS Geographic Information System. QGIS Association. https://www.qgis.org/en/site/ (2021).Ivanova, N. V., Clare, E. L. & Borisenko, A. V. in DNA Barcodes: Methods and Protocols (John Kress, W. & Erickson, D.L. eds.) 153–182 (Humana Press, 2012).Pagès, M. et al. Revisiting the taxonomy of the Rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evol. Biol. 10, 184. https://doi.org/10.1186/1471-2148-10-184 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pagès, M. et al. Cytonuclear discordance among Southeast Asian black rats (Rattus rattus complex). Mol. Ecol. 22, 1019–1034. https://doi.org/10.1111/mec.12149 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rungrojn, A. et al. Prevalence and molecular characterization of Rickettsia spp. from wild small mammals in public parks and urban areas of Bangkok metropolitan, Thailand. Trop. Med. Infect. Dis. https://doi.org/10.3390/tropicalmed6040199 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wulandhari, S. A. et al. High prevalence and low diversity of chigger infestation in small mammals found in Bangkok metropolitan parks. Med. Vet. Entomol. 35, 534–546. https://doi.org/10.1111/mve.12531 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cowan, P. E. et al. Vkorc1 sequencing suggests anticoagulant resistance in rats in New Zealand. Pest Manag. Sci. 73, 262–266. https://doi.org/10.1002/ps.4304 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rost, S. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427, 537–541. https://doi.org/10.1038/nature02214 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wong, T. W. et al. Hantavirus infections in humans and commensal rodents in Singapore. Trans. R. Soc. Trop. Med. Hyg. 83, 248–251. https://doi.org/10.1016/0035-9203(89)90666-4 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dubock, A. Pulsed baiting – A new technique for high potency, slow acting rodenticides. Proc. Vertebr. Pest Conf. 10, 123–136 (1982).
    Google Scholar 
    Garg, N., Singla, N., Jindal, V. & Babbar, B. Studies on bromadiolone resistance in Rattus rattus populations from Punjab, India. Pestic. Biochem. Physiol. 139, 24–31 (2017).CAS 
    Article 

    Google Scholar 
    Song, Y., Lan, Z. & Kohn, M. H. Mitochondrial DNA phylogeography of the Norway rat. PLoS ONE 9, e88425. https://doi.org/10.1371/journal.pone.0088425 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aplin, K. P. et al. Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS ONE 6, e26357. https://doi.org/10.1371/journal.pone.0026357 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyle, C. M. Case of apparent resistance of Rattus norvegicus Berkenhout to anticoagulant poisons. Nature 188, 517. https://doi.org/10.1038/188517a0 (1960).ADS 
    Article 

    Google Scholar 
    Jackson, W. B. & Kaukeinen, D. Resistance of wild Norway rats in North Carolina to warfarin rodenticide. Science 176, 1343 (1972).ADS 
    CAS 
    Article 

    Google Scholar 
    Ma, X. et al. Low warfarin resistance frequency in Norway rats in two cities in China after 30 years of usage of anticoagulant rodenticides. Pest Manag. Sci. 74, 2555–2560. https://doi.org/10.1002/ps.5040 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Markussen, M. D. K., Heiberg, A.-C., Fredholm, M. & Kristensen, M. Differential expression of cytochrome P450 genes between bromadiolone-resistant and anticoagulant-susceptible Norway rats: A possible role for pharmacokinetics in bromadiolone resistance. Pest Manag. Sci. 64, 239–248. https://doi.org/10.1002/ps.1506 (2008).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition

    Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.CAS 
    PubMed 

    Google Scholar 
    Danovaro R, Corinaldesi C, Dell’Anno A, Fuhrman JA, Middelburg JJ, Noble RT, et al. Marine viruses and global climate change. Fems Microbiol Rev. 2011;35:993–1034.CAS 
    PubMed 

    Google Scholar 
    Suttle CA. Marine viruses – major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 

    Google Scholar 
    Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.CAS 
    PubMed 

    Google Scholar 
    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2016;532:465–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.CAS 
    PubMed 

    Google Scholar 
    Peduzzi P, Weinbauer MG. Effect of Concentrating the Virus-Rich 2-200-Nm Size Fraction of Seawater on the Formation of Algal Flocs (Marine Snow). Limnol Oceanogr. 1993;38:1562–5.
    Google Scholar 
    Wilhelm SW, Suttle CA. Viruses and Nutrient Cycles in the Sea – Viruses play critical roles in the structure and function of aquatic food webs. Bioscience. 1999;49:781–8.
    Google Scholar 
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    Sullivan MB, Weitz JS, Wilhelm S. Viral ecology comes of age. Env Microbiol Rep. 2017;9:33–5.
    Google Scholar 
    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Starr EP, Nuccio EE, Pett-Ridge J, Banfield JF, Firestone MK. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc Natl Acad Sci USA. 2019;116:25900–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e0076–18.
    Google Scholar 
    Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol. 2017;4:201–19.CAS 
    PubMed 

    Google Scholar 
    Emerson JB. Soil viruses: a new hope. mSystems. 2019;4:e00120–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liang XL, Zhang YY, Wommack KE, Wilhelm SW, DeBruyn JM, Sherfy AC, et al. Lysogenic reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity. Soil Biol Biochem. 2020;144:107767.CAS 

    Google Scholar 
    Liang XL, Wang YS, Zhang Y, Zhuang J, Radosevich M. Viral abundance, community structure and correlation with bacterial community in soils of different cover plants. Appl Soil Ecol. 2021;168:104138.
    Google Scholar 
    Roy K, Ghosh D, DeBruyn JM, Dasgupta T, Wommack KE, Liang X, et al. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front. Microbiol. 2020;11:1494.PubMed 
    PubMed Central 

    Google Scholar 
    Williamson KE, Radosevich M, Wommack KE. Abundance and diversity of viruses in six Delaware soils. Appl Environ Microb. 2005;71:3119–25.CAS 

    Google Scholar 
    Lee S, Sieradzki ET, Nicolas AM, Walker RL, Firestone MK, Hazard C, et al. Methane-derived carbon flows into host-virus networks at different trophic levels in soil. Proc Natl Acad Sci USA. 2021;118:e2105124118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    ter Horst AM, Santos-Medellin C, Sorensen JW, Zinke LA, Wilson RM, Johnston ER, et al. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Microbiome. 2021;9:233.PubMed 
    PubMed Central 

    Google Scholar 
    Wu RN, Davison MR, Gao YQ, Nicora CD, Mcdermott JE, Burnum-Johnson KE, et al. Moisture modulates soil reservoirs of active DNA and RNA viruses. Commun Biol. 2021;4:992.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trubl G, Kimbrel J, Liquet-Gonzalez J, Nuccio E, Weber P, Pett-Ridge J, et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome. 2021;9:1–15.
    Google Scholar 
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. Mbio. 2019;10:e02287–19.PubMed 
    PubMed Central 

    Google Scholar 
    Braga LPP, Spor A, Kot W, Breuil MC, Hansen LH, Setubal JC, et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome. 2020;8:52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8:64–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos-Medellin C, Zinke LA, Ter Horst AM, Gelardi DL, Parikh SJ, Emerson JB. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. 2021;15:1956–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Srinivasiah S, Lovett J, Ghosh D, Roy K, Fuhrmann JJ, Radosevich M, et al. Dynamics of autochthonous soil viral communities parallels dynamics of host communities under nutrient stimulation. Fems Microbiol Ecol. 2015;91:fiv063.PubMed 

    Google Scholar 
    Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature. 2001;414:169–72.CAS 
    PubMed 

    Google Scholar 
    Glassman SI, Weihe C, Li JH, Albright MBN, Looby CI, Martiny AC, et al. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci USA. 2018;115:11994–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strickland MS, Lauber C, Fierer N, Bradford MA. Testing the functional significance of microbial community composition. Ecology. 2009;90:441–51.PubMed 

    Google Scholar 
    Matulich KL, Martiny JBH. Microbial composition alters the response of litter decomposition to environmental change. Ecology. 2015;96:154–63.PubMed 

    Google Scholar 
    Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:348.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anthony MA, Crowther TW, Maynard DS, van den Hoogen J, Averill C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth. 2020;2:349–60.
    Google Scholar 
    Albright MBN, Johansen R, Thompson J, Lopez D, Gallegos-Graves LV, Kroeger ME, et al. Soil bacterial and fungal richness forecast patterns of early pine litter decomposition. Front Microbiol. 2020;11:542220.PubMed 
    PubMed Central 

    Google Scholar 
    Kuzyakov Y, Mason-Jones K. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol Biochem. 2018;127:305–17.CAS 

    Google Scholar 
    Trubl G, Hyman P, Roux S, Abedon ST. Coming-of-age characterization of soil viruses: a user’s guide to virus isolation, detection within metagenomes, and viromics. Soil Syst. 2020;4:23.CAS 

    Google Scholar 
    Goller PC, Haro-Moreno JM, Rodriguez-Valera F, Loessner MJ, Gomez-Sanz E. Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil. Microbiome. 2020;8:17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nat Protoc. 2009;4:470–83.CAS 
    PubMed 

    Google Scholar 
    Lo CC, Chain PSG. Rapid evaluation and quality control of next generation sequencing data with FaQCs. Bmc Bioinform. 2014;15:366.
    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Current protocols in bioinformatics. 2020;70:e102.CAS 
    PubMed 

    Google Scholar 
    Kieft K, Zhou ZC, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39:578–85.CAS 
    PubMed 

    Google Scholar 
    Nayfach S, Paez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol. 2021;6:960–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNair K, Zhou C, Dinsdale EA, Souza B, Edwards RA. PHANOTATE: a novel approach to gene identification in phage genomes. Bioinformatics. 2019;35:4537–42.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60.CAS 
    PubMed 

    Google Scholar 
    de Souza RS, Okura VK, Armanhi JS, Jorrin B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774.PubMed 
    PubMed Central 

    Google Scholar 
    Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, MacPhee R, et al. Microbiome profiling by illumina sequencing of combinatorial sequencetagged PCR products. PLoS ONE. 2010;5:e15406.PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 

    Google Scholar 
    Albright MBN, Sevanto S, Gallegos-Graves L, Dunbar J. Biotic interactions are more important than propagule pressure in microbial community invasions. Mbio. 2020;11:e02089–20.PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2020. R package version 2.5-7. https://CRAN.Rproject.org/package=veganTeam RC R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.De Caceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.PubMed 

    Google Scholar 
    Frank E Harrell Jr. wcfCDamo. Hmisc: Harrell Miscellaneous. 2021. R packageversion 4.6-0. https://CRAN.R-project.org/package=HmiscKuhn M, Jackson S, Cimentada J corrr: Correlations in R. 2020. R package version 0.4.3. https://CRAN.R-project.org/package=corrrSpearman C. The7proof and measurement of association7between two things. Am J Psychol. 1904;15:72–101.
    Google Scholar 
    Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: network visualizations of relationships in psychometric data. J Stat Softw. 2012;48:1–18.
    Google Scholar 
    Kimura M, Jia ZJ, Nakayama N, Asakawa S. Ecology of viruses in soils: Past, present and future perspectives. Soil Sci Plant Nutr. 2008;54:1–32.
    Google Scholar 
    Williamson KE, Schnitker JB, Radosevich M, Smith DW, Wommack KE. Cultivationbased assessment of lysogeny among soil bacteria. Microb Ecol. 2008;56:437–47.PubMed 

    Google Scholar 
    Berns AE, Philipp H, Narres HD, Burauel P, Vereecken H, Tappe W. Effect of gammasterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur J Soil Sci. 2008;59:540–50.CAS 

    Google Scholar 
    Tian QX, He HB, Cheng WX, Zhang XD. Pulse-dynamic and monotonic decline patterns of soil respiration in long term laboratory microcosms. Soil Biol Biochem. 2014;68:329–36.CAS 

    Google Scholar 
    Emerson JB, Adams RI, Roman CMB, Brooks B, Coil DA, Dahlhausen K, et al. Schrodinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome. 2017;5:86.PubMed 
    PubMed Central 

    Google Scholar 
    Halgasova N, Ugorcakova J, Gerova M, Timko J, Bukovska G. Isolation and characterization of bacteriophage PhiBP from Paenibacillus polymyxa CCM 7400. FEMS Microbiol Lett. 2010;305:128–35.CAS 
    PubMed 

    Google Scholar 
    Klyczek KK, Bonilla JA, Jacobs-Sera D, Adair TL, Afram P, Allen KG, et al. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages. PLoS ONE. 2017;12:e0180517.PubMed 
    PubMed Central 

    Google Scholar 
    Li P, Bhattacharjee P, Wang S, Zhang L, Ahmed I, Guo L. Mycoviruses in fusarium species: an update. Front Cell Infect Microbiol. 2019;9:257.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghabrial SA, Caston JR, Jiang DH, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479:356–68.PubMed 

    Google Scholar 
    Lopez-Mondejar R, Zuhlke D, Vetrovsky T, Becher D, Riedel K, Baldrian P. Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels. 2016;9:104.PubMed 
    PubMed Central 

    Google Scholar 
    Thakur V, Kumar V, Kumar S, Singh D. Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya. Can J Microbiol. 2018;64:798–808.CAS 
    PubMed 

    Google Scholar 
    Panagiotou G, Kekos D, Macris BJ, Christakopoulos P. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crop. Prod. 2003;18:37–45.CAS 

    Google Scholar 
    Zheng HP, Yang TJ, Bao YZ, He PP, Yang KM, Mei XL, et al. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biol Biochem. 2021;157:108230.CAS 

    Google Scholar 
    Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol Biochem. 2017;115:433–41.CAS 

    Google Scholar 
    Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25:193.PubMed 
    PubMed Central 

    Google Scholar 
    Carreira C, Lonborg C, Kuhl M, Lillebo AI, Sandaa RA, Villanueva L, et al. Fungi and viruses as important players in microbial mats. Fems Microbiol Ecol. 2020;96(11):fiaa187.CAS 
    PubMed 

    Google Scholar 
    Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.PubMed 
    PubMed Central 

    Google Scholar 
    Sieradzki ET, Ignacio-Espinoza JC, Needham DM, Fichot EB, Fuhrman JA. Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes. Nat Commun. 2019;10:1169.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Intralocus conflicts associated with a supergene

    Barrett, R. D. H., Rogers, S. M. & Schluter, D. Environment specific pleiotropy facilitates divergence at the ectodysplasin locus in threespine stickleback. Evolution 63, 2831–2837 (2009).PubMed 

    Google Scholar 
    Johnston, S. E. et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502, 93–95 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Christie, M. R., McNickle, G. G., French, R. A. & Blouin, M. S. Life history variation is maintained by fitness trade-offs and negative frequency-dependent selection. Proc. Natl Acad. Sci. 115, 4441–4446 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zajitschek, F. & Connallon, T. Antagonistic pleiotropy in species with separate sexes, and the maintenance of genetic variation in life-history traits and fitness. Evolution 72, 1306–1316 (2018).PubMed 

    Google Scholar 
    Mérot, C., Llaurens, V., Normandeau, E., Bernatchez, L. & Wellenreuther, M. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. Nat. Commun. 11, 1–11 (2020).Bonduriansky, R. & Chenoweth, S. F. Intralocus sexual conflict. Trends Ecol. Evol. 24, 280–288 (2009).PubMed 

    Google Scholar 
    Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. 98, 1671–1675 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Connallon, T. & Clark, A. G. Balancing selection in species with separate sexes: Insights from fisher’s geometric model. Genetics 197, 991–1006 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Mokkonen, M. et al. Negative frequency-dependent selection of sexually antagonistic alleles in Myodes glareolus. Science 334, 972–974 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Connallon, T. & Matthews, G. Cross‐sex genetic correlations for fitness and fitness components: Connecting theoretical predictions to empirical patterns. Evol. Lett. 3, 254–262 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Abbott, J., Rios-Cardenas, O. & Morris, M. R. Insights from intralocus tactical conflict: adaptive states, interactions with ecology and population divergence. Oikos 128, 1525–1536 (2019).
    Google Scholar 
    Morris, M. R., Goedert, D., Abbott, J. K., Robinson, D. M. & Rios-Cardenas, O. Intralocus tactical conflict and the evolution of alternative reproductive tactics. Adv Study Behav. 45, 447–478 (2013).Kim, K. W. et al. A sex-linked supergene controls sperm morphology and swimming speed in a songbird. Nat. Ecol. Evol. 1, 1168–1176 (2017).PubMed 

    Google Scholar 
    Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, 288–294 (2014).
    Google Scholar 
    Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution. Heredity 113, 1–8 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dobzhansky, T. Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35, 288–302 (1950).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Küpper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).PubMed 

    Google Scholar 
    Lamichhaney, S. et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat. Genet. 48, 84–88 (2016).CAS 
    PubMed 

    Google Scholar 
    Horton, B. M. et al. Estrogen receptor α polymorphism in a species with alternative behavioral phenotypes. Proc. Natl Acad. Sci. 111, 1–6 (2014).
    Google Scholar 
    Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving inversions. Trends Ecol. Evol. 34, 239–248 (2019).PubMed 

    Google Scholar 
    Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33, 427–440 (2018).PubMed 

    Google Scholar 
    Knief, U. et al. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success. Nat. Ecol. Evol. 1, 1177–1184 (2017).PubMed 

    Google Scholar 
    Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).Keller, L. & Ross, K. G. Selfish genes: A green beard in the red fire ant. Nature 394, 573–575 (1998).ADS 
    CAS 

    Google Scholar 
    Avril, A., Purcell, J., Béniguel, S. & Chapuisat, M. Maternal effect killing by a supergene controlling ant social organization. Proc. Natl Acad. Sci. 117, 17130–17134 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilmartin, P. M. & Li, J. Homing in on heterostyly. Heredity 105, 161–162 (2010).CAS 
    PubMed 

    Google Scholar 
    Loveland, J. L., Lank, D. B. & Küpper, C. Gene expression modification by an autosomal inversion associated with three male mating morphs. Front. Genet. https://doi.org/10.3389/fgene.2021.641620 (2021).van Rhijn, J. G. The ruff. (T. & A.D. Poyser, 1991).Giraldo-Deck, L. M. et al. Development of intraspecific size variation in black coucals, white-browed coucals and ruffs from hatching to fledging. J. Avian Biol. 51, 1–14 (2020).
    Google Scholar 
    Lank, D. B., Farrell, L. L., Burke, T., Piersma, T. & McRae, S. B. A dominant allele controls development into female mimic male and diminutive female ruffs. Biol. Lett. 9, 15–18 (2013).
    Google Scholar 
    Loveland, J. L. et al. Functional differences in the hypothalamic-pituitary-gonadal axis are associated with alternative reproductive tactics based on an inversion polymorphism. Horm. Behav. 127, 104877 (2021).CAS 
    PubMed 

    Google Scholar 
    Verkuil, Y. I. et al. The interplay between habitat availability and population differentiation: A case study on genetic and morphological structure in an inland wader (Charadriiformes). Biol. J. Linn. Soc. 106, 641–656 (2012).
    Google Scholar 
    Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Llaurens, V., Whibley, A. & Joron, M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol. Ecol. 26, 2430–2448 (2017).PubMed 

    Google Scholar 
    Christians, J. K. Avian egg size: Variation within species and inflexibility within individuals. Biol. Rev. Camb. Philos. Soc. 77, 1–26 (2002).PubMed 

    Google Scholar 
    Pick, J. L. et al. Artificial selection reveals the energetic expense of producing larger eggs. Front. Zool. 13, 1–10 (2016).
    Google Scholar 
    Jha, A. R. et al. Whole-genome resequencing of experimental populations reveals polygenic basis of egg-size variation in Drosophila melanogaster. Mol. Biol. Evol. 32, 2616–2632 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verhoeven, M. A. et al. Variation in egg size of black-tailed godwits. Ardea 107, 291–302 (2019).
    Google Scholar 
    Birchard, G. F. & Deeming, D. C. Egg allometry: influences of phylogeny and the altricial-precocial continuum. in Nests, eggs, and incubation (eds. Deeming, D. C. & Reynolds, S. J.) 97–112 (Oxford University Press, 2015).Amat, J. A., Fraga, R. M. & Arroyo, G. M. Intraclutch egg-size variation and offspring survival in the Kentish Plover Charadrius alexandrinus. Ibis (Lond. 1859). 143, 17–23 (2001).
    Google Scholar 
    Rahn, H. & Paganelli, C. V. Relationship of avian egg weight to body weight. Auk 92, 750–765 (1975).
    Google Scholar 
    Krist, M. Egg size and offspring quality: A meta-analysis in birds. Biol. Rev. 86, 692–716 (2011).PubMed 

    Google Scholar 
    Blomqvist, D., Johansson, O. C. & Go, F. Parental quality and egg size affect chick survival in a precocial bird, the lapwing Vanellus vanellus. Oecologia 110, 18–24 (1997).ADS 
    PubMed 

    Google Scholar 
    Cabana, G., Frewin, A., Peters, R. H. & Randall, L. The effect of sexual size dimorphism on variations in reproductive effort of birds and mammals. Am. Nat. 120, 17–25 (1982).
    Google Scholar 
    Weatherhead, P. J. & Teather, K. L. Sexual size dimorphism and egg-size allometry in birds. Evolution 48, 671–678 (1994).PubMed 

    Google Scholar 
    Teather, K. L. & Weatherhead, P. J. Sex-specific energy requirements of great-tailed grackle (Quiscalus mexicanus). J. Anim. Ecol. 57, 659–668 (1988).
    Google Scholar 
    Tschirren, B., Postma, E., Gustafsson, L., Groothuis, T. G. G. & Doligez, B. Natural selection acts in opposite ways on correlated hormonal mediators of prenatal maternal effects in a wild bird population. Ecol. Lett. 17, 1310–1315 (2014).PubMed 

    Google Scholar 
    Hegyi, G. et al. Yolk androstenedione, but not testosterone, predicts offspring fate and reflects parental quality. Behav. Ecol. 22, 29–38 (2011).
    Google Scholar 
    Berdan, E. L., Blanckaert, A., Butlin, R. K. & Bank, C. Deleterious mutation accumulation and the long-term fate of chromosomal inversions. PLoS Genet. e1009411 https://doi.org/10.1371/journal.pgen.1009411 (2021).Jay, P. et al. Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat. Genet. 53, 288–293 (2021).CAS 
    PubMed 

    Google Scholar 
    Stolle, E. et al. Degenerative expansion of a young supergene. Mol. Biol. Evol. 36, 553–561 (2018).PubMed Central 

    Google Scholar 
    Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stuglik, M. T., Babik, W., Prokop, Z. & Radwan, J. Alternative reproductive tactics and sex-biased gene expression: The study of the bulb mite transcriptome. Ecol. Evol. 4, 623–632 (2014).
    Google Scholar 
    Gamble, M. M. & Calsbeek, R. G. Intralocus sexual conflict can maintain alternative reproductive tactics. bioRxiv Prepr. 6 (2021).Mank, J. E. Population genetics of sexual conflict in the genomic era. Nat. Rev. Genet. 18, 721–730 (2017).CAS 
    PubMed 

    Google Scholar 
    Jukema, J. & Piersma, T. Permanent female mimics in a lekking shorebird. Biol. Lett. 2, 161–164 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Lank, D. B. & Smith, C. M. Conditional lekking in ruff (Philomachus pugnax). Behav. Ecol. Sociobiol. 20, 137–145 (1986).
    Google Scholar 
    Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).CAS 
    PubMed 

    Google Scholar 
    von Engelhardt, N. & Groothuis, T. G. G. Maternal Hormones in Avian Eggs. Hormones and Reproduction of Vertebrates – Volume 4. https://doi.org/10.1016/B978-0-12-374929-1.10004-6 (2011).Schielzeth, H. & Bolund, E. Patterns of conspecific brood parasitism in zebra finches. Anim. Behav. 79, 1329–1337 (2010).
    Google Scholar 
    Colwell, M. A. Egg-laying intervals in shorebirds. Wader Study Gr. Bull. 111, 50–59 (2006).
    Google Scholar 
    Goymann, W. et al. Testosterone and corticosterone during the breeding cycle of equatorial and European stonechats (Saxicola torquata axillaris and S. t. rubicola). Horm. Behav. 50, 779–785 (2006).CAS 
    PubMed 

    Google Scholar 
    Goymann, W., East, M. L. & Hofer, H. Androgens and the role of female ‘hyperaggressiveness’ in spotted hyenas (Crocuta crocuta). Horm. Behav. 39, 83–92 (2001).CAS 
    PubMed 

    Google Scholar 
    Schwabl, H. Yolk is a source of maternal testosterone for developing birds. Neurobiology 90, 11446–11450 (1993).CAS 

    Google Scholar 
    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2006).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2020).Giraldo-Deck, L. M. et al. Accepted version of paper data and code of manuscript: Intralocus conflicts associated with a supergene. Nature Communications (2022). Edmond Repository https://doi.org/10.17617/3.71.Therneau, T. M. & Grambsch, P. M. The Cox Model. in Modeling Survival Data: Extending the Cox Model (eds. Therneau, T. M. & Grambsch, P. M.) 39–77 (Springer US, 2000). More

  • in

    Savannahs store carbon despite frequent fires

    NEWS AND VIEWS
    16 March 2022

    Savannahs store carbon despite frequent fires

    An analysis of carbon stored in the plants and soil of an African savannah suggests that atmospheric carbon dioxide concentrations — and thus global warming — might be less affected by frequent fires than we thought.

    Niall P. Hanan

    0
    &

    Anthony M. Swemmer

    1

    Niall P. Hanan

    Niall P. Hanan is in the Jornada Basin Long-Term Ecological Research programme, Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Anthony M. Swemmer

    Anthony M. Swemmer is in the South African Environment Observation Network, Phalaborwa 1390, South Africa.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Savannahs burn more frequently than any other biome, and tropical savannahs alone account for 62% of the carbon dioxide emitted from fires globally1. Strategies involving fire suppression2 or the planting of trees3 in savannahs have therefore been proposed as a means of reducing CO2 emissions and increasing carbon sequestration, thus potentially contributing to the mitigation of global climate change. But it remains unclear whether these measures would make a substantial difference to the accumulation of CO2 in the atmosphere. Writing Nature, Zhou et al.4 analyse a long-term fire experiment in Kruger National Park, South Africa, and reveal that the total amount of carbon stored in the ecosystem increases more slowly than expected in the absence of fire — challenging our assumptions about how fire affects carbon storage in savannahs.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 603, 395-396 (2022)
    doi: https://doi.org/10.1038/d41586-022-00689-0

    Referencesvan der Werf, G. R. et al. Earth Syst. Sci. Data 9, 697–720 (2017).Article 

    Google Scholar 
    Russell-Smith, J. et al. Clim. Change 140, 47–61 (2017).Article 

    Google Scholar 
    Bastin, J.-F. et al. Science 365, 76–79 (2019).PubMed 
    Article 

    Google Scholar 
    Zhou, Y. et al. Nature 603, 445–449 (2022).Article 

    Google Scholar 
    Pausas, J. G. & Bond, W. J. Trends Ecol. Evol. 35, 767–775 (2020).PubMed 
    Article 

    Google Scholar 
    Hanan, N. P., Sea, W. B., Dangelmayr, G. & Govender, N. Am. Nat. 171, 851–856 (2008).PubMed 
    Article 

    Google Scholar 
    Higgins, S. I. et al. Ecology 88, 1119–1125 (2007).PubMed 
    Article 

    Google Scholar 
    Veldman, J. W. et al. BioScience 65, 1011–1018 (2015).Article 

    Google Scholar 
    Bayen, P., Lykke, A. M. & Thiombiano, A. J. For. Res. 27, 313–320 (2016).Article 

    Google Scholar 
    Govender, N., Trollope, W. S. W. & Van Wilgen, B. W. J. Appl. Ecol. 43, 748–758 (2006).Article 

    Google Scholar 
    Download references

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    Read the paper: Limited increases in savanna carbon stocks over decades of fire suppression

    Southeast Amazonia is no longer a carbon sink

    Soils linked to climate change

    See all News & Views

    Subjects

    Ecology

    Climate change

    Latest on:

    Ecology

    Limited increases in savanna carbon stocks over decades of fire suppression
    Article 16 MAR 22

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Forest protection: invest in professionals and their careers
    Correspondence 15 MAR 22

    Climate change

    On the role of atmospheric model transport uncertainty in estimating the Chinese land carbon sink
    Matters Arising 16 MAR 22

    New land-use-change emissions indicate a declining CO2 airborne fraction
    Article 16 MAR 22

    Antarctic sea ice hits lowest minimum on record
    News 11 MAR 22

    Jobs

    Research Associate / Postdoc (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Research Associate (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Call for applications for Multiple PhD Positions

    IMPRS for Many Particle Systems in Structured Environments
    Dresden, Germany

    Postdoctoral Fellow in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

    The University of British Columbia (UBC)
    Vancouver, Canada More

  • in

    Risk of colloidal and pseudo-colloidal transport of actinides in nitrate contaminated groundwater near a radioactive waste repository after bioremediation

    Characteristics of environmental samples before and after bioremediationTable 1 lists the parameters of the samples collected from the upper aquifer (12 m) at three-time points. In sample 1, before bioremediation, the content of nitrate ions reached 2517 mg/L. Against this background, in an oxidizing environment, a high content of uranium up to 1.1 mg/L and plutonium up to 0.7 Bq/L was observed. The content of organic matter did not exceed 5.9 mg/L. The suspension contained a significant amount of clay particles. Uranium in sample 1 was predominantly in dissolved form or nanoaggregates less than 5 nm in size (Fig. 1).Figure 1Percentage distribution of uranium in the filtrate during sequential filtration of samples 1 and 3. Concentrations of U in the filtrates were determined by the ICP-MS method.Full size imageIn sample 2, a year after the injection of organic matter, the content of nitrate ions reached 320 mg/L, while the values of the redox potential continued to remain in the reduction region (− 175 mV) as they were 3 months after bioremediation. The content of organic matter reached 57.5 mg/L. The uranium content dropped to 80 μg/L, and the plutonium content was below the detection limit of the device.2 years after injection (sample 3), the content of nitrate ions increased to 970 mg/L, the redox potential entered the oxidizing region and reached + 70 mV, while no significant release of uranium into solution occurred. According to the distribution scheme of uranium (Fig. 1), most of it was associated with large particles of more than 400 microns in size of clay and ferruginous nature. The plutonium content was below the sensitivity of the method. Thus, despite the fact that after a single injection of organic matter, after two years the content of nitrate ions increased markedly and the value of the redox potential returned to the oxidizing region. Nevertheless, it should be mentioned no significant remobilization of uranium and plutonium occurred. It is important to note that according to the data in Table 1, a decrease in the content of suspended matter was observed in the course of bioremediation. A discussion of the content of organic matter in the suspended matter will be carried out in the next section.Figure 2 shows electronic maps of micrographs of a filter with a maximum pore size after filtration of sample 3. It has been established that U is mainly associated with large particles (suspensions) of aluminosilicate and ferrous nature. The distribution of Al, Si, Fe and U on the surface of the filter cake was fairly uniform.Figure 2Electron micrographs of the filters with a pore size of 2400 nm surface after sample 3 filtration with elements maps (A) Al, (B) Si, (C) Fe, (D) U (SEM EDX analysis).Full size imageAlthough at low plutonium concentration it was not possible to see it by the SEM EDX method on clays, it is well known that clay minerals montmorillonite and kaolinite could have been carrier phases for Pu39. In work on the analysis of colloidal transport of radionuclides in groundwater at Yucca mountain40 uranium was found to be dominantly associated with an unidentified phase rich in Si and Fe while Pu was shown to be preferentially adsorbed onto Mn-oxides in the presence of Fe-oxides.Laboratory simulation of biogenic associative colloids formation in environmental water samples, stimulated by H2
    In a laboratory experiment with environmental samples, molecular hydrogen was used to stimulate microbial processes in order to avoid changing the content of the organic matter.Filtration studies (step-by-step filtration, Fig. 3) revealed that only 8% of organic matter in sample 1 was represented by suspended particles over 1200 nm in size. These were bacterial cells and other large particles (fulvic and humate acids, etc.). More than 50% of organic matter was in soluble form or in the form of colloidal particles up to 100 nm. In general, the distribution of organic matter in sample 3 was similar to sample 1—about 60% of organic matter was in dissolved or colloidal form and about 10% in the form of large particles.Figure 3Organic matter distribution by particle size (nm) in samples 1 and 3 before and after (B) microbial activation. Organic matter in the filtrate after each filtration step was measured using an Elementar Vario EL III CHN analyzer.Full size imageAn organic carbon content of 100 and 200 mg/L was observed in samples 1 and 2, respectively, after microbial activation by molecular hydrogen.After day 30 of incubation in sample 1 and after microbial processes, there was a noticeable increase in the content of large organic particles; their contribution reached 50%. In this case, the content of dissolved organic matter and organic particles of colloidal size decreased noticeably (their total contribution did not exceed 10% probably due to their consumption or aggregation into larger fractions). The content of organic particles with a size range of 220–450 nm had noticeably increased.In sample 3, a noticeable decrease in dissolved and colloidal organic matter was also noted; the content of organic particles of 220–100 nm and particles of 1200–400 nm increased markedly. We believe that the increase in organic particles in both samples in the range of 100–1200 nm is associated with an increase in the content of bacterial cells. Changes in the intensity of light scattering provided the most relevant information (Table 2).Table 2 The intensity of light scattering (kHz) by suspended particles of different fractions before and after day 30 of the ongoing microbial process in the stratal water (Light scattering intensity was determined by Zetasizer Nano ZS, Malvern Panalytical).Full size tableIn sample 1, before stimulation, the intensity of light scattering was at its maximum in the filtrate at 450–220 nm. In the filtrate less than 10 nm, light scattering was not detected. In filtrates larger than 450 nm and 220–50 nm, the values of the light scattering intensity were close. After microbial activation with hydrogen, a tenfold change in the intensity of light scattering was observed in the filtrate with particles larger than 2400 nm. Also, there was an almost twofold increase in filtrates with a particle size of 450–2400 nm, which is probably associated with the appearance of cells in the solution.In sample 2, before microbial activation, the maximum intensity of light scattering was observed in the filtrate with particle sizes in the range of 450–1200 nm. After microbial activation, the intensity of light scattering significantly increased in all filtrates. It is important to note that the light scattering of particles with a size characteristic of colloids (50–100 nm) increased by more than 10 times. The different behavior after hydrogen activation of two samples can probably be explained by the fact that in sample 3 the microbial community was initially more active after the injection of organic matter into the formation. In both samples, a noticeable increase in the content of coarse suspensions may indicate the agglomeration of clay suspensions by microbial polysaccharides. According to Ivanov et al.41, a similar process is observed for soil and clay particles.Laboratory simulation of the formation of biogenic associative colloids in model and environmental water samples with actinidesThe second series of experiments was carried out to evaluate the behavior of U, Np, and Pu upon activation of microbial processes. At the first stage of the laboratory simulation, a significant enlargement of large particles possibly caused by the agglomeration of natural clay and ferruginous particles due to microbial polysaccharides in natural samples was found. An important task of the second stage of the work was to assess the contribution of ferruginous and clay particles to the distribution of actinides over particles with different sizes in model solutions.When activating the microbial community in groundwater, a mixture of whey and acetate was used. However, in a laboratory simulation of this process, we decided not to use such a complex multicomponent substrate like whey. The whey contained a lot of organic suspensions and its use in this experiment would have led to even more uncertainties. A mixture of highly soluble sodium acetate and glucose substrates was added to the samples.Table 3 shows the data on the content of polysaccharides and proteins in solutions during microbial processes in samples.Table 3 Polysaccharide (A) (mg/L) and protein (B) (mg/ml) concentrations in the model solutions during incubation. Polysaccharide determination was carried out by the phenol–sulfuric acid method according to Dubois 34. Protein content was measured with the Folin phenol reagent according to Lowry 35.Full size tableNo significant increase of cells or polysaccharide content was recorded in samples with no organic matter additions. A low protein content was found in the sample NWO, which indicates that some content of cells remained in it after bioremediation. An increase in the concentration of the biomass, with peak values on day 10 and polysaccharides on day 15, was observed in all samples with additions of organic matter (O) (Table 3). The maximum accumulation of polysaccharides and protein was observed for the natural sample.On the 30th day of the experiment, there was no visible sediment in the MW sample, in the rest of the samples, there was a large amount of sediment at the bottom of the test tubes. At the same time, the solution looked almost transparent in both the MW model water sample and the MWIO sample with added iron. The average hydrodynamic radii of colloidal particles were obtained on days 3, 7, 14, 21, and 28 of the experiment (Table 4). In model water samples without added organic compounds, colloidal particles were not formed. However, by the end of the experiment, particle formation was observed. This was probably due to the transformation of colloidal matter originating from the natural water aliquot or as a result of low microbial activity.Table 4 Hydrodynamic radii of colloidal particles during the experiment, nm (The measurement accuracy was at least 2%.).Full size tableIn the presence of glucose and acetate, the emergence of the colloidal phase and a gradual increase in particle size were observed from the fifth day of incubation. The average stable hydrodynamic radii of the particles amounted to ~ 100 nm. In the presence of clay, stable colloids with the average hydrodynamic radii of 80–90 nm were formed. Stimulation of microbial processes with glucose and acetate resulted in increased particle size and partial sedimentation (samples MWO through day 20, MWIO through day 15, and NWO through day 30). After that, the sedimentation of large particles took place, and particles of smaller sizes remained in the solution.The addition of iron to the model system resulted in the formation of the particles with hydrodynamic radii of ~ 100 nm. The stimulation of the biological processes resulted in increased particle size, the formation of new particles (by day 21), and complete particle sedimentation by day 30.An important parameter used to evaluate the stability of colloidal particles in the system is the value of particles’ zeta potential. When no organic matter was added, the charge of preliminarily filtered 100–50 nm particles equaled − 29, − 26.2 mV in model water, and − 16, − 12 mV in natural water, which indicates low stability of such particles (see Table 2 Supplementary). A shift in charge of particles towards zero and positive values was observed when microbial processes were running, and this hints at the stabilization of particles in the solution.The diagrams of actinide distribution by size of colloidal particles in solutions of different nature before and after microbial stimulation on day 30 are shown in Fig. 4.Figure 4Actinide distribution by size of colloidal particles in solutions of different nature depending on the incubation time, normalized % in the filtrate. (I-before, II-after microbial stimulation on day 30). Actinides (233U, 237Np, and 239Pu) were added in the concentrations of 10–8 M/l per sample. Concentrations of 233U 239Pu were determined by liquid scintillation (Tri-Carb-3180 TR/SL liquid scintillation spectrometer) (“Perkin-Elmer,” USA).Full size imageIn the model water Pu(IV) forms true colloidal associates (up to 50%) due to deep hydrolytic polymerization. Np(V) was also partially sorbed due to slight disproportionation (by 10%). U(VI) was a stable component of soluble carbonate complexes. In the model water, increased pH and decreased Eh result in the occurrence of 99% Pu, 30% Np, and 10% U within large colloidal particles. Ultrafiltration, however, is not suitable for the assessment of the possible actinide reduction and biosorption contribution to the process of colloid formation.The microbiota and clay promote the stabilization of Pu, U, and Np in large colloidal particles. The addition of iron had no effect on actinide colloid formation, although iron caused a significant increase in neptunium colloid formation in the presence of the microbiota. This is probably due to the formation of iron-polysaccharide complexes42, which also have a high ability to chelate actinides.In Bentley More

  • in

    Larvicidal and adulticidal effects of some Egyptian oils against Culex pipiens

    Jones, R. T., Ant, T. H., Cameron, M. M. & Logan, J. G. Vol. 376 (The Royal Society, 2021).Abdel-Shafi, I. R. et al. Mosquito identification and molecular xenomonitoring of lymphatic filariasis in selected endemic areas in Giza and Qualioubiya Governorates, Egypt. J. Egypt. Soc. Parasitol. 46, 93–100 (2016).PubMed 

    Google Scholar 
    Selim, A., Radwan, A., Arnaout, F. & Khater, H. The recent update of the situation of west nile fever among equids in Egypt after three decades of missing information. Pakistan Veterinary J. 40 (2020).Selim, A., Megahed, A., Kandeel, S., Alouffi, A. & Almutairi, M. M. West Nile virus seroprevalence and associated risk factors among horses in Egypt. Sci. Rep. 11, 1–9 (2021).ADS 

    Google Scholar 
    Selim, A. & Radwan, A. Seroprevalence and molecular characterization of West Nile Virus in Egypt. Compar. Immunol. Microbiol. Infectious Diseases. 71, 101473 (2020).
    Google Scholar 
    Jones, R. T., Ant, T. H., Cameron, M. M. & Logan, J. G. (The Royal Society, 2021).Selim, A., Manaa, E., Abdelhady, A., Ben Said, M. & Sazmand, A. Serological and molecular surveys of Anaplasma spp. in Egyptian cattle reveal high A. marginale infection prevalence.Selim, A. et al. Seroprevalence and risk factors associated with Canine Leishmaniasis in Egypt. Veterinary Sci. 8, 236 (2021).
    Google Scholar 
    Selim, A., Megahed, A. A., Kandeel, S. & Abdelhady, A. Risk factor analysis of bovine leukemia virus infection in dairy cattle in Egypt. Compar. Immunol. Microbiol. Infectious Diseases. 72, 101517 (2020).
    Google Scholar 
    Selim, A. & Abdelhady, A. The first detection of anti-West Nile virus antibody in domestic ruminants in Egypt. Trop. Anim. Health Prod. 52, 3147–3151 (2020).PubMed 

    Google Scholar 
    Selim, A., Abdelhady, A. & Alahadeb, J. Prevalence and first molecular characterization of Ehrlichia canis in Egyptian dogs. Pak. Vet. J. (2020).Khater, H. F. et al. Malaria (IntechOpen, 2019).
    Google Scholar 
    Baz, M. M. Strategies for mosquito control. PhD thesis, faculty of Science, Benha University, Egypt (2013).Khater, H. F. Prospects of botanical biopesticides in insect pest management. Pharmacologia 3, 641–656 (2012).
    Google Scholar 
    Khater, H. F. Bioactivity of essential oils as green biopesticides: Recent global scenario. Recent Progress Med. Plants 37, 151–218 (2013).ADS 

    Google Scholar 
    Khan, N. & Mukhtar, H. Tea and health: Studies in humans. Curr. Pharm. Des. 19, 6141–6147 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Govindarajan, M., Rajeswary, M., Hoti, S., Bhattacharyya, A. & Benelli, G. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol. Res. 115, 807–815 (2016).PubMed 

    Google Scholar 
    Khater, H. & Geden, C. Potential of essential oils to prevent fly strike by Lucilia sericata, and effects of oils on longevity of adult flies. J. Vector Ecol. 43, 261–270 (2018).PubMed 

    Google Scholar 
    Noutcha, M. A., Edwin-Wosu, N. I., Ogali, R. E. & Okiwelu, S. N. The role of plant essential oils in mosquito (Diptera: Culicidae) control. Annu. Res. Rev. Biol. 1–9 (2016).WHO. Larval source management: A supplementary malaria vector control measure: An operational manual. (2013).Vatandoost, H. et al. Comparison of CDC bottle bioassay with WHO standard method for assessment susceptibility level of malaria vector, Anopheles stephensi to three imagicides. J. Arthropod. Borne Dis. 13, 17 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Shafaie, F., Aramideh, S., Valizadegan, O., Safaralizadeh, M. H. & Pesyan, N. N. GC/MS analysis of the essential oils of Cupressus arizonica Greene, Juniperus communis L. and Mentha longifolia L. Bull. Chem. Soc. Ethiopia. 33, 389–400 (2019).CAS 

    Google Scholar 
    Modise, S. A. & Ashafa, A. O. T. Larvicidal, pupicidal and insecticidal activities of Cosmos bipinnatus, Foeniculum vulgare and Tagetes minuta against Culex quinquefasciatus mosquitoes. Trop. J. Pharm. Res. 15, 965–972 (2016).
    Google Scholar 
    Pavela, R., Žabka, M., Bednář, J., Tříska, J. & Vrchotová, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind. Crops Products. 83, 275–282 (2016).CAS 

    Google Scholar 
    Rocha, D. K. et al. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde. Nat. Product Commun. 10, 1934578X1501000438 (2015).CAS 

    Google Scholar 
    Hassan, M. I., Atwa, W. A., Moselhy, W. A. & Mahmoud, D. A. Efficacy of the green tea, Camellia sinensis leaves extract on some biological activities of Culex pipiens and the detection of its phytochemical constituents. Egypt. Acad. J. Biol. Sci. F. Toxicol. Pest Control. 12, 59–70 (2020).
    Google Scholar 
    Muema, J. M., Bargul, J. L., Nyanjom, S. G., Mutunga, J. M. & Njeru, S. N. Potential of Camellia sinensis proanthocyanidins-rich fraction for controlling malaria mosquito populations through disruption of larval development. Parasit. Vectors 9, 1–10 (2016).
    Google Scholar 
    Pavela, R. Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind. Crops Prod. 30, 311–315 (2009).CAS 

    Google Scholar 
    de Oliveira, A. A. et al. Larvicidal, adulticidal and repellent activities against Aedes aegypti L. of two commonly used spices, Origanum vulgare L. and Thymus vulgaris L. S. Afr. J. Bot. 140, 17–24 (2021).
    Google Scholar 
    Bouguerra, N., Tine-Djebbar, F. & Soltani, N. Effect of Thymus vulgaris L. (Lamiales: Lamiaceae) essential oil on energy reserves and biomarkers in Culex pipiens L. (Diptera: Culicidae) from Tebessa (Algeria). J. Essential Oil Bearing Plants. 21, 1082–1095 (2018).CAS 

    Google Scholar 
    Sheng, Z. et al. Screening of larvicidal activity of 53 essential oils and their synergistic effect for the improvement of deltamethrin efficacy against Aedes albopictus. Ind. Crops Products. 145, 112131 (2020).CAS 

    Google Scholar 
    Alkenani, N. A. et al. Molecular identification and bio-control of mosquitoes using black seeds extract in Jeddah. Pak. Vet. J. https://doi.org/10.29261/pakvetj/2021.025 (2021).Article 

    Google Scholar 
    Farag, M. Larvicidal and repellent potential of Sesamum indicum hull peels extracts against Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fisheries. 25, 995–1011 (2021).
    Google Scholar 
    Abd El Meguid, A. D., Mahmoud, S. H. & Baz, M. M. Toxicological activity of four plant oils against Aedes caspius and Culex pipiens (Diptera: Culicidae). Int. J. Mosq. Res 6, 86–94 (2019).
    Google Scholar 
    El Ouali Lalami, A., El-Akhal, F., Ez Zoubi, Y. & Taghzouti, K. Study of phytochemical screening and larvicidal efficacy of ehtanolic extract of Salvia officinalis (Lamiaceae) from North Center of Morocco against Culex pipiens (Diptera: Culicidae) vector of serious human diseases. Int. J. Pharmacog. Phytochem. Res. 8, 1663–1668 (2016).
    Google Scholar 
    Hayouni, E. A. et al. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol. 125, 242–251 (2008).CAS 

    Google Scholar 
    Nabti, I. & Bounechada, M. Larvicidal activities of essential oils extracted from five Algerian medicinal plants against Culiseta longiareolata Macquart. Larvae (Diptera: Culicidae). Eur. J. Biol. 78, 133–138 (2019).CAS 

    Google Scholar 
    Chantawee, A. & Soonwera, M. Larvicidal, pupicidal and oviposition deterrent activities of essential oils from Umbelliferae plants against house fly Musca domestica. Asian Pac. J. Trop. Med. 11, 621 (2018).CAS 

    Google Scholar 
    Belong, P., Ntonga, P. A., Fils, E., Dadji, G. A. F. & Tamesse, J. L. Chemical composition and residue activities of Ocimum canum Sims and Ocimum basilicum L. essential oils on adult female Anopheles funestus. J. Anim. Plant Sci. 19, 2854–2863 (2013).
    Google Scholar 
    El Zayyat, E. A., Soliman, M. I., Elleboudy, N. A. & Ofaa, S. E. Bioefficacy of some Egyptian aromatic plants on Culex pipiens (Diptera: Culicidae) adults and larvae. J. Arthropod. Borne Dis. 11, 147 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Muturi, E. J., Ramirez, J. L., Zilkowski, B., Flor-Weiler, L. B. & Rooney, A. P. Ovicidal and larvicidal effects of garlic and asafoetida essential oils against West Nile virus vectors. J. Insect Sci. 18, 43 (2018).PubMed Central 

    Google Scholar 
    Alerwi, S. T. et al. Molecular identification and bio-control of Culex quinquefasciatus from Yanbu region. J. Entomol. Zool. Stud. 7, 1081–1086 (2019).
    Google Scholar 
    Matiadis, D. et al. Curcumin derivatives as potential mosquito larvicidal agents against two mosquito vectors, Culex pipiens and Aedes albopictus. Int. J. Mol. Sci. 22, 8915 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prak, J.-W., Yoo, D.-H., Kim, H. K., Koo, H.-N. & Kim, G.-H. in 2014 Larvicidal and repellent activities of 33 plant extracts against two mosquitoes as Culex pipiens and Aedes albopictus. 181–181.Jabbar, A., Tariq, M., Gulzar, A., Mukhtar, T. & Zainab, T. Lethal and sub lethal effects of plant extracts and green silver nanoparticles against Culex pipiens. (2021).Khater, H. F. Biocontrol of Some Insects (Benha University, 2003).
    Google Scholar 
    Baz, M. M., Hegazy, M. M., Khater, H. F. & El-Sayed, Y. A. Comparative evaluation of five oil-resin plant extracts against the mosquito larvae, Culex pipiens Say (Diptera: Culicidae). Pak. Vet. J. https://doi.org/10.29261/pakvetj (2021).Article 

    Google Scholar 
    Khater, H. F. & Shalaby, A.A.-S. Potential of biologically active plant oils to control mosquito larvae (Culex pipiens, Diptera: Culicidae) from an Egyptian locality. Rev. Inst. Med. Trop. Sao Paulo 50, 107–112 (2008).PubMed 

    Google Scholar 
    Baz, M. M., Hegazy, M. M., Khater, H. F. & El-Sayed, Y. A. Comparative evaluation of five oil-resin plant extracts against the mosquito larvae, Culex pipiens Say (Diptera: Culicidae). Pak. Vet. J. 41, 191–196 (2021).CAS 

    Google Scholar 
    Shalaby, A. & Khater, H. Toxicity of certain solvent extracts of Rosmarinus officinalis against Culex pipiens larvae. J. Egypt. German Soc. Zool. E. 48, 69–80 (2005).
    Google Scholar 
    Chen, W., Wu, H., Ma, Z., Feng, J. & Zhang, X. Evaluation of fumigation activity of thirty-six essential oils against Culex pipiens pallens (Diptera: Culicidae). Acta Entomol. Sin. 61, 86–93 (2018).ADS 

    Google Scholar 
    Makhaik, M., Naik, S. N. & Tewary, D. K. Evaluation of anti-mosquito properties of essential oils. (2005).Jantan, I. B., Yalvema, M. F., Ahmad, N. W. & Jamal, J. A. Insecticidal activities of the leaf oils of eight cinnamomum species against Aedes aegypti and Aedes albopictus. Pharm. Biol. 43, 526–532 (2005).
    Google Scholar 
    Khater, H. F. & Geden, C. J. Efficacy and repellency of some essential oils and their blends against larval and adult house flies, Musca domestica L. (Diptera: Muscidae). J. Vector Ecol. 44, 256–263 (2019).PubMed 

    Google Scholar 
    Levchenko, M. A., Silivanova, E. A., Khodakov, P. E. & Gholizadeh, S. Insecticidal efficacy of some essential oils against adults of Musca domestica L. (Diptera: Muscidae). Int. J. Trop. Insect Sci. 1–9 (2021).Pushpalatha, E. & Viswan, K. A. Adulticidal and repellent activities of Melaleuca leucadendron (L.) and Callistemon citrinus (Curtis) against filarial and dengue vectors. Assoc. Advancement Entomol. 38, 149–154 (2013).
    Google Scholar 
    Sahi, N. M. Evaluation of insecticidal activity of bioactive compounds from Eucalyptus citriodora against Tribolium castaneum. Int. J. Pharm. Phytochem. Res. 8, 1256–1270 (2016).
    Google Scholar 
    Fu, J. et al. Fumigant toxicity and repellence activity of camphor essential oil from Cinnamonum camphora Siebold against Solenopsis invicta workers (Hymenoptera: Formicidae). J. Insect Sci. 15, 129 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zulhussnain, M. et al. Insecticidal and Genotoxic effects of some indigenous plant extracts in Culex quinquefasciatus Say Mosquitoes. Sci. Rep. 10, 1–13 (2020).
    Google Scholar 
    Sutthanont, N. et al. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroid-susceptible and-resistant strains of Aedes aegypti (Diptera: Culicidae). J. Vector Ecol. 35, 106–115 (2010).PubMed 

    Google Scholar 
    Ling Chang, C., Kyu Cho, I. & Li, Q. X. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J. Econ. Entomol. 102, 203–209 (2009).
    Google Scholar 
    da Silva, J. B. P. et al. Thiosemicarbazones as Aedes aegypti larvicidal. Eur. J. Med. Chem. 100, 162–175 (2015).PubMed 

    Google Scholar 
    Ali, A., Radwan, M. M., Wanas, A. S. & Khan, I. A. Repellent activity of carrot seed essential oil and its pure compound, carotol, against mosquitoes. J. Am. Mosq. Control Assoc. 34, 272–280 (2018).PubMed 

    Google Scholar 
    Branquinho, L. S. et al. Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves. J. Ethnopharmacol. 198, 372–378 (2017).CAS 
    PubMed 

    Google Scholar 
    Sarma, R., Adhikari, K., Mahanta, S. & Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 9, 1–12 (2019).ADS 

    Google Scholar 
    Gad, M., Aref, S., Abdelhamid, A., Elwassimy, M. & Abdel-Raheem, S. Biologically active organic compounds as insect growth regulators (IGRs): Introduction, mode of action, and some synthetic methods. Curr. Chem. Lett. 10, 393–412 (2021).
    Google Scholar  More

  • in

    Metabolic plasticity improves lobster’s resilience to ocean warming but not to climate-driven novel species interactions

    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470. https://doi.org/10.5194/bg-17-3439-2020 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101. https://doi.org/10.1038/ncomms16101 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian current. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030393 (2007).Article 

    Google Scholar 
    Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859. https://doi.org/10.1038/nclimate2743 (2015).ADS 
    Article 

    Google Scholar 
    Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400, 7–16. https://doi.org/10.1016/j.jembe.2011.02.021 (2011).Article 

    Google Scholar 
    Straub, S. C. et al. Resistance, extinction, and everything in between: The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00763 (2019).Article 

    Google Scholar 
    Roman-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA 117, 4211–4217. https://doi.org/10.1073/pnas.1913007117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180186. https://doi.org/10.1098/rstb.2018.0186 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).Article 
    PubMed 

    Google Scholar 
    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Annu. Rev. Mar. Sci. 12, 153–179. https://doi.org/10.1146/annurev-marine-010419-010916 (2020).ADS 
    Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059. https://doi.org/10.1038/s41559-020-1198-2 (2020).Article 
    PubMed 

    Google Scholar 
    Smith, K. E. et al. Climate change and the threat of novel marine predators in Antarctica. Ecosphere 8, e02017. https://doi.org/10.1002/ecs2.2017 (2017).Article 

    Google Scholar 
    Aguilera, M. A., Valdivia, N., Broitman, B. R., Jenkins, S. R. & Navarrete, S. A. Novel co-occurrence of functionally redundant consumers induced by range expansion alters community structure. Ecology 101, e03150. https://doi.org/10.1002/ecy.3150 (2020).Article 
    PubMed 

    Google Scholar 
    Alexander, J. M., Diez, J. M., Hart, S. P. & Levine, J. M. When climate reshuffles competitors: A call for experimental macroecology. Trends Ecol. Evol. 31, 831–841. https://doi.org/10.1016/j.tree.2016.08.003 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66. https://doi.org/10.1038/nclimate2457 (2015).ADS 
    Article 

    Google Scholar 
    Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920. https://doi.org/10.1242/jeb.037473 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitan-Espitia, J. D. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174. https://doi.org/10.1098/rstb.2018.0174 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kroeker, K. J. & Sanford, E. Ecological leverage points: Species interactions amplify the physiological effects of global environmental change in the ocean. Annu. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-042021-051211 (2021).Article 

    Google Scholar 
    Norin, T. & Metcalfe, N. B. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180180. https://doi.org/10.1098/rstb.2018.0180 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sokolova, I. M. & Pörtner, H.-O. Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes. J. Exp. Biol. 206, 195–207. https://doi.org/10.1242/jeb.00054 (2003).Article 
    PubMed 

    Google Scholar 
    Oellermann, M., Pörtner, H. O. & Mark, F. C. Mitochondrial dynamics underlying thermal plasticity of cuttlefish (Sepia officinalis) hearts. J. Exp. Biol. 215, 2992–3000. https://doi.org/10.1242/jeb.068163 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Guderley, H. & Johnston, I. Plasticity of fish muscle mitochondria with thermal acclimation. J. Exp. Biol. 199, 1311–1317. https://doi.org/10.1242/jeb.199.6.1311 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Han, G., Zhang, S. & Dong, Y. Anaerobic metabolism and thermal tolerance: The importance of opine pathways on survival of a gastropod after cardiac dysfunction. Integr. Zool. 12, 361–370. https://doi.org/10.1111/1749-4877.12229 (2017).Article 
    PubMed 

    Google Scholar 
    Verberk, W. C., Sommer, U., Davidson, R. L. & Viant, M. R. Anaerobic metabolism at thermal extremes: A metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integr. Comp. Biol. 53, 609–619. https://doi.org/10.1093/icb/ict015 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dunn, J. F. & Johnston, I. A. Metabolic constraints on burst-swimming in the Antarctic teleost Notothenia neglecta. Mar. Biol. 91, 433–440. https://doi.org/10.1007/BF00392593 (1986).CAS 
    Article 

    Google Scholar 
    Pörtner, H. O. Physiological basis of temperature-dependent biogeography: Trade-offs in muscle design and performance in polar ectotherms. J. Exp. Biol. 205, 2217–2230. https://doi.org/10.1242/jeb.205.15.2217 (2002).Article 
    PubMed 

    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83, 70–84. https://doi.org/10.1111/1365-2656.12081 (2014).Article 
    PubMed 

    Google Scholar 
    Chown, S. L., Slabber, S., McGeouch, M., Janion, C. & Leinaas, H. P. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Philos. Trans. R. Soc. Lond. B Biol. Sci. 274, 2531–2537. https://doi.org/10.1098/rspb.2007.0772 (2007).Article 

    Google Scholar 
    Phillips, B. Lobsters: Biology, Management, Aquaculture and Fisheries (Wiley, 2008).
    Google Scholar 
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. USA 106, 22341–22345. https://doi.org/10.1073/pnas.0907529106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, L. M. et al. Decision support for the ecosystem-based management of a range-extending species in a global marine hotspot presents effective strategies and challenges. Ecosystems https://doi.org/10.1007/s10021-020-00560-1 (2020).Article 

    Google Scholar 
    Pearce, J. & Balcom, N. The 1999 Long Island Sound lobster mortality event: Findings of the comprehensive research initiative. J. Shellfish Res. 24, 691–698. https://doi.org/10.2983/0730-8000(2005)24[691:TLISLM]2.0.CO;2 (2005).Article 

    Google Scholar 
    Wahle, R. A., Dellinger, L., Olszewski, S. & Jekielek, P. American lobster nurseries of southern New England receding in the face of climate change. ICES J. Mar. Sci. 72, i69–i78. https://doi.org/10.1093/icesjms/fsv093 (2015).Article 

    Google Scholar 
    Fitzgibbon, Q. P., Ruff, N., Tracey, S. R. & Battaglene, S. C. Thermal tolerance of the nektonic puerulus stage of spiny lobsters and implications of ocean warming. Mar. Ecol. Prog. Ser. 515, 173–186. https://doi.org/10.3354/meps10979 (2014).ADS 
    Article 

    Google Scholar 
    Spanier, E. et al. A concise review of lobster utilization by worldwide human populations from prehistory to the modern era. ICES J. Mar. Sci. 72, i7–i21. https://doi.org/10.1093/icesjms/fsv066 (2015).Article 

    Google Scholar 
    Lalancette, A. Creeping in? Neoliberalism, indigenous realities and tropical rock lobster (kaiar) management in Torres Strait Australia. Mar. Policy 80, 47–59. https://doi.org/10.1016/j.marpol.2016.02.020 (2017).Article 

    Google Scholar 
    Pereira, G. & Josupeit, H. The world lobster market. Report No. 1014–9546, (FAO, Rome, Italy, 2017).Holthuis, L. FAO species catalogue v. 13: Marine lobsters of the world. An annotated and illustrated catalogue of species of interest to fisheries known to date. Rome FAO Fish. Synop. (FAO) 125(13), 292 (1991).
    Google Scholar 
    Boavida-Portugal, J. et al. Climate change impacts on the distribution of coastal lobsters. Mar. Biol. https://doi.org/10.1007/s00227-018-3441-9 (2018).Article 

    Google Scholar 
    Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425. https://doi.org/10.1007/s11160-013-9326-6 (2014).Article 

    Google Scholar 
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953. https://doi.org/10.1111/ele.12474 (2015).Article 
    PubMed 

    Google Scholar 
    Robinson, L. M. et al. Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Global. Environ. Chang. 31, 28–37. https://doi.org/10.1016/j.gloenvcha.2014.12.003 (2015).Article 

    Google Scholar 
    Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Glob. Ecol. Biogeogr. 20, 58–72. https://doi.org/10.1111/j.1466-8238.2010.00575.x (2011).Article 

    Google Scholar 
    Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: Inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731. https://doi.org/10.1111/j.1365-2486.2008.01734.x (2009).ADS 
    Article 

    Google Scholar 
    Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: A continental-scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. 27, 3200–3217. https://doi.org/10.1111/gcb.15634 (2021).Article 

    Google Scholar 
    Jeffs, A. G., Gardner, C. & Cockcroft, A. Jasus and Sagmariasus Species. In Lobsters: Biology, Management, Aquaculture and Fisheries, Second Edition, 259–288 (2013).Pecl, G. et al. The east coast Tasmanian rock lobster fishery: Vulnerability to climate change impacts and adaptation response options. 114 (Australian Government: Department of Climate Change, 2009).Thomas, C. W., Crear, B. J. & Hart, P. R. The effect of temperature on survival, growth, feeding and metabolic activity of the southern rock lobster Jasus edwardsii. Aquaculture 185, 73–84. https://doi.org/10.1016/S0044-8486(99)00341-5 (2000).Article 

    Google Scholar 
    Twiname, S. et al. Mismatch of thermal optima between performance measures, life stages and species of spiny lobster. Sci. Rep. 10, 21235. https://doi.org/10.1038/s41598-020-78052-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130. https://doi.org/10.1016/j.pocean.2018.02.007 (2018).ADS 
    Article 

    Google Scholar 
    Oellermann, M., Hickey, A. J. R., Fitzgibbon, Q. P. & Smith, G. Thermal sensitivity links to cellular cardiac decline in three spiny lobsters. Sci. Rep. 10, 202. https://doi.org/10.1038/s41598-019-56794-0 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hooker, S. H., Jeffs, A. G., Creese, R. G. & Sivaguru, K. Growth of captive Jasus edwardsii (Hutton) (Crustacea: Palinuridae) in north–eastern New Zealand. Mar. Freshw. Res. 48, 903–910. https://doi.org/10.1071/MF97156 (1998).Article 

    Google Scholar 
    Yeruham, E., Shpigel, M., Abelson, A. & Rilov, G. Ocean warming and tropical invaders erode the performance of a key herbivore. Ecology 101, e02925. https://doi.org/10.1002/ecy.2925 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Groner, M. L., Shields, J. D., Landers, D. F. Jr., Swenarton, J. & Hoenig, J. M. Rising temperatures, molting phenology, and epizootic shell disease in the American lobster. Am. Nat. 192, E163–E177. https://doi.org/10.1086/699478 (2018).Article 
    PubMed 

    Google Scholar 
    Behringer, D. C. & Hart, J. E. Competition with stone crabs drives juvenile spiny lobster abundance and distribution. Oecologia 184, 205–218. https://doi.org/10.1007/s00442-017-3844-1 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    Rossong, M. A., Williams, P. J., Comeau, M., Mitchell, S. C. & Apaloo, J. Agonistic interactions between the invasive green crab, Carcinus maenas (Linnaeus) and juvenile American lobster, Homarus americanus (Milne Edwards). J. Exp. Mar. Biol. Ecol. 329, 281–288. https://doi.org/10.1016/j.jembe.2005.09.007 (2006).Article 

    Google Scholar 
    Fitzgibbon, Q. P., Simon, C. J., Smith, G. G., Carter, C. G. & Battaglene, S. C. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 207, 13–20. https://doi.org/10.1016/j.cbpa.2017.02.003 (2017).CAS 
    Article 

    Google Scholar 
    Lo, S. & Andrews, S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front Psychol 6, 1171. https://doi.org/10.3389/fpsyg.2015.01171 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyle, K. L., Dillaman, R. M. & Kinsey, S. T. Mitochondrial distribution and glycogen dynamics suggest diffusion constraints in muscle fibers of the blue crab Callinectes sapidus. J. Exp. Zool. 297, 1–16. https://doi.org/10.1002/jez.a.10227 (2003).Article 

    Google Scholar 
    Lee, C. G., Farrell, A. P., Lotto, A., Hinch, S. G. & Healey, M. C. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming. J. Exp. Biol. 206, 3253–3260. https://doi.org/10.1242/jeb.00548 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Briceno, F. A., Fitzgibbon, Q. P., Polymeropoulos, E. T., Hinojosa, I. A. & Pecl, G. T. Temperature alters the physiological response of spiny lobsters under predation risk. Conserv. Physiol. 8, coaa065. https://doi.org/10.1093/conphys/coaa065 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Powell, M. L. & Watts, S. A. Effect of temperature acclimation on metabolism and hemocyanin binding affinities in two crayfish, Procambarus clarkii and Procambarus zonangulus. Comp Biochem. Physiol. Part A Mol. Integr. Physiol. 144, 211–217. https://doi.org/10.1016/j.cbpa.2006.02.032 (2006).CAS 
    Article 

    Google Scholar 
    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447. https://doi.org/10.1038/ncomms11447 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodgers, E. M. & Franklin, C. E. Aerobic scope and climate warming: Testing the “plastic floors and concrete ceilings” hypothesis in the estuarine crocodile (Crocodylus porosus). J. Exp. Zool. Part A 335, 108–117. https://doi.org/10.1002/jez.2412 (2021).CAS 
    Article 

    Google Scholar 
    Farrell, A. P. Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids. J. Exp. Biol. 212, 3771–3780. https://doi.org/10.1242/jeb.023671 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hedrick, M. S., Hancock, T. V. & Hillman, S. S. in Compr. Physiol. 1677–1703 (2015).Frederich, M. & Pörtner, H. O. Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1531–R1538. https://doi.org/10.1152/ajpregu.2000.279.5.R1531 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Verberk, W. C. E. P. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 192, 64–78. https://doi.org/10.1016/j.cbpa.2015.10.020 (2016).CAS 
    Article 

    Google Scholar 
    Boldsen, M. M., Norin, T. & Malte, H. Temporal repeatability of metabolic rate and the effect of organ mass and enzyme activity on metabolism in European eel (Anguilla anguilla). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 165, 22–29. https://doi.org/10.1016/j.cbpa.2013.01.027 (2013).CAS 
    Article 

    Google Scholar 
    Klymasz-Swartz, A. K. et al. Impact of climate change on the American lobster (Homarus americanus): Physiological responses to combined exposure of elevated temperature and pCO2. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 235, 202–210. https://doi.org/10.1016/j.cbpa.2019.06.005 (2019).CAS 
    Article 

    Google Scholar 
    Seebacher, F. & Wilson, R. S. Fighting fit: thermal plasticity of metabolic function and fighting success in the crayfish Cherax destructor. Funct. Ecol. 20, 1045–1053. https://doi.org/10.1111/j.1365-2435.2006.01194.x (2006).Article 

    Google Scholar 
    Jimenez, A. G., Dasika, S. K., Locke, B. R. & Kinsey, S. T. An evaluation of muscle maintenance costs during fiber hypertrophy in the lobster Homarus americanus: Are larger muscle fibers cheaper to maintain?. J. Exp. Biol. 214, 3688–3697. https://doi.org/10.1242/jeb.060301 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jimenez, A. G., Locke, B. R. & Kinsey, S. T. The influence of oxygen and high-energy phosphate diffusion on metabolic scaling in three species of tail-flipping crustaceans. J. Exp. Biol. 211, 3214–3225. https://doi.org/10.1242/jeb.020677 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Johnson, L. K., Dillaman, R. M., Gay, D. M., Blum, J. E. & Kinsey, S. T. Metabolic influences of fiber size in aerobic and anaerobic locomotor muscles of the blue crab, Callinectes sapidus. J. Exp. Biol. 207, 4045–4056. https://doi.org/10.1242/jeb.01224 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Speed, S. R., Baldwin, J., Wong, R. J. & Wells, R. M. G. Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport. Comp. Biochem. Phys. B 128, 435–444. https://doi.org/10.1016/S1096-4959(00)00340-7 (2001).CAS 
    Article 

    Google Scholar 
    England, W. & Baldwin, J. Anaerobic energy metabolism in the tail musculature of the Australian yabby Cherax destructor (Crustacea, Decapoda, Parastacidae): Role of phosphagens and anaerobic glycolysis during escape behavior. Physiol. Zool. 56, 614–622. https://doi.org/10.1086/physzool.56.4.30155884 (1983).CAS 
    Article 

    Google Scholar 
    Head, G. & Baldwin, J. Energy metabolism and the fate of lactate during recovery from exercise in the Australian freshwater crayfish Cherax destructor. Mar. Freshw. Res. 37, 641–646. https://doi.org/10.1071/MF9860641 (1986).CAS 
    Article 

    Google Scholar 
    Goncalves, R., Lund, I. & Gesto, M. Interactions of temperature and dietary composition on juvenile European lobster (Homarus gammarus, L.) energy metabolism and performance. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 260, 111019. https://doi.org/10.1016/j.cbpa.2021.111019 (2021).CAS 
    Article 

    Google Scholar 
    Baldwin, J., Gupta, A. & Iglesias, X. Scaling of anaerobic energy metabolism during tail flipping behaviour in the freshwater crayfish Cherax destructor. Mar. Freshw. Res. 50, 183–187. https://doi.org/10.1071/MF98110 (1999).Article 

    Google Scholar 
    Lund, H. S. et al. Recovery by the Norway lobster Nephrops norvegicus (L) from the physiological stresses of trawling: Influence of season and live-storage position. J. Exp. Mar. Biol. Ecol. 373, 124–132. https://doi.org/10.1016/j.jembe.2009.04.004 (2009).Article 

    Google Scholar 
    Shields, J. D. Climate change enhances disease processes in crustaceans: case studies in lobsters, crabs, and shrimps. J. Crustac. Biol. 39, 673–683. https://doi.org/10.1093/jcbiol/ruz072 (2019).Article 

    Google Scholar 
    Mai, T. T. & Hovel, K. A. Influence of local-scale and landscape-scale habitat characteristics on California spiny lobster (Panulirus interruptus) abundance and survival. Mar. Freshw. Res. 58, 419–428. https://doi.org/10.1071/MF06141 (2007).Article 

    Google Scholar 
    Ling, S. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130269. https://doi.org/10.1098/rstb.2013.0269 (2015).Article 
    PubMed Central 

    Google Scholar 
    Sabino, M. A. et al. Habitat degradation increases interspecific trophic competition between three spiny lobster species in Seychelles. Estuar. Coast. Shelf Sci. 256, 107368. https://doi.org/10.1016/j.ecss.2021.107368 (2021).CAS 
    Article 

    Google Scholar 
    Twiname, S. et al. Resident lobsters dominate food competition with range-shifting lobsters in an ocean warming hotspot. Mar. Ecol. Prog. Ser https://doi.org/10.3354/meps13984 (2021).Article 

    Google Scholar 
    Briones-Fourzan, P., Lozano-Alvarez, E., Negrete-Soto, F. & Barradas-Ortiz, C. Enhancement of juvenile Caribbean spiny lobsters: An evaluation of changes in multiple response variables with the addition of large artificial shelters. Oecologia 151, 401–416. https://doi.org/10.1007/s00442-006-0595-9 (2007).ADS 
    Article 
    PubMed 

    Google Scholar 
    Norin, T. & Clark, T. D. Measurement and relevance of maximum metabolic rate in fishes. J. Fish Biol. 88, 122–151. https://doi.org/10.1111/jfb.12796 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marzloff, M. P. et al. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management. Glob. Change Biol. 22, 2462–2474. https://doi.org/10.1111/gcb.13285 (2016).ADS 
    Article 

    Google Scholar 
    Taylor, N. G. & Dunn, A. M. Predatory impacts of alien decapod Crustacea are predicted by functional responses and explained by differences in metabolic rate. Biol. Invasions 20, 2821–2837. https://doi.org/10.1007/s10530-018-1735-y (2018).Article 

    Google Scholar 
    Seth, H. et al. Metabolic scope and interspecific competition in sculpins of Greenland are influenced by increased temperatures due to climate change. PLoS One 8, e62859. https://doi.org/10.1371/journal.pone.0062859 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoffels, R. J., Richardson, A. J., Vogel, M. T., Coates, S. P. & Muller, W. J. What do metabolic rates tell us about thermal niches? Mechanisms driving crayfish distributions along an altitudinal gradient. Oecologia 180, 45–54. https://doi.org/10.1007/s00442-015-3463-7 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    Briceño, F. A., Polymeropoulos, E. T., Fitzgibbon, Q. P., Dambacher, J. M. & Pecl, G. T. Changes in metabolic rate of spiny lobster under predation risk. Mar. Ecol. Prog. Ser. 598, 71–84. https://doi.org/10.3354/meps12644 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Twiname, S. et al. A cross-scale framework to support a mechanistic understanding and modelling of marine climate-driven species redistribution, from individuals to communities. Ecography 43, 1764–1778. https://doi.org/10.1111/ecog.04996 (2020).Article 

    Google Scholar 
    Mazur, M. D., Friedland, K. D., McManus, M. C. & Goode, A. G. Dynamic changes in American lobster suitable habitat distribution on the Northeast U.S. Shelf linked to oceanographic conditions. Fish. Oceanogr. 29, 349–365. https://doi.org/10.1111/fog.12476 (2020).Article 

    Google Scholar 
    Stobart, B., Mayfield, S., Mundy, C., Hobday, A. J. & Hartog, J. R. Comparison of in situ and satellite sea surface-temperature data from South Australia and Tasmania: How reliable are satellite data as a proxy for coastal temperatures in temperate southern Australia?. Mar. Freshw. Res. https://doi.org/10.1071/mf14340 (2016).Article 

    Google Scholar 
    Montgomery, S. S., Liggins, G. W., Craig, J. R. & McLeod, J. R. Growth of the spiny lobster Jasus verreauxi (Decapoda: Palinuridae) off the east coast of Australia. N. Z. J. Mar. Freshw. Res. 43, 113–123. https://doi.org/10.1080/00288330909509986 (2009).Article 

    Google Scholar 
    Oellermann, M. et al. Harnessing the benefits of open electronics in science. arXiv preprint, https://arxiv.org/abs/2106.15852 (2021).Havird, J. C. et al. Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to Q10 effects: Why methodology matters. Funct. Ecol. 34, 1015–1028. https://doi.org/10.1111/1365-2435.13534 (2020).Article 

    Google Scholar 
    Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: Respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782. https://doi.org/10.1242/jeb.084251 (2013).Article 
    PubMed 

    Google Scholar 
    Jensen, M. A., Fitzgibbon, Q. P., Carter, C. G. & Adams, L. R. Effect of body mass and activity on the metabolic rate and ammonia-N excretion of the spiny lobster Sagmariasus verreauxi during ontogeny. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 166, 191–198. https://doi.org/10.1016/j.cbpa.2013.06.003 (2013).CAS 
    Article 

    Google Scholar 
    Svendsen, M. B. S., Bushnell, P. G. & Steffensen, J. F. Design and setup of intermittent-flow respirometry system for aquatic organisms. J. Fish Biol. 88, 26–50. https://doi.org/10.1111/jfb.12797 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    R: A language and environment for statistical computing. (Vienna, Austria, 2021).Rstudio: Integrated development environment for R. (Boston, MA, USA, 2021).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    emmeans: Estimated Marginal Means, aka Least-Squares Means. v. 1.6.2–1 (2021).Magnusson, A. et al. Package ‘glmmTMB’. R Package Version 0.2. 0 (2017). More