More stories

  • in

    Zooplankton network conditioned by turbidity gradient in small anthropogenic reservoirs

    Lampert, W. Zooplankton research: The contribution of limnology to general ecological paradigms. Aquat. Ecol. 31, 19–27. https://doi.org/10.1023/A:1009943402621 (1997).Article 

    Google Scholar 
    Sotton, B. et al. Trophic transfer of microcystins through the lake pelagic food web: Evidence for the role of zooplankton as a vector in fish contamination. Sci. Total Environ. 466–467, 152–163. https://doi.org/10.1016/j.scitotenv.2013.07.020 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    St-Gelais, F. N., Sastri, A. R., del Giorgio, P. A. & Beisner, B. E. Magnitude and regulation of zooplankton community production across boreal lakes. Limnol. Oceanogr. Lett. 2(6), 210–217. https://doi.org/10.1002/lol2.10050 (2017).Article 

    Google Scholar 
    Dejen, E., Vijverberg, J., Nagelkerke, L. A. J. & Sibbing, F. A. Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia). Hydrobiologia 513(1), 39–49. https://doi.org/10.1023/b:hydr.0000018163.60503.b8 (2004).Article 

    Google Scholar 
    Arendt, K. E. et al. Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord. J. Plankton Res. 33, 1526–1537. https://doi.org/10.1093/plankt/fbr054 (2011).CAS 
    Article 

    Google Scholar 
    Carrasco, N. K., Perissinotto, R. & Jones, S. Turbidity effects on feeding and mortality of the copepod Acartiella natalensis (Connell and Grindley, 1974) in the St Lucia Estuary, South Africa. J. Exp. Mar. Biol. Ecol. 446, 45–51. https://doi.org/10.1016/j.jembe.2013.04.016 (2013).Article 

    Google Scholar 
    Goździejewska, A. et al. Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia 774, 7–21. https://doi.org/10.1007/s10750-016-2724-8 (2016).CAS 
    Article 

    Google Scholar 
    Zhou, J., Qin, B. & Han, X. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu. Environ. Sci. Pollut. Res. 25, 1168–1175. https://doi.org/10.1007/s11356-017-0262-1 (2018).CAS 
    Article 

    Google Scholar 
    Chou, W.-R., Fang, L.-S., Wang, W.-H. & Tew, K. S. Environmental influence on coastal phytoplankton and zooplankton diversity: A multivariate statistical model analysis. Environ. Monit. Assess. 184(9), 5679–5688. https://doi.org/10.1007/s10661-011-2373-3 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Du, X. et al. Analyzing the importance of top-down and bottom-up controls in food webs of Chinese lakes through structural equation modeling. Aquat. Ecol. 49(2), 199–210. https://doi.org/10.1007/s10452-015-9518-3 (2015).CAS 
    Article 

    Google Scholar 
    Feitosa, I. B. et al. Plankton community interactions in an Amazonian floodplain lake, from bacteria to zooplankton. Hydrobiologia 831, 55–70. https://doi.org/10.1007/s10750-018-3855-x (2019).CAS 
    Article 

    Google Scholar 
    Kruk, M. & Paturej, E. Indices of trophic and competitive relations in a planktonic network of a shallow, temperate lagoon. A graph and structural equation modeling approach. Ecol. Indic. 112, 106007. https://doi.org/10.1016/j.ecolind.2019.106007 (2020).Article 

    Google Scholar 
    Kruk, M., Paturej, E. & Artiemjew, P. From explanatory to predictive network modeling of relationships among ecological indicators in the shallow temperate lagoon. Ecol. Indic. 117, 106637. https://doi.org/10.1016/j.ecolind.2020.106637 (2020).Article 

    Google Scholar 
    Kruk, M., Paturej, E. & Obolewski, K. Zooplankton predator–prey network relationships indicates the saline gradient of coastal lakes. Machine learning and meta-network approach. Ecol. Indic. 125, 107550. https://doi.org/10.1016/j.ecolind.2021.107550 (2021).Article 

    Google Scholar 
    Oh, H.-J. et al. Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: Applicability of the rotifer functional group as an indicator of water quality. Anim. Cells Syst. 21, 133–140. https://doi.org/10.1080/19768354.2017.1292952 (2017).Article 

    Google Scholar 
    Sodré, E. D. O. & Bozelli, R. L. How planktonic microcrustaceans respond to environment and affect ecosystem: A functional trait perspective. Int. Aquat. Res. 11, 207–223. https://doi.org/10.1007/s40071-019-0233-x (2019).Article 

    Google Scholar 
    Simões, N. R. et al. Changing taxonomic and functional β-diversity of cladoceran communities in Northeastern and South Brazil. Hydrobiologia 847, 3845–3856. https://doi.org/10.1007/s10750-020-04234-w (2020).Article 

    Google Scholar 
    Goździejewska, A. M., Koszałka, J., Tandyrak, R., Grochowska, J. & Parszuto, K. Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia 848, 2699–2719. https://doi.org/10.1007/s10750-021-04590-1 (2021).CAS 
    Article 

    Google Scholar 
    Hart, R. C. Zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Fresh. Biol. 19, 123–139. https://doi.org/10.1111/j.1365-2427.1988.tb00334.x (1988).Article 

    Google Scholar 
    Gliwicz, Z. M. & Pijanowska, J. The role of predation in zooplankton succession. In Plankton Ecology. Succession in Plankton Communities (ed. Sommer, U.) 253–296 (Springer Verlag, 1989).Chapter 

    Google Scholar 
    Gardner, M. B. Effects of turbidity on feeding rates and selectivity of bluegills. Trans. Am. Fish. Soc. 110(3), 446–450. https://doi.org/10.1577/1548-8659(1981)110%3c446:EOTOFR%3e2.0.CO;2 (1981).Article 

    Google Scholar 
    Zettler, E. R. & Carter, J. C. H. Zooplankton community and species responses to a natural turbidity gradient in Lake Temiskaming, Ontario-Quebec. Can. J. Fish. Aquat. Sci. 43, 665–673. https://doi.org/10.1139/f86-080 (1986).Article 

    Google Scholar 
    APHA. Standard Methods for the Examination of Water and Wastewater 20th edn. (American Public Health Association, 1999).
    Google Scholar 
    Lind, O. T., Chrzanowski, T. H. & D’avalos-Lind, L. Clay turbidity and the relative production of bacterioplankton and phytoplankton. Hydrobiologia 353, 1–18. https://doi.org/10.1023/A:1003039932699 (1997).CAS 
    Article 

    Google Scholar 
    Boenigk, J. & Novarino, G. Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat. Microb. Ecol. 34, 181–192. https://doi.org/10.3354/ame034181 (2004).Article 

    Google Scholar 
    Noe, G. B., Harvey, J. W. & Saiers, J. E. Characterization of suspended particles in Everglades wetlands. Limnol. Oceanogr. 52, 1166–1178. https://doi.org/10.4319/lo.2007.52.3.1166 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Bilotta, G. S. & Brazier, R. E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42, 2849–2861. https://doi.org/10.1016/j.watres.2008.03.018 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fernandez-Severini, M. D., Hoffmeyer, M. S. & Marcovecchio, J. E. Heavy metals concentrations in zooplankton and suspended particulate matter in a southwestern Atlantic temperate estuary (Argentina). Environ. Monit. Assess. 185, 1495–1513. https://doi.org/10.1007/s10661-012-3023-0 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paaijmans, K. P., Takken, W., Githeko, A. K. & Jacobs, A. F. G. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int. J. Biometeorol. 52(8), 747–753. https://doi.org/10.1007/s00484-008-0167-2 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Asrafuzzaman, M., Fakhruddin, A. N. M. & Hossain, M. A. Reduction of turbidity of water using locally available natural coagulants. ISRN Microbiol. 1–6, 2011. https://doi.org/10.5402/2011/632189 (2011).Article 

    Google Scholar 
    Kirk, K. L. & Gilbert, J. J. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71(5), 1741–1755. https://doi.org/10.2307/1937582 (1990).Article 

    Google Scholar 
    Kirk, K. L. Effects of suspended clay on Daphnia body growth and fitness. Freshwater Biol. 28, 103–109. https://doi.org/10.1111/j.1365-2427.1992.tb00566.x (1992).Article 

    Google Scholar 
    Levine, S. N., Zehrer, R. F. & Burns, C. W. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshw. Biol. 50, 1515–1536. https://doi.org/10.1111/j.1365-2427.2005.01420 (2005).Article 

    Google Scholar 
    Moreira, F. W. A. et al. Assessing the impacts of mining activities on zooplankton functional diversity. Acta Limn. Bras. 28, e7. https://doi.org/10.1590/S2179-975X0816 (2016).Article 

    Google Scholar 
    Kerfoot, W. C. & Sih, A. Predation. Direct and Indirect Impacts on Aquatic Communities Vol. 160 (University Press of New England, 1987).
    Google Scholar 
    Schou, M. O. et al. Restoring lakes by using artificial plant beds: Habitat selection of zooplankton in a clear and a turbid shallow lake. Freshw. Biol. 54(7), 1520–1531. https://doi.org/10.1111/j.1365-2427.2009.02189.x (2009).Article 

    Google Scholar 
    Goździejewska, A. M., Gwoździk, M., Kulesza, S., Bramowicz, M. & Koszałka, J. Effects of suspended micro- and nanoscale particles on zooplankton functional diversity of drainage system reservoirs at an open-pit mine. Sci. Rep. 9, 16113. https://doi.org/10.1038/s41598-019-52542-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ribeiro, F. et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci. Total Environ. 466–467, 232–241. https://doi.org/10.1016/j.scitotenv.2013.06.101 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Vallotton, P., Angel, B., Mccall, M., Osmond, M. & Kirby, J. Imaging nanoparticle-algae interactions in three dimensions using Cytoviva microscopy. J. Microsc. 257(2), 166–169. https://doi.org/10.1111/jmi.12199 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shanthi, S. et al. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb. Pathogenesis 93, 70e77. https://doi.org/10.1016/j.micpath.2016.01.014 (2016).CAS 
    Article 

    Google Scholar 
    Vijayakumar, S. et al. Ecotoxicity of Musa paradisiaca leaf extract-coated ZnO nanoparticles to the freshwater microcrustacean Ceriodaphnia cornuta. Limnologica 67, 1–6. https://doi.org/10.1016/j.limno.2017.09.004 (2017).CAS 
    Article 

    Google Scholar 
    Hart, R. C. Zooplankton distribution in relation to turbidity and related environmental gradients in a large subtropical reservoir: Patterns and implications. Freshw. Biol. 24(2), 241–263. https://doi.org/10.1111/j.1365-2427.1990.tb00706.x (1990).Article 

    Google Scholar 
    Pollard, A. I., González, M. J., Vanni, M. J. & Headworth, J. L. Effects of turbidity and biotic factors on the rotifer community in an Ohio reservoir. In Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, Hydrobiologia Vol. 387388 (eds Wurdak, E. et al.) 215–223 (Springer, 1998).
    Google Scholar 
    Roman, M. R., Holliday, D. V. & Sanford, L. P. Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum. Mar. Ecol. Prog. Ser. 213, 215–227. https://doi.org/10.3354/meps213215 (2001).ADS 
    Article 

    Google Scholar 
    Young, I. R. & Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 364(6440), 548–552. https://doi.org/10.1126/science.aav9527 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Goździejewska, A. M., Skrzypczak, A. R., Paturej, E. & Koszałka, J. Zooplankton diversity of drainage system reservoirs at an opencast mine. Knowl. Manag. Aquat. Ecosyst. 419, 33. https://doi.org/10.1051/kmae/2018020 (2018).Article 

    Google Scholar 
    Goździejewska, A. M., Skrzypczak, A. R., Koszałka, J. & Bowszys, M. Effects of recreational fishing on zooplankton communities of drainage system reservoirs at an open-pit mine. Fish. Manag. Ecol. 00, 1–13. https://doi.org/10.1111/fme.12411 (2020).Article 

    Google Scholar 
    Allesina, S., Bodini, A. & Bondavalli, C. Ecological subsystems via graph theory: The role of strongly connected components. Oikos 110, 164–176. https://doi.org/10.1111/j.0030-1299.2005.13082.x (2005).Article 

    Google Scholar 
    D’Alelio, D. et al. Ecological-network models link diversity, structure and function in the plankton food-web. Sci. Rep. 6, 21806. https://doi.org/10.1038/srep21806 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance 6th edn. (Benjamin Cummings, 2009).
    Google Scholar 
    Ejsmont-Karabin, J., Radwan, S. & Bielańska-Grajner, I. Rotifers. Monogononta–Atlas of Species. Polish Freshwater Fauna (Univ of Łódź, 2004).
    Google Scholar 
    Streble, H. & Krauter, D. Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Sßβwassers (Kosmos Gesellschaft der Naturfreunde Franckhsche Verlagshandlung Stuttgart, 1978).
    Google Scholar 
    Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 60, 339–350 (2012).
    Google Scholar 
    Gutkowska, A., Paturej, E. & Kowalska, E. Rotifer trophic state indices as ecosystem indicators in brackish coastal waters. Oceanologia 55(4), 887–899. https://doi.org/10.5697/oc.55-4.887 (2013).Article 

    Google Scholar 
    Dembowska, E. A., Napiórkowski, P., Mieszczankin, T. & Józefowicz, S. Planktonic indices in the evaluation of the ecological status and the trophic state of the longest lake in Poland. Ecol. Indic. 56, 15–22. https://doi.org/10.1016/j.ecolind.2015.03.019 (2015).Article 

    Google Scholar 
    Sousa, W., Attayde, J. L., Rocha, E. D. S. & Eskinazi-Sant’Anna, E. M. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. J. Plankton Res. 30(6), 699–708. https://doi.org/10.1093/plankt/fbn032 (2008).Article 

    Google Scholar 
    Kak, A. & Rao, R. Does the evasive behavior of H. exarthra influence its competition with cladocerans? In Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, Hydrobiologia Vol. 387/388 (eds Wurdak, E. et al.) 409–419 (Springer, 1998).
    Google Scholar 
    Hochberg, R., Yang, H. & Moore, J. The ultrastructure of escape organs: Setose arms and crossstriated muscles in Hexarthra mira (Rotifera: Gnesiotrocha: Flosculariaceae). Zoomorphology 136, 159–173. https://doi.org/10.1007/s00435-016-0339-2 (2017).Article 

    Google Scholar 
    Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).ADS 
    CAS 
    Article 

    Google Scholar 
    Connell, J. H. Intermediate-disturbance hypothesis. Science 204(4399), 1345 (1979).CAS 
    Article 

    Google Scholar 
    Martín González, A. M., Dalsgaard, B. & Olesen, J. M. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7(1), 36–43. https://doi.org/10.1016/j.ecocom.2009.03.008 (2010).Article 

    Google Scholar 
    Paine, R. T. A note on trophic complexity and community stability. Am. Nat. 104, 91–93 (1969).Article 

    Google Scholar 
    Schmitz, O. J. & Trussell, G. C. Multiple stressors, state-dependence and predation risk—Foraging trade-offs: Toward a modern concept of trait-mediated indirect effects in communities and ecosystems. Curr. Opin. Behav. Sci. 12, 6–11. https://doi.org/10.1016/j.cobeha.2016.08.003 (2016).Article 

    Google Scholar 
    Burns, C. W. & Gilbert, J. J. Effects of daphnid size and density on interference between Daphnia and Keratella cochlearis. Limnol. Oceanogr. 31(4), 848–858. https://doi.org/10.4319/lo.1986.31.4.0848 (1986).ADS 
    Article 

    Google Scholar 
    Gilbert, J. J. Suppression of rotifer populations by Daphnia: A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr. 33(6), 1286–1303. https://doi.org/10.4319/lo.1988.33.6.1286 (1988).ADS 
    Article 

    Google Scholar 
    Conde-Porcuna, J. M., Morales-Baquero, R. & Cruz-Pizarro, L. Effects of Daphnia longispina on rotifer populations in a natural environment: Relative importance of food limitation and interference competition. J. Plankton Res. 16(6), 691–706. https://doi.org/10.1093/plankt/16.6.691 (1994).Article 

    Google Scholar 
    Ladle, R. J. & Whittaker, R. J. (eds) Conservation Biogeography (Wiley–Blackwell, 2011).
    Google Scholar 
    Cottee-Jones, H. E. W. & Whittaker, R. J. The keystone species concept: A critical appraisal. Front. Biogeogr. 4(3), 117–127. https://doi.org/10.21425/F5FBG12533 (2012).Article 

    Google Scholar 
    Remane, A. Die Brackwasserfauna. Verhandlungen Der Deutschen Zoologischen Gesellschaft 36, 34–74 (1934).
    Google Scholar 
    Skrzypczak, A. R. & Napiórkowska-Krzebietke, A. Identification of hydrochemical and hydrobiological properties of mine waters for use in aquaculture. Aquac. Rep. 18, 100460. https://doi.org/10.1016/j.aqrep.2020.100460 (2020).Article 

    Google Scholar 
    von FlÜssner, D. & Krebstiere, C. Kiemen-und Blattfßsser, Branchiopoda, Fischläuse, Branchiura Vol. 382 (VEB Gustav Fischer Verlag, 1972).
    Google Scholar 
    Koste, W. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. I Textband, II Tafelband 52–570 (Gebrüder Borntraeger, 1978).
    Google Scholar 
    Rybak, J. I. & Błędzki, L. A. Freshwater Planktonic Crustaceans (Warsaw University Press, 2010).
    Google Scholar 
    Błędzki, L. A. & Rybak, J. I. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to Species Identification with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis (Springer, 2016).Book 

    Google Scholar 
    Bottrell, H. H. et al. A review of some problems in zooplankton production studies. Norw. J. Zool. 24, 419–456 (1976).
    Google Scholar 
    Ejsmont-Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydr. 45, 513–522 (1998).
    Google Scholar 
    Kovach, W. L. MVSP—A Multivariate Statistical Package for Windows, ver. 3.2 (Kovach Computing Services Pentraeth, 2015).
    Google Scholar 
    Borgatti, S. P. Centrality and network flow. Soc. Netw. 27, 55–71. https://doi.org/10.1016/j.socnet.2004.11.008 (2005).Article 

    Google Scholar 
    Kamada, T. & Kawai, S. An algorithm for drawing general undirected graphs—Inform. Process Lett. 31, 7–15 (1989).MathSciNet 
    Article 

    Google Scholar 
    Pavlopoulos, G. A. et al. Using graph theory to analyze biological networks. BioData Min 4, 10 (2011).Article 

    Google Scholar 
    Newman, M. E. J. A measure of betweenness centrality based on random walks. Soc. Netw. 27, 39–54. https://doi.org/10.1016/j.socnet.2004.11.009 (2005).Article 

    Google Scholar 
    Brandes, U. A. faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177. https://doi.org/10.1080/0022250X.2001.9990249 (2001).Article 
    MATH 

    Google Scholar  More

  • in

    Nature-based solutions in mountain catchments reduce impact of anthropogenic climate change on drought streamflow

    IPCC. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al) (Cambridge University Press. In Press, 2021).Otto, F. E. L. et al. Toward an inventory of the impacts of human-induced climate change. Bull. Am. Meteorol. Soc. 101, E1972–E1979 (2020).
    Google Scholar 
    Stanners, D. et al. in Sustainability Indicators. A Scientific Assessment (eds Moldan, B., Hak, T. & Dahl, A. L.) 127–144 (Island Press, 2007).Cohen-Shacham, E. et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 98, 20–29 (2019).
    Google Scholar 
    Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15513 (2021).Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997–1009 (2018).CAS 

    Google Scholar 
    Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190120 (2020).
    Google Scholar 
    Gómez Martín, E., Máñez Costa, M. & Schwerdtner Máñez, K. An operationalized classification of Nature Based Solutions for water-related hazards: from theory to practice. Ecol. Econ. 167 https://doi.org/10.1016/j.ecolecon.2019.106460 (2020).Doswald, N. et al. Effectiveness of ecosystem-based approaches for adaptation: review of the evidence-base. Clim. Dev. 6, 185–201 (2014).
    Google Scholar 
    Chausson, A. et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15310 (2020).Rebelo, A. J., Holden, P. B., Esler, K. & New, M. G. Benefits of water-related ecological infrastructure investments to support sustainable land-use: a review of evidence from critically water-stressed catchments in South Africa. R. Soc. Open Sci. 8, 201402 (2021).
    Google Scholar 
    Berrang-Ford, L. et al. A systematic global stocktake of evidence on human adaptation to climate change. Nat. Clim. Change 11, 989–1000 (2021).
    Google Scholar 
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 

    Google Scholar 
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).CAS 

    Google Scholar 
    Koch, A., Brierley, C. & Lewis, S. L. Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences 18, 2627–2647 (2021).CAS 

    Google Scholar 
    Girardin, C. A. J. et al. Nature-based solutions can help cool the planet – if we act now. Nature 593, 191–194 (2021).CAS 

    Google Scholar 
    Sudmeier-Rieux, K. et al. Scientific evidence for ecosystem-based disaster risk reduction. Nat. Sustain. 4, 803–810 (2021).
    Google Scholar 
    Otto, F. E. L. Attribution of weather and climate events. Annu. Rev. Environ. Resources 42, 627–646 (2017).
    Google Scholar 
    Philip, S. et al. A protocol for probabilistic extreme event attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).
    Google Scholar 
    Herring, S. C., Christidis, N., Hoell, A., Hoerling, M. P. & Stott, P. A. Explaining extreme events of 2019 from a climate perspective. Bull. Amer. Meteorol. Soc. 102, S1–S112 (2021).Otto, F. E. L. et al. Challenges to understanding extreme weather changes in lower income countries. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/bams-d-19-0317.1 (2020).Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385 (2011).CAS 

    Google Scholar 
    Kay, A. L., Crooks, S. M., Pall, P. & Stone, D. A. Attribution of Autumn/Winter 2000 flood risk in England to anthropogenic climate change: a catchment-based study. J. Hydrol. 406, 97–112 (2011).
    Google Scholar 
    Schaller, N. et al. Human influence on climate in the 2014 southern England winter floods and their impacts. Nat. Clim. Change 6, 627–634 (2016).
    Google Scholar 
    Wolski, P., Stone, D., Tadross, M., Wehner, M. & Hewitson, B. Attribution of floods in the Okavango basin, Southern Africa. J. Hydrol. 511, 350–358 (2014).
    Google Scholar 
    Ross, A. C. et al. Anthropogenic influences on extreme annual streamflow into Chesapeake Bay from the Susquehanna River. Bull. Am. Meteorol. Soc. 102, S25–S32 (2021).Mitchell, D. et al. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 11, 074006 (2016).
    Google Scholar 
    Botai, C., Botai, J., de Wit, J., Ncongwane, K. & Adeola, A. Drought Characteristics over the Western Cape Province, South Africa. Water https://doi.org/10.3390/w9110876 (2017).Wolski, P. How severe is Cape Town’s “Day Zero” drought? Significance 15, 24–27 (2018).
    Google Scholar 
    Stafford, L., Shemie, D., Kroeger, T., Baker, T. & Apse, C. The Greater Cape Town Water Fund. Assessing the return on investment for Ecological Infrastructure restoration. Business case. (The Nature Conservancy, 2018).Otto, F. E. L. et al. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aae9f9 (2018).Pascale, S., Kapnick, S. B., Delworth, T. L. & Cooke, W. F. Increasing risk of another Cape Town “Day Zero” drought in the 21st century. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2009144117 (2020).Van Wilgen, B. W., Measey, J., Richardson, D. M., Wilson, J. R. & Zengeya, T. A. Biological Invasions in South Africa (Springer Nature, 2020).Le Maitre, D. et al. Impacts of plant invasions on terrestrial water flows in South Africa in Biological Invasions in South Africa (eds van Wilgen, B. W., Measey. J., Richardson, D. M., Wilson, J. R. & Zengeya, T. A.) 431–457 (Springer, 2020).Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W. & Vertessy, R. A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 310, 28–61 (2005).
    Google Scholar 
    Dennedy-Frank, P. J. & Gorelick, S. M. Insights from watershed simulations around the world: watershed service-based restoration does not significantly enhance streamflow. Glob. Environ. Change https://doi.org/10.1016/j.gloenvcha.2019.101938 (2019).Calder, I. D. & Dye, P. Hydrological impacts of invasive alien plants. Land Use Water Resour. Res. 7, 1–12 (2001).
    Google Scholar 
    Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126, 81–97 (2008).
    Google Scholar 
    Farley, K. A., Jobbagy, E. G. & Jackson, R. B. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob. Change Biol. 11, 1565–1576 (2005).
    Google Scholar 
    Jackson, R. B. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).Filoso, S., Bezerra, M. O., Weiss, K. C. B. & Palmer, M. A. Impacts of forest restoration on water yield: a systematic review. PLoS ONE 12, e0183210 (2017).
    Google Scholar 
    Sitzia, T., Campagnaro, T., Kowarik, I. & Trentanovi, G. Using forest management to control invasive alien species: helping implement the new European regulation on invasive alien species. Biol. Invasions 18, 1–7 (2015).
    Google Scholar 
    Richardson, D. M. & RejmĂĄnek, M. Trees and shrubs as invasive alien species – a global review. Divers. Distrib. 17, 788–809 (2011).
    Google Scholar 
    Everard, M. et al. Can control of invasive vegetation improve water and rural livelihood security in Nepal? Ecosyst. Serv. 32, 125–133 (2018).
    Google Scholar 
    Everard, M. Can management of ‘thirsty’ alien trees improve water security in semi-arid India? Sci. Total Environ. 704, 135451 (2020).CAS 

    Google Scholar 
    Archer, S. R. et al. Woody plant encroachment: causes and consequences in Rangeland Systems Springer Series on Environmental Management (ed. Briske, D. D.) Chapter 2, 25–84 (2017).Wood, M. Bootstrapped confidence intervals as an approach to statistical inference. Organ. Res. Methods 8, 454–470 (2016).
    Google Scholar 
    Tan, S. H. The correct interpretation of confidence intervals. Proc. Singapore Healthc. 19 (2010).Coetsee, C., Gray, E. F., Wakeling, J., Wigley, B. J. & Bond, W. J. Low gains in ecosystem carbon with woody plant encroachment in a South African savanna. J. Trop. Ecol. 29, 49–60 (2012).
    Google Scholar 
    Stevens, N., Erasmus, B. F., Archibald, S. & Bond, W. J. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock? Philos. Trans. R. Soc. Lond. B Biol. Sci. https://doi.org/10.1098/rstb.2015.0437 (2016).Venter, Z. S., Cramer, M. D. & Hawkins, H. J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).CAS 

    Google Scholar 
    Forsyth, G. G., Le Maitre, D. C., Smith, J. & Lotter, D. Upper Berg River Catchment (G10A) Management Unit Control Plan. (Natural Resources Management (NRM) Department of Environmental Affairs, 2016).Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R. & Cooper, H. M. Land‐atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018. AGU Adv. 2, e2020AV000283 (2021).
    Google Scholar 
    RejmĂĄnek, M., Richardson, D. M. & Pysek, P. Trees and shrubs as invasive alien species – 2013 update of the global database. Divers. Distrib. 19, 1093–1094 (2013).
    Google Scholar 
    Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).CAS 

    Google Scholar 
    Ziervogel, G. et al. Climate change impacts and adaptation in South Africa. Wiley Interdiscip. Rev. Clim. Change 5, 605–620 (2014).
    Google Scholar 
    Thomas, A. et al. Global evidence of constraints and limits to human adaptation. Reg. Environ. Change https://doi.org/10.1007/s10113-021-01808-9 (2021).Dow, K., Berkhout, F. & Preston, B. L. Limits to adaptation to climate change: a risk approach. Curr. Opin. Environ. Sustain. 5, 384–391 (2013).
    Google Scholar 
    Manning, J. & Goldblatt, P. Plants of the greater Cape Floristic Region 1: the Core Cape Flora., (South African National Biodiversity Institute, 2012).Nel, J. L. et al. Strategic water source areas for urban water security: Making the connection between protecting ecosystems and benefiting from their services. Ecosyst. Serv. 28, 251–259 (2017).
    Google Scholar 
    Wolski, P. What Cape Town learned from its drought. Bull. At. Sci. https://thebulletin.org/2018/04/what-cape-town-learned-from-its-drought/ (2018).D. W. S. Cape Town River Systems State of Dams on 2021-08-16. Department of Water and Sanitation. Republic of South Africa. https://www.dws.gov.za/Hydrology/Weekly/RiverSystems.aspx?river=CT (2021).Rebelo, A. J. et al. The hydrological benefits of restoration: a modelling study of alien tree clearing in four mountain catchments in South Africa. Preprint at J. Hydrol. https://doi.org/10.21203/rs.3.rs-1316834/v1.DWAF. The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Report 9 (Groundwater Model): Volume 9 (Breede River Alluvium Aquifer Model). (Department of Water Affairs and Forestry, 2008).DWAF. The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Report 9 (Groundwater Model): Volume 3 (Regional Conceptual Model). (Department of Water Affairs and Forestry, 2008).Blake, D., Mlisa, A. & Hartnady, C. Large scale quantification of aquifer storage and volumes from the Peninsula and Skurweberg Formations in the southwestern Cape. Water SA 36, 177–184 (2010).
    Google Scholar 
    Holden, P. B., Rebelo, A. J. & New, M. G. Mapping invasive alien trees in water towers: a combined approach using satellite data fusion, drone technology and expert engagement. Remote Sens. Appl.: Soc. Environ. https://doi.org/10.1016/j.rsase.2020.100448 (2021).Midgley, J. & Scott, D. The use of stable isotopes of water in hydrological studies in the Jonkershoek Valley. Water SA 20, 151–154 (1994).
    Google Scholar 
    Van Genuchten, M. T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).
    Google Scholar 
    Moriasi, D. N., Gitau, M. W., Pai, N. & Daggupati, P. Hydrologic and water quality models: performance measures and evaluation criteria. Trans. ASABE 58, 1763–1785 (2015).
    Google Scholar 
    Stone, D. A. et al. A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Weather Clim. Extremes 19, 10–19 (2018).
    Google Scholar 
    Risser, M. D., Stone, D. A., Paciorek, C. J., Wehner, M. F. & Angélil, O. Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence. Clim. Dyn. 49, 3051–3073 (2017).
    Google Scholar 
    Jones, G. S., Stott, P. A. & Christidis, N. Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J. Geophys. Res. Atmos. 118, 4001–4024 (2013).
    Google Scholar 
    Sun, L. et al. Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to factual and counterfactual forcing. Weather Clim. Extremes 19, 1–9 (2018).CAS 

    Google Scholar 
    Guillod, B. P. et al. weather@home 2: validation of an improved global–regional climate modelling system. Geosci. Model Dev. 10, 1849–1872 (2017).
    Google Scholar 
    Massey, N. et al. weather@home—development and validation of a very large ensemble modelling system for probabilistic event attribution. Q. J. R. Meteorol. Soc. 141, 1528–1545 (2014).
    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 
    Flato, G. et al. in Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 741–866 (Cambridge University Press, 2014).Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from temperature. Appl. Eng. Agriculture 1, 96–99 (1985).
    Google Scholar 
    Cayan, D. R., Maurer, E. P., Dettinger, M. D., Tyree, M. & Hayhoe, K. Climate change scenarios for the California region. Clim. Change 87, 21–42 (2008).
    Google Scholar 
    Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing. https://www.R-project.org/, 2020).Paciorek, C. J., Stone, D. A. & Wehner, M. F. Quantifying statistical uncertainty in the attribution of human influence on severe weather. Weather Clim. Extremes 20, 69–80 (2018).
    Google Scholar 
    Tadono, T. et al. Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B4, 157–162, https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2#description (2016).
    Google Scholar 
    Takaku, J., Tadono, T., Tsutsui, K. & Ichikawa, M. Validation of “Aw3d” Global Dsm Generated from Alos Prism. ISPRS Ann. Photogramm. III-4, 25–31 (2016).
    Google Scholar 
    Viviroli, D. Increasing dependence of lowland population on mountain water resources. Nat. Sustain. 3, 917–928 (2020).
    Google Scholar 
    Meybeck, M. A New typology for mountains and other relief classes: an application to global continental water resources and population distribution. Mt. Res. Dev. 21, 34–45 (2001).DWS. Surface water home. Department of Water and Sanitation. Republic of South Africa. https://www.dws.gov.za/Hydrology/Unverified/UnverifiedDataFlowInfo.aspx (2021). More

  • in

    Study on the risk of soil heavy metal pollution in typical developed cities in eastern China

    Characteristics of heavy metal concentrationsOn the basis of the soil sample collection and chemical analysis, the concentration data for heavy metals in the urban soils of Wuxi were obtained. Through the statistical analysis of the soil heavy metal concentration data (Table 1), on the whole, the concentration of each heavy metal is as follows: Mn  > Zn  > Cr  > Ni  > Pb  > Cu  > Co  > Be  > Cd. Among these, the concentration range of Cr was 64.5–99 mg kg-1, and the average concentration was 72.9 mg kg−1. The concentration range of Ni was 31.4–67.5 mg kg−1, and the average concentration was 38.2 mg kg−1. The concentration range of Cu was 19.8–37.2 mg kg−1, and the average concentration was 25.5 mg kg−1. The concentration range of Zn was 72.4–1146 mg kg−1, and the average concentration was 90.2 mg kg−1. The concentration range of Cd was 0.34–1.06 mg kg−1, and the average concentration was 0.51 mg kg−1. The concentration range of Pb was 25.6–66.4 mg kg−1, and the average concentration was 37.6 mg kg−1. The variation coefficients of urban soil heavy metal concentration in Wuxi is between 0.09 and 0.33, which is less than 1. The spatial fluctuation of urban soil heavy metal concentration in Wuxi is small, indicating that the sources may be the same or similar.Table 1 Statistics of the heavy metal concentrations and Pb isotope ratios in the urban soils of Wuxi city (unit of heavy metal: mg kg−1; CV: coefficient of variation).Full size tableBy analysing the spatial distributions of the urban soil heavy metal concentrations in Wuxi, several obvious spatial distribution characteristics are found (Fig. 2). First, the heavy metals have high values in the central area of Wuxi, due to where has a high population density and various industries. The central aggregation of Pb is more obvious. Due to the dense roads in the city centre, vehicle traffic, bus stop signs and gas stations are mostly concentrated here, which will lead to Pb contents in this area that are significantly higher than those in other areas. In addition to the heavy metal concentrations, such as those for Cu, Zn and Cr in the downtown area, there are also areas with high values in western Wuxi and low values in eastern Wuxi. This phenomenon may be related to the land use types in Wuxi. In the western area of Wuxi, most land use types are urban and construction land, and the soils in this area are greatly disturbed by human activities. In the eastern region of Wuxi, woodland and grassland account for a large proportion of the land use types, which are less disturbed by human activities.Figure 2Spatial distribution characteristics of heavy metals in the urban soils of Wuxi city (unit: mg kg−1) [the figure was generated by Yan Li using the ArcGIS 10.2 (http:// https://developers.arcgis.com/)].Full size imageSource analysis of heavy metalsExploring for heavy metal pollution from emission sources is an important prerequisite for the study of urban soil pollution. By analysing the sources of heavy metals in soil environments, we can accurately determine which industries are major sources28,29,30 and whether there is homologous pollution. This is not only a theoretical basis for the study of lake sediment pollution and to clarify the risks brought by different pollution sources to the urban soil environment but also provides important guides for local government control of specific polluting industries and pollutant emissions. Based on this, the correlations and significance of heavy metals in the urban soils of Wuxi were analysed (Table 2). Generally, a heavy metal pollution source will emit multiple heavy metals at the same time. If the pollution source has a large emission, the concentration of these heavy metals in the environment will show a high level; on the contrary, if the emission of this pollution source is small, the concentration of these heavy metals in the environment will show a low level10. The correlations between the heavy metals Zn, Cr, Ni, Pb, Cu and Cd are between 0.655–0.907 and show strong correlations and significance at a level of 0.01. The strong significant correlations between different heavy metals indicate that these heavy metals have similar emission sources and transmission routes, which also means that they have consistent sources.Table 2 Correlations of Heavy Metals in the Urban Soils of Wuxi City.Full size tableTo further determine which industries are the sources of the heavy metals found in the urban soil of Wuxi, we analysed the Pb isotope data. The variation range of 208Pb/206Pb in soil is 2.09–2.12, and the average value is 2.10. The variation range of 206Pb/207Pb in soil is 1.17–1.18, and the average value is 1.177 (Table 1). After consulting relevant literature and materials, the main pollution sources of heavy metals in cities in eastern China include coal combustion, oil combustion, factory emissions, municipal wastes and so on3. Therefore, we collected the corresponding Pb isotope data in the emissions of heavy metal pollution sources. By collecting and comparatively analysing the Pb isotope data of known pollution sources (Fig. 3), it was determined that the Pb isotopes of the urban soil heavy metals in the soils of Wuxi have distinct characteristics. First, the Pb isotope distributions in the soils of Wuxi are relatively concentrated, and the ranges of variation are relatively small, which indicate that these heavy metals may have the same source or similar sets of sources. Second, the Pb isotopes in the urban soils of Wuxi city have few similarities with those of the uncontaminated soils and granites in eastern China; in contrast, the Pb isotopes in the urban soils of Wuxi are distributed in areas that are associated with coal combustion, automobile exhaust and urban waste (supplementary materials). The urban soil heavy metals in Wuxi generally have similar pollution sources and are greatly affected by human activities such as coal combustion and automobile exhaust emissions. Wuxi has a developed industrial economy and large numbers of factories. In the production and processing activities, the combustion of energy and fuel and the incomplete utilization of raw materials will lead to the enrichment of pollutants in the surrounding environment. By comparing other studies30,31, the Pb isotope analysis results in this study well indicate the source of soil heavy metals in Wuxi and make up for the Pb isotope data in this area. In the process of urban development, we should develop and apply clean energy, reduce the utilization of petroleum fossil fuels, and control the enrichment of heavy metals and other pollutants in the soil from the source.Figure 3Comparison of the Pb isotope compositions in the urban soils of Wuxi city with known sources.Full size imageEcological risk analysisBy calculating the potential ecological risk index for the heavy metals in the urban soils of Wuxi, the risks of heavy metals in the Wuxi soils were evaluated (Table 3). According to previous studies21, an Ei value lower than 40 indicates that a heavy metal is in a low-risk state at this location, and Ei values greater than or equal to 40 indicate that a heavy metal represents a high-risk state at this location. The average value of the potential ecological risk index of soil heavy metal Cd in Wuxi is 80.3, which represents a high-risk state. The average distributions of the potential ecological risk indexes of the heavy metals Cr, Cu, Zn, Pb and Ni are 1.8, 4.3, 1.1, 5.5 and 4.8, respectively, which all indicate a low-risk state. The risk statuses of different heavy metals may show certain correlations in space, which may be mutually complementary or antagonistic. Examining the spatial interactions of different heavy metal compound pollutants in urban soils plays an important role in the prevention and control of urban heavy metal pollution. Based on this, we used the Lisa analysis method to explore the spatial correlations of the different heavy metal risks in the urban soils of Wuxi (Fig. 4). The Moran scatter diagram can be divided into four quadrants that correspond to four different spatial patterns. High means that the variable value is higher than the average value, and Low means that the variable value is lower than the average value. In the upper right quadrant (High–High), a high-value area is surrounded by high-value neighbours; in the upper left quadrant (Low–High), a low-value area is surrounded by high-value neighbours; in the lower left quadrant (LL), a low-value area is surrounded by low-value neighbours; and in the lower right quadrant (High–Low), a high-value area is surrounded by low-value neighbours. High-High and Low-Low indicate that the differences between the region and its surrounding areas are small; that is, the regions with higher or lower values are concentrated, while the Low–High and High–Low quadrants indicate that the variable values between a region and its surrounding areas are different to a certain extent.Table 3 Ecological risk and health risk analysis of heavy metals in the urban soils of Wuxi (Cr-E represents the ecological risk of metal element Cr; Ni-E represents the ecological risk of metal element Ni; Cu-E represents the ecological risk of metal element Cu; Zn-E represents the ecological risk of metal element Zn; Cd-E represents the ecological risk of metal element Cd; Pb-E represents the ecological risk of metal element Pb; ADDderm-C is the average exposure to skin contact pathways for child; ADDderm-A is the average exposure to skin contact pathways for adult; ADDing-C is the average daily exposure to intake pathway for child; ADDing-A is the average daily exposure to intake pathway for adult; HI-C is the total health risk caused by accumulation of heavy metals in multiple ways in the same environmental medium for child; HI-A is the total health risk caused by accumulation of heavy metals in multiple ways in the same environmental medium for adult).Full size tableFigure 4LISA analysis of the ecological risks from different heavy metals [the figure was generated by Yan Li using the ArcGIS 10.2 (http:// https://developers.arcgis.com/)].Full size imageIn this study, two main results were obtained from spatial correlation Lisa analysis between different heavy metals. One is a High-High area, which is mainly distributed in the central and western regions of Wuxi city, which is consistent with the spatial distribution of the urban soil heavy metal concentrations in Wuxi city and is strongly disturbed by human activities. The other is the insignificant area, in which there are also large numbers of factories and enterprises and in which the forestland and grassland are distributed at intervals, which leads to an insignificant spatial correlation of soil heavy metal contents. Based on the above analysis, the high-risk areas for heavy metals in the urban soils of Wuxi are mainly concentrated in the central and western regions, and the relevant management activities need to be given great attention. In the eastern region, sporadic high-risk areas are also present, which should also receive due attention. Moran’s I is a method to measure the interdependence and degree of objects or phenomena by constructing statistics on certain characteristics or attributes for a certain spatial unit in the study area and the surrounding spatial units. It can be used to describe the spatial characteristics of spatial units such as aggregation or outliers in the distribution of certain attributes and is a very important technology in spatial data analysis33,34. However, few studies have applied it to the spatial relationship analysis of different heavy metals in urban soil.Health risk analysisBy using the health risk assessment model that is recommended by the U.S. EPA, this study calculated the health risks of soil heavy metals to adults and children through skin contact and ingestion. For both adults and children, the risk of soil heavy metals through ingestion was much higher than that caused by skin exposure (Table 3). For children, the total health risk that was caused by soil heavy metals is 0.078, which is four times that of adults. This may be related to children’s habits. Most children like to play with sand and climb around on the ground. These behaviours greatly increase the frequency of children contacting the soil, which thus increases the health risk caused by heavy metals in the soil. To further explore the spatial characteristics of the health risks of heavy metals in the soils of Wuxi, this study provides spatial predictions of the health risk values of soil heavy metals (Fig. 5). The total health risk values of soil heavy metals for children and adults have similar spatial distribution characteristics. High health risk values appear in the central area of Wuxi and decrease in a ring-shaped pattern. This is similar to the development degree of the city. The downtown area of Wuxi is densely populated, the pedestrian flow is very large, and the health risk of soil heavy metals in this area is very high, which poses a very serious potential threat. The health risk values for the western region of Wuxi are high, and there is also a potential threat. When compared with western Wuxi, eastern Wuxi has a lower risk.Figure 5Health risk analysis of heavy metals in the urban soils of Wuxi [the figure was generated by Yan Li using the ArcGIS 10.2 (http:// https://developers.arcgis.com/)].Full size image More

  • in

    Seasonal distribution of fish larvae in mangrove-seagrass seascapes of Zanzibar (Tanzania)

    Beck, M. W. et al. The role of near shore ecosystems as fish and shellfish nurseries. Issues Ecol. 11, 1–12 (2003).
    Google Scholar 
    De la Torre-Castro, M., Di Carlo, G. & Jiddawi, N. S. Seagrass importance for a small-scale fishery in the tropics: The need for seascape management. Mar. Poll. Bull. 83, 398–407 (2014).
    Google Scholar 
    Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: incorporating complexity and dynamics. Estuar. Coasts 38, 401–414 (2014).
    Google Scholar 
    Nordlund, L. M., Unsworth, R. K. F., Gullström, M. & Cullen-Unsworth, L. C. Global significance of seagrass fishery activity. Fish. Fish. 19, 399–412 (2018).
    Google Scholar 
    Kimirei, I. A., Nagelkerken, I., Griffioen, B., Wagner, C. & Mgaya, Y. D. Ontogenetic habitat use by mangrove/seagrass-associated coral reef fishes shows flexibility in time and space. Estuar. Coast. Shelf Sci. 92, 47–58 (2011).ADS 

    Google Scholar 
    Unsworth, R. K. F. et al. Structuring of Indo-Pacific fish assemblages along the mangrove-seagrass continuum. Aquat. Biol. 5, 85–95 (2009).
    Google Scholar 
    Cocheret De La Morinière, E., Pollux, B. J. A., Nagelkerken, I. & van Der Velde, G. Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar. Coast. Shelf Sci. 55, 309–321 (2002).Berkström, C., Lindborg, R., Thyresson, M. & Gullström, M. Assessing connectivity in a tropical embayment: fish migrations and seascape ecology. Biol. Conserv. 166, 43–53 (2013).
    Google Scholar 
    Saenger, P., Gartside, D. & Funge-Smith, S. A review of mangrove and seagrass ecosystems and their linkage to fisheries and fisheries management. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand, 74 (RAP Publication, 2013).King, A. J. Density and distribution of potential prey for larval fish in the main channel of a floodplain river: pelagic versus epibenthic meiofauna. River Res. Appl. 20, 883–897 (2004).
    Google Scholar 
    Carassou, L., Ponton, D., Mellin, C. & Galzin, R. Predicting the structure of larval fish assemblages by a hierarchical classification of meteorological and water column forcing factors. Coral Reefs 27, 867–880 (2008).ADS 

    Google Scholar 
    Pinho Costa, A. C., Martins Garcia, T., Pereira Paiva, B., Ximenes Neto, A. R. & de Oliveira Soares, M. Seagrass and rhodolith beds are important seascapes for the development of fish eggs and larvae in tropical coastal areas. Mar. Environ. Res. 161, 105064 (2020).Muzaki, F. K., Giffari, A. & Saptarini, D. Community structure of fish larvae in mangroves with different root types in Labuhan coastal area, Sepulu–Madura. AIP Conf. Proc. 1854, 020025 (2017).Isari, S. et al. Exploring the larval fish community of the central Red Sea with an integrated morphological and molecular approach. PLoS ONE, 12, e0182503 (2017).Levin, P. S. Fine-scale temporal variation in recruitment of a temperate demersal fish: the importance of settlement versus post-settlement loss. Oecologia 97, 124–133 (1994).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mwaluma, J. M., Boaz Kaunda-Arara, B., Rasowo, J., Osore, M. K. & Vidar Øresland V. Seasonality in fish larval assemblage structure within marine reef National Parks in coastal Kenya. Environ. Biol. Fish. 90, 393–404 (2011).Reglero, P., Tittensor, D. P., Álvarez-Berastegui, D., Aparicio-González, A. & Worm, B. Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats. Mar. Ecol. Prog. Ser. 501, 207–224 (2014).ADS 

    Google Scholar 
    Leis, J. M. Ontogeny of behaviour in larvae of marine demersal fishes. Ichthyol. Res. 57, 325–342 (2010).
    Google Scholar 
    Tzeng, W. N. & Wang, Y. T. Hydrography and distribution dynamics of larval and juvenile fishes in the coastal waters of the Tanshui River estuary, Taiwan, with reference to estuarine larval transport. Mar. Biol. 116, 205–217 (1993).
    Google Scholar 
    Leis, J. M., Sweatman, H. P. A. & Reader, S. E. What the pelagic stages of coral reef fishes are doing out in blue water: Daytime field observations of larval behavioural capabilities. Mar. Freshw. Res. 47, 401–411 (1996).
    Google Scholar 
    Leis, J. M. & Carson-Ewart, B. M. Complex behaviour by coral-reef fish larvae in open-water and near-reef pelagic environments. Environ. Biol. Fish. 53, 259–266 (1998).
    Google Scholar 
    Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. 51, 57–141 (2006).PubMed 

    Google Scholar 
    Faillettaz, R., Paris, C. B. & Irisson, J. O. Larval fish swimming behavior alters dispersal patterns from marine protected areas in the North-Western Mediterranean Sea. Front. Mar. Sci. 5, 1–12 (2018).ADS 

    Google Scholar 
    Azeiteiro, U. M., Bacelar-Nicolau, L., Resende, P., Gonçalves, F. & Pereira, M. J. Larval fish distribution in shallow coastal waters off North Western Iberia (NE Atlantic). Estuar. Coast. Shelf Sci. 69, 554–566 (2006).ADS 

    Google Scholar 
    Irisson, J. O. & Lecchini, D. In situ observation of settlement behaviour in larvae of coral reef fishes at night. J. Fish Biol. 72, 2707–2713 (2008).
    Google Scholar 
    Teixeira Bonecker, F., de Castro, M. S. & Teixeira Bonecker, A. C. Larval fish assemblage in a tropical estuary in relation to tidal cycles, day/night and seasonal variations. Pan-Am. J. Aquat. Sci. 4, 239–246 (2009).Strydom, N. A. Patterns in larval fish diversity, abundance, and distribution in temperate South African estuaries. Estuar. Coasts 38, 268–284 (2014).
    Google Scholar 
    Lana, P. C. & Bernardino, A. F. (Eds). Brazilian estuaries: a benthic perspective. Brazilian Marine Biodiversity series. 212 (Springer, Cham, 2018).Donahue, M. J., Karnauskas, M., Toews, C. & Paris, C. B. Location isn’t everything: Timing of spawning aggregations optimizes larval replenishment. PLoS ONE 10, 1–15 (2015).
    Google Scholar 
    Reynalte-Tataje, D. A., Zaniboni-Filho, E., Bialetzki, A. & Agostinho, A. A. Temporal variability of fish larvae assemblages: influence of natural and anthropogenic disturbances. Neotrop. Ichthyol. 10, 837–846 (2012).
    Google Scholar 
    Somarakis, S., Tsoukali, S., Giannoulaki, M., Schismenou, E. & Nikolioudakis, N. Spawning stock, egg production and larval survival in relation to small pelagic fish recruitment. Mar. Ecol. Prog. Ser. 2018, 113–136 (2018).
    Google Scholar 
    Sampey, A., Meekan, M. G., Carleton, J. H., McKinnon, A. D. & McCormick, M. I. Temporal patterns in distributions of tropical fish larvae on the North West Shelf of Australia. Mar. Freshw. Res. 55, 473–487 (2004).
    Google Scholar 
    Rezagholinejad, S., Arshad, A., Nurul Amin, S. M. & Ehteshami, F. The influence of environmental parameters on fish larval distribution and abundance in the mangrove estuarine area of Marudu bay, Sabah, Malaysia. J. Surv. Fish. Sci. 2, 67–78 (2016).Shuai, F. et al. Temporal patterns of larval fish occurrence in a large subtropical river. PLoS ONE 11, e0156556 (2016).Nordlund, L. M. et al. Intertidal zone management in the Western Indian Ocean: assessing current status and future possibilities using expert opinions. Ambio 43, 1006–1019 (2014).PubMed 

    Google Scholar 
    De Oliveira, E. C. & Ferreira, E. J. G. Spawning areas, dispersion and microhabitats of fish larvae in the Anavilhanas Ecological Station, rio Negro, Amazonas State Brazil. Neotrop. Ichthyol. 6, 559–566 (2008).
    Google Scholar 
    Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Ann. Rev. Ecol. Syst. 27, 477–500 (1996).
    Google Scholar 
    Crochelet, E. et al. Validation of a fish larvae dispersal model with otolith data in the Western Indian Ocean and implications for marine spatial planning in data-poor regions. Ocean Coast Manag. 86, 13–21 (2013).
    Google Scholar 
    Gilroy, J. J. & Edwards, D. P. Source-sink dynamics: a neglected problem for landscape-scale biodiversity conservation in the tropics. Curr. Landsc. Ecol. Rep. 2, 51–60 (2017).
    Google Scholar 
    Little, M. C., Reay, P. J. & Grove, S. J. Distribution gradients of ichthyoplankton in an East African mangrove creek. Estuar. Coast. Shelf Sci. 26, 669–677 (1988).ADS 

    Google Scholar 
    Hedberg, P., Rybak, F. F., Gullström, M., Jiddawi, N. S. & Winder, M. Fish larvae distribution among different habitats in coastal East Africa. J. Fish Biol. 94, 29–39 (2019).CAS 
    PubMed 

    Google Scholar 
    Heylen, B. C. & Nachtsheim, D. A. Bio-telemetry as an essential tool in movement ecology and marine conservation. In: Jungblut, S., Liebich, V. & Bode, M. (Eds), YOUMARES 8–Oceans Across Boundaries: Learning From Each Other. 83–107 (Springer, 2018).Parrish, J. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar. Ecol. Prog. Ser. 58, 143–160 (1989).ADS 

    Google Scholar 
    McMahon, K. W., Berumen, M. L. & Thorrold, S. R. Linking habitat mosaics and connectivity in a coral reef seascape. Proc. Natl. Acad. Sci. USA 109, 15372–15376 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carlson, R. R. et al. Synergistic benefits of conserving land-sea ecosystems. Glob. Ecol. Conserv. 28, e01684 (2021).Mwaluma, J. M. et al. Assemblage structure and distribution of fish larvae on the North Kenya Banks during the Southeast Monsoon season. Ocean Coast. Manag. 212, 105800 (2021).Joyeux, J. C. The abundance of fish larvae in estuaries: Within-tide variability at inlet and immigration. Estuaries 22, 889–904 (1999).
    Google Scholar 
    Able, K. W., Valenti, J. L. & Grothues, T. M. Fish larval supply to and within a lagoonal estuary: Multiple sources for Barnegat Bay New Jersey. Environ. Biol. Fish. 100, 663–683 (2017).
    Google Scholar 
    McClanahan, T. R. Seasonality in East Africa’s coastal waters. Mar. Ecol. Prog. Ser. 44, 191–199 (1988).ADS 

    Google Scholar 
    Aceves-Medina, G. et al. Distribution and abundance of the ichthyoplankton assemblages and its relationships with the geostrophic flow along the southern region of the California current. Lat. Am. J. Aquat. Res. 46, 104–119 (2018).
    Google Scholar 
    Gray, C. A. & Miskiewicz, A. G. Larval fish assemblages in south-east Australian coastal waters: Seasonal and spatial structure. Estuar. Coast. Shelf Sci. 50, 549–570 (2000).ADS 

    Google Scholar 
    Jiménez, M. P., Sánchez-Leal, R. F., González, C., García-Isarch, E. & García, A. Oceanographic scenario and fish larval distribution off Guinea-Bissau (north-west Africa). J. Mar. Biolog. Assoc. UK 95, 435–452.Mwaluma, J. M., Kaunda-Arara, B. & Rasowo, J. Diel and lunar variations in larval supply to Malindi Marine Park, Kenya. West Ind. Ocean J. Mar. Sci. 13, 57–67 (2014).
    Google Scholar 
    Stephens, J. S. Jr., Jordan, G. A., Morris, P. A., Singer, M. M. & McGowen, G. E. Can we relate larval fish abundance to recruitment or population stability? A preliminary analysis of recruitment to a temperate rocky reef. CalCOFI Rep. 27, 65–83 (1986).
    Google Scholar 
    Green, B. C., Smith, D. J., Grey, J. & Underwood, G. J. C. High site fidelity and low site connectivity in temperate salt marsh fish populations: A stable isotope approach. Oecologia 168, 245–255 (2012).ADS 
    PubMed 

    Google Scholar 
    Green, J. M. & Wroblewski, J. S. Movement patterns of Atlantic cod in Gilbert Bay, Labrador: Evidence for bay residency and spawning site fidelity. J. Mar. Biolog. Assoc. UK 80, 1077–1085 (2000).
    Google Scholar 
    Grüss, A., Kaplan, D. M. & Hart, D. R. Relative impacts of adult movement, larval dispersal and harvester movement on the effectiveness of reserve networks. PLoS ONE 6, e19960 (2011).Luiz, O. J. et al. Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc. Natl. Acad. Sci. USA 110, 16498–16502 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macpherson, E. & Raventos, N. Relationship between pelagic larval duration and geographic distribution of Mediterranean littoral fishes. Mar. Ecol. Prog. Ser. 327, 257–265 (2006).ADS 

    Google Scholar 
    Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).PubMed 

    Google Scholar 
    Taylor, M. D., Laffan, S. D., Fielder, D. S. & Suthers, I. M. Key habitat and home range of mulloway Argyrosomus japonicus in a south-east Australian estuary: Finding the estuarine niche to optimise stocking. Mar. Ecol. Prog. Ser. 328, 237–247 (2006).ADS 

    Google Scholar 
    Manson, F. J., Loneragan, N. R., Skilleter, G. A. & Phinn, S. R. An evaluation of the evidence for linkages between mangroves and fisheries: A synthesis of the literature and identification of research directions. Oceanogr. Mar. Biol. 43, 483–513 (2005).
    Google Scholar 
    Pattrick, P. & Strydom, N. A. Composition, abundance, distribution and seasonality of larval fishes in the shallow nearshore of the proposed Greater Addo Marine Reserve, Algoa Bay South Africa. Estuar. Coast. Shelf Sci. 79, 251–262 (2008).ADS 

    Google Scholar 
    Sato, N., Asahida, T., Terashima, H., Hurbungs, M. D. & Ida, H. Species composition and dynamics of larval and juvenile fishes in the surf zone of Mauritius. Environ. Biol. Fish. 81, 229–238 (2008).
    Google Scholar 
    Jaonalison, H., Mahafina, J. & Ponton, D. Fish post-larvae assemblages at two contrasted coral reef habitats in southwest Madagascar. Reg. Stud. Mar. Sci 6, 62–74 (2016).
    Google Scholar 
    Azmir, I. A., Esa, Y., Amin, S. M. N., Yasin, I. S. & Yusof, F. ZMd. Identification of larval fish in mangrove areas of Peninsular Malaysia using morphology and DNA barcoding methods. J. Appl. Ichthyol. 33, 998–1006 (2017).CAS 

    Google Scholar 
    Macedo-Soares, L. C. P., Freire, A. S. & Muelbert, J. H. Small-scale spatial and temporal variability of larval fish assemblages at an isolated oceanic island. Mar. Ecol. Prog. Ser. 444, 207–222 (2012).ADS 

    Google Scholar 
    Monteleone, D. M. Seasonality and abundance of ichthyoplankton in great South Bay, New York. Estuaries 15, 230–238 (1992).
    Google Scholar 
    Ara, R., Arshad, A., Amin, S. M. & Mazlan, A. G. Temporal and spatial distribution of fish larvae in different ecological habitats. Asian J. Anim. Vet. Adv. 8, 53–62 (2013).
    Google Scholar 
    Abu El-Regal, M. Abundance and diversity of coral reef fish larvae at Hurghada, Egyptian Red Sea. Egypt. J. Aquat. Biol. Fish. 12, 17–33 (2008).
    Google Scholar 
    Bialetzki, A., Nakatani, K., Sanches, P. V., Baumgartner, G. & Gomes, L. C. Larval fish assemblage in the Baía River (Mato Grosso do Sul State, Brazil): temporal and spatial patterns. Environ. Biol. Fish. 73, 37–47 (2005).
    Google Scholar 
    Dudley, B., Tolimieri, N. & Montgomery, J. Swimming ability of the larvae of some reef fishes from New Zealand waters. Mar. Freshw. Res. 51, 783–787. https://doi.org/10.1071/MF00062 (2000).Article 

    Google Scholar 
    Hare, J. A. et al. Biophysical mechanisms of larval fish ingress into Chesapeake Bay. Mar. Ecol. Prog. Ser. 303, 295–310 (2005).ADS 

    Google Scholar 
    Watt-pringle, P. & Strydom, N. A. Habitat use by larval fishes in a temperate South African surf zone. Estuar. Coast. Shelf Sci. 58, 765–774 (2003).ADS 

    Google Scholar 
    Picapedra, P. H. S., Sanches, P. V. & Lansac-Tôha, F. A. Effects of light-dark cycle on the spatial distribution and feeding activity of fish larvae of two co-occurring species (Pisces: Hypophthalmidae and Sciaenidae) in a neotropical floodplain lake. Braz. J. Biol. 78, 763–772 (2018).CAS 
    PubMed 

    Google Scholar 
    Cederlöf, U., Rydberg, L., Mgendi, M. & Mwaipopo, O. Tidal exchange in a warm tropical lagoon: Chwaka Bay, Zanzibar. Ambio 24, 458–464 (1995).
    Google Scholar 
    Gullström, M. et al. Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing. Estuar. Coast. Shelf Sci. 67, 399–408 (2006).ADS 

    Google Scholar 
    Gullström, M. et al. Seagrass meadows of Chwaka Bay: ecological, social and management aspects. In: de la Torre-Castro, M., Lyimo, T. J. (Eds) People, nature and research: past, present and future of Chwaka Bay, Zanzibar. ISBN: 978-9987-9559-1-6, Zanzibar Town: 89–109 (WIOMSA, 2012a)Gullström, M. et al. Connectivity and nursery function of shallow-water habitats in Chwaka Bay. In: de la Torre-Castro, M., Lyimo, T. J. (Eds) People, nature and research: past, present and future of Chwaka Bay, Zanzibar. ISBN: 978-9987-9559-1-6, Zanzibar Town: 175–192 (WIOMSA, 2012b)Rehren, J., Wolff, M. & Jiddawi, N. Holistic assessment of Chwaka Bay’s multi-gear fishery—using a trophic modeling approach. J. Mar. Syst. 180, 265–278 (2018).
    Google Scholar 
    Torell, E., Mmochi, A. & Palmigiano, K. Menai Bay Convernance Baseline. Coastal Resources Center, 1–18 (University of Rhode Island, 2006).Torell, E., Shalli, M., Francis, J., Kalangahe, B. & Munubi, R. Tanzania biodiversity threats assessment: Biodiversity threats and management opportunities for Fumba, Bagamoyo, and Mkuranga. 1–47 (University of Rhode Island, Narragansett, 2007).Jeyaseelan, M. J. P. Manual of fish eggs and larvae from Asian mangrove waters.193 (Paris: UNESCO Publishing, 1998).Mwaluma, J. M., Kaunda-Arara, B. & Strydom, N. A. A guide to commonly occurring larval stages of fishes in Kenyan Coastal Waters. WIOMSA Book Series No. 15. xvi + 73 (WIOMSA, 2014).Leis, J. M. & Carson-Ewart, B. M. (Eds.). The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae (Fauna Malesiana Handbooks 2), 804 (Brill, Leiden, 2000).Strickland, J. D. H. & Parsons, T. R. A practical handbook of seawater analysis, 2nd edn. Vol. 167. 21–26 (Bull. Fish. Res. Bd. Canada, 1972).Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-E). Plymouth Marine Laboratory, (Plymouth, UK, 2001). More

  • in

    The AI that deciphers ancient Greek graffiti

    NATURE PODCAST
    09 March 2022

    The AI that deciphers ancient Greek graffiti

    An artificial intelligence that restores illegible inscriptions, and the project that’s reintroducing lost species in Argentina.

    Nick Petrić Howe

    &

    Benjamin Thompson

    Nick Petrić Howe

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Benjamin Thompson

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Subscribe
    Subscribe

    iTunes
    Google Podcast
    acast
    RSS

    Listen to the latest from the world of science, with Nick Petrić Howe and Benjamin Thompson.

    Your browser does not support the audio element.

    Download MP3

    In this episode:00:46 The AI helping historians read ancient textsResearchers have developed an artificial intelligence that can restore and date ancient Greek inscriptions. They hope that it will help historians by speeding up the process of reconstructing damaged texts. Research article: Assael et al.News and Views: AI minds the gap and fills in missing Greek inscriptionsVideo: The AI historian: A new tool to decipher ancient textsIthaca platform08:53 Research HighlightsPollinators prefer nectar with a pinch of salt, and measurements of a megacomet’s mighty size.Research Highlight: Even six-legged diners can’t resist sweet-and-salty snacksResearch Highlight: Huge comet is biggest of its kind11:10 Rewilding ArgentinaThis week Nature publishes a Comment article from a group who aim to reverse biodiversity loss by reintroducing species to areas where they are extinct. We speak to one of the Comment’s authors about the project and their hopes that it might kick start ecosystem restoration.Comment: Rewilding Argentina: lessons for the 2030 biodiversity targets21:02 Briefing ChatWe discuss some highlights from the Nature Briefing. This time, giant bacteria that can be seen with the naked eye, and how record-breaking rainfall has caused major floods in Australia.Science: Largest bacterium ever discovered has an unexpectedly complex cellNew Scientist: Record flooding in Australia driven by La Niña and climate changeThe Conversation: The east coast rain seems endless. Where on Earth is all the water coming from?Subscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed.

    doi: https://doi.org/10.1038/d41586-022-00701-7

    Related Articles

    Read the paper: Restoring and attributing ancient texts using deep neural networks

    Rewilding Argentina: lessons for the 2030 biodiversity targets

    Subjects

    Machine learning

    History

    Ecology

    Latest on:

    Machine learning

    AI minds the gap and fills in missing Greek inscriptions
    News & Views 09 MAR 22

    The evolution, evolvability and engineering of gene regulatory DNA
    Article 09 MAR 22

    Gran Turismo champion, reimagined urine — the week in infographics
    News 15 FEB 22

    History

    AI minds the gap and fills in missing Greek inscriptions
    News & Views 09 MAR 22

    Police rely on radiocarbon dating to identify forged paintings
    News 09 MAR 22

    Restoring and attributing ancient texts using deep neural networks
    Article 09 MAR 22

    Ecology

    Discovery of a Ni2+-dependent guanidine hydrolase in bacteria
    Article 09 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    How itchy vicuĂąas remade a vast wilderness
    Research Highlight 04 MAR 22

    Jobs

    Principal Investigator / Faculty

    San Diego Biomedical Research Institute (SDBRI)
    Multiple locations

    Research Associate / Light Microscopy Imaging Specialist (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Bioinformatician (m/f/div)

    Max Planck Institute for Plant Breeding Research (MPIPZ)
    Cologne, Germany

    Research Coordinator / Institute Manager (div/f/m)

    Max Planck Institute for Astrophysics (MPA)
    Garching near Munich, Germany More

  • in

    Optimistic tales from nature under change

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits

    Microcosm preparation and incubationLeaf litters were collected from Lilly-Dickey Woods, a mature eastern US temperate broadleaf forest located in South-Central Indiana (39°14′N, 86°13′W) using litter baskets and surveys for freshly senesced litter as described in Craig et al.52. Of the 19 species collected in Craig et al. (2018), we selected litter from 16 tree species with the goal of maximizing variation in litter chemical traits (Table S1). Litters were air-dried and then homogenized and fragmented such that all litter fragments passed a 4000 µm, but not a 250 µm mesh. Whereas leaf litters had a distinctly C3 δ13C signature of −30.1 ± 1.5 (mean, standard deviation), we used a 13C-rich (δ13C = −12.6 ± 0.4) soil obtained from the A horizon of a 35-yr continuous corn field at the Purdue University Agronomy Center for Research and Education near West Lafayette, Indiana (40°4′N, 86°56′W). The soil is classified as Chalmers silty clay loam (a fine-silty, mixed, superactive, mesic Typic Endoaquoll). Prior to use in the incubation, soils were sieved (2 mm) and remaining recognizable plant residues were thoroughly picked out. Soils were mixed with acid-washed sand—30% by mass—to facilitate litter mixing (see below) and to increase the soil volume for post-incubation processing. The resulting soil had a pH of 6.7 and a C:N ratio of 12.0.We constructed the experimental microcosms by mixing the 16 litter species with the 13C-enriched soil. Each litter treatment was replicated four times in four batches (i.e., 16 microcosms per species, 272 total microcosms including 16 soil-only controls). Two batches (C budget microcosms) were used to monitor CO2 efflux and to track litter-derived C into SOM pools, and two batches were used to quantify microbial biomass dynamics.Incubations were carried out in 50 mL centrifuge tubes modified with an O-ring to prevent leakage and a rubber septum to facilitate headspace sampling. To each microcosm, we added 5 g dry soil, adjusted moisture to 65% water-holding capacity, and pre-incubated for 24 h in the dark at 24 °C. Using a dissecting needle, 300 mg of leaf litter were carefully mixed into treatment microcosms and controls were similarly agitated. This corresponds to an average C addition rate of 27.1 ± 1.1 g C kg−1 dry soil among the 16 species. During incubation, microcosms were loosely capped to retain moisture while allowing gas exchange, and were maintained at 65% water-holding capacity by adding deionized water every week.Carbon budget in microcosmsRespiration was quantified with an infrared gas analyzer (LiCOR 6262, Lincoln, NE, USA) coupled to a sample injection system. Our first measurement was taken about 12 h after litter addition (day 1) and subsequent measurements were taken on days 2, 4, 11, 19, and 30 for both batches and on days 46, 64, 79, 92, 109, 128, 149, and 185 for the second batch. Prior to each measurement, microcosms were capped, flushed with CO2-free air, and incubated for 1–8 h depending on the expected efflux rate. Headspace was sampled with a gas-tight syringe and the CO2-C concentration was converted to a respiration rate (µg CO2-C day−1). Total cumulative CO2-C loss was derived from point measurements by numerical integration (i.e., the trapezoid method). To evaluate soil-derived CO2-C efflux, we measured δ13C in two gas samples per litter type or control on a ThermoFinnigan DELTA Plus XP isotope ratio mass spectrometer (IRMS) with a GasBench interface (Thermo Fisher Scientific, San Jose, CA). Isotopes were measured on days 1, 4, 11, 30, 64, 109, and 185. On each of these days, a two-source mixing model70 was applied to determine the fraction of total CO2-C derived from soil organic matter vs. litter:$$frac{{F}^{l}(t)}{F(t)}=frac{delta Fleft(tright)-,delta {F}^{c}(t)}{delta {C}_{l}-delta {F}^{c}(t)}$$
    (1)
    where (frac{{F}^{l}(t)}{F(t)}) is the fraction total CO2-C efflux [(F(t))] derived from litter [({F}^{l}(t))] at time (left(tright)), (delta Fleft(tright)) is the δ13C of the CO2 respired by each litter-soil combination, (delta {F}^{c}(t)) is the average δ13C of the CO2 respired by the control soil, and (delta {C}_{l}) is the δ13C of each litter type. These data were used to calculate cumulative soil-derived C efflux via numerical integration and, for each litter type, average soil-derived C efflux was subtracted from total cumulative CO2-C loss to determine cumulative litter-derived CO2-C loss.Carbon budget microcosms were harvested on days 30 and 185 to track litter-derived C into mineral-associated SOC at an early and intermediate stage of decomposition. To do this, we used a size fractionation procedure71,72 modified to minimize the recovery of soluble leaf litter compounds or dissolved organic matter in the mineral-associated SOC fraction. For each sample, we first added 30 mL deionized water, gently shook by hand to suspend all particles, and then centrifuged (2500 rpm) for 10 min. Floating leaf litter was carefully removed, dried for 48 h at 60 °C, and weighed; and the clear supernatant was discarded to remove the dissolved organic matter. The remaining sample was dispersed in 5% (w/v) sodium hexametaphosphate for 20 h on a reciprocal shaker and then washed through a 53 µm sieve. The fraction retained on the sieve was added to the floating leaf litter sample and collectively referred to as particulate SOC, while the fraction that passed through the sieve was considered the mineral-associated SOC. Both fractions were dried, ground, and weighed; and analyzed for C concentrations and δ13C values on an elemental combustion system (Costech ECS 4010, Costech Analytical Technologies, Valencia, CA, USA) as an inlet to an IRMS. As above, litter-derived C in the particulate and mineral-associated SOC was determined as follows:$$frac{{C}_{s}^{l}(t)}{{C}_{s}(t)}=frac{delta {C}_{s}left(tright)-,delta {C}_{c}(t)}{delta {C}_{l}-delta {C}_{c}(t)}$$
    (2)
    where ({C}_{s}(t)) is the total particulate or mineral-associated SOC content in the sample at time ((t)), ({C}_{s}^{l}(t)) is the litter-derived C in the soil, (delta {C}_{s}left(tright)) is the measured δ13C value for each soil fraction, (delta {C}_{c}left(tright)) is the average δ13C for each fraction in control samples, and (delta {C}_{l}) is the δ13C of each litter type. In a few cases, mineral-associated δ13C was slightly less negative in the treatment than in the control soil. In these cases, litter-derived mineral-associated SOC was considered zero.Total litter-derived SOC at each harvest date was calculated by subtracting the cumulative litter CO2-C from initial added litter C. The difference between this value and the sum of litter-derived particulate and mineral-associated SOC was considered the residual pool which we assume mostly represents water-extractable dissolved organic matter.Microbial biomass dynamics during incubationSample batches were harvested at days 15 and 100 to capture early- and intermediate-term microbial biomass responses to litter treatments. These times were selected to correspond with the middle of early and intermediate C budget microcosm incubations. We quantified microbial biomass as well as MGR, CUE, and MTR using 18O-labeled water73,74 as in Geyer et al.75.Microbial biomass C (MBC) was determined on two ~2 g subsamples using a standard chloroform fumigation extraction76. One subsample was immediately extracted in 0.5 M K2SO4 and one was fumigated for 72 h before extraction. After shaking for 1 h, extracts were gravity filtered through a Whatman No. 40 filter paper, and filtrates were analyzed for total organic C using the method of Bartlett and Ross77 as adapted by Giasson et al.78. The difference between total organic C in the fumigated and unfumigated subsamples was used to calculate MBC (extraction efficiency KEC = 0.45).To determine MGR, CUE, and MTR, we first pre-incubated two 0.5 g soil subsamples (one treatment and one control) for 2 d at 24 °C. Prior to this pre-incubation, samples were allowed to evaporate down to 53 ± 6% (mean, sd) water-holding capacity. After the pre-incubation, water was injected with a 25 µL syringe to bring each sample to 65% water-holding capacity. For one subsample, we used unlabeled deionized water. For the second subsample, enriched 18O-water (98.1 at%; ICON Isotopes) was mixed with unlabeled deionized H2O to achieve approximately 20 at% of 18O in the final soil water. Each sample was placed in a centrifuge tube (modified for gas sampling), flushed with CO2-free air, and incubated for 24 h. Headspace CO2 concentration was then measured, and samples were flash frozen in liquid N2 and stored at −80 °C until DNA extraction.DNA was extracted from each sample using a DNA extraction kit (Qiagen DNeasy PowerSoil Kit, Venlo, Netherlands) following the protocol described in Geyer et al. (2019) which sought to maximize the recovery of DNA. The DNA concentration was determined fluorometrically using a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen). DNA extracts (80 µL) were dried at 60 °C in silver capsules spiked with 100 µL of salmon sperm DNA (42.5 ng µL−1), to reach the oxygen detection limit, and sent to the UC Davis Stable Isotope Facility for quantification of δ18O and total O content.Microbial growth rate (MGR) was calculated following Geyer et al. (2019). Specifically, atom % of soil DNA O (at% ODNA) was determined using the two-pool mixing model:$${at} % ,{O}_{{DNA}}=,frac{left[left({at} % ,{O}_{{DN}A+{ss}}times {O}_{{DNA}+{ss}}right)-left({at} % ,{O}_{{ss}}times {O}_{{ss}}right)right]}{{O}_{{DNA}}},$$
    (3)
    where at% is the atom % 18O and ODNA+ss, ODNA, and Oss are the concentration of O in the whole sample, soil DNA, and salmon sperm, respectively. Atom percent excess of soil DNA oxygen (APE Osoil) was calculated as the difference between at% ODNA in the treatment and control samples. Total microbial growth in terms of O (Total O; Âľg) was estimated as:$${Total},O=frac{{O}_{{soil}}times ,{{APE},O}_{{soil}}}{{at} % ,{soil},{water}}$$
    (4)
    where at% soil water is the atom % 18O in the soil water. MGR in terms of C (µg C g−1 soil d−1) was calculated by applying conversion mass ratios of oxygen:DNA (0.31) and MBC:DNA for each sample, dividing by the soil mass, and scaling by the incubation time. Assuming uptake rate (Uptake) is equal to the sum of MGR and respiration, CUE and MTR were calculated by the following equations.$${CUE}=,frac{{MGR}}{{Uptake}},$$
    (5)
    $${MTR}=,frac{{MGR}}{{MBC}}$$
    (6)
    Data analysis for microcosm experimentLitter decay constants were calculated for each species using litter-derived CO2-C values to estimate litter mass loss over time. After it was determined that a single exponential decay model provided a poor fit, we fit litter decomposition data using the double exponential decay model:$$y=s{e}^{{-k}_{1}t}+(1-s){e}^{{-k}_{2}t}$$
    (7)
    where s represents the labile or early stage decomposition fraction that decomposes at rate k1, and k2 is the decay constant for the remaining late stage decomposition fraction.To reduce the dimensionality of litter quality and microbial indicators, indices were derived by principal component analysis (PCA; Fig. S1A, B) using the ‘prcomp’ function in R. The first axis of a PCA of decomposition parameters (s, k1, and k2) and litter chemical properties (soluble and AUR contents; AUR-to-N and C-to-N ratios; and the lignocellulose index [LCI]) was taken as a litter quality index. Whereas this index highly correlated with indicators of C quality (AUR, soluble content, and LCI), the second axis of this PCA correlated with C:N and AUR:N and was therefore taken as a second litter quality index representing variation in N concentration. The first axis of a PCA of MGR, CUE, and MTR was taken as a microbial physiological trait index.Bivariate relationships were examined using simple linear regressions on average species values at each harvest (n = 16). To examine relationships between microbial physiological traits and mineral-associated SOC, data from the early-term (day 15) and intermediate-term (day 100) microbial harvest were matched with early-term (day 30) and intermediate-term (day 185) C budget microcosms, respectively. In addition to examining total mineral-associated SOC formation, we also estimated the efficiency of litter C transfer into the mineral-associated SOC pool as the fraction of lost litter C (i.e., litter C lost as CO2, recovered in the mineral-associated SOC fraction, or in the residual pool) retained in the mineral-associated SOC. Path analyses were used to evaluate the hypothesis that microbial physiological traits mediate the effect of litter quality on mineral-associated SOC formation and mineral-associated and particulate SOC decay. We hypothesized that the litter quality index would be positively associated with the microbial physiological trait index (representing faster and more efficient microbial growth) and microbial physiological traits would, in turn, be positively associated with the rate and efficiency of mineral-associated SOC formation. We expected that this mediating pathway would reduce the direct relationship between litter quality and SOC. This analysis was conducted using the LAVAAN package79 to run path analyses for total litter-derived mineral-associated SOC, mineral-associated SOC formation efficiency, and soil-derived mineral-associated and particulate SOC for both early and intermediate stage harvests. All analyses were performed using R version 3.5.2.Field study design and soil samplingWe worked in the Smithsonian’s Forest Global Earth Observatory (ForestGEO) network80 in six mature U.S. temperate forests varying in climate, soil properties, and tree community composition (Fig. 1a): Harvard forest (HF; 42°32′N, 72°11′W) in North-Central Massachusetts, Lilly-Dickey Woods (LDW; 39°14’N, 86°13’W) in South-Central Indiana, the Smithsonian Conservation Biology Institute (SCBI; 38°54′N, 78°9′W) in Northern Virginia, the Smithsonian Environmental Research Center (SERC; 38°53′N, 76°34′W) on the Chesapeake Bay in Maryland, Tyson Research Center (TRC; 38°31′N, 90°33′W) in Eastern Missouri, and Wabikon Lake Forest (WLF; 45°33′N, 88°48′W) in Northern Wisconsin, USA. Land use history across the six sites consisted mostly of timber harvesting which ceased in the early 1900s. Soils are mostly Oxyaquic Dystrudepts at HF, Typic Dystrudepts and Typic Hapludults at LDW, Typic Hapludalfs at SCBI, Typic or Aquic Hapludults at SERC, Typic Hapludalfs and Typic Paleudalfs at TRC, and Typic and Alfic Haplorthods at WLF. Further site details are reported in Table S5.Each site contains a rich assemblage of co-occurring arbuscular mycorrhizal (AM)- and ectomycorrhizal (ECM)-associated trees (Table S6), which we leveraged to generate environmental gradients in factors hypothesized to predict microbial physiological traits within each site. Specifically, the dominance of AM vs. ECM trees within a temperate forest plot has been shown to be a strong predictor of soil pH, C:N, inorganic N availability, and litter quality52,53,54. We established nine 20 × 20 m plots in each of our six sites in Fall 2016 (n = 54) distributed along a gradient of AM- to ECM-associated tree dominance. Plots were selected to avoid obvious confounding environmental factors. Where possible, we established our nine-plot gradient in three blocks (5 cm) at HF, which was removed before coring. Samples were also collected at 5–15 cm depth for soil texture analysis. We sampled from an inner 10 × 10 m square in each plot to avoid edge effects. All samples from the same plot were composited, sieved (2 mm), picked free of roots, subsampled for gravimetric moisture (105 °C), and air-dried, or refrigerated (4 °C) until analysis for microbial physiological variables and N availability.Soil propertiesWe determined several physicochemical properties known to predict mineral-associated SOC. We measured soil pH (8:1 ml 0.01 M CaCl2:g soil) and soil texture using a benchtop pH meter and a standard hydrometer procedure82, respectively. Organic matter content was high in some upper surface soils, so plot-level soil texture was determined from 5 to 15 cm depth samples. We quantified oxalate-extractable Al and Fe pools (Alox and Feox) in all soil samples as an index of poorly crystalline Al- and Fe-oxides83, which is one of the strongest predictors of SOM content in temperate forests84. Briefly, we extracted 0.40 g dried, ground soil in 40 mL 0.2 M NH4-oxalate at pH 3.0 in the dark for 4 h before gravity filtering and refrigerating until analysis (within 2 w) on an atomic-adsorption spectrometer (Aanalyst 800, Perkin Elmer, Waltham, MA, USA), using an acetylene flame and a graphite furnace for the atomization of Fe and Al, respectively.We quantified potential net N mineralization rates as an index of soil N availability. One 5 g subsample per plot was extracted immediately after processing by adding 10 mL 2 M KCl, shaking for 1 h, and filtering through a Whatman No. 1 filter paper after centrifugation at 3000 rpm. A second subsample from each plot was incubated under aerobic conditions at field moisture and 23 °C for 14 d before extraction. Extracts were frozen (−20 °C) until analysis for NH4+-N using the salicylate method and for NO3−-N plus NO2−-N after a cadmium column reduction on a Lachat QuikChem 8000 flow Injection Analyzer (Lachat Instruments, Loveland, CO, USA). Potential net N mineralization rates (mg N g dry soil−1 d−1) were calculated as the difference between pre- and post-incubation inorganic N concentrations.Microbial biomass dynamics in field plotsMicrobial biomass carbon and microbial physiological traits were quantified within 10 days of collection as described above, with four minor differences. First, 30 g soil subsamples were covered with parafilm and pre-incubated for 2 d near the field soil temperature measured at the time of sampling (16.5 °C for WLF and HF, and 21.5 °C for LDW, TRC, SCBI, and SERC). Second, for CO2 analysis, samples were placed in a 61 mL serum vial crimped with a rubber septum. Third, DNA concentrations were determined using a Qubit dsDNA BR Assay Kit (Life Technologies) and a Qubit 3.0 fluorometer (Life Technologies). Fourth, 14.5 g subsamples were used for microbial biomass analysis.Soil organic matter characterization in field plotsMineral-associated SOC was quantified as in the microcosm experiment, but without a pre-fractionation leachate removal step. We additionally measured soil amino sugar concentrations to estimate microbial necromass contributions to SOM. Amino sugars are useful microbial biomarkers because they are found in abundance in microbial cell walls, but are not produced by higher plants and soil animals19. Moreover, amino sugars can provide information on the microbial source of necromass. For example, glucosamine (Glu) is produced mostly by fungi whereas muramic acid (MurA) is produced almost exclusively by bacteria61,85. Amino sugars were extracted, purified, converted to aldononitrile acetates, and quantified with myo-inositol as in Liang et al.86. We used the concentrations of Glu and MurA to estimate total, fungal, and bacterial necromass soil C using the empirical relationships reported in Liang et al.8.$${Bacterial},{necromass},C,=,{MurA},times ,45$$
    (8)
    $${Fungal},{necromass},C,=,({mmol},{GluN},{-},2,times ,{mmol},{MurA})times ,179.17,times ,9$$
    (9)
    Leaf litter and fine roots in field plotsIn Fall 2017, we collected leaf litter on two sample dates from four baskets deployed in the inner 10 × 10 m of each plot. Litter was composited by plot, dried (60 °C), sorted by species, weighed, and ground. We performed leaf litter analyses on at least three samples of each species at each site —unless a species was only present in one or two plots— to get a site-specific mean for each species. Some non-dominant species were not included in these analyses because an insufficient amount of material was collected. Fine roots ( 0.5). Feox and Alox were correlated above this threshold and final models were selected to contain only Feox based on AIC. Residuals were screened for normality (Shapiro-Wilk), heteroscedasticity (visual assessment of residual plots), and influential observations (Cook’s D). Based on this, MGR, MTR, and mineral-associated SOC were natural log transformed. For all mixed models, we centered and standardized predictors (i.e., z-transformation) so that the slopes and significance levels of different predictors could be compared to one another on the same axis88. More

  • in

    Discovery of a Ni2+-dependent guanidine hydrolase in bacteria

    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).ADS 
    CAS 

    Google Scholar 
    Schulze, E. Ueber einige stickstoffhaltige Bestandtheile der Keimlinge von Vicia sativa. Z. Phys. Chem. 17, 193–216 (1893).
    Google Scholar 
    Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kato, T., Yamagata, M. & Tsukahara, S. Guanidine compounds in fruit trees and their seasonal variations in citrus (Citrus unshiu Marc.). J. Jpn. Soc. Hortic. Sci. 55, 169–173 (1986).CAS 

    Google Scholar 
    Gund, P. Guanidine, trimethylenemethane, and “Y-delocalization.” Can acyclic compounds have “aromatic” stability? J. Chem. Educ. 49, 100 (1972).CAS 

    Google Scholar 
    Güthner, T., Mertschenk, B. & Schulz, B. In Ullmann’s Fine Chemicals vol. 2, 657–672 (Wiley-VCH, 2014).Strecker, A. Untersuchungen über die chemischen Beziehungen zwischen Guanin, Xanthin, Theobromin, Caffeïn und Kreatinin. Justus Liebigs Ann. Chem. 118, 151–177 (1861).
    Google Scholar 
    Iwanoff, N. N. & Awetissowa, A. N. The fermentative conversion of guanidine in urea. Biochem. Z. 231, 67–78 (1931).
    Google Scholar 
    Lenkeit, F., Eckert, I., Hartig, J. S. & Weinberg, Z. Discovery and characterization of a fourth class of guanidine riboswitches. Nucleic Acids Res. 48, 12889–12899 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salvail, H., Balaji, A., Yu, D., Roth, A. & Breaker, R. R. Biochemical validation of a fourth guanidine riboswitch class in bacteria. Biochemistry 59, 4654–4662 (2020).CAS 
    PubMed 

    Google Scholar 
    Nelson, J. W., Atilho, R. M., Sherlock, M. E., Stockbridge, R. B. & Breaker, R. R. Metabolism of free guanidine in bacteria is regulated by a widespread riboswitch class. Mol. Cell 65, 220–230 (2017).CAS 
    PubMed 

    Google Scholar 
    Sherlock, M. E. & Breaker, R. R. Biochemical validation of a third guanidine riboswitch class in bacteria. Biochemistry 56, 359–363 (2016).
    Google Scholar 
    Sherlock, M. E., Malkowski, S. N. & Breaker, R. R. Biochemical validation of a second guanidine riboswitch class in bacteria. Biochemistry 56, 352–358 (2016).
    Google Scholar 
    Kermani, A. A., Macdonald, C. B., Gundepudi, R. & Stockbridge, R. B. Guanidinium export is the primal function of SMR family transporters. Proc. Natl Acad. Sci. USA 115, 3060–3065 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sinn, M., Hauth, F., Lenkeit, F., Weinberg, Z. & Hartig, J. S. Widespread bacterial utilization of guanidine as nitrogen source. Mol. Microbiol. 116, 200–210 (2021).CAS 
    PubMed 

    Google Scholar 
    Schneider, N. O. et al. Solving the conundrum: widespread proteins annotated for urea metabolism in bacteria are carboxyguanidine deiminases mediating nitrogen assimilation from guanidine. Biochemistry 59, 3258–3270 (2020).CAS 
    PubMed 

    Google Scholar 
    Zhao, J., Zhu, L., Fan, C., Wu, Y. & Xiang, S. Structure and function of urea amidolyase. Biosci. Rep. 38, BSR20171617 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mobley, H. L., Island, M. D. & Hausinger, R. P. Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mazzei, L., Musiani, F. & Ciurli, S. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J. Biol. Inorg. Chem. 25, 829–845 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Uribe, E. et al. Functional analysis of the Mn2+ requirement in the catalysis of ureohydrolases arginase and agmatinase – a historical perspective. J. Inorg. Biochem. 202, 110812 (2020).CAS 
    PubMed 

    Google Scholar 
    Perozich, J., Hempel, J. & Morris, S. M. Jr Roles of conserved residues in the arginase family. Biochim. Biophys. Acta 1382, 23–37 (1998).CAS 
    PubMed 

    Google Scholar 
    Sekowska, A., Danchin, A. & Risler, J. L. Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology 146, 1815–1828 (2000).CAS 
    PubMed 

    Google Scholar 
    Sekula, B. The neighboring subunit is engaged to stabilize the substrate in the active site of plant arginases. Front. Plant Sci. 11, 987 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Quintero, M. J., Muro-Pastor, A. M., Herrero, A. & Flores, E. Arginine catabolism in the cyanobacterium Synechocystis sp. strain PCC 6803 involves the urea cycle and arginase pathway. J. Bacteriol. 182, 1008–1015 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lacasse, M. J., Summers, K. L., Khorasani-Motlagh, M., George, G. N. & Zamble, D. B. Bimodal nickel-binding site on Escherichia coli [NiFe]-hydrogenase metallochaperone HypA. Inorg. Chem. 58, 13604–13618 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, D., Gutekunst, K., Klissenbauer, M., Schulz-Friedrich, R. & Appel, J. Mutagenesis of hydrogenase accessory genes of Synechocystis sp. PCC 6803. FEBS J. 273, 4516–4527 (2006).CAS 
    PubMed 

    Google Scholar 
    Dowling, D. P., Di Costanzo, L., Gennadios, H. A. & Christianson, D. W. Evolution of the arginase fold and functional diversity. Cell. Mol. Life Sci. 65, 2039–2055 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dutta, A., Mazumder, M., Alam, M., Gourinath, S. & Sau, A. K. Metal-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic function. Biochem. J. 476, 3595–3614 (2019).CAS 
    PubMed 

    Google Scholar 
    Di Costanzo, L. et al. Crystal structure of human arginase I at 1.29-Å resolution and exploration of inhibition in the immune response. Proc. Natl Acad. Sci. USA 102, 13058–13063 (2005).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Alfano, M. & Cavazza, C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci. 29, 1071–1089 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, B. et al. A guanidine-degrading enzyme controls genomic stability of ethylene-producing cyanobacteria. Nat. Commun. 12, 5150 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGee, D. J. et al. Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily. Eur. J. Biochem. 271, 1952–1962 (2004).CAS 
    PubMed 

    Google Scholar 
    Arakawa, N., Igarashi, M., Kazuoka, T., Oikawa, T. & Soda, K. d-Arginase of Arthrobacter sp. KUJ 8602: characterization and its identity with Zn2+-guanidinobutyrase. J. Biochem. 133, 33–42 (2003).CAS 
    PubMed 

    Google Scholar 
    Saragadam, T., Kumar, S. & Punekar, N. S. Characterization of 4-guanidinobutyrase from Aspergillus niger. Microbiology 165, 396–410 (2019).CAS 
    PubMed 

    Google Scholar 
    Viator, R. J., Rest, R. F., Hildebrandt, E. & McGee, D. J. Characterization of Bacillus anthracis arginase: effects of pH, temperature, and cell viability on metal preference. BMC Biochem. 9, 15 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    D’Antonio, E. L., Hai, Y. & Christianson, D. W. Structure and function of non-native metal clusters in human arginase I. Biochemistry 51, 8399–8409 (2012).PubMed 

    Google Scholar 
    Andresen, E., Peiter, E. & Küpper, H. Trace metal metabolism in plants. J. Exp. Bot. 69, 909–954 (2018).CAS 
    PubMed 

    Google Scholar 
    Eisenhut, M. Manganese homeostasis in cyanobacteria. Plants 9, 18 (2019).PubMed Central 

    Google Scholar 
    Burnat, M. & Flores, E. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena. MicrobiologyOpen 3, 777–792 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. P., Yuan, Y. & Wolfenden, R. The burden borne by urease. J. Am. Chem. Soc. 127, 10828–10829 (2005).CAS 
    PubMed 

    Google Scholar 
    Lewis, C. A. Jr & Wolfenden, R. The nonenzymatic decomposition of guanidines and amidines. J. Am. Chem. Soc. 136, 130–136 (2014).CAS 
    PubMed 

    Google Scholar 
    Grobben, Y. et al. Structural insights into human Arginase-1 pH dependence and its inhibition by the small molecule inhibitor CB-1158. J. Struct. Biol. X 4, 100014 (2020).CAS 
    PubMed 

    Google Scholar 
    Mills, L. A., McCormick, A. J. & Lea-Smith, D. J. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 40, BSR20193325 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giner-Lamia, J. et al. Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp PCC 6803. Nucleic Acids Res. 45, 11800–11820 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martinez, S. & Hausinger, R. P. Biochemical and spectroscopic characterization of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. Biochemistry 55, 5989–5999 (2016).CAS 
    PubMed 

    Google Scholar 
    Copeland, R. A. et al. An iron(IV)-oxo intermediate initiating l-arginine oxidation but not ethylene production by the 2-oxoglutarate-dependent oxygenase, ethylene-forming enzyme. J. Am. Chem. Soc. 143, 2293–2303 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1–61 (1979).
    Google Scholar 
    Geyer, J. W. & Dabich, D. Rapid method for determination of arginase activity in tissue homogenates. Anal. Biochem. 39, 412–417 (1971).CAS 
    PubMed 

    Google Scholar 
    van Anken, H. C. & Schiphorst, M. E. A kinetic determination of ammonia in plasma. Clin. Chim. Acta 56, 151–157 (1974).PubMed 

    Google Scholar 
    Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lamzin, V. S. P. A., Wilson, K. S. In International Tables for Crystallography Vol. F (eds Arnold, E. et al.) 525–528 (Kluwer, 2012).Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).CAS 
    PubMed 

    Google Scholar 
    Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006).ADS 
    PubMed 

    Google Scholar 
    Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).CAS 
    PubMed 

    Google Scholar 
    Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lemoine, F. et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More