Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability
Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).ADS
CAS
PubMed
Google Scholar
Bousquet, P. et al. Regional changes of CO2 fluxes of land and oceans since 1980. Science 290, 1253–1262 (2000).
Google Scholar
Lee, K., Wanninkhof, R., Takahashi, T., Doney, S. C. & Feely, R. A. Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature 396, 155 (1998).ADS
CAS
Google Scholar
Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831 (2009).ADS
Google Scholar
Yue, C., Ciais, P., Houghton, R. A. & Nassikas, A. A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 11, 3170 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
Wang, W. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. 110, 13061–13066 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).ADS
CAS
Google Scholar
Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).ADS
CAS
PubMed
Google Scholar
Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS
CAS
PubMed
Google Scholar
Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. History of El Niño impacts on the global carbon cycle 1957–2017: A quantification from atmospheric CO2 data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170303 (2018).Peylin, P. et al. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).ADS
CAS
Google Scholar
Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants. 5, 944–951 (2019).Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS
CAS
PubMed
Google Scholar
Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895 LP–895899 (2015).ADS
Google Scholar
Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 26, 300–318 (2020).ADS
PubMed
Google Scholar
Wang, J., Zeng, N. & Wang, M. Interannual variability of the atmospheric CO2 growth rate: Roles of precipitation and temperature. Biogeosciences 13, 2339–2352 (2016).ADS
CAS
Google Scholar
Clark, D. A., Piper, S. C., Keeling, C. D. & Clark, D. B. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000. Proc. Natl Acad. Sci. 100, 5852–5857 (2003).ADS
CAS
PubMed
PubMed Central
Google Scholar
Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeosciences 114, 1–12 (2009).
Google Scholar
Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Chang. 7, 148–152 (2017).ADS
CAS
Google Scholar
Anderegg, W. R. L. et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl Acad. Sci. 112, 201521479 (2015).
Google Scholar
Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).ADS
CAS
PubMed
Google Scholar
Humphrey, V. et al. Soil moisture – atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).ADS
CAS
PubMed
PubMed Central
Google Scholar
Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695 (2020).ADS
CAS
Google Scholar
Phillips, O. L. et al. Drought–mortality relationships for tropical forests Oliver. N. Phytol. 187, 631–646 (2010).
Google Scholar
Bigler, C., Gavin, D. G., Gunning, C. & Veblen, T. T. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116, 1983–1994 (2007).
Google Scholar
Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
Aragão, L. E. O. C. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 363, 1779–1785 (2008).
Google Scholar
Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).ADS
CAS
PubMed
Google Scholar
Huang, M., Wang, X., Keenan, T. F. & Piao, S. Drought timing influences the legacy of tree growth recovery. Glob. Chang. Biol. 24, 3546–3559 (2018).ADS
PubMed
Google Scholar
Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).ADS
CAS
PubMed
Google Scholar
Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. 118, e2019377118 (2021).CAS
PubMed
PubMed Central
Google Scholar
Ma, X. et al. Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Sci. Rep. 6, 1–9 (2016).CAS
Google Scholar
Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Chang. Biol. 14, 2015–2039 (2008).ADS
Google Scholar
Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS
Google Scholar
Van Der Werf, G. R. et al. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017).ADS
Google Scholar
Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).ADS
MathSciNet
CAS
PubMed
MATH
Google Scholar
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013). https://doi.org/10.1017/CBO9781107415324.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).ADS
Google Scholar
Zscheischler, J. et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).Von Buttlar, J. et al. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: A systematic assessment across ecosystems and climate zones. Biogeosciences 15, 1293–1318 (2018).ADS
Google Scholar
Anderegg, W. R. L., Berry, J. A. & Field, C. B. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 17, 693–700 (2012).CAS
PubMed
Google Scholar
Wang, J., Zeng, N. & Wang, M. Interannual variability of the atmospheric CO2growth rate: Roles of precipitation and temperature. Biogeosciences 13, 2339–2352 (2016).ADS
CAS
Google Scholar
Tan, Z. H. et al. Optimum air temperature for tropical forest photosynthesis: Mechanisms involved and implications for climate warming. Environ. Res. Lett. 12, 054022 (2017).Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, 1–10 (2020).
Google Scholar
Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).ADS
CAS
Google Scholar
Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Sci. Rep. 6, 1–7 (2016).
Google Scholar
Lyon, B. The strength of El Niño and the spatial extent of tropical drought. Geophys. Res. Lett. 31, 1–4 (2004).
Google Scholar
Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).ADS
CAS
PubMed
Google Scholar
Zscheischler, J., Mahecha, M. D. & Buttlar, J. Von. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).Zscheischler, J. et al. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Glob. Biogeochem. Cycles 28, 585–600 (2014).ADS
CAS
Google Scholar
Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. U. S. A. 110, 565–570 (2013).ADS
CAS
PubMed
Google Scholar
Williams, I. N., Torn, M. S., Riley, W. J. & Wehner, M. F. Impacts of climate extremes on gross primary production under global warming. Environ. Res. Lett. 9, 094011 (2014).Keenan, T. F., Luo, X., Zhang, Y. & Zhou, S. Ecosystem aridity and atmospheric CO2. Sci. (80-.). 368, 251.2–252 (2020).
Google Scholar
Schuldt, B. et al. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. Biogeosciences 8, 2179–2194 (2011).ADS
Google Scholar
Hawkins, L., Kumar, J., Luo, X., Sihi, D. & Zhou, S. Measuring, Monitoring, and Modeling Ecosystem Cycling. Eos (Washington. DC). 101, (2020).Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).ADS
CAS
Google Scholar
Besnard, S. et al. Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS One 14, 1–22 (2019).
Google Scholar
Masarie, K. A. & Tans, P. P. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res. 100, 11593 (1995).ADS
CAS
Google Scholar
Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).ADS
Google Scholar
Keeling, C. D. et al. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28, 538–551 (1976).ADS
CAS
Google Scholar
Ballantyne, A. P., Alden, C. B., Miller, J. B., Trans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–73 (2012).ADS
CAS
PubMed
Google Scholar
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
Google Scholar
Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): Robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).ADS
Google Scholar
Priestley, C. H. B. & Taylor, R. J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 100, 81–92 (1972).ADS
Google Scholar
Muller, A., Rohde, R., Jacobsen, R., R., Muller, E. & Wickham, C. A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinformatics Geostatistics Overv. 01, 1–7 (2013).
Google Scholar
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res. Atmos. 111, 1–21 (2006).
Google Scholar
Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, 1–29 (2010).
Google Scholar
Willmott, C. J. & Matsuura, K. Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteorol. 34, 2577–2586 (1995).ADS
Google Scholar
Schneider, U. et al. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere (Basel). 8, 30052 (2017).Chen, M., Xie, P. & Janowiak, J. E. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).ADS
Google Scholar
Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).ADS
Google Scholar
Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).ADS
Google Scholar
Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 6, 946–949 (2016).ADS
Google Scholar
Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. Manag. Risks Extrem. Events Disasters Adv. Clim. Chang. Adapt. Spec. Rep. Intergov. Panel Clim. Chang. 9781107025, 109–230 (2012).
Google Scholar
Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).ADS
MathSciNet
CAS
PubMed
MATH
Google Scholar More