Density of invasive western honey bee (Apis mellifera) colonies in fragmented woodlands indicates potential for large impacts on native species
Geslin, B. et al. Massively introduced managed species and their consequences for plant–pollinator interactions. Adv. Ecol. Res. 57, 147–199 (2017).
Google Scholar
Huryn, V. M. B. Ecological impacts of introduced honey bees. Q. R. Biol. 72, 275–297 (1997).
Google Scholar
Stout, J. C. & Morales, C. L. Ecological impacts of invasive alien species on bees. Apidologie 40, 388–409 (2009).
Google Scholar
Hung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. Ser. B 285, 20172140 (2018).
Google Scholar
Paini, D. R. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. Austral Ecol. 29, 399–407 (2004).
Google Scholar
Moritz, R. F. A., Hartel, S. & Neumann, P. Global invasions of the western honey bee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12, 289–301 (2005).
Google Scholar
Paini, D. R. & Roberts, J. D. Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus). Biol. Cons. 123, 103–112 (2005).
Google Scholar
Munoz, I. & De la Rua, P. Wide genetic diversity in old world honey bees threatened by introgression. Apidologie 52, 200–217 (2021).
Google Scholar
Williams, I. H. The dependences of crop production within the European Union on pollination by honey bees. Agric. Zool. Rev. 6, 229–257 (1994).
Google Scholar
Thompson, C. E., Biesmeijer, J. C., Allnutt, T. R., Pietravalle, S. & Budge, G. E. Parasite pressures on feral honey bees (Apis mellifera sp.). PLoS One 9, e105164 (2014).ADS
PubMed
PubMed Central
Google Scholar
Belsky, J. & Joshi, N. K. Impact of biotic and abiotic stressors on managed and feral bees. Insects 10, 233 (2019).PubMed Central
Google Scholar
Medina-Flores, C. A., Guzman-Novoa, E., Hamiduzzaman, M. M., Arechiga-Flores, C. F. & Lopez-Carlos, M. A. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico. Genet. Mol. Res. 13, 7282–7293 (2014).CAS
PubMed
Google Scholar
Portman, Z. M., Tepedino, V. J., Tripodi, A. D., Szalanski, A. L. & Durham, S. L. Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees. Biol. Invasions 20, 593–606 (2018).
Google Scholar
Santos, G. M. D. et al. Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biol. Invasions 14, 2369–2378 (2012).
Google Scholar
Chapman, R. E. & Bourke, A. F. G. The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4, 650–662 (2001).
Google Scholar
Aizen, M. A. et al. When mutualism goes bad: Density-dependent impacts of introduced bees on plant reproduction. New Phytol. 204, 322–324 (2014).
Google Scholar
Breeze, T. D. et al. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS One 9, e82996 (2014).ADS
PubMed
PubMed Central
Google Scholar
Baum, K. A. et al. Spatial distribution of Africanized honey bees in an urban landscape. Landsc. Urban Plan. 100, 153–163 (2011).
Google Scholar
Ratnieks, F. L. W., Piery, M. A. & Cuadriello, I. The natural nest and nest density of the africanized honey-bee (Hymenoptera, Apidae) near Tapachula, Chiapas, Mexico. Can. Entomol. 123, 353–359 (1991).
Google Scholar
Baum, K. A., Rubink, W. L., Pinto, M. A. & Coulson, R. N. Spatial and temporal distribution and nest site characteristics of feral honey bee (Hymenoptera: Apidae) colonies in a coastal prairie landscape. Environ. Entomol. 33, 727–739 (2004).
Google Scholar
Rangel, J. et al. Africanization of a feral honey bee (Apis mellifera) population in South Texas: Does a decade make a difference?. Ecol. Evol. 6, 2158–2169 (2016).PubMed
PubMed Central
Google Scholar
Oldroyd, B. P., Thexton, E. G., Lawler, S. H. & Crozier, R. H. Population demography of Australian feral bees (Apis mellifera). Oecologia 111, 381–387 (1997).ADS
CAS
PubMed
Google Scholar
Arundel, J. et al. Remarkable uniformity in the densities of feral honey bee Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) colonies in South Eastern Australia. Austral Entomol. 53, 328–336 (2014).
Google Scholar
Remm, J. & Lõhmus, A. Tree cavities in forests—The broad distribution pattern of a keystone structure for biodiversity. For. Ecol. Manag. 262, 579–585 (2006).
Google Scholar
Lindenmayer, D., Crane, M., Blanchard, W., Okada, S. & Montague-Drake, R. Do nest boxes in restored woodlands promote the conservation of hollow-dependent fauna?. Restor. Ecol. 24, 244–251 (2016).
Google Scholar
New South Wales Department of Planning, Industry and Environment 2003. https://www.environment.nsw.gov.au/topics/animals-and-plants/threatened-species/nsw-threatened-species-scientific-committee/determinations/final-determinations/2000-2003/competition-from-feral-honeybees-key-threatening-process-listing (accessed 22 Feb 2021).Goldingay, R. L., Rohweder, D. & Taylor, B. D. Nest box contentions: Are nest boxes used by the species they target?. Ecol. Manag. Restor. 21, 115–122 (2020).
Google Scholar
Lindenmayer, D. B. et al. Are nest boxes a viable alternative source of cavities for hollow-dependent animals? Long-term monitoring of nest box occupancy, pest use and attrition. Biol. Cons. 142, 33–42 (2009).
Google Scholar
Lindenmayer, D. B. et al. The anatomy of a failed offset. Biol. Conserv. 210, 286–292 (2017).
Google Scholar
Macak, P. V. Nest boxes for wildlife in Victoria: An overview of nest box distribution and use. Vic. Nat. 137, 4–14 (2020).
Google Scholar
Le Roux, D. S. et al. Effects of entrance size, tree size and landscape context on nest box occupancy: Considerations for management and biodiversity offsets. For. Ecol. Manag. 366, 135–142 (2016).
Google Scholar
Berris, K. K. & Barth, M. PVC nest boxes are less at risk of occupancy by feral honey bees than timber nest boxes and natural hollows. Ecol. Manag. Restor. 21, 155–157 (2020).
Google Scholar
Jaffe, R. et al. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv. Biol. 24, 583–593 (2010).PubMed
Google Scholar
Utaipanon, P., Schaerf, T. M. & Oldroyd, B. P. Assessing the density of honey bee colonies at ecosystem scales. Ecol. Entomol. 44, 291–304 (2019).
Google Scholar
Utaipanon, P., Holmes, M. J., Chapman, N. C. & Oldroyd, B. P. Estimating the density of honey bee (Apis mellifera) colonies using trapped drones: Area sampled and drone mating flight distance. Apidologie 50, 578–592 (2019).CAS
Google Scholar
Williamson, E. M. Reliability of honey bee hive density estimates using drone sampling: does relative hive size or distance affect a colony’s drone contribution? Honours Thesis, The University of Adelaide (2020).Benson, J. S. The effect of 200 years of European settlement on the vegetation and flora of New South Wales. Cunninghamia 2, 343–370 (1991).
Google Scholar
New South Wales Office of Environment and Heritage 2015. Upgraded NSW woody vegetation extent for 2011. http://data.auscover.org.au/xwiki/bin/view/Product+pages/nsw+5m+woody+extent+and+fpc (accessed 13 May 2020).R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). www.R-project.org (accessed 12 January 2021).Burnham, K. P. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH
Google Scholar
Albert, A. & Anderson, J. A. On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71, 1–10 (1984).MathSciNet
MATH
Google Scholar
Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993).MathSciNet
MATH
Google Scholar
Kosmidis, I., Pagui, E. C. K. & Sartori, N. Mean and median bias reduction in generalized linear models. Stat. Comput. 30, 43–59 (2020).MathSciNet
MATH
Google Scholar
Anderson, D. R. Model Based Inference in the Life Sciences: A Primer on Evidence (Springer Science & Business Media, 2007).
Google Scholar
Barton, K. MuMIn: Multi-model inference. R package version 1.43.17 (2016).Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package version 3.4-5 (2020).Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.3.0 (2018).Kosmidis, I. brglm2: Bias Reduction in Generalized Linear Models. R package version 0.6.2 (2020).Kosmidis, I., Schumacher, D. detectseparation: Detect and Check for Separation and Infinite Maximum Likelihood Estimates. R package version 0.1 (2020).Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).
Google Scholar
Pateiro-Lopez, B., Rodriguez-Casal, A. Alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane. R package version 2.2 (2019).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH
Google Scholar
Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
Google Scholar
Wickham, H. Forcats: Tools for working with categorical variables (factors). R package version 0.5.0 (2018).Wickham, H., François, R., Henry, L., Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.0 (2021).Birtchnell, M. J. & Gibson, M. Long-term flowering patterns of melliferous Eucalyptus (Myrtaceae) species. Aust. J. Bot. 54, 745–754 (2006).
Google Scholar
Steinhauer, N. et al. Drivers of colony losses. Curr. Opin. Insect Sci. 26, 142–148 (2018).PubMed
Google Scholar
Cunningham, S. A., Heard, T. & FitzGibbon, F. The future of pollinators for Australian Agriculture. Aust. J. Agric. Res. 53, 893–900 (2002).
Google Scholar
Hinson, E. M., Duncan, M., Lim, J., Arundel, J. & Oldroyd, B. P. The density of feral honey bee (Apis mellifera) colonies in South East Australia is greater in undisturbed than in disturbed habitats. Apidologie 46, 403–413 (2015).
Google Scholar
McIntyre, S. Ecological and anthropomorphic factors permitting low-risk assisted colonization in temperate grassy woodlands. Biol. Conserv. 144, 1781–1789 (2011).
Google Scholar
Steffan-Dewenter, I. & Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. B Biol. Sci. 270, 569–575 (2003).
Google Scholar
Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. U.S.A. 116, 909–914 (2019).CAS
PubMed
Google Scholar
Arthur, A. D., Li, J., Henry, S. & Cunningham, S. A. Influence of woody vegetation on pollinator densities in oilseed Brassica fields in an Australian temperate landscape. Basic Appl. Ecol. 11, 406–414 (2010).
Google Scholar
Lindenmayer, D. B. et al. New policies for old trees: Averting a global crisis in a keystone ecological structure. Conserv. Lett. 7, 61–69 (2014).
Google Scholar
Crane, M. J., Lindenmayer, D. B. & Cunningham, R. B. The value of countryside elements in the conservation of a threatened arboreal marsupial Petaurus norfolcensis in agricultural landscapes of south-eastern Australia—the disproportional value of scattered trees. PLoS One 9, e107178 (2014).ADS
PubMed
PubMed Central
Google Scholar
Gibbons, P., Lindenmayer, D. B., Barry, S. C. & Tanton, M. T. Hollow selection by vertebrate fauna in forests of southeastern Australia and implications for forest management. Biol. Conserv. 103, 1–12 (2002).
Google Scholar
Seeley, T. D. & Morse, R. A. The nest of the honey bee (Apis mellifera L.). Insectes Soc. 23, 495–512 (1976).
Google Scholar
Hung, K. L. J., Ascher, J. S., Davids, J. A. & Holway, D. A. Ecological filtering in scrub fragments restructures the taxonomic and functional composition of native bee assemblages. Ecology 100, e02654 (2019).PubMed
Google Scholar
Cockle, K. L., Martin, K. & Drever, M. C. Supply of tree-holes limits nest density of cavity-nesting birds in primary and logged subtropical Atlantic forest. Biol. Conserv. 143, 2851–2857 (2010).
Google Scholar
Heard, T. Stingless bees. In Australian Native Bees: A Practical Hand Book 106–139 (NSW Department of Primary Industries, 2016).Geoscience Australia 2006. GEODATA TOPO 250K. Commonwealth of Australia. http://pid.geoscience.gov.au/dataset/ga/63999 (accessed 11 December 2020). More