More stories

  • in

    Weather fluctuation can override the effects of integrated nutrient management on fungal disease incidence in the rice fields in Taiwan

    Plant materialRice (Oryza sativa L.) plants used for the experiment were from the collection of Taiwan Agricultural Research Institute. The rice variety (Tainan No. 11) used in this study has enhanced resistance to rice blast. The use of plant materials complies with international, national, and/or institutional guidelines and legislation.Field areaThis study was carried out in experimental rice fields under low-external-input and conventional farming in central Taiwan (23.5859 N, 120.4083 E; 8.0 ha). The annual average temperature ranged from 23 to 25 °C, the annual average relative humidity ranged from 75 to 92%, and the annual rainfall ranged from 1020 to 2873 mm year−1 (average data between 2006 and 2016 measured at a nearby weather station; Fig. 1). The experimental paddy plots were defined by considering the typical dimensions of the agricultural fields in Taiwan (0.5 to 1.0 ha). A long-term experiment was conducted from 2006 to 2016 to study the effects of different agronomic management on biodiversity, productivity, and environment, including traceability system, soil fertility, nitrogen leaching, production costs, disease incidence and severity, the abundance of pest and beneficial insects, and weed dynamics.The treatments consisted of conventional farming with high chemical fertilizer input (CF) and low-external-input farming with low fertilizer input (LF). In the CF farming, we followed the fertilizer recommendations that are constructed to meet the nutrient requirements of the crop. In the LF farming, the chemical fertilizers were largely reduced compared to the recommendation (see next paragraph for the details). The experiment was conducted as a randomized complete block design (RCBD) with four replicates. In agricultural experiments, the RCBD is a standard procedure by grouping experimental units into blocks. For example, the design can control variation in the experiments by considering spatial influences and adjusting the effects of target factors in fields. Each experimental unit consisted of a 0.58 ± 0.16 ha of the area of the field. Additional nutrient management in the LF system includes (1) nitrogen-fixing and cover crops, (2) manure and compost applications, (3) plant and soil nutrient analyses for adjusting fertilization, and (4) reduced tillage. Soil-available potassium gradually decreased during the 10-year study period in the area of the LF system. Over the study period, the LF system achieved the similar level of crop production as that of the CF system (Fig. S1).In our study area, there were two growing seasons within a year: one in the first half of the year (from February to June) and one in the second half (from August to December). The ground fertilizers were applied before rice seedlings were transplanted, followed by additional fertilizations during the tillering and boosting stages. The total amount of fertilizers used for the CF system included 140–180 and 120–140 kg N ha−1, 70–72 and 60 kg P2O5 ha−1, and 85 and 60 kg K2O ha−1 for the first and second seasons, respectively. For the LF system, 100 and 80 kg N ha−1, 30 and 30 kg P2O5 ha−1, and 30 and 30 kg K2O ha−1 were applied in the first and second seasons, respectively. The larger amount of fertilizers for the first season was due to its longer duration. For each rice growing season, fungicides were applied to both farming systems once during the boosting stage. During the fungicide application, a 10% mixture of Cartap plus Probenazole or 6% probenazole for rice blast (both 30 kg ha−1) and 1.5% Furametpyr for sheath blight (20 kg ha−1) were used.Rice disease monitoringThe major rice disease (rice blast; Fig. S2) was monitored biweekly in the CF and LF systems over the two growing seasons per year, with each growing season including (in chronological order) the tillering, flowering, and maturing stages. There was a total of 123 occasions during our study. The plants were disease free when planted out. When the lesion of the rice blast began to appear in the fields from the tillering stage to the maturing stage, the effects of the two treatments (CF and LF systems) in the paddy fields on the disease incidence of rice blast (caused by Pyricularia oryzae) were investigated. For each plot (or experimental unit), the incidence of rice disease was randomly examined at 5 points and for 25 plexuses (i.e., each derived from one primary tiller) per point. The disease incidence was quantified as the percentage of infected plexuses that were determined based on the presence of infected leaves.The area under the disease progress curve (AUDPC) was used to quantify disease incidences over time, and the relative AUDPC ((RAUDPC)) was used because of unequal sampling duration in the growing seasons during our study period. For each plot (or experimental unit), we used the (RAUDPC) to summarize the incidences of disease during each growing season as follows:$$RAUDPC=frac{sum_{i=1}^{n-1}frac{{y}_{i}+{y}_{i+1}}{2}times left({t}_{i+1}-{t}_{i}right)}{100 times left({t}_{n}-{t}_{1}right)},$$
    (1)
    where ({y}_{i}) and ({t}_{i}) are the disease incidence (%) and time (day) at the (i)th observation, respectively, and (n) is the total number of observations.Bayesian modelingWe built a mechanistic model that was applied to assess the interplay within a network of relationships among weather fluctuation, farming system, and disease incidence in the paddy fields. The model describes how (1) temperature and relative humidity together influence the development of primary inoculum, (2) rainfall detaches the fungal spores on the host tissues, and (3) rainfall and wind catch the airborne spores onto the leaf area. These environmental processes determine the disease incidence in the model. In addition, this model considers that farming systems can suppress or accelerate disease incidence. By fitting our model to the observed incidence, Bayesian inference was used as the parameter estimation technique for the models. In addition, we tested the alternative mechanistic hypotheses based on a model-selection criterion and cross vaidation (see subsequent paragraphs).With a linearity assumption, the incidences of disease (RAUDPC) were modeled as an inverse-logit function of the progress rate of the development of primary inoculum ((IP) with values between 0 and 1) and the net catchment of the airborne spores by rainfall and wind ((CT) with values between 0 and 1; when subtracting the detachment of spores by rainfall from the host tissue) as follows:$$RAUDPC=invLogitleft({a}_{f}+{b}_{1}bullet logitleft(avg_IPright)+{b}_{2}bullet logitleft(avg_IPbullet avg_CTright)right),$$
    (2)
    where ({a}_{f}), ({b}_{1}), and ({b}_{2}) describe the constant baseline for different farming systems ((f) = the CF or LF system), the direct effect size of (avg_IP), and the mediating effect size of (avg_CT) through (IP), respectively. The two parameters ((avg_IP) and (avg_CT)) are averaged (IP) and (CT) during the growing season, respectively (see below for details). The effect sizes ({b}_{1}) and ({b}_{2}) have values more than zero. The constant baseline allows the management-specific acting in the model when they can influence the disease incidence.The process rate (IP) was simulated as a function of the temperature response ((fleft(Tright)) with values between 0 and 1) and hourly air relative humidity ((RH,) %) as follows20:$$IP= left{begin{array}{ll}0& mathrm{if}, RH 0) are the steepness and midpoint parameters to control the portion of spores caught by the wind, respectively.The Bayesian framework ‘Stan’49 and its R interface ‘RStan’50 were used to construct and fit the models. There were two competing models: either considering the difference between the CF and LF systems by not fixed to the same values of the constant baseline ({a}_{f}) in Formula (2) or not. For each model, four Markov Chain Monte Carlo (MCMC) chains (for numerical approximations of Bayesian inference) ran, each with 5,000 iterations, and the first half of the iterations of each chain were discarded as burn-in. The R-hat statistic of each parameter approaches a value of 1, indicating model convergence. With a total of 2,000 samples, collected as one sample for every 5 iterations for each chain, the model parameters and their posterior distribution were estimated. To compare the two competing models, we calculated the widely applicable information criterion (WAIC) using the R package ‘loo’51. The best model was determined based on the lowest WAIC. By using the same R package, we also performed the approximate leave-one-out cross-validation (LOO-CV) to estimate the predictive ability of the two Bayesian models. Here, we used the expected log predictive density (ELPD) to be the predictive performance.Compliance with ethical standardsThe authors declare that they have no conflict of interest. This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors. More

  • in

    DNA- and RNA-based bacterial communities and geochemical zonation under changing sediment porewater dynamics on the Aldabra Atoll

    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science (New York, N.Y.) 320, 1034–1039 (2008).ADS 
    CAS 

    Google Scholar 
    Jørgensen, B. B. & Kasten, S. in Marine Geochemistry, edited by H. D. Schulz & M. Zabel (Springer, 2006), 271–309.Broman, E., Sjöstedt, J., Pinhassi, J. & Dopson, M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5, 96 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Billerbeck, M. et al. Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar. Ecol. Prog. Ser. 326, 61–76 (2006).ADS 
    CAS 

    Google Scholar 
    Booth, J. M., Fusi, M., Marasco, R., Mbobo, T. & Daffonchio, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9, 3749 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Torti, A., Lever, M. A. & Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24(Pt 3), 185–196 (2015).
    Google Scholar 
    Starke, R., Pylro, V. S. & Morais, D. K. 16S rRNA gene copy number normalization does not provide more reliable conclusions in metataxonomic surveys. Microb. Ecol. 81, 535–539 (2021).CAS 
    PubMed 

    Google Scholar 
    Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 7, 2061–2068 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Vrieze, J., Pinto, A. J., Sloan, W. T. & Ijaz, U. Z. The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome 6, 63 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y., Zhao, Z., Dai, M., Jiao, N. & Herndl, G. J. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol. Ecol. 23, 2260–2274 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, K. M., Petersen, I. A. B., Tobi, E., Korte, L. & Bohannan, B. J. M. Use of RNA and DNA to identify mechanisms of bacterial community homogenization. Front. Microbiol. 10, 2066 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Petro, C., Starnawski, P., Schramm, A. & Kjeldsen, K. U. Microbial community assembly in marine sediments. Aquat. Microb. Ecol. 79, 177–195 (2017).
    Google Scholar 
    Walsh, E. A. et al. Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment. Appl. Environ. Microbiol. 82, 4994–4999 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3, e1584 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmitt, S. et al. Salinity, microbe and carbonate mineral relationships in brackish and hypersaline lake sediments: A case study from the tropical Pacific coral atoll of Kiritimati. Depositional Rec. 5, 212–229 (2019).
    Google Scholar 
    Schneider, D., Arp, G., Reimer, A., Reitner, J. & Daniel, R. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. PLoS ONE 8, e66662 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, B. et al. Sediment microbial communities and their potential role as environmental pollution indicators in Xuande Atoll, South China Sea. Front. Microbiol. 11, 1011 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Galand, P. E. et al. Phylogenetic and functional diversity of Bacteria and Archaea in a unique stratified lagoon, the Clipperton atoll (N Pacific). FEMS Microbiol. Ecol. 79, 203–217 (2012).CAS 
    PubMed 

    Google Scholar 
    Stoddart, D. R. The conservation of Aldabra. Geogr. J. 134, 471 (1968).
    Google Scholar 
    Farrow, G. E. & Brander, K. M. Tidal studies on Aldabra. Phil. Trans. R. Soc. Lond. B 260, 93–121 (1971).ADS 

    Google Scholar 
    Gaillard, C., Bernier, P. & Gruet, Y. L. lagon d’Aldabra (Seychelles, Océan indien), un modèle pour le paléoenvironnement de Cerin (Kimméridgien supérieur, Jura méridional, France). Geobios 27, 331–348 (1994).
    Google Scholar 
    Hamylton, S., Spencer, T. & Hagan, A. B. Spatial modelling of benthic cover using remote sensing data in the Aldabra lagoon, western Indian Ocean. Mar. Ecol. Prog. Ser. 460, 35–47 (2012).ADS 

    Google Scholar 
    Braithwaite, C. J. R. Last interglacial changes in sea level on Aldabra, western Indian Ocean. Sedimentology 67, 3236–3258 (2020).
    Google Scholar 
    Haverkamp, P. J. et al. Giant tortoise habitats under increasing drought conditions on Aldabra Atoll—Ecological indicators to monitor rainfall anomalies and related vegetation activity. Ecol. Ind. 80, 354–362 (2017).
    Google Scholar 
    Hughes, R. N. & Gamble, J. C. A quantitative survey of the biota of intertidal soft substrata on Aldabra Atoll, Indian Ocean. Phil. Trans. R. Soc. Lond. B 279, 327–355 (1977).ADS 

    Google Scholar 
    Braithwaite, C., Casanova, J., Frevert, T. & Whitton, B. A. Recent stromatolites in landlocked pools on Aldabra, Western Indian Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69, 145–165 (1989).
    Google Scholar 
    Potts, M. & Whitton, B. A. Nitrogen fixation by blue-green algal communities in the intertidal zone of the lagoon of Aldabra Atoll. Oecologia 27, 275–283 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Potts, M. & Whitton, B. A. Vegetation of the intertidal zone of the lagoon of Aldabra, with particular reference to the photosynthetic prokaryotic communities. Proc. R. Soc. Lond. B. 208, 13–55 (1980).ADS 

    Google Scholar 
    Meyers, P. A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289–302 (1994).ADS 
    CAS 

    Google Scholar 
    Choi, A., Lee, K., Oh, H.-M., Feng, J. & Cho, J.-C. Litoricola marina sp. nov.. Int. J. Syst. Evolut. Microbiol. 60, 1303–1306 (2010).CAS 

    Google Scholar 
    Durham, B. P. et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand Genom. Sci. 9, 632–645 (2014).
    Google Scholar 
    Boehm, A. B., Yamahara, K. M. & Sassoubre, L. M. Diversity and transport of microorganisms in intertidal sands of the California coast. Appl. Environ. Microbiol. 80, 3943–3951 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Probandt, D., Eickhorst, T., Ellrott, A., Amann, R. & Knittel, K. Microbial life on a sand grain: From bulk sediment to single grains. ISME J. 12, 623–633 (2018).PubMed 

    Google Scholar 
    Wong, H. L., Smith, D.-L., Visscher, P. T. & Burns, B. P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dupraz, C., Visscher, P. T., Baumgartner, L. K. & Reid, R. P. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51, 745–765 (2004).ADS 
    CAS 

    Google Scholar 
    Diaz, M. R., Piggot, A. M., Eberli, G. P. & Klaus, J. S. Bacterial community of oolitic carbonate sediments of the Bahamas Archipelago. Mar. Ecol. Prog. Ser. 485, 9–24 (2013).ADS 

    Google Scholar 
    Cui, H., Yang, K., Pagaling, E. & Yan, T. Spatial and temporal variation in enterococcal abundance and its relationship to the microbial community in Hawaii beach sand and water. Appl. Environ. Microbiol. 79, 3601–3609 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petriglieri, F., Nierychlo, M., Nielsen, P. H. & McIlroy, S. J. In situ visualisation of the abundant Chloroflexi populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS ONE 13, e0206255 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wietz, M., Gram, L., Jørgensen, B. & Schramm, A. Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat. Microb. Ecol. 61, 179–189 (2010).
    Google Scholar 
    Wemheuer, B. et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol. Ecol. 87, 378–389 (2014).CAS 
    PubMed 

    Google Scholar 
    Heywood, K. J., Stevens, D. P. & Bigg, G. R. Eddy formation behind the tropical island of Aldabra. Deep Sea Res. Part I 43, 555–578 (1996).
    Google Scholar 
    Pérez-Cataluña, A. et al. Revisiting the taxonomy of the genus Arcobacter: Getting order from the chaos. Front. Microbiol. 9, 2077 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Revsbech, N. P. & Jørgensen, B. B. Microelectrodes: Their Use in Microbial Ecology. In Advances in Microbial Ecology (ed. Marshall, K. C.) 293–352 (Springer, 1989).
    Google Scholar 
    Watson, J. et al. Reductively debrominating strains of Propionigenium maris from burrows of bromophenol-producing marine infauna. Int. J. Syst. Evol. Microbiol. 50(Pt 3), 1035–1042 (2000).CAS 
    PubMed 

    Google Scholar 
    Sasi, J. T. S., Rahul, K., Ramaprasad, E. V. V., Sasikala, C. & Ramana, C. V. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. Int. J. Syst. Evolut. Microbiol. 63, 4619–4625 (2013).
    Google Scholar 
    Rinke, C. et al. High genetic similarity between two geographically distinct strains of the sulfur-oxidizing symbiont ‘Candidatus Thiobios zoothamnicoli’. FEMS Microbiol. Ecol. 67, 229–241 (2009).CAS 
    PubMed 

    Google Scholar 
    Vartoukian, S. R., Palmer, R. M. & Wade, W. G. The division “Synergistes”. Anaerobe 13, 99–106 (2007).CAS 
    PubMed 

    Google Scholar 
    Janssen, P. H. & Liesack, W. Succinate decarboxylation by Propionigenium maris sp. nov., a new anaerobic bacterium from an estuarine sediment. Arch. Microbiol. 164, 29–35 (1995).CAS 
    PubMed 

    Google Scholar 
    Shiozaki, T. et al. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME J. 10, 2184–2197 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    González-Domenech, C. M., Martínez-Checa, F., Béjar, V. & Quesada, E. Denitrification as an important taxonomic marker within the genus Halomonas. Syst. Appl. Microbiol. 33, 85–93 (2010).PubMed 

    Google Scholar 
    Farmer, J. J., Michael, J. J., Brenner, F. W., Cameron, D. N. & Birkhead, K. M. The Book. In Bergey’s Manual of Systematics of Archaea and Bacteria (eds Whitman, W. B. et al.) 1–79 (Wiley, 2016).
    Google Scholar 
    Ventosa, A. & Haba, R. R. in Bergey’s Manual of Systematics of Archaea and Bacteria, edited by W. B. Whitman, et al. (Wiley, 2015), 1–16.Lloyd, K. G. Time as a microbial resource. Environ. Microbiol. Rep. 13, 18–21 (2021).PubMed 

    Google Scholar 
    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 33, 265–278 (2001).CAS 

    Google Scholar 
    Nanca, C. L., Neri, K. D., Ngo, A. C. R., Bennett, R. M. & Dedeles, G. R. Degradation of polycyclic aromatic hydrocarbons by moderately halophilic bacteria from Luzon salt beds. J. Health Pollut. 8, 180915 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bird, J. T. et al. Uncultured microbial phyla suggest mechanisms for multi-thousand-year subsistence in Baltic Sea sediments. MBio 10, 1002 (2019).
    Google Scholar 
    Moulton, O. M. et al. Microbial associations with macrobiota in coastal ecosystems: Patterns and implications for nitrogen cycling. Front. Ecol. Environ. 14, 200–208 (2016).
    Google Scholar 
    Park, S., Park, J.-M., Kang, C.-H. & Yoon, J.-H. Aestuariispira insulae gen. nov., sp. nov., a lipolytic bacterium isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 64, 1841–1846 (2014).CAS 
    PubMed 

    Google Scholar 
    Evans, M. V. et al. Members of Marinobacter and Arcobacter influence system biogeochemistry during early production of hydraulically fractured natural gas wells in the Appalachian Basin. Front. Microbiol. 9, 2646 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wilhelm, R. C. Following the terrestrial tracks of Caulobacter – redefining the ecology of a reputed aquatic oligotroph. ISME J. 12, 3025–3037 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Suzuki, D., Ueki, A., Amaishi, A. & Ueki, K. Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int. J. Syst. Evol. Microbiol. 57, 520–526 (2007).CAS 
    PubMed 

    Google Scholar 
    Dawson, K. S., Scheller, S., Dillon, J. G. & Orphan, V. J. Stable isotope phenotyping via cluster analysis of nanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment. Front. Microbiol. 7, 774 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fadhlaoui, K. et al. Fusibacter fontis sp. nov., a sulfur-reducing, anaerobic bacterium isolated from a mesothermic Tunisian spring. Int. J. Syst. Evol. Microbiol. 65, 3501–3506 (2015).CAS 
    PubMed 

    Google Scholar 
    Kjeldsen, K. U. et al. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol. Ecol. 60, 287–298 (2007).CAS 
    PubMed 

    Google Scholar 
    Schneider, D., Wemheuer, F., Pfeiffer, B. & Wemheuer, B. Extraction of total DNA and RNA from marine filter samples and generation of a cDNA as universal template for marker gene studies. Methods Mol. Biol. Clifton N J 1539, 13–22 (2017).CAS 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 

    Google Scholar 
    Berkelmann, D., Schneider, D., Hennings, N., Meryandini, A. & Daniel, R. Soil bacterial community structures in relation to different oil palm management practices. Sci. Data 7, 421 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    von Hoyningen-Huene, A. J. E. et al. Bacterial succession along a sediment porewater gradient at Lake Neusiedl in Austria. Sci. data 6, 163 (2019).
    Google Scholar 
    Tange, O. Gnu parallel-the command-line power tool. login: The USENIX Mag. 36, 42–47 (2011).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England) 34, i884–i890 (2018).
    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina paired-end read merger. Bioinformatics (Oxford, England) 30, 614–620 (2014).CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).
    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing (2016).Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    SILVAngs. SILVAngs – rDNA-based microbial community analysis using next-generation sequencing (NGS) data – user guide. Available at https://www.arb-silva.de/fileadmin/silva_databases/sngs/SILVAngs_User_Guide.pdf (2017).McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. GigaScience 1, 7 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree – tree figure drawing tool (2018).R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: integrated development for R (RStudio Inc., 2021).Chen, L. et al. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ 6, e4600 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, M. B., Wallroth, M., Jonsson, V. & Kristiansson, E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genom. 19, 274 (2018).
    Google Scholar 
    Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data (2018).Oksanen, J. et al. vegan: Community ecology package (2018).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England) 26, 1463–1464 (2010).CAS 

    Google Scholar 
    Harrel Jr, F. E., with contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous (2021).Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation (2021).de Cáceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 

    Google Scholar 
    Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esri Inc. ArcGIS Desktop (Esri Inc., 2019).Inkscape Developers. Inkscape (2020).Fussmann, D. et al. Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria. Biogeosciences 17, 2085–2106 (2020).ADS 
    CAS 

    Google Scholar 
    Parkhurst, D. L. & Appelo, C. A. in U.S. Geological Survey Techniques and Methods (2013), Vol. 6, pp. 2328–7055. More

  • in

    Confronting the water potential information gap

    Brutsaert, W. Hydrology: An Introduction (Cambridge Univ. Press, 2005).Philip, J. Plant water relations: some physical aspects. Annu. Rev. Plant Physiol. 17, 245–268 (1966).
    Google Scholar 
    Ghezzehei, T. A., Sulman, B., Arnold, C. L., Bogie, N. A. & Berhe, A. A. On the role of soil water retention characteristic on aerobic microbial respiration. Biogeosciences 16, 1187–1209 (2019).
    Google Scholar 
    Boyer, J. Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean. Plant Physiol. 46, 236–239 (1970).
    Google Scholar 
    Jarvis, P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. R. Soc. Lond. B 273, 593–610 (1976).
    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
    Google Scholar 
    Tyree, M. T. & Sperry, J. S. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Biol. 40, 19–36 (1989).
    Google Scholar 
    Whalley, W., Ober, E. & Jenkins, M. J. J. Measurement of the matric potential of soil water in the rhizosphere. J. Exp. Biol. 64, 3951–3963 (2013).
    Google Scholar 
    Yu, H., Yang, P. & Lin, H. Spatiotemporal patterns of soil matric potential in the Shale Hills Critical Zone Observatory. Vadose Zone J. https://doi.org/10.2136/vzj2014.11.0167 (2015).Campbell, G. S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117, 311–314 (1974).
    Google Scholar 
    van Genuchten, M. T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).
    Google Scholar 
    Dorigo, W. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698 (2011).Scott, B. L. et al. New soil property database improves Oklahoma Mesonet soil moisture estimates. J. Atmos. Ocean. Technol. 30, 2585–2595 (2013).
    Google Scholar 
    Campbell, G. S. Soil water potential measurement: an overview. Irrig. Sci. 9, 265–273 (1988).
    Google Scholar 
    Van Looy, K. et al. Pedotransfer functions in Earth system science: challenges and perspectives. Rev. Geophys. 55, 1199–1256 (2017).
    Google Scholar 
    Clapp, R. B. & Hornberger, G. M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–604 (1978).
    Google Scholar 
    Cosby, B., Hornberger, G., Clapp, R. & Ginn, T. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20, 682–690 (1984).
    Google Scholar 
    Zhang, Y. & Schaap, M. G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 547, 39–53 (2017).
    Google Scholar 
    Fatichi, S. et al. Soil structure is an important omission in Earth system models. Nat. Commun. 11, 522 (2020).
    Google Scholar 
    Ghezzehei, T. A. & Albalasmeh, A. A. Spatial distribution of rhizodeposits provides built-in water potential gradient in the rhizosphere. Ecol. Modell. 298, 53–63 (2015).
    Google Scholar 
    Leung, A. K., Garg, A. & Ng, C. W. W. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 193, 183–197 (2015).
    Google Scholar 
    Caplan, J. S. et al. Decadal-scale shifts in soil hydraulic properties as induced by altered precipitation. Sci. Adv. 5, eaau6635 (2019).
    Google Scholar 
    Peña-Sancho, C., López, M., Gracia, R. & Moret-Fernández, D. Effects of tillage on the soil water retention curve during a fallow period of a semiarid dryland. Soil Res. 55, 114–123 (2017).
    Google Scholar 
    Stoof, C. R., Wesseling, J. G. & Ritsema, C. J. Effects of fire and ash on soil water retention. Geoderma 159, 276–285 (2010).
    Google Scholar 
    Gutmann, E. & Small, E. The effect of soil hydraulic properties vs. soil texture in land surface models. Geophys. Res. Lett. 32, L02402 (2005).
    Google Scholar 
    Weihermüller, L. et al. Choice of pedotransfer functions matters when simulating soil water balance fluxes. J. Adv. Model. Earth Syst. 13, e2020MS002404 (2021).
    Google Scholar 
    Shi, Y., Davis, K. J., Zhang, F. & Duffy, C. J. Evaluation of the parameter sensitivities of a coupled land surface hydrologic model at a critical zone observatory. J. Hydrometeorol. 15, 279–299 (2014).
    Google Scholar 
    Shi, Y., Davis, K. J., Zhang, F., Duffy, C. J. & Yu, X. J. Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: a multivariate real-data experiment. Adv. Water Res. 83, 421–427 (2015).
    Google Scholar 
    Shi, Y. et al. Simulating high‐resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model. Hydrol. Process. 29, 4624–4637 (2015).
    Google Scholar 
    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001).
    Google Scholar 
    Boucher, O. et al. Presentation and evaluation of the IPSL‐CM6A‐LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).
    Google Scholar 
    Lurton, T. et al. Implementation of the CMIP6 forcing data in the IPSL‐CM6A‐LR model. J. Adv. Model. Earth Syst. 12, e2019MS001940 (2020).
    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).
    Google Scholar 
    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).
    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).
    Google Scholar 
    Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D. & Entekhabi, D. Satellite‐based assessment of land surface energy partitioning–soil moisture relationships and effects of confounding variables. Water Resour. Res. 55, 10657–10677 (2019).
    Google Scholar 
    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. N. Phytol. 218, 1430–1449 (2018).
    Google Scholar 
    Baldocchi, D. D., Xu, L. & Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric. For. Meteorol. 123, 13–39 (2004).
    Google Scholar 
    Trugman, A. T., Anderegg, L. D., Shaw, J. D. & Anderegg, W. R. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proc. Natl Acad. Sci. USA 117, 8532–8538 (2020).
    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).
    Google Scholar 
    Martínez-Vilalta, J. et al. Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. New Phytol. 232, 404–417 (2021).Taiz, L., Zeiger, E., Møller, I. M. & Murphy, A. Plant Physiology and Development 6th edn (Sinauer Associates, 2015).Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. & Hammel, H. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148, 339–346 (1965).
    Google Scholar 
    Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. N. Phytol. 204, 105–115 (2014).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Matheny, A. M. et al. Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere https://doi.org/10.1890/es15-00170.1 (2015).Wood, J. D., Knapp, B. O., Muzika, R.-M., Stambaugh, M. C. & Gu, L. The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region. Environ. Res. Lett. 13, 015004 (2018).
    Google Scholar 
    Hinckley, T. M., Lassoie, J. P. & Running, S. W. Temporal and spatial variations in the water status of forest trees. For. Sci. 24, a0001–z0001 (1978).
    Google Scholar 
    Marks, C. O. & Lechowicz, M. J. The ecological and functional correlates of nocturnal transpiration. Tree Physiol. 27, 577–584 (2007).
    Google Scholar 
    O’Keefe, K. & Nippert, J. B. Drivers of nocturnal water flux in a tallgrass prairie. Funct. Ecol. 32, 1155–1167 (2018).
    Google Scholar 
    Donovan, L., Linton, M. & Richards, J. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia 129, 328–335 (2001).
    Google Scholar 
    Kannenberg, S. A. et al. Opportunities, challenges and pitfalls in characterizing plant water‐use strategies. Funct. Ecol. 36, 24–37 (2022).Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).Feng, X. et al. Beyond isohydricity: the role of environmental variability in determining plant drought responses. Plant Cell Environ. 42, 1104–1111 (2019).
    Google Scholar 
    Guo, J. S., Hultine, K. R., Koch, G. W., Kropp, H. & Ogle, K. Temporal shifts in iso/anisohydry revealed from daily observations of plant water potential in a dominant desert shrub. N. Phytol. 225, 713–726 (2020).
    Google Scholar 
    Hochberg, U., Rockwell, F. E., Holbrook, N. M. & Cochard, H. Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends Plant Sci. 23, 112–120 (2018).
    Google Scholar 
    Novick, K. A., Konings, A. G. & Gentine, P. Beyond soil water potential: an expanded view on isohydricity including land–atmosphere interactions and phenology. Plant Cell Environ. 42, 1802–1815 (2019).
    Google Scholar 
    McCulloh, K. A. et al. A dynamic yet vulnerable pipeline: integration and coordination of hydraulic traits across whole plants. Plant Cell Environ. 42, 2789–2807 (2019).
    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Mirfenderesgi, G., Matheny, A. M. & Bohrer, G. Hydrodynamic trait coordination and cost–benefit trade‐offs throughout the isohydric–anisohydric continuum in trees. Ecohydrology 12, e2041 (2019).
    Google Scholar 
    Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter‐annual variations of vegetation dynamics in seasonally dry tropical forests. N. Phytol. 212, 80–95 (2016).
    Google Scholar 
    De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).
    Google Scholar 
    Meinzer, F. C. et al. Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol. 24, 919–928 (2004).
    Google Scholar 
    Scott, R. L., Cable, W. L. & Hultine, K. R. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resour. Res. 44, W02440 (2008).
    Google Scholar 
    Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. N. Phytol. 119, 345–360 (1991).
    Google Scholar 
    Johnson, D. M. et al. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiol. 36, 983–993 (2016).
    Google Scholar 
    Lehto, T. & Zwiazek, J. J. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21, 71–90 (2011).
    Google Scholar 
    Bezerra-Coelho, C. R., Zhuang, L., Barbosa, M. C., Soto, M. A. & Van Genuchten, M. T. Further tests of the HYPROP evaporation method for estimating the unsaturated soil hydraulic properties. J. Hydrol. Hydromech. 66, 161–169 (2018).
    Google Scholar 
    Wullschleger, S., Dixon, M. & Oosterhuis, D. Field measurement of leaf water potential with a temperature‐corrected in situ thermocouple psychrometer. Plant Cell Environ. 11, 199–203 (1988).
    Google Scholar 
    Holtzman, N. M. et al. L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences 18, 739–753 (2021).
    Google Scholar 
    Nagy, R. C. et al. Harnessing the NEON data revolution to advance open environmental science with a diverse and data‐capable community. Ecosphere 12, e03833 (2021).
    Google Scholar 
    Novick, K. A. et al. The AmeriFlux network: a coalition of the willing. Agric. For. Meteorol. 249, 444–456 (2018).
    Google Scholar 
    Baldocchi, D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1–26 (2008).
    Google Scholar 
    Poyatos, R. et al. Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst. Sci. Data 13, 2607–2649 (2021).Jackson, T. & Schmugge, T. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).
    Google Scholar 
    Konings, A. G., Rao, K. & Steele‐Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. N. Phytol. 223, 1166–1172 (2019).
    Google Scholar 
    Konings, A. G. et al. Detecting forest response to droughts with global observations of vegetation water content. Glob. Change Biol. https://doi.org/10.1111/gcb.15872 (2021).Momen, M. et al. Interacting effects of leaf water potential and biomass on vegetation optical depth. J. Geophys. Res. Biogeosci. 122, 3031–3046 (2017).
    Google Scholar 
    Simunek, J., Van Genuchten, M. T. & Sejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media (Dept Environ. Sci. Univ. California Riverside, 2005).Naylor, S., Letsinger, S., Ficklin, D., Ellett, K. & Olyphant, G. A hydropedological approach to quantifying groundwater recharge in various glacial settings of the mid‐continental USA. Hydrol. Process. 30, 1594–1608 (2016).
    Google Scholar 
    Urbanski, S. et al. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res. Biogeosci. 112, G02020 (2007).
    Google Scholar 
    Thum, T. et al. Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots pine forest. Tellus B 59, 874–890 (2007).
    Google Scholar 
    Ardö, J., Mölder, M., El-Tahir, B. A. & Elkhidir, H. A. M. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan. Carbon Balance Manage. 3, 7 (2008).
    Google Scholar 
    Roman, D. T. et al. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179, 641–654 (2015).
    Google Scholar 
    Fu, C. et al. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites. Hydrol. Earth Syst. Sci. 20, 2001–2018 (2016).
    Google Scholar 
    Liang, J. et al. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geosci. Model Dev. 12, 1601–1612 (2019).Herman, J. & Usher, W. SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. https://doi.org/10.21105/joss.00097 (2017). More

  • in

    Spatiotemporal variations of air pollutants based on ground observation and emission sources over 19 Chinese urban agglomerations during 2015–2019

    Daily change in primary pollutantsTo elucidate the change trend of primary pollutants under the 13th Five-Year Plan, we calculated the daily primary pollutants in 2015 and 2019 based on formula (1) and formula (2). Such diurnal comparisons can reduce the effects of seasonal weather to some extent. From the 19 UAs (224 prefecture-level cities), the heat diagram of the daily change transfer matrix of primary pollutants from 2015 to 2019 is shown in Fig. 2, including six primary pollutants and clean day conditions.Figure 2Transfer change matrix heatmap of primary pollutants from 2015 to 2019.Full size imageFrom the sum of the diagonal numbers, 37% of the primary pollutants had no shift during the 13th Five-Year Plan period. PM2.5, PM10 and O3 were the main primary pollutants, especially PM2.5. More primary pollutants were diverted to ozone pollution, indicating that the proportion of O3 as the primary pollutant is gradually increasing. In addition, the proportion of clean air has increased significantly, which shows that pollution control has been effectively reflected during the 13th Five-Year Plan period. However, the proportion of NO2 before and after metastasis was approximately the same, with approximately 5% NO2 pollution. This may imply that the governance of NO2 pollution was rendered nonsignificant. It is noteworthy that ozone pollution in China has become an increasingly prominent task in recent years. Similar to Xiao’s16 research on ozone pollution, they argue that present-day ozone levels in major Chinese cities are comparable to or even higher than the 1980 levels in the United States. Taken together, ozone and PM2.5 have become the top two air pollution pollutants in China.Monthly distribution of primary pollutantsTo further explore the spatiotemporal distribution of the primary pollutants across the UAs, we obtained the most primary pollutants per month by dividing the number of days with the most pollutants by the number of cities in each UA from the 2019 data. In Fig. 3, the UAs location was plotted on the abscissa, and the monthly variance of the primary pollutant was plotted on the ordinate. As shown in Fig. 3, PM2.5 appeared as dark green, PM10 appeared as light green, O3 appeared as orange, NO2 appeared as yellow, and clean days appear as dark blue. The main pollutants in the 19 UAs are PM2.5, PM10 and O3. NO2, as the primary pollutant, only appeared in the HBOY UA in January. Ordos, located in HBOY, possess rich oil and coal resources, with coal mining as its leading industry38. According to the China Energy Statistical Yearbook 2019, nearly 250 million tons of raw coal were used for thermal power generation in Inner Mongolia Autonomous Region, making it the region with the largest amount of raw coal for thermal power generation in China39. To a certain extent, the increase of heating40 and the imperfect denitration technology41 are both contributing to the increase of NO2 pollution in the atmosphere. CO and SO2 did not become major pollutants. Clean days (where AQI  More

  • in

    Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota

    European Commission. Report from the commission to the European Parliament and the council on the implementation of the measures concerning the apiculture sector of Regulation (EU) No 1308/2013 of the European Parliament and of the Council establishing a common organisation of the markets in agricultural products. p. 1–16. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:52016DC0776 (2016).Motta, E. V. S. & Moran, N. A. Impact of glyphosate on the honey bee gut microbiota: Effects of intensity, duration, and timing of exposure. msystems 5, e00268-e1220. https://doi.org/10.1128/mSystems.00268-20 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B-Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).Article 

    Google Scholar 
    Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 (2017).Article 

    Google Scholar 
    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. PNAS 103, 13890–13895. https://doi.org/10.1073/pnas.0600929103 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, I. H. The dependence of crop production within the European Union on pollination by honey bees. Agric. Zool. Rev. 20, 20 (1994).
    Google Scholar 
    Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22. https://doi.org/10.3896/ibra.1.49.1.02 (2010).Article 

    Google Scholar 
    Vanengelsdorp, D., Hayes, J., Underwood, R. M. & Pettis, J. A survey of honey bee colony losses in the US, fall 2007 to spring 2008. PLoS One 3, 6. https://doi.org/10.1371/journal.pone.0004071 (2008).CAS 
    Article 

    Google Scholar 
    Chagnon, M. Fédération Canadienne de la Faune (Bureau régional du Québec, 2008).
    Google Scholar 
    Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37, 616–626. https://doi.org/10.1016/j.foodpol.2012.06.003 (2012).Article 

    Google Scholar 
    Haber, A. I., Steinhauer, N. A. & vanEngelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in US beekeeping operations. J. Econ. Entomol. https://doi.org/10.1093/jee/toz088 (2019).Article 
    PubMed 

    Google Scholar 
    Le Conte, Y., Ellis, M. & Ritter, W. Varroa mites and honey bee health: Can Varroa explain part of the colony losses?. Apidologie 41, 353–363. https://doi.org/10.1051/apido/2010017 (2010).Article 

    Google Scholar 
    Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and colony collapse disorder in the United States. J. Apic. Res. 49, 134–136. https://doi.org/10.3896/IBRA.1.49.1.30 (2010).Article 

    Google Scholar 
    Chauzat, M. P. et al. Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environ. Entomol 38, 514–523. https://doi.org/10.1603/022.038.0302 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Juan-Borras, M., Domenech, E. & Escriche, I. Mixture-risk-assessment of pesticide residues in retail polyfloral honey. Food Control 67, 127–134. https://doi.org/10.1016/j.foodcont.2016.02.051 (2016).CAS 
    Article 

    Google Scholar 
    Kasiotis, K. M., Anagnostopoulos, C., Anastasiadou, P. & Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: Reported death incidents in honeybees. Sci. Total. Environ 485–486, 633–642. https://doi.org/10.1016/j.scitotenv.2014.03.042 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mullin, C. A. et al. High levels of miticides and agrochemicals in north american apiaries: Implications for honey bee health. PLoS One 5, 19. https://doi.org/10.1371/journal.pone.0009754 (2010).CAS 
    Article 

    Google Scholar 
    Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Buchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect. Physiol. 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alptekin, S. et al. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes. Insect Mol. Biol. 25, 171–180. https://doi.org/10.1111/imb.12211 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tesovnik, T. et al. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. Environ. Pollut. 256, 113443. https://doi.org/10.1016/j.envpol.2019.113443 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gregore, A. et al. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Sci. Rep. https://doi.org/10.1038/s41598-018-33348-4 (2018).Article 

    Google Scholar 
    Schneider, C. W., Tautz, J., Grunewald, B. & Fuchs, S. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7, 9. https://doi.org/10.1371/journal.pone.0030023 (2012).CAS 
    Article 

    Google Scholar 
    Vazquez, D. E., Ilina, N., Pagano, E. A., Zavala, J. A. & Farina, W. M. Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS One https://doi.org/10.1371/journal.pone.0205074 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vázquez, D. E., Latorre-Estivalis, J. M., Ons, S. & Farina, W. M. Chronic exposure to glyphosate induces transcriptional changes in honey bee larva: A toxicogenomic study. Environ. Pollut. https://doi.org/10.1016/j.envpol.2020.114148 (2020).Article 
    PubMed 

    Google Scholar 
    Farina, W. M., Balbuena, M., Herbert, L. T., Mengoni Goñalons, C. & Vázquez, D. E. Effects of the herbicide glyphosate on honey bee sensory and cognitive abilities: Individual impairments with implications for the hive. Insects 10, 354. https://doi.org/10.3390/insects10100354 (2019).Article 
    PubMed Central 

    Google Scholar 
    Wang, Y. H., Zhu, Y. C. & Li, W. H. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). Ecotox. Environ. Safe 190, 10. https://doi.org/10.1016/j.ecoenv.2019.110100 (2020).CAS 
    Article 

    Google Scholar 
    Kretschmann, A., Gottardi, M., Dalhoff, K. & Cedergreen, N. The synergistic potential of the azole fungicides prochloraz and propiconazole toward a short α-cypermethrin pulse increases over time in Daphnia magna. Aquat. Toxicol. 162, 94–101. https://doi.org/10.1016/j.aquatox.2015.02.011 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yuan, X. et al. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere https://doi.org/10.1016/j.chemosphere.2019.04.088 (2019).Article 
    PubMed 

    Google Scholar 
    Yang, Y. et al. Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environ. Pollut. 249, 860–867. https://doi.org/10.1016/j.envpol.2019.03.077 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628. https://doi.org/10.1111/j.1365-294X.2010.04959.x (2011).Article 
    PubMed 

    Google Scholar 
    Corby-Harris, V., Maes, P. & Anderson, K. E. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 9, 13. https://doi.org/10.1371/journal.pone.0095056 (2014).CAS 
    Article 

    Google Scholar 
    Moran, N. A., Hansen, A. K., Powell, J. E. & Sabree, Z. L. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One https://doi.org/10.1371/journal.pone.0036393 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76. https://doi.org/10.1016/j.mib.2017.12.009 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384. https://doi.org/10.1038/nrmicro.2016.43 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814. https://doi.org/10.1038/s41396-019-0568-8 (2020).Article 
    PubMed 

    Google Scholar 
    Killer, J., Dubná, S., Sedláček, I. & Švec, P. Lactobacillus apis sp. Nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int. J. Syst. Evol. Microbiol. 64, 152–157. https://doi.org/10.1099/ijs.0.053033-0 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Forsgren, E., Olofsson, T. C., Váasquez, A. & Fries, I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41, 99–108. https://doi.org/10.1051/apido/2009065 (2010).Article 

    Google Scholar 
    Schwarz, R. S., Huang, Q. & Evans, J. D. Hologenome theory and the honey bee pathosphere. Curr. Opin. Insect Sci. 10, 1–7. https://doi.org/10.1016/j.cois.2015.04.006 (2015).Article 
    PubMed 

    Google Scholar 
    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. PNAS 109, 11002–11007. https://doi.org/10.1073/pnas.1202970109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kešnerová, L. et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 15, 28. https://doi.org/10.1371/journal.pbio.2003467 (2017).CAS 
    Article 

    Google Scholar 
    Kwong, W. K., Engel, P., Koch, H. & Moran, N. A. Genomics and host specialization of honey bee and bumble bee gut symbionts. PNAS 111, 11509–11514. https://doi.org/10.1073/pnas.1405838111 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17, 796–815. https://doi.org/10.1111/1462-2920.12526 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. PNAS 115, 10305–10310. https://doi.org/10.1073/pnas.1803880115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blot, N., Veillat, L., Rouze, R. & Delatte, H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS One 14, 16. https://doi.org/10.1371/journal.pone.0215466 (2019).CAS 
    Article 

    Google Scholar 
    Raymann, K. et al. Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Appl. Environ. Microbiol. 84, 13. https://doi.org/10.1128/aem.00545-18 (2018).CAS 
    Article 

    Google Scholar 
    Rouze, R., Mone, A., Delbac, F., Belzunces, L. & Blot, N. The honeybee gut microbiota is altered after chronic exposure to different families of insecticides and infection by Nosema ceranae. Microbes Environ. 34, 226–233. https://doi.org/10.1264/jsme2.ME18169 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeGrandi-Hoffman, G., Corby-Harris, V., DeJong, E. W., Chambers, M. & Hidalgo, G. Honey bee gut microbial communities are robust to the fungicide PristineA (R) consumed in pollen. Apidologie 48, 340–352. https://doi.org/10.1007/s13592-016-0478-y (2017).CAS 
    Article 

    Google Scholar 
    Liu, Y. J. et al. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. J. Hazard. Mater. 389, 11. https://doi.org/10.1016/j.jhazmat.2019.121818 (2020).CAS 
    Article 

    Google Scholar 
    Syromyatnikov, M. Y., Isuwa, M. M., Savinkova, O. V., Derevshchikova, M. I. & Popov, V. N. The effect of pesticides on the microbiome of animals. Agriculture 10, 79. https://doi.org/10.3390/agriculture10030079 (2020).CAS 
    Article 

    Google Scholar 
    Thompson, H. M. et al. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr. Environ. Assess. Manag. 10, 463–470. https://doi.org/10.1002/ieam.1529 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motta, E. V. S. et al. Oral and topical exposure to glyphosate in herbicide formulation impact the gut microbiota and survival rates of honey bees. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01150-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berg, C. J. et al. Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees. PLoS ONE 13, e0198876. https://doi.org/10.1371/journal.pone.0198876 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rubio, F., Guo, E. & Kamp, L. Survey of glyphosate residues in honey, corn, and soy products. Abstr. Pap. Am. Chem. Soc. https://doi.org/10.4172/2161-0525.1000249 (2015).Article 

    Google Scholar 
    El Agrebi, N. et al. Honeybee and consumer’s exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. Sci. Total. Environ. 704, 135312. https://doi.org/10.1016/j.scitotenv.2019.135312 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kubik, M. et al. Residues of captan (contact) and difenoconazole (systemic) fungicides in bee products from an apple orchard. Apidologie 31, 531–541 (2000).CAS 
    Article 

    Google Scholar 
    Lopez, S. H., Lozano, A., Sosa, A., Hernando, M. D. & Fernandez-Alba, A. R. Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study. Chemosphere 163, 44–53. https://doi.org/10.1016/j.chemosphere.2016.07.008 (2016).CAS 
    Article 

    Google Scholar 
    Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8, 9. https://doi.org/10.1371/journal.pone.0070182 (2013).CAS 
    Article 

    Google Scholar 
    Abdallah, O. I., Hanafi, A., Ghani, S. B. A., Ghisoni, S. & Lucini, L. Pesticides contamination in Egyptian honey samples. J. Consum. Prot. Food Sci. 12, 317–327. https://doi.org/10.1007/s00003-017-1133-x (2017).CAS 
    Article 

    Google Scholar 
    Blaga, G. V. et al. Antifungal residues analysis in various Romanian honey samples analysis by high resolution mass spectrometry. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes https://doi.org/10.1080/03601234.2020.1724016 (2020).Article 

    Google Scholar 
    Piechowicz, B., Wos, I., Podbielska, M. & Grodzicki, P. The transfer of active ingredients of insecticides and fungicides from an orchard to beehives. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes 53, 18–24. https://doi.org/10.1080/03601234.2017.1369320 (2018).CAS 
    Article 

    Google Scholar 
    Almasri, H. et al. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol. Environ. Saf. 203, 111013. https://doi.org/10.1016/j.ecoenv.2020.111013 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Babendreier, D., Joller, D., Romeis, J., Bigler, F. & Widmer, F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59, 600–610. https://doi.org/10.1111/j.1574-6941.2006.00249.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590. https://doi.org/10.1111/mec.14058 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yanez, O., Gauthier, L., Chantawannakul, P. & Neumann, P. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw147 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tornisielo, V. L., Botelho, R. G., Alves, P. A. T., Bonfleur, E. J. & Monteiro, S. H. Pesticide tank mixes: an environmental point of view. in Herbicides-Current Research and Case Studies in Use. 473–487 (InTech, 2013).

    Google Scholar 
    Kanga, L. H., Siebert, S. C., Sheikh, M. & Legaspi, J. C. Pesticide residues in conventionally and organically managed Apiaries in South and North Florida. Curre. Investig. Agric. Curr. Res. https://doi.org/10.32474/CIACR.2019.07.000262 (2019).Article 

    Google Scholar 
    Lambert, O. et al. Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of western France. PLoS One 8, 12. https://doi.org/10.1371/journal.pone.0067007 (2013).CAS 
    Article 

    Google Scholar 
    Mullins, J. W. Pest Control with Enhanced Environmental Safety, Vol 524 ACS Symposium Series, Vol. 13 183–198 (American Chemical Society, 1993).Book 

    Google Scholar 
    Nguyen, B. K. et al. Does imidacloprid seed-treated maize have an impact on honey bee mortality?. J. Econ. Entomol. 102, 616–623. https://doi.org/10.1603/029.102.0220 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pollak, P. Fine chemicals–the industry and the business. Chem. Int. 29, 22. https://doi.org/10.1515/ci.2007.29.5.22b (2007).Article 

    Google Scholar 
    Amrhein, N., Deus, B., Gehrke, P. & Steinrücken, H. C. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant. Physiol. 66, 830–834. https://doi.org/10.1104/pp.66.5.830 (1980).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cao, G. et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS One 7, e38718. https://doi.org/10.1371/journal.pone.0038718 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hitchcock, C. A., Dickinson, K., Brown, S. B., Evans, E. G. V. & Adams, D. J. Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14α-sterol demethylase purified from Candida albicans. Biochem. J. 266, 475–480. https://doi.org/10.1042/bj2660475 (1990).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberoni, D., Favaro, R., Baffoni, L., Angeli, S. & Di Gioia, D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144116 (2021).Article 
    PubMed 

    Google Scholar 
    Xu, C. et al. Changes in gut microbiota may be early signs of liver toxicity induced by epoxiconazole in rats. Chemotherapy 60, 135–142. https://doi.org/10.1159/000371837 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yang, C., Hamel, C., Vujanovic, V. & Gan, Y. Fungicide: Modes of action and possible impact on nontarget microorganisms. ISRN Ecol. https://doi.org/10.5402/2011/130289 (2011).Article 

    Google Scholar 
    Coupe, R. H., Kalkhoff, S. J., Capel, P. D. & Gregoire, C. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag. Sci. 68, 16–30. https://doi.org/10.1002/ps.2212 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howe, C. M. et al. Toxicity of glyphosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 23, 1928–1938. https://doi.org/10.1002/etc.2268 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wagner, N., Reichenbecher, W., Teichmann, H., Tappeser, B. & Lötters, S. Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ. Toxicol. Chem. 32, 1688–1700. https://doi.org/10.1002/etc.2268 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pareja, L. et al. Evaluation of glyphosate and AMPA in honey by water extraction followed by ion chromatography mass spectrometry. A pilot monitoring study. Anal. Methods 11, 2123–2128. https://doi.org/10.1039/c9ay00543a (2019).CAS 
    Article 

    Google Scholar 
    Thompson, T. S., van den Heever, J. P. & Limanowka, R. E. Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry.. Food. Addit. Contam. Part A Chem. Anal. Control. Expo. Risk. Assess 36, 434–446. https://doi.org/10.1080/19440049.2019.1577993 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dai, P. et al. The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro. J. Agric. Food Chem. 66, 7786–7793. https://doi.org/10.1021/acs.jafc.8b02212 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. PNAS 114, 4775–4780. https://doi.org/10.1073/pnas.1701819114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    du Rand, E. E. et al. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci. Rep. https://doi.org/10.1038/srep11779 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao, W. J. et al. Modulation of the pentose phosphate pathway alters phase I metabolism of testosterone and dextromethorphan in HepG2 cells. Acta Pharmacol. Sin. 36, 259–267. https://doi.org/10.1038/aps.2014.137 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renzi, M. T. et al. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotox. Environ. Safe. 127, 205–213. https://doi.org/10.1016/j.ecoenv.2016.01.028 (2016).CAS 
    Article 

    Google Scholar 
    Singh, A., Gupta, V., Siddiqi, N., Tiwari, S. & Gopesh, A. Time course studies on impact of low temperature exposure on the levels of protein and enzymes in fifth instar larvae of Eri Silkworm, Philosamia ricini (Lepidoptera: satuniidae). Biochem. Anal. Biochem. 6, 6. https://doi.org/10.4172/2161-1009.1000321 (2017).CAS 
    Article 

    Google Scholar 
    Vlahović, M., Lazarević, J., Perić-Mataruga, V., Ilijin, L. & Mrdaković, M. Plastic responses of larval mass and alkaline phosphatase to cadmium in the gypsy moth larvae. Ecotox. Environ. Safe 72, 1148–1155. https://doi.org/10.1016/j.ecoenv.2008.03.012 (2009).CAS 
    Article 

    Google Scholar 
    Coleman, J. E. Structure and mechanism of alkaline-phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21, 441–483. https://doi.org/10.1146/annurev.bb.21.060192.002301 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bates, J. M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382. https://doi.org/10.1016/j.chom.2007.10.010 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. Insect Immunol. 1, 69–96. https://doi.org/10.1016/B978-012373976-6.50006-9 (2008).Article 

    Google Scholar 
    Collison, E., Hird, H., Cresswell, J. & Tyler, C. Interactive effects of pesticide exposure and pathogen infection on bee health—a critical analysis. Biol. Rev. 91, 1006–1019. https://doi.org/10.1111/brv.12206 (2016).Article 
    PubMed 

    Google Scholar 
    Helmer, S. H., Kerbaol, A., Aras, P., Jumarie, C. & Boily, M. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environ. Sci. Pollut. Res. 22, 8010–8021. https://doi.org/10.1007/s11356-014-2879-7 (2015).CAS 
    Article 

    Google Scholar 
    Efferth, T., Schwarzl, S. M., Smith, J. & Osieka, R. Role of glucose-6-phosphate dehydrogenase for oxidative stress and apoptosis. Cell Death Differ. 13, 527–528. https://doi.org/10.1038/sj.cdd.4401807 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Corona, M. & Robinson, G. E. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol. 15, 687–701. https://doi.org/10.1111/j.1365-2583.2006.00695.x (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Field, L. M., Devonshire, A. L., Ffrench-Constant, R. H. & Forde, B. G. Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Lett. 243, 323–327. https://doi.org/10.1016/0014-5793(89)80154-1 (1989).CAS 
    Article 

    Google Scholar 
    Ma, M. et al. Isolation of carboxylesterase (esterase FE4) from Apis cerana cerana and its role in oxidative resistance during adverse environmental stress. Biochimie 144, 85–97. https://doi.org/10.1016/j.biochi.2017.10.022 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zou, F., Guo, Q., Shen, B. & Zhu, C. A cluster of CYP6 gene family associated with the major quantitative trait locus is responsible for the pyrethroid resistance in Culex pipiens pallen. Insect Mol. Biol. 28, 528–536. https://doi.org/10.1111/imb.12571 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lang, M. L., Braun, C. L., Kanost, M. R. & Gorman, M. J. Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster. PNAS 109, 13337–13342. https://doi.org/10.1073/pnas.1208703109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Habineza, P. et al. The promoting effect of gut microbiota on growth and development of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01212 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003. https://doi.org/10.1098/rsos.170003 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, D., Berail, G., Bonmatin, J. M. & Belzunces, L. P. Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal. Bioanal. Chem 406, 621–633. https://doi.org/10.1007/s00216-013-7483-z (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wiest, L. et al. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J. Chromatogr. A 1218, 5743–5756. https://doi.org/10.1016/j.chroma.2011.06.079 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zufelato, M. S., Lourenco, A. P., Simoes, Z. L. P., Jorge, J. A. & Bitondi, M. M. G. Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochem. Mol. Biol. 34, 1257–1268. https://doi.org/10.1016/j.ibmb.2004.08.005 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gallup, J. M. qPCR inhibition and amplification of difficult templates. in PCR troubleshooting and optimization: the essential guide. 23–65 (Horizon Scientific Press, 2011).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
    PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226. https://doi.org/10.1186/s40168-018-0605-2 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schliep, K. P. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593. https://doi.org/10.1093/bioinformatics/btq706 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425 (2008).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Belzunces, L. P., Theveniau, M., Masson, P. & Bounias, M. Membrane acetylcholinesterase from Apis mellifera head solubilized by phosphatidylinositol-specific phospholipase-C interacts with an anti-CRD antibody. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 95, 609–612. https://doi.org/10.1016/0305-0491(90)90029-s (1990).Article 

    Google Scholar 
    Bergmeyer, H. U. & Gawehn, K. Principles of Enzymatic Analysis (Verlag Chemie, 1978).
    Google Scholar 
    Al-Lawati, H., Kamp, G. & Bienefeld, K. Characteristics of the spermathecal contents of old and young honeybee queens. J. Insect Physiol. 55, 117–122. https://doi.org/10.1016/j.jinsphys.2008.10.010 (2009).CAS 
    Article 

    Google Scholar 
    Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione s-transferases—first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).CAS 
    Article 

    Google Scholar 
    Bounias, M., Kruk, I., Nectoux, M. & Popeskovic, D. Toxicology of cupric salts on honeybees. V. Gluconate and sulfate action on gut alkaline and acid phosphatases. Ecotox. Envirom. Safe 35, 67–76. https://doi.org/10.1006/eesa.1996.0082 (1996).CAS 
    Article 

    Google Scholar 
    Alaux, C. et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12, 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Therneau, T. “Survival”: A Package for Survival Analysis in S. R package version 2.38. https://CRAN.R-project.org/package=survival. (2015).Kassambara, A. & Kosinski, M. “Survminer”: Drawing Survival Curves using “ggplot2”. R package version 0.4.2. https://CRAN.R-project.org/package=survminer. (2018).de Mendiburu, F. Statistical Procedures for Agricultural Research. Package “Agricolae” Version 1.44. Comprehensive R Archive Network. Institute for Statistics and Mathematics, Vienna, Austria. http://cran.r-project.org/web/packages/agricolae/agricolae.pdf (2013).Caraux, G. & Pinloche, S. PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21, 1280–1281. https://doi.org/10.1093/bioinformatics/bti141 (2004).Article 
    PubMed 

    Google Scholar  More

  • in

    Field experiments underestimate aboveground biomass response to drought

    Literature search and study selectionA systematic literature search was conducted in the ISI Web of Science database for observational and experimental studies published from 1975 to 13 January 2020 using the following search terms: TOPIC: (grassland* OR prairie* OR steppe* OR shrubland* OR scrubland* OR bushland*) AND TOPIC: (drought* OR ‘dry period*’ OR ‘dry condition*’ OR ‘dry year*’ OR ‘dry spell*’) AND TOPIC: (product* OR biomass OR cover OR abundance* OR phytomass). The search was refined to include the subject categories Ecology, Environmental Sciences, Plant Sciences, Biodiversity Conservation, Multidisciplinary Sciences and Biology, and the document types Article, Review and Letter. This yielded a total of 2,187 peer-reviewed papers (Supplementary Fig. 1). At first, these papers were screened by title and abstract, which resulted in 197 potentially relevant full-text articles. We then examined the full text of these papers for eligibility and selected 87 studies (43 experimental, 43 observational and 1 that included both types) on the basis of the following criteria:

    (1)

    The research was conducted in the field, in natural or semi-natural grasslands or shrublands (for example, artificially constructed (seeded or planted) plant communities or studies using monolith transplants were excluded). We used this restriction because most reports on observational droughts are from intact ecosystems, and experiments in disturbed sites or using artificial communities would thus not be comparable to observational drought studies.

    (2)

    In the case of observational studies, the drought year or a multi-year drought was clearly specified by the authors (that is, we did not arbitrarily extract dry years from a long-term dataset). Please note that some observational data points are from control plots of experiments (of any kind), where the authors reported that a drought had occurred during the study period. We did not involve gradient studies that compare sites of different climates, which are sometimes referred to as ‘observational studies’.

    (3)

    The paper reported the amount or proportion of change in annual or growing-season precipitation (GSP) compared with control conditions. We consistently use the term ‘control’ for normal precipitation (non-drought) year or years in observational studies and for ambient precipitation (no treatment) in experimental studies hereafter. Similarly, we use the term ‘drought’ for both drought year or years in observational studies and drought treatment in experimental studies. In the case of multi-factor experiments, where precipitation reduction was combined with any other treatment (for example, warming), data from the plots receiving drought only and data from the control plots were used.

    (4)

    The paper contained raw data on plant production under both control and drought conditions, expressed in any of the following variables: ANPP, aboveground plant biomass (in grassland studies only) or percentage plant cover. In 79% of the studies that used ANPP as a production variable, ANPP was estimated by harvesting peak or end-of-season AGB. We therefore did not distinguish between ANPP and AGB, which are referred to as ‘biomass’ hereafter. We included the papers that reported the production of the whole plant community, or at least that of the dominant species or functional groups approximating the abundance of the whole community.

    (5)

    When multiple papers were published on the same experiment or natural drought event at the same study site, the most long-term study including the largest number of drought years was chosen.

    In addition to the systematic literature search, we included 27 studies (9 experimental, 17 observational and 1 that included both types) meeting the above criteria from the cited references of the Web of Science records selected for our meta-analyses, and from previous meta-analyses and reviews on the topic. In total, this resulted in 114 studies (52 experimental, 60 observational and 2 that included both types; Supplementary Note 9, Supplementary Fig. 2 and ref. 25).Data compilationData were extracted from the text or tables, or were read from the figures using Web Plot Digitizer26. For each study, we collected the study site, latitude, longitude, mean annual temperature (MAT) and precipitation (MAP), study type (experimental or observational), and drought length (the number of consecutive drought years). When MAT or MAP was not documented in the paper, it was extracted from another published study conducted at the same study site (identified by site names and geographic coordinates) or from an online climate database cited in the respective paper. We also collected vegetation type—that is, grassland when it was dominated by grasses, or shrubland when the dominant species included one or more shrub species (involving communities co-dominated by grasses and shrubs). Data from the same study (that is, paper) but from different geographic locations or environmental conditions (for example, soil types, land uses or multiple levels of experimental drought) were collected as distinct data points (but see ‘Statistical analysis’ for how these points were handled). As a result, the 114 published papers provided 239 data points (112 experimental and 127 observational)25.For the observational studies, normal precipitation year or years specified by the authors was used as the control. If it was not specified in the paper, the year immediately preceding the drought year(s) was chosen as the control. When no data from the pre-drought year were available, the year immediately following the drought year(s) (14 data points) or a multi-year period given in the paper (22 data points) was used as the control. For the experimental studies, we also collected treatment size (that is, rainout shelter area or, if it was not reported in the paper, the experimental plot size).For the calculation of drought severity, we used yearly precipitation (YP), which was reported in a much higher number of studies than GSP. We extracted YP for both control (YPcontrol) and drought (YPdrought). For the observational studies, when a multi-year period was used as the control or the natural drought lasted for more than one year, precipitation values were averaged across the control or drought years, respectively. Consistently, in the case of multi-year drought experiments, YPcontrol and YPdrought were averaged across the treatment years. When only GSP was published in the paper (63 of 239 data points), we used this to obtain YP data as follows: we regarded MAP as YPcontrol, and YPdrought was calculated as YPdrought = MAP − (GSPcontrol − GSPdrought). From YPcontrol and YPdrought data, we calculated drought severity as follows: (YPdrought − YPcontrol)/YPcontrol × 100.For production, we compiled the mean, replication (N) and, if the study reported it, a variance estimate (s.d., s.e.m. or 95% CI) for both control and drought. In the case of multi-year droughts, data only from the last drought year were extracted, except in five studies (17 data points) where production data were given as an average for the drought years. When both biomass and cover data were presented in the paper, we chose biomass. For each study, we consistently considered replication as the number of the smallest independent study unit. When only the range of replications was reported in a study, we chose the smallest number.To quantify climatic aridity for each study site, we used an aridity index (AI), calculated as the ratio of MAP and mean annual PET (AI = MAP/PET). This is a frequently used index in recent climate change research27,28. AI values were extracted from the Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v.2 for the period of 1970–2000 (aggregated on annual basis)29.Because we wanted to prevent our analysis from being distorted by a strongly unequal distribution of studies between the two study types regarding some potentially important explanatory variables, we left out studies from our focal meta-analysis in three steps. First, we left out studies that were conducted at wet sites—that is, where site AI exceeded 1. The value of 1 was chosen for two reasons: above this value, the distribution of studies between the two study types was extremely uneven (22 experimental versus 2 observational data points with AI  > 1)25, and the AI value of 1 is a bioclimatically meaningful threshold, where MAP equals PET. Second, we left out shrublands, because we had only 14 shrubland studies (out of 105 studies with AI  More

  • in

    Climate-change-driven growth decline of European beech forests

    IPCC. IPCC Fifth Assessment Report (AR5). 10–12 (IPCC, 2014).Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).PubMed 

    Google Scholar 
    Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1–12 (2021).
    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science https://doi.org/10.1126/science.1155121 (2008).Article 
    PubMed 

    Google Scholar 
    Buras, A. & Menzel, A. Projecting tree species composition changes of European forests for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 9, 1–13 (2019).
    Google Scholar 
    van der Maaten, E. et al. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 7, 2585–2594 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Lebaube, S., Le Goff, N. L., Ottorini, J. M. & Granier, A. Carbon balance and tree growth in a Fagus sylvatica stand. Ann. Sci. 57, 49–61 (2000).
    Google Scholar 
    Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319–333 (2005).
    Google Scholar 
    Büntgen, U. Re-thinking the boundaries of dendrochronology. Dendrochronologia 53, 1–4 (2019).
    Google Scholar 
    Klesse, S. et al. Continental-scale tree-ring-based projection of Douglas-fir growth: Testing the limits of space-for-time substitution. Glob. Chang. Biol. 26, 5146–5163 (2020).PubMed 

    Google Scholar 
    Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).
    Google Scholar 
    Babst, F. et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018).
    Google Scholar 
    Klesse, S. et al. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun. 9, 1–9 (2018).
    Google Scholar 
    Yousefpour, R. et al. Realizing mitigation efficiency of European commercial forests by climate smart forestry. Sci. Rep. 8, 1–11 (2018).CAS 

    Google Scholar 
    Giesecke, T., Hickler, T., Kunkel, T., Sykes, M. T. & Bradshaw, R. H. W. Towards an understanding of the Holocene distribution of Fagus sylvatica L. J. Biogeogr. 34, 118–131 (2007).
    Google Scholar 
    Fang, J. & Lechowicz, M. J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. J. Biogeogr. 33, 1804–1819 (2006).
    Google Scholar 
    Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).CAS 
    PubMed 

    Google Scholar 
    Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 24001 (2016).Nabuurs, G. J. et al. By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests 8, 1–14 (2017).
    Google Scholar 
    Walentowski, H. et al. Assessing future suitability of tree species under climate change by multiple methods: a case study in southern Germany. Ann. Res. 60, 101–126 (2017).
    Google Scholar 
    Mäkelä, A. et al. Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol. 20, 289–298 (2000).PubMed 

    Google Scholar 
    Leech, S. M., Almuedo, P. L. & Neill, G. O. Assisted migration: adapting forest management to a changing climate. BC J. Ecosyst. Manag. 12, 18–34 (2011).
    Google Scholar 
    Sass-Klaassen, U. G. W. et al. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 7, 1069 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Bowman, D. M. J. S., Brienen, R. J. W., Gloor, E., Phillips, O. L. & Prior, L. D. Detecting trends in tree growth: not so simple. Trends Plant Sci. 18, 11–17 (2013).CAS 
    PubMed 

    Google Scholar 
    Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Dorji, Y., Annighöfer, P., Ammer, C. & Seidel, D. Response of beech (Fagus sylvatica L.) trees to competition-new insights from using fractal analysis. Remote Sens. 11, 2656 (2019).Petit-Cailleux, C. et al. Combining statistical and mechanistic models to unravel the drivers of mortality within a rear-edge beech population. bioRxiv https://doi.org/10.1101/645747 (2019).Weigel, R., Gilles, J., Klisz, M., Manthey, M. & Kreyling, J. Forest understory vegetation is more related to soil than to climate towards the cold distribution margin of European beech. J. Veg. Sci. 30, 746–755 (2019).
    Google Scholar 
    Etzold, S. et al. Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. Forest Ecol. Manag. 458, 117762 (2020).
    Google Scholar 
    Martínez-Sancho, E. et al. The GenTree dendroecological collection, tree-ring and wood density data from seven tree species across Europe. Sci. Data 7, 1–7 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hartl-Meier, C., Dittmar, C., Zang, C. & Rothe, A. Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28, 819–829 (2014).
    Google Scholar 
    Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).PubMed 

    Google Scholar 
    Martínez del Castillo, E. et al. Spatial patterns of climate – growth relationships across species distribution as a forest management tool in Moncayo Natural Park (Spain). Eur. J. Res. 138, 299 (2019).
    Google Scholar 
    Hacket-Pain, A. J., Cavin, L., Friend, A. D. & Jump, A. S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. Res. 135, 897–909 (2016).
    Google Scholar 
    van der Maaten, E. Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 26, 777–788 (2012).
    Google Scholar 
    Decuyper, M. et al. Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia – an integrated approach using remote sensing and tree-ring data. Agric. Meteorol. 287, 107925 (2020).
    Google Scholar 
    Kraus, C., Zang, C. & Menzel, A. Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. Eur. J. Res. 135, 1011–1023 (2016).
    Google Scholar 
    Martínez del Castillo, E. et al. Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under mediterranean conditions. Front. Plant Sci. 7, 370 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Čufar, K. et al. Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees 26, 1091–1100 (2012).
    Google Scholar 
    Bontemps, J. D., Hervé, J. C. & Dhôte, J. F. Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. Forest Ecol. Manag. 259, 1455–1463 (2010).
    Google Scholar 
    Latte, N., Lebourgeois, F. & Claessens, H. Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33, 69–77 (2015).
    Google Scholar 
    Zimmermann, J., Hauck, M., Dulamsuren, C. & Leuschner, C. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central european mixed forests. Ecosystems 18, 560–572 (2015).CAS 

    Google Scholar 
    Tegel, W. et al. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur. J. Res. 133, 61–71 (2014).
    Google Scholar 
    Hacket-Pain, A. J. & Friend, A. D. Increased growth and reduced summer drought limitation at the southern limit of Fagus sylvatica L., despite regionally warmer and drier conditions. Dendrochronologia 44, 22–30 (2017).
    Google Scholar 
    Dulamsuren, C., Hauck, M., Kopp, G., Ruff, M. & Leuschner, C. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees 31, 673–686 (2017).
    Google Scholar 
    Spiecker, H., Mielikäinen, K., Köhl, M. & Skovsgaard, J. P. Growth trends in European forests: studies from 12 countries. European Forest Institute Research Report (1996).Cavin, L. & Jump, A. S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 23, 1–18 (2016).
    Google Scholar 
    Mette, T. et al. Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere 4, 1–19 (2013).
    Google Scholar 
    Michelot, A., Simard, S., Rathgeber, C. B. K., Dufrêne, E. & Damesin, C. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol. 32, 1033–1045 (2012).PubMed 

    Google Scholar 
    Meier, I. C. & Leuschner, C. Belowground drought response of European beech: Fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob. Chang. Biol. 14, 2081–2095 (2008).
    Google Scholar 
    Leuschner, C. & Ellenberg, H. Ecology of Central European Forests. Vegetation Ecology of Central Europe. Vol. I (Springer, 2017).Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere. 6, 1–55 (2015).
    Google Scholar 
    Pechanec, V., Purkyt, J., Benc, A., Nwaogu, C. & Lenka, Š. Ecological Informatics Modelling of the carbon sequestration and its prediction under climate change. https://doi.org/10.1016/j.ecoinf.2017.08.006 (2017).Speer, J. H. Fundamentals of Tree-Ring Research (University of Arizona Press, 2010).Biondi, F. & Qeadan, F. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res. 64, 81–96 (2008).
    Google Scholar 
    Biondi, F. & Qeadan, F. Removing the tree-ring width biological trend using expected basal area increment. in USDA Forest Service RMRS-P-55 124–131 (2008).Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).
    Google Scholar 
    De Martonne, E. Une nouvelle fonction climatologique: L’indice d’aridité. La Meteorol. 2, 449–458 (1926).Martínez del Castillo, E., Longares, L. A., Serrano-Notivoli, R. & de Luis, M. Modeling tree-growth: assessing climate suitability of temperate forests growing in Moncayo Natural Park (Spain). Ecol. Manag. 435, 128–137 (2019).
    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    Calcagno, V. & Mazancourt, C. De. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).
    Google Scholar 
    Detry, M. A. & Ma, Y. Analyzing repeated measurements using mixed models. JAMA J. Am. Med. Assoc. 315, 407 (2016).CAS 

    Google Scholar 
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).
    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 

    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).CAS 

    Google Scholar 
    Karger, D. N. & Zimmermann, N. E. CHELSAcruts – High Resolution Temperature And Precipitation Timeseries For The 20th Century And Beyond. https://doi.org/10.16904/envidat.159 (2018).Norinder, U., Rybacka, A. & Andersson, P. L. Conformal prediction to define applicability domain – a case study on predicting ER and AR binding. SAR QSAR Environ. Res. 27, 303–316 (2016).CAS 
    PubMed 

    Google Scholar 
    Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A. & Watkins, J. W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 14, 549–563 (2005).
    Google Scholar  More

  • in

    Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80- ). 359, 80–83 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: Insights and impacts. Coral Reefs 38, 539–545 (2019).ADS 

    Google Scholar 
    Glynn. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).ADS 

    Google Scholar 
    Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138 (1997).
    Google Scholar 
    Maynard, J. A. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Chang. 5, 688–694 (2015).ADS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl. Acad. Sci. U. S. A. 105, 17442–17446 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, H. et al. Positive and negative responses of coral calcification to elevated pCO2: Case studies of two coral species and the implications of their responses. Mar. Ecol. Prog. Ser. 502, 145–156 (2014).ADS 
    CAS 

    Google Scholar 
    Hoadley, K. D. et al. Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host + symbiont response. Sci. Rep. 5, 1–15 (2015).
    Google Scholar 
    Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One. 8, e75049 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, (eds. Pörtner, H.-O. et al.) 1–36 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2019).Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions. Coral Reefs 35, 729–738 (2016).ADS 

    Google Scholar 
    Dove, S. G., Brown, K. T., Van Den Heuvel, A., Chai, A. & Hoegh-Guldberg, O. Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Commun. Earth Environ. 1, 1–9 (2020).
    Google Scholar 
    Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. O. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Bio. Ecol. 479, 60–68 (2016).
    Google Scholar 
    Amid, C. et al. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam. Environ. Sci. Pollut. Res. 25, 13360–13372 (2018).CAS 

    Google Scholar 
    Anthony, K. R. N., Connolly, S. R. & Willis, B. L. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).ADS 

    Google Scholar 
    Edmunds, P. J. & Davies, P. S. An energy budget for Porites porites (Scleractinia). Mar. Biol. 92, 339–347 (1986).
    Google Scholar 
    Stimson, J. S. Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull. Mar. Sci. 41, 889–904 (1987).ADS 

    Google Scholar 
    Harland, A. D., Navarro, J. C., Spencer Davies, P. & Fixter, L. M. Lipids of some Caribbean and Red Sea corals: Total lipid, wax esters, triglycerides and fatty acids. Mar. Biol. 117, 113–117 (1993).CAS 

    Google Scholar 
    Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the northern gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 1–12 (2017).
    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).ADS 

    Google Scholar 
    Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. Funct. Ecol. 23, 539–550 (2009).
    Google Scholar 
    Baumann, J. H., Grottoli, A. G., Hughes, A. D. & Matsui, Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J. Exp. Mar. Bio. Ecol. 461, 469–478 (2014).CAS 

    Google Scholar 
    Hughes, A. D. & Grottoli, A. G. Heterotrophic compensation: A possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?. PLoS ONE 8, 1–10 (2013).
    Google Scholar 
    Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).ADS 
    PubMed 

    Google Scholar 
    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Levas, S. J. et al. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?. Coral Reefs 35, 495–506 (2016).ADS 

    Google Scholar 
    Jury, C. P., Delano, M. N. & Toonen, R. J. High heritability of coral calcification rates and evolutionary potential under ocean acidification. Sci. Rep. 9, 1–13 (2019).
    Google Scholar 
    Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. R. Soc. B Biol. Sci. 286, 20190614 (2019).
    Google Scholar 
    Concepcion, G. T., Polato, N. R., Baums, I. B. & Toonen, R. J. Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata and Porites lobata. Conserv. Genet. Resour. 2, 11–15 (2010).

    Google Scholar 
    Gorospe, K. D. & Karl, S. A. Genetic relatedness does not retain spatial pattern across multiple spatial scales: Dispersal and colonization in the coral, Pocillopora damicornis. Mol. Ecol. 22, 3721–3736 (2013).PubMed 

    Google Scholar 
    Wall, C. B., Ritson-Williams, R., Popp, B. N. & Gates, R. D. Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnol. Oceanogr. 64, 2011–2028 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahr, K. D., Tran, T., Jury, C. P. & Toonen, R. J. Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. PLoS ONE 15, 1–13 (2020).
    Google Scholar 
    Rogelj, J. et al. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: A review of methods. Coral Reefs 39, 885–902 (2020).
    Google Scholar 
    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grottoli, A. G. Variability of stable isotopes and maximum linear extension in reef-coral skeletons at Kaneohe Bay, Hawaii. Mar. Biol. 135, 437–449 (1999).
    Google Scholar 
    McLachlan, R. H., Dobson, K. L., Grottoli, A. G. Quantification of Total Biomass in Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdyai7se.McLachlan, R. H., Muñoz-Garcia, A., Grottoli, A. G. Extraction of Total Soluble Lipid from Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bc4qiyvw.McLachlan, R. H., Price, J. T., Dobson, K. L., Weisleder, N. & Grottoli, A. G. Microplate Assay for Quantification of Soluble Protein in Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdc8i2zw.McLachlan, R. H., Juracka, C. & Grottoli, A. G. Symbiodiniaceae Enumeration in Ground Coral Samples Using Countess™ II FL Automated Cell Counter. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdc5i2y6.McLachlan, R. H. & Grottoli, A. G. Geometric Method for Estimating Coral Surface Area Using Image Analysis. Protocols.io https://doi.org/10.17504/protocols.io.bdyai7se(2021).Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).ADS 
    CAS 

    Google Scholar 
    Levas, S. J. et al. Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Mar. Ecol. Prog. Ser. 519, 153–164 (2015).ADS 
    CAS 

    Google Scholar 
    Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woodley, C. M., Burnett, A. & Downs, C. A. Epidemiological Assessment of Reproductive Condition of ESA Priority Coral (2013).Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139 (2014).ADS 
    PubMed 

    Google Scholar 
    Rodrigues, L. J., Grottoli, A. G. & Lesser, M. P. Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii. J. Exp. Biol. 211, 2502–2509 (2008).PubMed 

    Google Scholar 
    Rowan, H. et al. Environmental gradients drive physiological variation in Hawaiian corals. Coral Reefs 40(5), 1505–1523. https://doi.org/10.1007/s00338-021-02140-8 (2021).Article 

    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed 

    Google Scholar 
    J. T. Price, thesis, The Ohio State University (2020). More