More stories

  • in

    NetGAM: Using generalized additive models to improve the predictive power of ecological network analyses constructed using time-series data

    Our general strategy was to compare the performance of four approaches for inferring microbial associations from abundance data with overlying time-series signals. The approaches were (1) pairwise spearman correlation analysis (SCC) [1, 29], (2) Graphical lasso analysis (Glasso) [30, 31], (3) pairwise SCC analysis with a pre-processing step where seasonal and long-term splines were fit to and subtracted from each variable using a GAM (GAM-SCC), and (4) Glasso with the same GAM subtraction approach (GAM-Glasso). Our validation strategy for the GAM transformation consisted of generating mock datasets with underlying associations, masking those associations by adding seasonal and long-term signals to the abundance data, and comparing the predicted associations obtained from each network inference method to the true species-species associations.Data simulation: generating mock abundance data with time-series propertiesWe generated mock abundance datasets that had a predetermined, underlying network structure and contained long-term and seasonal species abundance patterns. First, a covariance matrix was generated to describe the relationships between species in a mock dataset (Fig. S1, Panel 1). The covariance matrices were constructed with underlying network structures that followed either a scale-free Barabási-Albert model, a random Erdős-Rényi model, or a model of network topology based on a real microbial dataset (American Gut dataset; Fig. S1) [32, 33]. The Erdős-Rényi and Barabási-Albert model datasets were generated so that each dataset contained 400 species and 200 samples, and the American Gut datasets were created so that each dataset contained 127 species and 200 samples. A random Bernoulli distribution was used to simulate the covariance matrix for the Erdős-Rényi networks. We set the probability of interactions occurring between species in a given Erdős-Rényi network to 1%. The Barabási-Albert networks were generated using the “sample_pa” function in the igraph package [34]. The “graph2prec” function in the SpiecEasi package was used to predict the covariance matrix of the American Gut dataset [33]. The covariance between species in a dataset was considered “high” or “low” when the true associations in the covariance matrix were set to 100 or 10 respectively (Fig. S1, Panel 1). These covariance matrices describe the “real”, underlying species interactions in our mock datasets.After generating a covariance matrix, the mean abundance for each species was generated from a normal distribution with a mean of 10 and a variance of 1. These mean abundance values and the covariance matrix were used to parameterize a multivariate normal distribution from which species abundance values for all 200 samples in a dataset were drawn (Fig. S1, Panel 2). The values generated from this multivariate normal distribution were the species abundance values without time-series features confounding the relationship between two associated species (Fig. S1, Panel 2).“Gradual” or “abrupt” seasonal trends were added to 0%, 25%, 50% or 100% of the species in each mock dataset. The gradual seasonal trend increased over 5 months, peaked at a specific month, and decreased over 5 months. Conversely, the abrupt seasonal signal increased over 2 months, peaked at a specific month, and decreased over 2 months (Fig. S1, Panel 3). These seasonal signals were generated by plugging a vector of consecutive integers of length 200 (Nt) into the gradual (Eq. (1)) or abrupt (Eq. (2)) seasonal equations (Fig. S1, Panel 3)…$$Gradual:S_t = left( {frac{{cos left( {N_t ast 2 ast frac{pi }{{12}}} right)}}{2}} right) + 0.5$$
    (1)
    $$Abrupt:,S_t = left( {left( {frac{{cos left( {N_t ast 2 ast frac{pi }{{12}}} right)}}{2}} right) + 0.5} right)^{10}$$
    (2)
    where N is the random vector of consecutive integers, S is the output seasonal vector, and t is the index of vectors N and S. The starting value of vector Nt was drawn at random for each species to allow the seasonal peaks to be centered at different months. Each element in the seasonal vector (St) was then multiplied by the corresponding element in the abundance vector (Xt) of a specific species to obtain mock species abundance values with a gradual or abrupt seasonal trend (Fig. S1, Panel 3).A long-term time-series trend was added to the abundance values of 0% or 50% of the species in the mock datasets (Fig. S1, Panel 4). When a long-term signal was applied to 50% of the species in a dataset, half of the species were randomly selected to have this long-term trend. Then, a vector of linear values was generated following Eq. (3) such that…$$Long – term,trend:,L_t = pm mleft( {L_{t – 1}} right) + 0.01$$
    (3)
    where Lt is the point in the line at the next time point and m is the slope of the line. The slope parameter (m) was generated from a random normal distribution with a mean of 0.01 and a variance of 0.01. The slope parameter (m) was also multiplied by −1 half of the time to ensure that half of the long-term trends increased over time and half decreased over time (Fig. S1, Panel 4). After generating the vector of linear values (Lt), each element of this vector was added to each element of the abundance vector (Xt) of a specific species to simulate long-term time-series trends (Fig. S1, Panel 4).Time-series predictor columns were added to each dataset after applying monthly and long-term abundance trends to a portion of the species in the mock datasets. The predictors that were used in the downstream GAM-based data transformation were the month of the year (i.e., 1–12) and the day of the time-series (i.e., 1–200). In total, we generated 100 mock datasets for every combination of conditions (84 combinations total; Table S1), resulting in 8400 mock time-series datasets that were used in the downstream count data transformation, GAM subtraction, and network analysis procedures.Data simulation: Simulating count data from abundance valuesThe 8400 time-series datasets that were generated using the methods described above were transformed to make the abundance values resemble high-throughput sequencing data because microbial time-series sampling efforts are often processed using such molecular methods (e.g., tag-sequencing, meta-omics). Analysis of high-throughput sequencing data is complicated by the compositional (i.e., relative) nature of the data and by the high number of zeros that may be prevalent in a dataset (i.e., zero-inflation; see Supplementary Information) [35, 36]. Relative abundances of different species in natural communities are also highly skewed, so that relatively few species constitute most of the organisms in a sample although many rare species are also present [37, 38]. Therefore, species abundances were first exponentiated to increase the prevalence of abundant species and to decrease the prevalence of rare species (Fig. S1, Panel 5). The exponentiated species abundance values were then converted to relative abundance values by dividing each species count by the sum of all species counts in a sample (Fig. S1, Panel 6). The resulting relative abundance values and time-series predictor variables were used in data normalization and GAM-transformation steps prior to carrying out the network analyses.Network inference: Count data normalization and GAM transformationSeveral steps were taken to back out the species-species relationships in the mock datasets. We advocate these steps to infer network structure from a real time-series dataset. A centered log-ratio (CLR) transformation was first applied to the species relative abundance values to normalize the mock species abundance data across samples using the “clr” function in the compositions package in R (Fig. 1) [39]. This transformation step is important to avoid spurious inferences induced by the inherent compositionality of relative abundance data [31, 33, 36]. In addition to the CLR transformation used in our main network iterations, we carried out additional network iterations using the modified CLR [40], cumulative sum scaling [41], and total sum scaling [42] transformations (see Supplementary Information). In all cases, the normalized dataset was copied, with one copy subjected to a subsequent GAM transformation, and the other one not GAM-transformed.Fig. 1: Steps used to carry out the GAM-based transformation of time-series species abundance data prior to carrying out pairwise spearman correlation (SCC) and graphical lasso (Glasso) ecological network analyses.The raw, species abundance data were first CLR-transformed (1). Generalized additive models (GAMs) were then fit to each species in the dataset (2) and the residuals of each GAM were checked for significant autocorrelation (3). The residuals of each GAM were extracted (4) and were used as input in the SCC and Glasso network analysis methods (5). Finally, the GAM-transformed network outputs were obtained (6; see text for additional details).Full size imageThe GAM transformation was carried out by fitting GAMs to each individual species in the dataset to remove monthly signals, long-term trends, and autocorrelation from the species abundance data. These GAMs were fit using the “gamm” function in the mgcv package in R [43, 44]. The GAMs that were used included the “month of year” parameter as a cyclical spline predictor and the “day of time-series” parameter as a penalized thin-plate spline predictor (“ts” in the mgcv package; Fig. 1), which given our one-dimensional data is analogous to a natural cubic spline. In addition, the first GAM included a continuous AR1 (“corCAR1” in the mgcv package) correlation structure term in the model. This corCAR1 model was revised for specific species when the GAM could not be resolved or when significant autocorrelation was detected in the GAM residuals (Fig. 1). The GAM revision step fit 4 new GAMs with different correlation structure terms (i.e., “AR1”, “CompSymm”, “Exp”, and “Gaus”) to the species that could not be fit using the corCAR1 model or that contained significant autocorrelation in the corCAR1 GAM residuals. Then, the correlation structure term that addressed these issues for the largest number of individuals was used as the GAM model for this group of species. After fitting a GAM to all of the species in the input dataset, the residuals of each GAM were extracted and were used as the new, GAM-transformed abundance values (Fig. 1). These GAM residuals represent species abundance values with a reduced influence of time (Fig. 2) and were used as input in the downstream GAM-SCC and GAM-Glasso network analyses.Fig. 2: A conceptual figure that demonstrates how the GAM transformation can remove seasonal signals while preserving ecologically relevant species co-occurrence patterns.In this example, the co-occurrence pattern between Species A and Species B persists even after the seasonal signals are removed by the GAM transformation.Full size imageNetwork inference: Network runs and statistical analysesThe pre-processed species abundance data with and without the GAM-removal of time-series signals were used in SCC and Glasso networks in order to compare the outputs of the SCC, GAM-SCC, Glasso, and GAM-Glasso network inference approaches (Fig. 1). Additional network iterations were also carried out using the CCLasso [45] and SPRING [40] network inference approaches (see Supplementary Information). For the SCC and Glasso network iterations, a nonparanormal transformation was applied to the species abundance datasets with and without the GAM transformation using the “huge.npn” function in the huge package in R [46]. Spearman correlation networks were then constructed by calculating the correlation between every pair of species in the mock abundance datasets. A Bonferroni-corrected p value of 0.01 was used as a cutoff to identify edges in these SCC networks. The Glasso networks were constructed by testing 30 regularization parameter values (i.e., lambdas) in each network using the “batch.pulsar” (criterion = “stars”; rep.num = 50) function in the pulsar package in R [47]. The lambda that resulted in the most stable network output was selected using the StARS method [48]. Finally, the graph that resulted from the StARS output was used to obtain a species adjacency matrix for the Glasso networks.The species-species associations predicted by the SCC, GAM-SCC, Glasso, and GAM-Glasso networks were compared to the true species-species associations and the F1 scores of the network predictions were calculated. The F1 score is a measure of classification performance (presence or absence of an edge) that accounts for uneven classes, which is essential when dealing with sparse networks. The F1 scores of the GAM-transformed networks were compared to the networks that did not undergo GAM transformation using paired Wilcoxon tests with Bonferroni correction. An adjusted p value of 0.01 was used as a cutoff to identify under what circumstances the GAM significantly improved the F1 score of a Glasso or SCC network.Network inference: Comparison of predicted network structuresAdditional networks were generated using the methods described above to compare the predicted network structures obtained from the GAM-Glasso, Glasso, GAM-SCC, and SCC approaches to the real network structures. These additional networks were constructed using smaller mock datasets to allow for better visualization of the network outputs and contained species with a gradual seasonal signal and high species-species covariance (see Supplementary Information). The average clustering coefficient and the degree distribution of these additional network outputs were calculated and used for the network structure comparisons. The average clustering coefficient of a network describes the likelihood that two species that are both associated with a third species are also associated with each other [49], and in a sense describes the “clumpiness” of a network. The network degree distributions describe the probability distribution of the number of interactions per node in a network [50]. More

  • in

    The macroparasite fauna of cichlid fish from Nicaraguan lakes, a model system for understanding host–parasite diversification and speciation

    Price, P. W. Evolutionary Biology of Parasites (Princeton University Press, 1980).
    Google Scholar 
    Lima, L. B., Bellay, S., Giacomini, H. C., Isaac, A. & Lima-Junior, D. P. Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain. Parasitology 143, 343–349 (2016).CAS 
    PubMed 

    Google Scholar 
    Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat. Commun. 3, 1–6 (2012).
    Google Scholar 
    Bashey, F. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140301 (2015).
    Google Scholar 
    Jolles, J. W., Mazué, G. P. F., Davidson, J., Behrmann-Godel, J. & Couzin, I. D. Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions. Sci. Rep. 10, 12282 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Demandt, N. et al. Parasite-infected sticklebacks increase the risk-taking behaviour of uninfected group members. Proc. R. Soc. B Biol. Sci. 285, 20180956 (2018).
    Google Scholar 
    Poulin, R. Parasite manipulation of host behavior: An update and frequently asked questions. Adv. Study Behav. 41, 151–186 (2010).
    Google Scholar 
    Terui, A., Ooue, K., Urabe, H. & Nakamura, F. Parasite infection induces size-dependent host dispersal: Consequences for parasite persistence. Proc. R. Soc. B Biol. Sci. 284, 20171491 (2017).
    Google Scholar 
    Raeymaekers, J. A. M. et al. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus. BMC Evol. Biol. 13, 41 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, B. S. et al. An exploration of the links between parasites, trophic ecology, morphology, and immunogenetics in the Lake Tanganyika cichlid radiation. Hydrobiologia 832, 215–233 (2019).PubMed 

    Google Scholar 
    Gobbin, T. P. et al. Temporally consistent species differences in parasite infection but no evidence for rapid parasite-mediated speciation in Lake Victoria cichlid fish. J. Evol. Biol. 33, 556–575 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Karvonen, A., Wagner, C. E., Selz, O. M. & Seehausen, O. Divergent parasite infections in sympatric cichlid species in Lake Victoria. J. Evol. Biol. 31, 1313–1329 (2018).PubMed 

    Google Scholar 
    Bush, S. E. et al. Host defense triggers rapid adaptive radiation in experimentally evolving parasites. Evol. Lett. 3, 120–128 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Waid, R. M., Raesly, R. L., Mckaye, K. R. & McCrary, J. Zoogeografía íctica de lagunas cratéricas de Nicaragua. Encuentro 51, 65–80 (1999).
    Google Scholar 
    Barluenga, M., Stölting, K., Salzburger, W., Muschick, M. & Meyer, A. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439, 719–723 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K., Fan, S. & Meyer, A. Crater lake colonization by neotropical cichlid fishes. Evolution 67, 281–288 (2012).PubMed 

    Google Scholar 
    Kautt, A. F. et al. Contrasting signatures of genomic divergence during sympatric speciation. Nature 588, 106–111 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K., Kautt, A. F., Harrod, C. & Meyer, A. Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biol. 8, 1–15 (2010).
    Google Scholar 
    Kautt, A. F., Machado-Schiaffino, G., Torres-Dowdall, J. & Meyer, A. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecol. Evol. 6, 5342–5357 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Barluenga, M. & Meyer, A. Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes. BMC Evol. Biol. 10, 326 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K. & Meyer, A. Color assortative mating contributes to sympatric divergence of neotropical cichlid fish. Evolution 63, 2750–2757 (2009).PubMed 

    Google Scholar 
    Kautt, A. F., Machado-Schiaffino, G. & Meyer, A. Lessons from a natural experiment: Allopatric morphological divergence and sympatric diversification in the Midas cichlid species complex are largely influenced by ecology in a deterministic way. Evol. Lett. 2, 323–340 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Kusche, H., Lehtonen, T. K. & Meyer, A. Local variation and parallel evolution: Morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philos. Trans. R. Soc. B Biol. Sci. 365, 1763–1782 (2010).
    Google Scholar 
    Elmer, K. R. et al. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5, 1–8 (2014).
    Google Scholar 
    Vanhove, M. P. M. et al. Cichlids: A host of opportunities for evolutionary parasitology. Trends Parasitol. 32, 820–832 (2016).PubMed 

    Google Scholar 
    Choudhury, A. et al. Trematode diversity in freshwater fishes of the Globe II: ‘New World’. Syst. Parasitol. 93, 271–282 (2016).PubMed 

    Google Scholar 
    Watson, D. E. Digenea of fishes from Lake Nicaragua. In Investigations of the Ichthyofauna of Nicaraguan Lakes Vol. 15 (ed. Thorson, T. B.) 251–260 (University of Nebraska Press, 1976).
    Google Scholar 
    Aguirre-Macedo, M. L. et al. Larval helminths parasitizing freshwater fishes from the Atlantic coast of Nicaragua. Comp. Parasitol. 68, 42–51 (2001).
    Google Scholar 
    Aguirre-Macedo, M. L. et al. Some adult endohelminths parasitizing freshwater fishes from the Atlantic Drainages of Nicaragua. Comp. Parasitol. 68, 190–195 (2001).
    Google Scholar 
    Mendoza-Franco, E. F., Posel, P. & Dumailo, S. Monogeneans (Dactylogyridae: Ancyrocephalinae) of freshwater fishes from the Caribbean coast of Nicaragua. Comp. Parasitol. 70, 32–41 (2003).
    Google Scholar 
    Andrade-Gómez, L., Pinacho-Pinacho, C. D. & García-Varela, M. Molecular, morphological, and ecological data of Saccocoelioides Szidat, 1954 (Digenea: Haploporidae) from Middle America supported the reallocation from Culuwiya cichlidorum to Saccocoelioides. J. Parasitol. 103, 257–267 (2017).PubMed 

    Google Scholar 
    López-Jiménez, A., Pérez-Ponce de León, G. & García-Varela, M. Molecular data reveal high diversity of Uvulifer (Trematoda: Diplostomidae) in Middle America, with the description of a new species. J. Helminthol. 92, 725–739 (2018).PubMed 

    Google Scholar 
    Vidal-Martínez, V. M., Scholz, T. & Aguirre-Macedo, M. L. Dactylogyridae of cichlid fishes from Nicaragua, Central America, with descriptions of Gussevia herotilapiae sp. n. and three new species of Sciadicleithrum (Monogenea: Ancyrocephalinae). Comp. Parasitol. 68, 76–86 (2001).
    Google Scholar 
    de Chambrier, A. & Vaucher, C. Proteocephalus gaspari n. sp. (Cestoda: Proteocephalidae), parasite de Lepisosteus tropicus (Gill.) au Lac Managua (Nicaragua). Rev. suisse Zool. 91, 229–233 (1984).
    Google Scholar 
    González-Solís, A. D. & Jiménez-García, M. I. Parasitic nematodes of freshwater fishes from two nicaraguan crater lakes. Comp. Parasitol. 73, 188–192 (2006).
    Google Scholar 
    Santacruz, A., Morales-Serna, F. N., Leal-Cardín, M., Barluenga, M. & Pérez-Ponce de León, G. Acusicola margulisae n. sp. (Copepoda: Ergasilidae) from freshwater fishes in a Nicaraguan crater lake based on morphological and molecular evidence. Syst. Parasitol. 97, 165–177 (2020).PubMed 

    Google Scholar 
    Santacruz, A., Barluenga, M. & Pérez-Ponce de León, G. Taxonomic assessment of the genus Procamallanus (Nematoda) in Middle American cichlids (Osteichthyes) with molecular data, and the description of a new species from Nicaragua and Costa Rica. Parasitol. Res. 120, 1965–1977 (2021).PubMed 

    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997).CAS 
    PubMed 

    Google Scholar 
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).PubMed 

    Google Scholar 
    Krebs, C. J. Species diversity measures. In Ecological Methodology (ed. Krebs, C. J.) (Addison-Wesley Educational Publishers, 2014).
    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
    Google Scholar 
    R Core Team. A language and environment for statistical computing. R Found. Stat. Comput. (2018). https://www.R-project.org.Wickham, H. Elegant Graphics for Data Analysis: ggplot2 (Springer, 2008).MATH 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT-package: Interpolation and extrapolation for species diversity. Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
    Google Scholar 
    Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).PubMed 

    Google Scholar 
    Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).CAS 
    PubMed 

    Google Scholar 
    Barluenga, M. & Meyer, A. The Midas cichlid species complex: Incipient sympatric speciation in Nicaraguan cichlid fishes? Mol. Ecol. 13, 2061–2076 (2004).CAS 
    PubMed 

    Google Scholar 
    Elmer, K. R. & Meyer, A. Adaptation in the age of ecological genomics: Insights from parallelism and convergence. Trends Ecol. Evol. 26, 298–306 (2011).PubMed 

    Google Scholar 
    Pérez-Ponce de León, G. & Choudhury, A. Biogeography of helminth parasites of freshwater fishes in Mexico: The search for patterns and processes. J. Biogeogr. 32, 645–659 (2005).
    Google Scholar 
    Blais, J. et al. MHC adaptive divergence between closely related and sympatric African cichlids. PLoS ONE 2, e734 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pariselle, A. et al. The monogenean parasite fauna of cichlids: A potential tool for host biogeography. Int. J. Evol. Biol. 2011, 1–15 (2011).
    Google Scholar 
    Aguilar-Aguilar, R., Salgado-Maldonado, G., Contreras-Medina, R. & Martínez-Aquino, A. Richness and endemism of helminth parasites of freshwater fishes in Mexico. Biol. J. Linn. Soc. 94, 435–444 (2008).
    Google Scholar 
    Dogiel, V. A. Ecology of parasites of freshwater fish. In Parasitology of Fishes (eds Dogiel, V. A. et al.) 1–47 (Edinburgh Oliver & Boyd, 1961).
    Google Scholar 
    Poulin, R. & Valtonen, E. T. The predictability of helminth community structure in space: A comparison of fish populations from adjacent lakes. Int. J. Parasitol. 32, 1235–1243 (2002).PubMed 

    Google Scholar 
    Razo-Mendivil, U., Rosas-Valdez, R. & Pérez-Ponce de León, G. A new Cryptogonimid (Digenea) from the mayan cichlid, Cichlasoma urophthalmus (Osteichthyes: Cichlidae), in several localities of the Yucatán Peninsula, Mexico. J. Parasitol. 94, 1371–1378 (2009).
    Google Scholar 
    Mendoza-Franco, E. F. et al. Occurrence of Sciadicleithrum mexicanum Kritsky, Vidal-Martinez et Rodríguez-Canul, 1994 (Monogenea: Dactylogyridae) in the Cichlid Cichlasoma urophthalmus from a flooded quarry in Yucatan, Mexico. Mem. Inst. Oswaldo Cruz 90, 319–324 (1995).
    Google Scholar 
    Blasco-Costa, I. & Poulin, R. Host traits explain the genetic structure of parasites: A meta-analysis. Parasitology 140, 1316–1322 (2013).PubMed 

    Google Scholar 
    Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Salgado-Maldonado, G. et al. Helminth parasites of freshwater fishes of the Balsas River drainage basin of southwestern Mexico. Comp. Parasitol. 68, 196–203 (2001).
    Google Scholar 
    McCrary, J. K., Murphy, B. R., Stauffer, J. R. & Hendrix, S. S. Tilapia (Teleostei: Cichlidae) status in Nicaraguan natural waters. Environ. Biol. Fishes 78, 107–114 (2007).
    Google Scholar 
    García-Vásquez, A., Pinacho-Pinacho, C. D., Guzmán-Valdivieso, I., Calixto-Rojas, M. & Rubio-Godoy, M. Morpho-molecular characterization of Gyrodactylus parasites of farmed tilapia and their spillover to native fishes in Mexico. Sci. Rep. 11, 1–17 (2021).
    Google Scholar 
    Paredes-Trujillo, A., Velázquez-Abunader, I., Torres-Irineo, E., Romero, D. & Vidal-Martínez, V. M. Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (L.) (Perciformes: Cichlidae) in Yucatán, México. Parasit. Vectors 9, 66 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, S. et al. Monogenean fauna of alien tilapias (Cichlidae) in south China. Parasite 26, 4 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Outa, J. O., Dos Santos, Q. M., Avenant-Oldewage, A. & Jirsa, F. Parasite diversity of introduced fish Lates niloticus, Oreochromis niloticus and endemic Haplochromis spp. of Lake Victoria. Kenya. Parasitol. Res. 120, 1583 (2021).PubMed 

    Google Scholar 
    Smit, N. J., Malherbe, W. & Hadfield, K. A. Alien freshwater fish parasites from South Africa: Diversity, distribution, status and the way forward. Int. J. Parasitol. Parasites Wildl. 6, 386–401 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Ponce de León, G., Lagunas-Calvo, O., García-Prieto, L., Briosio-Aguilar, R. & Aguilar-Aguilar, R. Update on the distribution of the co-invasive Schyzocotyle acheilognathi (= Bothriocephalus acheilognathi), the Asian fish tapeworm, in freshwater fishes of Mexico. J. Helminthol. 92, 279–290 (2018).PubMed 

    Google Scholar 
    Scholz, T., Šimková, A., Razanabolana, J. R. & Kuchta, R. The first record of the invasive Asian fish tapeworm (Schyzocotyle acheilognathi) from an endemic cichlid fish in Madagascar. Helminthol. 55, 84–87 (2018).CAS 

    Google Scholar 
    Acosta, A., Carvalho, E. & da Silva, R. First record of Lernaea cyprinacea (copepoda) in a native fish species from a Brazilian river. Neotrop. Helminthol. 7, 7–12 (2013).
    Google Scholar 
    Choudhury, A. et al. The invasive asian fish tapeworm, Bothriocephalus acheilognathi Yamaguti, 1934, in the chagres river/panama canal drainage, Panama. BioInvas. Rec. 2, 99–104 (2013).
    Google Scholar 
    Schatz, H. & Behan-Pelletier, V. Global diversity of oribatids (Oribatida: Acari: Arachnida). Hydrobiologia 595, 323–328 (2008).
    Google Scholar 
    Choudhury, A., Hoffnagle, T. L. & Cole, R. A. Parasites of native and nonnative fishes of the Little Colorado River, Grand Canyon, Arizona. J. Parasitol. 90, 1042–1053 (2004).PubMed 

    Google Scholar 
    Vanhove, M. P. M. Part 6: Evolutionary parasitology of African freshwater fishes—And its implications for the sustainable management of aquatic resources. In A Guide to the Parasites of African Freshwater Fishes (eds Scholz, T. et al.) 403–412 (Royal Belgian Institute of Natural Sciences, 2018).
    Google Scholar 
    Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach. Int. J. Parasitol. Parasites Wildl. 3, 220–226 (2014).PubMed 

    Google Scholar 
    Baldwin, R. E., Banks, M. A. & Jacobson, K. C. Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax). Rev. Fish Biol. Fish. 22, 137–156 (2011).
    Google Scholar 
    Criscione, C. D. & Blouin, M. S. Parasite phylogeographical congruence with salmon host evolutionarily significant units: Implications for salmon conservation. Mol. Ecol. 16, 993–1005 (2007).CAS 
    PubMed 

    Google Scholar 
    Vanhove, M. P. M. et al. Hidden biodiversity in an ancient lake: Phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci. Rep. 5, 1–15 (2015).
    Google Scholar 
    Matschiner, M., Böhne, A., Ronco, F. & Salzburger, W. The genomic timeline of cichlid fish diversification across continents. Nat. Commun. 11, 1–8 (2020).
    Google Scholar 
    Choudhury, A., García-Varela, M. & Pérez-Ponce de León, G. Parasites of freshwater fishes and the Great American biotic interchange: A bridge too far? J. Helminthol. 91, 174–196 (2017).CAS 
    PubMed 

    Google Scholar 
    Mendoza-Franco, E. F. & Vidal-Martínez, V. M. Phylogeny of species of Sciadicleithrum (Monogenoidea: Ancyrocephalinae), and their historical biogeography in the Neotropics. J. Parasitol. 91, 253–259 (2005).PubMed 

    Google Scholar 
    de Chambrier, A., Pinacho-Pinacho, C. D., Hernández-Orts, J. S. & Scholz, T. T. A new genus and two new species of proteocephalidean tapeworms (Cestoda) from cichlid fish (Perciformes: Cichlidae) in the neotropics. J. Parasitol. 103, 83–94 (2017).PubMed 

    Google Scholar 
    Mendoza-Palmero, C. A., Blasco-Costa, I., Hernández-Mena, D. & Pérez-Ponce de León, G. Parasciadicleithrum octofasciatum n. gen., n. sp. (Monogenoidea: Dactylogyridae), parasite of Rocio octofasciata (Regan) (Cichlidae: Perciformes) from Mexico characterised by morphological and molecular evidence. Parasitol. Int. 66, 152–162 (2017).PubMed 

    Google Scholar 
    Pinacho-Pinacho, C. D., Hernández-Orts, J. S., Sereno-Uribe, A. L., Pérez-Ponce de León, G. & García-Varela, M. Mayarhynchus karlae n. g., n. sp. (Acanthocephala: Neoechinorhynchidae), a parasite of cichlids (Perciformes: Cichlidae) in southeastern Mexico, with comments on the paraphyly of Neoechynorhynchus Stiles & Hassall, 1905. Syst. Parasitol. 94, 351–365 (2017).PubMed 

    Google Scholar 
    Razo-Mendivil, U., Vázquez-Domínguez, E., Rosas-Valdez, R., Pérez-Ponce de León, G. & Nadler, S. A. Phylogenetic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of Middle-American cichlids. Int. J. Parasitol. 40, 471–486 (2010).CAS 
    PubMed 

    Google Scholar 
    Razo-Mendivil, U., Rosas-Valdez, R., Rubio-Godoy, M. & Pérez-Ponce de León, G. The use of mitochondrial and nuclear sequences in prospecting for cryptic species in Tabascotrema verai (Digenea: Cryptogonimidae), a parasite of Petenia splendida (Cichlidae) in Middle America. Parasitol. Int. 64, 173–181 (2015).CAS 
    PubMed 

    Google Scholar 
    Pinacho-Pinacho, C. D., García-Varela, M., Sereno-Uribe, A. L. & Pérez-Ponce de León, G. A hyper-diverse genus of acanthocephalans revealed by tree-based and non-tree-based species delimitation methods: Ten cryptic species of Neoechinorhynchus in Middle American freshwater fishes. Mol. Phylogenet. Evol. 127, 30–45 (2018).PubMed 

    Google Scholar 
    Martínez-Aquino, A. et al. Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences. J. Parasitol. 95, 1040–1047 (2009).PubMed 

    Google Scholar  More

  • in

    The accumulation of microplastic pollution in a commercially important fishing ground

    PlasticsEurope. Plastics – the Facts 2019, Avenue E. van Nieuwenhuyse 4/3, 1160 Brussels. Belgium: PlasticsEurope. https://www.plasticseurope.org/de/resources/publications/4312-plastics-facts-2020 (2020).Mattsson, K., Jocic, S., Doverbratt, I. & Hansson, L. A. In Nanoplastics in the Aquatic Environment: Microplastic Contamination in Aquatic Environments (ed. Zheng, E. Y.) 379–399 (Elsevier, 2018).Chapter 

    Google Scholar 
    Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947. https://doi.org/10.1038/srep14947 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waller, C. L. et al. Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total. Environ. 598, 220–227. https://doi.org/10.1016/j.scitotenv.2017.03.283 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, R. C. et al. Lost at sea: where is all the plastic?. Sci. 304, 838–838 (2004).CAS 
    Article 

    Google Scholar 
    Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kroon, F. J., Motti, C. E., Jensen, L. H. & Berry, K. L. Classification of marine microdebris: A review and case study on fish from the Great Barrier Reef, Australia. Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-34590-6 (2018).CAS 
    Article 

    Google Scholar 
    Cunningham, E. M. & Sigwart, J. D. Environmentally accurate microplastic levels and their absence from exposure studies. Integr. Comp. Biol. 59, 1485–1496. https://doi.org/10.1093/icb/icz068 (2019).Article 
    PubMed 

    Google Scholar 
    Welden, N. A. & Cowie, P. R. Long-term microplastic retention causes reduced body condition in the langoustine Nephrops norvegicus. Environ. Pollut. 218, 895–900. https://doi.org/10.1016/j.envpol.2016.08.020 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Green, D. S., Colgan, T. J., Thompson, R. C. & Carolan, J. C. Exposure to microplastics reduces attachment strength and alters the haemolymph proteome of blue mussels (Mytilus edulis). Environ. Pollut. 246, 423–434. https://doi.org/10.1016/j.envpol.2018.12.017 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schéré, C. M., Dawson, T. P. & Schreckenberg, K. Multiple conservation designations: what impact on the effectiveness of marine protected areas in the Irish Sea?. Int. J. Sustain. Dev. 27, 596–610. https://doi.org/10.1080/13504509.2019.1706058 (2020).Article 

    Google Scholar 
    Ungfors, A. et al. Nephrops fisheries in European waters. In Advances in Marine Biology 247–314 (Academic Press, 2013).
    Google Scholar 
    ICES. Celtic Seas Ecosystem—Fisheries Overview. In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, Section 7.2. 40 pp https://doi.org/10.17895/ices.advice.5708. (2019).Becker, C., Dick, J. T., Cunningham, E. M., Schmitt, C. & Sigwart, J. D. The crustacean cuticle does not record chronological age: New evidence from the gastric mill ossicles. Arthropod. Struct. Dev. 47, 498–512. https://doi.org/10.1016/j.asd.2018.07.002 (2018).Article 
    PubMed 

    Google Scholar 
    Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317. https://doi.org/10.1098/rsos.140317 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yin, J., Li, J. Y., Craig, N. J. & Su, L. Microplastic pollution in wild populations of decapod crustaceans: A review. Chemosphere https://doi.org/10.1016/j.chemosphere.2021.132985 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cau, A. et al. Benthic crustacean digestion can modulate the environmental fate of microplastics in the deep sea. Environ. Sci. Technol. 54, 4886–4892. https://doi.org/10.1021/acs.est.9b07705 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hara, J., Frias, J. & Nash, R. Quantification of microplastic ingestion by the decapod crustacean Nephrops norvegicus from Irish waters. Mar. Pollut. Bull. 152, 110905. https://doi.org/10.1016/j.marpolbul.2020.110905 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hill, A. E., Durazo, R. & Smeed, D. A. Observations of a cyclonic gyre in the western Irish Sea. Cont. Shelf Res. 14, 479–490. https://doi.org/10.1016/0278-4343(94)90099-X (1994).ADS 
    Article 

    Google Scholar 
    Horsburgh, K. J. & Hill, A. E. A three-dimensional model of density-driven circulation in the Irish Sea. J. Phys. Oceanogr. 33, 343–365. https://doi.org/10.1175/1520-0485(2003)033%3c0343:ATDMOD%3e2.0.CO;2 (2003).ADS 
    Article 

    Google Scholar 
    Hill, A.E., Brown, J., & Fernand, L. The western Irish Sea gyre: a retention system for Norway lobster (Nephrops norvegicus)? Oceanol. Acta. 19, 357–368. (1996). https://archimer.ifremer.fr/doc/00094/20493/Lebreton, L. et al. Evidence that the great pacific garbage patch is rapidly accumulating plastic. Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-22939-w (2018).CAS 
    Article 

    Google Scholar 
    Charlesworth, M., Mitchell, S. H. & Oliver, W. T. Metals in surficial sediments of the north-west Irish Sea. Bull. Environ. Contam. Toxicol. 62, 40–47. https://doi.org/10.1007/s001289900839 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Charlesworth, M. E., Service, M. & Gibson, C. E. The distribution and transport of Sellafield derived 137Cs and 241Am to western Irish Sea sediments. Sci. Total. Environ. 354, 83–92. https://doi.org/10.1016/j.scitotenv.2004.12.062 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Global Monitoring and Forecasting Center. Atlantic-European North West Shelf – Ocean Physics Analysis and Forecast, E.U Copernicus Marine Service Information . Available at: https://resources.marine.copernicus.eu/product-detail/NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013/INFORMATION (Accessed: 8th December 2021).Cunningham, E. M. et al. High abundances of microplastic pollution in deep-sea sediments: Evidence from antarctica and the Southern Ocean. Environ. Sci. Technol. 54, 13661–13671. https://doi.org/10.1021/acs.est.0c03441 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, S. et al. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total. Environ. 616, 1056–1065. https://doi.org/10.1016/j.scitotenv.2017.10.213 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Martin, J., Lusher, A., Thompson, R. C. & Morley, A. The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish continental shelf. Sci. Rep. 7, 10772. https://doi.org/10.1038/s41598-017-11079-2 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    Nor, N. H. M. & Obbard, J. P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bullet. 79, 278–283. https://doi.org/10.1016/j.marpolbul.2013.11.025 (2014).CAS 
    Article 

    Google Scholar 
    Lacerda, A. L. D. F. et al. Plastics in sea surface waters around the Antarctic Peninsula. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-40311-4 (2019).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Tata, T., Belabed, B. E., Bououdina, M. & Bellucci, S. Occurrence and characterization of surface sediment microplastics and litter from North African coasts of Mediterranean Sea: Preliminary research and first evidence. Sci. Total. Environ. 713, 136664. https://doi.org/10.1016/j.scitotenv.2020.136664 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lorenz, C. et al. Spatial distribution of microplastics in sediments and surface waters of the southern North Sea. Environ. Pollut. 252, 1719–1729 (2019).CAS 
    Article 

    Google Scholar 
    Chouchene, K. et al. Microplastics on Barra beach sediments in Aveiro, Portgal. Mar. Pollut. Bull. 167, 112264. https://doi.org/10.1016/j.marpolbul.2021.112264 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kane, I. A. et al. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 368, 1140–1145. https://doi.org/10.1126/science.aba5899 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gaylarde, C. C., Neto, J. A. B. & da Fonseca, E. M. Paint fragments as polluting microplastics: A brief review. Mar. Pollut. Bull. 162, 111847. https://doi.org/10.1016/j.marpolbul.2020.111847 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sait, S. T. L. et al. Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content. Environ. Pollut. 268, 115745. https://doi.org/10.1016/j.envpol.2020.115745 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen, Q. et al. Bioassay guided analysis coupled with non-target chemical screening in polyethylene plastic shopping bag fragments after exposure to simulated gastric juice of Fish. J. Hazard. Mater. 401, 123421. https://doi.org/10.1016/j.jhazmat.2020.123421 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, X. et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water. Res. 188, 116456. https://doi.org/10.1016/j.watres.2020.116456 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zabaniotou, A. & Kassidi, E. Life cycle assessment applied to egg packaging made from polystyrene and recycled paper. J. Clean. Prod. 11, 549–559. https://doi.org/10.1016/S0959-6526(02)00076-8 (2003).Article 

    Google Scholar 
    Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 34351. https://doi.org/10.1038/srep34351 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biamis, C., O’Driscoll, K. & Hardiman, G. Microplastic toxicity: A review of the role of marine sentinel species in assessing the environmental and public health impacts. CSCEE. https://doi.org/10.1016/j.cscee.2020.100073 (2020).Article 

    Google Scholar 
    Bakir, A., Rowland, S. J. & Thompson, R. C. Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar. Coast. 140, 14–21. https://doi.org/10.1016/j.ecss.2014.01.004 (2014).CAS 
    Article 

    Google Scholar 
    Nelson, A. M. & Long, T. E. A perspective on emerging polymer technologies for bisphenol-A replacement. Polym. Int. 61, 1485–1491. https://doi.org/10.1002/pi.4323 (2012).CAS 
    Article 

    Google Scholar 
    Le Bihanic, F. et al. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar. Pollut. Bull. 154, 111059. https://doi.org/10.1016/j.marpolbul.2020.111059 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Murray, F. & Cowie, P. R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 62, 1207–1217. https://doi.org/10.1016/j.marpolbul.2011.03.032 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cobb, J. S. & Phillips, B. F. (eds) The Biology and Management of Lobsters, Physiology and Behaviour 2–61 (Academic Press Inc., 1980).
    Google Scholar 
    Quintana, M. M., Motova, A., Wilkie, O., Patience, N. Seafish: Economics of the UK fishing fleet 2020. Seafish Report No. SR758. Edinburgh, UK. https://www.seafish.org/document/?id=d9e7982d-e374-4de7-85a4-ca80c35f5666 (2021). More

  • in

    Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80- ). 359, 80–83 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: Insights and impacts. Coral Reefs 38, 539–545 (2019).ADS 

    Google Scholar 
    Glynn. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).ADS 

    Google Scholar 
    Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138 (1997).
    Google Scholar 
    Maynard, J. A. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Chang. 5, 688–694 (2015).ADS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl. Acad. Sci. U. S. A. 105, 17442–17446 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, H. et al. Positive and negative responses of coral calcification to elevated pCO2: Case studies of two coral species and the implications of their responses. Mar. Ecol. Prog. Ser. 502, 145–156 (2014).ADS 
    CAS 

    Google Scholar 
    Hoadley, K. D. et al. Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host + symbiont response. Sci. Rep. 5, 1–15 (2015).
    Google Scholar 
    Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One. 8, e75049 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, (eds. Pörtner, H.-O. et al.) 1–36 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2019).Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions. Coral Reefs 35, 729–738 (2016).ADS 

    Google Scholar 
    Dove, S. G., Brown, K. T., Van Den Heuvel, A., Chai, A. & Hoegh-Guldberg, O. Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Commun. Earth Environ. 1, 1–9 (2020).
    Google Scholar 
    Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. O. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Bio. Ecol. 479, 60–68 (2016).
    Google Scholar 
    Amid, C. et al. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam. Environ. Sci. Pollut. Res. 25, 13360–13372 (2018).CAS 

    Google Scholar 
    Anthony, K. R. N., Connolly, S. R. & Willis, B. L. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).ADS 

    Google Scholar 
    Edmunds, P. J. & Davies, P. S. An energy budget for Porites porites (Scleractinia). Mar. Biol. 92, 339–347 (1986).
    Google Scholar 
    Stimson, J. S. Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull. Mar. Sci. 41, 889–904 (1987).ADS 

    Google Scholar 
    Harland, A. D., Navarro, J. C., Spencer Davies, P. & Fixter, L. M. Lipids of some Caribbean and Red Sea corals: Total lipid, wax esters, triglycerides and fatty acids. Mar. Biol. 117, 113–117 (1993).CAS 

    Google Scholar 
    Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the northern gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 1–12 (2017).
    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).ADS 

    Google Scholar 
    Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. Funct. Ecol. 23, 539–550 (2009).
    Google Scholar 
    Baumann, J. H., Grottoli, A. G., Hughes, A. D. & Matsui, Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J. Exp. Mar. Bio. Ecol. 461, 469–478 (2014).CAS 

    Google Scholar 
    Hughes, A. D. & Grottoli, A. G. Heterotrophic compensation: A possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?. PLoS ONE 8, 1–10 (2013).
    Google Scholar 
    Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).ADS 
    PubMed 

    Google Scholar 
    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Levas, S. J. et al. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?. Coral Reefs 35, 495–506 (2016).ADS 

    Google Scholar 
    Jury, C. P., Delano, M. N. & Toonen, R. J. High heritability of coral calcification rates and evolutionary potential under ocean acidification. Sci. Rep. 9, 1–13 (2019).
    Google Scholar 
    Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. R. Soc. B Biol. Sci. 286, 20190614 (2019).
    Google Scholar 
    Concepcion, G. T., Polato, N. R., Baums, I. B. & Toonen, R. J. Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata and Porites lobata. Conserv. Genet. Resour. 2, 11–15 (2010).

    Google Scholar 
    Gorospe, K. D. & Karl, S. A. Genetic relatedness does not retain spatial pattern across multiple spatial scales: Dispersal and colonization in the coral, Pocillopora damicornis. Mol. Ecol. 22, 3721–3736 (2013).PubMed 

    Google Scholar 
    Wall, C. B., Ritson-Williams, R., Popp, B. N. & Gates, R. D. Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnol. Oceanogr. 64, 2011–2028 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahr, K. D., Tran, T., Jury, C. P. & Toonen, R. J. Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. PLoS ONE 15, 1–13 (2020).
    Google Scholar 
    Rogelj, J. et al. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: A review of methods. Coral Reefs 39, 885–902 (2020).
    Google Scholar 
    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grottoli, A. G. Variability of stable isotopes and maximum linear extension in reef-coral skeletons at Kaneohe Bay, Hawaii. Mar. Biol. 135, 437–449 (1999).
    Google Scholar 
    McLachlan, R. H., Dobson, K. L., Grottoli, A. G. Quantification of Total Biomass in Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdyai7se.McLachlan, R. H., Muñoz-Garcia, A., Grottoli, A. G. Extraction of Total Soluble Lipid from Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bc4qiyvw.McLachlan, R. H., Price, J. T., Dobson, K. L., Weisleder, N. & Grottoli, A. G. Microplate Assay for Quantification of Soluble Protein in Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdc8i2zw.McLachlan, R. H., Juracka, C. & Grottoli, A. G. Symbiodiniaceae Enumeration in Ground Coral Samples Using Countess™ II FL Automated Cell Counter. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdc5i2y6.McLachlan, R. H. & Grottoli, A. G. Geometric Method for Estimating Coral Surface Area Using Image Analysis. Protocols.io https://doi.org/10.17504/protocols.io.bdyai7se(2021).Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).ADS 
    CAS 

    Google Scholar 
    Levas, S. J. et al. Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Mar. Ecol. Prog. Ser. 519, 153–164 (2015).ADS 
    CAS 

    Google Scholar 
    Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woodley, C. M., Burnett, A. & Downs, C. A. Epidemiological Assessment of Reproductive Condition of ESA Priority Coral (2013).Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139 (2014).ADS 
    PubMed 

    Google Scholar 
    Rodrigues, L. J., Grottoli, A. G. & Lesser, M. P. Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii. J. Exp. Biol. 211, 2502–2509 (2008).PubMed 

    Google Scholar 
    Rowan, H. et al. Environmental gradients drive physiological variation in Hawaiian corals. Coral Reefs 40(5), 1505–1523. https://doi.org/10.1007/s00338-021-02140-8 (2021).Article 

    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed 

    Google Scholar 
    J. T. Price, thesis, The Ohio State University (2020). More

  • in

    Forest soil biotic communities show few responses to wood ash applications at multiple sites across Canada

    Hannam, K. D. et al. Wood ash as a soil amendment in Canadian forests: what are the barriers to utilization?. Can. J. For. Res. 48, 442–450 (2018).
    Google Scholar 
    Hope, E. S., McKenney, D. W., Allen, D. J. & Pedlar, J. H. A cost analysis of bioenergy-generated ash disposal options in Canada. Can. J. For. Res. https://doi.org/10.1139/cjfr-2016-0524 (2017).Article 

    Google Scholar 
    Bowd, E. J., Banks, S. C., Strong, C. L. & Lindenmayer, D. B. Long-term impacts of wildfire and logging on forest soils. Nat. Geosci. 12, 113–118 (2019).ADS 
    CAS 

    Google Scholar 
    Adotey, N., Harrell, D. L. & Weatherford, W. P. Characterization and liming effect of wood Ash generated from a biomass-fueled commercial power plant. Commun. Soil Sci. Plan. 49, 38–49 (2018).CAS 

    Google Scholar 
    Royer-Tardif, S., Whalen, J. & Rivest, D. Can alkaline residuals from the pulp and paper industry neutralize acidity in forest soils without increasing greenhouse gas emissions?. Sci. Total Environ. 663, 537–547 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Reid, C. & Watmough, S. A. Evaluating the effects of liming and wood-ash treatment on forest ecosystems through systematic meta-analysis. Can. J. For. Res. 44, 867–885 (2014).CAS 

    Google Scholar 
    López, R., Díaz, M. J. & González-Pérez, J. A. Extra CO2 sequestration following reutilization of biomass ash. Sci. Total Environ. 625, 1013–1020 (2018).ADS 
    PubMed 

    Google Scholar 
    Emilson, C. E. et al. Short-term growth response of jack pine and spruce spp. to wood ash amendment across Canada. GCB Bioenergy 12, 158–167 (2020).
    Google Scholar 
    Azan, S. S. E. et al. Could a residential wood ash recycling programme be part of the solution to calcium decline in lakes and forests in Muskoka (Ontario, Canada)?. FACETS 4, 69–90 (2019).
    Google Scholar 
    Gorgolewski, A. et al. Responses of eastern red-backed salamander (Plethodon cinereus) abundance 1 year after application of wood ash in a northern hardwood forest. Can. J. For. Res. 46, 402–409 (2016).
    Google Scholar 
    McTavish, M. J., Gorgolewski, A., Murphy, S. D. & Basiliko, N. Field and laboratory responses of earthworms to use of wood ash as a forest soil amendment. For. Ecol. Manag. 474, 118376 (2020).
    Google Scholar 
    Mortensen, L. H., Rønn, R. & Vestergård, M. Bioaccumulation of cadmium in soil organisms: with focus on wood ash application. Ecotox. Environ. Safe. 156, 452–462 (2018).CAS 

    Google Scholar 
    Bélanger, N., Palma Ponce, G. & Brais, S. Contrasted growth response of hybrid larch (Larix × marschlinsii), jack pine (Pinus banksiana) and white spruce (Picea glauca) to wood ash application in northwestern Quebec, Canada. iForest. 14, 155 (2021).
    Google Scholar 
    Santás-Miguel, V. et al. Use of biomass ash to reduce toxicity affecting soil bacterial community growth due to tetracycline antibiotics. J. Environ. Manage. 269, 110838 (2020).PubMed 

    Google Scholar 
    Fritze, H. et al. A microcosmos study on the effects of cd-containing wood ash on the coniferous humus fungal community and the cd bioavailability. J Soils Sediments 1, 146–150 (2001).CAS 

    Google Scholar 
    Coleman, D., Callaham, Jr., M. A. & Crossley, Jr., D. A. Fundamentals of Soil Ecology. (Elsevier, 2018). https://doi.org/10.1016/C2015-0-04083-7.Smenderovac, E. E. et al. Does intensified boreal forest harvesting impact soil microbial community structure and function?. Can. J. For. Res. 47, 916–925 (2017).CAS 

    Google Scholar 
    Joseph, R. et al. Limited effect of wood ash application on soil quality as indicated by a multisite assessment of soil organic matter attributes. GCB Bioenergy. 00, 1–22. https://doi.org/10.1111/gcbb.12928 (2022).CAS 
    Article 

    Google Scholar 
    Noyce, G. L. et al. Soil microbial responses to wood ash addition and forest fire in managed Ontario forests. Appl. Soil Ecol. 107, 368–380 (2016).
    Google Scholar 
    Liiri, M., Ilmarinen, K. & Setälä, H. Variable impacts of enchytraeid worms and ectomycorrhizal fungi on plant growth in raw humus soil treated with wood ash. Appl. Soil Ecol. 35, 174–183 (2007).
    Google Scholar 
    Brais, S., Bélanger, N. & Guillemette, T. Wood ash and N fertilization in the Canadian boreal forest: Soil properties and response of jack pine and black spruce. For. Ecol. Manag. 348, 1–14 (2015).
    Google Scholar 
    Gömöryová, E., Pichler, V., Tóthová, S. & Gömöry, D. Changes of chemical and biological properties of distinct forest floor layers after wood ash application in a Norway spruce stand. Forests 7, 108 (2016).
    Google Scholar 
    Hannam, K., Great Lakes Forestry Centre, Canada, Ressources naturelles Canada & Canadian Forest Service. Regulations and guidelines for the use of wood ash as a soil amendment in Canadian forests. (2016).Hannam, K. D. et al. AshNet: Facilitating the use of wood ash as a forest soil amendment in Canada. Forest. Chron. 93, 17–20 (2017).
    Google Scholar 
    Klavina, D. et al. The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash. Mycorrhiza 26, 153–160 (2016).PubMed 

    Google Scholar 
    Bang-Andreasen, T. et al. Wood ash induced pH changes strongly affect soil bacterial numbers and community composition. Front. Microbiol. 8, 1400 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vestergård, M. et al. The relative importance of the bacterial pathway and soil inorganic nitrogen increase across an extreme wood-ash application gradient. GCB Bioenergy 10, 320–334 (2018).
    Google Scholar 
    Ekenler, M. & Tabatabai, M. A. β-glucosaminidase activity as an index of nitrogen mineralization in soils. Commun. Soil Sci. Plan. 35, 1081–1094 (2004).CAS 

    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci Rep 7, 1337 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vestergaard, G., Schulz, S., Schöler, A. & Schloter, M. Making big data smart—how to use metagenomics to understand soil quality. Biol. Fertil. Soils 53, 479–484 (2017).
    Google Scholar 
    Emilson, C. et al. Synthesis of current AshNet study designs and methods with recommendations towards a standardized protocol. Information Report GLC-X-22. (2018).Baldwin, K. et al. Vegetation zones of Canada: A biogeoclimatic perspective – Open Government Portal. (2019).Findlay, S. CHAPTER 11: Dissolved organic matter. In: Methods in Stream Ecology (Second Edition) (eds. Hauer, F. R. & Lamberti, G. A.) 239–248 (Academic Press, 2007). https://doi.org/10.1016/B978-012332908-0.50013-9.Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).CAS 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. METAWORKS: A flexible, scalable bioinformatic pipeline for multi-marker biodiversity assessments. bioRxiv 2020.07.14.202960 (2020) https://doi.org/10.1101/2020.07.14.202960.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep-UK 8, 4226 (2018).ADS 

    Google Scholar 
    Kõljalg, U., Abarenkov, K., Nilsson, R. H., Larsson, K. & Taylor, A. F. S. The UNITE Database for molecular identification and for communicating fungal species (2019). https://doi.org/10.3897/BISS.3.37402.Porter, T. M. UNITE ITS Classifier. (2020). https://github.com/terrimporter/UNITE_ITSClassifierLouca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).ADS 
    CAS 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Google Scholar 
    Hedde, M. et al. BETSI, a complete framework for studying soil invertebrate functional traits. (2012). https://doi.org/10.13140/2.1.1286.6888.McKenney, D. W. et al. Customized spatial climate models for North America. Bull. Am. Meteor. Soc. 92, 1611–1622 (2011).ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLOS ONE 8, 15 (2013).
    Google Scholar 
    Wickham, H. et al. Welcome to the {tidyverse}. J. Open Source Softw. 4, 1686 (2019).ADS 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community ecology package. https://CRAN.R-project.org/package=vegan (2020).Domes, K. A. et al. Short-term changes in spruce foliar nutrients and soil properties in response to wood ash application in the sub-boreal climate zone of British Columbia. Can. J. Soil. Sci. 98, 246–263 (2018).CAS 

    Google Scholar 
    Pugliese, S. et al. Wood ash as a forest soil amendment: The role of boiler and soil type on soil property response. Can. J. Soil. Sci. 94, 621–634 (2014).CAS 

    Google Scholar 
    Bang-Andreasen, T. et al. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol. Ecol. 96, fiaa016 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Haimi, J., Fritze, H. & Moilanen, P. Responses of soil decomposer animals to wood-ash fertilisation and burning in a coniferous forest stand. For. Ecol. Manag. 129, 53–61 (2000).
    Google Scholar 
    Aronsson, K. A. & Ekelund, N. G. A. Biological effects of wood ash application to forest and aquatic ecosystems. J. Environ. Qual. 33, 1595–1605 (2004).CAS 
    PubMed 

    Google Scholar 
    Omil, B., Piñeiro, V. & Merino, A. Trace elements in soils and plants in temperate forest plantations subjected to single and multiple applications of mixed wood ash. Sci. Total Environ. 381, 157–168 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, A. F. S. & Finlay, R. D. Effects of liming and ash application on below ground ectomycorrhizal community structure in two Norway spruce forests. WAFO 3, 63–76 (2003).CAS 

    Google Scholar 
    Wallander, H., Fossum, A., Rosengren, U. & Jones, H. Ectomycorrhizal fungal biomass in roots and uptake of P from apatite by Pinus sylvestris seedlings growing in forest soil with and without wood ash amendment. Mycorrhiza 15, 143–148 (2005).PubMed 

    Google Scholar 
    Kjøller, R., Cruz-Paredes, C. & Clemmensen, K. E. Ectomycorrhizal fungal responses to forest liming and wood ash addition: Review and meta-analysis. In Soil Biological Communities and Ecosystem Resilience (eds Lukac, M. et al.) 223–252 (Springer International Publishing, Berlin, 2017).
    Google Scholar 
    Peltoniemi, K., Pyrhönen, M., Laiho, R., Moilanen, M. & Fritze, H. Microbial communities after wood ash fertilization in a boreal drained peatland forest. Eur. J. Soil Biol. 76, 95–102 (2016).CAS 

    Google Scholar 
    Boisvert-Marsh, L., Great Lakes Forestry Centre, Canada & Resources naturelles Canada. The Island Lake biomass harvest experiment: early results. (2016).Couch, R. L., Luckai, N., Morris, D. & Diochon, A. Short-term effects of wood ash application on soil properties, growth, and foliar nutrition of Picea mariana and Picea glauca seedlings in a plantation trial. Can. J. Soil. Sci. 101, 203–215 (2021).CAS 

    Google Scholar 
    Perkiömäki, J. & Fritze, H. Cadmium in upland forests after vitality fertilization with wood ash—a summary of soil microbiological studies into the potential risk of cadmium release. Biol Fertil Soils 41, 75–84 (2005).
    Google Scholar 
    Paredes, C. et al. Bacteria respond stronger than fungi across a steep wood ash-driven pH gradient. Front. For. Glob. Change 4, 781884 (2021).
    Google Scholar 
    Kļaviņa, D. et al. Fungal communities in roots of scots pine and Norway spruce saplings grown for 10 years on peat soils fertilized with wood ash. Balt. For. 22, 10 (2016).
    Google Scholar 
    Hansen, M., Bang-Andreasen, T., Sørensen, H. & Ingerslev, M. Micro vertical changes in soil pH and base cations over time after application of wood ash on forest soil. For. Ecol. Manag. 406, 274–280 (2017).
    Google Scholar 
    Fu, X. et al. Understory vegetation leads to changes in soil acidity and in microbial communities 27years after reforestation. Sci. Total Environ. 502, 280–286 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pitman, R. M. Wood ash use in forestry – a review of the environmental impacts. Forestry 79, 563–588 (2006).
    Google Scholar 
    Cruz-Paredes, C., Tájmel, D. & Rousk, J. Can moisture affect temperature dependences of microbial growth and respiration?. Soil Biol. Biochem. 156, 108223 (2021).CAS 

    Google Scholar  More

  • in

    Effect of nest composition, experience and nest quality on nest-building behaviour in the Bonelli’s Eagle

    Collias, N.E. & Collias, E.C. Nest Building and Bird Behavior. (Princeton University Press, 1984).Hansell, M.H. Bird nests and construction behaviour. (Cambridge University Press, 2000).Deeming, D.C. & Reynolds, S.J. Nests, eggs and incubation: New ideas about avian reproduction. (Oxford University Press, 2015).Pärssinen, V., Kalb, N., Vallon, M., Anthes, N. & Heubel, K. U. Male and female preferences for nest characteristics under paternal care. Ecol. Evol. 9, 7780–7791 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Soler, J. J., Morales, J., Cuervo, J. J. & Moreno, J. Conspicuousness of passerine females is associated with the nest-building behaviour of males. Biol. J. Linn. Soc. 126, 824–835 (2019).
    Google Scholar 
    Tipton, H. C., Dreitz, V. J. & Doherty, P. F. Jr. Occupancy of Mountain Plover and Burrowing Owl in Colorado. J. Wildl. Manage. 72, 1001–1006 (2008).
    Google Scholar 
    Mukherjee, A., Kumara, H. N. & Bhupathy, S. Golden jackal’s underground shelters: Natal site selection, seasonal burrowing activity and pup rearing by a cathemeral canid. Mammal Res. 63, 325–339 (2018).
    Google Scholar 
    Berg, M. L., Beintema, N. H., Welbergen, J. A. & Komdeur, J. The functional significance of multiple nest building in the Australian Reed Warbler Acrocephalus australis. Ibis 148, 395–404 (2006).
    Google Scholar 
    Vergara, P., Gordo, O. & Aguirre, J. I. Nest size, nest building behaviour and breeding success in a species with nest reuse: the white stork Ciconia ciconia. Ann. Zool. Fennici 47, 184–194 (2010).
    Google Scholar 
    Hansell, M.H. Animal architecture. (Oxford University Press, 2005).Newton, I. Population ecology of raptors. Berkhamsted (T and AD Poyser, 1979).Ontiveros, D., Caro, J. & Pleguezuelos, J. M. Green plant material versus ectoparasites in nests of Bonelli’s Eagle. J. Zool. 274, 99–104 (2008).
    Google Scholar 
    Soler, J. J., Møller, A. P. & Soler, M. Nest building, sexual selection and parental investment. Evol. Ecol. 12, 427–441 (1998).
    Google Scholar 
    Moreno, J., Soler, M., Møller, A. P. & Linden, M. The function of stone carrying in the Black Wheatear, Oenanthe leucura. Anim. Behav. 47, 1297–1309 (1994).
    Google Scholar 
    Soler, J. J., Soler, M., Møller, A. P. & Martínez, J. G. Does the great spotted cuckoo choose magpie hosts according to their parenting ability?. Behav. Ecol. Sociobiol. 36, 201–206 (1995).
    Google Scholar 
    Soler, J. J., Cuervo, J. J., Møller, A. P. & de Lope, F. Nest building is a sexually selected behaviour in the barn swallow. Anim. Behav. 56, 1435–1442 (1998).CAS 
    PubMed 

    Google Scholar 
    Canal, D., Mulero-Pázmány, M., Negro, J. J. & Sergio, F. Decoration increases the conspicuousness of raptor nests. PLoS ONE 11, e0157440 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Biddle, L., Goodman, A. M. & Deeming, D. C. Construction patterns of birds’ nests provide insight into nest-building behaviours. PeerJ 5, e3010 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Akresh, M. E., Ardia, D. R. & King, D. I. Effect of nest characteristics on thermal properties, clutch size, and reproductive performance for an open-cup nesting songbird. Avian Biol. Res. 10, 107–118 (2017).
    Google Scholar 
    Podofillini, S. et al. Home, dirty home: Effect of old nest material on nest-site selection and breeding performance in a cavity-nesting raptor. Curr. Zool. 64, 693–702 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Ruiz-Castellano, C., Tomás, G., Ruiz-Rodríguez, M., Martín-Gálvez, D. & Soler, J. J. Nest material shapes eggs bacterial environment. PLoS ONE 11, e0148894 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Tomás, G. et al. Interacting effects of aromatic plants and female age on nest-dwelling ectoparasites and blood-sucking flies in avian nests. Behav. Proc. 90, 246–253 (2012).
    Google Scholar 
    Suárez-Rodríguez, M. & García, C. M. An experimental demonstration that house finches add cigarette butts in response to ectoparasites. J. Avian Biol. 48, 1316–1321 (2017).
    Google Scholar 
    Mennerat, A. et al. Aromatic plants in nests of the blue tit Cyanistes caeruleus protect chicks from bacteria. Oecologia 161, 849–855 (2009).ADS 
    PubMed 

    Google Scholar 
    Sanz, J. J. & García-Navas, V. Nest ornamentation in blue tits: is feather carrying ability a male status signal?. Behav. Ecol. 22, 240–247 (2011).
    Google Scholar 
    Östlund-Nilsson, S. & Holmlund, M. The artistic three-spined stickleback (Gasterosteus aculeatus). Behav. Ecol. Sociobiol. 53, 214–220 (2003).
    Google Scholar 
    Quader, S. What makes a good nest? Benefits of nest choice to female Baya Weavers (Ploceus philippinus). Auk 123, 475–486 (2006).
    Google Scholar 
    Møller, A. P. & Nielsen, J. T. Large increase in nest size linked to climate change: an indicator of life history, senescence and condition. Oecologia 179, 913–921 (2015).ADS 
    PubMed 

    Google Scholar 
    De Neve, L., Soler, J. J., Soler, M. & Pérez-Contreras, T. Nest size predicts the effect of food supplementation to magpie nestlings on their immunocompetence: An experimental test of nest size indicating parental ability. Behav. Ecol. 15, 1031–1036 (2004).
    Google Scholar 
    Szentirmai, I., Komdeur, J. & Székely, T. What makes a nest-building male successful? Male behavior and female care in penduline tits. Behav. Ecol. 16, 994–1000 (2005).
    Google Scholar 
    Tomás, G. et al. Nest size and aromatic plants in the nest as sexually selected female traits in blue tits. Behav. Ecol. 24, 926–934 (2013).
    Google Scholar 
    Jelínek, V., Požgayová, M., Honza, M. & Procházka, P. Nest as an extended phenotype signal of female quality in the great reed warbler. J. Avian Biol. 47, 428–437 (2016).
    Google Scholar 
    Muth, F. & Healy, S. D. The role of adult experience in nest building in the zebrafinch, Taeniopygia guttata. Anim. Behav. 82, 185–189 (2011).
    Google Scholar 
    Wysocki, D. et al. Factors affecting nest size in a population of Blackbirds Turdus merula. Bird Study 62, 208–216 (2015).
    Google Scholar 
    Moreno, J. Avian nests and nest-building as signals. Avian Biol. Res. 5, 238–251 (2012).
    Google Scholar 
    Bailey, I. E., Morgan, K. V., Bertin, M., Meddle, S. L. & Healy, S. D. Physical cognition: Birds learn the structural efficacy of nest material. Proc. R. Soc. B 281, 20133225 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Camacho-Alpízar, A., Eckersley, T., Lambert, C. T., Balasubramanian, G. & Guillette, L. M. If it ain’t broke don’t fix it: Breeding success affects nest-building decisions. Behav. Proc. 184, 104336 (2021).
    Google Scholar 
    Madden, J. R. Bower decorations are good predictors of mating success in the spotted bowerbird. Behav. Ecol. Sociobiol. 53, 269–277 (2003).
    Google Scholar 
    Mainwaring, M. C., Nagy, J. & Hauber, M. E. Sex-specific contributions to nest building in birds. Behav. Ecol. https://doi.org/10.1093/beheco/arab035 (2021).Article 

    Google Scholar 
    Witte, K. The differential-allocation hypothesis: Does the evidence support it?. Evolution 49, 1289–1290 (1995).PubMed 

    Google Scholar 
    Wright, J. & Cuthill, I. Monogamy in the European starling. Behaviour 120, 262–285 (1992).
    Google Scholar 
    Burley, N. Sexual selection for aesthetic traits in species with biparental care. Am. Nat. 127, 415–445 (1986).ADS 

    Google Scholar 
    Mainwaring, M. C., Hartley, I. R., Lambrechts, M. M. & Deeming, D. C. The design and function of birds’ nests. Ecol. Evol. 4, 3909–3928 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Sergio, F. et al. Raptor nest decorations are a reliable threat against conspecifics. Science 331, 327–330 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Heinrich, B. Why does a hawk build with green nesting material?. Northeast. Nat. 20, 209–218 (2013).
    Google Scholar 
    Mingju, E. et al. Old nest material functions as an informative cue in making nest-site selection decisions in the European Kestrel (Falco tinnunculus). Avian Res. 10, 43 (2019).
    Google Scholar 
    Martínez-Abraín, A. & Jiménez, J. Stick supply to nests by cliff-nesting raptors as an evolutionary load of past tree-nesting. IEE 12, 22–25. https://doi.org/10.24908/iee.2019.12.3.n (2019).Article 

    Google Scholar 
    Martínez, J. E. et al. Breeding behaviour and time-activity budgets of Bonelli’s Eagles Aquila fasciata: Marked sexual differences in parental activities. Bird Study 47, 35–44 (2020).
    Google Scholar 
    Cramp, S. & Simmons, K.E.L. Handbook of the Birds of the western Palearctic. Vol. 2. (Oxford University Press, 1980).Paillisson, J. M. & Chambon, R. Variation in male-built nest volume with nesting-support quality, colony, and egg production in whiskered terns. Ecol. Evol. 11, 15585–15600 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Álvarez, E. & Barba, E. Nest quality in relation to adult bird condition and its impact on reproduction in Great Tits Parus major. Acta Ornithol. 43, 3–9 (2008).
    Google Scholar 
    Ferguson-Lees, J. & Christie, D. Raptors of the world. (Christopher Helm, 2001).Ontiveros, D. Águila perdicera – Aquila fasciata. In Enciclopedia Virtual de los Vertebrados Españoles. (eds. Salvador, A. & Morales, M.B.) Museo Nacional de Ciencias Naturales, Madrid; http://www.vertebradosibericos.org/ (accessed 13 September 2021) (2016).Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the birds of the world, vol. 2. New world vultures to guineafowl. (Lynx Edicions, 1994).Ontiveros, D., Caro, J. & Pleguezuelos, J. M. Possible functions of alternative nests in raptors: the case of Bonelli’s Eagle. J. Ornithol. 149, 253–259 (2008).
    Google Scholar 
    Del Moral, J.C. & Molina, B. El águila perdicera en España, población reproductora en 2018 y método de censo. (SEO/BirdLife, 2018).BirdLife International. Aquila fasciata (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2019. https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22696076A155464015.en. Downloaded on 26 June 2021 (2019).Balbontín, J. & Ferrer, M. Condition of large brood in Bonelli’s Eagle Hieraaetus fasciatus. Bird Study 52, 37–41 (2005).
    Google Scholar 
    Martínez, J. E. et al. Copulatory behaviour in the Bonelli’s Eagle (Aquila fasciata): assessing the paternity assurance hypothesis. PLoS ONE 14, e0217175 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Margalida, A. & Bertran, J. Nest-building behaviour of the Bearded Vulture Gypaetus barbatus. Ardea 88, 259–264 (2000).
    Google Scholar 
    Krüger, O. Dissecting common buzzard lifespan and lifetime reproductive success: the relative importance of food, competition, weather, habitat and individual attributes. Oecologia 133, 474–482 (2002).ADS 
    PubMed 

    Google Scholar 
    Morrison, T. A., Yoshizaki, J., Nichols, J. D. & Bolger, D. T. Estimating survival in photographic capture–recapture studies: overcoming misidentification error. Methods Ecol. Evol. 2, 454–463 (2011).
    Google Scholar 
    Jiménez-Franco, M. V., Martínez, J. E., Pagán, I. & Calvo, J. F. Factors determining territory fidelity in a migratory forest raptor, the Booted Eagle Hieraaetus pennatus. J. Ornithol. 154, 311–318 (2013).
    Google Scholar 
    Sreekar, R. et al. Photographic capture-recapture sampling for assessing populations of the Indian Gliding Lizard Draco dussumieri. PLoS ONE 8, e55935 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goswami, V. R. et al. Towards a reliable assessment of Asian elephant population parameters: The application of photographic spatial capture–recapture sampling in a priority floodplain ecosystem. Sci. Rep. 9, 8578 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Méndez, D., Marsden, S. & Lloyd, H. Assessing population size and structure for Andean Condor Vultur gryphus in Bolivia using a photographic ‘capture-recapture’ method. Ibis 161, 867–877 (2019).
    Google Scholar 
    Zuberogoitia, J., Martínez, J. E. & Zabala, J. Individual recognition of territorial peregrine falcons Falco peregrinus: A key for long-term monitoring programmes. Munibe 61, 117–127 (2013).
    Google Scholar 
    Gil-Sánchez, J. M., Bautista, J., Godinho, R. & Moleón, M. Detection of individual replacements in a long-lived bird species, the Bonelli’s Eagle (Aquila fasciata), using three noninvasive methods. J. Raptor Res. https://doi.org/10.3356/JRR-20-53 (2021).Article 

    Google Scholar 
    García, V., Moreno-Opo, R. & Tintó, A. Sex differentiation of Bonelli’s Eagle Aquila fasciata in western Europe using morphometrics and plumage colour patterns. Ardeola 60, 261–277 (2013).
    Google Scholar 
    Real, J., Mañosa, S. & Codina, J. Post-nestling dependence period in the Bonelli’s Eagle Hieraaetus fasciatus. Ornis Fenn. 75, 129–137 (1998).
    Google Scholar 
    Mínguez, E., Angulo, E. & Siebering, V. Factors influencing length of the post-fledging period and timing of dispersal in Bonelli’s Eagle (Hieraaetus fasciatus) in southwestern Spain. J. Raptor Res. 35, 228–234 (2001).
    Google Scholar 
    Gil-Sánchez, J. M., Moleón, M., Otero, M. & Bautista, J. A nine-year study of successful breeding in a Bonelli’s eagle population in southeast Spain: A basis for conservation. Biol. Conserv. 118, 685–694 (2004).
    Google Scholar 
    Resano-Mayor, J. et al. Multi-scale effects of nestling diet on breeding performance in a terrestrial top predator inferred from stable isotope analysis. PLoS ONE 9, e95320 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zuberogoitia, J., Martínez, J. E., Larrea, M. & Zabala, M. Parental investment of male Peregrine Falcons during incubation: Influence of experience and weather. J. Ornithol. 159, 275–282 (2018).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at: http://www.R-project.org/ (accessed 20 March 2021) (2021).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Fernández, C. Nest material supplies in the Marsh Harrier Circus aeruginosus: Sexual roles, daily and seasonal activity patterns and rainfall influence. Ardea 80, 281–284 (1992).
    Google Scholar 
    Margalida, A., González, L. M., Sánchez, R., Oria, J. & Prada, L. Parental behaviour of Spanish Imperial Eagles Aquila adalberti: sexual differences in a moderately dimorphic raptor. Bird Study 54, 112–119 (2007).
    Google Scholar 
    López-López, P., Perona, A. M., Egea-Casas, O., Morant, J. & Urios, V. Tri-axial accelerometry shows differences in energy expenditure and parental effort throughout the breeding season in long-lived raptors. Curr. Zool. https://doi.org/10.1093/cz/zoab010 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morant, J., López-López, P. & Zuberogoitia, I. Parental investment asymmetries of a globally endangered scavenger: Unravelling the role of gender, weather conditions and stage of the nesting cycle. Bird Study 66, 329–341 (2019).
    Google Scholar 
    Margalida, A. & Bertran, J. Breeding biology of the Bearded Vulture Gypaetus barbatus: Minimal sexual differences in parental activities. Ibis 142, 225–234 (2000).
    Google Scholar 
    Wimberger, P. H. The use of green plant material in bird nests to avoid ectoparasites. Auk 101, 615–618 (1984).
    Google Scholar 
    Dubiec, A., Gózdz, I. & Mazgagski, T. D. Green plant material in avian nests. Avian Biol. Res. 6, 133–146 (2013).
    Google Scholar 
    Jagiello, Z. A., Dylewski, L., Winiarska, D., Zolnierowicz, K. M. & Tobolka, M. Factors determining the occurrence of anthropogenic materials in nests of the white stork Ciconia ciconia. Environ. Sci. Pollut. Res. 25, 14726–14733 (2018).
    Google Scholar 
    Fargallo, J. A., de León, A. & Potti, J. Nest maintenance effort and health status in chinstrap penguins, Pygoscelis antarctica: the functional significance of stone provisioning behaviour. Behav. Ecol. Sociobiol. 50, 141–150 (2001).
    Google Scholar  More

  • in

    Ecological niche modelling and climate change in two species groups of huntsman spider genus Eusparassus in the Western Palearctic

    Foelix, R. F. Biology of Spiders (Oxford University Press, 2011).
    Google Scholar 
    World Spider Catalog. World Spider Catalog, Version 23.0. Natural History Museum Bern, online at http://wsc.nmbe.ch (2022).Nyffeler, M. & Sunderland, K. D. Composition, abundance and pest control potential of spider communities in agroecosystems: A comparison of European and US studies. Agric. Ecosyst. Environ. 95, 579–612 (2003).
    Google Scholar 
    Oldrati, V. et al. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS ONE 12, e0172966 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Herzig, V. et al. Animal toxins—Nature’s evolutionary-refined toolkit for basic research and drug discovery. Biochem. Pharmacol. 181, 114096 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Moradmand, M. & Jäger, P. Taxonomic revision of the huntsman spider genus Eusparassus Simon, 1903 (Araneae: Sparassidae) in Eurasia. J. Nat. Hist. 46, 2439–2496 (2012).
    Google Scholar 
    Moradmand, M. The stone huntsman spider genus Eusparassus (Araneae: Sparassidae): Systematics and zoogeography with revision of the African and Arabian species. Zootaxa 3675, 1–108 (2013).PubMed 

    Google Scholar 
    Levy, G. The family of huntsman spiders in Israel with annotations on species of the Middle East (Araneae: Sparassidae). J. Zool. 217, 127–176 (1989).
    Google Scholar 
    Dunlop, J. A. et al. Computed tomography recovers data from historical amber: An example from huntsman spiders. Naturwissenschaften 98, 519–527 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Moradmand, M., Schönhofer, A. L. & Jäger, P. Molecular phylogeny of the spider family Sparassidae with focus on the genus Eusparassus and notes on the RTA-clade and ‘Laterigradae’. Mol. Phylogenet. Evol. 74, 48–65 (2014).CAS 
    PubMed 

    Google Scholar 
    Hutchinson, G. E. Cold spring harbor symposium on quantitative biology. Concl. Remarks 22, 415–427 (1957).
    Google Scholar 
    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).PubMed 

    Google Scholar 
    Wake, D. B., Hadly, E. A. & Ackerlya, D. D. Biogeography, changing climates, and niche evolution. Proc. Natl. Acad. Sci. U. S. A. 106, 19631–19636 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).PubMed 

    Google Scholar 
    Peñalver-Alcázar, M., Jiménez-Valverde, A. & Aragón, P. Niche differentiation between deeply divergent phylogenetic lineages of an endemic newt: implications for Species Distribution Models. Zoology 144, 125852 (2021).PubMed 

    Google Scholar 
    Di Pasquale, G. et al. Coastal Pine-Oak Glacial Refugia in the mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).
    Google Scholar 
    Du, Z., He, Y., Wang, H., Wang, C. & Duan, Y. Potential geographical distribution and habitat shift of the genus Ammopiptanthus in China under current and future climate change based on the MaxEnt model. J. Arid Environ. 184, 104328 (2021).ADS 

    Google Scholar 
    Kafash, A. et al. The Gray Toad-headed Agama, Phrynocephalus scutellatus, on the Iranian Plateau: The degree of niche overlap depends on the phylogenetic distance. Zool. Middle East 64, 47–54 (2018).
    Google Scholar 
    Namyatova, A. A. Climatic niche comparison between closely related trans-Palearctic species of the genus Orthocephalus (Insecta: Heteroptera: Miridae: Orthotylinae). PeerJ 8, e10517 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Z. et al. Lineage-level distribution models lead to more realistic climate change predictions for a threatened crayfish. Divers. Distrib. 27, 684–695 (2021).
    Google Scholar 
    Mammola, S. & Leroy, B. Applying species distribution models to caves and other subterranean habitats. Ecography (Cop.) 41, 1194–1208 (2018).
    Google Scholar 
    Mammola, S. et al. Challenges and opportunities of species distribution modelling of terrestrial arthropod predators. Divers. Distrib. 00, 1–19 (2021).
    Google Scholar 
    Saupe, E. E., Papes, M., Selden, P. A. & Vetter, R. S. Tracking a medically important spider: Climate change, ecological niche modeling, and the brown recluse (Loxosceles reclusa). PLoS ONE 6, 2 (2011).
    Google Scholar 
    Planas, E., Saupe, E. E., Lima-Ribeiro, M. S., Peterson, A. T. & Ribera, C. Ecological niche and phylogeography elucidate complex biogeographic patterns in Loxosceles rufescens (Araneae, Sicariidae) in the Mediterranean Basin. BMC Evol. Biol. https://doi.org/10.1186/s12862-014-0195-y (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taucare-Ríos, A., Nentwig, W., Bizama, G. & Bustamante, R. O. Matching global and regional distribution models of the recluse spider Loxosceles rufescens: to what extent do these reflect niche conservatism?. Med. Vet. Entomol. 32, 490–496 (2018).PubMed 

    Google Scholar 
    Wang, Y., Casajus, N., Buddle, C., Berteaux, D. & Larrivée, M. Predicting the distribution of poorly-documented species, Northern black widow (Latrodectus variolus) and Black purse-web spider (Sphodros Niger), using museum specimens and citizen science data. PLoS ONE 13, e0201094 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Jiménez-Valverde, A., Decae, A. E. & Arnedo, M. A. Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: An assessment using potential distribution modelling with presence-only techniques. J. Biogeogr. 38, 1213–1223 (2011).
    Google Scholar 
    Monsimet, J., Devineau, O., Pétillon, J. & Lafage, D. Explicit integration of dispersal-related metrics improves predictions of SDM in predatory arthropods. Sci. Rep. https://doi.org/10.1038/s41598-020-73262-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salgado-Roa, F. C., Gamez, A., Sanchez-Herrera, M., Pardo-Diaz, C. & Salazar, C. Divergence promoted by the northern Andes in the giant fishing spider Ancylometes bogotensis (Araneae: Ctenidae). Biol. J. Linn. Soc. 132, 495–508 (2021).
    Google Scholar 
    Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography (Cop.) 41, 233–243 (2018).
    Google Scholar 
    Ferretti, N. E., Soresi, D. S., González, A. & Arnedo, M. An integrative approach unveils speciation within the threatened spider Calathotarsus simoni (Araneae: Mygalomorphae: Migidae). Syst. Biodivers. 17, 439–457 (2019).
    Google Scholar 
    Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133 (2021).
    Google Scholar 
    Bosso, L. et al. Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpina (Coleoptera: Cerambycidae): evidence from species distribution models and conservation gap analysis. Ecol. Entomol. 43, 192–203 (2018).
    Google Scholar 
    Kafash, A. et al. Climate change produces winners and losers: Differential responses of amphibians in mountain forests of the Near East. Glob. Ecol. Conserv. 16, e00471 (2018).
    Google Scholar 
    Vásquez-Aguilar, A. A., Ornelas, J. F., Rodríguez-Gómez, F. & Cristina MacSwiney, G. Modeling future potential distribution of buff-bellied hummingbird (Amazilia yucatanensis) under climate change: species vs subspecies. Trop. Conserv. Sci. 25, 2 (2021).
    Google Scholar 
    Rosauer, D. F., Catullo, R. A., VanDerWal, J., Moussalli, A. & Moritz, C. Lineage range estimation method reveals fine-scale endemism linked to pleistocene stability in Australian rainforest herpetofauna. PLoS ONE 10, e0126274 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Eyres, A., Eronen, J. T., Hagen, O., Böhning-Gaese, K. & Fritz, S. A. Climatic effects on niche evolution in a passerine bird clade depend on paleoclimate reconstruction method. Evolution 75, 1046–1060 (2021).PubMed 

    Google Scholar 
    Loyola, R. D., Lemes, P., Brum, F. T., Provete, D. B. & Duarte, L. D. S. Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography (Cop.) 37, 65–72 (2014).
    Google Scholar 
    Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the bogert effect: Connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Org. Biol. 1, 1–12 (2019).
    Google Scholar 
    Entling, W., Schmidt, M. H., Bacher, S., Brandl, R. & Nentwig, W. Niche properties of Central European spiders: Shading, moisture and the evolution of the habitat niche. Glob. Ecol. Biogeogr. 16, 440–448 (2007).
    Google Scholar 
    Lafage, D., Maugenest, S., Bouzillé, J. B. & Pétillon, J. Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecol. Res. 30, 1025–1035 (2015).
    Google Scholar 
    Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).CAS 
    PubMed 

    Google Scholar 
    Wellenreuther, M., Larson, K. W. & Svensson, E. I. Climatic niche divergence or conservatism? Environmental niches and range limits in ecologically similar damselflies. Ecology 93, 1353–1366 (2012).PubMed 

    Google Scholar 
    Nosil, P. & Sandoval, C. P. Ecological niche dimensionality and the evolutionary diversification of stick insects. PLoS ONE 3, e1907 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCormack, J. E., Zellmer, A. J. & Knowles, L. L. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: Insights from tests with niche models. Evolution 64, 1231–1244 (2010).PubMed 

    Google Scholar 
    Goudarzi, F., Hemami, M. R., Malekian, M. & Fakheran-Esfahani, S. Ecological Characterization of the breeding habitat of Luristan newt (Neurergus kaiseri) at local scale. J. Nat. Environ. 72, 113–127 (2019).
    Google Scholar 
    Chase, J. M. & Leibold, M. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).
    Google Scholar 
    Bonte, D., Vandenbroecke, N., Lens, L. & Maelfait, J. P. Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc. R. Soc. B Biol. Sci. 270, 1601–1607 (2003).
    Google Scholar 
    GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.2tc2ja (2021) doi:https://doi.org/10.15468/dl.2tc2ja.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-Filled SRTM for the Globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. (2008) doi:https ://srtm.csi.cgiar .org.Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3, 3–7 (2020).
    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models: With applications in R. (2017). doi:10.1017/ 9781139028271.Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).
    Google Scholar 
    Naimi, B. Uncertainty Analysis for Species Distribution Models. R package version (2015).Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2022–2–12.Nǎpǎruş, M. & Kuntner, M. A GIS model predicting potential distributions of a lineage: a test case on hermit spiders (Nephilidae: Nephilengys). PLoS ONE 7, e30047 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography (Cop.) 36, 1058–1069 (2013).
    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Schoener, T. W. The anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 

    Google Scholar 
    Warren, D. L. et al. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).
    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop.) 28, 385–393 (2005).
    Google Scholar 
    Vale, C. G., Tarroso, P. & Brito, J. C. Predicting species distribution at range margins: Testing the effects of study area extent, resolution and threshold selection in the Sahara-Sahel transition zone. Divers. Distrib. 20, 20–33 (2014).
    Google Scholar  More

  • in

    Discovery of a Ni2+-dependent guanidine hydrolase in bacteria

    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).ADS 
    CAS 

    Google Scholar 
    Schulze, E. Ueber einige stickstoffhaltige Bestandtheile der Keimlinge von Vicia sativa. Z. Phys. Chem. 17, 193–216 (1893).
    Google Scholar 
    Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kato, T., Yamagata, M. & Tsukahara, S. Guanidine compounds in fruit trees and their seasonal variations in citrus (Citrus unshiu Marc.). J. Jpn. Soc. Hortic. Sci. 55, 169–173 (1986).CAS 

    Google Scholar 
    Gund, P. Guanidine, trimethylenemethane, and “Y-delocalization.” Can acyclic compounds have “aromatic” stability? J. Chem. Educ. 49, 100 (1972).CAS 

    Google Scholar 
    Güthner, T., Mertschenk, B. & Schulz, B. In Ullmann’s Fine Chemicals vol. 2, 657–672 (Wiley-VCH, 2014).Strecker, A. Untersuchungen über die chemischen Beziehungen zwischen Guanin, Xanthin, Theobromin, Caffeïn und Kreatinin. Justus Liebigs Ann. Chem. 118, 151–177 (1861).
    Google Scholar 
    Iwanoff, N. N. & Awetissowa, A. N. The fermentative conversion of guanidine in urea. Biochem. Z. 231, 67–78 (1931).
    Google Scholar 
    Lenkeit, F., Eckert, I., Hartig, J. S. & Weinberg, Z. Discovery and characterization of a fourth class of guanidine riboswitches. Nucleic Acids Res. 48, 12889–12899 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salvail, H., Balaji, A., Yu, D., Roth, A. & Breaker, R. R. Biochemical validation of a fourth guanidine riboswitch class in bacteria. Biochemistry 59, 4654–4662 (2020).CAS 
    PubMed 

    Google Scholar 
    Nelson, J. W., Atilho, R. M., Sherlock, M. E., Stockbridge, R. B. & Breaker, R. R. Metabolism of free guanidine in bacteria is regulated by a widespread riboswitch class. Mol. Cell 65, 220–230 (2017).CAS 
    PubMed 

    Google Scholar 
    Sherlock, M. E. & Breaker, R. R. Biochemical validation of a third guanidine riboswitch class in bacteria. Biochemistry 56, 359–363 (2016).
    Google Scholar 
    Sherlock, M. E., Malkowski, S. N. & Breaker, R. R. Biochemical validation of a second guanidine riboswitch class in bacteria. Biochemistry 56, 352–358 (2016).
    Google Scholar 
    Kermani, A. A., Macdonald, C. B., Gundepudi, R. & Stockbridge, R. B. Guanidinium export is the primal function of SMR family transporters. Proc. Natl Acad. Sci. USA 115, 3060–3065 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sinn, M., Hauth, F., Lenkeit, F., Weinberg, Z. & Hartig, J. S. Widespread bacterial utilization of guanidine as nitrogen source. Mol. Microbiol. 116, 200–210 (2021).CAS 
    PubMed 

    Google Scholar 
    Schneider, N. O. et al. Solving the conundrum: widespread proteins annotated for urea metabolism in bacteria are carboxyguanidine deiminases mediating nitrogen assimilation from guanidine. Biochemistry 59, 3258–3270 (2020).CAS 
    PubMed 

    Google Scholar 
    Zhao, J., Zhu, L., Fan, C., Wu, Y. & Xiang, S. Structure and function of urea amidolyase. Biosci. Rep. 38, BSR20171617 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mobley, H. L., Island, M. D. & Hausinger, R. P. Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mazzei, L., Musiani, F. & Ciurli, S. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J. Biol. Inorg. Chem. 25, 829–845 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Uribe, E. et al. Functional analysis of the Mn2+ requirement in the catalysis of ureohydrolases arginase and agmatinase – a historical perspective. J. Inorg. Biochem. 202, 110812 (2020).CAS 
    PubMed 

    Google Scholar 
    Perozich, J., Hempel, J. & Morris, S. M. Jr Roles of conserved residues in the arginase family. Biochim. Biophys. Acta 1382, 23–37 (1998).CAS 
    PubMed 

    Google Scholar 
    Sekowska, A., Danchin, A. & Risler, J. L. Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology 146, 1815–1828 (2000).CAS 
    PubMed 

    Google Scholar 
    Sekula, B. The neighboring subunit is engaged to stabilize the substrate in the active site of plant arginases. Front. Plant Sci. 11, 987 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Quintero, M. J., Muro-Pastor, A. M., Herrero, A. & Flores, E. Arginine catabolism in the cyanobacterium Synechocystis sp. strain PCC 6803 involves the urea cycle and arginase pathway. J. Bacteriol. 182, 1008–1015 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lacasse, M. J., Summers, K. L., Khorasani-Motlagh, M., George, G. N. & Zamble, D. B. Bimodal nickel-binding site on Escherichia coli [NiFe]-hydrogenase metallochaperone HypA. Inorg. Chem. 58, 13604–13618 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, D., Gutekunst, K., Klissenbauer, M., Schulz-Friedrich, R. & Appel, J. Mutagenesis of hydrogenase accessory genes of Synechocystis sp. PCC 6803. FEBS J. 273, 4516–4527 (2006).CAS 
    PubMed 

    Google Scholar 
    Dowling, D. P., Di Costanzo, L., Gennadios, H. A. & Christianson, D. W. Evolution of the arginase fold and functional diversity. Cell. Mol. Life Sci. 65, 2039–2055 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dutta, A., Mazumder, M., Alam, M., Gourinath, S. & Sau, A. K. Metal-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic function. Biochem. J. 476, 3595–3614 (2019).CAS 
    PubMed 

    Google Scholar 
    Di Costanzo, L. et al. Crystal structure of human arginase I at 1.29-Å resolution and exploration of inhibition in the immune response. Proc. Natl Acad. Sci. USA 102, 13058–13063 (2005).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Alfano, M. & Cavazza, C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci. 29, 1071–1089 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, B. et al. A guanidine-degrading enzyme controls genomic stability of ethylene-producing cyanobacteria. Nat. Commun. 12, 5150 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGee, D. J. et al. Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily. Eur. J. Biochem. 271, 1952–1962 (2004).CAS 
    PubMed 

    Google Scholar 
    Arakawa, N., Igarashi, M., Kazuoka, T., Oikawa, T. & Soda, K. d-Arginase of Arthrobacter sp. KUJ 8602: characterization and its identity with Zn2+-guanidinobutyrase. J. Biochem. 133, 33–42 (2003).CAS 
    PubMed 

    Google Scholar 
    Saragadam, T., Kumar, S. & Punekar, N. S. Characterization of 4-guanidinobutyrase from Aspergillus niger. Microbiology 165, 396–410 (2019).CAS 
    PubMed 

    Google Scholar 
    Viator, R. J., Rest, R. F., Hildebrandt, E. & McGee, D. J. Characterization of Bacillus anthracis arginase: effects of pH, temperature, and cell viability on metal preference. BMC Biochem. 9, 15 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    D’Antonio, E. L., Hai, Y. & Christianson, D. W. Structure and function of non-native metal clusters in human arginase I. Biochemistry 51, 8399–8409 (2012).PubMed 

    Google Scholar 
    Andresen, E., Peiter, E. & Küpper, H. Trace metal metabolism in plants. J. Exp. Bot. 69, 909–954 (2018).CAS 
    PubMed 

    Google Scholar 
    Eisenhut, M. Manganese homeostasis in cyanobacteria. Plants 9, 18 (2019).PubMed Central 

    Google Scholar 
    Burnat, M. & Flores, E. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena. MicrobiologyOpen 3, 777–792 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. P., Yuan, Y. & Wolfenden, R. The burden borne by urease. J. Am. Chem. Soc. 127, 10828–10829 (2005).CAS 
    PubMed 

    Google Scholar 
    Lewis, C. A. Jr & Wolfenden, R. The nonenzymatic decomposition of guanidines and amidines. J. Am. Chem. Soc. 136, 130–136 (2014).CAS 
    PubMed 

    Google Scholar 
    Grobben, Y. et al. Structural insights into human Arginase-1 pH dependence and its inhibition by the small molecule inhibitor CB-1158. J. Struct. Biol. X 4, 100014 (2020).CAS 
    PubMed 

    Google Scholar 
    Mills, L. A., McCormick, A. J. & Lea-Smith, D. J. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 40, BSR20193325 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giner-Lamia, J. et al. Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp PCC 6803. Nucleic Acids Res. 45, 11800–11820 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martinez, S. & Hausinger, R. P. Biochemical and spectroscopic characterization of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. Biochemistry 55, 5989–5999 (2016).CAS 
    PubMed 

    Google Scholar 
    Copeland, R. A. et al. An iron(IV)-oxo intermediate initiating l-arginine oxidation but not ethylene production by the 2-oxoglutarate-dependent oxygenase, ethylene-forming enzyme. J. Am. Chem. Soc. 143, 2293–2303 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1–61 (1979).
    Google Scholar 
    Geyer, J. W. & Dabich, D. Rapid method for determination of arginase activity in tissue homogenates. Anal. Biochem. 39, 412–417 (1971).CAS 
    PubMed 

    Google Scholar 
    van Anken, H. C. & Schiphorst, M. E. A kinetic determination of ammonia in plasma. Clin. Chim. Acta 56, 151–157 (1974).PubMed 

    Google Scholar 
    Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lamzin, V. S. P. A., Wilson, K. S. In International Tables for Crystallography Vol. F (eds Arnold, E. et al.) 525–528 (Kluwer, 2012).Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).CAS 
    PubMed 

    Google Scholar 
    Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006).ADS 
    PubMed 

    Google Scholar 
    Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).CAS 
    PubMed 

    Google Scholar 
    Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lemoine, F. et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More