Nature-based solutions in mountain catchments reduce impact of anthropogenic climate change on drought streamflow
IPCC. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al) (Cambridge University Press. In Press, 2021).Otto, F. E. L. et al. Toward an inventory of the impacts of human-induced climate change. Bull. Am. Meteorol. Soc. 101, E1972–E1979 (2020).
Google Scholar
Stanners, D. et al. in Sustainability Indicators. A Scientific Assessment (eds Moldan, B., Hak, T. & Dahl, A. L.) 127–144 (Island Press, 2007).Cohen-Shacham, E. et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 98, 20–29 (2019).
Google Scholar
Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15513 (2021).Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997–1009 (2018).CAS
Google Scholar
Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190120 (2020).
Google Scholar
Gómez Martín, E., Máñez Costa, M. & Schwerdtner Máñez, K. An operationalized classification of Nature Based Solutions for water-related hazards: from theory to practice. Ecol. Econ. 167 https://doi.org/10.1016/j.ecolecon.2019.106460 (2020).Doswald, N. et al. Effectiveness of ecosystem-based approaches for adaptation: review of the evidence-base. Clim. Dev. 6, 185–201 (2014).
Google Scholar
Chausson, A. et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15310 (2020).Rebelo, A. J., Holden, P. B., Esler, K. & New, M. G. Benefits of water-related ecological infrastructure investments to support sustainable land-use: a review of evidence from critically water-stressed catchments in South Africa. R. Soc. Open Sci. 8, 201402 (2021).
Google Scholar
Berrang-Ford, L. et al. A systematic global stocktake of evidence on human adaptation to climate change. Nat. Clim. Change 11, 989–1000 (2021).
Google Scholar
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS
Google Scholar
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).CAS
Google Scholar
Koch, A., Brierley, C. & Lewis, S. L. Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences 18, 2627–2647 (2021).CAS
Google Scholar
Girardin, C. A. J. et al. Nature-based solutions can help cool the planet – if we act now. Nature 593, 191–194 (2021).CAS
Google Scholar
Sudmeier-Rieux, K. et al. Scientific evidence for ecosystem-based disaster risk reduction. Nat. Sustain. 4, 803–810 (2021).
Google Scholar
Otto, F. E. L. Attribution of weather and climate events. Annu. Rev. Environ. Resources 42, 627–646 (2017).
Google Scholar
Philip, S. et al. A protocol for probabilistic extreme event attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).
Google Scholar
Herring, S. C., Christidis, N., Hoell, A., Hoerling, M. P. & Stott, P. A. Explaining extreme events of 2019 from a climate perspective. Bull. Amer. Meteorol. Soc. 102, S1–S112 (2021).Otto, F. E. L. et al. Challenges to understanding extreme weather changes in lower income countries. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/bams-d-19-0317.1 (2020).Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385 (2011).CAS
Google Scholar
Kay, A. L., Crooks, S. M., Pall, P. & Stone, D. A. Attribution of Autumn/Winter 2000 flood risk in England to anthropogenic climate change: a catchment-based study. J. Hydrol. 406, 97–112 (2011).
Google Scholar
Schaller, N. et al. Human influence on climate in the 2014 southern England winter floods and their impacts. Nat. Clim. Change 6, 627–634 (2016).
Google Scholar
Wolski, P., Stone, D., Tadross, M., Wehner, M. & Hewitson, B. Attribution of floods in the Okavango basin, Southern Africa. J. Hydrol. 511, 350–358 (2014).
Google Scholar
Ross, A. C. et al. Anthropogenic influences on extreme annual streamflow into Chesapeake Bay from the Susquehanna River. Bull. Am. Meteorol. Soc. 102, S25–S32 (2021).Mitchell, D. et al. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 11, 074006 (2016).
Google Scholar
Botai, C., Botai, J., de Wit, J., Ncongwane, K. & Adeola, A. Drought Characteristics over the Western Cape Province, South Africa. Water https://doi.org/10.3390/w9110876 (2017).Wolski, P. How severe is Cape Town’s “Day Zero” drought? Significance 15, 24–27 (2018).
Google Scholar
Stafford, L., Shemie, D., Kroeger, T., Baker, T. & Apse, C. The Greater Cape Town Water Fund. Assessing the return on investment for Ecological Infrastructure restoration. Business case. (The Nature Conservancy, 2018).Otto, F. E. L. et al. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aae9f9 (2018).Pascale, S., Kapnick, S. B., Delworth, T. L. & Cooke, W. F. Increasing risk of another Cape Town “Day Zero” drought in the 21st century. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2009144117 (2020).Van Wilgen, B. W., Measey, J., Richardson, D. M., Wilson, J. R. & Zengeya, T. A. Biological Invasions in South Africa (Springer Nature, 2020).Le Maitre, D. et al. Impacts of plant invasions on terrestrial water flows in South Africa in Biological Invasions in South Africa (eds van Wilgen, B. W., Measey. J., Richardson, D. M., Wilson, J. R. & Zengeya, T. A.) 431–457 (Springer, 2020).Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W. & Vertessy, R. A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 310, 28–61 (2005).
Google Scholar
Dennedy-Frank, P. J. & Gorelick, S. M. Insights from watershed simulations around the world: watershed service-based restoration does not significantly enhance streamflow. Glob. Environ. Change https://doi.org/10.1016/j.gloenvcha.2019.101938 (2019).Calder, I. D. & Dye, P. Hydrological impacts of invasive alien plants. Land Use Water Resour. Res. 7, 1–12 (2001).
Google Scholar
Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126, 81–97 (2008).
Google Scholar
Farley, K. A., Jobbagy, E. G. & Jackson, R. B. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob. Change Biol. 11, 1565–1576 (2005).
Google Scholar
Jackson, R. B. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).Filoso, S., Bezerra, M. O., Weiss, K. C. B. & Palmer, M. A. Impacts of forest restoration on water yield: a systematic review. PLoS ONE 12, e0183210 (2017).
Google Scholar
Sitzia, T., Campagnaro, T., Kowarik, I. & Trentanovi, G. Using forest management to control invasive alien species: helping implement the new European regulation on invasive alien species. Biol. Invasions 18, 1–7 (2015).
Google Scholar
Richardson, D. M. & Rejmánek, M. Trees and shrubs as invasive alien species – a global review. Divers. Distrib. 17, 788–809 (2011).
Google Scholar
Everard, M. et al. Can control of invasive vegetation improve water and rural livelihood security in Nepal? Ecosyst. Serv. 32, 125–133 (2018).
Google Scholar
Everard, M. Can management of ‘thirsty’ alien trees improve water security in semi-arid India? Sci. Total Environ. 704, 135451 (2020).CAS
Google Scholar
Archer, S. R. et al. Woody plant encroachment: causes and consequences in Rangeland Systems Springer Series on Environmental Management (ed. Briske, D. D.) Chapter 2, 25–84 (2017).Wood, M. Bootstrapped confidence intervals as an approach to statistical inference. Organ. Res. Methods 8, 454–470 (2016).
Google Scholar
Tan, S. H. The correct interpretation of confidence intervals. Proc. Singapore Healthc. 19 (2010).Coetsee, C., Gray, E. F., Wakeling, J., Wigley, B. J. & Bond, W. J. Low gains in ecosystem carbon with woody plant encroachment in a South African savanna. J. Trop. Ecol. 29, 49–60 (2012).
Google Scholar
Stevens, N., Erasmus, B. F., Archibald, S. & Bond, W. J. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock? Philos. Trans. R. Soc. Lond. B Biol. Sci. https://doi.org/10.1098/rstb.2015.0437 (2016).Venter, Z. S., Cramer, M. D. & Hawkins, H. J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).CAS
Google Scholar
Forsyth, G. G., Le Maitre, D. C., Smith, J. & Lotter, D. Upper Berg River Catchment (G10A) Management Unit Control Plan. (Natural Resources Management (NRM) Department of Environmental Affairs, 2016).Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R. & Cooper, H. M. Land‐atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018. AGU Adv. 2, e2020AV000283 (2021).
Google Scholar
Rejmánek, M., Richardson, D. M. & Pysek, P. Trees and shrubs as invasive alien species – 2013 update of the global database. Divers. Distrib. 19, 1093–1094 (2013).
Google Scholar
Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).CAS
Google Scholar
Ziervogel, G. et al. Climate change impacts and adaptation in South Africa. Wiley Interdiscip. Rev. Clim. Change 5, 605–620 (2014).
Google Scholar
Thomas, A. et al. Global evidence of constraints and limits to human adaptation. Reg. Environ. Change https://doi.org/10.1007/s10113-021-01808-9 (2021).Dow, K., Berkhout, F. & Preston, B. L. Limits to adaptation to climate change: a risk approach. Curr. Opin. Environ. Sustain. 5, 384–391 (2013).
Google Scholar
Manning, J. & Goldblatt, P. Plants of the greater Cape Floristic Region 1: the Core Cape Flora., (South African National Biodiversity Institute, 2012).Nel, J. L. et al. Strategic water source areas for urban water security: Making the connection between protecting ecosystems and benefiting from their services. Ecosyst. Serv. 28, 251–259 (2017).
Google Scholar
Wolski, P. What Cape Town learned from its drought. Bull. At. Sci. https://thebulletin.org/2018/04/what-cape-town-learned-from-its-drought/ (2018).D. W. S. Cape Town River Systems State of Dams on 2021-08-16. Department of Water and Sanitation. Republic of South Africa. https://www.dws.gov.za/Hydrology/Weekly/RiverSystems.aspx?river=CT (2021).Rebelo, A. J. et al. The hydrological benefits of restoration: a modelling study of alien tree clearing in four mountain catchments in South Africa. Preprint at J. Hydrol. https://doi.org/10.21203/rs.3.rs-1316834/v1.DWAF. The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Report 9 (Groundwater Model): Volume 9 (Breede River Alluvium Aquifer Model). (Department of Water Affairs and Forestry, 2008).DWAF. The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Report 9 (Groundwater Model): Volume 3 (Regional Conceptual Model). (Department of Water Affairs and Forestry, 2008).Blake, D., Mlisa, A. & Hartnady, C. Large scale quantification of aquifer storage and volumes from the Peninsula and Skurweberg Formations in the southwestern Cape. Water SA 36, 177–184 (2010).
Google Scholar
Holden, P. B., Rebelo, A. J. & New, M. G. Mapping invasive alien trees in water towers: a combined approach using satellite data fusion, drone technology and expert engagement. Remote Sens. Appl.: Soc. Environ. https://doi.org/10.1016/j.rsase.2020.100448 (2021).Midgley, J. & Scott, D. The use of stable isotopes of water in hydrological studies in the Jonkershoek Valley. Water SA 20, 151–154 (1994).
Google Scholar
Van Genuchten, M. T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).
Google Scholar
Moriasi, D. N., Gitau, M. W., Pai, N. & Daggupati, P. Hydrologic and water quality models: performance measures and evaluation criteria. Trans. ASABE 58, 1763–1785 (2015).
Google Scholar
Stone, D. A. et al. A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Weather Clim. Extremes 19, 10–19 (2018).
Google Scholar
Risser, M. D., Stone, D. A., Paciorek, C. J., Wehner, M. F. & Angélil, O. Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence. Clim. Dyn. 49, 3051–3073 (2017).
Google Scholar
Jones, G. S., Stott, P. A. & Christidis, N. Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J. Geophys. Res. Atmos. 118, 4001–4024 (2013).
Google Scholar
Sun, L. et al. Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to factual and counterfactual forcing. Weather Clim. Extremes 19, 1–9 (2018).CAS
Google Scholar
Guillod, B. P. et al. weather@home 2: validation of an improved global–regional climate modelling system. Geosci. Model Dev. 10, 1849–1872 (2017).
Google Scholar
Massey, N. et al. weather@home—development and validation of a very large ensemble modelling system for probabilistic event attribution. Q. J. R. Meteorol. Soc. 141, 1528–1545 (2014).
Google Scholar
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Google Scholar
Flato, G. et al. in Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 741–866 (Cambridge University Press, 2014).Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from temperature. Appl. Eng. Agriculture 1, 96–99 (1985).
Google Scholar
Cayan, D. R., Maurer, E. P., Dettinger, M. D., Tyree, M. & Hayhoe, K. Climate change scenarios for the California region. Clim. Change 87, 21–42 (2008).
Google Scholar
Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).
Google Scholar
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing. https://www.R-project.org/, 2020).Paciorek, C. J., Stone, D. A. & Wehner, M. F. Quantifying statistical uncertainty in the attribution of human influence on severe weather. Weather Clim. Extremes 20, 69–80 (2018).
Google Scholar
Tadono, T. et al. Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B4, 157–162, https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2#description (2016).
Google Scholar
Takaku, J., Tadono, T., Tsutsui, K. & Ichikawa, M. Validation of “Aw3d” Global Dsm Generated from Alos Prism. ISPRS Ann. Photogramm. III-4, 25–31 (2016).
Google Scholar
Viviroli, D. Increasing dependence of lowland population on mountain water resources. Nat. Sustain. 3, 917–928 (2020).
Google Scholar
Meybeck, M. A New typology for mountains and other relief classes: an application to global continental water resources and population distribution. Mt. Res. Dev. 21, 34–45 (2001).DWS. Surface water home. Department of Water and Sanitation. Republic of South Africa. https://www.dws.gov.za/Hydrology/Unverified/UnverifiedDataFlowInfo.aspx (2021). More