Zooplankton network conditioned by turbidity gradient in small anthropogenic reservoirs
Lampert, W. Zooplankton research: The contribution of limnology to general ecological paradigms. Aquat. Ecol. 31, 19â27. https://doi.org/10.1023/A:1009943402621 (1997).ArticleÂ
Google ScholarÂ
Sotton, B. et al. Trophic transfer of microcystins through the lake pelagic food web: Evidence for the role of zooplankton as a vector in fish contamination. Sci. Total Environ. 466â467, 152â163. https://doi.org/10.1016/j.scitotenv.2013.07.020 (2014).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
St-Gelais, F. N., Sastri, A. R., del Giorgio, P. A. & Beisner, B. E. Magnitude and regulation of zooplankton community production across boreal lakes. Limnol. Oceanogr. Lett. 2(6), 210â217. https://doi.org/10.1002/lol2.10050 (2017).ArticleÂ
Google ScholarÂ
Dejen, E., Vijverberg, J., Nagelkerke, L. A. J. & Sibbing, F. A. Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia). Hydrobiologia 513(1), 39â49. https://doi.org/10.1023/b:hydr.0000018163.60503.b8 (2004).ArticleÂ
Google ScholarÂ
Arendt, K. E. et al. Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord. J. Plankton Res. 33, 1526â1537. https://doi.org/10.1093/plankt/fbr054 (2011).CASÂ
ArticleÂ
Google ScholarÂ
Carrasco, N. K., Perissinotto, R. & Jones, S. Turbidity effects on feeding and mortality of the copepod Acartiella natalensis (Connell and Grindley, 1974) in the St Lucia Estuary, South Africa. J. Exp. Mar. Biol. Ecol. 446, 45â51. https://doi.org/10.1016/j.jembe.2013.04.016 (2013).ArticleÂ
Google ScholarÂ
GoĹşdziejewska, A. et al. Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia 774, 7â21. https://doi.org/10.1007/s10750-016-2724-8 (2016).CASÂ
ArticleÂ
Google ScholarÂ
Zhou, J., Qin, B. & Han, X. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu. Environ. Sci. Pollut. Res. 25, 1168â1175. https://doi.org/10.1007/s11356-017-0262-1 (2018).CASÂ
ArticleÂ
Google ScholarÂ
Chou, W.-R., Fang, L.-S., Wang, W.-H. & Tew, K. S. Environmental influence on coastal phytoplankton and zooplankton diversity: A multivariate statistical model analysis. Environ. Monit. Assess. 184(9), 5679â5688. https://doi.org/10.1007/s10661-011-2373-3 (2011).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Du, X. et al. Analyzing the importance of top-down and bottom-up controls in food webs of Chinese lakes through structural equation modeling. Aquat. Ecol. 49(2), 199â210. https://doi.org/10.1007/s10452-015-9518-3 (2015).CASÂ
ArticleÂ
Google ScholarÂ
Feitosa, I. B. et al. Plankton community interactions in an Amazonian floodplain lake, from bacteria to zooplankton. Hydrobiologia 831, 55â70. https://doi.org/10.1007/s10750-018-3855-x (2019).CASÂ
ArticleÂ
Google ScholarÂ
Kruk, M. & Paturej, E. Indices of trophic and competitive relations in a planktonic network of a shallow, temperate lagoon. A graph and structural equation modeling approach. Ecol. Indic. 112, 106007. https://doi.org/10.1016/j.ecolind.2019.106007 (2020).ArticleÂ
Google ScholarÂ
Kruk, M., Paturej, E. & Artiemjew, P. From explanatory to predictive network modeling of relationships among ecological indicators in the shallow temperate lagoon. Ecol. Indic. 117, 106637. https://doi.org/10.1016/j.ecolind.2020.106637 (2020).ArticleÂ
Google ScholarÂ
Kruk, M., Paturej, E. & Obolewski, K. Zooplankton predatorâprey network relationships indicates the saline gradient of coastal lakes. Machine learning and meta-network approach. Ecol. Indic. 125, 107550. https://doi.org/10.1016/j.ecolind.2021.107550 (2021).ArticleÂ
Google ScholarÂ
Oh, H.-J. et al. Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: Applicability of the rotifer functional group as an indicator of water quality. Anim. Cells Syst. 21, 133â140. https://doi.org/10.1080/19768354.2017.1292952 (2017).ArticleÂ
Google ScholarÂ
SodrĂŠ, E. D. O. & Bozelli, R. L. How planktonic microcrustaceans respond to environment and affect ecosystem: A functional trait perspective. Int. Aquat. Res. 11, 207â223. https://doi.org/10.1007/s40071-019-0233-x (2019).ArticleÂ
Google ScholarÂ
SimĂľes, N. R. et al. Changing taxonomic and functional β-diversity of cladoceran communities in Northeastern and South Brazil. Hydrobiologia 847, 3845â3856. https://doi.org/10.1007/s10750-020-04234-w (2020).ArticleÂ
Google ScholarÂ
GoĹşdziejewska, A. M., KoszaĹka, J., Tandyrak, R., Grochowska, J. & Parszuto, K. Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia 848, 2699â2719. https://doi.org/10.1007/s10750-021-04590-1 (2021).CASÂ
ArticleÂ
Google ScholarÂ
Hart, R. C. Zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Fresh. Biol. 19, 123â139. https://doi.org/10.1111/j.1365-2427.1988.tb00334.x (1988).ArticleÂ
Google ScholarÂ
Gliwicz, Z. M. & Pijanowska, J. The role of predation in zooplankton succession. In Plankton Ecology. Succession in Plankton Communities (ed. Sommer, U.) 253â296 (Springer Verlag, 1989).ChapterÂ
Google ScholarÂ
Gardner, M. B. Effects of turbidity on feeding rates and selectivity of bluegills. Trans. Am. Fish. Soc. 110(3), 446â450. https://doi.org/10.1577/1548-8659(1981)110%3c446:EOTOFR%3e2.0.CO;2 (1981).ArticleÂ
Google ScholarÂ
Zettler, E. R. & Carter, J. C. H. Zooplankton community and species responses to a natural turbidity gradient in Lake Temiskaming, Ontario-Quebec. Can. J. Fish. Aquat. Sci. 43, 665â673. https://doi.org/10.1139/f86-080 (1986).ArticleÂ
Google ScholarÂ
APHA. Standard Methods for the Examination of Water and Wastewater 20th edn. (American Public Health Association, 1999).
Google ScholarÂ
Lind, O. T., Chrzanowski, T. H. & Dâavalos-Lind, L. Clay turbidity and the relative production of bacterioplankton and phytoplankton. Hydrobiologia 353, 1â18. https://doi.org/10.1023/A:1003039932699 (1997).CASÂ
ArticleÂ
Google ScholarÂ
Boenigk, J. & Novarino, G. Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat. Microb. Ecol. 34, 181â192. https://doi.org/10.3354/ame034181 (2004).ArticleÂ
Google ScholarÂ
Noe, G. B., Harvey, J. W. & Saiers, J. E. Characterization of suspended particles in Everglades wetlands. Limnol. Oceanogr. 52, 1166â1178. https://doi.org/10.4319/lo.2007.52.3.1166 (2007).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
Bilotta, G. S. & Brazier, R. E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42, 2849â2861. https://doi.org/10.1016/j.watres.2008.03.018 (2008).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Fernandez-Severini, M. D., Hoffmeyer, M. S. & Marcovecchio, J. E. Heavy metals concentrations in zooplankton and suspended particulate matter in a southwestern Atlantic temperate estuary (Argentina). Environ. Monit. Assess. 185, 1495â1513. https://doi.org/10.1007/s10661-012-3023-0 (2013).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Paaijmans, K. P., Takken, W., Githeko, A. K. & Jacobs, A. F. G. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int. J. Biometeorol. 52(8), 747â753. https://doi.org/10.1007/s00484-008-0167-2 (2008).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Asrafuzzaman, M., Fakhruddin, A. N. M. & Hossain, M. A. Reduction of turbidity of water using locally available natural coagulants. ISRN Microbiol. 1â6, 2011. https://doi.org/10.5402/2011/632189 (2011).ArticleÂ
Google ScholarÂ
Kirk, K. L. & Gilbert, J. J. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71(5), 1741â1755. https://doi.org/10.2307/1937582 (1990).ArticleÂ
Google ScholarÂ
Kirk, K. L. Effects of suspended clay on Daphnia body growth and fitness. Freshwater Biol. 28, 103â109. https://doi.org/10.1111/j.1365-2427.1992.tb00566.x (1992).ArticleÂ
Google ScholarÂ
Levine, S. N., Zehrer, R. F. & Burns, C. W. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshw. Biol. 50, 1515â1536. https://doi.org/10.1111/j.1365-2427.2005.01420 (2005).ArticleÂ
Google ScholarÂ
Moreira, F. W. A. et al. Assessing the impacts of mining activities on zooplankton functional diversity. Acta Limn. Bras. 28, e7. https://doi.org/10.1590/S2179-975X0816 (2016).ArticleÂ
Google ScholarÂ
Kerfoot, W. C. & Sih, A. Predation. Direct and Indirect Impacts on Aquatic Communities Vol. 160 (University Press of New England, 1987).
Google ScholarÂ
Schou, M. O. et al. Restoring lakes by using artificial plant beds: Habitat selection of zooplankton in a clear and a turbid shallow lake. Freshw. Biol. 54(7), 1520â1531. https://doi.org/10.1111/j.1365-2427.2009.02189.x (2009).ArticleÂ
Google ScholarÂ
GoĹşdziejewska, A. M., GwoĹşdzik, M., Kulesza, S., Bramowicz, M. & KoszaĹka, J. Effects of suspended micro- and nanoscale particles on zooplankton functional diversity of drainage system reservoirs at an open-pit mine. Sci. Rep. 9, 16113. https://doi.org/10.1038/s41598-019-52542-6 (2019).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Ribeiro, F. et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci. Total Environ. 466â467, 232â241. https://doi.org/10.1016/j.scitotenv.2013.06.101 (2014).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Vallotton, P., Angel, B., Mccall, M., Osmond, M. & Kirby, J. Imaging nanoparticle-algae interactions in three dimensions using Cytoviva microscopy. J. Microsc. 257(2), 166â169. https://doi.org/10.1111/jmi.12199 (2015).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Shanthi, S. et al. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb. Pathogenesis 93, 70e77. https://doi.org/10.1016/j.micpath.2016.01.014 (2016).CASÂ
ArticleÂ
Google ScholarÂ
Vijayakumar, S. et al. Ecotoxicity of Musa paradisiaca leaf extract-coated ZnO nanoparticles to the freshwater microcrustacean Ceriodaphnia cornuta. Limnologica 67, 1â6. https://doi.org/10.1016/j.limno.2017.09.004 (2017).CASÂ
ArticleÂ
Google ScholarÂ
Hart, R. C. Zooplankton distribution in relation to turbidity and related environmental gradients in a large subtropical reservoir: Patterns and implications. Freshw. Biol. 24(2), 241â263. https://doi.org/10.1111/j.1365-2427.1990.tb00706.x (1990).ArticleÂ
Google ScholarÂ
Pollard, A. I., GonzĂĄlez, M. J., Vanni, M. J. & Headworth, J. L. Effects of turbidity and biotic factors on the rotifer community in an Ohio reservoir. In Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, Hydrobiologia Vol. 387388 (eds Wurdak, E. et al.) 215â223 (Springer, 1998).
Google ScholarÂ
Roman, M. R., Holliday, D. V. & Sanford, L. P. Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum. Mar. Ecol. Prog. Ser. 213, 215â227. https://doi.org/10.3354/meps213215 (2001).ADSÂ
ArticleÂ
Google ScholarÂ
Young, I. R. & Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 364(6440), 548â552. https://doi.org/10.1126/science.aav9527 (2019).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
GoĹşdziejewska, A. M., Skrzypczak, A. R., Paturej, E. & KoszaĹka, J. Zooplankton diversity of drainage system reservoirs at an opencast mine. Knowl. Manag. Aquat. Ecosyst. 419, 33. https://doi.org/10.1051/kmae/2018020 (2018).ArticleÂ
Google ScholarÂ
GoĹşdziejewska, A. M., Skrzypczak, A. R., KoszaĹka, J. & Bowszys, M. Effects of recreational fishing on zooplankton communities of drainage system reservoirs at an open-pit mine. Fish. Manag. Ecol. 00, 1â13. https://doi.org/10.1111/fme.12411 (2020).ArticleÂ
Google ScholarÂ
Allesina, S., Bodini, A. & Bondavalli, C. Ecological subsystems via graph theory: The role of strongly connected components. Oikos 110, 164â176. https://doi.org/10.1111/j.0030-1299.2005.13082.x (2005).ArticleÂ
Google ScholarÂ
DâAlelio, D. et al. Ecological-network models link diversity, structure and function in the plankton food-web. Sci. Rep. 6, 21806. https://doi.org/10.1038/srep21806 (2016).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance 6th edn. (Benjamin Cummings, 2009).
Google ScholarÂ
Ejsmont-Karabin, J., Radwan, S. & BielaĹska-Grajner, I. Rotifers. MonogonontaâAtlas of Species. Polish Freshwater Fauna (Univ of ĹĂłdĹş, 2004).
Google ScholarÂ
Streble, H. & Krauter, D. Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Sßβwassers (Kosmos Gesellschaft der Naturfreunde Franckhsche Verlagshandlung Stuttgart, 1978).
Google ScholarÂ
Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 60, 339â350 (2012).
Google ScholarÂ
Gutkowska, A., Paturej, E. & Kowalska, E. Rotifer trophic state indices as ecosystem indicators in brackish coastal waters. Oceanologia 55(4), 887â899. https://doi.org/10.5697/oc.55-4.887 (2013).ArticleÂ
Google ScholarÂ
Dembowska, E. A., NapiĂłrkowski, P., Mieszczankin, T. & JĂłzefowicz, S. Planktonic indices in the evaluation of the ecological status and the trophic state of the longest lake in Poland. Ecol. Indic. 56, 15â22. https://doi.org/10.1016/j.ecolind.2015.03.019 (2015).ArticleÂ
Google ScholarÂ
Sousa, W., Attayde, J. L., Rocha, E. D. S. & Eskinazi-SantâAnna, E. M. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. J. Plankton Res. 30(6), 699â708. https://doi.org/10.1093/plankt/fbn032 (2008).ArticleÂ
Google ScholarÂ
Kak, A. & Rao, R. Does the evasive behavior of H. exarthra influence its competition with cladocerans? In Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, Hydrobiologia Vol. 387/388 (eds Wurdak, E. et al.) 409â419 (Springer, 1998).
Google ScholarÂ
Hochberg, R., Yang, H. & Moore, J. The ultrastructure of escape organs: Setose arms and crossstriated muscles in Hexarthra mira (Rotifera: Gnesiotrocha: Flosculariaceae). Zoomorphology 136, 159â173. https://doi.org/10.1007/s00435-016-0339-2 (2017).ArticleÂ
Google ScholarÂ
Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28â35 (1965).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
Connell, J. H. Intermediate-disturbance hypothesis. Science 204(4399), 1345 (1979).CASÂ
ArticleÂ
Google ScholarÂ
MartĂn GonzĂĄlez, A. M., Dalsgaard, B. & Olesen, J. M. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7(1), 36â43. https://doi.org/10.1016/j.ecocom.2009.03.008 (2010).ArticleÂ
Google ScholarÂ
Paine, R. T. A note on trophic complexity and community stability. Am. Nat. 104, 91â93 (1969).ArticleÂ
Google ScholarÂ
Schmitz, O. J. & Trussell, G. C. Multiple stressors, state-dependence and predation riskâForaging trade-offs: Toward a modern concept of trait-mediated indirect effects in communities and ecosystems. Curr. Opin. Behav. Sci. 12, 6â11. https://doi.org/10.1016/j.cobeha.2016.08.003 (2016).ArticleÂ
Google ScholarÂ
Burns, C. W. & Gilbert, J. J. Effects of daphnid size and density on interference between Daphnia and Keratella cochlearis. Limnol. Oceanogr. 31(4), 848â858. https://doi.org/10.4319/lo.1986.31.4.0848 (1986).ADSÂ
ArticleÂ
Google ScholarÂ
Gilbert, J. J. Suppression of rotifer populations by Daphnia: A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr. 33(6), 1286â1303. https://doi.org/10.4319/lo.1988.33.6.1286 (1988).ADSÂ
ArticleÂ
Google ScholarÂ
Conde-Porcuna, J. M., Morales-Baquero, R. & Cruz-Pizarro, L. Effects of Daphnia longispina on rotifer populations in a natural environment: Relative importance of food limitation and interference competition. J. Plankton Res. 16(6), 691â706. https://doi.org/10.1093/plankt/16.6.691 (1994).ArticleÂ
Google ScholarÂ
Ladle, R. J. & Whittaker, R. J. (eds) Conservation Biogeography (WileyâBlackwell, 2011).
Google ScholarÂ
Cottee-Jones, H. E. W. & Whittaker, R. J. The keystone species concept: A critical appraisal. Front. Biogeogr. 4(3), 117â127. https://doi.org/10.21425/F5FBG12533 (2012).ArticleÂ
Google ScholarÂ
Remane, A. Die Brackwasserfauna. Verhandlungen Der Deutschen Zoologischen Gesellschaft 36, 34â74 (1934).
Google ScholarÂ
Skrzypczak, A. R. & NapiĂłrkowska-Krzebietke, A. Identification of hydrochemical and hydrobiological properties of mine waters for use in aquaculture. Aquac. Rep. 18, 100460. https://doi.org/10.1016/j.aqrep.2020.100460 (2020).ArticleÂ
Google ScholarÂ
von FlÜssner, D. & Krebstiere, C. Kiemen-und Blattfßsser, Branchiopoda, Fischläuse, Branchiura Vol. 382 (VEB Gustav Fischer Verlag, 1972).
Google ScholarÂ
Koste, W. Rotatoria. Die Rädertiere Mitteleuropas. Ăberordnung Monogononta. I Textband, II Tafelband 52â570 (GebrĂźder Borntraeger, 1978).
Google ScholarÂ
Rybak, J. I. & BĹÄdzki, L. A. Freshwater Planktonic Crustaceans (Warsaw University Press, 2010).
Google ScholarÂ
BĹÄdzki, L. A. & Rybak, J. I. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to Species Identification with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis (Springer, 2016).BookÂ
Google ScholarÂ
Bottrell, H. H. et al. A review of some problems in zooplankton production studies. Norw. J. Zool. 24, 419â456 (1976).
Google ScholarÂ
Ejsmont-Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydr. 45, 513â522 (1998).
Google ScholarÂ
Kovach, W. L. MVSPâA Multivariate Statistical Package for Windows, ver. 3.2 (Kovach Computing Services Pentraeth, 2015).
Google ScholarÂ
Borgatti, S. P. Centrality and network flow. Soc. Netw. 27, 55â71. https://doi.org/10.1016/j.socnet.2004.11.008 (2005).ArticleÂ
Google ScholarÂ
Kamada, T. & Kawai, S. An algorithm for drawing general undirected graphsâInform. Process Lett. 31, 7â15 (1989).MathSciNetÂ
ArticleÂ
Google ScholarÂ
Pavlopoulos, G. A. et al. Using graph theory to analyze biological networks. BioData Min 4, 10 (2011).ArticleÂ
Google ScholarÂ
Newman, M. E. J. A measure of betweenness centrality based on random walks. Soc. Netw. 27, 39â54. https://doi.org/10.1016/j.socnet.2004.11.009 (2005).ArticleÂ
Google ScholarÂ
Brandes, U. A. faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163â177. https://doi.org/10.1080/0022250X.2001.9990249 (2001).ArticleÂ
MATHÂ
Google Scholar More