More stories

  • in

    Slaked lime improves growth, antioxidant capacity and reduces Cd accumulation of peanut (Arachis hypogaea L.) under Cd stress

    Soil pH, biomass and Cd content of peanutSoil pHFigure 1 shows that, in this study, application of slaked lime significantly increased soil pH in nearly all growth stages (p  C1200  > C900  > C600  > C300  > C0. Among the soil characteristics, soil pH is considered as an important index that impact Cd uptake by crops, since pH can obviously affect the speciation and solubility of Cd in soil liquids15. The use of slaked lime can neutralize excessive H+ concentrations in soil solutions and decrease Cd solubility33, but there were no observable differences among the different growth stages.Figure 1Effects of slaked lime application on soil pH values. The values are means (± SD) of three replicates. Bar groups with different capital letters indicate significant differences (p  More

  • in

    Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia

    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS 

    Google Scholar 
    Davy, R. & Outten, S. The Arctic surface climate in CMIP6: status and developments since CMIP5. J. Clim. 33, 8047–8068 (2020).
    Google Scholar 
    Voigt, C. et al. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Glob. Change Biol. 25, 1746–1764 (2019).
    Google Scholar 
    Swindles, G. T. et al. The long-term fate of permafrost peatlands under rapid climate warming. Sci. Rep. 5, 17951 (2015).CAS 

    Google Scholar 
    Du, R. et al. The role of peat on permafrost thaw based on field observations. Catena 208, 105772 (2022).CAS 

    Google Scholar 
    Chaudhary, N. et al. Modelling past and future peatland carbon dynamics across the pan-Arctic. Glob. Change Biol. 26, 4119–4133 (2020).
    Google Scholar 
    Müller, J. & Joos, F. Committed and projected future changes in global peatlands—continued transient model simulations since the Last Glacial Maximum. Biogeosciences 18, 3657–3687 (2021).
    Google Scholar 
    Seppälä, M. Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quatern. Res. 75, 366–370 (2011).
    Google Scholar 
    Karjalainen, O. et al. High potential for loss of permafrost landforms in a changing climate. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abafd5 (2020).Fan, X., Duan, Q., Shen, C., Wu, Y. & Xing, C. Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15, 104056 (2020).
    Google Scholar 
    Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).
    Google Scholar 
    Zoltai, S. & Tarnocai, C. Properties of a wooded palsa in northern Manitoba. Arct. Alp. Res. 3, 115–129 (1971).
    Google Scholar 
    Minke, M., Donner, N., Karpov, N. S., de Klerk, P. & Joosten, H. Distribution, diversity, development and dynamics of polygon mires: examples from Northeast Yakutia (Siberia). Peatl. Int. 1, 36–40 (2007).
    Google Scholar 
    O’Neill, H. B., Wolfe, S. A. & Duchesne, C. New ground ice maps for Canada using a paleogeographic modelling approach. Cryosphere 13, 753–773 (2019).
    Google Scholar 
    Fronzek, S., Luoto, M. & Carter, T. R. Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim. Res. 32, 1–12 (2006).
    Google Scholar 
    Luoto, M., Fronzek, S. & Zuidhoff, F. S. Spatial modelling of palsa mires in relation to climate in northern Europe. Earth Surf. Process. Landf. 29, 1373–1387 (2004).
    Google Scholar 
    Peregon, A., Maksyutov, S., Kosykh, N. P. & Mironycheva-Tokareva, N. P. Map-based inventory of wetland biomass and net primary production in Western Siberia. J. Geophys. Res. Biogeosci. 113, G01007 (2008).
    Google Scholar 
    Terentieva, I., Lapshina, E. D., Sabrekov, A. F., Maksyutov, S. S. & Glagolev, M. V. Mapping of West Siberian wetland complexes using landsat imagery: implications for methane emissions. Biogeosciences 13, 4615–4626 (2016).CAS 

    Google Scholar 
    Zoltai, S., Siltanen, R. M. & Johnson, J. D. A Wetland Data Base for the Western Boreal, Subarctic, and Arctic Regions of Canada (Natural Resources Canada, Canadian Forest Service, 2000).Fewster, R. E. et al. Drivers of Holocene palsa distribution in North America. Quat. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106337 (2020).Parviainen, M. & Luoto, M. Climate envelopes of mire complex types in Fennoscandia. Geogr. Ann. A 89, 137–151 (2007).
    Google Scholar 
    Aalto, J., Harrison, S. & Luoto, M. Statistical modelling predicts almost complete loss of major periglacial processes in northern Europe by 2100. Nat. Commun. 8, 515 (2017).
    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
    Google Scholar 
    Brunner, L. et al. Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn. 11, 995–1012 (2020).
    Google Scholar 
    O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
    Google Scholar 
    Aalto, J., Venäläinen, A., Heikkinen, R. K. & Luoto, M. Potential for extreme loss in high‐latitude Earth surface processes due to climate change. Geophys. Res. Lett. 41, 3914–3924 (2014).
    Google Scholar 
    Halsey, L. A., Vitt, D. H. & Zoltai, S. C. Disequilibrium response of permafrost in boreal continental western Canada to climate change. Climatic Change 30, 57–73 (1995).
    Google Scholar 
    Camill, P. & Clark, J. S. Climate change disequilibrium of boreal permafrost peatlands caused by local processes. Am. Nat. 151, 207–222 (1998).CAS 

    Google Scholar 
    Borge, A. F., Westermann, S., Solheim, I. & Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 11, 1–16 (2017).
    Google Scholar 
    Åkerman, H. J. & Johansson, M. Thawing permafrost and thicker active layers in sub‐arctic Sweden. Permafr. Periglac. Process. 19, 279–292 (2008).
    Google Scholar 
    Olvmo, M., Holmer, B., Thorsson, S., Reese, H. & Lindberg, F. Sub-arctic palsa degradation and the role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955–2016. Sci. Rep. 10, 8937 (2020).CAS 

    Google Scholar 
    Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).
    Google Scholar 
    Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined from a pan‐Arctic synthesis of plant macrofossils. J. Geophys. Res. Biogeosci. 121, 78–94 (2016).CAS 

    Google Scholar 
    Dearborn, K. D., Wallace, C. A., Patankar, R. & Baltzer, J. L. Permafrost thaw in boreal peatlands is rapidly altering forest community composition. J. Ecol. 109, 1452–1467 (2021).CAS 

    Google Scholar 
    Olefeldt, D. & Roulet, N. T. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J. Geophys. Res. Biogeosci. 117, G01005 (2012).
    Google Scholar 
    Burd, K., Estop-Aragonés, C., Tank, S. E. & Olefeldt, D. Lability of dissolved organic carbon from boreal peatlands: interactions between permafrost thaw, wildfire, and season. Can. J. Soil Sci. 100, 503–515 (2020).
    Google Scholar 
    Klaminder, J., Yoo, K., Rydberg, J. & Giesler, R. An explorative study of mercury export from a thawing palsa mire. J. Geophys. Res. Biogeosci. 113, G04034 (2008).
    Google Scholar 
    Luoto, M. & Seppälä, M. Thermokarst ponds as indicators of the former distribution of palsas in Finnish Lapland. Permafr. Periglac. Process. 14, 19–27 (2003).
    Google Scholar 
    Vitt, D. H., Halsey, L. A. & Zoltai, S. C. The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Can. J. For. Res. 30, 283–287 (2000).
    Google Scholar 
    Turetsky, M., Wieder, R., Vitt, D., Evans, R. & Scott, K. The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Glob. Change Biol. 13, 1922–1934 (2007).
    Google Scholar 
    Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).
    Google Scholar 
    Magnússon, R. Í. et al. Rapid vegetation succession and coupled permafrost dynamics in Arctic thaw ponds in the Siberian lowland tundra. J. Geophys. Res. Biogeosci. 125, e2019JG005618 (2020).
    Google Scholar 
    Zoltai, S. Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years bp. Géogr. Phys. Quat. 49, 45–54 (1995).
    Google Scholar 
    Seppälä, M. An expermental study of the formation of palsas. In Proc. 4th Canadian Permafrost Conference (ed. French, H. M.) 36–42 (National Research Council of Canada, Ottawa, 1982).Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
    Google Scholar 
    Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).
    Google Scholar 
    Thurner, M. et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310 (2014).
    Google Scholar 
    Seppälä, M. The origin of palsas. Geogr. Ann. A 68, 141–147 (1986).
    Google Scholar 
    Mamet, S. D., Chun, K. P., Kershaw, G. G., Loranty, M. M. & Peter Kershaw, G. Recent increases in permafrost thaw rates and areal loss of palsas in the western Northwest Territories, Canada. Permafr. Periglac. Process. 28, 619–633 (2017).
    Google Scholar 
    Camill, P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Climatic Change 68, 135–152 (2005).CAS 

    Google Scholar 
    Quinton, W. L. & Baltzer, J. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada). Hydrol. J. 21, 201–220 (2013).
    Google Scholar 
    Turetsky, M. R., Wieder, R. K. & Vitt, D. H. Boreal peatland C fluxes under varying permafrost regimes. Soil Biol. Biochem. 34, 907–912 (2002).CAS 

    Google Scholar 
    Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).
    Google Scholar 
    Myers‐Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).
    Google Scholar 
    Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).
    Google Scholar 
    Gibson, C. M., Estop-Aragonés, C., Flannigan, M., Thompson, D. K. & Olefeldt, D. Increased deep soil respiration detected despite reduced overall respiration in permafrost peat plateaus following wildfire. Environ. Res. Lett. 14, 125001 (2019).CAS 

    Google Scholar 
    Estop-Aragonés, C. et al. Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst. Environ. Res. Lett. 13, 085002 (2018).
    Google Scholar 
    Treat, C. C. et al. Predicted vulnerability of carbon in permafrost peatlands with future climate change and permafrost thaw in western Canada. J. Geophys. Res. Biogeosci. 126, e2020JG005872 (2021).CAS 

    Google Scholar 
    Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).
    Google Scholar 
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS 

    Google Scholar 
    Heffernan, L., Estop‐Aragonés, C., Knorr, K. H., Talbot, J. & Olefeldt, D. Long‐term impacts of permafrost thaw on carbon storage in peatlands: deep losses offset by surficial accumulation. J. Geophys. Res. Biogeosci. 125, e2019JG005501 (2020).CAS 

    Google Scholar 
    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).CAS 

    Google Scholar 
    Qiu, C. et al. The role of northern peatlands in the global carbon cycle for the 21st century. Glob. Ecol. Biogeogr. 29, 956–973 (2020).
    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    Hugelius, G. et al. Maps of Northern Peatland Extent, Depth, Carbon Storage and Nitrogen Storage Version 1.0 (Bolin Centre for Climate Research, 2020); https://doi.org/10.17043/hugelius-2020Brownrigg, R. mapdata: Extra Map Databases. R version 2.3.0 https://CRAN.R-project.org/package=mapdata (2018).Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2013).
    Google Scholar 
    Pissart, A. Palsas, lithalsas and remnants of these periglacial mounds: a progress report. Prog. Phys. Geog. 26, 605–621 (2002).
    Google Scholar 
    Wolfe, S. A., Stevens, C. W., Gaanderse, A. J. & Oldenborger, G. A. Lithalsa distribution, morphology and landscape associations in the Great Slave Lowland, Northwest Territories, Canada. Geomorphology 204, 302–313 (2014).
    Google Scholar 
    Lara, M. J., Nitze, I., Grosse, G. & McGuire, A. D. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska. Sci. Data 5, 180058 (2018).
    Google Scholar 
    Jorgenson, M. T. & Grunblatt, J. Landscape-Level Ecological Mapping of Northern Alaska and Field Site Photography (Arctic Landscape Conservation Cooperative, U.S. Fish & Wildlife Service, 2013).Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
    Google Scholar 
    ESRI. ArcMap v.10.6.1 (Environmental Systems Research Institute, 2018).Brown, J., Ferrians, O. Jr, Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions (US Geological Survey, 1997).QGIS v.3.12 (QGIS Association, 2020); https://qgis.orgHugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3 (2013).
    Google Scholar 
    Everett, K. R. in Developments in Soil Science Vol. 11 (eds Wilding, L. P. et al.) 1–53 (Elsevier, 1983).Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).CAS 

    Google Scholar 
    Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 7 (IPCC, Cambridge Univ. Press, 2021).Flynn, C. M. & Mauritsen, T. On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmos. Chem. Phys. 20, 7829–7842 (2020).CAS 

    Google Scholar 
    Morris, P. J. et al. Global peatland initiation driven by regionally asynchronous warming. Proc. Natl Acad. Sci. USA 115, 4851–4856 (2018).CAS 

    Google Scholar 
    Latombe, G. et al. Comparison of spatial downscaling methods of general circulation model results to study climate variability during the Last Glacial Maximum. Geosci. Model Dev. 11, 2563–2579 (2018).
    Google Scholar 
    Galar, M., Fernández, A., Barrenechea, E., Bustince, H. & Herrera, F. An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 44, 1761–1776 (2011).
    Google Scholar 
    Petrucci, C. J. A primer for social worker researchers on how to conduct a multinomial logistic regression. J. Soc. Serv. Res. 35, 193–205 (2009).
    Google Scholar 
    Fronzek, S. et al. Evaluating sources of uncertainty in modelling the impact of probabilistic climate change on sub-arctic palsa mires. Nat. Hazards Earth Syst. Sci. 11, 2981–2995 (2011).
    Google Scholar 
    Aalto, J. & Luoto, M. Integrating climate and local factors for geomorphological distribution models. Earth Surf. Process. Landf. 39, 1729–1740 (2014).
    Google Scholar 
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).
    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    Anisimov, O. A. & Nelson, F. E. Permafrost zonation and climate change in the northern hemisphere: results from transient general circulation models. Climatic Change 35, 241–258 (1997).
    Google Scholar 
    Armstrong, R. A. When to use the Bonferroni correction. Ophthalm. Physiol. Opt. 34, 502–508 (2014).
    Google Scholar 
    Menard, S. Standards for standardized logistic regression coefficients. Soc. Forces 89, 1409–1428 (2011).
    Google Scholar 
    Powers, D. M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. Mach. Learn. Technol. 2, 37–63 (2011).
    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245 (2000).
    Google Scholar  More

  • in

    The hardy Hawaiian corals that could thrive in warming seas

    .readcube-buybox { display: none !important;}

    Some species of coral might be able to adapt to a world altered by climate change, at least if countries curb their greenhouse-gas emissions1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00719-x

    ReferencesMcLachlan, R. H. et al. Sci. Rep. 12, 3712 (2022).PubMed 
    Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Discovery of a Ni2+-dependent guanidine hydrolase in bacteria
    Article 09 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    How itchy vicuñas remade a vast wilderness
    Research Highlight 04 MAR 22

    Jobs

    Postdoctoral Research Fellow

    Center for Genomic Medicine (CGM), MGH
    Boston, MA, United States

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Doctoral Candidate (PhD student) in Hybrid Satellite-Terrestrial Connectivity Solutions for Emerging IoT/MTC Systems

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg

    Research Associate (Postdoc) in Artificial Intelligence for Space Applications

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg More

  • in

    Intra- and inter-spatial variability of meiofauna in hadal trenches is linked to microbial activity and food availability

    Danovaro, R., Snelgrove, P. V. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).PubMed 

    Google Scholar 
    Smith, C. R., Hoover, D. J. & Doan, S. E. Phytodetritus at the abyssal seafloor across 10° of latitude in the central equatorial Pacific. Oceanogr. Lit. Rev. 4, 318 (1997).
    Google Scholar 
    Buesseler, K. O. et al. Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567–570 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rex, M. A. et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317, 1–8 (2006).ADS 

    Google Scholar 
    Clough, L. M., Renaud, P. E. & Ambrose, W. G. Jr. Impacts of water depth, sediment pigment concentration, and benthic macrofaunal biomass on sediment oxygen demand in the western Arctic Ocean. Can. J. Fish. Aquat. Sci. 62, 1756–1765 (2005).CAS 

    Google Scholar 
    Gorska, B., Soltwedel, T., Schewe, I. & Wlodarska-Kowalczuk, M. Bathymetric trends in biomass size spectra, carbon demand, and production of Arctic benthos (76–5561 m, Fram Strait). Prog. Oceanogr. 186, 102370 (2020).
    Google Scholar 
    Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Sci. Data 7, 206 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).
    Google Scholar 
    Zeppilli, D. et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodivers. 48, 35–71 (2018).
    Google Scholar 
    Rosli, N., Leduc, D., Rowden, A. A. & Probert, P. K. Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar. Biodivers. 48, 13–34 (2018).
    Google Scholar 
    Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).
    Google Scholar 
    Berg, P., Rysgaard, S., Funch, P. & Sejr, M. K. Effects of bioturbation on solutes and solids in marine sediments. Aquat. Microb. Ecol. 26, 81–94 (2001).
    Google Scholar 
    Aller, R. C. & Aller, J. Y. Meiofauna and solute transport in marine muds. Limnol. Oceanogr. 37, 1018–1033 (1992).ADS 
    CAS 

    Google Scholar 
    Leduc, D. et al. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: possible effects of differences in organic matter supply. Deep Sea Res. Part Oceanogr. Res. Pap. 116, 264–275 (2016).ADS 

    Google Scholar 
    Schmidt, C. & Martínez Arbizu, P. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains. Deep Sea Res. Part II Top. Stud. Oceanogr. 111, 60–75 (2015).ADS 
    CAS 

    Google Scholar 
    Danovaro, R., Gambi, C. & DellaCroce, N. Meiofauna hotspot in the Atacama Trench, eastern south Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 49, 843–857 (2002).ADS 
    CAS 

    Google Scholar 
    Ichino, M. C. et al. The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res. Part Oceanogr. Res. Pap. 100, 21–33 (2015).ADS 
    CAS 

    Google Scholar 
    Shirayama, Y. The abundance of deep-sea meiobenthos in the western pacific in relation to environmental-factors. Oceanol. Acta 7, 113–121 (1984).
    Google Scholar 
    Leduc, D. & Rowden, A. A. Nematode communities in sediments of the Kermadec Trench, Southwest Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 134, 23–31 (2018).ADS 

    Google Scholar 
    Brandt, A., Brix, S., Riehl, T. & Malyutina, M. Biodiversity and biogeography of the abyssal and hadal Kuril-Kamchatka trench and adjacent NW Pacific deep-sea regions. Prog. Oceanogr. 181, 102232 (2020).
    Google Scholar 
    Schmidt, C., Escobar Wolf, K., Lins, L., Martínez Arbizu, P. & Brandt, A. Meiofauna abundance and community patterns along a transatlantic transect in the Vema Fracture Zone and in the hadal zone of the Puerto Rico trench. Deep Sea Res. Part II Top. Stud. Oceanogr. 148, 223–235 (2018).ADS 

    Google Scholar 
    Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).PubMed 

    Google Scholar 
    Jamieson, A. J. Ecology of deep oceans: hadal trenches. eLS https://doi.org/10.1002/9780470015902.a0023606 (2011).Article 

    Google Scholar 
    Stewart, H. A. & Jamieson, A. J. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies. Prog. Oceanogr. 161, 47–65 (2018).ADS 

    Google Scholar 
    Wenzhöfer, F. et al. Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements. Deep Sea Res. Part Oceanogr Res Pap. 116, 276–286 (2016).ADS 

    Google Scholar 
    Glud, R. N. et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Commun. Earth Environ. 2, 1–8 (2021).ADS 

    Google Scholar 
    Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).ADS 
    CAS 

    Google Scholar 
    Xu, Y. et al. Distribution, source, and burial of sedimentary organic carbon in Kermadec and Atacama Trenches. J. Geophys. Res. Biogeosciences 126, e2020JG006189 (2021).ADS 
    CAS 

    Google Scholar 
    Itou, M., Matsumura, I. & Noriki, S. A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake. Deep Sea Res. Part Oceanogr. Res. Pap. 47, 1987–1998 (2000).ADS 
    CAS 

    Google Scholar 
    Oguri, K. et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki Earthquake. Sci. Rep. 3, 1–6 (2013).
    Google Scholar 
    Luo, M. et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption. Geophys. Res. Lett. 45, 2752–2760 (2018).ADS 
    CAS 

    Google Scholar 
    Itoh, M. et al. Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 58, 86–97 (2011).ADS 

    Google Scholar 
    Tietjen, J. H., Deming, J. W., Rowe, G. T., Macko, S. & Wilke, R. J. Meiobenthos of the hatteras abyssal plain and Puerto Rico trench: abundance, biomass and associations with bacteria and particulate fluxes. Deep Sea Res. Part Oceanogr. Res. Pap. 36, 1567–1577 (1989).ADS 

    Google Scholar 
    Richardson, M. D., Briggs, K. B., Bowles, F. A. & Tietjen, J. H. A depauperate benthic assemblage from the nutrient-poor sediments of the Puerto Rico Trench. Deep Sea Res. Part Oceanogr. Res. Pap. 42, 351–364 (1995).ADS 

    Google Scholar 
    Tietjen, J. H. Ecology of deep-sea nematodes from the Puerto Rico trench area and Hatteras Abyssal plain. Deep Sea Res. Part Oceanogr. Res. Pap. 36, 1579–1594 (1989).ADS 

    Google Scholar 
    Shirayama, Y. & Kojima, S. Abundance of deep-sea meiobenthos off Sanriku, Northeastern Japan. J. Oceanogr. 50, 109–117 (1994).
    Google Scholar 
    Ingels, J. et al. Preferred use of bacteria over phytoplankton by deep-sea nematodes in polar regions. Mar. Ecol. Prog. Ser. 406, 121–133 (2010).ADS 
    CAS 

    Google Scholar 
    Guilini, K., Oevelen, D. V., Soetaert, K., Middelburg, J. J. & Vanreusela, A. Nutritional importance of benthic bacteria for deep-sea nematodes from the Arctic ice margin: Results of an isotope tracer experiment. Limnol. Oceanogr. 55, 1977–1989 (2010).ADS 
    CAS 

    Google Scholar 
    Moens, T., Verbeeck, L., de Maeyer, A., Swings, J. & Vincx, M. Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar. Ecol. Prog. Ser. 176, 165–178 (1999).ADS 

    Google Scholar 
    Schmidt, C., Sattarova, V. V., Katrynski, L. & Arbizu, P. M. New insights from the deep: Meiofauna in the Kuril-Kamchatka Trench and adjacent abyssal plain. Prog. Oceanogr. 173, 192–207 (2019).ADS 

    Google Scholar 
    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS 
    CAS 

    Google Scholar 
    Neira, C., Sellanes, J., Levin, L. A. & Arntz, W. E. Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep Sea Res. Part Oceanogr. Res. Pap. 48, 2453–2472 (2001).ADS 
    CAS 

    Google Scholar 
    Soltwedel, T. Metazoan meiobenthos along continental margins: a review. Prog. Oceanogr. 46, 59–84 (2000).ADS 

    Google Scholar 
    Rowe, G. T., Sibuet, M., Deming, J., Tietjen, J. & Khripounoff, A. Organic carbon turnover time in deep-sea benthos. Prog. Oceanogr. 24, 141–160 (1990).ADS 

    Google Scholar 
    Tselepides, A. et al. Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterranean). Prog. Oceanogr. 46, 311–344 (2000).ADS 

    Google Scholar 
    Hansen, J. & Josefson, A. Pools of chlorophyll and live planktonic diatoms in aphotic marine sediments. Mar. Biol. 139, 289–299 (2001).CAS 

    Google Scholar 
    Hargraves, P. E. & French, S. Survival characteristics of marine diatom resting spores. in JOURNAL OF PHYCOLOGY vol. 11 6–6 (PHYCOLOGICAL SOC AMER INC 810 EAST 10TH ST, LAWRENCE, KS 66044, 1975).Schauberger, C. et al. Spatial variability of prokaryotic and viral abundances in the Kermadec and Atacama Trench regions. Limnol. Oceanogr. 66(6), 2095–2109 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Oevelen, D. et al. Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait). Deep Sea Res. Part Oceanogr. Res. Pap. 58, 1069–1083 (2011).ADS 

    Google Scholar 
    Heip, C. H. R. et al. The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 3223–3243 (2001).ADS 
    CAS 

    Google Scholar 
    Rowe, G. T. et al. Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 2699–2711 (2008).ADS 
    CAS 

    Google Scholar 
    Baguley, J. G., Montagna, P. A., Hyde, L. J. & Rowe, G. T. Metazoan meiofauna biomass, grazing, and weight-dependent respiration in the Northern Gulf of Mexico deep sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 2607–2616 (2008).ADS 
    CAS 

    Google Scholar 
    Maciute, A. et al. A microsensor-based method for measuring respiration of individual nematodes. Methods Ecol. Evol. 12(10), 1841–1847. https://doi.org/10.1111/2041-210X.13674 (2021).
    Article 

    Google Scholar 
    Montagna, P. A. In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. (1984).Danovaro, R. Detritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar. Biol. 127, 1–13 (1996).CAS 

    Google Scholar 
    Pape, E., van Oevelen, D., Moodley, L., Soetaert, K. & Vanreusel, A. Nematode feeding strategies and the fate of dissolved organic matter carbon in different deep-sea sedimentary environments. Deep Sea Res. Part Oceanogr. Res. Pap. 80, 94–110 (2013).ADS 
    CAS 

    Google Scholar 
    Wieser, W. Beziehungen zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden mari- nen Nematoden. Ark. För Zool. 2, 439–484 (1953).
    Google Scholar 
    Moens, T. & Vincx, M. Observations on the feeding ecology of estuarine nematodes. J. Mar. Biol. Assoc. U. K. 77, 211–227 (1997).
    Google Scholar 
    Moens, T. et al. Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment. Polar Biol. 31, 1–13 (2007).
    Google Scholar 
    Ingels, J., Kiriakoulakis, K., Wolff, G. A. & Vanreusel, A. Nematode diversity and its relation to the quantity and quality of sedimentary organic matter in the deep Nazaré Canyon, Western Iberian Margin. Deep Sea Res. Part Oceanogr. Res. Pap. 56, 1521–1539 (2009).ADS 
    CAS 

    Google Scholar 
    Gambi, C., Vanreusel, A. & Danovaro, R. Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep Sea Res. Part Oceanogr. Res. Pap. 50, 103–117 (2003).ADS 

    Google Scholar 
    Vanhove, S., Vermeeren, H. & Vanreusel, A. Meiofauna towards the South Sandwich Trench (750–6300 m), focus on nematodes. Deep Sea Res. Part II Top Stud. Oceanogr. 51, 1665–1687 (2004).ADS 

    Google Scholar 
    Jumars, P. A. & Hessler, R. R. Hadal community structure: implications from the Aleutian Trench. J. Mar. Res. 34, 547–560 (1976).
    Google Scholar 
    Kim, D.-S. & Min, W.-G. Meiobenthic communities in extreme deep-sea environment. Korean J. Fish. Aquat. Sci. 39, 203–213 (2006).
    Google Scholar 
    Wenzhöfer, F. The Expedition SO261 of the Research Vessel SONNE to the Atacama Trench in the Pacific Ocean in 2018. Berichte Zur Polar- Meeresforsch. Rep. Polar Mar. Res. 729, 111. https://doi.org/10.2312/BzPM_0729_2019 (2019).Article 

    Google Scholar 
    Scholl, D. W., Christensen, M. N., von Huene, R. & Marlow, M. S. Peru-Chile trench sediments and sea-floor spreading. Geol. Soc. Am. Bull. 81, 1339–1360 (1970).ADS 

    Google Scholar 
    Fisher, R. L. & Raitt, R. W. Topography and structure of the Peru-Chile trench. In Deep Sea Research and Oceanographic Abstracts vol. 9 423–443 (Elsevier, 1962).Bandy, O. L. & Rodolfo, K. S. Distribution of foraminifera and sediments, Peru-Chile Trench area. In Deep Sea Research and Oceanographic Abstracts vol. 11 817–837 (Elsevier, 1964).Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans https://doi.org/10.1029/2006JC003706 (2007).Article 

    Google Scholar 
    Carrie, J., Sanei, H. & Stern, G. Standardisation of Rock-Eval pyrolysis for the analysis of recent sediments and soils. Org. Geochem. 46, 38–53 (2012).CAS 

    Google Scholar 
    Shuman, F. R. & Lorenzen, C. J. Quantitative degradation of chlorophyll by a marine herbivore 1. Limnol. Oceanogr. 20, 580–586 (1975).ADS 
    CAS 

    Google Scholar 
    Glud, R. N. et al. In situ microscale variation in distribution and consumption of 2: a case study from a deep ocean margin sediment (Sagami Bay, Japan). Limnol. Oceanogr. 54, 1–12 (2009).ADS 
    CAS 

    Google Scholar 
    Revsbech, N. P. An oxygen microelectrode with a guard cathode. Linnol. Oceanogr. 34, 474–487 (1989).ADS 
    CAS 

    Google Scholar 
    Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).ADS 
    CAS 

    Google Scholar 
    Feller, R. J. & Warwick, R. M. Energetics. in Feller, R.J. and Warwick, R.M. (1988) Energetics. In: Higgins, R.P. and Thiel, H., (eds.) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, D.C, pp. 181–196. (eds. Higgins, R. P. & Thiel, H.) 181–196 (Smithsonian Institution Press, 1988).Mahaut, M.-L., Sibuet, M. & Shirayama, Y. Weight-dependent respiration rates in deep-sea organisms. Deep Sea Res. Part Oceanogr. Res. Pap. 42, 1575–1582 (1995).ADS 

    Google Scholar  More

  • in

    Changes in trophic structure of an exploited fish community at the centennial scale are linked to fisheries and climate forces

    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Luong, A. D., Dewulf, J. & De Laender, F. Quantifying the primary biotic resource use by fisheries: A global assessment. Sci. Total Environ. 719, 137352 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauly, D. How the global fish market contributes to human micronutrient deficiencies. Nature 574, 41–42 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture 2020 (FAO, 2020). https://doi.org/10.4060/ca9229en.Book 

    Google Scholar 
    Shin, Y.-J., Rochet, M.-J., Jennings, S., Field, J. G. & Gislason, H. Using size-based indicators to evaluate the ecosystem effects of fishing. ICES J. Mar. Sci. 62, 384–396 (2005).
    Google Scholar 
    Perry, A. L. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Novaglio, C., Smith, A. D. M., Frusher, S. & Ferretti, F. Identifying historical baseline at the onset of exploitation to improve understanding of fishing impacts. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30, 475–485 (2020).
    Google Scholar 
    Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl. Acad. Sci. 112, 13272–13277 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Ullah, H. & Connell, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 832, 829–832 (2020).ADS 

    Google Scholar 
    Lemoine, N. P. & Burkepile, D. E. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93, 2483–2489 (2012).PubMed 

    Google Scholar 
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wing, S. R., Durante, L. M., Connolly, A. J., Sabadel, A. J. M. & Wing, L. C. Overexploitation and decline in kelp forests inflate the bioenergetic costs of fisheries. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13448 (2021).Article 

    Google Scholar 
    Maureaud, A. et al. Global change in the trophic functioning of marine food webs. PLoS One 12, e0182826 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 

    Google Scholar 
    Chown, S. L. Marine food webs destabilized. Science 369, 770–771 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: Confirmations from the past. PLoS One 9, 1–13 (2014).
    Google Scholar 
    Gilby, B. L. et al. Human actions alter tidal marsh seascapes and the provision of ecosystem services. Estuaries Coasts https://doi.org/10.1007/s12237-020-00830-0 (2020).Article 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durante, L. M., Beentjes, M. P. & Wing, S. R. Shifting trophic architecture of marine fisheries in New Zealand: Implications for guiding effective ecosystem-based management. Fish Fish. 21, 813–830 (2020).
    Google Scholar 
    Shears, N. T. & Bowen, M. M. Half a century of coastal temperature records reveal complex warming trends in western boundary currents. Sci. Rep. 7, 1–9 (2017).CAS 

    Google Scholar 
    Wing, S. R. & Wing, E. Prehistoric fisheries in the Caribbean. Coral Reefs 20, 1–8 (2001).
    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Irwin, G. & Walrond, C. ‘When was New Zealand first settled?—Extinction and decline’. Te Ara—the Encyclopedia of New Zealand 8 (2016). http://www.teara.govt.nz/en/when-was-new-zealand-first-settled/page-7. Accessed 4 June 2019.Johnson, D. & Haworth, J. Hooked—The Sory of New Zealand Fishing Industry (Hazard Press, 2004).
    Google Scholar 
    Urlich, S. C. & Handley, S. J. From ‘clean and green’ to ‘brown and down’: A synthesis of historical changes to biodiversity and marine ecosystems in the Marlborough Sounds, New Zealand. Ocean Coast. Manage. 198, 105349 (2020).
    Google Scholar 
    Ramos, R. & González-Solís, J. Trace me if you can: The use of intrinsic biogeochemical markers in marine top predators. Front. Ecol. Environ. 10, 258–266 (2012).
    Google Scholar 
    Graham, D. H. Food of fishes of Otago Harbour and Adjacent Sea. R. Soc. N. Z. 20, 421–436 (1939).
    Google Scholar 
    Hanchet, S. Diet of spiny dogfish, Squalus acanthias Linnaeus, on the east coast, South Island, New Zealand. J. Fish Biol. 39, 313–323 (1991).
    Google Scholar 
    Connell, A., Dunn, M. & Forman, J. Diet and dietary variation of New Zealand hoki Macruronus novaezelandiae. NZ J. Mar. Freshw. Res. 44, 289–308 (2010).
    Google Scholar 
    Forman, J. & Dunn, M. The influence of ontogeny and environment on the diet of lookdown dory, Cyttus traversi. NZ J. Mar. Freshw. Res. 44, 329–342 (2010).
    Google Scholar 
    Horn, P. L., Forman, J. S. & Dunn, M. R. Dietary partitioning by two sympatric fish species, red cod (Pseudophycis bachus) and sea perch ( Helicolenus percoides), on Chatham Rise, New Zealand. Mar. Biol. Res. 8, 624–634 (2012).
    Google Scholar 
    Fisheries New Zealand. Fisheries Assessment Plenary, May 2020: Stock Assessments and Stock Status (2020).Ladds, M., Pinkerton, M. H., Jones, E., Durante, L. & Dunn, M. Relationship between morphometrics and trophic levels in deep-sea fishes. Mar. Ecol. Prog. Ser. 637, 225–235 (2020).ADS 

    Google Scholar 
    Durante, L. M. et al. Oceanographic transport along frontal zones forms carbon, nitrogen, and oxygen isoscapes on the east coast of New Zealand : Implications for ecological studies. Cont. Shelf Res. 216, 1–15 (2021).
    Google Scholar 
    Funes, M., Irigoyen, A. J., Trobbiani, G. A. & Galván, D. E. Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs 17, 1–9 (2018).
    Google Scholar 
    Zeldis, J. R. & Jillett, J. B. Aggregation of pelagic Munida gregaria (Fabricius) (Decapoda, Anomura) by coastal fronts and internal waves. J. Plankton Res. 4, 839–857 (1982).
    Google Scholar 
    Durante, L. M., Beentjes, M. P. & Wing, S. R. Decadal changes in exploited fish communities and their relationship with temperature, fisheries exploitation, and ecological traits in New Zealand waters. NZ J. Mar. Freshw. Res. 10, 1–27 (2021).
    Google Scholar 
    Prugh, L. R. et al. The rise of the mesopredator. Bioscience 59, 779–791 (2009).
    Google Scholar 
    Chiswell, S. M. & Sutton, P. J. H. Relationships between long-term ocean warming, marine heat waves and primary production in the New Zealand region. NZ J. Mar. Freshw. Res. https://doi.org/10.1080/00288330.2020.1713181 (2020).Article 

    Google Scholar 
    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 1–10 (2019).
    Google Scholar 
    Pinkerton, M. H. et al. Changes to the food-web of the Hauraki Gulf during the period of human occupation: A mass-balance model approach. New Zealand Aquatic Environment and Biodiversity Report No. 160. (2015).Garrison, L. Fishing effects on spatial distribution and trophic guild structure of the fish community in the Georges Bank region. ICES J. Mar. Sci. 57, 723–730 (2000).
    Google Scholar 
    Link, J. S. & Garrison, L. P. Changes in piscivory associated with fishing induced changes to the finfish community on Georges Bank. Fish. Res. 55, 71–86 (2002).
    Google Scholar 
    Wainright, S. C., Fogarty, M. J., Greenfield, R. C. & Fry, B. Long-term changes in the Georges Bank food web: Trends in stable isotopic compositions of fish scales. Mar. Biol. 115, 481–493 (1993).
    Google Scholar 
    Udy, J. A. et al. Regional differences in supply of organic matter from kelp forests drive trophodynamics of temperate reef fish. Mar. Ecol. Prog. Ser. 621, 19–32 (2019).ADS 

    Google Scholar 
    Koenigs, C., Miller, R. & Page, H. Top predators rely on carbon derived from giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 537, 1–8 (2015).ADS 
    CAS 

    Google Scholar 
    Clark, M. R., Anderson, O. F., Chris Francis, R. I. C. & Tracey, D. M. The effects of commercial exploitation on orange roughy (Hoplostethus atlanticus) from the continental slope of the Chatham Rise, New Zealand, from 1979 to 1997. Fish. Res. 45, 217–238 (2000).
    Google Scholar 
    Fenaughty, J. M. & Bagley, N. M. WJ Scott New Zealand Trawling Survey—South Island East Coast. Technical Report 157. (1981).Brodeur, R. & Pearcy, W. Effects of environmental variability on trophic interactions and food web structure in a pelagic upwelling ecosystem. Mar. Ecol. Prog. Ser. 84, 101–119 (1992).ADS 

    Google Scholar 
    Tam, J., Purca, S., Duarte, L. O., Blaskovic, V. & Espinoza, P. Changes in the diet of hake associated with El Niño 1997–1998 in the northern Humboldt Current ecosystem. Adv. Geosci. 6, 63–67 (2006).
    Google Scholar 
    Murphy, R. J., Pinkerton, M. H., Richardson, K. M., Bradford-Grieve, J. M. & Boyd, P. W. Phytoplankton distributions around New Zealand derived from SeaWiFS remotely-sensed ocean colour data. NZ J. Mar. Freshw. Res. 35, 343–362 (2001).
    Google Scholar 
    Zeldis, J. Ecology of Munida gregaria (Decapoda, Anomura) distribution and abundance, population dynamics and fisheries. Mar. Ecol. Prog. Ser. 22, 77–99 (1985).ADS 

    Google Scholar 
    Williams, B. G. The effect of the environment on the morphology of Munida Gregaria (Fabricius) (Decapoda, Anomura). Crustaceana 24, 197–210 (1973).
    Google Scholar 
    Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Udy, J. A. et al. Organic matter derived from kelp supports a large proportion of biomass in temperate rocky reef fish communities: Implications for ecosystem-based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1503–1519 (2019).
    Google Scholar 
    Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 

    Google Scholar 
    Kirby, R. R., Beaugrand, G. & Lindley, J. A. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12, 548–561 (2009).
    Google Scholar 
    MacGibbon, D. J., Beentjes, M. P., Lyon, W. L. & Ladroit, Y. Inshore trawl survey of Canterbury Bight and Pegasus Bay, April–June 2018 (KAH1803). New Zealand Fisheries Assessment Report 2019/03. (2019).Stevens, W. D., O’Driscoll, R. L., Ballara, S. L. & Schimel, A. C. G. Trawl survey of hoki and middle-depth species on the Chatham Rise, January 2018 (TAN1801). New Zealand Fisheries Assessment Report 2018/41. (2018).Durante, L. M., Sabadel, A. J. M., Frew, R. D., Ingram, T. & Wing, S. R. Effects of fixatives on stable isotopes of fish muscle tissue: Implications for trophic studies on preserved specimens. Ecol. Appl. 30, 1–16 (2020).
    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).
    Google Scholar 
    Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).ADS 
    PubMed 

    Google Scholar 
    Verburg, P. The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. J. Paleolimnol. 37, 591–602 (2007).ADS 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 2, 229–300 (1979).CAS 

    Google Scholar 
    Sabadel, A., Durante, L. & Wing, S. Stable isotopes of amino acids from reef fishes uncover Suess and nitrogen enrichment effects on local ecosystems. Mar. Ecol. Prog. Ser. 647, 149–160 (2020).ADS 
    CAS 

    Google Scholar 
    Eide, M., Olsen, A., Ninnemann, U. S. & Eldevik, T. A global estimate of the full oceanic 13C Suess effect since the preindustrial. Glob. Biogeochem. Cycles 31, 492–514 (2017).ADS 
    CAS 

    Google Scholar 
    McMahon, K. W. & McCarthy, M. D. Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, 1–26 (2016).
    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).CAS 

    Google Scholar 
    Whiteman, J. P., Smith, E. A. E., Besser, A. C. & Newsome, S. D. A guide to using compound-specific stable isotope analysis to study the fates of molecules in organisms and ecosystems. Diversity 11, 1–18 (2019).
    Google Scholar 
    Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin. Glob. Change Biol. 12, 611–625 (2006).ADS 

    Google Scholar 
    Lorrain, A. et al. Nitrogen and carbon isotope values of individual amino acids: A tool to study foraging ecology of penguins in the Southern Ocean. Mar. Ecol. Prog. Ser. 391, 293–306 (2009).ADS 
    CAS 

    Google Scholar 
    Quillfeldt, P. & Masello, J. F. Compound-specific stable isotope analyses in Falkland Islands seabirds reveal seasonal changes in trophic positions. BMC Ecol. 20, 1–12 (2020).
    Google Scholar 
    Sabadel, A. J. M., Woodward, E. M. S., Van Hale, R. & Frew, R. D. Compound-specific isotope analysis of amino acids: A tool to unravel complex symbiotic trophic relationships. Food Webs 6, 9–18 (2016).
    Google Scholar 
    Styring, A. K. et al. Practical considerations in the determination of compound-specific amino acid δ15N values in animal and plant tissues by gas chromatography-combustion-isotope ratio mass spectrometry, following derivatisation to their N-acetylisopropyl e. Rapid Commun. Mass Spectrom. 26, 2328–2334 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Phillips, D. L. & Gregg, J. W. J. W. Uncertainty in source partitioning using stable isotopes. Oecologia 127, 171–179 (2001).ADS 
    PubMed 

    Google Scholar 
    Jack, L. & Wing, S. R. Individual variability in trophic position and diet of a marine omnivore is linked to kelp bed habitat. Mar. Ecol. Prog. Ser. 443, 129–139 (2011).ADS 
    CAS 

    Google Scholar 
    McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).CAS 

    Google Scholar 
    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).PubMed 

    Google Scholar 
    McMahon, K. W., Thorrold, S. R., Elsdon, T. S. & Mccarthy, M. D. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol. Oceanogr. 60, 1076–1087 (2015).ADS 
    CAS 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 

    Google Scholar 
    Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).PubMed 

    Google Scholar 
    Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001).CAS 

    Google Scholar 
    Anderson, M., Gorley, R. N. & Clarke, K. R. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. 1, 1:218 (2008).Mullan, A. Influence of Southern Oscillation on New Zealand Weather. In Proceedings of Western Pacific International Meeting and Workshop on TOGA-COARE (1996).Francis, M. P., Hurst, R. J., McArdle, B. H., Bagley, N. W. & Anderson, O. F. New Zealand demersal fish assemblages. Environ. Biol. Fishes 65, 215–234 (2002).
    Google Scholar 
    Beentjes, M. P., Bull, B., Hurst, R. J. & Bagley, N. W. Demersal fish assemblages along the continental shelf and upper slope of the east coast of the South Island, New Zealand. NZ J. Mar. Freshw. Res. 36, 197–223 (2002).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).SAS Institute. JMP. (2018).Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial. (PRIMER-E, 2006). More

  • in

    Confronting the water potential information gap

    Brutsaert, W. Hydrology: An Introduction (Cambridge Univ. Press, 2005).Philip, J. Plant water relations: some physical aspects. Annu. Rev. Plant Physiol. 17, 245–268 (1966).
    Google Scholar 
    Ghezzehei, T. A., Sulman, B., Arnold, C. L., Bogie, N. A. & Berhe, A. A. On the role of soil water retention characteristic on aerobic microbial respiration. Biogeosciences 16, 1187–1209 (2019).
    Google Scholar 
    Boyer, J. Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean. Plant Physiol. 46, 236–239 (1970).
    Google Scholar 
    Jarvis, P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. R. Soc. Lond. B 273, 593–610 (1976).
    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
    Google Scholar 
    Tyree, M. T. & Sperry, J. S. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Biol. 40, 19–36 (1989).
    Google Scholar 
    Whalley, W., Ober, E. & Jenkins, M. J. J. Measurement of the matric potential of soil water in the rhizosphere. J. Exp. Biol. 64, 3951–3963 (2013).
    Google Scholar 
    Yu, H., Yang, P. & Lin, H. Spatiotemporal patterns of soil matric potential in the Shale Hills Critical Zone Observatory. Vadose Zone J. https://doi.org/10.2136/vzj2014.11.0167 (2015).Campbell, G. S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117, 311–314 (1974).
    Google Scholar 
    van Genuchten, M. T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).
    Google Scholar 
    Dorigo, W. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698 (2011).Scott, B. L. et al. New soil property database improves Oklahoma Mesonet soil moisture estimates. J. Atmos. Ocean. Technol. 30, 2585–2595 (2013).
    Google Scholar 
    Campbell, G. S. Soil water potential measurement: an overview. Irrig. Sci. 9, 265–273 (1988).
    Google Scholar 
    Van Looy, K. et al. Pedotransfer functions in Earth system science: challenges and perspectives. Rev. Geophys. 55, 1199–1256 (2017).
    Google Scholar 
    Clapp, R. B. & Hornberger, G. M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–604 (1978).
    Google Scholar 
    Cosby, B., Hornberger, G., Clapp, R. & Ginn, T. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20, 682–690 (1984).
    Google Scholar 
    Zhang, Y. & Schaap, M. G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 547, 39–53 (2017).
    Google Scholar 
    Fatichi, S. et al. Soil structure is an important omission in Earth system models. Nat. Commun. 11, 522 (2020).
    Google Scholar 
    Ghezzehei, T. A. & Albalasmeh, A. A. Spatial distribution of rhizodeposits provides built-in water potential gradient in the rhizosphere. Ecol. Modell. 298, 53–63 (2015).
    Google Scholar 
    Leung, A. K., Garg, A. & Ng, C. W. W. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 193, 183–197 (2015).
    Google Scholar 
    Caplan, J. S. et al. Decadal-scale shifts in soil hydraulic properties as induced by altered precipitation. Sci. Adv. 5, eaau6635 (2019).
    Google Scholar 
    Peña-Sancho, C., López, M., Gracia, R. & Moret-Fernández, D. Effects of tillage on the soil water retention curve during a fallow period of a semiarid dryland. Soil Res. 55, 114–123 (2017).
    Google Scholar 
    Stoof, C. R., Wesseling, J. G. & Ritsema, C. J. Effects of fire and ash on soil water retention. Geoderma 159, 276–285 (2010).
    Google Scholar 
    Gutmann, E. & Small, E. The effect of soil hydraulic properties vs. soil texture in land surface models. Geophys. Res. Lett. 32, L02402 (2005).
    Google Scholar 
    Weihermüller, L. et al. Choice of pedotransfer functions matters when simulating soil water balance fluxes. J. Adv. Model. Earth Syst. 13, e2020MS002404 (2021).
    Google Scholar 
    Shi, Y., Davis, K. J., Zhang, F. & Duffy, C. J. Evaluation of the parameter sensitivities of a coupled land surface hydrologic model at a critical zone observatory. J. Hydrometeorol. 15, 279–299 (2014).
    Google Scholar 
    Shi, Y., Davis, K. J., Zhang, F., Duffy, C. J. & Yu, X. J. Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: a multivariate real-data experiment. Adv. Water Res. 83, 421–427 (2015).
    Google Scholar 
    Shi, Y. et al. Simulating high‐resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model. Hydrol. Process. 29, 4624–4637 (2015).
    Google Scholar 
    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001).
    Google Scholar 
    Boucher, O. et al. Presentation and evaluation of the IPSL‐CM6A‐LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).
    Google Scholar 
    Lurton, T. et al. Implementation of the CMIP6 forcing data in the IPSL‐CM6A‐LR model. J. Adv. Model. Earth Syst. 12, e2019MS001940 (2020).
    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).
    Google Scholar 
    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).
    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).
    Google Scholar 
    Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D. & Entekhabi, D. Satellite‐based assessment of land surface energy partitioning–soil moisture relationships and effects of confounding variables. Water Resour. Res. 55, 10657–10677 (2019).
    Google Scholar 
    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. N. Phytol. 218, 1430–1449 (2018).
    Google Scholar 
    Baldocchi, D. D., Xu, L. & Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric. For. Meteorol. 123, 13–39 (2004).
    Google Scholar 
    Trugman, A. T., Anderegg, L. D., Shaw, J. D. & Anderegg, W. R. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proc. Natl Acad. Sci. USA 117, 8532–8538 (2020).
    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).
    Google Scholar 
    Martínez-Vilalta, J. et al. Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. New Phytol. 232, 404–417 (2021).Taiz, L., Zeiger, E., Møller, I. M. & Murphy, A. Plant Physiology and Development 6th edn (Sinauer Associates, 2015).Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. & Hammel, H. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148, 339–346 (1965).
    Google Scholar 
    Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. N. Phytol. 204, 105–115 (2014).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Matheny, A. M. et al. Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere https://doi.org/10.1890/es15-00170.1 (2015).Wood, J. D., Knapp, B. O., Muzika, R.-M., Stambaugh, M. C. & Gu, L. The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region. Environ. Res. Lett. 13, 015004 (2018).
    Google Scholar 
    Hinckley, T. M., Lassoie, J. P. & Running, S. W. Temporal and spatial variations in the water status of forest trees. For. Sci. 24, a0001–z0001 (1978).
    Google Scholar 
    Marks, C. O. & Lechowicz, M. J. The ecological and functional correlates of nocturnal transpiration. Tree Physiol. 27, 577–584 (2007).
    Google Scholar 
    O’Keefe, K. & Nippert, J. B. Drivers of nocturnal water flux in a tallgrass prairie. Funct. Ecol. 32, 1155–1167 (2018).
    Google Scholar 
    Donovan, L., Linton, M. & Richards, J. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia 129, 328–335 (2001).
    Google Scholar 
    Kannenberg, S. A. et al. Opportunities, challenges and pitfalls in characterizing plant water‐use strategies. Funct. Ecol. 36, 24–37 (2022).Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).Feng, X. et al. Beyond isohydricity: the role of environmental variability in determining plant drought responses. Plant Cell Environ. 42, 1104–1111 (2019).
    Google Scholar 
    Guo, J. S., Hultine, K. R., Koch, G. W., Kropp, H. & Ogle, K. Temporal shifts in iso/anisohydry revealed from daily observations of plant water potential in a dominant desert shrub. N. Phytol. 225, 713–726 (2020).
    Google Scholar 
    Hochberg, U., Rockwell, F. E., Holbrook, N. M. & Cochard, H. Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends Plant Sci. 23, 112–120 (2018).
    Google Scholar 
    Novick, K. A., Konings, A. G. & Gentine, P. Beyond soil water potential: an expanded view on isohydricity including land–atmosphere interactions and phenology. Plant Cell Environ. 42, 1802–1815 (2019).
    Google Scholar 
    McCulloh, K. A. et al. A dynamic yet vulnerable pipeline: integration and coordination of hydraulic traits across whole plants. Plant Cell Environ. 42, 2789–2807 (2019).
    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Mirfenderesgi, G., Matheny, A. M. & Bohrer, G. Hydrodynamic trait coordination and cost–benefit trade‐offs throughout the isohydric–anisohydric continuum in trees. Ecohydrology 12, e2041 (2019).
    Google Scholar 
    Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter‐annual variations of vegetation dynamics in seasonally dry tropical forests. N. Phytol. 212, 80–95 (2016).
    Google Scholar 
    De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).
    Google Scholar 
    Meinzer, F. C. et al. Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol. 24, 919–928 (2004).
    Google Scholar 
    Scott, R. L., Cable, W. L. & Hultine, K. R. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resour. Res. 44, W02440 (2008).
    Google Scholar 
    Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. N. Phytol. 119, 345–360 (1991).
    Google Scholar 
    Johnson, D. M. et al. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiol. 36, 983–993 (2016).
    Google Scholar 
    Lehto, T. & Zwiazek, J. J. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21, 71–90 (2011).
    Google Scholar 
    Bezerra-Coelho, C. R., Zhuang, L., Barbosa, M. C., Soto, M. A. & Van Genuchten, M. T. Further tests of the HYPROP evaporation method for estimating the unsaturated soil hydraulic properties. J. Hydrol. Hydromech. 66, 161–169 (2018).
    Google Scholar 
    Wullschleger, S., Dixon, M. & Oosterhuis, D. Field measurement of leaf water potential with a temperature‐corrected in situ thermocouple psychrometer. Plant Cell Environ. 11, 199–203 (1988).
    Google Scholar 
    Holtzman, N. M. et al. L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences 18, 739–753 (2021).
    Google Scholar 
    Nagy, R. C. et al. Harnessing the NEON data revolution to advance open environmental science with a diverse and data‐capable community. Ecosphere 12, e03833 (2021).
    Google Scholar 
    Novick, K. A. et al. The AmeriFlux network: a coalition of the willing. Agric. For. Meteorol. 249, 444–456 (2018).
    Google Scholar 
    Baldocchi, D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1–26 (2008).
    Google Scholar 
    Poyatos, R. et al. Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst. Sci. Data 13, 2607–2649 (2021).Jackson, T. & Schmugge, T. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).
    Google Scholar 
    Konings, A. G., Rao, K. & Steele‐Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. N. Phytol. 223, 1166–1172 (2019).
    Google Scholar 
    Konings, A. G. et al. Detecting forest response to droughts with global observations of vegetation water content. Glob. Change Biol. https://doi.org/10.1111/gcb.15872 (2021).Momen, M. et al. Interacting effects of leaf water potential and biomass on vegetation optical depth. J. Geophys. Res. Biogeosci. 122, 3031–3046 (2017).
    Google Scholar 
    Simunek, J., Van Genuchten, M. T. & Sejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media (Dept Environ. Sci. Univ. California Riverside, 2005).Naylor, S., Letsinger, S., Ficklin, D., Ellett, K. & Olyphant, G. A hydropedological approach to quantifying groundwater recharge in various glacial settings of the mid‐continental USA. Hydrol. Process. 30, 1594–1608 (2016).
    Google Scholar 
    Urbanski, S. et al. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res. Biogeosci. 112, G02020 (2007).
    Google Scholar 
    Thum, T. et al. Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots pine forest. Tellus B 59, 874–890 (2007).
    Google Scholar 
    Ardö, J., Mölder, M., El-Tahir, B. A. & Elkhidir, H. A. M. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan. Carbon Balance Manage. 3, 7 (2008).
    Google Scholar 
    Roman, D. T. et al. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179, 641–654 (2015).
    Google Scholar 
    Fu, C. et al. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites. Hydrol. Earth Syst. Sci. 20, 2001–2018 (2016).
    Google Scholar 
    Liang, J. et al. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geosci. Model Dev. 12, 1601–1612 (2019).Herman, J. & Usher, W. SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. https://doi.org/10.21105/joss.00097 (2017). More

  • in

    Global seasonal Sentinel-1 interferometric coherence and backscatter data set

    Sentinel-1 data selectionThe Copernicus Sentinel-1 mission was launched by the European Space Agency (ESA) in 2014 with the Sentinel-1A satellite, complemented with the second Sentinel-1B satellite in 2016. Each satellite has a 12-days repeat cycle. Continuity of the Sentinel-1 mission has been approved by ESA until 2030 and replacement satellites will be launched. The satellites operate in different acquisition modes over different parts of the globe. Land masses are covered primarily by the Interferometric Wide-Swath Mode (IW) with a 250 km swath width across-track. Single-look-complex (SLC) Level 1.1 data are required for interferometric processing. Along-track, Sentinel-1 data are sliced into consecutive frames (slices) of about 250 km length. Data are distributed via ESA’s Scientific Sentinel-1 Hub, which is mirrored at NASA’s Alaska Satellite Facility DAAC (ASF-DAAC). During production, Sentinel-1 SLC data were accessed on the ASF-DAAC data repository which resides on Amazon’s AWS S3 bucket in region us-west-2.Sentinel-1 satellites cover various parts of Earth in ascending and descending flight direction in a total of 175 relative orbits. ESA’s flight plan has some areas covered every six days and in both flight directions, predominantly over Europe. For the production of this data set, Sentinel-1 SLC frames were selected from all available scenes acquired between December 1st 2019 and November 30th 2020. Over the one-year timeframe, a maximum of 30 to 31 acquisitions at 12-days repeat, and 60 to 61 acquisitions at 6-days repeat intervals can be expected. The following selection criteria were applied consecutively to achieve global coverage with uniform distribution of acquisitions across seasons (Fig. 1):

    Global descending data (Fig. 1a) were selected where the one-year stack size had at least 25 acquisitions.

    Spatial gaps were filled with ascending data (Fig. 1a) where the one-year stack size had at least 25 acquisitions.

    For spatial consistency, over conterminous North America north of Panama, preference was given to ascending data where both ascending and descending data existed with stack sizes over 25 acquisitions.

    For stack sizes less than 25 acquisitions, preference was given to the flight direction with the larger number of acquisitions.

    Remaining gaps were filled with data from the flight direction available.

    Fig. 1Flight direction, polarization mode, and InSAR stack sizes of 6- and 12-days repeat coverage of Sentinel-1 data acquired between December 1st 2019 and November 30th 2020 selected for processing.Full size imageArctic and Antarctic regions are typically covered with polarization modes of horizontal transmit (HH single- or HH/HV dual-polarization). Figure 1b shows the global distribution of the processed data in horizontal and vertical polarization transmit modes, respectively. Table 1 summarizes the number of selected scenes in the two flight directions and various polarization modes. The total number of processed Sentinel-1 SLC frames came to ~205,000 scenes with a total raw input data volume of about 850 Terabytes. Figure 1c,d show the spatial distribution of the final scene selection with the number of 6- and 12-days repeat-pass image pairs. Consistent 6-days repeat coverage with about sixty image pairs from either ascending or descending orbits could be processed over Europe, the coastal areas of Greenland and Antarctica, and some smaller areas around the world; note that in some regions (e.g., India, interior Greenland, Northern Canada, Eastern China) 6-days repeat coverage was available in certain seasons only (Fig. 1c). A consistent coverage with 12-days repeat-pass imagery, instead, could be processed almost globally with the nominal maximum of about thirty repeat-pass pairs in areas where only one satellite, Sentinel-1A or Sentinel-1B, acquired data in all but few areas above 60° N in Canada, Greenland, or Russia (Fig. 1d). In some small areas in the Midwestern United States, the Khabarovsk region in Far-Eastern Russia, or in the Northern Sahara, neither Sentinel-1A nor Sentinel-1B acquire data in IW mode, leading to small gaps in the final data set.Table 1 Number of Sentinel-1 Single Look Complex scenes processed.Full size tableProcessing approachThe overall processing workflow was developed based on the interferometric processing software developed by GAMMA Remote Sensing and geared towards efficient processing in the Amazon Web Services (AWS) cloud environment utilizing Earth Big Data LLC’s cloud scaling solutions. The workflow is divided into three main blocks as illustrated in Fig. 2. Sentinel-1A and -1B acquire data along 175 relative orbits/orbital tracks. Blocks 1 and 2 were processed on a per relative orbit basis; block 3 was initiated after blocks 1 and 2 had been completed for all relative orbits.Fig. 2Implementation of the Sentinel-1 interferometric processor in the AWS cloud environment.Full size imageProcessing Block 1For each SLC of a given relative orbit, processing block 1 entailed:

    1.

    Conversion of SLC image files to a GAMMA specific format. Each Sentinel-1 SLC, covering an area of ~250 × 250 km, consists of six SLC image files (one SLC image file for each of the three sub-swaths in co- (VV or HH) and cross-polarizations (VH or HV).

    2.

    Compensation of the SLC amplitudes for the noise equivalent sigma zero (NESZ).

    3.

    The orbit state vectors provided with the original Sentinel-1 SLCs were updated with the precision state vectors (AUX_POEORB) distributed by the Sentinel-1 payload data ground segment 20 days after data take with a precision (3σ) generally of the order of 1 cm (target requirement  More

  • in

    A comprehensive catalogue of plant-pollinator interactions for Chile

    In recent years there has been an increasing concern regarding the global decline of pollinators and pollination services1,2,3. Recent studies estimate that over 87% of the flowering plant species rely on biotic pollination4. Pollination is a mutualistic interaction, and plants provide pollinators with various rewards, including nectar, oil, or excess pollen to feed upon5,6. Although bees are the most well-known pollinator group, pollination can be performed by a wide variety of species, including mammals, birds, reptiles, and other insects.Plant-pollinator interactions are among the key processes that generate and maintain biodiversity7,8. The coevolutionary processes involved in animal pollination have helped maintain the structure and function of entire communities and species’ networks. Wild plant species and natural ecosystems provide several products and services, including nutrient cycling, medicine, food, a source of pollinators for domesticated crops, and alternative food and shelter sources for agricultural pollinators9. However, the complex web of interactions and the large number of species involved (ca. 400,000 species globally) makes it challenging to estimate pollinators’ value in natural ecosystems, particularly when the life history of so many pollinator species remains little studied and understood10.Pollinators also provide highly valuable ecosystem services to crops11,12. More than 70% of the world’s crops depend directly on insect pollination, making pollination key to food security11,13. The European honeybee (Apis mellifera) is likely the most economically important pollinator of crops worldwide13,14. Honeybees are adaptable, easy to manage, and cost-efficient. However, in recent years, ‘colony collapse’ caused by several factors, including parasitic mites and the excessive use of pesticides and herbicides, have led to a decline in managed honeybee colonies in many parts of the world15,16,17. Similarly, habitat loss and fragmentation have detrimental effects on both native and commercial pollinators. In degraded habitats, pollinators struggle to find resources and nesting sites18,19,20.In Chile, pollination represents a multimillion-dollar business. Between January and October 2020, the export of Chilean fruit reached USD 4.149 million, while fresh vegetables generated USD 347 million during the same period21. Although agricultural pollinators have been well studied, native pollinators remain largely unknown. With over 460 species of native bees in Chile, approximately 70% are endemic; researchers have only begun to understand the relationships between native plants and their pollinators22,23,24. Also, managed honeybees and bumblebees introduced to Chile for crop pollination are highly invasive and easily leave croplands to forage in neighbouring native ecosystems25,26, competing directly with native pollinators for the ever-diminishing resources in native grasslands and forests posing a threat to Chile’s unique ecoregions25,27.Because of the importance of pollination in the maintenance of biodiversity and the economic benefits of agricultural crop production, there is an urgent need to understand the causes behind the current decline in pollinator species. In this sense, collating and reviewing existing information on pollinators and making this information easily accessible in the form of a user-friendly database is of immeasurable value. In this study, we compiled the information available about pollination and pollinators (sensu lato) for Chile, aiming to understand plant-pollinator interactions, identify knowledge and geographic gaps, and provide a baseline from which to carry out further studies. We aimed to make a datasheet with a format that was adaptable to different regions and other countries by allowing it to be easily understood, easy to access and find and aiming to avoid duplicity of data. This study represents the first systematic effort to compile the available information on pollination and pollinators for Chile. This pollination catalogue for Chile adds to other international efforts of systematising this information as, for example, the Catalogue of Afrotropical Bees28 and the CPC Plant Pollinators Database29. More