Hibernation slows epigenetic ageing in yellow-bellied marmots
Flatt, T. A new definition of aging? Front. Genet. 3, 148 (2012).PubMed
PubMed Central
Google Scholar
Berdasco, M. & Esteller, M. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell 11, 181–186 (2012).CAS
PubMed
PubMed Central
Google Scholar
Jylhävä, J., Pedersen, N. L. & Hägg, S. Biological age predictors. EBioMedicine 21, 29–36 (2017).PubMed
PubMed Central
Google Scholar
Wagner, K. H., Cameron-Smith, D., Wessner, B. & Franzke, B. Biomarkers of aging: from function to molecular biology. Nutrients 8, 338 (2016).
Google Scholar
Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).CAS
PubMed
PubMed Central
Google Scholar
Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging 7, 1159–1170 (2015).CAS
PubMed
PubMed Central
Google Scholar
Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed
PubMed Central
Google Scholar
Johnson, T. E. Recent results: biomarkers of aging. Exp. Gerontol. 41, 1243–1246 (2006).CAS
PubMed
PubMed Central
Google Scholar
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).PubMed
PubMed Central
Google Scholar
Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).CAS
PubMed
PubMed Central
Google Scholar
Unnikrishnan, A. et al. The role of DNA methylation in epigenetics of aging. Pharmacol. Ther. 195, 172–185 (2019).CAS
PubMed
PubMed Central
Google Scholar
Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).CAS
PubMed
PubMed Central
Google Scholar
Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS
PubMed
PubMed Central
Google Scholar
Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).CAS
PubMed
PubMed Central
Google Scholar
Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 (2017).CAS
PubMed
PubMed Central
Google Scholar
Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).PubMed
PubMed Central
Google Scholar
Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).PubMed
PubMed Central
Google Scholar
Ito, G., Yoshimura, K. & Momoi, Y. Analysis of DNA methylation of potential age-related methylation sites in canine peripheral blood leukocytes. J. Vet. Med. Sci. 79, 745–750 (2017).CAS
PubMed
PubMed Central
Google Scholar
Thompson, M. J., von Holdt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. Aging 9, 1055–1068 (2017).CAS
PubMed
PubMed Central
Google Scholar
Lowe, R. et al. Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biol. 19, 22 (2018).PubMed
PubMed Central
Google Scholar
Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).PubMed
PubMed Central
Google Scholar
Zaghlool, S. B. et al. Association of DNA methylation with age, gender, and smoking in an Arab population. Clin. Epigenetics 7, 6 (2015).PubMed
PubMed Central
Google Scholar
Gao, X., Zhang, Y., Breitling, L. P. & Brenner, H. Relationship of tobacco smoking and smoking-related DNA methylation with epigenetic age acceleration. Oncotarget 7, 46878–46889 (2016).PubMed
PubMed Central
Google Scholar
Marioni, R. E. et al. The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int. J. Epidemiol. 45, 424–432 (2016).PubMed
PubMed Central
Google Scholar
Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).PubMed
PubMed Central
Google Scholar
Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).PubMed
PubMed Central
Google Scholar
Chen, B. H. et al. DNA methylation‐based measures of biological age: meta‐analysis predicting time to death. Aging 8, 1844–1859 (2016).CAS
PubMed
PubMed Central
Google Scholar
Christiansen, L. et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15, 149–154 (2016).CAS
PubMed
PubMed Central
Google Scholar
Horvath, S. & Levine, A. J. HIV-1 infection accelerates age according to the epigenetic clock. J. Infect. Dis. 212, 1563–1573 (2015).PubMed
PubMed Central
Google Scholar
Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495 (2015).CAS
PubMed
PubMed Central
Google Scholar
Parrott, B. B. & Bertucci, E. M. Epigenetic aging clocks in ecology and evolution. Trends Ecol. Evol. 34, 767–770 (2019).PubMed
PubMed Central
Google Scholar
Wagner, W. Epigenetic aging clocks in mice and men. Genome Biol. 18, 107 (2017).PubMed
PubMed Central
Google Scholar
Wang, T. et al. Quantitative translation of dog-to-human aging by conserved remodeling of the DNA methylome. Cell Syst. 11, 176–185 (2020).PubMed
PubMed Central
Google Scholar
Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).PubMed
PubMed Central
Google Scholar
Austad, S. N. Comparative biology of aging. J. Gerontol. A 64, 199–201 (2009).
Google Scholar
Wu, C. W. & Storey, K. B. Life in the cold: links between mammalian hibernation and longevity. Biomol. Concepts 7, 41–52 (2016).CAS
PubMed
PubMed Central
Google Scholar
Turbill, C., Bieber, C. & Ruf, T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. Lond. B 278, 3355–3363 (2011).
Google Scholar
Chen, Y. et al. Mechanisms for increased levels of phosphorylation of elongation factor-2 during hibernation in ground squirrels. Biochemistry 40, 11565–11570 (2001).CAS
PubMed
PubMed Central
Google Scholar
Knight, J. E. et al. mRNA stability and polysome loss in hibernating Arctic ground squirrels (Spermophilus parryii). Mol. Cell. Biol. 20, 6374–6379 (2000).CAS
PubMed
PubMed Central
Google Scholar
Yan, J., Barnes, B. M., Kohl, F. & Marr, T. G. Modulation of gene expression in hibernating arctic ground squirrels. Physiol. Genomics 32, 170–181 (2008).CAS
Google Scholar
Van Breukelen, F. & Martin, S. L. Molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J. Appl. Physiol. 92, 2640–2647 (2002).
Google Scholar
Morin, P. & Storey, K. B. Evidence for a reduced transcriptional state during hibernation in ground squirrels. Cryobiology 53, 310–318 (2006).CAS
Google Scholar
van Breukelen, F. & Martin, S. L. Reversible depression of transcription during hibernation. J. Comp. Physiol. B 172, 355–361 (2002).
Google Scholar
Azzu, V. & Valencak, T. G. Energy metabolism and ageing in the mouse: a mini-review. Gerontology 63, 327–336 (2017).
Google Scholar
Schrack, J. A., Knuth, N. D., Simonsick, E. M. & Ferrucci, L. ‘IDEAL’ aging is associated with lower resting metabolic rate: the Baltimore Longitudinal Study of Aging. J. Am. Geriatr. Soc. 62, 667–672 (2014).PubMed
PubMed Central
Google Scholar
Al-attar, R. & Storey, K. B. Suspended in time: molecular responses to hibernation also promote longevity. Exp. Gerontol. 134, 110889 (2020).CAS
PubMed
PubMed Central
Google Scholar
Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83, 1153–1181 (2003).CAS
PubMed
PubMed Central
Google Scholar
Turbill, C., Ruf, T., Smith, S. & Bieber, C. Seasonal variation in telomere length of a hibernating rodent. Biol. Lett. 9, 20121095 (2013).PubMed
PubMed Central
Google Scholar
Turbill, C., Smith, S., Deimel, C. & Ruf, T. Daily torpor is associated with telomere length change over winter in Djungarian hamsters. Biol. Lett. 8, 304–307 (2012).PubMed
PubMed Central
Google Scholar
Armitage, K. B., Blumstein, D. T. & Woods, B. C. Energetics of hibernating yellow-bellied marmots (Marmota flaviventris). Comp. Biochem. Physiol. A 134, 101–114 (2003).
Google Scholar
Armitage, K. B. in Molecules to Migration: the Pressures of Life (eds Morris, S. & Vosloo, A.) 591–602 (Medimond Publishing, 2008).Haghani, A. et al. DNA methylation networks underlying mammalian traits. Preprint at bioRxiv https://doi.org/10.1101/2021.03.16.435708 (2021).Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426733 (2021).Yang, S. et al. Rare mutations in AHDC1 in patients with obstructive sleep apnea. Biomed. Res. Int. https://doi.org/10.1155/2019/5907361 (2019).De Paoli-Iseppi, R. et al. Measuring animal age with DNA methylation: from humans to wild animals. Front. Genet. 8, 106 (2017).PubMed
PubMed Central
Google Scholar
Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences. Nat. Commun. 13, 783 (2022).CAS
Google Scholar
Armitage, K. B. Reproductive strategies of yellow-bellied marmots: energy conservation and differences between the sexes. J. Mammal. 79, 385–393 (1998).
Google Scholar
Armitage, K. B. in Adaptive Strategies and Diversity in Marmots (eds Ramousse, R. et al.) 133–142 (International Marmot Network, 2003).Snir, S., Farrell, C. & Pellegrini, M. Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 14, 912–926 (2019).PubMed
PubMed Central
Google Scholar
Snir, S., VonHoldt, B. M. & Pellegrini, M. A statistical framework to identify deviation from time linearity in epigenetic aging. PLoS Comput. Biol. 12, e1005183 (2016).PubMed
PubMed Central
Google Scholar
Farrell, C., Snir, S. & Pellegrini, M. The epigenetic pacemaker: modeling epigenetic states under an evolutionary framework. Bioinformatics 36, 4662–4663 (2020).CAS
PubMed
PubMed Central
Google Scholar
Marioni, R. E. et al. Tracking the epigenetic clock across the human life course: a meta-analysis of longitudinal cohort data. J. Gerontol. A 74, 57–61 (2019).
Google Scholar
El Khoury, L. Y. et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 20, 283 (2019).PubMed
PubMed Central
Google Scholar
Kilgore, D. L. & Armitage, K. B. Energetics of yellow-bellied marmot populations. Ecology 59, 78–88 (1978).
Google Scholar
Armitage, K. B. Social and population dynamics of yellow-bellied marmots: results from long-term research. Annu. Rev. Ecol. Syst. 22, 379–407 (1991).
Google Scholar
Webb, D. R. Environmental harshness, heat stress, and Marmota flaviventris. Oecologia 44, 390–395 (1980).
Google Scholar
Armitage, K. B. Evolution of sociality in marmots. J. Mammal. 80, 1–10 (1999).
Google Scholar
Allainé, D. Sociality, mating system and reproductive skew in marmots: evidence and hypotheses. Behav. Processes 51, 21–34 (2000).
Google Scholar
Arnold, W. The evolution of marmot sociality. II. Costs and benefits of joint hibernation. Behav. Ecol. Sociobiol. 27, 239–246 (1990).
Google Scholar
Villanueva-Cañas, J. L., Faherty, S. L., Yoder, A. D. & Albà, M. M. Comparative genomics of mammalian hibernators using gene networks. Integr. Comp. Biol. 54, 452–462 (2014).PubMed
PubMed Central
Google Scholar
Lyman, C. P., O’Brien, R. C., Greene, G. C. & Papafrangos, E. D. Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science 212, 668–670 (1981).CAS
PubMed
PubMed Central
Google Scholar
Kirby, R., Johnson, H. E., Alldredge, M. W. & Pauli, J. N. The cascading effects of human food on hibernation and cellular aging in free-ranging black bears. Sci. Rep. 9, 2197 (2019).PubMed
PubMed Central
Google Scholar
Giroud, S. et al. Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes. Proc. R. Soc. Lond. B 281, 20141131 (2014).
Google Scholar
Hoelzl, F. et al. Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis). Sci. Rep. 6, 36856 (2016).CAS
PubMed
PubMed Central
Google Scholar
Haussmann, M. F. & Mauck, R. A. Telomeres and longevity: testing an evolutionary hypothesis. Mol. Biol. Evol. 25, 220–228 (2008).CAS
PubMed
PubMed Central
Google Scholar
van Lieshout, S. H. J. et al. Individual variation in early-life telomere length and survival in a wild mammal. Mol. Ecol. 28, 4152–4165 (2019).PubMed
PubMed Central
Google Scholar
Lowe, D., Horvath, S. & Raj, K. Epigenetic clock analyses of cellular senescence and ageing. Oncotarget 7, 8524–8531 (2016).PubMed
PubMed Central
Google Scholar
Kabacik, S., Horvath, S., Cohen, H. & Raj, K. Epigenetic ageing is distinct from senescence-mediated ageing and is not prevented by telomerase expression. Aging 10, 2800–2815 (2018).CAS
PubMed
PubMed Central
Google Scholar
Keil, G., Cummings, E. & Magalhães, J. P. Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383–397 (2015).CAS
PubMed
PubMed Central
Google Scholar
Means, L. W., Higgins, J. L. & Fernandez, T. J. Mid-life onset of dietary restriction extends life and prolongs cognitive functioning. Physiol. Behav. 54, 503–508 (1993).CAS
PubMed
PubMed Central
Google Scholar
Speakman, J. R. & Mitchell, S. E. Caloric restriction. Mol. Aspects Med. 32, 159–221 (2011).CAS
PubMed
PubMed Central
Google Scholar
Walford, R. L. & Spindler, S. R. The response to calorie restriction in mammals shows features also common to hibernation: a cross-adaptation hypothesis. J. Gerontol. A 52, B179–B183 (1997).CAS
Google Scholar
Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).CAS
Google Scholar
Conti, B. Considerations on temperature, longevity and aging. Cell. Mol. Life Sci. 65, 1626–1630 (2008).CAS
PubMed
PubMed Central
Google Scholar
Gribble, K. E., Moran, B. M., Jones, S., Corey, E. L. & Mark Welch, D. B. Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature. Exp. Gerontol. 114, 99–106 (2018).PubMed
PubMed Central
Google Scholar
Johns, D. W. & Armitage, K. B. Behavioral ecology of alpine yellow-bellied marmots. Behav. Ecol. Sociobiol. 5, 133–157 (1979).
Google Scholar
Armitage, K. B. Social behaviour of a colony of the yellow-bellied marmot (Marmota flaviventris). Anim. Behav. 10, 319–331 (1962).
Google Scholar
Armitage, K. B. Vernal behaviour of the yellow-bellied marmot (Marmota flaviventris). Anim. Behav. 13, 59–68 (1965).
Google Scholar
Armitage, K. B., Melcher, J. C. & Ward, J. M. Oxygen consumption and body temperature in yellow-bellied marmot populations from montane-mesic and lowland-xeric environments. J. Comp. Physiol. B 160, 491–502 (1990).
Google Scholar
Sheriff, M. J., Williams, C. T., Kenagy, G. J., Buck, C. L. & Barnes, B. M. Thermoregulatory changes anticipate hibernation onset by 45 days: data from free-living arctic ground squirrels. J. Comp. Physiol. B 182, 841–847 (2012).PubMed
PubMed Central
Google Scholar
Schwartz, C., Hampton, M. & Andrews, M. T. Hypothalamic gene expression underlying pre-hibernation satiety. Genes Brain Behav. 14, 310–318 (2015).CAS
PubMed
PubMed Central
Google Scholar
Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).CAS
PubMed
PubMed Central
Google Scholar
Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).CAS
PubMed
PubMed Central
Google Scholar
Hampton, M., Melvin, R. G. & Andrews, M. T. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation. PLoS ONE 8, e85157 (2013).PubMed
PubMed Central
Google Scholar
Lindner, M. et al. Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genomics 22, 36 (2021).CAS
PubMed
PubMed Central
Google Scholar
Schwartz, C., Hampton, M. & Andrews, M. T. Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PLoS ONE 8, e58427 (2013).CAS
PubMed
PubMed Central
Google Scholar
Dopico, X. C. et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 6, 7000 (2015).CAS
PubMed
PubMed Central
Google Scholar
Jansen, H. T. et al. Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun. Biol. 2, 336 (2019).PubMed
PubMed Central
Google Scholar
Viitaniemi, H. M. et al. Seasonal variation in genome-wide DNA methylation patterns and the onset of seasonal timing of reproduction in great tits. Genome Biol. Evol. 11, 970–983 (2019).PubMed
PubMed Central
Google Scholar
Johnston, R. A., Paxton, K. L., Moore, F. R., Wayne, R. K. & Smith, T. B. Seasonal gene expression in a migratory songbird. Mol. Ecol. 25, 5680–5691 (2016).CAS
PubMed
PubMed Central
Google Scholar
Boyer, B. B. & Barnes, B. M. Molecular and metabolic aspects of mammalian hibernation. Bioscience 49, 713–724 (1999).
Google Scholar
Siutz, C., Ammann, V. & Millesi, E. Shallow torpor expression in free-ranging common hamsters with and without food supplements. Front. Ecol. Evol. 6, 190 (2018).
Google Scholar
Langer, F., Havenstein, N. & Fietz, J. Flexibility is the key: metabolic and thermoregulatory behaviour in a small endotherm. J. Comp. Physiol. B 188, 553–563 (2018).PubMed
PubMed Central
Google Scholar
Bieber, C., Turbill, C. & Ruf, T. Effects of aging on timing of hibernation and reproduction. Sci. Rep. 8, 13881 (2018).PubMed
PubMed Central
Google Scholar
Storey, K. B. & Storey, J. M. Aestivation: signaling and hypometabolism. J. Exp. Biol. 215, 1425–1433 (2012).CAS
PubMed
PubMed Central
Google Scholar
Krivoruchko, A. & Storey, K. B. Forever young: mechanisms of natural anoxia tolerance and potential links to longevity. Oxid. Med. Cell. Longev. 3, 186–198 (2010).PubMed
PubMed Central
Google Scholar
Storey, K. B. & Storey, J. M. Metabolic rate depression in animals: transcriptional and translational controls. Biol. Rev. 79, 207–233 (2004).PubMed
PubMed Central
Google Scholar
Puspitasari, A. et al. Hibernation as a tool for radiation protection in space exploration. Life 11, 54 (2021).CAS
PubMed
PubMed Central
Google Scholar
Blumstein, D. T. Yellow-bellied marmots: insights from an emergent view of sociality. Philos. Trans. R. Soc. Lond. B 368, 20120349 (2013).
Google Scholar
Armitage, K. B. & Downhower, J. F. Demography of yellow-bellied marmot populations. Ecology 55, 1233–1245 (1974).
Google Scholar
Zhou, W., Triche, T. J., Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).PubMed
PubMed Central
Google Scholar
Labarre, B. A. et al. MethylToSNP: identifying SNPs in Illumina DNA methylation array data. Epigenetics Chromatin 12, 79 (2019).CAS
PubMed
PubMed Central
Google Scholar
Snir, S., Wolf, Y. I. & Koonin, E. V. Universal pacemaker of genome evolution. PLoS Comput. Biol. 8, e1002785 (2012).CAS
PubMed
PubMed Central
Google Scholar
Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).
Google Scholar
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed
PubMed Central
Google Scholar
Snir, S. & Pellegrini, M. An epigenetic pacemaker is detected via a fast conditional expectation maximization algorithm. Epigenomics 10, 695–706 (2018).CAS
PubMed
PubMed Central
Google Scholar
Wood, S. & Scheipl, F. gamm4: Generalized additive mixed models using mgcv and lme4, R package version 0.2-3 (2014); http://cran.r-project.org/package=gamm4R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: Integrated Development Environment for R (RStudio Inc., 2019).Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).Kluyver, T. et al. in Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds Loizides, F. & Scmidt, B.) 87–90 (IOS Press, 2016); https://doi.org/10.3233/978-1-61499-649-1-87Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots https://cran.r-project.org/package=ggpubr (2020).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Google Scholar
Mclean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).CAS
PubMed
PubMed Central
Google Scholar
Pinho, G. M. et al. Hibernation slows epigenetic ageing in yellow-bellied marmots data sets. OSF https://doi.org/10.17605/OSF.IO/E42ZV (2021). More