More stories

  • in

    Relationship between bacterial phylotype and specialized metabolite production in the culturable microbiome of two freshwater sponges

    Mehbub MF, Lei J, Franco C, Zhang W. Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs. 2014;12:4539–77.PubMed 
    PubMed Central 

    Google Scholar 
    Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH. Marine sponges as pharmacy. Mar Biotechnol. 2005;7:142–62.CAS 

    Google Scholar 
    Dobson CM. Chemical space and biology. Nature. 2004;432:824–8.CAS 
    PubMed 

    Google Scholar 
    Indraningrat AAG, Micheller S, Runderkamp M, Sauerland I, Becking LE, Smidt H, et al. Cultivation of sponge-associated bacteria from Agelas sventres and Xestospongia muta collected from different depths. Mar Drugs. 2019;17:578.CAS 
    PubMed Central 

    Google Scholar 
    Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep. 2009;26:338–62.CAS 
    PubMed 

    Google Scholar 
    Webster NS, Thomas T. The sponge hologenome. mBio. 2016;7:e00135–16.PubMed 
    PubMed Central 

    Google Scholar 
    de Oliveira MRF, de Maringá UE, da Costa C, Benedito E. Trends and gaps in scientific production on freshwater sponges. Oecologia Austrlis. 2020;24:61–75.
    Google Scholar 
    Manconi R, Pronzato R. How to survive and persist in temporary freshwater? Adaptive traits of sponges (Porifera: Spongillida): a review. Hydrobiologia. 2016;782:11–22.
    Google Scholar 
    Manconi R, Pronzato R. Chapter 8 – Phylum Porifera. In: Thorp JH, Rogers DC, editors. Ecology and general biology. Thorp and Covich’s freshwater invertebrates. vol 1 (4th ed.) New York: Academic Press; 2015. p. 133–157.Manconi R, Pronzato R. Chapter 3 – Phylum Porifera. In: Thorp JH, Rogers DC, editors. Keys to Nearctic fauna. Thorp and Covich’s freshwater invertebrates vol 2(4th ed.) San Diego: Academic Press, Elsevier; 2016. p. 39–83.Leidy J. On Spongilla. In: Proceedings of the Academy of Natural Sciences of Philadelphia. Philadelphia: Academy of Natural Sciences of Philadelphia; 1850. p. 278.Smith F. Distribution of the fresh-water sponges of North America. INHS Bull. 1921;14:9–22.
    Google Scholar 
    Old MC. Environmental selection of the fresh-water sponges (Spongillidae) of Michigan. Trans Am Microsc Soc. 1932;51:129–36.CAS 

    Google Scholar 
    Ashley JM. Fresh water sponges of Illinois and Michigan. Urbana-Champaign: Master of Arts, University of Illinois; 1913.Jewell ME. An ecological study of the fresh-water sponges of northeastern Wisconsin. Ecol Monogr. 1935;5:461–504.CAS 

    Google Scholar 
    Kolomyjec SH, Willford RA. The fall 2019 genetics class. Phylogenetic analysis of Michigan’s freshwater sponges (Porifera, Spongillidae) using extended COI mtDNA sequences. bioRxiv. 2020; https://doi.org/10.1101/2020.04.26.062448.Copeland J, Kunigelis S, Tussing J, Jett T, Rich C. Freshwater sponges (Porifera: Spongillida) of Tennessee. Am Midl Nat. 2019;181:310–26.
    Google Scholar 
    Lauer TE, Spacie A. An association between freshwater sponges and the zebra mussel in a southern Lake Michigan harbor. J Freshw Ecol. 2004;19:631–7.
    Google Scholar 
    Skelton J, Strand M. Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis. Hydrobiologia. 2013;709:227–35.CAS 

    Google Scholar 
    Early TA, Glonek T. Zebra mussel destruction by a Lake Michigan sponge: populations, in vivo 31P nuclear magnetic resonance, and phospholipid profiling. Environ Sci Technol. 1999;33:1957–62.CAS 

    Google Scholar 
    Early TA, Kundrat JT, Schorp T, Glonek T. Lake Michigan sponge phospholipid variations with habitat: A 31P nuclear magnetic resonance study. Comp Biochem Physiol. 1996;114:77–89.
    Google Scholar 
    Dembitsky VM, Rezanka T, Srebnik M. Lipid compounds of freshwater sponges: family Spongillidae, class Demospongiae. Chem Phys Lipids. 2003;123:117–55.CAS 
    PubMed 

    Google Scholar 
    Řezanka T, Sigler K, Dembitsky VM. Syriacin, a novel unusual sulfated ceramide glycoside from the freshwater sponge Ephydatia syriaca (Porifera, Demospongiae, Spongillidae). Tetrahedron. 2006;62:5937–43.
    Google Scholar 
    Radnaeva LD, Bazarsadueva SV, Taraskin VV, Tulokhonov AK. First data on lipids and microorganisms of deepwater endemic sponge Baikalospongia intermedia and sediments from hydrothermal discharge area of the Frolikha Bay (North Baikal, Siberia). J Great Lakes Res. 2020;46:67–74.CAS 

    Google Scholar 
    Manconi R, Piccialli V, Pronzato R, Sica D. Steroids in porifera, sterols from freshwater sponges Ephydatia fluviatilis (L.) and Spongilla lacustris (L.). Comp Biochem Physiol. 1988;91:237–45.
    Google Scholar 
    Belikov S, Belkova N, Butina T, Chernogor L, Kley AM-V, Nalian A, et al. Diversity and shifts of the bacterial community associated with Baikal sponge mass mortalities. PLoS ONE. 2019;14:e0213926.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costa R, Keller-Costa T, Gomes NCM, da Rocha UN, van Overbeek L, van Elsas JD. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis. Microb Ecol. 2013;65:232–44.PubMed 

    Google Scholar 
    Laport MS, Pinheiro U, Rachid CTCC. Freshwater sponge Tubella variabilis presents richer microbiota than marine sponge species. Front Microbiol. 2019;10:2799.PubMed 
    PubMed Central 

    Google Scholar 
    Kenny NJ, Plese B, Riesgo A, Itskovich VB. Symbiosis, selection, and novelty: freshwater adaptation in the unique sponges of Lake Baikal. Mol Biol Evol. 2019;36:2462–80.CAS 
    PubMed Central 

    Google Scholar 
    Gaikwad S, Shouche YS, Gade WN. Microbial community structure of two freshwater sponges using Illumina MiSeq sequencing revealed high microbial diversity. AMB Express. 2016;6:40.PubMed 
    PubMed Central 

    Google Scholar 
    Gernert C, Glöckner FO, Krohne G, Hentschel U. Microbial diversity of the freshwater sponge Spongilla lacustris. Microb Ecol. 2005;50:206–12.CAS 
    PubMed 

    Google Scholar 
    Hernandez A, Nguyen LT, Dhakal R, Murphy BT. The need to innovate sample collection and library generation in microbial drug discovery: a focus on academia. Nat Prod Rep. 2021;38:292–300.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li C-Q, Liu W-C, Zhu P, Yang J-L, Cheng K-D. Phylogenetic diversity of bacteria associated with the marine sponge Gelliodes carnosa collected from the Hainan Island coastal waters of the South China Sea. Microb Ecol. 2011;62:800–12.PubMed 

    Google Scholar 
    Sipkema D, Schippers K, Maalcke WJ, Yang Y, Salim S, Blanch HW. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl Environ Microbiol. 2011;77:2130–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montalvo NF, Davis J, Vicente J, Pittiglio R, Ravel J, Hill RT. Integration of culture-based and molecular analysis of a complex sponge-associated bacterial community. PLoS ONE. 2014;9:e90517.PubMed 
    PubMed Central 

    Google Scholar 
    Elfeki M, Alanjary M, Green SJ, Ziemert N, Murphy BT. Assessing the efficiency of cultivation techniques to recover natural product biosynthetic gene populations from sediment. ACS Chem Biol. 2018;13:2074–81.CAS 
    PubMed 

    Google Scholar 
    Dieckmann R, Graeber I, Kaesler I, Szewzyk U, von Döhren H. Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol. 2005;67:539–48.CAS 
    PubMed 

    Google Scholar 
    Costa MS, Clark CM, Ómarsdóttir S, Sanchez LM, Murphy BT. Minimizing taxonomic and natural product redundancy in microbial libraries using MALDI-TOF MS and the bioinformatics pipeline IDBac. J Nat Prod. 2019;82:2167–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CM, Costa MS, Sanchez LM, Murphy BT. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc Natl Acad Sci USA. 2018;115:4981–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CM, Costa MS, Conley E, Li E, Sanchez LM, Murphy BT. Using the open-source MALDI TOF-MS IDBac pipeline for analysis of microbial protein and specialized metabolite data. J Vis Exp. 2019;147:e59219.
    Google Scholar 
    Ryzhov V, Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem. 2001;73:746–50.CAS 
    PubMed 

    Google Scholar 
    Welker M, Moore ERB. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol. 2011;34:2–11.CAS 
    PubMed 

    Google Scholar 
    Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev. 2013;32:188–217.CAS 
    PubMed 

    Google Scholar 
    Seuylemezian A, Aronson HS, Tan J, Lin M, Schubert W, Vaishampayan P. Development of a custom MALDI-TOF MS database for species-level identification of bacterial isolates collected from spacecraft and associated surfaces. Front Microbiol. 2018;9:780.PubMed 
    PubMed Central 

    Google Scholar 
    Strejcek M, Smrhova T, Junkova P, Uhlik O. Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front Microbiol. 2018;9:1294.PubMed 
    PubMed Central 

    Google Scholar 
    Giraud-Gatineau A, Texier G, Garnotel E, Raoult D, Chaudet H. Insights into subspecies discrimination potentiality from bacteria MALDI-TOF mass spectra by using data mining and diversity studies. Front Microbiol. 2020;11:1931.PubMed 
    PubMed Central 

    Google Scholar 
    LaMontagne MG, Tran PL, Benavidez A, Morano LD. Development of an inexpensive matrix-assisted laser desorption-time of flight mass spectrometry method for the identification of endophytes and rhizobacteria cultured from the microbiome associated with maize. PeerJ. 2021;9:e11359.PubMed 
    PubMed Central 

    Google Scholar 
    Freiwald A, Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc. 2009;4:732–42.CAS 
    PubMed 

    Google Scholar 
    Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36:380–407.CAS 
    PubMed 

    Google Scholar 
    Rodríguez-Sánchez B, Cercenado E, Coste AT, Greub G. Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. Eurosurveillance. 2019;24:1800193. PubMed Central 

    Google Scholar 
    Rahi P, Vaishampayan P. MALDI-TOF MS application in microbial ecology studies. Front Microbiol. 2019;10:2954.PubMed 

    Google Scholar 
    Popović NT, Kazazić SP, Strunjak-Perović I, Čož-Rakovac R. Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. Environ Res. 2017;152:7–16.PubMed 

    Google Scholar 
    Rahi P, Prakash O, Shouche YS. Matrix-assisted laser desorption/ionization Time-of-Flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol. 2016;7:1359.PubMed 
    PubMed Central 

    Google Scholar 
    Schumann P, Maier T. Chapter 13 – MALDI-TOF mass spectrometry applied to classification and identification of bacteria. In: Methods in microbiology, vol 41, ISSN 0580-9517. Goodfellow M, Sutcliffe I, Chun J, editors. Academic Press; 2014. p. 275–306.Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif. 2014;31:274–95.
    Google Scholar 
    Batagelj V. Generalized Ward and related clustering problems. In: Bock HH, editor. North Holland, Amsterdam: Proceedings of the First Conference of the International Federation of Classification Societies; 1988. p. 67–74.van Santen JA, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent Sci. 2019;5:1824–33.PubMed 
    PubMed Central 

    Google Scholar 
    Ghyselinck J, Van Hoorde K, Hoste B, Heylen K, De Vos P. Evaluation of MALDI-TOF MS as a tool for high-throughput dereplication. J Microbiol Meth. 2011;86:327–36.CAS 

    Google Scholar 
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Henson MW, Lanclos VC, Pitre DM, Weckhorst JL, Lucchesi AM, Cheng C, et al. Expanding the diversity of bacterioplankton isolates and modeling isolation efficacy with large-scale dilution-to-extinction cultivation. Appl Environ Microbiol. 2020;86:e00943–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann T, Krug D, Bozkurt N, Duddela S, Jansen R, Garcia R, et al. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat Commun. 2018;9:1–10.CAS 

    Google Scholar 
    Jensen PR, Williams PG, Oh D-C, Zeigler L, Fenical W. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol. 2007;73:1146–52.CAS 
    PubMed 

    Google Scholar 
    Ziemert N, Lechner A, Wietz M, Millán-Aguiñaga N, Chavarria KL, Jensen PR. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci USA. 2014;111:E1130–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bruns H, Crüsemann M, Letzel A-C, Alanjary M, McInerney JO, Jensen PR, et al. Function-related replacement of bacterial siderophore pathways. ISME J. 2018;12:320–9.CAS 
    PubMed 

    Google Scholar 
    Chase AB, Sweeney D, Muskat MN, Guillén-Matus DG, Jensen PR. Vertical inheritance facilitates interspecies diversification in biosynthetic gene clusters and specialized metabolites. MBio. 2021;12:e0270021.PubMed 

    Google Scholar 
    Covington BC, Xu F, Seyedsayamdost MR. A natural product chemist’s guide to unlocking silent biosynthetic gene clusters. Annu Rev Biochem. 2021;90:763–88.CAS 
    PubMed 

    Google Scholar 
    Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT, Winkler A, et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics. 2018;19:426.PubMed 
    PubMed Central 

    Google Scholar 
    Chevrette MG, Currie CR. Emerging evolutionary paradigms in antibiotic discovery. J Ind Microbiol Biotechnol. 2019;46:257–71.CAS 
    PubMed 

    Google Scholar 
    Zdouc MM, Iorio M, Maffioli SI, Crüsemann M, Donadio S, Sosio M. Planomonospora: a metabolomics perspective on an underexplored Actinobacteria genus. J Nat Prod. 2021;84:204–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang D, Shoaie S, Jacquiod S, Sørensen SJ, Ledesma-Amaro R. Comparative genomics analysis of keratin-degrading Chryseobacterium species reveals their keratinolytic potential for secondary metabolite production. Microorganisms. 2021;9:1042.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han S, Van Treuren W, Fischer CR, Merrill BD, DeFelice BC, Sanchez JM, et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature. 2021;595:415–20.CAS 
    PubMed 

    Google Scholar 
    Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.CAS 
    PubMed 

    Google Scholar 
    Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot. 2009;62:5–16.CAS 

    Google Scholar 
    Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibb S, Strimmer K. Mass spectrometry analysis using MALDIquant. In: Datta S, Mertens BJA, editors. Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry. Cham: Springer International Publishing; 2017. p. 101–24.Gibb S, Strimmer K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012;28:2270–1.CAS 
    PubMed 

    Google Scholar 
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Predicting the possibility of African horse sickness (AHS) introduction into China using spatial risk analysis and habitat connectivity of Culicoides

    Kumar, N. et al. Peste des petits ruminants virus infection of small ruminants: A comprehensive review. Viruses 6, 2287–2327. https://doi.org/10.3390/v6062287 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zientara, S., Weyer, C. T. & Lecollinet, S. African horse sickness. Rev. Sci. Tech. 34, 315–327. https://doi.org/10.20506/rst.34.2.2359 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rutkowska, D. A., Mokoena, N. B., Tsekoa, T. L., Dibakwane, V. S. & O’Kennedy, M. M. Plant-produced chimeric virus-like particles—A new generation vaccine against African horse sickness. BMC Vet. Res. 15, 1. https://doi.org/10.1016/j.rvsc.2010.05.031 (2019).CAS 
    Article 

    Google Scholar 
    Barnard, B. J. H. Epidemiology of African horse sickness and the role of zebra in South Africa. Arch. Virol. Suppl. 14, 13–19. https://doi.org/10.1007/978-3-7091-6823-3_3 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hamblin, C., Salt, J. S., Mellor, P. S., Graham, S. D. & Wohlsein, P. Donkeys as reservoirs of African horse sickness virus. Arch. Virol. Suppl. 14, 37–47. https://doi.org/10.1007/978-3-7091-6823-3_5 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mellor, P. S., Boorman, J. P. T. & Baylis, M. Culicoides biting midges: their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    Article 

    Google Scholar 
    Redmond, E. F., Jones, D. & Rushton, J. Economic assessment of african horse sickness vaccine impact. Equine Vet. J. https://doi.org/10.1111/j.2042-3306.1982.tb02404.x (2021).Article 
    PubMed 

    Google Scholar 
    Venter, G. J., Wright, I. M., Linde, T. C. V. D. & Paweska, J. T. The oral susceptibility of South African field populations of Culicoides to African horse sickness virus. Med. Vet. Entomol. 23, 367–378. https://doi.org/10.1111/j.1365-2915.2009.00829.x (2010).Article 

    Google Scholar 
    Mellor, P. S., Boned, J., Hamblin, C. & Graham, S. D. Isolations of African horse sickness virus from vector insects made during the 1988 epizootic in Spain. Epidemiol. Infect. 105, 447–454. https://doi.org/10.1017/s0950268800048020 (1990).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meiswinkel, R. & Paweska, J. T. Evidence for a new field Culicoides vector of African horse sickness in South Africa. Prev. Vet. Med. 60, 243–253. https://doi.org/10.1016/s0167-5877(02)00231-3 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howell, P. G. The isolation and identification of further antigenic types of African horsesickness virus. Onderstepoort. J. Vet. Res. 29, 139–149 (1962).
    Google Scholar 
    Calisher, C. H. & Mertens, P. P. C. Taxonomy of African horse sickness viruses. Arch. Virol. Suppl. 14, 3 (1998).CAS 
    PubMed 

    Google Scholar 
    Rodriguez, M., Hooghuis, H. & Castaño, M. African horse sickness in Spain. Vet. Microbiol. 33, 129–142. https://doi.org/10.1016/0378-1135(92)90041-q (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howell, P. G. The 1960 epizootic of African Horsesickness in the Middle East and S.W. Asia (268KB) (268KB). J. South Afr. Vet. Med. Assoc. (1960).King, S., RajkoEnow, P., Ashby, M., Frost, L. & Batten, C. Outbreak of African Horse Sickness in Thailand, 2020. Transbound. Emerg. Dis. (2020).OIE. World Animal Health Information System. https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=33768 (2020).Castillo-Olivares, J. African horse sickness in Thailand: Challenges of Controlling an outbreak by vaccination. Equine Vet. J. (2020).Gibbens, N. Schmallenberg virus: a novel viral disease in northern Europe. Vet. Rec. 170, 58. https://doi.org/10.1136/vr.e292 (2012).Article 
    PubMed 

    Google Scholar 
    Purse, B. V., Brown, H. E., Harrup, L., Mertens, P. & Rogers, D. J. Invasion of bluetongue and other orbivirus infections into Europe: the role of biological and climatic processes. Rev. Sci. Tech. 27, 427–442 (2008).CAS 
    Article 

    Google Scholar 
    Leta, S., Fetene, E., Mulatu, T., Amenu, K. & Revie, C. W. Modeling the global distribution of Culicoides imicola: an Ensemble approach. Sci. Rep. 9, 1 (2019).CAS 
    Article 

    Google Scholar 
    Thepparat, A., Bellis, G., Ketavan, C., Ruangsittichai, J. & Apiwathnasorn, C. T. species of Culicoides Latreille (Diptera: Ceratopogonidae) newly recorded from Thailand. Zootaxa 4033, 48–56. https://doi.org/10.11646/zootaxa.4033.1.2 (2015).Article 
    PubMed 

    Google Scholar 
    Raksakoon, C. & Potiwat, R. Current arboviral threats and their potential vectors in Thailand. Pathogens 10, 80 (2021).CAS 
    Article 

    Google Scholar 
    Gao, S. et al. Transboundary spread of peste des petits ruminants virus in western China: A prediction model. PLoS ONE 16, e0257898–e0257898. https://doi.org/10.1371/journal.pone.0257898 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joka, F. R., Van Gils, H., Huang, L. & Wang, X. High probability areas for ASF infection in china along the russian and korean borders. Transbound. Emerg. Dis. https://doi.org/10.1016/j.watres.2015.05.061.Steven et al. Opening the black box: an open-source release of Maxent. Ecography (2017).Gils, H. V., Westinga, E., Carafa, M., Antonucci, A. & Ciaschetti, G. Where the bears roam in Majella National Park, Italy. J. Nat. Conser. 22, 23–34. https://doi.org/10.1016/j.jnc.2013.08.001 (2014).Article 

    Google Scholar 
    Duque-Lazo, J., Navarro-Cerrillo, R. M., Van Gils, H. & Groen, T. A. Forecasting oak decline caused by Phytophthora cinnamomi in Andalusia : identification of priority areas for intervention. For. Ecol. Manage. 417, 122–136 (2018).Article 

    Google Scholar 
    Duque-Lazo, J., Gils, H. V., Groen, T. A. & Cerrillo, R. M. N. Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol. Model. 320, 62–70 (2016).Article 

    Google Scholar 
    Zeng, Z., Gao, S., Wang, H.-N., Huang, L.-Y. & Wang, X.-L. A predictive analysis on the risk of peste des petits ruminants in livestock in the Trans-Himalayan region and validation of its transboundary transmission paths. PLoS ONE 16, e0257094–e0257094. https://doi.org/10.1371/journal.pone.0257094 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joka, F. R., Wang, H., van Gils, H. & Wang, X. Could wild boar be the Trans-Siberian transmitter of African swine fever?. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.13814 (2020).Article 
    PubMed 

    Google Scholar 
    Robin, M., Page, P., Archer, D. & Baylis, M. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. 48, 659–669. https://doi.org/10.1111/evj.12600 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Maclachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. 41, 35. https://doi.org/10.1051/vetres/2010007 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    M. et al. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. https://doi.org/10.1111/evj.12600 (2016).Eagles, D., Melville, L., Weir, R. & Davis, S. Long-distance aerial dispersal modelling of Culicoides biting midges: case studies of incursions into Australia. BMC Vet. Res. 10, 1. https://doi.org/10.1186/1746-6148-10-135 (2014).Article 

    Google Scholar 
    Pedgley, D. E. & Tucker, M. R. Possible spread of African horse sickness on the wind. J. Hygiene 79, 279–298 (1977).CAS 
    Article 

    Google Scholar 
    Riddin, M. A., Venter, G. J., Labuschagne, K. & Villet, M. H. Culicoides species as potential vectors of African horse sickness virus in the southern regions of South Africa. Med. Vet. Entomol. 33, 1 (2019).Article 

    Google Scholar 
    Carpenter, S., Mellor, P. S., Fall, A. G., Garros, C. & Venter, G. J. African horse sickness Virus: History, transmission, and current status. Annu. Rev. Entomol. 62, 343–358. https://doi.org/10.1146/annurev-ento-031616-035010 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    https://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports. (Accessed 12 August 2020).OIE. African horse sickness(updated April 2013). OIE Technical Disease Cards, Paris, France: World Organisation for Animal Health. (2013).Ciss, M. et al. Ecological niche modelling to estimate the distribution of Culicoides, potential vectors of bluetongue virus in Senegal. BMC Ecology 19, doi:https://doi.org/10.1186/s12898-019-0261-9 (2019).Harrup, L. E. et al. Does covering of farm-associated Culicoides larval habitat reduce adult populations in the United Kingdom?. Vet. Parasitol. 201, 137–145. https://doi.org/10.1016/j.vetpar.2013.11.028 (2013).Article 
    PubMed 

    Google Scholar 
    Hoch, A. L., Roberts, D. R. & Pinheiro, F. P. Host-seeking behavior and seasonal abundance of Culicoides paraensis (Diptera: Ceratopogonidae) in Brazil. J. Am. Mosq. Control Assoc. 6, 110–114 (1990).CAS 
    PubMed 

    Google Scholar 
    Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L. & Purse, B. V. Culicoides biting midges, arboviruses and public health in Europe. Antiviral Res. 100, 102–113. https://doi.org/10.1016/j.antiviral.2013.07.020 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carpenter, S., Wilson, A., Barber, J., Veronesi, E. & Gubbins, S. Temperature Dependence of the Extrinsic Incubation Period of Orbiviruses in Culicoides Biting Midges. PLoS ONE 6, e27987. https://doi.org/10.1371/journal.pone.0027987 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yanase, T. et al. Molecular Identification of Field-CollectedCulicoidesLarvae in the Southern Part of Japan. J. Med. Entomol. (2013).Meiswinkel, R. Afrotropical Culicoides: C (Avaritia) miombo sp. nov., a widespread species closely allied to C. (A.) imicola Kieffer, 1913 (Diptera: Ceratopogonidae). Onderstepoort. J. Vet. Res. 58, 155–170 (1991).Sloyer, K. E. et al. Ecological niche modeling the potential geographic distribution of four Culicoides species of veterinary significance in Florida, USA. PLoS ONE 14, 1 (2019).Article 

    Google Scholar 
    Reynolds, D. R., Chapman, J. W. & Harrington, R. The migration of insect vectors of plant and animal viruses. Adv. Virus Res. 67, 453–517 (2006).CAS 
    Article 

    Google Scholar 
    L. et al. Investigating Incursions of Bluetongue Virus Using a Model of Long-Distance Culicoides Biting Midge Dispersal. Transbound. Emerg. Dis. https://doi.org/10.1111/j.1865-1682.2012.01345.x (2013).Notice of the general office of the Ministry of agriculture and rural areas and the general office of the State General Administration of sports on printing and distributing the national horse industry development plan (2020–2025). (Animal Husbandry and Veterinary Bureau, 2020.09.29). More

  • in

    Population genomics of Sitka black-tailed deer supports invasive species management and ecological restoration on islands

    Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. Proc. Natl Acad. Sci. USA 113, 4033–4038 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DIISE. The database of island invasive species eradications, developed by island conservation, coastal conservation action laboratory UCSC, IUCN SSC Invasive Species Specialist Group. http://diise.islandconservation.org (2020).Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. USA 113, 11261–11265 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simberloff, D. et al. Yes we can! Exciting progress and prospects for controlling invasives on islands and beyond. West. North Am. Nat. 78, 942 (2018).
    Google Scholar 
    Kappes, P. J., Bond, A. L., Russell, J. C. & Wanless, R. M. Diagnosing and responding to causes of failure to eradicate invasive rodents. Biol. Invasions 21, 2247–2254 (2019).
    Google Scholar 
    Browett, S. S., O’Meara, D. B. & McDevitt, A. D. Genetic tools in the management of invasive mammals: recent trends and future perspectives. Mammal. Rev. 50, 200–210 (2020).
    Google Scholar 
    Burgess, B. T., Irvine, R. L., Howald, G. R. & Russello, M. A. The promise of genetics and genomics for improving invasive mammal management on islands. Front. Ecol. Evol. 9, 704809 (2021).
    Google Scholar 
    Abdelkrim, J., Pascal, M., Calmet, C. & Samadi, S. Importance of assessing population genetic structure before eradication of invasive species: examples from insular Norway rat populations. Conserv. Biol. 19, 1509–1518 (2005).
    Google Scholar 
    Adams, A. L., van Heezik, Y., Dickinson, K. J. M. & Robertson, B. C. Identifying eradication units in an invasive mammalian pest species. Biol. Invasions 16, 1481–1496 (2014).
    Google Scholar 
    Sjodin, B. M. F., Irvine, R. L., Ford, A. T., Howald, G. R. & Russello, M. A. Rattus population genomics across the Haida Gwaii archipelago provides a framework for guiding invasive species management. Evol. Appl. 13, 889–904 (2019).
    Google Scholar 
    Russello, M. A., Smith-Vidaurre, G. & Wright, T. F. In Naturalized Parrots of the World: Distribution, Ecology, and Impacts of the World’s Most Colorful Colonizers (ed. Pruett-Jones, S.) Ch. 4 (Princeton Univ. Press, 2021).Russell, J. C. et al. Survivors or reinvaders? Using genetic assignment to identify invasive pests following eradication. Biol. Invasions 12, 1747–1757 (2010).
    Google Scholar 
    Amos, W., Nichols, H. J., Churchyard, T. & Brooke, MdeL. Rat eradication comes within a whisker! A case study of a failed project from the South Pacific. R. Soc. Open Sci. 3, 160110 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sjodin, B. M. F., Puckett, E. E., Irvine, R. L., Munshi-South, J. & Russello, M. A. Global origins of invasive brown rats (Rattus norvegicus) in the Haida Gwaii archipelago. Biol. Invasions 23, 611–623 (2021).
    Google Scholar 
    Gaston, A. J., Golumbia, T., Martin, J.-L. & Sharpe, S. Lessons from the islands: introduced species and what they tell us about how ecosystems work. In Proc. from the Research Group on Introduced Species 2002 Symposium 103–116 (Canadian Wildlife Society, 2008).Parks Canada. Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site. https://www.pc.gc.ca/en/pn-np/bc/gwaiihaanas/nature/faune-wildlife (2019).Stockton, S. A., Allombert, S., Gaston, A. J. & Martin, J.-L. A natural experiment on the effects of high deer densities on the native flora of coastal temperate rain forests. Biol. Conserv. 126, 118–128 (2005).
    Google Scholar 
    Allombert, S., Stockton, S. & Martin, J.-L. A natural experiment on the impact of overabundant deer on forest invertebrates. Conserv. Biol. 19, 1917–1929 (2005).
    Google Scholar 
    Allombert, S., Gaston, A. J. & Martin, J.-L. A natural experiment on the impact of overabundant deer on songbird populations. Biol. Conserv. 126, 1–13 (2005).
    Google Scholar 
    Chollet, S., Maillard, M., Schörghuber, J., Grayston, S. J. & Martin, J. Deer slow down litter decomposition by reducing litter quality in a temperate forest. Ecology 102, e03235 (2021).Deagle, G. Traditional west coast native medicine. Can. Fam. Physician 34, 4 (1988).
    Google Scholar 
    Bellis, K. X. T., Peet, R. T., Irvine, R. L., Howald, G. & Alsop, G. J. In Island Invasives: Scaling up to Meet the Challenge Ch. 3 (eds Veitch, C. R., Clout, M. N., Russell, J. C. & West, C. J.) 494–496 (IUCN, 2019).Stroh, N., Baltzinger, C. & Martin, J.-L. Deer prevent western redcedar (Thuya plicata) regeneration in old-growth forests of Haida Gwaii: Is there a potential for recovery? Ecol. Manag 255, 3973–3979 (2008).
    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).
    Google Scholar 
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    Mussmann, S. M., Douglas, M. R., Chafin, T. K. & Douglas, M. E. BA3‐SNPs: contemporary migration reconfigured in BayesAss for next‐generation sequence data. Methods Ecol. Evol. 10, 1808–1813 (2019).
    Google Scholar 
    Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub Psychotria officinalis (Rubiaceae). Am. J. Bot. 82, 1420 (1995).
    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goudet, J. Hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).
    Google Scholar 
    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Robinette, W. L. Mule deer home range and dispersal in Utah. J. Wildl. Manag 30, 335 (1966).
    Google Scholar 
    Bunnell, F. L. & Harestad, A. S. Dispersal and dispersion of black-tailed deer: models and observations. J. Mammal. 64, 201–209 (1983).
    Google Scholar 
    Anderson, A. & Wallmo, O. Odocoileus hemionus. Am. Soc. Mammal. 219, 1–9 (1984).
    Google Scholar 
    Quigley, D. T. G. & Moffatt, S. Sika-like deer Cervus nippon Temminck, 1838 observed swimming out to sea at Greystones, Co. Wicklow: Increasing deer population pressure? Bull. Ir. Biogeogr. Soc. 38, 251–262 (2014).Colson, K. E., Brinkman, T. J., Person, D. K. & Hundertmark, K. J. Fine-scale social and spatial genetic structure in Sitka black-tailed deer. Conserv. Genet. 14, 439–449 (2013).
    Google Scholar 
    Powell, J. H. et al. Microsatellites indicate minimal barriers to mule deer Odocoileus hemionus dispersal across Montana, USA. Wildl. Biol. 19, 102–110 (2013).
    Google Scholar 
    Dolman, P. M. & Wäber, K. Ecosystem and competition impacts of introduced deer. Wildl. Res. 35, 202 (2008).
    Google Scholar 
    Edge, K.-A., Crouchley, D., McMurtrie, P., Willans, M. J. & Byrom, A. In Island Invasives: Eradication and Management (eds Veitch, C. R., Clout, M. N. & Towns, D. R.) 166–171 (IUCN, 2011).Hess, S. C., Muise, J. & Schipper, J. Anatomy of an eradication effort: removing Hawaii’s illegally introduced axis deer. Wildl. Prof. 9, 26–29 (2015).Masters, P., Markopoulos, N., Florance, B. & Southgate, R. The eradication of fallow deer (Dama dama) and feral goats (Capra hircus) from Kangaroo Island, South Australia. Australas. J. Environ. Manag. 25, 86–98 (2018).
    Google Scholar 
    Macdonald, N., Nugent, G., Edge, K.-A. & Parkes, J. P. In Island Invasives: Scaling up to Meet the Challenge Ch. 2 (eds Veitch, C. R., Clout, M. N., Russell, J. C. & West, C. J.) 256–260 (IUCN, 2019).Keitt, B. et al. In Island Invasives: Eradication and Management (eds Veitch, C. R., Clout, M. N. & Towns, D. R.) 74–77 (IUCN, 2011).Gerber, L. R. Conservation triage or injurious neglect in endangered species recovery. Proc. Natl Acad. Sci. USA 113, 3563–3566 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Lemay, M. A. & Russello, M. A. Genetic evidence for ecological divergence in kokanee salmon. Mol. Ecol. 24, 798–811 (2015).CAS 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rochette, N. C. & Catchen, J. M. Deriving genotypes from RAD-seq short-read data using Stacks. Nat. Protoc. 12, 2640–2659 (2017).CAS 
    PubMed 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beaumont, M. A. & Balding, D. J. Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol. 13, 969–980 (2004).CAS 
    PubMed 

    Google Scholar 
    Lischer, H. E. L. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299 (2012).CAS 
    PubMed 

    Google Scholar 
    Meirmans, P. G. & Tienderen, Van, P. H. Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794 (2004).
    Google Scholar 
    Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Rosenberg, N. A. distruct: a program for the graphical display of population structure: PROGRAM NOTE. Mol. Ecol. Notes 4, 137–138 (2004).
    Google Scholar 
    Vekemans, X. & Hardy, O. J. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13, 921–935 (2004).CAS 
    PubMed 

    Google Scholar 
    Burgess, B. T., Irvine, R. L. & Russello, M. A. Population genomics of Sitka black-tailed deer supports invasive species management and ecological restoration on islands. Dryad https://doi.org/10.5061/dryad.q2bvq83mq (2022). More

  • in

    Characterization of rice farming systems, production constraints and determinants of adoption of improved varieties by smallholder farmers of the Republic of Benin

    FAO (Food and Agricultural Organization). Food and Agricultural Organization of the United Nations. http://www.faostat.org (2020).Nouatin, G., Kougbadi, S. & Afouda, L. Analyse des contraintes de la production rizicole et les stratégies développées par les femmes de la commune de Gogounou. Ann. Sci. Agro. 12, 45–59 (2009).
    Google Scholar 
    Totin, E. et al. Barriers and opportunities for innovation in rice production in the inland valleys of Benin. NJAS-Wagen J. Life Sci. 60–63, 57–66 (2012).Article 

    Google Scholar 
    Tanaka, A., Saito, K., Azoma, K. & Kobayashi, K. Factors affecting variation in farm yields of irrigated lowland rice in southern-central Benin. Eur. J. Agron. 44, 46–53 (2013).Article 

    Google Scholar 
    Nonvide, G. M. A., Sarpong, D. B., Kwadzo, G.T.-M., Anim-Somuah, H. & Amoussouga, G. F. Farmers’ perceptions of irrigation and constraints on rice production in Benin: A stakeholder-consultation approach. Int. J. Water Resour. Dev. 34, 1001–1021 (2018).Article 

    Google Scholar 
    Seye, B., Arouna, A., Sall, S. N. & Ndiaye, A. A. Determinants de l’adoption des semences certifiees de varietes ameliorees du riz au Benin. J. Rech. Sci. Univ. Lomé 18, 93–106 (2016).
    Google Scholar 
    Chiambo, P. J., Coelho, J. P., Soares, F. B. & Salumbo, A. Characterization of rice production system in Camacupa and Catabola municipalities of the province of Bié in Angola. DRJAFS. 7, 250–263 (2019).
    Google Scholar 
    Kleinhenz, V., Chea, S. & Hun, N. Survey of rice cropping systems in Kampong Chhnang Province, Cambodia. Rice Sci. 20, 154–164 (2013).Article 

    Google Scholar 
    Loko, Y. L. E. et al. On-Farm Management of Rice Diversity, Varietal Preference Criteria, and Farmers’ Perceptions of the African (Oryza glaberrima Steud.) Versus Asian Rice (Oryza sativa L.) in the Republic of Benin (West Africa): Implications for Breeding and Conservation. Econ. Bot. 75, 1–29 (2021)Bello, O. L., Baiyegunhi, L. J. S. & Danso-Abbeam, G. Productivity impact of improved rice varieties’ adoption: Case of smallholder rice farmers in Nigeria. Econ. Innov. New Tech. https://doi.org/10.1080/10438599.2020.1776488 (2020).Article 

    Google Scholar 
    Gnacadja, C., Azokpota, P., Moreira, J. & Sie, M. Perceptions des producteurs et consommateurs sur le riz africain (Oryza glaberrima). Int. J. Biol. Chem. Sci. 11, 2778–2792 (2017).Article 

    Google Scholar 
    Yokouchi, T. & Saito, K. Factors affecting farmers’ adoption of NERICA upland rice varieties: The case of a seed producing village in central Benin. Food Sec. 8, 197–209 (2016).Article 

    Google Scholar 
    Chandio, A. A. & Yuansheng, J. Determinants of adoption of improved rice varieties in northern Sindh, Pakistan. Rice Sci. 25, 103–110 (2018).Article 

    Google Scholar 
    Dagnelie P. Statistiques théoriques et appliquées [Theoretical and applied statistics]. Paris, France: De Boeck & Larcier SA. (1998).Adebo, H. O. et al. Ethnobotanical Knowledge of Jute (Corchorus olitorius L.) in Benin. Eur. J. Med. Plants. 26, 1–11 (2018).INSAE (Institut National de la Statistique et de l’Analyse Économique). Principaux indicateurs sociodémographiques et économiques (RGPH-4, 2013). https://insae.bj/statistiques/enquetes-et-recensements (2016).MAEP (Ministère de l’Agriculture, de l’Elevage et de la Pêche). Plan Stratégique de Relance du Secteur Agricole. Repport, MAEP, Bénin. http://extwprlegs1.fao.org/docs/pdf/ben149176.pdf (2008).Dansi, A. et al. Traditional leafy vegetables and their use in the Benin Republic. Genet Resour Crop Evol. 55, 1239–1256 (2008).Article 

    Google Scholar 
    Keuls, M. The use of the “studentized range” in connection with an analysis of variance. Euphytica 1, 112–122 (1952).Article 

    Google Scholar 
    Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 129 (2020).R Core Team. R: A Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing. https://www.gbif.org/fr/tool/81287/r-a-language-and-environment-for-statistical-computing (2018).Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (2019).Oksanen, J. et al. Vegan: Community Ecology Package R package version 25-6. https://cran.r-project.org/package=vegan (2019).Robinson, D., Hayes, A. & Couch, S. Broom: Convert Statistical Objects into Tidy Tibbles R package version 070. https://cran.r-project.org/package=broom (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar 
    Kinkingninhoun-Mêdagbé, F. M., Diagne, A., Simtowe, F., Agboh-Noameshie, A. R. & Adégbola, P. Y. Gender discrimination and its impact on income, productivity, and technical efficiency: evidence from Benin. Agric. Human Values. 27, 57–69 (2010).Article 

    Google Scholar 
    Adétonah S. et al. Analysis of gender and governance of value chain-based systems on rice and vegetable crops in southern Benin and Mali. Open .J Soc. Sci. 3, 134–141 (2015).Le Vido, A. A. riz africain (Oryza glaberrima Steudel) dans l’agrosystème des Fon du plateau d’Abomey (Bénin) au XIXè siècle: essai d’approche historique. Rev. Iv. Hist. 20, 59–76 (2012).
    Google Scholar 
    Sakurai, T. Intensification of rainfed lowland rice production in West Africa: Present status and potential green revolution. Dev. Econ. 44, 232–251 (2006).Article 

    Google Scholar 
    Feng, S. Land rental, off-farm employment and technical efficiency of farm households in Jiangxi Province, China. NJAS 55, 363–378 (2008).
    Google Scholar 
    Affholder, F., Poeydebat, C., Corbeels, M., Scopel, E. & Tittonell, P. The yield gap of major food crops in family agriculture in the tropics: Assessment and analysis through field surveys and modelling. Field Crops Res. 143, 106–118 (2013).Article 

    Google Scholar 
    Anang, B. T. & Awuni, J. A. Effect of training on small-scale rice production in northern Ghana. APSTRACT. 12, 13–20 (2018).Article 

    Google Scholar 
    Nonvide, G. M. A. A re-examination of the impact of irrigation on rice production in Benin: An application of the endogenous switching model. Kasetsart J. Soc. Sci. 40, 657–662 (2019).
    Google Scholar 
    Osawe, O. W., Akinyosoye, V. O., Omonona, B. T., Okoruwa, V. O. & Salman, K. K. Productivity differentials in rice production systems: Evidence from rice farmers in five agroecological zones in Nigeria. J. Nutraceut. Food Sci. 2, 1–18 (2017).
    Google Scholar 
    Yabi, I. & Afouda, F. Extreme rainfall years in Benin (West Africa). Quat. Int. 262, 39–43 (2012).Article 

    Google Scholar 
    Goulart, R. Z., Reichert, J. M. & Rodrigues, M. F. Cropping poorly-drained lowland soils: Alternatives to rice monoculture, their challenges and management strategies. Agric. Syst. 177, 102715. https://doi.org/10.1016/jagsy2019102715 (2020).Dobermann, A. & Fairhurst, T. Rice: Nutrient Disorders & Nutrient Management Handbook Series, Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute, Philippine, 191 (2000).Roder, W., Maniphone, S. & Keoboulapha, B. Pigeon pea for fallow improvement in slash-and-burn systems in the hills of Laos?. Agrofor. Syst. 39, 45–57 (1997).Article 

    Google Scholar 
    Van Campenhout, B. The role of information in agricultural technology adoption: Experimental evidence from rice farmers in Uganda. Econ. Dev. Cult. Change 69, 1239–1272 (2021).Article 

    Google Scholar 
    Castillo, J., Kirk, G. J. D., Rivero, M. M. J., Dobermann, A. & Haefele, M. The nitrogen economy of rice-livestock systems in Uruguay. Glob. Food Sect. 30, 100566; https://doi.org/10.1016/j.gfs.2021.100566 (2021).Paman, U., Inaba, S. & Uchida, S. The mechanization of small-scale rice farming: Labor requirements and costs. Eng. Agric. Environ. Food 7, 122–126 (2014).Article 

    Google Scholar 
    Mesfin, A. H. & Zemedu, L. Choices of varieties and demand for improved rice seed in Fogera district of Ethiopia. Rice Sci. 25, 350–356 (2018).Article 

    Google Scholar 
    Chandio, A. A., Jiang, Y., Gessesse, A. T. & Dunya, R. The nexus of agricultural credit, farm size and technical efficiency in Sindh, Pakistan: A stochastic production frontier approach. J. Saudi Soc. Agric. Sci. 18(3), 348–354 (2019).
    Google Scholar 
    Naseem, A., Mhlanga, S., Diagne, A., Adegbola, P. Y. & Midingoyi, G. S. Economic analysis of consumer choices based on rice attributes in the food markets of West Africa—The case of Benin. Food Sect. 5, 575–589 (2013).Article 

    Google Scholar 
    Demont, M., Fiamohé, R. & Kinkpé, T. Comparative advantage in demand and the development of rice value chains in West Africa. World Dev. 96, 578–590 (2017).Article 

    Google Scholar 
    Zannou, A., Kpenavoun, C. S,. Saliou, I. O. & Biaou, G. Technical efficiency of irrigated rice seed farmers in Koussin-Lélé, Benin Republic. J. Dev. Agric. Econ. 10, 28–37 (2018).Ouédraogo, M. & Dakouo, D. Evaluation de l’adoption des variétés de riz NERICA dans l’Ouest du Burkina Faso. Afr. J. Agric. Resour. Econ. 12, 1–16 (2017).Article 

    Google Scholar 
    Bruce, A. K. K., Donkoh, S. A. & Ayamga, M. Improved rice variety adoption and its effects on farmers’ output in Ghana. J. Dev. Agric. Econ. 6, 242–248 (2014).Article 

    Google Scholar 
    Beke, T. E. Institutional constraints and adoption of improved rice varieties: Econometric evidence from Ivory Coast. RAEStud. 92, 117–141 (2011).Article 

    Google Scholar 
    Hagos, A. & Zemedu, L. Determinants of improved rice varieties adoption in Fogera district of Ethiopia. Sci. Technol. Arts Res. J. 4, 221–228 (2015).Reardon, T., Stamoulis, K. & Pingali, P. Rural nonfarm employment in developing countries in an era of globalization. Agric. Econ. 37, 173–183 (2007).Article 

    Google Scholar 
    Khush, G. S. Modern varieties—Their real contribution to food supply and equity. GeoJourna 35, 275–284 (1995).Bannor, R. K., Kumar, G. A. K., Oppong-Kyeremeh, H. & Wongnaa, C. A. Adoption and impact of modern rice varieties on poverty in Eastern India. Rice Sci. 27, 56–66 (2020).Article 

    Google Scholar 
    Anik, A. R. & Salam, M. D. A. Determinants of adoption of improved onion variety in Banglades. J. Agric. Environ. Int. Dev. 109, 71–88 (2015).
    Google Scholar 
    Nascente, A. S. & Kromocardi, R. Genotype selection and addition of fertilizer increases grain yield in upland rice in Suriname. Acta Amazon. 47, 185–194 (2017).Article 

    Google Scholar 
    Hossain, M. G., Sabiruzzaman, M., Islam, S., Ohtsuki, F. & Lestrel, P. E. Effect of craniofacial measures on the cephalic index of Japanese adult female students. Anthropol. Sci. 118, 117–121 (2010).Article 

    Google Scholar 
    Nonvide, G. M. A. Identification of factors affecting adoption of improved rice varieties among smallholder farmers in the municipality of Malanville, Benin. J. Agric. Sci. Technol. 22, 305–316 (2020).
    Google Scholar  More

  • in

    Response of N2O emission and denitrification genes to different inorganic and organic amendments

    IPCC. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
    Google Scholar 
    Pachauri, R. K. et al. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).
    Google Scholar 
    Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2, 410–416 (2012).ADS 
    CAS 

    Google Scholar 
    Jassal, R. S., Black, T. A., Roy, R. & Ethier, G. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration. Geoderma 162, 182–186 (2011).ADS 
    CAS 

    Google Scholar 
    Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).CAS 
    PubMed 

    Google Scholar 
    Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).CAS 

    Google Scholar 
    Yang, Y. D., Hu, Y. G., Wang, Z. M. & Zeng, Z. H. Variations of the nirS-, nirK-, and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes. Environ. Sci. Pollut. Res. 25, 14057–14067 (2018).CAS 

    Google Scholar 
    Pan, Y., Ye, L., Ni, B. & Yuan, Z. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Res. 46, 4832–4840 (2012).CAS 
    PubMed 

    Google Scholar 
    Hallin, S., Philippot, L., Loffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 1485, 43–55 (2017).
    Google Scholar 
    Yang, L., Zhang, X. & Ju, X. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil. Sci. Rep. 7, 43283 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui, P. Y. et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biol. Biochem. 93, 131–141 (2016).CAS 

    Google Scholar 
    Gerber, J. S. et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Glob. Change Biol. 22, 3383–3394 (2016).ADS 

    Google Scholar 
    Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. 111, 9199–9204 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, J., Chadwick, D. R., Cheng, Y. & Yan, X. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. Sci. Total Environ. 616, 908–917 (2018).ADS 
    PubMed 

    Google Scholar 
    Albanito, F. et al. Direct nitrous oxide emissions from tropical and sub-tropical agricultural systems—A review and modelling of emission factors. Sci. Rep. 7, 44235 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wolsing, M. & Priemé, A. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. FEMS Microbiol. Ecol. 48, 261–271 (2004).CAS 
    PubMed 

    Google Scholar 
    Akiyama, H., McTaggart, I. P., Ball, B. C. & Scott, A. N2O, NO, and NH3 emissions from soil after the application of organic fertilizers, urea and water. Water Air Soil Pollut. 156, 113–129 (2004).ADS 
    CAS 

    Google Scholar 
    Wang, Y. Y. et al. Responses of N2O reductase gene (nosZ)-denitrifer communities to long-term fertilization follow a depth pattern in calcareous purplish paddy soil. J. Integr. Agric. 16, 2597–2611 (2017).CAS 

    Google Scholar 
    Fernandez-Luqueno, F. et al. Emission of CO2 and N2O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources. Sci. Total Environ. 407, 4289–4296 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yin, C. et al. Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS-and nirK-denitrifying bacterial community. Eur. J. Soil Biol. 65, 47–56 (2014).CAS 

    Google Scholar 
    Harter, J. et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J. 8, 660–674 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hai, B. et al. Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl. Environ. Microbiol. 75, 4993–5000 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, R. et al. Nitrous oxide emission and the related denitrifier community: A short-term response to organic manure substituting chemical fertilizer. Ecotoxicol. Environ. Saf. 192, 110291 (2020).CAS 
    PubMed 

    Google Scholar 
    Xu, X. et al. NosZ clade II rather than clade I determine in situ N2O emissions with different fertilizer types under simulated climate change and its legacy. Soil Biol. Biochem. 150, 107974 (2020).CAS 

    Google Scholar 
    Henderson, S. L. et al. Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Appl. Environ. Microbiol. 76, 2155–2164 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palmer, K., Biasi, C. & Horn, M. A. Contrasting denitrififier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 6, 1058–1077 (2012).CAS 
    PubMed 

    Google Scholar 
    Dandie, C. E. et al. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol. Ecol. 77, 69–82 (2011).CAS 
    PubMed 

    Google Scholar 
    Avrahami, S., Conrad, R. & Braker, G. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl. Environ. Microbiol. 68, 5685–5692 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, Y. J. et al. Compost supplementation with nitrogen loss and greenhouse gas emissions during pig manure composting. Bioresour. Technol. 297, 122435 (2019).PubMed 

    Google Scholar 
    Yang, Y. J. et al. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. Bioresour. Technol. 313, 123647 (2020).CAS 
    PubMed 

    Google Scholar 
    Yang, J. H., Wang, C. L. & Dai, H. L. Agricultural Soil Analysis and Environmental Monitoring (China Land Press, 2008) (in Chinese).
    Google Scholar 
    Wang, Q. R., Li, Y. C. & Klassen, W. Changes of soil microbial biomass carbon and nitrogen with cover crops and irrigation in a tomato field. J. Plant Nutr. 30, 623–639 (2007).CAS 

    Google Scholar 
    Moore, J. M., Klose, S. & Tabatabai, M. A. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol. Fertil. Soils 31, 200–210 (2000).CAS 

    Google Scholar 
    Jones, D. L. & Willett, V. B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 38, 991–999 (2006).CAS 

    Google Scholar 
    Ghani, A., Dexter, M. & Perrott, K. W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol. Biochem. 35, 1231–1243 (2003).CAS 

    Google Scholar 
    Huang, R. et al. Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils. Appl. Soil. Ecol. 137, 57–68 (2019).
    Google Scholar 
    Yang, Y. J. et al. Soil organic carbon transformation and dynamics of microorganisms under different organic amendments. Sci. Total Environ. 750, 141719 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    López-Fernández, S. et al. Effects of fertiliser type and the presence or absence of plants on nitrous oxide emissions from irrigated soils. Nutr. Cycl. Agroecosyst. 78, 279–289 (2007).
    Google Scholar 
    Wallenstein, M. D., Myrold, D. D., Firestone, M. & Voytek, M. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol. Appl. 16, 2143–2152 (2006).PubMed 

    Google Scholar 
    Ciarlo, E., Conti, M., Bartoloni, N. & Rubio, G. Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture. Biol. Fertil. Soils 44, 991–995 (2008).CAS 

    Google Scholar 
    Dandie, C. E. et al. Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity. Appl. Environ. Microbiol. 74, 5997–6005 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Francis, C. A., O’Mullan, G. D., Cornwell, J. C. & Ward, B. B. Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the Chesapeake Bay estuary. Front. Microbiol. 4, 237 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lin, W. et al. Evaluation of N2O sources after fertilizers application in vegetable soil by dual isotopocule plots approach. Environ. Res. 188, 109818 (2020).CAS 
    PubMed 

    Google Scholar 
    Chen, M. M. et al. Nitrosospira cluster 3 lineage of AOB and nirK of Rhizobiales respectively dominated N2O emissions from nitrification and denitrification in organic and chemical N fertilizer treated soils. Ecol. Indic. 127, 107722 (2021).CAS 

    Google Scholar 
    Malghani, S., Kim, J., Lee, S. H., Yoo, G. Y. & Kang, H. Application of two contrasting rice-residue-based biochars triggered gaseous loss of nitrogen under denitrification-favoring conditions: a short-term study based on acetylene inhibition technique. Appl. Soil Ecol. 127, 112–119 (2018).
    Google Scholar 
    Sun, R., Guo, X., Wang, D. & Chu, H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil. Ecol. 95, 171–178 (2015).
    Google Scholar 
    Philippot, L., Andert, J., Jones, C. M., Bru, D. & Hallin, S. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob. Change Biol. 17, 1497–1504 (2011).ADS 

    Google Scholar 
    Chen, Z. et al. Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb. Ecol. 63, 446–459 (2012).PubMed 

    Google Scholar 
    Yoshida, M., Ishii, S., Otsuka, S. & Senoo, K. nirK-harboring denitrifiers are more responsive to denitrification-inducing conditions in rice paddy soil than nirS-harboring bacteria. Microbes Environ. 25, 45–48 (2010).PubMed 

    Google Scholar 
    Yin, C. et al. Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil. Appl. Microbiol. Biotechnol. 99, 5719–5729 (2015).CAS 
    PubMed 

    Google Scholar 
    Barrett, M. et al. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Environ. Sci. Pollut. Res. 23, 7899–7910 (2016).CAS 

    Google Scholar 
    Yoshida, M., Ishii, S., Otsuka, S. & Senoo, K. Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil. Soil Biol. Biochem. 41, 2044–2051 (2009).CAS 

    Google Scholar 
    Kandeler, E., Deiglmayr, K., Tscherko, D., Bru, D. & Philippot, L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 72, 5957–5962 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Macroalgae and interspecific alarm cues regulate behavioral interactions between sea urchins and sea cucumbers

    Lawrence, J.M. Sea urchins: biology and ecology. Amsterdam, The Netherlands: Elsevier B.V. (2020)Purcell, S.W., Samyn, Y. & Conand, C. Commercially important sea cucumbers of the world. Rome, Italy: FAO. (2012)Yorke, C. E., Page, H. M. & Miller, R. J. Sea urchins mediate the availability of kelp detritus to benthic consumers. Proc. R. Soc. B. 286(1906), 20190846 (2019).CAS 
    Article 

    Google Scholar 
    Dethier, M. N. et al. Feces as food: The nutritional value of urchin feces and implications for benthic food webs. J. Exp. Mar. Biol. Ecol. 514, 95–102 (2019).Article 

    Google Scholar 
    Purcell, S. W. et al. Ecological roles of exploited sea cucumbers. Oceanogr. Mar. Biol. 54, 367–386 (2017).
    Google Scholar 
    Hamel, J. F. & Mercier, A. Early development, settlement, growth, and spatial distribution of the sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea). Can. J. Fish. Aquat. Sci. 53(2), 253–271 (1996).Article 

    Google Scholar 
    Grosso, L. et al. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 534, 736268 (2021)Gabara, S.S., Konar, B.H. & Edwards, M.S. Biodiversity loss leads to reductions in community-wide trophic complexity. Ecosphere 12(2), e03361 (2021)Duffy, J. E. et al. The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecol. Lett. 10(6), 522–538 (2010).ADS 
    Article 

    Google Scholar 
    Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc. R. Soc. B. 285(1874), 20172571 (2018).Article 

    Google Scholar 
    Soulsby, P. G., Lowthion, D. & Houston, M. Effects of macroalgal mats on the ecology of intertidal mudflats. Mar. Pollut. Bull. 13(5), 162–166 (1982).Article 

    Google Scholar 
    Filbee-Dexter, K. & Scheibling, R.E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol.: Prog. Ser. 495(1), 1–25 (2014)Hendler, G., Miller, J. E., Pawson, D. L. & Kier, P. M. Sea stars, sea urchins and allies: echinoderms of Florida and the Caribbean (Smithsonian Institution Press, 1995).
    Google Scholar 
    James, D. B. Sea cucumber and sea urchin resources. CMFRI Bull. 34, 85–93 (1983).
    Google Scholar 
    Muthiga, N.A. & Kawaka, J.A. The effects of temperature and light on the gametogenesis and spawning of four sea urchin and one sea cucumber species on coral reefs in Kenya. Proceedings of the 11th international coral reef symposium. Fort Lauderdale, Florida pp 356–360 (2008)Byrnes, J., Cardinale, B. & Reed, D. Interactions between sea urchin grazing and prey diversity on temperate rocky reef communities. Ecology 94(7), 1636–1646 (2013).Article 

    Google Scholar 
    Vanderklift, M.A. & Kendrick, G.A. Contrasting influence of sea urchins on attached and drift macroalgae. Mar. Ecol.: Prog. Ser. 299, 101–110 (2005)Duggins, D. O. Interspecific facilitation in a guild of benthic marine herbivores. Oecologia 48(2), 157–163 (1981).ADS 
    Article 

    Google Scholar 
    Bonaviri, C. et al. Fish versus starfish predation in controlling sea urchin populations in Mediterranean rocky shores. Mar. Ecol.: Prog. Ser. 382(1), 129–138 (2009)Purcell, S. W. & Simutoga, M. Spatio-temporal and size-dependent variation in the success of releasing cultured sea cucumbers in the wild. Rev. Fish. Sci. 16, 204–214 (2008).Article 

    Google Scholar 
    Scheibling, R. E. & Robinson, M. C. Settlement behaviour and early post-settlement predation of the sea urchin Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 365(1), 59–66 (2008).Article 

    Google Scholar 
    Francour, P. Predation on holothurians: a literature review. Invertebr. Biol. 116(1), 52–60 (1997).Article 

    Google Scholar 
    Scheibling, R. E. & Hamm, J. Interactions between sea urchins (Strongylocentrotus droebachiensis) and their predators in field and laboratory experiments. Mar. Biol. 110(1), 105–116 (1991).Article 

    Google Scholar 
    Bartumeus, F., Romero, J. & Alcoverro, T. The scent of fear makes sea urchins go ballistic. Mov. Ecol. 9(1), 1–12 (2021).Article 

    Google Scholar 
    Campbell, A.C. & Coppard, S., Tudor-Thomas CD. Escape and aggregation responses of three echinoderms to conspecific stimuli. Biol. Bull. 201(2), 175–185 (2001)Chi, X. et al. Conspecific alarm cues are a potential effective barrier to regulate foraging behavior of the sea urchin Mesocentrotus nudus. Mar. Environ. Res. 171(8), 105476 (2021)Chi, X. et al. Foraging behavior of the sea urchin Mesocentrotus nudus exposed to conspecific alarm cues in various conditions. Sci. Rep. 11(1), 1–6 (2021).Article 

    Google Scholar 
    Zhadan, P.M. & Vaschenko, M.A. Long-term study of behaviors of two cohabiting sea urchin species, Mesocentrotus nudus and Strongylocentrotus intermedius, under conditions of high food quantity and predation risk in situ. PeerJ 7(1), e8087 (2019)Bshary, R. & Noë, R. Red colobus and Diana monkeys provide mutual protection against predators. Anim. Behav. 54(6), 1461–1474 (1997).CAS 
    Article 

    Google Scholar 
    Peres, C. A. Anti-predation benefits in a mixed-species group of Amazonian tamarins. Folia Primatol. 61(2), 61–76 (1993).CAS 
    Article 

    Google Scholar 
    Fuji, A. Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Mem. Fac. Fish. Hokkaido Univ. 15(2), 83–160 (1967)Chang, Y., Ding, J., Song, J. & Yang, W. Biology and aquaculture of sea cucumbers and sea urchins (Ocean Press, 2004).
    Google Scholar 
    Yang, H., Hamel, J. F. & Mercier, A. The sea cucumber Apostichopus japonicus: history, biology and aquaculture (Elsevier Inc., 2015).
    Google Scholar 
    Zhao, C. et al. Carryover effects of short-term UV-B radiation on fitness related traits of the sea urchin Strongylocentrotus intermedius. Ecotoxicol. Environ. Saf. 164, 659–664 (2018).CAS 
    Article 

    Google Scholar 
    Zhang, L. et al. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ 5, e3122 (2017)Zhao, C. et al. Effects of covering behavior and exposure to a predatory crab Charybdis japonica on survival and HSP70 expression of juvenile sea urchins Strongylocentrotus intermedius. PloS One 9(5), e97840 (2014)Kawai, T. & Agatsuma, Y. Predators on released seed of the sea urchin Strongylocentrotus intermedius at Shiribeshi, Hokkaido, Japan. Fish. Sci. (Tokyo, Jpn.) 62(2), 317–318 (1996)Hatanaka, H. Experimental studies on the predation of juvenile sea cucumber, Stichopus japonicus by sea star Asterina pectinifera. Aquacult. Sci. 42(4), 563–566 (1994).
    Google Scholar 
    Guidetti, P. & Mori, M. Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators. Mar. Biol. 147(3), 797–802 (2005).Article 

    Google Scholar 
    Moitoza, D.J & Phillips, D.W. Prey defense, predator preference, and nonrandom diet: the interactions between Pycnopodia helianthoides and two species of sea urchins. Mar. Biol. 53(4), 299–304 (1979)Williams, J.P. et al. Sea urchin mass mortality rapidly restores kelp forest communities. Mar. Ecol.: Prog. Ser. 664, 117–131 (2021)Pearse, J. Ecological role of purple sea urchins. Science 314(5801), 940–941 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Vadas, R. L. Preferential feeding: an optimization strategy in sea urchins. Ecol. Monogr. 47(4), 337–371 (1977).Article 

    Google Scholar 
    Lowe, A. T. et al. Sedentary urchins influence benthic community composition below the macroalgal zone. Mar. Biol. 36(2), 129–140 (2015).
    Google Scholar 
    Layton, C. et al. Kelp Forest Restoration in Australia. Front. Mar. Sci. 7(74) (2020)Eger, A.M. et al. Global Kelp forest restoration: Past lessons, status, and future goals. Preprint. EcoEvoRxiv. https://doi.org/10.32942/osf.io/emaz2 (2021)Ritson-Williams, R. & Paul, V. J. Marine benthic invertebrates use multimodal cues for defense against reef fish. Mar. Ecol. Prog. Ser. 340, 29–39 (2007).ADS 
    Article 

    Google Scholar 
    Hu, F. et al. Effects of artificial reefs on selectivity and behaviors of the sea cucumber Apostichopus japonicas: New insights into the pond culture. Aquacult. Rep. 21(3), 100842 (2021)Sun, J. et al. Light intensity regulates phototaxis, foraging and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ 7, e8001 (2019)Bi, S., Shi, J. & Liu, A. Exploitation and utilization of Ulva lactuca L. Mod. Fish. Inf. 11, 21–23 (1993).
    Google Scholar 
    Chang, Y. Q., Wang, Z. C. & Wang, G. J. Effect of temperature and algae on feeding and growth in sea urchin Strongylocentrotus intermedius. J. Fish. China 23(1), 69–76 (1999).
    Google Scholar 
    Dumont, C., Himmelman, J.H. & Russell, M.P. Size-specific movement of green sea urchins Strongylocentrotus droebachiensis on urchin barrens in eastern Canada. Mar. Ecol.: Prog. Ser. 276, 93–101 (2004)Sun, J. et al. Interaction among sea urchins in response to food cues. Sci. Rep. 11(1), 1–9 (2021).ADS 
    Article 

    Google Scholar 
    Węglarczyk, S. Kernel density estimation and its application. ITM Web Conf. 23(2), 00037 (2018).Article 

    Google Scholar  More

  • in

    Climate-change-driven growth decline of European beech forests

    IPCC. IPCC Fifth Assessment Report (AR5). 10–12 (IPCC, 2014).Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).PubMed 

    Google Scholar 
    Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1–12 (2021).
    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science https://doi.org/10.1126/science.1155121 (2008).Article 
    PubMed 

    Google Scholar 
    Buras, A. & Menzel, A. Projecting tree species composition changes of European forests for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 9, 1–13 (2019).
    Google Scholar 
    van der Maaten, E. et al. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 7, 2585–2594 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Lebaube, S., Le Goff, N. L., Ottorini, J. M. & Granier, A. Carbon balance and tree growth in a Fagus sylvatica stand. Ann. Sci. 57, 49–61 (2000).
    Google Scholar 
    Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319–333 (2005).
    Google Scholar 
    Büntgen, U. Re-thinking the boundaries of dendrochronology. Dendrochronologia 53, 1–4 (2019).
    Google Scholar 
    Klesse, S. et al. Continental-scale tree-ring-based projection of Douglas-fir growth: Testing the limits of space-for-time substitution. Glob. Chang. Biol. 26, 5146–5163 (2020).PubMed 

    Google Scholar 
    Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).
    Google Scholar 
    Babst, F. et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018).
    Google Scholar 
    Klesse, S. et al. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun. 9, 1–9 (2018).
    Google Scholar 
    Yousefpour, R. et al. Realizing mitigation efficiency of European commercial forests by climate smart forestry. Sci. Rep. 8, 1–11 (2018).CAS 

    Google Scholar 
    Giesecke, T., Hickler, T., Kunkel, T., Sykes, M. T. & Bradshaw, R. H. W. Towards an understanding of the Holocene distribution of Fagus sylvatica L. J. Biogeogr. 34, 118–131 (2007).
    Google Scholar 
    Fang, J. & Lechowicz, M. J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. J. Biogeogr. 33, 1804–1819 (2006).
    Google Scholar 
    Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).CAS 
    PubMed 

    Google Scholar 
    Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 24001 (2016).Nabuurs, G. J. et al. By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests 8, 1–14 (2017).
    Google Scholar 
    Walentowski, H. et al. Assessing future suitability of tree species under climate change by multiple methods: a case study in southern Germany. Ann. Res. 60, 101–126 (2017).
    Google Scholar 
    Mäkelä, A. et al. Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol. 20, 289–298 (2000).PubMed 

    Google Scholar 
    Leech, S. M., Almuedo, P. L. & Neill, G. O. Assisted migration: adapting forest management to a changing climate. BC J. Ecosyst. Manag. 12, 18–34 (2011).
    Google Scholar 
    Sass-Klaassen, U. G. W. et al. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 7, 1069 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Bowman, D. M. J. S., Brienen, R. J. W., Gloor, E., Phillips, O. L. & Prior, L. D. Detecting trends in tree growth: not so simple. Trends Plant Sci. 18, 11–17 (2013).CAS 
    PubMed 

    Google Scholar 
    Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Dorji, Y., Annighöfer, P., Ammer, C. & Seidel, D. Response of beech (Fagus sylvatica L.) trees to competition-new insights from using fractal analysis. Remote Sens. 11, 2656 (2019).Petit-Cailleux, C. et al. Combining statistical and mechanistic models to unravel the drivers of mortality within a rear-edge beech population. bioRxiv https://doi.org/10.1101/645747 (2019).Weigel, R., Gilles, J., Klisz, M., Manthey, M. & Kreyling, J. Forest understory vegetation is more related to soil than to climate towards the cold distribution margin of European beech. J. Veg. Sci. 30, 746–755 (2019).
    Google Scholar 
    Etzold, S. et al. Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. Forest Ecol. Manag. 458, 117762 (2020).
    Google Scholar 
    Martínez-Sancho, E. et al. The GenTree dendroecological collection, tree-ring and wood density data from seven tree species across Europe. Sci. Data 7, 1–7 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hartl-Meier, C., Dittmar, C., Zang, C. & Rothe, A. Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28, 819–829 (2014).
    Google Scholar 
    Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).PubMed 

    Google Scholar 
    Martínez del Castillo, E. et al. Spatial patterns of climate – growth relationships across species distribution as a forest management tool in Moncayo Natural Park (Spain). Eur. J. Res. 138, 299 (2019).
    Google Scholar 
    Hacket-Pain, A. J., Cavin, L., Friend, A. D. & Jump, A. S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. Res. 135, 897–909 (2016).
    Google Scholar 
    van der Maaten, E. Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 26, 777–788 (2012).
    Google Scholar 
    Decuyper, M. et al. Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia – an integrated approach using remote sensing and tree-ring data. Agric. Meteorol. 287, 107925 (2020).
    Google Scholar 
    Kraus, C., Zang, C. & Menzel, A. Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. Eur. J. Res. 135, 1011–1023 (2016).
    Google Scholar 
    Martínez del Castillo, E. et al. Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under mediterranean conditions. Front. Plant Sci. 7, 370 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Čufar, K. et al. Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees 26, 1091–1100 (2012).
    Google Scholar 
    Bontemps, J. D., Hervé, J. C. & Dhôte, J. F. Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. Forest Ecol. Manag. 259, 1455–1463 (2010).
    Google Scholar 
    Latte, N., Lebourgeois, F. & Claessens, H. Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33, 69–77 (2015).
    Google Scholar 
    Zimmermann, J., Hauck, M., Dulamsuren, C. & Leuschner, C. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central european mixed forests. Ecosystems 18, 560–572 (2015).CAS 

    Google Scholar 
    Tegel, W. et al. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur. J. Res. 133, 61–71 (2014).
    Google Scholar 
    Hacket-Pain, A. J. & Friend, A. D. Increased growth and reduced summer drought limitation at the southern limit of Fagus sylvatica L., despite regionally warmer and drier conditions. Dendrochronologia 44, 22–30 (2017).
    Google Scholar 
    Dulamsuren, C., Hauck, M., Kopp, G., Ruff, M. & Leuschner, C. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees 31, 673–686 (2017).
    Google Scholar 
    Spiecker, H., Mielikäinen, K., Köhl, M. & Skovsgaard, J. P. Growth trends in European forests: studies from 12 countries. European Forest Institute Research Report (1996).Cavin, L. & Jump, A. S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 23, 1–18 (2016).
    Google Scholar 
    Mette, T. et al. Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere 4, 1–19 (2013).
    Google Scholar 
    Michelot, A., Simard, S., Rathgeber, C. B. K., Dufrêne, E. & Damesin, C. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol. 32, 1033–1045 (2012).PubMed 

    Google Scholar 
    Meier, I. C. & Leuschner, C. Belowground drought response of European beech: Fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob. Chang. Biol. 14, 2081–2095 (2008).
    Google Scholar 
    Leuschner, C. & Ellenberg, H. Ecology of Central European Forests. Vegetation Ecology of Central Europe. Vol. I (Springer, 2017).Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere. 6, 1–55 (2015).
    Google Scholar 
    Pechanec, V., Purkyt, J., Benc, A., Nwaogu, C. & Lenka, Š. Ecological Informatics Modelling of the carbon sequestration and its prediction under climate change. https://doi.org/10.1016/j.ecoinf.2017.08.006 (2017).Speer, J. H. Fundamentals of Tree-Ring Research (University of Arizona Press, 2010).Biondi, F. & Qeadan, F. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res. 64, 81–96 (2008).
    Google Scholar 
    Biondi, F. & Qeadan, F. Removing the tree-ring width biological trend using expected basal area increment. in USDA Forest Service RMRS-P-55 124–131 (2008).Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).
    Google Scholar 
    De Martonne, E. Une nouvelle fonction climatologique: L’indice d’aridité. La Meteorol. 2, 449–458 (1926).Martínez del Castillo, E., Longares, L. A., Serrano-Notivoli, R. & de Luis, M. Modeling tree-growth: assessing climate suitability of temperate forests growing in Moncayo Natural Park (Spain). Ecol. Manag. 435, 128–137 (2019).
    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    Calcagno, V. & Mazancourt, C. De. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).
    Google Scholar 
    Detry, M. A. & Ma, Y. Analyzing repeated measurements using mixed models. JAMA J. Am. Med. Assoc. 315, 407 (2016).CAS 

    Google Scholar 
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).
    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 

    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).CAS 

    Google Scholar 
    Karger, D. N. & Zimmermann, N. E. CHELSAcruts – High Resolution Temperature And Precipitation Timeseries For The 20th Century And Beyond. https://doi.org/10.16904/envidat.159 (2018).Norinder, U., Rybacka, A. & Andersson, P. L. Conformal prediction to define applicability domain – a case study on predicting ER and AR binding. SAR QSAR Environ. Res. 27, 303–316 (2016).CAS 
    PubMed 

    Google Scholar 
    Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A. & Watkins, J. W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 14, 549–563 (2005).
    Google Scholar  More

  • in

    Field experiments underestimate aboveground biomass response to drought

    Literature search and study selectionA systematic literature search was conducted in the ISI Web of Science database for observational and experimental studies published from 1975 to 13 January 2020 using the following search terms: TOPIC: (grassland* OR prairie* OR steppe* OR shrubland* OR scrubland* OR bushland*) AND TOPIC: (drought* OR ‘dry period*’ OR ‘dry condition*’ OR ‘dry year*’ OR ‘dry spell*’) AND TOPIC: (product* OR biomass OR cover OR abundance* OR phytomass). The search was refined to include the subject categories Ecology, Environmental Sciences, Plant Sciences, Biodiversity Conservation, Multidisciplinary Sciences and Biology, and the document types Article, Review and Letter. This yielded a total of 2,187 peer-reviewed papers (Supplementary Fig. 1). At first, these papers were screened by title and abstract, which resulted in 197 potentially relevant full-text articles. We then examined the full text of these papers for eligibility and selected 87 studies (43 experimental, 43 observational and 1 that included both types) on the basis of the following criteria:

    (1)

    The research was conducted in the field, in natural or semi-natural grasslands or shrublands (for example, artificially constructed (seeded or planted) plant communities or studies using monolith transplants were excluded). We used this restriction because most reports on observational droughts are from intact ecosystems, and experiments in disturbed sites or using artificial communities would thus not be comparable to observational drought studies.

    (2)

    In the case of observational studies, the drought year or a multi-year drought was clearly specified by the authors (that is, we did not arbitrarily extract dry years from a long-term dataset). Please note that some observational data points are from control plots of experiments (of any kind), where the authors reported that a drought had occurred during the study period. We did not involve gradient studies that compare sites of different climates, which are sometimes referred to as ‘observational studies’.

    (3)

    The paper reported the amount or proportion of change in annual or growing-season precipitation (GSP) compared with control conditions. We consistently use the term ‘control’ for normal precipitation (non-drought) year or years in observational studies and for ambient precipitation (no treatment) in experimental studies hereafter. Similarly, we use the term ‘drought’ for both drought year or years in observational studies and drought treatment in experimental studies. In the case of multi-factor experiments, where precipitation reduction was combined with any other treatment (for example, warming), data from the plots receiving drought only and data from the control plots were used.

    (4)

    The paper contained raw data on plant production under both control and drought conditions, expressed in any of the following variables: ANPP, aboveground plant biomass (in grassland studies only) or percentage plant cover. In 79% of the studies that used ANPP as a production variable, ANPP was estimated by harvesting peak or end-of-season AGB. We therefore did not distinguish between ANPP and AGB, which are referred to as ‘biomass’ hereafter. We included the papers that reported the production of the whole plant community, or at least that of the dominant species or functional groups approximating the abundance of the whole community.

    (5)

    When multiple papers were published on the same experiment or natural drought event at the same study site, the most long-term study including the largest number of drought years was chosen.

    In addition to the systematic literature search, we included 27 studies (9 experimental, 17 observational and 1 that included both types) meeting the above criteria from the cited references of the Web of Science records selected for our meta-analyses, and from previous meta-analyses and reviews on the topic. In total, this resulted in 114 studies (52 experimental, 60 observational and 2 that included both types; Supplementary Note 9, Supplementary Fig. 2 and ref. 25).Data compilationData were extracted from the text or tables, or were read from the figures using Web Plot Digitizer26. For each study, we collected the study site, latitude, longitude, mean annual temperature (MAT) and precipitation (MAP), study type (experimental or observational), and drought length (the number of consecutive drought years). When MAT or MAP was not documented in the paper, it was extracted from another published study conducted at the same study site (identified by site names and geographic coordinates) or from an online climate database cited in the respective paper. We also collected vegetation type—that is, grassland when it was dominated by grasses, or shrubland when the dominant species included one or more shrub species (involving communities co-dominated by grasses and shrubs). Data from the same study (that is, paper) but from different geographic locations or environmental conditions (for example, soil types, land uses or multiple levels of experimental drought) were collected as distinct data points (but see ‘Statistical analysis’ for how these points were handled). As a result, the 114 published papers provided 239 data points (112 experimental and 127 observational)25.For the observational studies, normal precipitation year or years specified by the authors was used as the control. If it was not specified in the paper, the year immediately preceding the drought year(s) was chosen as the control. When no data from the pre-drought year were available, the year immediately following the drought year(s) (14 data points) or a multi-year period given in the paper (22 data points) was used as the control. For the experimental studies, we also collected treatment size (that is, rainout shelter area or, if it was not reported in the paper, the experimental plot size).For the calculation of drought severity, we used yearly precipitation (YP), which was reported in a much higher number of studies than GSP. We extracted YP for both control (YPcontrol) and drought (YPdrought). For the observational studies, when a multi-year period was used as the control or the natural drought lasted for more than one year, precipitation values were averaged across the control or drought years, respectively. Consistently, in the case of multi-year drought experiments, YPcontrol and YPdrought were averaged across the treatment years. When only GSP was published in the paper (63 of 239 data points), we used this to obtain YP data as follows: we regarded MAP as YPcontrol, and YPdrought was calculated as YPdrought = MAP − (GSPcontrol − GSPdrought). From YPcontrol and YPdrought data, we calculated drought severity as follows: (YPdrought − YPcontrol)/YPcontrol × 100.For production, we compiled the mean, replication (N) and, if the study reported it, a variance estimate (s.d., s.e.m. or 95% CI) for both control and drought. In the case of multi-year droughts, data only from the last drought year were extracted, except in five studies (17 data points) where production data were given as an average for the drought years. When both biomass and cover data were presented in the paper, we chose biomass. For each study, we consistently considered replication as the number of the smallest independent study unit. When only the range of replications was reported in a study, we chose the smallest number.To quantify climatic aridity for each study site, we used an aridity index (AI), calculated as the ratio of MAP and mean annual PET (AI = MAP/PET). This is a frequently used index in recent climate change research27,28. AI values were extracted from the Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v.2 for the period of 1970–2000 (aggregated on annual basis)29.Because we wanted to prevent our analysis from being distorted by a strongly unequal distribution of studies between the two study types regarding some potentially important explanatory variables, we left out studies from our focal meta-analysis in three steps. First, we left out studies that were conducted at wet sites—that is, where site AI exceeded 1. The value of 1 was chosen for two reasons: above this value, the distribution of studies between the two study types was extremely uneven (22 experimental versus 2 observational data points with AI  > 1)25, and the AI value of 1 is a bioclimatically meaningful threshold, where MAP equals PET. Second, we left out shrublands, because we had only 14 shrubland studies (out of 105 studies with AI  More