More stories

  • in

    Grass species identity shapes communities of root and leaf fungi more than elevation

    Study sitesWe sampled foliar fungal endophytes and root fungi (root endophytes and AM fungi) in the Colorado Rockies at the Rocky Mountain Biological Laboratory, Gunnison Co., Colorado, USA (38°57’N, 106°59’W). This region has predictable decreases in air temperature (c. 0.8 °C per 100 m; [40]) and declines in soil nutrients with altitude [41], but increases in precipitation, mainly as snow [42]. The entire region is warming at rates of 0.5–1.0 °C per decade [43].To capture environmental, spatial, and grass-host specific variation in fungal guilds, we sampled 66 sites encompassing 9–13 elevations from each of six altitudinal gradients in July 2014 (Supplementary Table S1, Supplementary Fig. S1). Elevational gradients represented separate mountains in the Gunnison Basin and were located within 20 km of each other. We created a regional climate model to interpolate average number of growing degree days (GDD, base 0 °C), mean annual temperature (MAT), maximum temperature (Tmax), minimum temperature (Tmin), mean annual precipitation (MAP), and mean snow depth (MSD) for each site based on data from 29 local meteorological stations [44]. At each site, soil edaphic parameters were measured on dried soil at the UC Davis soils lab (see [24] for more details) and soil nutrients at Western Ag (Saskatoon, Canada). Soil pH was measured in a 1:1 solution with diH2O, and soil moisture was measured gravimetrically. Physical characteristics of each site (e.g., aspect, soil depth, elevation) were measured as described in Lynn et al. [44]. Environmental variation across sites was large. For example, MAT varied from 7.1 to 13.3 °C, MAP from 563 to 1171 mm, and Total N from 2 to 316 ug/g dry soil (Table S1).Host plant speciesWe focused on grasses because grasslands cover ~20% of Earth’s land surface [45] and dominate subalpine meadows of the Rocky Mountains. In addition, individual grass species spanned the entire elevational range of our study system [46], whereas tree, shrub, and forb species did not. At each location, we sampled nine adult individuals from up to 13 grass species representing five genera (Poaceae, subfamily Pooideae; Supplementary Table S1). Many sites had fewer than 13 grass species present, but all sites, except for two, had at least two grass species. Samples were composited by tissue type (leaves v. roots) and grass species within each site.Fungal compositionCollected root and leaf samples were surface sterilized (1 min in 95% ethanol, 2 min in 1% sodium hypochlorite solution, and 2 min in 70% ethanol) over ice to focus on the endophytic fungal community [34]. Following surface sterilization, samples were rinsed in purified water (Milli-Q Integral Water Purification System, EMD Millipore Corporation, Billerica, MA), stored in RNAlater, and refrigerated. All samples were then frozen in liquid nitrogen and ground using a mortar and pestle. Total DNA was extracted from ~50 mg of ground sample using QIAGEN DNeasy plant extraction kits (QIAGEN Inc., Valencia, CA).Fungal composition was characterized using barcoded primers targeting the ITS2 region for leaf and root endophytes [47], and FLR3-FLR4 primers targeting ~300 bp in the 28S region for AMF [48]. Each PCR contained 5 μL of ~1–10 ng/μL DNA template, 21.5 μL of Platinum PCR SuperMix (Thermo Fisher Scientific Inc., Waltham, MA), 1.25 μL of each primer (10 μM), 1.25 μL of 20 mg/mL BSA, and 0.44 μL of 25 mM MgCl2. For the ITS2 primers, the reactions included an initial denaturing step at 96 °C for 2 min, followed by 24 cycles of 94 °C for 30 sec, 51 °C for 40 s, and 72 °C for 2 min, with a final extension at 72 °C for 10 min. For the 28S primers, reactions started with an initial denaturing step at 93 °C for 5 min, followed by 33 cycles of 93 °C for 1 min, 55 °C for 1 min, and 72 °C for 1 min, with a final extension at 72 °C for 10 min.Three PCR replicates from each sample were pooled and then cleaned and concentrated using a ZR-96 DNA Clean & Concentrator-5 (Zymo Research Corporation, Irvine, CA). PCR was then carried out on all samples to add dual indexes and Illumina sequencing adaptors; each reaction began with an initial denaturing step at 98 °C for 30 s, followed by 7 cycles of 98 °C for 30 s, 62 °C for 30 s, and 72 °C for 30 s, with a final extension at 72 °C for 5 min. Sequencing was performed by the Genomic Sequencing and Analysis Facility at The University of Texas at Austin using paired-end 250 base Illumina MiSeq v.3 chemistry (Illumina, Inc., San Diego, CA). We aimed to obtain a minimum of 30,000 reads/sample for the ITS2 region and 20,000 reads/sample for the 28S region. All sequences are deposited in the NCBI SRA database under accession number (PRJNA639093).BioinformaticsWe processed reads to generate OTUs using commands from USEARCH (v9.2.64). Reads from previous studies [24] and this study were clustered together to improve OTU delineations for a total of 36,754,931 reads. We merged paired-end reads using the fastq_mergepairs from USEARCH with “fastq_maxdiffs” set to 20 and “fastq_maxdiffpct” set to 10 to ensure proper merging at a low error rate. The merged reads and the forward unmerged reads were trimmed at the primer sites using cutadapt with “e” set to 0.2, “m” set to 200, and untrimmed reads were discarded. Merged reads were filtered using fastq_filter from USEARCH with “fastq_maxee” set to 1.0. The forward reads were first trimmed to 230 using fastx_truncate from USEARCH with “trunclen” set to 230 and then filtered by fastq_filter from USEARCH with “fastq_maxee” set to 1.0. We then concatenated the merged and forward reads into one file and de-replicated using fastx_uniques from USEARCH with “minuniquesize” set to 2. After these steps, 11,357,274 sequences remained. We clustered these sequences to form OTUs at 97% similarity [49] using cluster_otus command from UPARSE. The reads (all reads before filtering step) of each sample were mapped to OTUs with usearch_global from USEARCH with “id” set to 0.97. We determined taxonomy for the representative OTUs using sintax from USEARCH with the database set to UNITE all eukaryotes (v. 8.2) “strand” set to both and “sintax_cutoff” set to 0.8 [50]. Representative OTUs were also blasted against Genbank with “perc_identity” set to 80 and “max_target_seqs” set to 50. All OTUs identified as “fungi” were retained, and OTUs labeled as “unknown” or “unidentified” were manually inspected based on blast results to determine retention. Our filtering criteria left between 5 and 418 OTUs per sample (Supplementary Table S2).Due to low fungal abundance in leaves [34], many leaf samples were dominated by plant sequences (average ~78% plant reads). Therefore, fungal sequence numbers in leaf samples were low, despite adequate sequencing depth to capture trends in fungal endophyte communities across sites based on prior analyses [24, 34, 35]. We included only samples that contained at least 50 fungal sequences after data processing (Leaves N = 192, Roots N = 191, AMF N = 251), and most samples had much greater sequencing depth, especially for roots (Supplementary Table S2). Nevertheless, there were no correlations between sequence read depth and richness, alpha diversity, or evenness of our samples (P  > 0.05 in all cases), and plant species did not differ in the average sequencing depth for samples (P  > 0.05). Data for each fungal OTU were transformed to the proportion of total sequence abundance to minimize any differences in sampling effort [51].Diversity and compositionWe calculated the alpha diversity metrics of richness, Shannon’s Diversity, Inverse Simpson’s Diversity, and Pielou’s Evenness. For each fungal guild, differences among plant species and elevation in alpha diversity were first determined using a general linear mixed effects model with plant species (categorical) and elevation (continuous) as fixed effects and site nested within elevation gradient (e.g., mountain identity, Supplementary Table S1, Supplementary Fig. S1) as random effects to account for the lack of statistical independence among plant species sampled at the same site and among sites located within the same mountain elevation gradient (Supplementary Fig. S1). Models were constructed using the lmer function in R package lme4 [52, 53]. To address, do fungal community patterns along environmental gradients differ among guilds: leaf endophytes, root endophytes, or arbuscular mycorrhizal fungi?, we then compared alpha diversity metrics among fungal guilds using a general linear mixed effects model with fungal guild, plant species, and elevation as fixed effects and site nested within elevation gradient as random effects. In all models, we evaluated parameter fit with analysis of deviance using Wald chi-square tests and corrected for multiple comparisons using a false discovery alpha of 0.05. Differences among grass species were determined using Tukey post-hoc tests.Because elevation is a good proxy for variation in both climate and soil parameters (Supplementary Table S1), in all community analyses, we first ran models with grass species and elevation to parse biotic versus abiotic influences on fungal OTUs, then secondly ran full variance partitioning models with all environmental covariates (Supplementary Table S1, climate, physical, soil) in addition to grass species identity and space (gradient location, Supplementary Fig. S1). Because leaf and root endophytes were sequenced using different primers than AM fungi, we could not compare composition among the three guilds directly. Instead, we compared the relative influence of biotic and abiotic drivers on fungal composition within each guild to compare patterns among guilds. To do so, we first used distance-based redundancy analysis (dbRDA) to analyze the effects of plant host species and elevation on fungal composition for general fungal communities in leaves and roots and separately for AM fungal communities in roots. All models were run on quantitative Jaccard indices of fungal composition for each guild and included site nested within elevation gradient (e.g., mountain side, Supplementary Fig. S1) as random effects. Second, to evaluate which environmental variables most strongly influenced fungal composition, we further partitioned variance in fungal composition due to grass species, climate variables (MAP, MAT, MSD, Tmax, Tmin, and GDD), soil variables (total nitrogen, total phosphorus, nitrate, ammonium, calcium, magnesium, potassium, iron, manganese, sulfur, aluminum, soil pH, soil gravimetric moisture content), physical variables (aspect degree, aspect category (e.g., cardinal direction), slope, soil depth, and elevation) and spatial variables (latitude and longitude) using the varpart function in Vegan v. 2–5.3 [54]. Plots of fungal composition by plant host were also generated using dbRDA separately for each fungal guild. Spatial variables were de-trended and tested for spatial autocorrelation using the ade4 package v. 1.7–16 [55]. When we detected significant spatial autocorrelation eigenvectors, we included these in the spatial variable matrix. To characterize how many fungal taxa occurred in multiple plant taxa and elevations, we used the VennDiagram package v. 1.6.20 [56].Turnover and rewiringTo evaluate whether fungal composition was driven by grasses associating with different fungal taxa or differing relative abundances of the same fungal taxa, we first performed a beta partitioning analysis using betapart v. 1.5.3 [57]. Each fungal guild was analyzed separately. Next, to examine turnover in the abundances of fungal functional groups (pathogens, saprotrophs, mutualists), we defined groups using the FungalTrait database, which merges previous databases into one cohesive framework of 17 functional trait types (referred to here as functional groups; [58]). We recognize that fungal functions are highly environmentally dependent and therefore these functional groups may represent potential function more than actual function. Functional group identity was ascribed to 60% of leaf endophyte and 62% of root endophyte fungal taxa. Then, cumulative abundance of proportionally transformed sequence reads in each functional group was analyzed using a general linear mixed effects model with grass species and elevation as fixed effects and site nested within elevation gradient as random effects, as above. Finally, we defined indicator species within the OTUs that comprised at least 1% of the total abundance of each fungal guild by grass host, gradient, and elevation classes (rounded to the nearest 100 m) using the indicspecies package v. 1.7.9 [59]. Functional group assignments using the FungalTrait database from above were assigned to each indicator taxon [58]. A large percentage of significant indicator taxa out of the total number of OTUs would confirm that turnover in the species identity of fungal associations is stronger than turnover in the relative abundances of the same fungal taxa.Network propertiesTo address does grass-fungal network structure track elevation?, we analyzed four properties that encompass different facets of ecological networks at the site level. First, we calculated network nestedness, or the propensity for specialists to interact with the same plant species as generalists, using the weighted NODF (Nestedness metric based on Overlap and Decreasing Fill; [60]). Second, we calculated complexity as linkage density or the average number of interactions per plant species [61]. Third, to characterize specialization, we used the H2’ Index [62]. Finally, network evenness was calculated as Alatalo’s interaction evenness [63]. In all cases, these network metrics were weighted indices to increase accuracy [64], and calculations were performed in the Bipartite package v. 2.15 [65]. To address, how much do fungal guilds differ in altitudinal variation in network structure?, we compared network-level statistics among fungal guilds using a general linear mixed effects model with fungal guild as a fixed effect, number of grass hosts as a fixed effect, and gradient as a random effect (function lmer in lme4 [52],). We compared relationships with elevation separately for each fungal guild, using general linear mixed effects models with elevation as a fixed, continuous effect, number of grass hosts within the network as a fixed, continuous effect, and gradient identity as a random effect (Supplementary Table S1, Supplementary Fig. S2). We evaluated parameter fit with analysis of deviance using Wald chi-square tests using the car package 3.0–10 in R [66].All data met model assumptions of normality of residuals and homogeneity of variance. All analyses were performed in R v. 3.5.0 [53]. More

  • in

    Nodulation competitiveness and diversification of symbiosis genes in common beans from the American centers of domestication

    In the work reported here, we have examined the interaction of symbiotic partners representative of the three major diversification centers. Although P. vulgaris could establish symbiosis with diverse rhizobial lineages, Rhizobium etli seemed to predominate in nature in the bean nodules collected from the Americas8,9, while the Americas is where the origin and diversification of the host have been experimentally supported19,20. Genotypes other than R. etli that also induce nodule formation in the bean have already been taxonomically defined as species, for instance Rhizobium tropici and Rhizobium ecuadorense, both of which were isolated from areas in northwestern South America, namely Ecuador, Brazil, and Colombia.American-bean rhizobia, from soil samples retrieved by the common bean as well as isolates from nodules found in nature have possessed polymorphism in the nodC gene, disclosing three nodC genotypes namely α, (upgamma), and (updelta)9. The different nodC alleles in American strains exhibit a varying predominance in their regional distributions in correlation with the centers of bean genetic diversification. The nodC types α and (upgamma) were detected both in bean nodules and in soils from Mexico, whereas the nodC type (updelta) was clearly predominant in soil and nodules from the Southern Andes (i. e., in Bolivia and northwest Argentina9). A quantitatively balanced representation of rhizobia with nodC type α and (upgamma) was detected in soils from Ecuador, but the nodC type (upgamma) had been found to be predominantly isolated from nodules formed in nature in that area5,9,10. It should be noted that we have reported finding of equal distribution of allele nodC type α and γ among the nine R etli isolates from bean in Mexico reported by Silva et al.7,9. The occurrence of this polymorphism proved to contribute to examining rhizobial populations inhabiting the Americas and characterizing the interaction with beans in BGD centers from Mexico to the northwest of Argentina. In performing our nodC analysis, we were aware that rhizobia genes for symbiosis are carried on plasmids which might mediate horizontal transfer, however in agreement with Silva et al.7 we assumed that although genetic exchange could be important, it is not so extensive to prevent epidemic clones from arising at significant frequency. Similar findings were found in R. leguminosarum bv trifolii associated with native Trifolium species growing in nature21.Investigations in the last decade have proposed an evolutionary pathway for the host bean that provided us with a framework for examining our results on rhizobia-bean interactions and facilitated an interpretation of the results. The current model proposes the occurrence of a Mesoamerican origin from where dispersion by independent migrations over time led to the Mesoamerican and Andean gene pools and to the Ecuador-Peru wild common-bean populations2,19,20. We found a balanced competition between α and (upgamma) nodC types in beans from Mesoamerica and the southern Andes, whereas the beans from Ecuador and Peru revealed a clear affinity for nodulation with strains of nodC type α rather than with the sympatric strains nodC type (upgamma) that we assayed (R. ecuadorense, CIAT894 and Bra-5). Nevertheless, we have previously reported that native strains and isolates with respectively both nodC types α and (upgamma) were found in soils and bean nodules from Mexico9, whereas lineages harboring nodC type (upgamma) were found to be predominant in beans from the northern and central regions of Ecuador-Peru8,9. The present results, however, indicated a clear affinity of the Ecuadorean-Peruvian—i. e., AHD—beans for strains nodC type α when assessed for competition against nodC type (upgamma) (Fig. 2A). We also found that nodC type (updelta) displayed a clear predominant occupancy of nodules of the AHD beans in contrast to the scarce occupancy of nodules of the Mesoamerican and Andean beans (Fig. 2B). Taken together, these results indicate no affinity of AHD beans for sympatric rhizobial strains containing nodC type (upgamma)—despite the finding that rhizobia of nodC type (upgamma) appear to predominate in isolates of nodules formed in Ecuador9,10.We conclude that although rhizobial type nodC (upgamma) was previously found to predominate in bean nodules from Ecuador, the competitiveness of that rhizobial strain for nodulation compared to other genotypes of bean rhizobia was relatively low. A possible explanation could be that seeds might be assumed to play a key role as carriers during the dissemination of the bean throughout the American regions. Thus, we can hypothesize that at the time of bean dissemination both R. etli nodC types α and (upgamma) (R. ecuadorense and other lineages) moved in conjunction with the host from Mesoamerica to northern Ecuador-Peru, but the strains bearing nodC type (upgamma) achieved an adaptation—probably due to edaphic characteristics, environmental stresses, and other features—in such a way that that strain predominated in soils and succeeded in nodulation.Alternatively, that prevalence might arise from a host selection for a rhizobium that is more effective in nitrogen fixation in a new and different environment. A poor relationship, however, between competitiveness and efficiency was found in the pea22. In line with the concept of adaptation, the bean had been found to be preferentially nodulated by species of R. tropici in acidic soils in regions of Brazil and Africa4,23. Since the environment could also be a major influence on the host and its symbiotic interactions, the Andean area represents a cooler climate for the growth of the bean than the Mesoamerican region24,25. Furthermore, since our assays were performed in laboratory environment parameters, we do not rule out the effect -if any- by the diverse and complex soil microbial community coexisting with bean rhizobia. Within this context, two contrasting soils from Argentina which differ in geolocation and edaphic properties and the perlite substrate were assayed side by side in nodule occupancy of Negro Xamapa after inoculation with a mixture of strains nodC type α and γ (Results not shown). Our results showed that the predominance of nodC type γ in the occupation of the nodules of this variety (about 80% occupation) is not affected by the type of substrate (p = 0.5566). Yet, we assume that the performance in diverse soil and ecosystems should be further evaluated in situ. In agreement, a good coevolution of rhizobia strains with nodC type (upgamma) was detected in nodules of bean varieties from the Mesoamerica and Andean genetic pools inoculated with soil samples from Mexico, Ecuador, and Northwest of Argentina, respectively (see Table 2 in Aguilar et al., 2004) [9].With respect to the interaction in the southern Andes, we propose another interpretation that takes into consideration the bottleneck that occurred before domestication in the Andes, as was indicated by Bitocchi et al.26, which scenario enables the assumption that the adaptation and concomitant diversification involved a coevolution of the symbioses. Therefore, similar profiles of competitiveness for nodulation in Mesoamerican and Andean beans were found between nodC type (upgamma) versus nodC types α and (updelta), but a significant occupancy by the nodC type (updelta) was recorded in the Andean beans.Our work suggests that the genetics of both the host and the bacteria determine the mutual affinity and additionally indicates that symbiotic interaction is another trait of legumes sensitive to the effects of evolution and ecological adaptation to the locale environment such as the characteristics of the soil and the climate.The analysis of the genetic sequences of the bean that encode genes associated with symbiosis, revealed variation of NFR1, NFR5 and NIN over the representative accessions of the Mesoamerican, the Andean, and the AHD gene pools. It is proposed that a receptor complex composed of NFR1 and NFR5 initiates signal transduction in response to Nod-factor synthesized and released by rhizobia27. Although the variation consisted mainly in neutral-amino-acid substitutions, thus suggesting only minimal changes in the functionality, if any at all; we could cite the convincing and relevant evidence reported by Radutoiu et al.27 that the amino-acid residue 118 of the second LysM module of NFR5 is essential for the recognition of rhizobia by species of Lotus japonicus and Lotus filicaulis. Our finding that the Mesoamerican-bean NFR5 has glutamine (Q) in position 151, whereas the Andean and the AHD both have proline (P)—neither of which amino acids is neutral—would merit further investigation to evaluate if such a mutation might play a role in nodulation preference. Although this result must be considered with caution, we found that the conserved polymorphism in the NFR1 and NFR5 proteins has caused the beans representative of the genetic pool Ecuador-Peru—i. e., the AHD—to be grouped in a cluster separate from those of Mesoamerica and the Andes. What we found to be interesting was that the phylogenetic and RMSD profiles of grouping the sequences are consistent with different evolutionary pathways in beans from the AHD and the Andean areas. This observation agrees with the proposal of Randón-Anaya et al.2 that those former beans from northern Peru-Ecuador originated from an ancestral form earlier than that of Mesoamerican- and Andean-bean genotypes. In addition, by applying a suppressive subtractive hybridization approach a set of bean genes were identified in our laboratory to be expressed in early step of infection by the cognate rhizobia28. Taken these results together, we conclude that genomic regions and patterns of expression in the host appear associated with an affinity for nodulation.Within a broader context, we believe that our results on the biogeography of bean-rhizobia interactions in the region where the origin and domestication of the host plants occurred provide novel useful issues to be considered in inoculation programs, for instance those involving selection of strains and cultivars, and invite to validate these findings in follow up field trials. More

  • in

    Maling bamboo (Yushania maling) overdominance alters forest structure and composition in Khangchendzonga landscape, Eastern Himalaya

    Badola, H. K. & Aitken, S. Potential biological resources for poverty alleviation in Indian Himalaya. Biodiver. 11(3–4), 8–18 (2010).
    Google Scholar 
    Pandey, A., Badola, H. K., Rai, S. & Singh, S. P. Timberline structure and woody taxa regeneration towards treeline along latitudinal gradients in Khangchendzonga National Park Eastern Himalaya. PLoS ONE 13(11), e0207762 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature https://doi.org/10.1038/nature22899 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hansen, A. J. et al. Global change in forests: Responses of species, communities, and biomes. Bio-Sciences 51, 765–779 (2001).
    Google Scholar 
    Gooden, B., French, K. O. & Turner, P. Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia. For. Ecol. Manag. 257(3), 960–967 (2009).
    Google Scholar 
    Xu, Q. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Global Ecol. Cons. https://doi.org/10.1016/j.gecco.2019.e00787 (2020).Article 

    Google Scholar 
    Dhar, U., Rawal, R. S. & Samant, S. S. Structural diversity and representativeness of forest vegetation in a protected area of Kumaun Himalaya, India: Implications for conservation. Biodiver. Cons. 6, 1045–1062 (1997).
    Google Scholar 
    Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710 (2000).
    Google Scholar 
    Tomimatsu, H. et al. Consequences of forest fragmentation in an understory plant community: Extensive range expansion of native dwarf bamboo. Plant Species Biol. 26, 3–12 (2011).
    Google Scholar 
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS 
    PubMed 

    Google Scholar 
    Royo, A. A. & Carson, W. P. On the formation of dense understory layers in forests worldwide: Consequences and implications for forest dynamics, biodiversity, and succession. Can. J. For. Res. 36, 1345–1362 (2006).
    Google Scholar 
    Royo, A. A., Stout, S. L. & Pierson, T. G. Restoring forest herb communities through landscape-level deer herd reductions: Is recovery limited by legacy effects?. Biol. Cons. 143, 2425–2434 (2010).
    Google Scholar 
    Taylor, A. H., Jinyan, H. & ShiQiang, Z. Canopy tree development and undergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China: A 12-year study. For. Ecol. Manag. 200(1), 347–360 (2004).
    Google Scholar 
    Zhou, X., Chen, L. & Lin, Q. Effects of chemical foaming agents on the physico-mechanical properties and rheological behavior of bamboo powder-polypropylene foamed composites. Bio Resour. 7(2), 2183–2198 (2012).CAS 

    Google Scholar 
    Lima, R. A., Rother, D. C., Muler, A. E., Lepsch, I. F. & Rodrigues, R. R. Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol. Conserv. 147, 32–39 (2012).
    Google Scholar 
    Tariyal, K. Bamboo as a successful carbon sequestration substrate in Uttarakhand: A brief analysis. Int. J. Curr. Adv. Res. 5(4), 736–738 (2016).
    Google Scholar 
    Badoni, A.K., Badola, H. K. & Sharma, S.P. Inter-disciplinary approach towards environmental management: A case study with wild bamboos in Garhwal Himalayas, In: Prakash R (Ed), Editor. Advances in Forestry Research in India, Vol. III, Intl. Book Distrib., Dehradun. pp 261–280 (1989).Bahadur, K. N. Bamboos in the service of man. Biol. Contemp. J. 1(2), 69–72 (1974).
    Google Scholar 
    Tomar, J. M. S., Hore, D. K. & Annadurai, A. Bamboos and their conservation in North-East India. Indian For. 135(6), 817–824 (2009).
    Google Scholar 
    Kumar, P. S., Kumari, K. U., Devi, M. P., Choudhary, V. K. & Sangeetha, A. Bamboo shoot as a source of nutraceuticals and bioactive compounds: a review. Indian J. Nat. Proc. Res. 8(1), 32–46 (2016).
    Google Scholar 
    Pradhan, S., Saha, G. K. & Khan, J. A. Ecology of the red panda Ailurus fulgens in the Singhalila National Park, Darjeeling, India. Biol. Cons. 98(1), 11–18 (2001).
    Google Scholar 
    Dorji, S., Vernes, K. & Rajaratnam, A. Habitat correlates of the Red Panda in the temperate forests of Bhutan. PLoS ONE 610, 1–11 (2011).
    Google Scholar 
    Mohan Ram, H. Y. & Tandon, R. Bamboos and rattans—from riches to rags. Proc. Natl. Sci. Acad. India 63(3), 245–267 (1997).
    Google Scholar 
    Sharma, R., Wahono, J. & Baral, H. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10, 4367 (2018).
    Google Scholar 
    Seethalakshmi, K.K. & Kumar, M.S.M. Bamboos of India: A Compendium. Bamboo Information Center, India, Kerala Forest Research Institute, Peechi and International Network for Bamboo and Ratten, Beijing (1998).Sarmah, A., Thomas, S., Goswami, M., Haridashan, K. & Borthakur, S. K. Rattan and bamboo flora of North-East India in a conservation perspective. In Sustainable Management of Forests (eds Arunachalan, A. & Khan, M. L.) 37–45 (International Book Distributors, 2000).
    Google Scholar 
    Das, M., Bhattacharya, S., Singh, P., Filgueiras, T. S. & Pal, A. Bamboo taxonomy and diversity in the era of molecular markers. Adv. Bot. Res. 47, 225–268 (2008).CAS 

    Google Scholar 
    Biswas, S. et al. Evidence of stress induced flowering in bamboo and comments on probable biochemical and molecular factors. J. Plant Biochem. Biotechnol. 30(4), 1020–1026 (2021).CAS 

    Google Scholar 
    Ray, P. K. Gregarious flowering of a common hill bamboo Arundinaria maling. Indian For. 78(2), 89–90 (1952).
    Google Scholar 
    Taylor, A. H. & Zisheng, Q. Culm dynamics and dry matter production of bamboos in the Wolong and Tangjiahe giant panda reserves, Sichuan, China. J. Appl. Ecol. 24, 419–433 (1987).
    Google Scholar 
    Okutomi, K., Shinoda, S. & Fukuda, H. Causal analysis of the invasion of broadleaved forest by bamboo in Japan. J. Veg. Sci. 7, 723–728 (1996).
    Google Scholar 
    Nath, A. J., Das, M. C. & Das, A. K. Gregarious flowering in woody bamboos: Does it mean end of life?. Curr. Sci. 106(1), 12–13 (2014).
    Google Scholar 
    Silveira, M. Ecological aspects of bamboo-dominated Forest in southwestern Amazonia: An ethnoscience perspective. Ecotropica 5, 213–216 (1999).
    Google Scholar 
    Song, Q. N. et al. Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Sci. Rep. 7(1), 1–10 (2017).ADS 

    Google Scholar 
    Rother, D. C., Rodrigues, R. R. & Pizo, M. A. Effects of bamboo stands on seed rain and seed limitation in a rainforest. For. Ecol. Manag. 257, 885–892 (2009).
    Google Scholar 
    Srivastava, V., Griess, V.C. & Padalia, H. Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecol Model 385:35–44 (2018).Roy, A., Bhattacharya, S., Ramprakash, M. & Kumar, A. S. Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach. Ecol. Model. 329, 77–85 (2016).
    Google Scholar 
    Stapleton, C. M. A. The morphology of woody bamboos. LinneanSocietySymposium Series 19 251–268 (Academic Press Limited, 1997).
    Google Scholar 
    Larpkern, P., Mor, S. R. & Totland, Q. Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia 165(1), 161–168 (2011).ADS 
    PubMed 

    Google Scholar 
    Tao, J. P., Shi, X. P. & Wang, Y. J. Effects of different bamboo densities on understory species diversity and trees regeneration in an Abies faxoniana forest, Southwest China. Sci. Res. Essays 7, 660–668 (2012).
    Google Scholar 
    Wang, W., Franklin, S. B., Ren, Y. & Ouellette, J. R. Growth of bamboo Fargesiaqinlingensis and regeneration of trees in a mixed hardwood-conifer forest in the Qinling Mountains, China. For. Ecol. Manag. 234(1–3), 107–115 (2006).
    Google Scholar 
    Gratzer, G., Rai, P. B. & Glatzel, G. The influence of the bamboo Yushaniamicrophylla on regeneration of Abies densa in central Bhutan. Can. J. For. Res. 29, 1518–1527 (1999).
    Google Scholar 
    Takahashi, K., Uemura, S., Suzuki, J. I. & Hara, T. Effect of understory dwarf bamboo on soil water and the growth of overstory trees in a dense secondary Betula ermanii forest, northern Japan. Ecol. Res. 18(6), 767–774 (2003).
    Google Scholar 
    Ito, H. & Hino, T. Effects of deer, mice and dwarf bamboo on the emergence, survival and growth of Abieshomolepis (Piceaceae) seedlings. Ecol. Res. 19(2), 217–223 (2004).
    Google Scholar 
    Tenzin, K. & Rinzin, A. Impact of Livestock Grazing on the Regeneration of Some Major Species of Plants in Conifer Forest (RNR-RC, 2003).
    Google Scholar 
    Darabant, A., Rai, P. B., Tenzin, K., Roder, W. & Gratzer, G. Cattle grazing facilitates tree regeneration in a conifer forest with palatable bamboo understory. For. Ecol. Manag. 252(1–3), 73–83 (2007).
    Google Scholar 
    Sinha, S. et al. Effect of altitude and climate in shaping the forest compositions of Singalila National Park in Khangchendzonga Landscape, Eastern Himalaya, India. J. Asia-Pac. Biodiver. 11(2), 267–275 (2018).
    Google Scholar 
    Zhang, W., Huang, D., Wang, R., Liu, J. & Du, N. Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of Northern China. PLoS ONE 11(7), e0159995. https://doi.org/10.1371/journal.pone.0159995 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, C. M., Mishra, A. K., Tiwari, O. P., Krishna, R. & Rana, Y. S. Effect of altitudinal gradients on forest structure and composition on ridge tops in Garhwal Himalaya. Energy Ecol. Environ. 2(6), 404–417. https://doi.org/10.1007/s40974-017-0067-6(2016) (2017).Article 

    Google Scholar 
    Silveira, M. Ecological aspects of bamboo-dominated forests in southwestern Amazonia: An ethnoscience perspective. Ecotropica 5, 213–216 (1999).
    Google Scholar 
    Franklin, D. C. Vegetation phenology and growth of a facultatively deciduous bamboo in a monsoonal climate. Biotropica 37, 343–350 (2005).
    Google Scholar 
    Nath, A. N., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Cons. 3, 654–663 (2015).
    Google Scholar 
    Venkatesh, M. S., Bhatt, B. P., Kumar, K., Majumdar, B. & Singh, K. Soil properties as influenced by some important edible bamboo species in the North Eastern Himalayan region. Indian J. Bamboo Rattan 4(3), 221–230 (2005).
    Google Scholar 
    ICIMOD, WCD, GBPNIHESD, RECAST Kangchenjunga landscape feasibility assessment report. ICIMOD Working Paper 2017/9. Kathmandu: ICIMOD (2017).Mueller-Dombois, A. & Ellenburg, A. Aims and Methods of Vegetation Ecology 48–50 (John Wiley Sons, 1974).
    Google Scholar 
    Polunin, O. & Stainton, A. Flowers of the Himalaya 580 (Oxford University Press, 2001).
    Google Scholar 
    Ghosh, D.K. & Mallick, J.K. Flora of darjeeling himalayas and foothills: Angiosperms. Research Circle, Forest Directorate, Government of West Bengal & Bishen Singh Mahendra Pal Singh (2014).Pradhan, U. C. & Lachungpa, M. L. Sikkim Himalayan Rhododendrons 130 (Primulaceae Books, 1990).
    Google Scholar 
    de Bello, F., Leps, J. & Sebastia, M. T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecograph 29, 801–810 (2006).
    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman and Hall, 1990).MATH 

    Google Scholar 
    Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Google Scholar 
    McCullagh, P. & Nelder, J. A. Generalized Linear Models 2nd edn. (Chapman and Hall, 1989).MATH 

    Google Scholar 
    Gaira, K. S., Dhar, U. & Belwal, O. K. Potential of herbarium records to sequence phenological pattern: A case study of Aconitum heterophyllum in the Himalaya. Biodiver. Cons. 20, 2201–2210 (2011).
    Google Scholar  More

  • in

    Author Correction: Late Quaternary dynamics of Arctic biota from ancient environmental genomics

    Department of Zoology, University of Cambridge, Cambridge, UKYucheng Wang, Bianca De Sanctis, Ana Prohaska, Daniel Money & Eske WillerslevLundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, DenmarkYucheng Wang, Mikkel Winther Pedersen, Fernando Racimo, Antonio Fernandez-Guerra, Alexandra Rouillard, Anthony H. Ruter, Hugh McColl, Nicolaj Krog Larsen, James Haile, Lasse Vinner, Thorfinn Sand Korneliussen, Jialu Cao, David J. Meltzer, Kurt H. Kjær & Eske WillerslevThe Arctic University Museum of Norway, UiT— The Arctic University of Norway, Tromsø, NorwayInger Greve Alsos, Eric Coissac, Marie Kristine Føreid Merkel, Youri Lammers & Galina GusarovaDepartment of Genetics, University of Cambridge, Cambridge, UKBianca De Sanctis & Richard DurbinUniversité Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, FranceEric CoissacCenter for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, DenmarkHannah Lois Owens, Carsten Rahbek & David Nogues BravoDepartment of Geosciences, UiT—The Arctic University of Norway, Tromsø, NorwayAlexandra RouillardUniversité Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, FranceAdriana AlbertiGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, FranceAdriana Alberti, France Denoeud & Patrick WinckerInstitute of Earth Sciences, St Petersburg State University, St Petersburg, RussiaAnna A. Cherezova & Grigory B. FedorovArctic and Antarctic Research Institute, St Petersburg, RussiaAnna A. Cherezova & Grigory B. FedorovSchool of Geography and Environmental Science, University of Southampton, Southampton, UKMary E. EdwardsAlaska Quaternary Center, University of Alaska Fairbanks, Fairbanks, AK, USAMary E. EdwardsCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, FranceLudovic OrlandoNational Research University, Higher School of Economics, Moscow, RussiaThorfinn Sand KorneliussenDepartment of Geography and Environment, University of Hawaii, Honolulu, HI, USADavid W. BeilmanDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, DenmarkAnders A. BjørkCarlsberg Research Laboratory, Copenhagen, DenmarkChristoph Dockter & Birgitte SkadhaugeCenter for Environmental Management of Military Lands, Colorado State University, Fort Collins, CO, USAJulie EsdaleFaculty of Biology, St Petersburg State University, St Petersburg, RussiaGalina GusarovaDepartment of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, DenmarkKristian K. KjeldsenDepartment of Earth Science, University of Bergen, Bergen, NorwayJan Mangerud & John Inge SvendsenBjerknes Centre for Climate Research, Bergen, NorwayJan Mangerud & John Inge SvendsenUS National Park Service, Gates of the Arctic National Park and Preserve, Fairbanks, AK, USAJeffrey T. RasicZoological Institute, , Russian Academy of Sciences, St Petersburg, RussiaAlexei TikhonovResource and Environmental Research Center, Chinese Academy of Fishery Sciences, Beijing, ChinaYingchun XingCollege of Plant Science, Jilin University, Changchun, ChinaYubin ZhangDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, CanadaDuane G. FroeseCenter for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, DenmarkCarsten RahbekSchool of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UKPhilip B. Holden & Neil R. EdwardsDepartment of Anthropology, Southern Methodist University, Dallas, TX, USADavid J. MeltzerDepartment of Geology, Quaternary Sciences, Lund University, Lund, SwedenPer MöllerWellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UKEske WillerslevMARUM, University of Bremen, Bremen, GermanyEske Willerslev More

  • in

    Are there limits to economic growth? It’s time to call time on a 50-year argument

    EDITORIAL
    16 March 2022

    Are there limits to economic growth? It’s time to call time on a 50-year argument

    Researchers must try to resolve a dispute on the best way to use and care for Earth’s resources.

    Twitter

    Facebook

    Email

    Download PDF

    Lead author Donella Meadows wrote that the book The Limits to Growth “was written not to predict doom but to challenge people to find ways of living that are consistent with the laws of the planet”.Credit: Alamy

    Fifty years ago this month, the System Dynamics group at the Massachusetts Institute of Technology in Cambridge had a stark message for the world: continued economic and population growth would deplete Earth’s resources and lead to global economic collapse by 2070. This finding was from their 200-page book The Limits to Growth, one of the first modelling studies to forecast the environmental and social impacts of industrialization.For its time, this was a shocking forecast, and it did not go down well. Nature called the study “another whiff of doomsday” (see Nature 236, 47–49; 1972). It was near-heresy, even in research circles, to suggest that some of the foundations of industrial civilization — mining coal, making steel, drilling for oil and spraying crops with fertilizers — might cause lasting damage. Research leaders accepted that industry pollutes air and water, but considered such damage reversible. Those trained in a pre-computing age were also sceptical of modelling, and advocated that technology would come to the planet’s rescue. Zoologist Solly Zuckerman, a former chief scientific adviser to the UK government, said: “Whatever computers may say about the future, there is nothing in the past which gives any credence whatever to the view that human ingenuity cannot in time circumvent material human difficulties.”But the study’s lead author, Donella Meadows, and her colleagues stood firm, pointing out that ecological and economic stability would be possible if action were taken early. Limits was instrumental to the creation of the United Nations Environment Programme, also in 1972. Overall, more than 30 million copies of the book have been sold.
    The value of biodiversity is not the same as its price
    But the debates haven’t stopped. Although there’s now a consensus that human activities have irreversible environmental effects, researchers disagree on the solutions — especially if that involves curbing economic growth. That disagreement is impeding action. It’s time for researchers to end their debate. The world needs them to focus on the greater goals of stopping catastrophic environmental destruction and improving well-being.Researchers such as Johan Rockström at the Potsdam Institute for Climate Impact Research in Germany advocate that economies can grow without making the planet unliveable. They point to evidence, notably from the Nordic nations, that economies can continue to grow even as carbon emissions start to come down. This shows that what’s needed is much faster adoption of technology — such as renewable energy. A parallel research movement, known as ‘post-growth’ or ‘degrowth’, says that the world needs to abandon the idea that economies must keep growing — because growth itself is harmful. Its proponents include Kate Raworth, an economist at the University of Oxford, UK, and author of the 2017 book Doughnut Economics, which has inspired its own global movement.Economic growth is typically measured by gross domestic product (GDP). This composite index uses consumer spending, as well as business and government investment, to arrive at a figure for a country’s economic output. Governments have entire departments devoted to ensuring that GDP always points upwards. And that is a problem, say post-growth researchers: when faced with a choice between two policies (one more green than the other), governments are likely to opt for whichever is the quicker in boosting growth to bolster GDP, and that might often be the option that causes more pollution.
    G20’s US$14-trillion economic stimulus reneges on emissions pledges
    A report published last week by the World Health Organization (see go.nature.com/3j9xcpi) says that if policymakers didn’t have a “pathological obsession with GDP”, they would spend more on making health care affordable for every citizen. Health spending does not contribute to GDP in the same way that, for example, military spending does, say the authors, led by economist Mariana Mazzucato at University College London.Both communities must do more to talk to each other, instead of at each other. It won’t be easy, but appreciation for the same literature could be a starting point. After all, Limits inspired both the green-growth and post-growth communities, and both were similarly influenced by the first study on planetary boundaries (J. Rockström et al. Nature 461, 472–475; 2009), which attempted to define limits for the biophysical processes that determine Earth’s capacity for self-regulation.Opportunities for cooperation are imminent. At the end of January, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services announced a big study into the causes of biodiversity loss, including the role of economic systems. More than 100 authors from 40 countries and different fields will spend two years assessing the literature. They will recommend “transformative change to the systems leading us to catastrophe”, says study co-chair, political scientist Arun Agrawal at the University of Michigan in Ann Arbor.Another opportunity is an upcoming revision of the rules for what is measured in GDP. These will be agreed by countries’ chief statisticians and organized through the UN, and are due to be finalized in 2025. For the first time, the statisticians are asking how sustainability and well-being could be more closely aligned to GDP. Both post-growth and green-growth advocates have valuable perspectives.Research can be territorial — new communities emerge sometimes because of disagreements in fields. But green-growth and post-growth scientists need to see the bigger picture. Right now, both are articulating different visions to policymakers, and there is a risk this will delay action. In 1972, there was still time to debate, and less urgency to act. Now, the world is running out of time.

    Nature 603, 361 (2022)
    doi: https://doi.org/10.1038/d41586-022-00723-1

    Related Articles

    G20’s US$14-trillion economic stimulus reneges on emissions pledges

    Get the Sustainable Development Goals back on track

    The value of biodiversity is not the same as its price

    At 50, the UN Environment Programme must lead again

    Growing support for valuing ecosystems will help conserve the planet

    Climate tipping points — too risky to bet against

    Subjects

    Economics

    Biodiversity

    Environmental sciences

    Policy

    Latest on:

    Economics

    G20’s US$14-trillion economic stimulus reneges on emissions pledges
    Comment 02 MAR 22

    Chile: new cabinet is rich in scientists and women
    Correspondence 01 MAR 22

    Gender pay gap closes after salary information goes public
    Research Highlight 16 FEB 22

    Biodiversity

    Africa: sequence 100,000 species to safeguard biodiversity
    Comment 15 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    Apply Singapore Index on Cities’ Biodiversity at scale
    Correspondence 22 FEB 22

    Environmental sciences

    Landmark treaty on plastic pollution must put scientific evidence front and centre
    Editorial 08 MAR 22

    Madagascar’s biggest mine achieves striking conservation success
    Research Highlight 07 MAR 22

    An engineer advances fire-management laws in Colombia
    Career Q&A 23 FEB 22

    Jobs

    Team Manager (Genetics, Ecology, Evolution and Conservation)

    Springer Nature
    London, Greater London, United Kingdom

    Postdoctoral position in drug-microbiome interactions

    University of Ottawa (uOttawa)
    Ottawa, Ontario, Canada

    Postdoctoral position in NMR-based structural biology

    Umeå University (UmU)
    Umeå, Sweden

    Associate Professor in Natural Sciences

    University of Southampton
    Southampton, United Kingdom More

  • in

    Limited increases in savanna carbon stocks over decades of fire suppression

    Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grace, J., José, J. S., Meir, P., Miranda, H. S. & Montes, R. A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).
    Google Scholar 
    Van Der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).ADS 

    Google Scholar 
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).ADS 
    CAS 

    Google Scholar 
    Russell-Smith, J. et al. Opportunities and challenges for savanna burning emissions abatement in southern Africa. J. Environ. Manage. 288, 112414 (2021).CAS 
    PubMed 

    Google Scholar 
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, C. et al. Historical and future global burned area with changing climate and human demography. One Earth 4, 517–530 (2021).
    Google Scholar 
    Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Higgins, S. I. et al. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88, 1119–1125 (2007).
    Google Scholar 
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).ADS 
    CAS 

    Google Scholar 
    Pellegrini, A. F. A., Hedin, L. O., Staver, A. C. & Govender, N. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96, 1275–1285 (2015).PubMed 

    Google Scholar 
    Tilman, D. et al. Fire suppression and ecosystem carbon storage. Ecology 81, 2680–2685 (2000).
    Google Scholar 
    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).ADS 

    Google Scholar 
    de Miranda, S. D. C. et al. Regional variations in biomass distribution in Brazilian savanna woodland. Biotropica 46, 125–138 (2014).
    Google Scholar 
    Wigley, B. J., Cramer, M. D. & Bond, W. J. Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecol. 203, 1 (2009).
    Google Scholar 
    Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Staver, A. C., Botha, J. & Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. New Phytol. 216, 1151–1160 (2017).CAS 
    PubMed 

    Google Scholar 
    Zhou, Y., Wigley, B. J., Case, M. F., Coetsee, C. & Staver, A. C. Rooting depth as a key woody functional trait in savannas. New Phytol. 227, 1350–1361 (2020).PubMed 

    Google Scholar 
    Govender, N., Trollope, W. S. W., Van, & Wilgen, B. W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).
    Google Scholar 
    Colgan, M. S., Asner, G. P. & Swemmer, T. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas. Ecol. Appl. 23, 1170–1184 (2013).PubMed 

    Google Scholar 
    Davies, A. B. & Asner, G. P. Elephants limit aboveground carbon gains in African savannas. Glob. Change Biol. 25, 1368–1382 (2019).ADS 

    Google Scholar 
    Butnor, J. R. et al. Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci. Soc. Am. J. 67, 1607–1615 (2003).ADS 
    CAS 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).
    Google Scholar 
    Ryan, C. M., Williams, M. & Grace, J. Above- and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).
    Google Scholar 
    Swezy, D. M. & Agee, J. K. Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine. Can. J. For. Res. 21, 626–634 (1991).
    Google Scholar 
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coetsee, C., Bond, W. J. & February, E. C. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162, 1027–1034 (2010).ADS 
    PubMed 

    Google Scholar 
    Holdo, R. M., Mack, M. C. & Arnold, S. G. Tree canopies explain fire effects on soil nitrogen, phosphorus and carbon in a savanna ecosystem. J. Veg. Sci. 23, 352–360 (2012).
    Google Scholar 
    Lloyd, J. et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiol. 28, 451–468 (2008).PubMed 

    Google Scholar 
    Wigley, B. J., Augustine, D. J., Coetsee, C., Ratnam, J. & Sankaran, M. Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna. Ecology 101, e03008 (2020).PubMed 

    Google Scholar 
    Khomo, L., Trumbore, S., Bern, C. R. & Chadwick, O. A. Timescales of carbon turnover in soils with mixed crystalline mineralogies. Soil 3, 17–30 (2017).ADS 
    CAS 

    Google Scholar 
    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).CAS 

    Google Scholar 
    Abreu, R. C. R. et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).PubMed 

    Google Scholar 
    West, T. A., Börner, J. & Fearnside, P. M. Climatic benefits from the 2006–2017 avoided deforestation in Amazonian Brazil. Front. For. Glob. Change 2, 52 (2019).
    Google Scholar 
    Aleman, J. C., Blarquez, O. & Staver, C. A. Land-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa. Glob. Change Biol. 22, 3013–3025 (2016).ADS 

    Google Scholar 
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).ADS 

    Google Scholar 
    Ratajczak, Z., Nippert, J. B. & Collins, S. L. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93, 697–703 (2012).PubMed 

    Google Scholar 
    Smit, I. P. & Prins, H. H. Predicting the effects of woody encroachment on mammal communities, grazing biomass and fire frequency in African savannas. PLoS One 10, e0137857 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Huxman, T. E. et al. Ecohydrological implications of woody plant encroachment. Ecology 86, 308–319 (2005).
    Google Scholar 
    Hermoso, V., Regos, A., Morán-Ordóñez, A., Duane, A. & Brotons, L. Tree planting: a double-edged sword to fight climate change in an era of megafires. Glob. Change Biol. 27, 3001–3003 (2021).
    Google Scholar 
    Venter F. A. Classification of Land for Management Planning in the Kruger National Park. PhD thesis, Univ. South Africa (1990).Biggs, R., Biggs, H. C., Dunne, T. T., Govender, N. & Potgieter, A. L. F. Experimental burn plot trial in the Kruger National Park: history, experimental design and suggestions for data analysis. Koedoe 46, 15 (2003).
    Google Scholar 
    Codron, J. et al. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J. Archaeol. Sci. 32, 1757–1772 (2005).
    Google Scholar 
    Zhou, Y., Boutton, T. W. & Ben Wu, X. Soil carbon response to woody plant encroachment: importance of spatial heterogeneity and deep soil storage. J. Ecol. 105, 1738–1749 (2017).CAS 

    Google Scholar 
    Sheldrick B. & Wang C. In Soil Sampling and Methods of Analysis (ed. Carter, M. R.) 499–511 (CRC Press, 1993).Butnor, J. R. et al. Surface-based GPR underestimates below-stump root biomass. Plant Soil 402, 47–62 (2016).CAS 

    Google Scholar 
    Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage—an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hirano, Y. et al. Limiting factors in the detection of tree roots using ground-penetrating radar. Plant Soil 319, 15–24 (2009).CAS 

    Google Scholar 
    Popescu, S. C. & Wynne, R. H. Seeing the trees in the forest. Photogramm. Eng. Remote Sensing 70, 589–604 (2004).
    Google Scholar 
    Case, M. F., Wigley-Coetsee, C., Nzima, N., Scogings, P. F. & Staver, A. C. Severe drought limits trees in a semi-arid savanna. Ecology 100, e02842 (2019).PubMed 

    Google Scholar 
    Beucher S. & Meyer F. In Mathematical Morphology in Image Processing (ed. Dougherty, E. R.) 433–481 (CRC Press, 1993).Nickless, A., Scholes, R. J. & Archibald, S. A method for calculating the variance and confidence intervals for tree biomass estimates obtained from allometric equations. S. Afr. J. Sci. 107, 1–10 (2011).
    Google Scholar 
    Plowright A. & Roussel J.-R. ForestTools: analyzing remotely sensed forest data. R package version 0.2.1. https://CRAN.R-project.org/package=ForestTools (2020).Hijmans R. J. raster: geographic data analysis and modeling. R package version 3.3-7. https://CRAN.R-project.org/package=raster (2020).Penman J. et al. (eds) Good Practice Guidance for Land Use, Land-Use Change and Forestry (Intergovernmental Panel on Climate Change, 2003).Kuznetsova, A., Brockhoff, P. & Christensen, R. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar  More

  • in

    VKORC1 mutations in rodent populations of a tropical city-state as an indicator of anticoagulant rodenticide resistance

    Costa, F. et al. Global morbidity and mortality of leptospirosis: A systematic review. PLoS Negl. Trop. Dis. 9, e0003898. https://doi.org/10.1371/journal.pntd.0003898 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cosson, J.-F. et al. Epidemiology of Leptospira transmitted by rodents in southeast Asia. PLoS Negl. Trop. Dis. 8, e2902. https://doi.org/10.1371/journal.pntd.0002902 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on Hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 23, 412–441. https://doi.org/10.1128/CMR.00062-09 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaheri, A. et al. Uncovering the mysteries of Hantavirus infections. Nat. Rev. Microbiol. 11, 539–550. https://doi.org/10.1038/nrmicro3066 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Peniche Lara, G., Dzul-Rosado, K. R., Zavala Velázquez, J. E. & Zavala-Castro, J. Murine typhus: Clinical and epidemiological aspects. Colomb. Med. (Cali) 43, 175–180 (2012).Article 

    Google Scholar 
    Pimentel, D., Lach, L., Zuniga, R. & Morrison, D. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50, 53–65. https://doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2 (2000).Article 

    Google Scholar 
    Smith, R. & Meyer, A. Rodent control methods: Non-chemical and non-lethal chemical, with special reference to food stores. in Rodent Pests and Their Control (Buckle, A.P., Smith, R. eds.). 2nd edn. 101–122. (CAB International, 2015).Himsworth, C. G., Jardine, C. M., Parsons, K. L., Feng, A. Y. T. & Patrick, D. M. The characteristics of wild rat (Rattus spp.) populations from an inner-city neighborhood with a focus on factors critical to the understanding of rat-associated zoonoses. PLoS ONE 9, e91654. https://doi.org/10.1371/journal.pone.0091654 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mari Saez, A. et al. Rodent control to fight Lassa fever: Evaluation and lessons learned from a 4-year study in Upper Guinea. PLoS Negl. Trop. Dis. 12, e0006829–e0006829. https://doi.org/10.1371/journal.pntd.0006829 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baldwin, R., Quinn, N., Davis, D. & Engeman, R. Effectiveness of rodenticides for managing invasive roof rats and native deer mice in orchards. Environ. Sci. Pollut. Res. 21, 5795–5802. https://doi.org/10.1007/s11356-014-2525-4 (2014).CAS 
    Article 

    Google Scholar 
    Hadler, M. R. & Buckle, A. P. Forty five years of anticoagulant rodenticides—Past, present and future trends. Proc. Vertebr. Pest Conf. 15, 149–155 (1992).
    Google Scholar 
    Rost, S. et al. Novel mutations in the VKORC1 gene of wild rats and mice – A response to 50 years of selection pressure by warfarin?. BMC Genet. 10, 4. https://doi.org/10.1186/1471-2156-10-4 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buckle, A., Prescott, C. & Ward, K. J. Resistance to the first and second generation anticoagulant rodenticides – A new perspective. Proc. Verebr. Pest Conf. 16, 138–144 (1994).
    Google Scholar 
    Goulois, J., Lambert, V., Legros, L., Benoit, E. & Lattard, V. Adaptative evolution of the Vkorc1 gene in Mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecol. Evol. 7, 2767–2776. https://doi.org/10.1002/ece3.2829 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meerburg, B. G., van Gent-Pelzer, M. P. E., Schoelitsz, B. & van der Lee, T. A. J. Distribution of anticoagulant rodenticide resistance in Rattus norvegicus in the Netherlands according to Vkorc1 mutations. Pest Manag. Sci. 70, 1761–1766. https://doi.org/10.1002/ps.3809 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lund, M. Rodent resistance to the anticoagulant rodenticides, with particular reference to Denmark. Bull. World Health Organ. 47, 611–618 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, M. J. et al. Effects of culling on Leptospira interrogans carriage by rats. Emerg. Infect. Dis. 24, 356–360. https://doi.org/10.3201/eid2402.171371 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greaves, J. H. Resistance to anticoagulant rodenticides. in Rodent Pests and Their Control (Buckle, A.P., Smith, R. eds.). 2nd edn. 187–208. (CAB International, 2015).Lefebvre, S. B., Benoit, E. & Lattard, V. Comparative biology of the resistance to vitamin K antagonists: An overview of the resistance mechanisms in Anticoagulation Therapy (Basaran, O., Biteker, M. eds.). 20–45. (Intech Open, 2016).Grandemange, A. et al. Consequences of the Y139F Vkorc1 mutation on resistance to AVKs: In-vivo investigation in a 7th generation of congenic Y139F strain of rats. Pharmacogenet. Genomics. 19, 742–750. https://doi.org/10.1097/FPC.0b013e32832ee55b (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sadowski, J. A., Esmon, C. T. & Suttie, J. W. Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system. J. Biol. Chem. 251, 2770–2776 (1976).CAS 
    Article 

    Google Scholar 
    Mooney, J. et al. VKORC1 sequence variants associated with resistance to anticoagulant rodenticides in Irish populations of Rattus norvegicus and Mus musculus domesticus. Sci. Rep. 8, 4535. https://doi.org/10.1038/s41598-018-22815-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thijssen, H. H. W. Warfarin-based rodenticides: Mode of action and mechanism of resistance. Pestic. Sci. 43, 73–78. https://doi.org/10.1002/ps.2780430112 (1995).CAS 
    Article 

    Google Scholar 
    Bell, R. G. & Caldwell, P. T. Mechanism of warfarin resistance. Warfarin and the metabolism of vitamin K1. Biochemistry 12, 1759–1762. https://doi.org/10.1021/bi00733a015 (1973).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pelz, H.-J. et al. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847. https://doi.org/10.1534/genetics.104.040360 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baert, K., Stuyck, J., Breyne, P., Maes, D. & Casaer, J. Distribution of anticoagulant resistance in the brown rat in Belgium. Belg. J. Zool. 142, 39–48 (2012).
    Google Scholar 
    Prescott, C. V., Buckle, A. P., Gibbings, J. G., Allan, E. N. W. & Stuart, A. M. Anticoagulant resistance in Norway rats (Rattus norvegicus Berk.) in Kent – A VKORC1 single nucleotide polymorphism, tyrosine139phenylalanine, new to the UK. Int. J. Pest Manag. 57, 61–65. https://doi.org/10.1080/09670874.2010.523124 (2010).CAS 
    Article 

    Google Scholar 
    Grandemange, A., Lasseur, R., Longin-Sauvageon, C., Benoit, E. & Berny, P. Distribution of VKORC1 single nucleotide polymorphism in wild Rattus norvegicus in France. Pest Manag. Sci. 66, 270–276. https://doi.org/10.1002/ps.1869 (2009).CAS 
    Article 

    Google Scholar 
    Goulois, J. et al. Evidence of a target resistance to antivitamin K rodenticides in the roof rat Rattus rattus: Identification and characterisation of a novel Y25F mutation in the Vkorc1 gene. Pest Manag. Sci. 72, 544–550. https://doi.org/10.1002/ps.4020 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Endepols, S., Klemann, N., Jacob, J. & Buckle, A. P. Resistance tests and field trials with bromadiolone for the control of Norway rats (Rattus norvegicus) on farms in Westphalia, Germany. Pest Manag. Sci. 68, 348–354. https://doi.org/10.1002/ps.2268 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Andru, J., Cosson, J.-F., Caliman, J.-P. & Benoit, E. Coumatetralyl resistance of Rattus tanezumi infesting oil palm plantations in Indonesia. Ecotoxicology 22, 377–386. https://doi.org/10.1007/s10646-012-1032-y (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Department of Statistics Singapore. Population and Population Structure. https://www.singstat.gov.sg/find-data/search-by-theme/population/population-and-population-structure/latest-data (2020).Department of Statistics Singapore. Environment. https://www.singstat.gov.sg/find-data/search-by-theme/society/environment/latest-data (2020).Department of Statistics Singapore. M890531—Licensed Food Establishments (End of Period), Annual. https://www.tablebuilder.singstat.gov.sg/publicfacing/createDataTable.action?refId=14624 (2021).QGIS Development Team. QGIS Geographic Information System. QGIS Association. https://www.qgis.org/en/site/ (2021).Ivanova, N. V., Clare, E. L. & Borisenko, A. V. in DNA Barcodes: Methods and Protocols (John Kress, W. & Erickson, D.L. eds.) 153–182 (Humana Press, 2012).Pagès, M. et al. Revisiting the taxonomy of the Rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evol. Biol. 10, 184. https://doi.org/10.1186/1471-2148-10-184 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pagès, M. et al. Cytonuclear discordance among Southeast Asian black rats (Rattus rattus complex). Mol. Ecol. 22, 1019–1034. https://doi.org/10.1111/mec.12149 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rungrojn, A. et al. Prevalence and molecular characterization of Rickettsia spp. from wild small mammals in public parks and urban areas of Bangkok metropolitan, Thailand. Trop. Med. Infect. Dis. https://doi.org/10.3390/tropicalmed6040199 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wulandhari, S. A. et al. High prevalence and low diversity of chigger infestation in small mammals found in Bangkok metropolitan parks. Med. Vet. Entomol. 35, 534–546. https://doi.org/10.1111/mve.12531 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cowan, P. E. et al. Vkorc1 sequencing suggests anticoagulant resistance in rats in New Zealand. Pest Manag. Sci. 73, 262–266. https://doi.org/10.1002/ps.4304 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rost, S. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427, 537–541. https://doi.org/10.1038/nature02214 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wong, T. W. et al. Hantavirus infections in humans and commensal rodents in Singapore. Trans. R. Soc. Trop. Med. Hyg. 83, 248–251. https://doi.org/10.1016/0035-9203(89)90666-4 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dubock, A. Pulsed baiting – A new technique for high potency, slow acting rodenticides. Proc. Vertebr. Pest Conf. 10, 123–136 (1982).
    Google Scholar 
    Garg, N., Singla, N., Jindal, V. & Babbar, B. Studies on bromadiolone resistance in Rattus rattus populations from Punjab, India. Pestic. Biochem. Physiol. 139, 24–31 (2017).CAS 
    Article 

    Google Scholar 
    Song, Y., Lan, Z. & Kohn, M. H. Mitochondrial DNA phylogeography of the Norway rat. PLoS ONE 9, e88425. https://doi.org/10.1371/journal.pone.0088425 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aplin, K. P. et al. Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS ONE 6, e26357. https://doi.org/10.1371/journal.pone.0026357 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyle, C. M. Case of apparent resistance of Rattus norvegicus Berkenhout to anticoagulant poisons. Nature 188, 517. https://doi.org/10.1038/188517a0 (1960).ADS 
    Article 

    Google Scholar 
    Jackson, W. B. & Kaukeinen, D. Resistance of wild Norway rats in North Carolina to warfarin rodenticide. Science 176, 1343 (1972).ADS 
    CAS 
    Article 

    Google Scholar 
    Ma, X. et al. Low warfarin resistance frequency in Norway rats in two cities in China after 30 years of usage of anticoagulant rodenticides. Pest Manag. Sci. 74, 2555–2560. https://doi.org/10.1002/ps.5040 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Markussen, M. D. K., Heiberg, A.-C., Fredholm, M. & Kristensen, M. Differential expression of cytochrome P450 genes between bromadiolone-resistant and anticoagulant-susceptible Norway rats: A possible role for pharmacokinetics in bromadiolone resistance. Pest Manag. Sci. 64, 239–248. https://doi.org/10.1002/ps.1506 (2008).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Savannahs store carbon despite frequent fires

    NEWS AND VIEWS
    16 March 2022

    Savannahs store carbon despite frequent fires

    An analysis of carbon stored in the plants and soil of an African savannah suggests that atmospheric carbon dioxide concentrations — and thus global warming — might be less affected by frequent fires than we thought.

    Niall P. Hanan

    0
    &

    Anthony M. Swemmer

    1

    Niall P. Hanan

    Niall P. Hanan is in the Jornada Basin Long-Term Ecological Research programme, Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Anthony M. Swemmer

    Anthony M. Swemmer is in the South African Environment Observation Network, Phalaborwa 1390, South Africa.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Savannahs burn more frequently than any other biome, and tropical savannahs alone account for 62% of the carbon dioxide emitted from fires globally1. Strategies involving fire suppression2 or the planting of trees3 in savannahs have therefore been proposed as a means of reducing CO2 emissions and increasing carbon sequestration, thus potentially contributing to the mitigation of global climate change. But it remains unclear whether these measures would make a substantial difference to the accumulation of CO2 in the atmosphere. Writing Nature, Zhou et al.4 analyse a long-term fire experiment in Kruger National Park, South Africa, and reveal that the total amount of carbon stored in the ecosystem increases more slowly than expected in the absence of fire — challenging our assumptions about how fire affects carbon storage in savannahs.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 603, 395-396 (2022)
    doi: https://doi.org/10.1038/d41586-022-00689-0

    Referencesvan der Werf, G. R. et al. Earth Syst. Sci. Data 9, 697–720 (2017).Article 

    Google Scholar 
    Russell-Smith, J. et al. Clim. Change 140, 47–61 (2017).Article 

    Google Scholar 
    Bastin, J.-F. et al. Science 365, 76–79 (2019).PubMed 
    Article 

    Google Scholar 
    Zhou, Y. et al. Nature 603, 445–449 (2022).Article 

    Google Scholar 
    Pausas, J. G. & Bond, W. J. Trends Ecol. Evol. 35, 767–775 (2020).PubMed 
    Article 

    Google Scholar 
    Hanan, N. P., Sea, W. B., Dangelmayr, G. & Govender, N. Am. Nat. 171, 851–856 (2008).PubMed 
    Article 

    Google Scholar 
    Higgins, S. I. et al. Ecology 88, 1119–1125 (2007).PubMed 
    Article 

    Google Scholar 
    Veldman, J. W. et al. BioScience 65, 1011–1018 (2015).Article 

    Google Scholar 
    Bayen, P., Lykke, A. M. & Thiombiano, A. J. For. Res. 27, 313–320 (2016).Article 

    Google Scholar 
    Govender, N., Trollope, W. S. W. & Van Wilgen, B. W. J. Appl. Ecol. 43, 748–758 (2006).Article 

    Google Scholar 
    Download references

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    Read the paper: Limited increases in savanna carbon stocks over decades of fire suppression

    Southeast Amazonia is no longer a carbon sink

    Soils linked to climate change

    See all News & Views

    Subjects

    Ecology

    Climate change

    Latest on:

    Ecology

    Limited increases in savanna carbon stocks over decades of fire suppression
    Article 16 MAR 22

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Forest protection: invest in professionals and their careers
    Correspondence 15 MAR 22

    Climate change

    On the role of atmospheric model transport uncertainty in estimating the Chinese land carbon sink
    Matters Arising 16 MAR 22

    New land-use-change emissions indicate a declining CO2 airborne fraction
    Article 16 MAR 22

    Antarctic sea ice hits lowest minimum on record
    News 11 MAR 22

    Jobs

    Research Associate / Postdoc (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Research Associate (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Call for applications for Multiple PhD Positions

    IMPRS for Many Particle Systems in Structured Environments
    Dresden, Germany

    Postdoctoral Fellow in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

    The University of British Columbia (UBC)
    Vancouver, Canada More