More stories

  • in

    Leucistic plumage as a result of progressive greying in a cryptic nocturnal bird

    Rutz, C. Predator fitness increases with selectivity for odd prey. Curr. Biol. 22, 820–824 (2012).CAS 
    PubMed 

    Google Scholar 
    Santos, C. D. et al. Personality and morphological traits affect pigeon survival from raptor attacks. Sci. Rep. 5, 1–8 (2015).
    Google Scholar 
    Brown, M. B. & Wells, E. Skeletal dysplasia-like syndromes in wild giraffe. BMC Res. Notes 13, 569 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    van Grouw, H. What colour is that bird? The causes and recognition of common colour aberrations in birds. Br. Birds 106, 17–29 (2013).
    Google Scholar 
    Slagsvold, T., Rofstad, G. & Sandvik, J. Partial albinism and natural selection in the hooded crow Corvus corone cornix. J. Zool. 214, 157–166 (1988).
    Google Scholar 
    Stevens, M. et al. Revealed by conspicuousness: distractive markings reduce camouflage. Behav. Ecol. 24, 213–222 (2013).
    Google Scholar 
    van Grouw, H. What’s in a name? Nomenclature for colour aberrations in birds reviewed. Bull. Br. Ornithol. Club 141, 276–299 (2021).
    Google Scholar 
    Parsons, G. J. & Bonderup-Nielsen, S. Partial albinism in an island population of Meadow Voles, Microtus pennsylvanicus, from Nova Scotia. Can. Field-Nat. 109, 263–264 (1995).
    Google Scholar 
    Reis, A. da S., Zampaulo, R. de A. & Talamoni, S. A. Frequency of leucism in a colony of Anoura geoffroyi (Chiroptera: Phyllostomidae) roosting in a ferruginous cave in Brazil. Biota Neotropica 19(3): e20180676. https://doi.org/10.1590/1676-0611-BN-2018-0676 (2019).Jehl, J. R. Leucism in Eared Grebes in western north America. Condor 87, 439–441 (1985).
    Google Scholar 
    Forrest, S. & Naveen, R. Prevalence of leucism in Pygoscelid penguins of the Antarctic peninsula. Waterbirds 23, 283–285 (2000).
    Google Scholar 
    González-Ortegón, E., Drake, P., Quigley, D. T. G. & Cuesta, J. A. Leucism in the European sardine Sardina pilchardus (Clupeidae). Ecol. Indic. 117, 106544 (2020).
    Google Scholar 
    David, B. Z. First report of partial leucism in the poison frog Epipedobates anthonyi (Anura: Dendrobatidae) in El Oro, Ecuador. Neotrop. Biodivers. 7, 1–4 (2021).
    Google Scholar 
    Krecsák, L. Albinism and leucism among European Viperinae: a review. Russ. J. Herpetol. 15, 97–102 (2008).
    Google Scholar 
    Ritland, K., Newton, C. & Marshall, H. D. Inheritance and population structure of the white-phased “Kermode” black bear. Curr. Biol. 11, 1468–1472 (2001).CAS 
    PubMed 

    Google Scholar 
    Galván, I., Bijlsma, R. G., Negro, J. J., Jarén, M. & Garrido-Fernández, J. Environmental constraints for plumage melanization in the northern goshawk Accipiter gentilis. J. Avian Biol. 41, 523–531 (2010).
    Google Scholar 
    Pijpe, A., Gardien, K. L. M., Meijeren-Hoogendoorn, R. E. van, Middelkoop, E. & Zuijlen, P. P. M. van. Scar Symptoms: Pigmentation Disorders in Textbook On Scar Management (eds. Téot, L., Mustoe, T. A., Middelkoop, E. & Gauglitz, G. G.) 109–115 (Springer, 2020).Edelaar, P. et al. Apparent selective advantage of leucism in a coastal population of Southern caracaras (Falconidae). Evol. Ecol. Res. 13, 187–196 (2011).
    Google Scholar 
    Ellegren, H., Lindgren, G., Primmer, C. R. & Møller, A. P. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389, 593–596 (1997).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Benítez-López, A. & García-Egea, I. First record of an aberrantly colored Pin-tailed Sandgrouse (Pterocles alchata). Wilson J. Ornithol. 127, 755–759 (2015).
    Google Scholar 
    Zbyryt, A., Mikula, P., Ciach, M., Morelli, F. & Tryjanowski, P. A large-scale survey of bird plumage colour aberrations reveals a collection bias in Internet-mined photographs. Ibis 163, 566–578 (2020).
    Google Scholar 
    Bensch, S., Hansson, B., Hasselquist, D. & Nielsen, B. Partial albinism in a semi-isolated population of Great Reed Warblers. Hereditas 133, 167–170 (2000).CAS 
    PubMed 

    Google Scholar 
    Izquierdo, L. et al. Factors associated with leucism in the common blackbird Turdus merula. J. Avian Biol. 49, e01778 (2018).
    Google Scholar 
    Møller, A. P. & Mousseau, T. A. Albinism and phenotype of barn swallows (Hirundo rustica) from Chernobyl. Evolution 55, 2097–2104 (2001).PubMed 

    Google Scholar 
    Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 1–8 (2016).
    Google Scholar 
    Aragonés, J., Arias de Reyna, L. & Recuerda, P. Visual communication and sexual selection in a nocturnal bird species, Caprimulgus ruficollis, a balance between crypsis and conspicuousness. Wilson Bull. 111, 340–345 (1999).
    Google Scholar 
    Negro, J. J., Bortolotti, G. R. & Sarasola, J. H. Deceptive plumage signals in birds: manipulation of predators or prey? Biol. J. Linn. Soc. 90, 467–477 (2007).
    Google Scholar 
    Brooke, M. de L. Unexplained recurrent features of the plumage of birds. Ibis 152, 845–847 (2010).Forero, M. G., Tella, J. L. & García, L. Age related evolution of sexual dimorphism in the Red-necked Nightjar Caprimulgus ruficollis. J. Ornithol. 136, 447–451 (1995).
    Google Scholar 
    Camacho, C. Early age at first breeding and high natal philopatry in the Red-necked Nightjar Caprimulgus ruficollis. Ibis 156, 442–445 (2014).
    Google Scholar 
    Camacho, C. et al. The road to opportunities: landscape change promotes body-size divergence in a highly mobile species. Curr. Zool. 62, 7–14 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Forero, M. G., Tella, J. L. & Oro, D. Annual survival rates of adult Red-necked Nightjars Caprimulgus ruficollis. Ibis 143, 273–277 (2001).
    Google Scholar 
    Henner, J. et al. Genetic mapping of the (G)-locus responsible for the coat color phenotype “Progressive Greying with Age” in horses (Equus caballus). Mamm. Genome 13, 535–537 (2002).CAS 
    PubMed 

    Google Scholar 
    Edson, J. M. An epidemic of albinism. Auk 45, 377–378 (1928).
    Google Scholar 
    Camacho, C., Palacios, S., Sáez, P., Sánchez, S. & Potti, J. Human-induced changes in landscape configuration influence individual movement routines: lessons from a versatile, highly mobile species. PLoS ONE 9, e104974 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Enders, F. & Post, W. White-spotting in the genus Ammospiza and other grassland sparrows. Bird-Band. 42, 210–219 (1971).
    Google Scholar 
    Sage, B. L. Albinism and melanism in birds. Br. Birds 55, 201–225 (1962).
    Google Scholar 
    O’Sullivan, J. D. B. et al. The biology of human hair greying. Biol. Rev. 96, 107–128 (2021).PubMed 

    Google Scholar 
    Nichols, J. D., Hines, J. E. & Blums, P. Tests for senescent decline in annual survival probabilities of common pochards, Aythya ferina. Ecology 78, 1009–1018 (1997).
    Google Scholar 
    Owen, M. & Skimmings, P. The occurrence and performance of leucistic Barnacle Geese Branta leucopsis. Ibis 134, 22–26 (1992).
    Google Scholar 
    Mulder, T., Campbell, C. J. & Ruxton, G. D. Evaluation of disruptive camouflage of avian cup-nests. Ibis 163, 150–158 (2021).
    Google Scholar 
    Holyoak, D. Variable albinism of the flight feathers as an adaptation for recognition of individual birds in some Polynesian populations of Acrocephalus warblers. Ardea 66, 112–117 (1978).
    Google Scholar 
    Griffith, S. C., Parker, T. H. & Olson, V. A. Melanin- versus carotenoid-based sexual signals: is the difference really so black and red? Anim. Behav. 71, 749–763 (2006).
    Google Scholar 
    Galván, I., Jorge, A., Nielsen, J. T. & Møller, A. P. Pheomelanin synthesis varies with protein food abundance in developing goshawks. J. Comp. Physiol. B 189, 441–450 (2019).PubMed 

    Google Scholar 
    Zaragoza-Trello, C., Vilà, M., Botías, C. & Bartomeus, I. Interactions among global change pressures act in a non-additive way on bumblebee individuals and colonies. Funct. Ecol. 35, 420–434 (2021).
    Google Scholar 
    Rollin, N. A note on abnormally marked Song Thrushes and Blackbirds. Trans. Nat. Hist. Soc. Northumberl. Durh. Newctle upon Tyne 10, 183–184 (1953).Guerrero-Bosagna, C. et al. Transgenerational epigenetic inheritance in birds. Environ. Epigenet. 4, dvy008 (2018).Camacho, C., Negro, J. J., Redondo, I., Palacios, S. & Sáez-Gómez, P. Correlates of individual variation in the porphyrin-based fluorescence of red-necked nightjars (Caprimulgus ruficollis). Sci. Rep. 9, 1–9 (2019).
    Google Scholar 
    Camacho, C. Tropical phenology in temperate regions: extended breeding season in a long-distance migrant. Condor 115, 830–837 (2013).
    Google Scholar 
    Cleere, N. Nightjars: a guide to nightjars and related birds (A&C Black, London, 2010).
    Google Scholar 
    Gargallo, G. Flight feather moult in the red-necked nightjar Caprimulgus ruficollis. J. Avian Biol. 25, 119–124 (1994).
    Google Scholar 
    Jackson, H. D. A field survey to investigate why nightjars frequent roads at night. Ostrich 74, 97–101 (2003).
    Google Scholar 
    Jackson, H. D. Finding and trapping nightjars. Bokmakierie 36, 86–89 (1984).
    Google Scholar 
    Sénar, J. C. & Pascual, J. Keel and tarsus length may provide a good predictor of avian body size. Ardea 85, 269–274 (1997).
    Google Scholar 
    Svensson, L. Identification Guide To European Passerines (Lars Svensson, Cleveland, 1992).
    Google Scholar 
    van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 
    Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).PubMed 

    Google Scholar 
    Rising, J. D. & Somers, K. M. The measurement of overall body size in birds. Auk 106, 666–674 (1989).
    Google Scholar 
    Magnusson, A. et al. Package “glmmTMB”. R Package Version 0.2.0. (2017).Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2, 4. (2019).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Barton, K. MuMIn: Multi-Model inference. Model selection and model averaging based on information criteria (AICc and alike). R package version 1.43.17. (2020). More

  • in

    Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai–Tibet Plateau

    Boutaiba, S., Hacene, H., Bidle, K. A. & Maupin-Furlow, J. A. Microbial diversity of the hypersaline Sidi Ameur and Himalatt Salt Lakes of the Algerian Sahara. J. Arid Environ. 75, 909–916. https://doi.org/10.1016/j.jaridenv.2011.04.010 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ventosa, A. Unusual micro-organisms from unusual habitats: hypersaline environments. Symposia Society for General Microbiology (2006).Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M. & Nishikawa, K. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 327, 347–357 (2003).CAS 
    Article 

    Google Scholar 
    Pillai, S. D., Nakatsu, C. H., Miller, R. V. & Yates, M. V. Manual of environmental microbiology. Life High-Salinity Environ. https://doi.org/10.1128/9781555818821 (2015).Article 

    Google Scholar 
    Poli, A. et al. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5, 25. https://doi.org/10.3390/microorganisms5020025 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Azpiazu-Muniozguren, M., Martinez-Ballesteros, I., Gamboa, J., Seoane, S. & Bikandi, J. Altererythrobacter muriae sp. nov., isolated from hypersaline Aana Salt Valley spring water, a continental thalassohaline-type solar saltern. Int. J. Syst. Evol. Microbiol. 71, 3 (2021).
    Google Scholar 
    Zhang, J. et al. Bacterial diversity in Bohai Bay Solar Saltworks, China. Curr. Microbiol. 72, 55–63 (2016).CAS 
    Article 

    Google Scholar 
    Highfield, A., Ward, A., Pipe, R. & Schroeder, D. C. Molecular and phylogenetic analysis reveals new diversity of Dunaliella salina from hypersaline environments. J. Mar. Biol. Assoc. UK 101, 27–37. https://doi.org/10.1017/s0025315420001319 (2021).CAS 
    Article 

    Google Scholar 
    Cycil, L. M. et al. Metagenomic insights into the diversity of halophilic microorganisms indigenous to the Karak Salt Mine, Pakistan. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01567 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jacob, J. H., Hussein, E. I., Shakhatreh, M. A. K. & Cornelison, C. T. Microbial community analysis of the hypersaline water of the Dead Sea using high-throughput amplicon sequencing. Microbiol. Open 6, e00500. https://doi.org/10.1002/mbo3.500 (2017).CAS 
    Article 

    Google Scholar 
    Ben Abdallah, M. et al. Abundance and diversity of prokaryotes in ephemeral hypersaline lake Chott El Jerid using Illumina Miseq sequencing, DGGE and qPCR assay. Extremophiles 22, 811–823. https://doi.org/10.1007/s00792-018-1040-9 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tazi, L., Breakwell, D. P., Harker, A. R. & Crandall, K. A. Life in extreme environments: Microbial diversity in Great Salt Lake, Utah. Extremophiles 18, 525–535. https://doi.org/10.1007/s00792-014-0637-x (2014).Article 
    PubMed 

    Google Scholar 
    Kashi, F. J., Owlia, P., Amoozegar, M. A. & Kazemi, B. Halophilic prokaryotes in Urmia Salt Lake, a hypersaline environment in Iran. Curr. Microbiol. 78(8), 3230–3238 (2021).Article 

    Google Scholar 
    Sorokin, D. Y., Roman, P. & Kolganova, T. V. Halo(natrono)archaea from hypersaline lakes can utilize sulfoxides other than DMSO as electron acceptors for anaerobic respiration. Extremophiles 25, 173–180 (2021).CAS 
    Article 

    Google Scholar 
    Hwang, K., Choe, H. & Kim, K. M. Complete genome of Nocardioides aquaticus KCTC 9944T isolated from meromictic and hypersaline Ekho Lake, Antarctica. Mar. Genom. 1, 100889 (2021).Article 

    Google Scholar 
    Didari, M. et al. Diversity of halophilic and halotolerant bacteria in the largest seasonal hypersaline lake (Aran-Bidgol-Iran). J. Environ. Health Sci. Eng. 18, 961–971. https://doi.org/10.1007/s40201-020-00519-3 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28, 56–63 (2002).CAS 
    Article 

    Google Scholar 
    Mutlu, M. B. et al. Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol. Ecol. 65, 474–483. https://doi.org/10.1111/j.1574-6941.2008.00510.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Antón, J. et al. Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber. Saline Syst. 4, 15. https://doi.org/10.1186/1746-1448-4-15 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oren, A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. 4, 2. https://doi.org/10.1186/1746-1448-4-2 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdeljabbar, H., Badiaa, E., Jean-Luc, C., Marie-Laure, F. & Najla, S. Prokaryotic biodiversity of halophilic microorganisms isolated from Sehline Sebkha Salt Lake (Tunisia). Afr. J. Microbiol. Res. 8, 355–367. https://doi.org/10.5897/ajmr12.1087 (2014).Article 

    Google Scholar 
    Najjari, A., Elshahed, M. S., Cherif, A., Youssef, N. H. & Löffler, F. E. Patterns and determinants of halophilic archaea (Class Halobacteria) diversity in Tunisian endorheic salt lakes and Sebkhet systems. Appl. Environ. Microbiol. 81, 4432–4441. https://doi.org/10.1128/aem.01097-15 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aharon, O. The ecology of the extremely halophilic archaea. FEMS Microbiol. Rev. 1, 415–440 (1994).
    Google Scholar 
    Oren, A. Halophilic Archaea. FEMS Microbiol. Rev. https://doi.org/10.1016/b978-0-12-809633-8.20800-5 (2019).Article 

    Google Scholar 
    Feng, Y. et al. The evolutionary origins of extreme halophilic archaeal lineages. Genome Biol. Evol. 13, 8. https://doi.org/10.1093/gbe/evab166 (2021).CAS 
    Article 

    Google Scholar 
    Ventosa, A., Nieto, J. J. & Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544 (1998).CAS 
    Article 

    Google Scholar 
    Kushner, D. J. Halophilic bacteria. Adv. Appl. Microbiol. 10, 73–99 (1968).CAS 
    Article 

    Google Scholar 
    Ghozlan, H., Deif, H., Kandil, R. A. & Sabry, S. Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J. Gen. Appl. Microbiol. 52, 63–72 (2006).CAS 
    Article 

    Google Scholar 
    Ali, I., Prasongsuk, S., Akbar, A., Aslam, M. & Rakshit, S. K. Hypersaline habitats and halophilic microorganisms. Maejo Int. J. Sci. Technol. 10, 330–345 (2016).CAS 

    Google Scholar 
    Margesin, R. & Schinner, F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56, 650–663. https://doi.org/10.1007/s002530100701 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poosarla, V. G. & Ts, C. Xylanase production by halophilic bacterium Gracilibacillus sp. TSCPVG under solid state fermentation. Res. J. Biotechnol. 16, 92–100 (2021).Article 

    Google Scholar 
    Foti, M. et al. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl. Environ. Microbiol. 73, 2093–2100. https://doi.org/10.1128/aem.02622-06 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boujelben, I. et al. Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Antonie Van Leeuwenhoek 101, 845–857. https://doi.org/10.1007/s10482-012-9701-7 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    García-Maldonado, J. Q., Bebout, B. M., Everroad, R. C. & López-Cortés, A. Evidence of novel phylogenetic lineages of methanogenic archaea from hypersaline microbial mats. Microb. Ecol. 69, 106–117. https://doi.org/10.1007/s00248-014-0473-7 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abed, R. M. M., de Beer, D. & Stief, P. Functional-structural analysis of nitrogen-cycle bacteria in a hypersaline mat from the omani desert. Geomicrobiol. J. 32, 119–129. https://doi.org/10.1080/01490451.2014.932033 (2014).CAS 
    Article 

    Google Scholar 
    Coban, O., Rasigraf, O., Jong, A., Spott, O. & Bebout, B. M. Quantifying potential N turnover rates in hypersaline microbial mats by 15 N tracer techniques. Appl. Environ. Microbiol. 87, 8 (2021).Article 

    Google Scholar 
    Rodriguez-Valera, F. Introduction to Saline Environments (Springer, 1993).
    Google Scholar 
    Wei, H. C., Qi-Shun, F., Fu-Yuan, A., Fa-Shou, S. & Qin, Z. J. Chemical elements in core sediments of the qarhan salt lake and palaeoclimate evolution during 94–9 ka. Acta Geosci. Sin. (2016).Yu, S., Liu, X., Tan, H. & Cao, G. Sustainable Utilization of Qarhan Salt Lake Resources 27–265 (Science Press, 2009).
    Google Scholar 
    Zhu, D. et al. An evaluation of the core bacterial communities associated with hypersaline environments in the Qaidam Basin, China. Arch. Microbiol. 202, 2093–2103. https://doi.org/10.1007/s00203-020-01927-7 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, W., Jiang, H., Yang, J. & Wu, G. Gammaproteobacterial diversity and carbon utilization in response to salinity in the lakes on the qinghai-tibetan plateau. Geomicrobiol. J. 35, 392–403. https://doi.org/10.1080/01490451.2017.1378951 (2018).CAS 
    Article 

    Google Scholar 
    Zhong, Z.-P. et al. Prokaryotic community structure driven by salinity and ionic concentrations in plateau lakes of the tibetan plateau. Appl. Environ. Microbiol. 82, 1846–1858. https://doi.org/10.1128/aem.03332-15 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, C. et al. Synergistic effect of magnetite and zero-valent iron on anaerobic degradation and methanogenesis of phenol. Biores. Technol. 291, 121874. https://doi.org/10.1016/j.biortech.2019.121874 (2019).CAS 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Zhang, J., Kassian, K., Tomáš, F. & Alexandros, S. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614 (2014).CAS 
    Article 

    Google Scholar 
    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).CAS 
    Article 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–1000 (2013).CAS 
    Article 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12, 35. https://doi.org/10.1186/1471-2105-12-35 (2011).Article 

    Google Scholar 
    McArdle, B. H. et al. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–290 (2001).Article 

    Google Scholar 
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821. https://doi.org/10.1038/nbt.2676 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1–3 (2017).
    Google Scholar 
    Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Junker, B. H. & Schreiber, F. Analysis of Biological Networks 283–304 (Analysis of biological networks, 2008).Book 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550. https://doi.org/10.1038/nrmicro2832 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Behzad, H., Ibarra, M. A., Mineta, K. & Gojobori, T. Metagenomic studies of the Red Sea. Gene 576, 717–723. https://doi.org/10.1016/j.gene.2015.10.034 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naghoni, A. et al. Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci. Rep. https://doi.org/10.1038/s41598-017-11585-3 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kambura, A. K. et al. Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya. BMC Microbiol. https://doi.org/10.1186/s12866-016-0748-x (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paul, D. et al. Exploration of microbial diversity and community structure of Lonar lake: The only hypersaline meteorite crater lake within basalt rock. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01553 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ventosa, A., de la Haba, R. R., Sánchez-Porro, C. & Papke, R. T. Microbial diversity of hypersaline environments: A metagenomic approach. Curr. Opin. Microbiol. 25, 80–87. https://doi.org/10.1016/j.mib.2015.05.002 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, F. H. et al. Bacterial and archaeal assemblages in sediments of a large shallow freshwater lake, Lake Taihu, as revealed by denaturing gradient gel electrophoresis. J. Appl. Microbiol. 106, 1022–1032. https://doi.org/10.1111/j.1365-2672.2008.04069.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Song, H., Li, Z., Du, B., Wang, G. & Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 112, 79–89. https://doi.org/10.1111/j.1365-2672.2011.05187.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, Q. L., Zwart, G., Schauer, M., Agterveld, K. V. & Hahn, M. W. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl. Environ. Microbiol. 72, 5478–5485 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Xing, P., Hahn, M. W. & Wu, Q. L. Low taxon richness of bacterioplankton in high-altitude lakes of the Eastern Tibetan Plateau, with a predominance of bacteroidetes and Synechococcus spp. Appl. Environ. Microbiol. 75, 7017–7025. https://doi.org/10.1128/aem.01544-09 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y. et al. Bacterial diversity of freshwater Alpine Lake Puma Yumco on the Tibetan Plateau. Geomicrobiol. J. 26, 131–145. https://doi.org/10.1080/01490450802660201 (2009).CAS 
    Article 

    Google Scholar 
    MounÃc, S., Caumette, P., Matheron, R. & Willison, J. C. Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol. Ecol. 44, 117–130. https://doi.org/10.1016/s0168-6496(03)00017-5 (2003).Article 

    Google Scholar 
    Valenzuela-Encinas, C. et al. Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding. Extremophiles 13, 609–621. https://doi.org/10.1007/s00792-009-0244-4 (2009).Article 
    PubMed 

    Google Scholar 
    Kim, T. J., Lee, E. Y., Kim, Y. J., Cho, K.-S. & Ryu, H. W. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A–12. World J. Microbiol. Biotechnol. 19, 411–417. https://doi.org/10.1023/A:1023998719787 (2003).CAS 
    Article 

    Google Scholar 
    Gales, G. et al. Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir. Sci. Rep. https://doi.org/10.1038/srep22960 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kleinsteuber, S., Riis, V., Fetzer, I., Harms, H. & Müller, S. Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl. Environ. Microbiol. 72, 3531–3542. https://doi.org/10.1128/aem.72.5.3531-3542.2006 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela-Encinas, C. et al. The archaeal diversity and population in a drained alkaline saline soil of the former lake Texcoco (Mexico). Geomicrobiol. J. 29, 18–22. https://doi.org/10.1080/01490451.2010.520075 (2012).Article 

    Google Scholar 
    He, S., Tan, J., Hu, W. & Mo, C. Diversity of archaea and its correlation with environmental factors in the Ebinur Lake Wetland. Curr. Microbiol. 76, 1417–1424. https://doi.org/10.1007/s00284-019-01768-8 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sandaa, R. A., Enger, O. & Torsvik, V. Abundance and diversity of Archaea in heavy-metal-contaminated soils. Appl. Environ. Microbiol. 65, 3293–3297 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Dave, B. P. & Soni, A. Diversity of halophilic archaea at salt pans around Bhavnagar Coast, Gujarat. Proc. Natl. Acad. Sci. India B 83, 225–232. https://doi.org/10.1007/s40011-012-0124-z (2012).Article 

    Google Scholar 
    Zafrilla, B., Martínez-Espinosa, R., Alonso, M. A. & Bonete, M. J. Biodiversity of Archaea and floral of two inland saltern ecosystems in the Alto Vinalopó Valley, Spain. Saline Syst. 6, 10 (2010).Article 

    Google Scholar 
    Costa, M., Santos, H. & Galinski, E. A. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv. Biochem. Eng. Biotechnol. 61, 117 (1998).PubMed 

    Google Scholar 
    Williams, R. J., Howe, A. & Hofmockel, K. S. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00358 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, T. S. B., MatiasRodrigues, J. F. & von Mering, C. A family of interaction-adjusted indices of community similarity. ISME J. 11, 791–807. https://doi.org/10.1038/ismej.2016.139 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oyewusi, H. A. et al. Functional profiling of bacterial communities in Lake Tuz using 16S rRNA gene sequences. Biotechnol. Biotechnol. Equip. 35, 1–10. https://doi.org/10.1080/13102818.2020.1840437 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Oceanographic setting influences the prokaryotic community and metabolome in deep-sea sponges

    Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S. et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12, 2070–2082 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sipkema, D. et al. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission: Microbial transmission in Petrosia ficiformis. Environ. Microbiol. 17, 3807–3821 (2015).CAS 
    PubMed 

    Google Scholar 
    Cleary, D. F. R. et al. The sponge microbiome within the greater coral reef microbial metacommunity. Nat. Commun. 10, 1644 (2019).Björk, J. R., Díez-Vives, C., Astudillo-García, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 14, 335–346 (2012).CAS 
    PubMed 

    Google Scholar 
    Kennedy, J. et al. Evidence of a putative deep sea specific microbiome in marine sponges. PLoS ONE 9, e91092 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinert, G. et al. Compositional and quantitative insights into bacterial and archaeal communities of south pacific deep-sea sponges (Demospongiae and Hexactinellida). Front. Microbiol. 11, 716 (2020).Busch, K. et al. On giant shoulders: How a seamount affects the microbial community composition of seawater and sponges. Biogeosciences 17, 3471–3486 (2020).ADS 
    CAS 

    Google Scholar 
    Olson, J. B. & Gao, X. Characterizing the bacterial associates of three Caribbean sponges along a gradient from shallow to mesophotic depths. FEMS Microbiol. Ecol. 85, 74–84 (2013).PubMed 

    Google Scholar 
    Steinert, G. et al. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ 4, e1936 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Morrow, K. M., Fiore, C. L. & Lesser, M. P. Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient. Environ. Microbiol. 18, 2025–2038 (2016).CAS 
    PubMed 

    Google Scholar 
    Ebada, S. S. & Proksch, P. The chemistry of marine sponges. In Handbook of Marine Natural Products (eds Fattorusso, E. et al.) 191–293 (Springer, 2012). https://doi.org/10.1007/978-90-481-3834-0_4.Chapter 

    Google Scholar 
    Kornprobst, J.-M. Porifera (Sponges). Encyclopedia of Marine Natural Products (Wiley, 2014).
    Google Scholar 
    Leal, M. C., Puga, J., Serôdio, J., Gomes, N. C. M. & Calado, R. Trends in the discovery of new marine natural products from invertebrates over the last two decades—Where and what are we bioprospecting?. PLoS ONE 7, e30580 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G. & Prinsep, M. R. Marine natural products. Nat. Prod. Rep. 34, 235–294 (2017).CAS 
    PubMed 

    Google Scholar 
    Unson, M. D., Holland, N. D. & Faulkner, D. J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119, 1–11 (1994).CAS 

    Google Scholar 
    Bewley, C. A., Holland, N. D. & Faulkner, D. J. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52, 716–722 (1996).CAS 
    PubMed 

    Google Scholar 
    Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tianero, M. D., Balaich, J. N. & Donia, M. S. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat. Microbiol. 4, 1149–1159 (2019).CAS 
    PubMed 

    Google Scholar 
    Ivanišević, J., Thomas, O. P., Lejeusne, C., Chevaldonné, P. & Pérez, T. Metabolic fingerprinting as an indicator of biodiversity: Towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics 7, 289–304 (2011).
    Google Scholar 
    Pérez, T. et al. Oscarella balibaloi, a new sponge species (Homoscleromorpha: Plakinidae) from the Western Mediterranean Sea: Cytological description, reproductive cycle and ecology: O. balibaloi: Description, reproductive cycle and ecology. Mar. Ecol. (Berl.) 32, 174–187 (2011).ADS 

    Google Scholar 
    Reveillaud, J. et al. Relevance of an integrative approach for taxonomic revision in sponge taxa: Case study of the shallow-water Atlanto-Mediterranean Hexadella species (Porifera: Ianthellidae: Verongida). Invertebr. Syst. 26, 230–248 (2012).
    Google Scholar 
    Olsen, E. K. et al. Marine AChE inhibitors isolated from Geodia barretti: Natural compounds and their synthetic analogs. Org. Biomol. Chem. 14, 1629–1640 (2016).CAS 
    PubMed 

    Google Scholar 
    Reverter, M., Perez, T., Ereskovsky, A. V. & Banaigs, B. Secondary metabolome variability and inducible chemical defenses in the Mediterranean Sponge Aplysina cavernicola. J. Chem. Ecol. 42, 60–70 (2016).CAS 
    PubMed 

    Google Scholar 
    Reverter, M., Tribalat, M.-A., Pérez, T. & Thomas, O. P. Metabolome variability for two Mediterranean sponge species of the genus Haliclona: Specificity, time, and space. Metabolomics 14, 114 (2018).Villegas-Plazas, M. et al. Variations in microbial diversity and metabolite profiles of the tropical marine sponge Xestospongia muta with season and depth. Microb. Ecol. 78, 243–256 (2019).CAS 
    PubMed 

    Google Scholar 
    Mohanty, I. et al. Multi-omic profiling of Melophlus sponges reveals diverse metabolomic and microbiome architectures that are non-overlapping with ecological neighbors. Mar. Drugs 18, 124 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Bowerbank, J. S. On the anatomy and physiology of the Spongiadae. Part I. On the spicula. Philos. Trans. R. Soc. Lond. 148, 279–332 (1858).ADS 

    Google Scholar 
    Vosmaer, G. C. J. The sponges of the ‘Willem Barents’ expedition 1880 and 1881. Bijdragen tot de Dierkunde 12, 1–47 (1885).
    Google Scholar 
    Radax, R. et al. Metatranscriptomics of the marine sponge Geodia barretti: Tackling phylogeny and function of its microbial community. Environ. Microbiol. 14, 1308–1324 (2012).CAS 
    PubMed 

    Google Scholar 
    Topsent, E. Spongiaires provenant des campagnes scientifiques de la ‘Princesse Alice’ dans les Mers du Nord (1898–1899—1906–1907). Résultats des campagnes scientifiques accomplies par le Prince Albert I. Monaco 45, 1–67 (1913).
    Google Scholar 
    Yashayaev, I. & Loder, J. W. Further intensification of deep convection in the Labrador Sea in 2016. Geophys. Res. Lett. 44, 1429–1438 (2017).ADS 

    Google Scholar 
    Gutleben, J. et al. Diversity of tryptophan halogenases in sponges of the genus Aplysina. FEMS Microbiol. Ecol. 95, fiz108 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Indraningrat, A. et al. Cultivation of sponge-associated bacteria from Agelas sventres and Xestospongia muta collected from different depths. Mar. Drugs 17, 578 (2019).CAS 
    PubMed Central 

    Google Scholar 
    Ramiro-Garcia, J. et al. NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000 Res. 5, 1791 (2018).
    Google Scholar 
    Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl. Acids Res. 42, D643–D648 (2014).CAS 
    PubMed 

    Google Scholar 
    Erngren, I., Smit, E., Pettersson, C., Cárdenas, P. & Hedeland, M. The effects of sampling and storage conditions on the metabolite profile of the marine sponge Geodia barretti. Front. Chem. 9:662659 (2021)Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).CAS 
    PubMed 

    Google Scholar 
    Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012).CAS 
    PubMed 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package (2017).Dat, T. T. H., Steinert, G., Thi Kim Cuc, N., Smidt, H. & Sipkema, D. Archaeal and bacterial diversity and community composition from 18 phylogenetically divergent sponge species in Vietnam. PeerJ 6, e4970 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010). https://doi.org/10.1109/GCE.2010.5676129.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucl. Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thévenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 14, 3322–3335 (2015).PubMed 

    Google Scholar 
    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinform. 13, 113 (2012).
    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durno, W. E., Hanson, N. W., Konwar, K. M. & Hallam, S. J. Expanding the boundaries of local similarity analysis. BMC Genom. 14, S3 (2013).
    Google Scholar 
    Reshef, D. N. et al. Detecting novel associations in large data sets. Science 334, 1518–1524 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Hall, M. M., Torres, D. J. & Yashayaev, I. Absolute velocity along the AR7W section in the Labrador Sea. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 72, 72–87 (2013).
    Google Scholar 
    Reveillaud, J. et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 8, 1198–1209 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front. Microbiol. 8, 752 (2017).Lidgren, G., Bohlin, L. & Bergman, J. Studies of Swedish marine organisms VII. A novel biologically active indole alkaloid from the sponge Geodia barretti. Tetrahedron Lett. 27, 3283–3284 (1986).CAS 

    Google Scholar 
    Sjögren, M. et al. Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. J. Nat. Prod. 67, 368–372 (2004).PubMed 

    Google Scholar 
    Sölter, S. Identifizierung und Synthese von Naturstoffen aus Borealen Schwämmen (Universität Hamburg, 2004).
    Google Scholar 
    Di, X. et al. 6-Bromoindole derivatives from the Icelandic marine sponge Geodia barretti: Isolation and anti-inflammatory activity. Mar. Drugs 16, 437 (2018).CAS 
    PubMed Central 

    Google Scholar 
    Carstens, B. B. et al. Isolation, characterization, and synthesis of the barrettides: Disulfide-containing peptides from the marine sponge Geodia barretti. J. Nat. Prod. 78, 1886–1893 (2015).CAS 
    PubMed 

    Google Scholar 
    Hedner, E. et al. Brominated cyclodipeptides from the marine sponge Geodia barretti as selective 5-HT ligands. J. Nat. Prod. 69, 1421–1424 (2006).CAS 
    PubMed 

    Google Scholar 
    Hedner, E. et al. Antifouling activity of a dibrominated cyclopeptide from the marine sponge Geodia barretti. J. Nat. Prod. 71, 330–333 (2008).CAS 
    PubMed 

    Google Scholar 
    Erwin, P. M., Pita, L., López-Legentil, S. & Turon, X. Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance. Appl. Environ. Microbiol. 78, 7358–7368 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cárdenas, C. A., Bell, J. J., Davy, S. K., Hoggard, M. & Taylor, M. W. Influence of environmental variation on symbiotic bacterial communities of two temperate sponges. FEMS Microbiol. Ecol. 88, 516–527 (2014).PubMed 

    Google Scholar 
    Glasl, B., Smith, C. E., Bourne, D. G. & Webster, N. S. Exploring the diversity-stability paradigm using sponge microbial communities. Sci. Rep. 8, 8425 (2018).Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lurgi, M., Thomas, T., Wemheuer, B., Webster, N. S. & Montoya, J. M. Modularity and predicted functions of the global sponge-microbiome network. Nat. Commun. 10, 992 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luter, H. M. et al. Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti. FEMS Microbiol. Ecol. 93, fix074 (2017).Thistle, D. Ecosystems of the Deep Oceans (Elsevier, 2003).
    Google Scholar 
    Pita, L., Erwin, P. M., Turon, X. & López-Legentil, S. Till death do us part: Stable sponge-bacteria associations under thermal and food shortage stresses. PLoS ONE 8, e80307 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S., Cobb, R. E. & Negri, A. P. Temperature thresholds for bacterial symbiosis with a sponge. ISME J. 2, 830–842 (2008).CAS 
    PubMed 

    Google Scholar 
    Gerringer, M. E., Drazen, J. C. & Yancey, P. H. Metabolic enzyme activities of abyssal and hadal fishes: Pressure effects and a re-evaluation of depth-related changes. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 125, 135–146 (2017).CAS 

    Google Scholar 
    Yashayaev, I. Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr. 73, 242–276 (2007).ADS 

    Google Scholar 
    Rhein, M., Steinfeldt, R., Kieke, D., Stendardo, I. & Yashayaev, I. Ventilation variability of Labrador Sea Water and its impact on oxygen and anthropogenic carbon: A review. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160321 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galand, P. E., Potvin, M., Casamayor, E. O. & Lovejoy, C. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J. 4, 564–576 (2010).PubMed 

    Google Scholar 
    Frank, A. H., Garcia, J. A. L., Herndl, G. J. & Reinthaler, T. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water: North Atlantic dark ocean prokaryotic biogeography. Environ. Microbiol. 18, 2052–2063 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Agogué, H., Lamy, D., Neal, P. R., Sogin, M. L. & Herndl, G. J. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol. Ecol. 20, 258–274 (2011).PubMed 

    Google Scholar 
    Djurhuus, A., Boersch-Supan, P. H., Mikalsen, S.-O. & Rogers, A. D. Microbe biogeography tracks water masses in a dynamic oceanic frontal system. R. Soc. Open Sci. 4, 170033 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Müller, O. et al. Spatiotemporal dynamics of ammonia-oxidizing Thaumarchaeota in distinct Arctic water masses. Front. Microbiol. 9, 1–13 (2018).ADS 

    Google Scholar 
    Kraemer, S., Ramachandran, A., Colatriano, D., Lovejoy, C. & Walsh, D. A. Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. ISME J. https://doi.org/10.1038/s41396-019-0499-4 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Monier, A. et al. Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates. Biogeosciences 10, 4273–4286 (2013).ADS 

    Google Scholar 
    Monier, A. et al. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. 9, 990–1002 (2015).CAS 
    PubMed 

    Google Scholar 
    Corrège, T. The relationship between water masses and benthic ostracod assemblages in the western Coral Sea, Southwest Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 245–266 (1993).
    Google Scholar 
    Muhling, B. A., Beckley, L. E., Koslow, J. A. & Pearce, A. F. Larval fish assemblages and water mass structure off the oligotrophic south-western Australian coast: SW Australian larval fish assemblages. Fish. Oceanogr. 17, 16–31 (2007).
    Google Scholar 
    Eerkes-Medrano, D. et al. A community assessment of the demersal fish and benthic invertebrates of the Rosemary Bank Seamount Marine Protected Area (NE Atlantic). Deep Sea Res. Part 1 Oceanogr. Res. Pap. https://doi.org/10.1016/j.dsr.2019.103180 (2019).Article 

    Google Scholar 
    Puerta, P. et al. Influence of water masses on the biodiversity and biogeography of deep-sea benthic ecosystems in the North Atlantic. Front. Mar. Sci. 7, 239 (2020).Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic Seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).ADS 

    Google Scholar 
    Kenchington, E. et al. Connectivity modelling of areas closed to protect vulnerable marine ecosystems in the northwest Atlantic. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 143, 85–103 (2019).
    Google Scholar 
    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 

    Google Scholar 
    McCauley, M., Chiarello, M., Atkinson, C. L. & Jackson, C. R. Gut microbiomes of freshwater mussels (Unionidae) are taxonomically and phylogenetically variable across years but remain functionally stable. Microorganisms 9, 411 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Page, M., West, L., Northcote, P., Battershill, C. & Kelly, M. Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand Sponge Mycale hentscheli. J. Chem. Ecol. 31, 1161–1174 (2005).CAS 
    PubMed 

    Google Scholar 
    Ternon, E., Perino, E., Manconi, R., Pronzato, R. & Thomas, O. P. How environmental factors affect the production of guanidine alkaloids by the Mediterranean sponge Crambe crambe. Mar. Drugs 15, 181 (2017).PubMed Central 

    Google Scholar 
    Sacristán-Soriano, O., Banaigs, B. & Becerro, M. A. Temporal trends in the secondary metabolite production of the sponge Aplysina aerophoba. Mar. Drugs 10, 677–693 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Ivanisevic, J. et al. Biochemical trade-offs: Evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi. PLoS ONE 6, e28059 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burg, M. B. & Ferraris, J. D. Intracellular organic osmolytes: Function and regulation. J. Biol. Chem. 283, 7309–7313 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nau-Wagner, G., Boch, J., Le Good, J. A. & Bremer, E. High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis. Appl. Environ. Microbiol. 65, 560–568 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Popowich, A., Zhang, Q. & Le, X. C. Arsenobetaine: The ongoing mystery. Natl. Sci. Rev. 3, 451–458 (2016).CAS 

    Google Scholar 
    Connor, K. M. & Gracey, A. Y. High-resolution analysis of metabolic cycles in the intertidal mussel Mytilus californianus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R103–R111 (2012).CAS 
    PubMed 

    Google Scholar 
    Cárdenas, P. Who produces Ianthelline? The Arctic sponge Stryphnus fortis or its sponge Epibiont Hexadella dedritifera: A probable case of sponge–sponge contamination. J. Chem. Ecol. 42, 339–347 (2016).PubMed 

    Google Scholar 
    Steffen, K. et al. Barrettides: A peptide family specifically produced by the deep-sea sponge Geodia barretti. J. Nat. Prod. 84, 3138–3146 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abbamondi, G. R., De Rosa, S., Iodice, C. & Tommonaro, G. Cyclic dipeptides produced by marine sponge-associated bacteria as quorum sensing signals. Nat. Prod. Commun. 9, 229–232 (2014).CAS 
    PubMed 

    Google Scholar 
    Kasheverov, I. et al. 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor. Mar. Drugs 13, 1255–1266 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, 1–7 (2017).CAS 
    PubMed 

    Google Scholar 
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 7, 744 (2016).Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Active swimming and transphort by currents observed in Japanese eels (Anguilla japonica) acoustically tracked in the western North Pacific

    To our knowledge, this study provides the first recorded information on the active swimming of Japanese eels and on their transport by currents in the open ocean. Specifically, the strong flow of the KC largely dominated the movements of the eels and transported them northeastward while they swam mainly southward, and active swimming contributed a little to their travel trajectories. In contrast, the swimming of eels made a relatively higher contribution to their travel trajectories in the TS area.Our in situ estimates of the mean swimming speeds of Japanese eels (26–41 cm/s) were similar or slightly lower than those of European eels. In the acoustic tracking experiment of European eels considering environmental current vectors, their swimming speeds were 35–58 cm/s in the coastal midwater26. In a laboratory experiment using stamina tunnels with stable temperatures, the optimal swimming speeds of European eels were estimated to be 61–68 cm/s (0.74–1.02 BL/s)56, which were higher than the in situ estimates. The minimum swimming speed of European eels is considered to be 40 cm/s if they will arrive at their spawning area in the Sargasso Sea (distance of 5500 km) in 6 months, and their optimal swimming speeds were sufficient to migrate over the long distance in time for the near-spawning period after escape from their growth habitats56. However, field studies using PSAT tagging also reported that in situ migration speeds (including transport by currents) were less than the optimal swimming speeds and suggested that some European eels could reach their spawning area within the near-spawning periods and that others only arrive in time for the following spawning season19.Our estimated effective swimming speed of Japanese eels, all day and all night over the tracking periods, ranged from 3 to 30 cm/s with individual variations. These estimates were consistent with the swimming speeds (excluding transport by currents) of 2.2–15.1 km/day (2–18 cm/s) estimated in the PSAT study of Japanese eels14. Silver-phase Japanese eels start migrating from their coastal growth habitats in Japan primarily in October to December57, 58, and spawning near the West Mariana Ridge occurs in April to August33, 35. Numerical models assuming that migrating eels use true navigation (readjusted compass) or a constant compass heading (fixed compass from the departure place to the spawning site) indicate that the minimal swimming speed required to arrive at the spawning area within 8 months is 10–12 cm/s37. Our estimated effective swimming speeds of five out of ten eels during the day and eight out of ten eels during the night were similar or higher than these minimal speeds. The low effective swimming speeds frequently observed during the day might be due to the relatively low values observed in the swimming speed at 10 min intervals and the swimming directions often varying during the day. When eels swim with stable orientation, as observed in three of the eels (WE2999_TS, WE3001_TS, and WE3002_TS) during the night, the effective swimming speeds exceeded 25 cm/s. If such a stable orientation is maintained and compensate the low speeds during the day, the eels that leave during autumn and winter will be able to arrive at the spawning area during the next spring to summer.It should also be noted that the swimming speeds in body length per second were significantly higher in shallow water during the night than in deep water during the day. In the open ocean, anguillid species exhibit DVMs during oceanic migration, swimming at depth during the day and in the shallows during the night9,10,11,12,13,14,15,16,17,18,19,20,21,22. These DVMs are likely related to the possible avoidance from visual predators under light conditions19 or maturation control59. Essentially, through the DVMs, the eels encounter low temperatures ( 20 °C) during the same day. Generally, the swimming speeds of fishes are restricted by the ambient water temperature60, and the water temperature encountered through DVMs might influence the horizontal-swimming speeds of Japanese eels.Other factors besides swimming speed are important for the success of eel migrations, such as adapting to mesopelagic zones that silver eels undergo during their spawning migrations. The most important and obvious morphological adaptation in mesopelagic fish is their well-developed eyes, and migrating eels also seem to use this strategy. These fish often have relatively large pupils61, high photosensitive structures, such as tubular eyes62, a pure rod multibank retina63, and maximum rhodopsin absorption to adapt to the blue-green light in the deep sea64. The eyes of catadromous eels displayed enlargement during their transformation into migrating silver-phase eels65, 66 and potentially increase their retinal surface area, which results in the possibility of increased photon capture. In addition, the rhodopsins in the eyes change from a freshwater type with a maximum absorption of ~ 500 nm to a deep-sea type with a maximum absorption of ~ 480 nm67,68,69. Their extreme sensitivity to light is evident through their DVM in mesopelagic water, where the timing of a large descent and ascent in the DVM demonstrated by migrating catadromous eels is precisely synchronized with sunrise and sunset. Furthermore, eels alter their swimming depth in response to the phase of the Moon9, 15, 20, 21, appearing to be capable of perceiving extremely low-intensity moonlight.This study showed that three eels released in the TS area (mainly 300–400-m depth) and one eel in the KC area (near surface) were found to change their swimming direction around the time of the solar culmination when the Sun’s bearing changed. The clockwise and counterclockwise trajectories of these eels corresponded to whether the Sun moved from the east to west in the southern and northern sky, suggesting that they demonstrated horizontal negative phototaxis swimming to avoid sunlight. They might move to avoid high-intensity sunlight horizontally, not vertically, as they gradually increase the swimming depths possibly due to acclimation to cold deep water after release. The daytime swimming depths of the eels became deeper day-by-day after their release (Fig. 4); a similar phenomenon was observed in European eels12, American eels17, and long fin eels13. Recently, Higuchi et al.20 observed that the daytime swimming depths of Japanese eels released in the TS area gradually became deeper until 13 days after their release. These facts indicate that they gradually acclimate to the cold water at the deep depths after release. Since this tracking study was conducted 2–8 days after their release, the daytime swimming depth of eels would not have reached a steady state yet. The relatively high intensity from sunlight at the shallow depths where eels swam immediately after release in the TS area might cause horizontal avoidance behavior from the light.In other cases, many eels, especially those released in the KC area, did not demonstrate the rotational behavior. The eels in the KC area mostly stayed deeper (500–800 m) during the day than the eels in the TS area (stayed at depths of 300–600 m) even during the periods shortly after their release. This is possibly due to higher water temperatures even at the deeper depths in the KC area (Fig. 4). The eels in the TS area did not demonstrate clear rotational behavior at depths of more than 400 m. The PSAT studies have reported that the steady swimming depths during the day were 500–800 m14, 20. Therefore, it was assumed that the rotational behavior observed in some eels was not a regular behavior during their migration. However, the rotational behavior observed in this study suggests that they surely perceive the horizontal direction of Sun’s bearing at 400 m depths at least. Generally, they exhibit DVM precisely synchronizing with sunrise and sunset and surely perceive the change in sunlight intensity at deeper depths9,10,11,12,13,14,15,16,17,18,19,20,21,22. Even though the rotational behavior were not observed below 400 m, it remains unknown whether the eels could not perceive the Sun’s bearing from the light penetrated at depth; thus, further investigation of response to underwater light is required in future.While possible negative phototaxis behaviors were observed in some eels after release around the time of solar culmination, the trajectories of ten eels during the entire period of tracking experiments implied that each eel tended to swim meridionally toward the bearing of the Sun at culmination. We observed that eels released at middle (20°–34° N) and low (12°–13°N) latitudes tended to swim southward and northward in the meridional direction, respectively (Fig. 6A, B). The tendency to move in a north–south swimming direction corresponded to whether the Sun culminated to the north or south: eels swam southward if the culmination occurred in the southern sky, but they swam northward if it occurred in the northern sky (Fig. 6). In the KC area (33°–35° N), the Sun rose in the southeast, passed celestial meridian in the southern sky, and set in the southwest (Fig. 6C). At 20° N in the summer time when the tracking study was conducted, the Sun also passed a celestial meridian in the southern sky, but rose in the northeast and set in the northwest (Fig. 6C). When Sun culmination occurred in the southern sky, the meridional swimming directions tended to be southward (Fig. 6A). However, at 12° to 13° N in the summer time, the Sun rose in the northeast, passed the celestial meridian in the northern sky, and set in the northwest (Fig. 6D). When the Sun at culmination appeared in the northern sky, the meridional swimming directions tended to be northward (Fig. 6B). Furthermore, the swimming behavior by one eel (WE4264_TS) that was released slightly south (14° 15′ N) from the latitude with the Sun passing through the zenith was also indicative of the meridional swimming traits. This eel moved in a northerly direction on the first day, but then it lost its north–south bias in swimming around 14° 30′ N, where the Sun nearly passed through the zenith (Figs. 1 and 6D). These observations imply that the eels might move toward the latitude with the Sun passing through the zenith.Figure 6Swimming trajectories of eels and solar paths in the celestial sphere viewed from east during each tracking period. Swimming trajectories of eels released at (A) 20°N in the tropical–subtropical area and the Kuroshio Current area, and (B) 12°–14°15′N in the tropical–subtropical area. Solar paths through the north (N)–south (S) axis and the zenith at the time of tracking in (C) 20°N in the tropical–subtropical area and the Kuroshio Current area, and (D) 12°–14°15′N in the tropical–subtropical area.Full size imageTheoretically, it is possible for mesopelagic animals to use solar cues for navigation at depths shallower than the asymptotic depth, below which penetrating light rays are symmetrical around the vertical axis and the polarization plane becomes horizontal. For example, the Sargasso Sea, where the two Atlantic catadromous eels spawn1, 3, has extremely transparent water70, and the major axis of radiance distribution still remains tilted in the mesopelagic zone. The angle of maximum radiance of sunlight at 475 nm was 13° at depths of 400 m when the Sun’s elevation was 60° (Fig. 7)52, 53. In highly transparent water, the asymptotic depth could be as high as 1000–1200 m, and the depths below this cannot be utilized for compass use53. Currently, it is not possible to verify whether the Sun culminating to north or south caused the meridional swimming tendencies of eels in this study. Potentially, these meridional swimming tendencies could be due to other orientation clues, such as the geomagnetic field, as discussed for temperate anguillid eels17, 45. Nevertheless, in future studies, it would be worthwhile considering solar cues as a possible candidate factor in the orientation of eels, even when under faint underwater light conditions.Figure 7Optical features of underwater sunlight. (A) Schematic diagram of sunlight penetrating the deep ocean at 90° to the solar bearing. The line of arrows indicates the major axis of the incident beam in a vertical plane perpendicular to the Sun’s bearing. Blue light (around 475 nm) reaches the lowest depths. With increasing depth, the light field alters its character into a less directed distribution and a lower energetic level through scattering and absorption processes. Penetrating light rays are symmetrical around the region below the asymptotic depth. (B) An example of spectral radiance distribution (e. g. 475 nm) at a certain depth. The radiance distribution is shown by an ellipsoid and the major axis is drawn by a line with arrow. The refracted angular deviation (a) of the major axis of underwater radiance distribution from the vertical axis equals the tilt of the electric vector (ee bar) from the horizontal axis53. When the Sun’ s elevation was 60° in the Sargasso Sea, the radiance distributions were measured at three different depths and the tilt of the electric vector were estimated to be 24° at depths of 100 m and 200 m and 13° at depth of 400 m52, 53.Full size imageGiven that eels might be able to use the Sun’s bearing at culmination to orient their meridional swimming direction, this orientation scheme could support a clockwise eel migration route following a partial subtropical gyre2, 37. Japanese eels that departed from the nursery area first transported northeastward via the strong KC. Maintaining southward swimming in the current, they eventually crossed the current and shifted to the southward migration course. When they enter the KC, movement to the left of the bearing of the Sun at culmination (i.e., south) is the typical pattern for the early migration of eels from Japan. The movements of eels observed in the KC were consistent with the expected route; however, eels released at low latitudes of the TS area often swam northward but also westward, which resulted in their traveling an unreasonable distance from the spawning area. This might be due to their behavior during early migration. In this study, eels were transported from Japan and released into the open ocean at low latitudes. They might have swum toward the expected bearing of the Sun at culmination as if they were in the north and moved to the left of the Sun’s bearing along with the North Equatorial Current, which would mimic the early migration of eels leaving Japan and moving along the KC.Among the eels tracked in this study were individuals with impaired swim bladders, yellow-phase eels in the process of hormone-treatment maturation, and silver-phase eels collected from different rivers in different years. Despite these variations, the swimming characteristics of the eels did not differ in terms of their DVM behavior16 and swimming speed. Nevertheless, confirmation of our results using samples with a uniform status in future research would be highly desirable. In this study, the tracked eel position was assumed to be identical to that of the tracking ship and the errors between these two positions could not be evaluated; thus, the positioning of tracked fish also may need to be improved in future studies. Experimental studies, such as tracking of blind, magnetically disturbed, or olfactory-blocked eels, could help obtain or eliminate alternative candidate clues and enhance our understanding of the navigational system of anguillid eels. Controlled laboratory experiments are required to directly quantify the ability of eels to perceive radiance distribution or polarization, along with any associated behaviors. In addition, the internal clock of eels required to perform celestial navigation should be investigated. Meanwhile, the results obtained from this study can enhance our knowledge of the mechanisms underlying the migratory behaviors of eels in the open ocean. More

  • in

    Life and death in the soil microbiome: how ecological processes influence biogeochemistry

    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).CAS 
    PubMed 

    Google Scholar 
    Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Commission, Publications Office of the European Union, 2016).Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 41, 599–623 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017). This Review provides a comprehensive overview of methods and technologies used to study soil viruses alongside a guide of metrics describing soil viruses across diverse soil ecosystems.CAS 
    PubMed 

    Google Scholar 
    Stefan, G., Cornelia, B., Jörg, R. & Michael, B. Soil water availability strongly alters the community composition of soil protists. Pedobiologia 57, 205–213 (2014).
    Google Scholar 
    Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).
    Google Scholar 
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018). This study compiled metagenomic and metabarcoding data from 189 sites to demonstrate global patterns in the structure and function of soil microbial communities as well as the widespread prevalence of bacterial–fungal antagonism as an important structuring force of microbial communities.CAS 
    PubMed 

    Google Scholar 
    He, L. et al. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol. Biochem. 151, 108024 (2020).CAS 

    Google Scholar 
    Bach, E. M., Williams, R. J., Hargreaves, S. K., Yang, F. & Hofmockel, K. S. Greatest soil microbial diversity found in micro-habitats. Soil Biol. Biochem. 118, 217–226 (2018).CAS 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).CAS 
    PubMed 

    Google Scholar 
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).CAS 
    PubMed 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).PubMed 

    Google Scholar 
    Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).CAS 
    PubMed 

    Google Scholar 
    Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019). This article estimates that more than 50% of SOM may be derived from microbial necromass in grassland and agricultural ecosystems based on extrapolations from amino sugar biomarker data.
    Google Scholar 
    Angst, G., Mueller, K. E., Nierop, K. G. J. & Simpson, M. J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 156, 108189 (2021).CAS 

    Google Scholar 
    Ludwig, M. et al. Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biol. Biochem. 81, 311–322 (2015). This study uses lipid biomarkers to estimate that at least 50% of SOM may be derived from microbial necromass.CAS 

    Google Scholar 
    Simpson, A. J., Simpson, M. J., Smith, E. & Kelleher, B. P. Microbially derived inputs to soil organic matter: are current estimates too low? Environ. Sci. Technol. 41, 8070–8076 (2007).CAS 
    PubMed 

    Google Scholar 
    Blazewicz, S. J. et al. Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. ISME J. 14, 1520–1532 (2020). This study used quantitative stable isotope probing to calculate growth and mortality rates of bacteria following the rewetting of a dry Mediterranean soil, and demonstrated that bacterial growth was density independent whereas bacterial mortality was density dependent.PubMed 
    PubMed Central 

    Google Scholar 
    Vieira, S. et al. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J. 14, 463–475 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nuccio, E. E. et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J. 14, 999–1014 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, S. et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio 6, e00746 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bastian, F., Bouziri, L., Nicolardot, B. & Ranjard, L. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol. Biochem. 41, 262–275 (2009).CAS 

    Google Scholar 
    Whitman, T. et al. Microbial community assembly differs across minerals in a rhizosphere microcosm. Environ. Microbiol. 20, 4444–4460 (2018).CAS 
    PubMed 

    Google Scholar 
    Maynard, D. S., Crowther, T. W. & Bradford, M. A. Fungal interactions reduce carbon use efficiency. Ecol. Lett. 20, 1034–1042 (2017). This study demonstrated that antagonistic interactions between wood-decay fungi can reduce CUE of the fungal community.PubMed 

    Google Scholar 
    Crowther, T. W. et al. Environmental stress response limits microbial necromass contributions to soil organic carbon. Soil Biol. Biochem. 85, 153–161 (2015).CAS 

    Google Scholar 
    Hu, Y., Zheng, Q., Noll, L., Zhang, S. & Wanek, W. Direct measurement of the in situ decomposition of microbial-derived soil organic matter. Soil Biol. Biochem. 141, 107660 (2020).CAS 

    Google Scholar 
    Fernandez, C. W., Langley, J. A., Chapman, S., McCormack, M. L. & Koide, R. T. The decomposition of ectomycorrhizal fungal necromass. Soil Biol. Biochem. 93, 38–49 (2016). This review article summarizes how the stoichiometry, morphology and chemistry of microbial necromass affects its decomposition rate in soil.CAS 

    Google Scholar 
    Buckeridge, K. M. et al. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 149, 107929 (2020).CAS 

    Google Scholar 
    Creamer, C. A. et al. Mineralogy dictates the initial mechanism of microbial necromass association. Geochim. Cosmochim. Acta 260, 161–176 (2019). This study used Raman microspectroscopy and 13C-labelled necromass to demonstrate that different mineral types retained microbial necromass through different mechanisms and with different strengths.CAS 

    Google Scholar 
    Schurig, C. et al. Microbial cell-envelope fragments and the formation of soil organic matter: a case study from a glacier forefield. Biogeochemistry 113, 595–612 (2013).CAS 

    Google Scholar 
    Kopittke, P. M. et al. Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter. Glob. Change Biol. 24, 1762–1770 (2018).
    Google Scholar 
    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).CAS 

    Google Scholar 
    Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).
    Google Scholar 
    Blagodatskaya, E. & Kuzyakov, Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol. Biochem. 67, 192–211 (2013).CAS 

    Google Scholar 
    Or, D., Smets, B. F., Wraith, J. M., Dechesne, A. & Friedman, S. P. Physical constraints affecting bacterial habitats and activity in unsaturated porous media–a review. Adv. Water Resour. 30, 1505–1527 (2007).
    Google Scholar 
    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 

    Google Scholar 
    Finzi, A. C. et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob. Change Biol. 21, 2082–2094 (2015).
    Google Scholar 
    Yuan, M. M. et al. Fungal-bacterial cooccurrence patterns differ between arbuscular mycorrhizal fungi and nonmycorrhizal fungi across soil niches. mBio 12, e03509-20 (2015).
    Google Scholar 
    Zhang, L. & Lueders, T. Micropredator niche differentiation between bulk soil and rhizosphere of an agricultural soil depends on bacterial prey. FEMS Microbiol. Ecol. 93, fix103 (2017).
    Google Scholar 
    Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).CAS 

    Google Scholar 
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016). This study used artificial soils to provide empirical evidence that SOM can be entirely microbially derived, and also demonstrated a positive relationship between CUE and SOM formation.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, J. L., Tang, C. & Franks, A. E. Competitive traits are more important than stress-tolerance traits in a cadmium-contaminated rhizosphere: a role for trait theory in microbial ecology. Front. Microbiol. 9, 121 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
    Google Scholar 
    Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait data. Sci. Data 7, 170 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016). This study developed an algorithm, iRep, that uses draft-quality genome sequences and single time-point metagenome sequencing to infer microbial population replication rates.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nayfach, S. & Pollard, K. S. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 16, 51 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vieira-Silva, S. & Rocha, E. P. C. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 6, e1000808 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Hasby, F. A., Barbi, F., Manzoni, S. & Lindahl, B. D. Transcriptomic markers of fungal growth, respiration and carbon-use efficiency. FEMS Microbiol. Lett. 368, fnab100 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Maillard, F., Schilling, J., Andrews, E., Schreiner, K. M. & Kennedy, P. Functional convergence in the decomposition of fungal necromass in soil and wood. FEMS Microbiol. Ecol. 96, fiz209 (2020).CAS 
    PubMed 

    Google Scholar 
    Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. N. Phytol. 205, 1525–1536 (2015).CAS 

    Google Scholar 
    Olivelli, M. S. et al. Unraveling mechanisms behind biomass–clay interactions using comprehensive multiphase nuclear magnetic resonance (NMR) Spectroscopy. ACS Earth Space Chem. 4, 2061–2072 (2020).CAS 

    Google Scholar 
    Achtenhagen, J., Goebel, M.-O., Miltner, A., Woche, S. K. & Kästner, M. Bacterial impact on the wetting properties of soil minerals. Biogeochemistry 122, 269–280 (2015).CAS 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).CAS 

    Google Scholar 
    Ahmed, E. & Holmström, S. J. M. Microbe–mineral interactions: The impact of surface attachment on mineral weathering and element selectivity by microorganisms. Chem. Geol. 403, 13–23 (2015).CAS 

    Google Scholar 
    Chenu, C. Clay- or sand-polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure. Geoderma 56, 143–156 (1993).CAS 

    Google Scholar 
    Sher, Y. et al. Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential. Soil Biol. Biochem. 143, 107742 (2020).CAS 

    Google Scholar 
    Lybrand, R. A. et al. A coupled microscopy approach to assess the nano-landscape of weathering. Sci. Rep. 9, 5377 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Prommer, J. et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Change Biol. 26, 669–681 (2020).
    Google Scholar 
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).
    Google Scholar 
    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).CAS 
    PubMed 

    Google Scholar 
    Geyer, K. M., Kyker-Snowman, E., Grandy, A. S. & Frey, S. D. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188 (2016).CAS 

    Google Scholar 
    Kallenbach, C. M., Grandy, A. S., Frey, S. D. & Diefendorf, A. F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 91, 279–290 (2015).CAS 

    Google Scholar 
    Buckeridge, K. M. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun. Earth Env. 1, 36 (2020).
    Google Scholar 
    Saifuddin, M., Bhatnagar, J. M., Segrè, D. & Finzi, A. C. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat. Commun. 10, 3568 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).PubMed 

    Google Scholar 
    Mason‐Jones, K., Banfield, C. C. & Dippold, M. A. Compound-specific 13C stable isotope probing confirms synthesis of polyhydroxybutyrate by soil bacteria. Rapid Commun. Mass. Spectrom. 33, 795–802 (2019).PubMed 

    Google Scholar 
    Bååth, E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb. Ecol. 45, 373–383 (2003).PubMed 

    Google Scholar 
    Slessarev, E. W. et al. Cellular and extracellular C contributions to respiration after wetting dry soil. Biogeochemistry 147, 307–324 (2020).CAS 

    Google Scholar 
    Slessarev, E. W. & Schimel, J. P. Partitioning sources of CO2 emission after soil wetting using high-resolution observations and minimal models. Soil Biol. Biochem. 143, 107753 (2020).CAS 

    Google Scholar 
    Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).CAS 
    PubMed 

    Google Scholar 
    Brangarí, A. C., Manzoni, S. & Rousk, J. A soil microbial model to analyze decoupled microbial growth and respiration during soil drying and rewetting. Soil Biol. Biochem. 148, 107871 (2020).
    Google Scholar 
    Zha, J. & Zhuang, Q. Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget. Biogeosciences 17, 4591–4610 (2020).CAS 

    Google Scholar 
    Anderson, T.-H. Microbial eco-physiological indicators to asses soil quality. Agric. Ecosyst. Environ. 98, 285–293 (2003).
    Google Scholar 
    Geyer, K., Schnecker, J., Grandy, A. S., Richter, A. & Frey, S. Assessing microbial residues in soil as a potential carbon sink and moderator of carbon use efficiency. Biogeochemistry 151, 237–249 (2020).CAS 

    Google Scholar 
    Sepehrnia, N. et al. Transport, retention, and release of Escherichia coli and Rhodococcus erythropolis through dry natural soils as affected by water repellency. Sci. Total Environ. 694, 133666 (2019).CAS 
    PubMed 

    Google Scholar 
    Boeddinghaus, R. S. et al. The mineralosphere — interactive zone of microbial colonization and carbon use in grassland soils. Biol. Fertil. Soils 57, 587–601 (2021).CAS 

    Google Scholar 
    Vieira, S. et al. Bacterial colonization of minerals in grassland soils is selective and highly dynamic. Environ. Microbiol. 22, 917–933 (2020).CAS 
    PubMed 

    Google Scholar 
    Ma, T. et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 9, 3480 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95, 1162–1172 (2014).PubMed 

    Google Scholar 
    Ceja-Navarro, J. A. et al. Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop. Microbiome 9, 96 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F. & Firestone, M. K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl Acad. Sci. USA 116, 25900–25908 (2019). This comprehensive study of RNA viruses detectable in a grassland soil showed how these viruses are shaped by the presence of plant roots and litter.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).PubMed 

    Google Scholar 
    Yan, Y., Kuramae, E. E., de Hollander, M., Klinkhamer, P. G. L. & van Veen, J. A. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11, 56–66 (2017).PubMed 

    Google Scholar 
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470 (2018).CAS 
    PubMed 

    Google Scholar 
    Pett-Ridge, J. et al. in Rhizosphere Biology: Interactions Between Microbes and Plants (eds Gupta, V. V. S. R. & Sharma, A. K.) 51–73 (Springer, 2021).Poll, C., Marhan, S., Ingwersen, J. & Kandeler, E. Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere. Soil Biol. Biochem. 40, 1306–1321 (2008).CAS 

    Google Scholar 
    Buchkowski, R. W., Bradford, M. A., Grandy, A. S., Schmitz, O. J. & Wieder, W. R. Applying population and community ecology theory to advance understanding of belowground biogeochemistry. Ecol. Lett. 20, 231–245 (2017).PubMed 

    Google Scholar 
    Erktan, A., Or, D. & Scheu, S. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).CAS 

    Google Scholar 
    Roesch, L. F. W. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290 (2007).CAS 
    PubMed 

    Google Scholar 
    Carson, J. K. et al. Low pore connectivity increases bacterial diversity in soil. Appl. Environ. Microbiol. 76, 3936–3942 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE 9, e87217 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ekelund, F., Rønn, R. & Christensen, S. Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol. Biochem. 33, 475–481 (2001).CAS 

    Google Scholar 
    Sharrar, A. M. et al. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. mBio 11, e00416-20 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J. & Torn, M. S. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat. Commun. 8, 1223 (2017). This modelling study demonstrated that including a density-dependent microbial mortality term can reduce the oscillatory behaviour of soil carbon models.PubMed 
    PubMed Central 

    Google Scholar 
    Thakur, M. P. & Geisen, S. Trophic regulations of the soil microbiome. Trends Microbiol. 27, 771–780 (2019).CAS 
    PubMed 

    Google Scholar 
    Fanin, N. et al. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biol. Biochem. 128, 111–114 (2019).CAS 

    Google Scholar 
    Wang, W. et al. Predatory Myxococcales are widely distributed in and closely correlated with the bacterial community structure of agricultural land. Appl. Soil Ecol. 146, 103365 (2020).
    Google Scholar 
    Hungate, B. A. et al. The functional significance of bacterial predators. mBio 12, e00466-21 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).CAS 
    PubMed 

    Google Scholar 
    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018). This study identified novel viral genomes from metagenomes and linked many of these viruses in silico to bacterial hosts and carbon metabolisms across the spatial gradient of permafrost thaw.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren, D., Madsen, J. S., Sørensen, S. J. & Burmølle, M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 9, 81–89 (2015).CAS 
    PubMed 

    Google Scholar 
    Lee, K. W. K. et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 8, 894–907 (2014).CAS 
    PubMed 

    Google Scholar 
    Witzgall, K. et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 12, 4115 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).
    Google Scholar 
    Drigo, B. et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl Acad. Sci. USA 107, 10938–10942 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaiser, C. et al. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. N. Phytol. 205, 1537–1551 (2015).CAS 

    Google Scholar 
    Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).CAS 

    Google Scholar 
    Tisserant, E. et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl Acad. Sci. USA 110, 20117–20122 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hestrin, R., Hammer, E. C., Mueller, C. W. & Lehmann, J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2, 233 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).CAS 
    PubMed 

    Google Scholar 
    Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).PubMed 

    Google Scholar 
    Craig, M. E. et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob. Change Biol. 24, 3317–3330 (2018).
    Google Scholar 
    See, C. R. et al. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob. Change Biol. https://doi.org/10.1111/gcb.16073 (2022).Article 

    Google Scholar 
    Adamczyk, B., Sietiö, O.-M., Biasi, C. & Heinonsalo, J. Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. N. Phytol. 223, 16–21 (2019).
    Google Scholar 
    Vidal, A. et al. Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms. Soil Biol. Biochem. 160, 108347 (2021).CAS 

    Google Scholar 
    Kallenbach, C. M., Wallenstein, M. D., Schipanksi, M. E. & Grandy, A. S. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 10, 1146 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Blagodatskaya, E., Blagodatsky, S., Anderson, T.-H. & Kuzyakov, Y. microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS ONE 9, e93282 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Domeignoz-Horta, L. A. et al. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 11, 3684 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez, C. W. & Kennedy, P. G. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? N. Phytol. 209, 1382–1394 (2016).CAS 

    Google Scholar 
    Nicolas, A. M. et al. Soil candidate phyla radiation bacteria encode components of aerobic metabolism and co-occur with nanoarchaea in the rare biosphere of rhizosphere grassland communities. mSystems 6, e0120520 (2021).PubMed 

    Google Scholar 
    Starr, E. P. et al. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6, 122 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Pace, M. L. Bacterial mortality and the fate of bacterial production. Hydrobiologia 159, 41–49 (1988).
    Google Scholar 
    Cram, J. A., Parada, A. E. & Fuhrman, J. A. Dilution reveals how viral lysis and grazing shape microbial communities. Limnol. Oceanogr. 61, 889–905 (2016).
    Google Scholar 
    Ankrah, N. Y. D. et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 8, 1089–1100 (2014). This study demonstrated that in a marine environment, the mechanism of death (that is, phage infection) altered the biochemistry of microbial necromass relative to uninfected cells.CAS 
    PubMed 

    Google Scholar 
    Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).
    Google Scholar 
    Clarholm, M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17, 181–187 (1985).CAS 

    Google Scholar 
    Pasternak, Z. et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 8, 625–635 (2014).CAS 
    PubMed 

    Google Scholar 
    Lee, X., Wu, H.-J., Sigler, J., Oishi, C. & Siccama, T. Rapid and transient response of soil respiration to rain. Glob. Change Biol. 10, 1017–1026 (2004).
    Google Scholar 
    Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Google Scholar 
    Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).CAS 
    PubMed 

    Google Scholar 
    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).
    Google Scholar 
    Sierra, C. A. & Müller, M. A general mathematical framework for representing soil organic matter dynamics. Ecol. Monogr. 85, 505–524 (2015).
    Google Scholar 
    Wang, G. et al. Microbial dormancy improves development and experimental validation of ecosystem model. ISME J. 9, 226–237 (2015).CAS 
    PubMed 

    Google Scholar 
    Wieder, W., Grandy, S., Kallenbach, M. & Bonan, B. Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences 11, 3899–3917 (2014).
    Google Scholar 
    Allison, S. D. A trait-based approach for modelling microbial litter decomposition. Ecol. Lett. 15, 1058–1070 (2012). This paper described one of the first trait-based modelling approaches to link microbial community composition with physiological and enzymatic traits to predict litter decomposition in soil.CAS 
    PubMed 

    Google Scholar 
    Kaiser, C., Franklin, O., Dieckmann, U. & Richter, A. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecol. Lett. 17, 680–690 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ebrahimi, A. & Or, D. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles – upscaling an aggregate biophysical model. Glob. Change Biol. 22, 3141–3156 (2016). This paper presented a demonstration of how to upscale results from a mechanistic model of microbial activity in soil aggregates to scales of practical interest for hydrological and climate models.
    Google Scholar 
    Lajoie, G. & Kembel, S. W. Making the most of trait-based approaches for microbial ecology. Trends Microbiol. 27, 814–823 (2019). This opinion article discussed trait-based approaches in microbial ecology with a focus on utilization of large-scale datasets for improved ecological understanding.CAS 
    PubMed 

    Google Scholar 
    Wang, G., Post, W. M. & Mayes, M. A. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol. Appl. 23, 255–272 (2013).PubMed 

    Google Scholar 
    Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).
    Google Scholar 
    Kooijman, S. A. L. M., Muller, E. B. & Stouthamer, A. H. Microbial growth dynamics on the basis of individual budgets. Antonie Van Leeuwenhoek 60, 159–174 (1991).CAS 
    PubMed 

    Google Scholar 
    Evans, S., Dieckmann, U., Franklin, O. & Kaiser, C. Synergistic effects of diffusion and microbial physiology reproduce the Birch effect in a micro-scale model. Soil Biol. Biochem. 93, 28–37 (2016).CAS 

    Google Scholar 
    Allison, S. D. Modeling adaptation of carbon use efficiency in microbial communities. Front. Microbiol. 5, 571 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Hawkes, C. V. & Keitt, T. H. Resilience vs. historical contingency in microbial responses to environmental change. Ecol. Lett. 18, 612–625 (2015).PubMed 

    Google Scholar 
    Tang, J. & Riley, W. J. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Change 5, 56–60 (2015).CAS 

    Google Scholar 
    Zhang, Y. et al. Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically-defined MEMS 2.0 model. Biogeosciences 18, 3147–3171 (2021).CAS 

    Google Scholar 
    Blankinship, J. C. et al. Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry 140, 1–13 (2018).CAS 

    Google Scholar 
    Ebrahimi, A. N. & Or, D. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. Water Resour. Res. 50, 7406–7429 (2014).
    Google Scholar 
    Tang, J. & Riley, W. J. A theory of effective microbial substrate affinity parameters in variably saturated soils and an example application to aerobic soil heterotrophic respiration. J. Geophys. Res. Biogeosci. 124, 918–940 (2019).
    Google Scholar 
    Manzoni, S., Schaeffer, S. M., Katul, G., Porporato, A. & Schimel, J. P. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biol. Biochem. 73, 69–83 (2014).CAS 

    Google Scholar 
    Brangarí, A. C., Fernàndez-Garcia, D., Sanchez-Vila, X. & Manzoni, S. Ecological and soil hydraulic implications of microbial responses to stress – a modeling analysis. Adv. Water Resour. 116, 178–194 (2018).
    Google Scholar 
    Alster, C. J., Weller, Z. D. & von Fischer, J. C. A meta-analysis of temperature sensitivity as a microbial trait. Glob. Change Biol. 24, 4211–4224 (2018).
    Google Scholar 
    Wang, G., Li, W., Wang, K. & Huang, W. Uncertainty quantification of the soil moisture response functions for microbial dormancy and resuscitation. Soil Biol. Biochem. 160, 108337 (2021).CAS 

    Google Scholar 
    Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S. & Janssens, I. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. J. Adv. Model. Earth Syst. 7, 335–356 (2015).
    Google Scholar 
    Nunan, N., Schmidt, H. & Raynaud, X. The ecology of heterogeneity: soil bacterial communities and C dynamics. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190249 (2020).CAS 

    Google Scholar 
    Kaiser, C., Franklin, O., Richter, A. & Dieckmann, U. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils. Nat. Commun. 6, 8960 (2015).CAS 
    PubMed 

    Google Scholar 
    Craig, M. E., Mayes, M. A., Sulman, B. N. & Walker, A. P. Biological mechanisms may contribute to soil carbon saturation patterns. Glob. Change Biol. 27, 2633–2644 (2021).
    Google Scholar 
    Fan, X. et al. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool. ISME J. 15, 2248–2263 (2021).CAS 
    PubMed 

    Google Scholar 
    Sulman, B. N. et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry 141, 109–123 (2018). This paper addressed key uncertainties in the representation of microbial degradation and mineral stabilization in five microbially explicit soil carbon models.CAS 

    Google Scholar 
    Marschmann, G. L., Pagel, H., Kügler, P. & Streck, T. Equifinality, sloppiness, and emergent structures of mechanistic soil biogeochemical models. Environ. Model. Softw. 122, 104518 (2019).
    Google Scholar 
    Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).PubMed 

    Google Scholar 
    Malik, A. A., Thomson, B. C., Whiteley, A. S., Bailey, M. & Griffiths, R. I. Bacterial physiological adaptations to contrasting edaphic conditions identified using landscape scale metagenomics. mBio 8, e00799-17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Westoby, M. et al. Trait dimensions in bacteria and archaea compared to vascular plants. Ecol. Lett. 24, 1487–1504 (2021).PubMed 

    Google Scholar 
    Jung, M.-Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2022).CAS 
    PubMed 

    Google Scholar 
    Kempes, C. P., Wang, L., Amend, J. P., Doyle, J. & Hoehler, T. Evolutionary tradeoffs in cellular composition across diverse bacteria. ISME J. 10, 2145–2157 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dethlefsen, L. & Schmidt, T. M. Performance of the translational apparatus varies with the ecological strategies of bacteria. J. Bacteriol. 189, 3237–3245 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andersen, K. H. et al. Characteristic sizes of life in the oceans, from bacteria to whales. Annu. Rev. Mar. Sci. 8, 217–241 (2016).CAS 

    Google Scholar 
    Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).CAS 
    PubMed 

    Google Scholar 
    Weissman, J. L., Hou, S. & Fuhrman, J. A. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl Acad. Sci. USA 118, e2016810118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, G., Rabe, K. S., Nielsen, J. & Engqvist, M. K. M. Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima. ACS Synth. Biol. 8, 1411–1420 (2019).CAS 
    PubMed 

    Google Scholar 
    Hungate, B. A. et al. Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81, 7570–7581 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Couradeau, E. et al. Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat. Commun. 10, 2770 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Starr, E. P. et al. Stable-isotope-informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in rhizosphere soil. mSphere 6, e0008521 (2021).PubMed 

    Google Scholar 
    Rousk, J. & Bååth, E. Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiol. Ecol. 62, 258–267 (2007).CAS 
    PubMed 

    Google Scholar 
    Koechli, C., Campbell, A. N., Pepe-Ranney, C. & Buckley, D. H. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing. Soil Biol. Biochem. 130, 150–158 (2019).CAS 

    Google Scholar 
    Wilhelm, R. C., Singh, R., Eltis, L. D. & Mohn, W. W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 13, 413–429 (2019).CAS 
    PubMed 

    Google Scholar 
    Neurath, R. A. et al. Root carbon interaction with soil minerals is dynamic, leaving a legacy of microbially derived residues. Environ. Sci. Technol. 55, 13345–13355 (2021).CAS 
    PubMed 

    Google Scholar 
    Luo, Y. et al. Rice rhizodeposition promotes the build-up of organic carbon in soil via fungal necromass. Soil Biol. Biochem. 160, 108345 (2021).CAS 

    Google Scholar 
    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).PubMed 

    Google Scholar 
    Sharma, K., Palatinszky, M., Nikolov, G., Berry, D. & Shank, E. A. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. eLife 9, e56275 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arellano-Caicedo, C., Ohlsson, P., Bengtsson, M., Beech, J. P. & Hammer, E. C. Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation. Commun. Biol. 4, 1226 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).CAS 
    PubMed 

    Google Scholar 
    García-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Env. 2, 507–517 (2021).
    Google Scholar 
    Schulz, F. et al. Hidden diversity of soil giant viruses. Nat. Commun. 9, 4881 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Trubl, G. et al. Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. PeerJ 7, e7265 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Sommers, P., Chatterjee, A., Varsani, A. & Trubl, G. Integrating viral metagenomics into an ecological framework. Annu. Rev. Virol. 8, 133–158 (2021).PubMed 

    Google Scholar 
    Pratama, A. A. & van Elsas, J. D. The ‘neglected’ soil virome–potential role and impact. Trends Microbiol. 26, 649–662 (2018).CAS 
    PubMed 

    Google Scholar 
    Ghosh, D. et al. Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl. Environ. Microbiol. 74, 495–502 (2008).CAS 
    PubMed 

    Google Scholar 
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).CAS 
    PubMed 

    Google Scholar 
    Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Howard-Varona, C. et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 12, 1605–1618 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Van Goethem, M. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. mBio 10, e02287-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Trubl, G. et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 9, 208 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, S. et al. Methane-derived carbon flows into host–virus networks at different trophic levels in soil. Proc. Natl Acad. Sci. USA 118, e2105124118 (2021). This study used stable isotope probing metagenomics to connect, in situ, active virus–host infections with the biogeochemical process of methane oxidation in soil.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B. L. & Sullivan, M. B. iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 11, 7–14 (2017).PubMed 

    Google Scholar  More

  • in

    Historical reconstruction of the population dynamics of southern right whales in the southwestern Atlantic Ocean

    Hutchinson, G. E. An Introduction to Population Ecology (Yale University, 1978).MATH 

    Google Scholar 
    Erb, J., Boyce, M. S. & Stenseth, N. C. Population dynamics of large and small mammals. Oikos 92, 3–12 (2001).
    Google Scholar 
    Gaillard, J. M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: Variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).CAS 
    PubMed 

    Google Scholar 
    Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L. & Staples, D. F. Estimating density dependence, process noise, and observation error. Ecol. Monogr. 76, 323–341 (2006).
    Google Scholar 
    Rockwood, L. L. Introduction to Population Ecology (Wiley, 2015).
    Google Scholar 
    Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).
    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dickinson, A. B. A History of Sealing in the Falkland Island and Dependencies, 1764–1972. Doctoral dissertation, Scott Polar Research Institute, University of Cambridge. (1987).Clapham, P. J. & Baker, C. S. Whaling, modern. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 1070–1074 (Academic Press, 2018).
    Google Scholar 
    Reeves, R. R. The origins and character of ‘aboriginal subsistence’ whaling: a global review. Mamm. Rev. 32, 71–106 (2002).
    Google Scholar 
    Reeves, R. R. Hunting of marine mammals. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 585–588 (Academic Press, 2009).
    Google Scholar 
    Magera, A. M., Flemming, J. E. M., Kaschner, K., Christensen, L. B. & Lotze, H. K. Recovery trends in marine mammal populations. PLoS One 8, e77908 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tulloch, V. J., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137 (2017).
    Google Scholar 
    Best, P. B. Increase rates in severely depleted stocks of baleen whales. ICES J. Mar. Sci. 50, 169–186 (1993).
    Google Scholar 
    Townsend, C. H. The distribution of certain whales as shown by logbook records of American whaleships. Zool. Sci. Contr. New York Zool. Soc. 19, 1–50 (1935).MathSciNet 

    Google Scholar 
    Du Pasquier, J. T. Les baleiniers français au XIXe siècle, 1814–1868 (Terre et mer, 1982).Richards, R. Into the South Seas: The Southern Whale Fishery Comes of Age on the Brazil Banks 1765 to 1812 (The Paramatta Press, 1993).
    Google Scholar 
    International Whaling Commission. Report of the workshop on the comprehensive assessment of right whales: A worldwide comparison. J. Cetacean Res. Manag. (Special Issue) 2, 1–60 (2001).
    Google Scholar 
    Jackson, J., Patenaude, N., Carroll, E. & Baker, C. S. How few whales were there after whaling? Inference from contemporary mtDNA diversity. Mol. Ecol. 17, 236–251 (2008).CAS 
    PubMed 

    Google Scholar 
    Tormosov, D. D. et al. Soviet catches of southern right whales Eubalaena australis, 1951–1971. Biological data and conservation implications. Biol. Conserv. 86, 185–197 (1998).
    Google Scholar 
    International Whaling Commission. Report of the IWC workshop on the assessment of Southern Right whales. J. Cetacean Res. Manag. (Supp) 14, 439–462 (2013).
    Google Scholar 
    Carroll, E. L. et al. Accounting for female reproductive cycles in a superpopulation capture–recapture framework. Ecol. Appl. 23, 1677–1690 (2013).CAS 
    PubMed 

    Google Scholar 
    Brandão, A., Vermeulen, E., Ross-Gillespie, A., Findlay, K. & Butterworth, D. Updated application of a photo-identification based assessment model to southern right whales in South African waters, focussing on inferences to be drawn from a series of appreciably lower counts of calving females over 2015 to 2017. IWC SC/67b/SH/22 (2018).Bannister, J. L. Project A7- Monitoring Population Dynamics of ‘Western’ Right Whales off Southern Australia 2015–2018. Final report to National Environment Science Program, Australian Commonwealth Government. (2017).Stamation, K., Watson, M., Moloney, P., Charlton, C. & Bannister, J. L. Population estimate and rate of increase of Southern Right whales Eubalaena australis in Southeastern Australia. Endanger. Species Res. 41, 373–383 (2020).
    Google Scholar 
    Baker, C. S., Patenaude, N. J., Bannister, J. L., Robins, J. & Kato, H. Distribution and diversity of mtDNA lineages among southern right whales (Eubalaena australis) from Australia and New Zealand. Mar. Biol. 134, 1–7 (1999).CAS 

    Google Scholar 
    Patenaude, N. J. et al. Mitochondrial DNA diversity and population structure among southern right whales (Eubalaena australis). J. Hered. 98, 147–157 (2007).CAS 
    PubMed 

    Google Scholar 
    Carroll, E. L. et al. Population structure and individual movement of southern right whales around New Zealand and Australia. Mar. Ecol. Prog. Ser. 432, 257–268 (2011).ADS 
    CAS 

    Google Scholar 
    Cooke, J. G., Rowntree, V. J. & Payne, R. Estimates of demographic parameters for southern right whales (Eubalaena australis) observed off Península Valdés, Argentina. J. Cetacean Res. Manag. (Special Issue) 2, 125–132 (2001).
    Google Scholar 
    Cooke, J., Rowntree, V. & Sironi, M. Southwest Atlantic right whales: interim updated population assessment from photo-id collected at Península Valdéz, Argentina. IWC SC/66a/BRG/23 (2015).Crespo, E. A. et al. The southwestern Atlantic southern right whale, Eubalaena australis, population is growing but at a decelerated rate. Mar. Mamm. Sci. 35, 93–107 (2019).
    Google Scholar 
    Groch, K. R., Palazzo, J. T. Jr., Flores, P. A. C., Adler, F. R. & Fabian, M. E. Recent rapid increases in the right whale (Eubalaena australis) population off southern Brazil. LAJAM 4, 41–47 (2005).
    Google Scholar 
    Danilewicz, D., Moreno, I. B., Tavares, M. & Sucunza, F. Southern right whales (Eubalaena australis) off Torres, Brazil: group characteristics, movements, and insights into the role of the Brazilian-Uruguayan wintering ground. Mammalia 81, 225–234 (2017).
    Google Scholar 
    Costa, P., Praderi, R., Piedra, M. & Franco-Fraguas, P. Sightings of southern right whales, Eubalaena australis, off Uruguay. LAJAM 4, 157–161 (2005).
    Google Scholar 
    Lodi, L. & Tardelli, R. M. Southern right whale on the coast of Rio de Janeiro State, Brazil: Conflict between conservation and human activity. J. Mar. Biol. Ass. UK 87, 105–107 (2007).
    Google Scholar 
    Belgrano, J., Iñíguez, M., Gibbons, J., García, C. & Olavarría, C. South-west Atlantic right whales Eubalaena australis (Desmoulins, 1822) distribution nearby the Magellan Strait. Anales Instituto Patagonia (Chile) 36, 69–74 (2008).
    Google Scholar 
    Belgrano, J., Kröhling, F., Arcucci, D., Melcón, M. & Iñíguez, M. First Southern right whale aerial surveys in Golfo San Jorge, Santa Cruz, Argentina. IWC SC/63/BRG11 (2011).Arias, M. et al. Southern right whale Eubalaena australis in Golfo San Matías (Patagonia, Argentina): Evidence of recolonisation. PloS One 13(12), e0207524 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mandiola, M. A. et al. Half a century of sightings data of southern right whales in Mar del Plata (Buenos Aires, Argentina). J. Mar. Biol. Ass. UK 100, 165–171 (2020).
    Google Scholar 
    Weir, C. R. & Stanworth, A. The Falkland Islands (Malvinas) as sub-Antarctic foraging, migratory and wintering habitat for southern right whales. J. Mar. Biol. Ass. UK 100, 153–163 (2020).
    Google Scholar 
    Du Pasquier, T. Catch history of French right whaling mainly in the South Atlantic. Right whales: Past and present status. Rep. Int. Whaling Commission (Special Issue) 10, 269–274 (1986).
    Google Scholar 
    Best, P. B. Estimates of the landed catch of right (and other whalebone) whales in the American fishery, 1805–1909. Fish. Bull. 85, 403–418 (1987).
    Google Scholar 
    Rowntree, V., Groch, K. R., Vilches, F. & Sironi, M. Sighting Histories of 124 Southern Right Whales Recorded off Both Southern Brazil and Península Valdés, Argentina, between 1971 and 2017. IWC SC/68B/CMP/20 (2020).Zerbini, A. N., et al. Satellite tracking of Southern right whales (Eubalaena australis) from Golfo San Matias, Rio Negro Province, Argentina. IWC SC/67b/CMP/17 (2018).Rowntree, V. J., Valenzuela, L. O., Fraguas, P. F. & Seger, J. Foraging behaviour of Southern Right Whales (Eubalaena australis) inferred from variation of carbon stable isotope ratios in their baleen. IWC SC/60/BRG23 (2008).Vighi, M. A. et al. Stable isotopes indicate population structuring in the Southwest Atlantic population of right whales (Eubalaena australis). PLoS One 9, e90489 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela, L. O., Rowntree, V. J., Sironi, M. & Seger, J. Stable isotopes (d15N, d13C, d34S) in skin reveal diverse food sources used by southern right whales Eubalaena australis. Mar. Ecol. Prog. Ser. 603, 243–255 (2018).ADS 
    CAS 

    Google Scholar 
    Ott, P. H., Flores, P. A. C., Freitas, T. R. O. & White, B. N. Genetic diversity and population structure of southern right whales, Eubalaena australis, from the Atlantic coast of South America. IWC SC/S11/RW25 (2011).Carroll, E. L. et al. Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias del Sur) feeding ground. J. Hered. 111, 263–276 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, T. D., Reeves, R. R., Josephson, E. A. & Lund, J. N. Spatial and seasonal distribution of American whaling and whales in the age of sail. PLoS One 7, e34905 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    International Whaling Commission. Report of the Scientific Committee of the International Whaling Commission. J. Cetacean Res. Manage. 20 (Suppl.), 675 (2019).Peterson, B. W. South Atlantic whaling: 1603–1830. Ph.D. thesis, University of California. (1948).Palazzo, J. T. Jr., Groch, K. R. & Silveira, H. A. Projeto Baleia Franca: 25 anos de pesquisa e conservação, 1982–2007 (2007).Reeves, R. R. & Smith, T. D. A taxonomy of world whaling. In Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) 82–101 (University of California Press, 2006).
    Google Scholar 
    Richards, R. Past and present distributions of southern right whales (Eubalaena australis). N. Z. J. Zool. 36, 447–459 (2009).
    Google Scholar 
    Harcourt, R., Van Der Hoop, J., Kraus, S. & Carroll, E. L. Future directions in Eubalaena spp.: comparative research to inform conservation. Front. Mar. Sci. 5, 530 (2019).Cooke, J. G. & Zerbini, A. N. Eubalaena australis. IUCN Red List of Threatened Species 2018: e. T8153A50354147 (2018).Ellis, M. Aspectos da pesca da baleia no Brasil colonial. Rev. Hist. Sao Paulo 14, 1–126 (1958).
    Google Scholar 
    Ellis, M. A baleia no Brasil colonial (Melhoramentos, 1969).Palazzo, J. T., Jr. & Carter, L. A. A caça de baleias no Brasil (AGAPAN, 1983).Furniss, H. W. Whaling in Brazil. Bull. Int. Union Am. Republ. 2, 1048–1054 (1909).
    Google Scholar 
    Acosta y Lara, E. F. Un ballenero inglés en la Cisplatina. Hoy es Historia 24, 82–88 (1987).Moore, M. J. et al. Relative abundance of large whales around South Georgia (1979–1998). Mar. Mamm. Sci. 15, 1287–1302 (1999).
    Google Scholar 
    Comerlato, F. A baleia como recurso energético no Brasil. Simpósio Internacional de História Ambiental e Migrações 1119–1138 (2010).Comerlato, F. As armações baleeiras na configuração da costa catarinense em tempos coloniais. Tempos Históricos 15, 481–501 (2011).
    Google Scholar 
    de Morais, I. O. B. et al. From the southern right whale hunting decline to the humpback whaling expansion: A review of whale catch records in the tropical western South Atlantic Ocean. Mammal Rev. 47, 11–23 (2017).
    Google Scholar 
    American Whaling Logbook Data: A Database, by New Bedford Whaling Museum and Mystic Seaport Museum, Inc. Compilers Judith Lund and Tim Smith. Hosted at whalinghistory.org. (2020).BSWF Databases. 2020. Compilers–A. G. E. Jones; Dale Chatwin; Rhys Richards. Contributors–Jane Clayton; Mark Howard. Hosted at whalinghistory.orgFrench Offshore Whaling Voyages: A Database, https://whalinghistory.org/fv/, Mystic Seaport Museum, Inc. and New Bedford Whaling Museum.Allison, C. IWC summary catch database Version 6.1. (2016).Vighi, M. et al. The missing whales: relevance of “struck and lost” rates for the impact assessment of historical whaling in the southwestern Atlantic Ocean. ICES J. Mar. Sci. 78, 14–24 (2021).
    Google Scholar 
    McCullagh, P. & Nelder, J. Generalized Linear Models Monographs on Statistics and Applied Probability (Chapman and Hall, 1989).MATH 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Model and Extension in Ecology with R (Springer, 2009).MATH 

    Google Scholar 
    Ward, E., Zerbini, A., Kinas, P. G., Engel, M. H. & Adriolo, A. Estimates of growth rates of humpback whales (Megaptera novaeangliae) in the wintering grounds off the coast of Brazil (Breeding Stock A). J. Cetacean Res. Manag. (Special Issue) 3, 145–149 (2011).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019).Rowntree, V., Payne, R. & Schell, D. M. Changing patterns of habitat use by southern right whales (Eubalaena australis) on their nursery ground at Península Valdés, Argentina, and in their long-range movements. J. Cetacean Res. Manag. (Special Issue) 2, 133–143 (2001).
    Google Scholar 
    de Valpine, P. & Hastings, A. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76 (2002).
    Google Scholar 
    Pella, J. J. & Tomlinson, P. K. A generalised stock production model. Int.-Am. Trop. Tuna Commun. Bull. 13, 421–496 (1969).
    Google Scholar 
    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R. Soc. Open Sci. 6, 190368 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halley, J. & Inchausti, P. Lognormality in ecological time series. Oikos 99, 518–530 (2002).
    Google Scholar 
    Best, J. K. & Punt, A. E. Parameterizations for Bayesian state-space surplus production models. Fish. Res. 222, 105411 (2020).
    Google Scholar 
    Walters, C. & Ludwig, D. Calculation of Bayes posterior probability distributions for key population parameters. Can. J. Fish. Aquat. Sci. 51, 713–722 (1994).
    Google Scholar 
    International Whaling Commission. Annex I: report of the sub-committee on stock definition. J. Cetacean Res. Manag. 13(Supp.), 233–241 (2012).Butterworth, D. S. & Punt, A. E. On the Bayesian approach suggested for the assessment of the Bering-Chukchi-Beaufort Seas stock of bowhead whales. Rep. Int. Whaling Commun. 45, 303–311 (1995).
    Google Scholar 
    McAllister, M. K., Pikitch, E. K., Punt, A. E. & Hilborn, R. Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Can. J. Fish. Aquat. Sci. 12, 2673–2687 (1999).
    Google Scholar 
    Best, P., Brandao, A. & Butterworth, D. Demographic parameters of southern right whales off South Africa. J. Cetacean Res. Manag. (Special Issue) 2, 161–169 (2001).
    Google Scholar 
    Punt, A. E. et al. Robustness of potential biological removal to monitoring, environmental, and management uncertainties. ICES J. Mar. Sci. 77, 2491–2507 (2020).
    Google Scholar 
    Pace, R. M., Corkeron, P. J. & Kraus, S. D. State-space mark-recapture estimates reveal a recent decline in abundance of North Atlantic right whales. Ecol. Evol. 7, 8730–8741 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Sueyro, N., Crespo, E. A., Arias, M. & Coscarella, M. A. Density-dependent changes in the distribution of Southern right whales (Eubalaena australis) in the breeding ground Peninsula Valdés. PeerJ 6, e5957 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wilberg, M. J., Thorson, J. T., Linton, B. C. & Berkson, J. Incorporating time-varying catchability into population dynamic stock assessment models. Rev. Fish. Sci. 18, 7–24 (2010).
    Google Scholar 
    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Chang, Y. J. et al. Model selection and multi-model inference for Bayesian surplus production models: a case study for Pacific blue and striped marlin. Fish. Res. 166, 129–139 (2015).CAS 

    Google Scholar 
    Barker, D. & Sibly, R. M. The effects of environmental perturbation and measurement error on estimates of the shape parameter in the theta-logistic model of population regulation. Ecol. Model. 219, 170–177 (2008).
    Google Scholar 
    Dennis, B., Ponciano, J. M. & Taper, M. L. Replicated sampling increases efficiency in monitoring biological populations. Ecology 91, 610–620 (2010).PubMed 

    Google Scholar 
    Punt, A. E. Review of contemporary cetacean stock assessment models. J. Cetacean Res. Manag. 17, 35–56 (2017).
    Google Scholar 
    Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. & Haddon, M. Management strategy evaluation: best practices. Fish Fish. 17, 303–334 (2016).
    Google Scholar 
    Baker, C. S. & Clapham, P. J. Modelling the past and future of whales and whaling. Trends Ecol. Evol. 19, 365–371 (2004).
    Google Scholar 
    Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009).PubMed 

    Google Scholar 
    Foley, C. M. & Lynch, H. J. A method to estimate pre-exploitation population size. Conserv. Biol. 34, 256–265 (2020).PubMed 

    Google Scholar 
    Collins, A. C., Böhm, M. & Collen, B. Choice of baseline affects historical population trends in hunted mammals of North America. Biol. Conserv. 242, 108421 (2020).
    Google Scholar 
    Jackson, J. A. et al. An integrated approach to historical population assessment of the great whales: Case of the New Zealand southern right whale. R. Soc. Open Sci. 3, 150669 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, R. & Du Pasquier, T. Bay whaling off southern Africa, c. 1785–1805. S. Afr. J. Mar. Sci. 8, 231–250 (1989).
    Google Scholar 
    Brandão, A., Best, P. B. & Butterworth, D. S. Estimates of demographic parameters for southern right whales off South Africa from survey data from 1979 to 2006. IWC SC/62/BRG30 (2010).Rowntree, V. J. et al. Unexplained recurring high mortality of southern right whale Eubalaena australis calves at Península Valdés, Argentina. Mar. Ecol. Progr. Ser. 493, 275–289 (2013).ADS 

    Google Scholar 
    Valenzuela, L. O., Sironi, M., Rowntree, V. J. & Seger, J. Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol. Ecol. 18, 782–791 (2009).CAS 
    PubMed 

    Google Scholar 
    Clapham, P. J., Aguilar, A. & Hatch, L. T. Determining spatial and temporal scales for management: lessons from whaling. Mar. Mamm. Sci. 24, 183–201 (2008).
    Google Scholar 
    Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494, 291–306 (2013).ADS 

    Google Scholar 
    González, C. V., Piola, A., O’Brien, T. D., Tormosov, D. D. & Acha, E. M. Circumpolar frontal systems as potential feeding grounds of Southern Right whales. Prog. Oceanogr. 176, 102123 (2019).
    Google Scholar 
    Leaper, R. et al. Global climate drives southern right whale (Eubalaena australis) population dynamics. Biol. Lett. 2, 289–292 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Seyboth, E. et al. Southern right whale (Eubalaena australis) reproductive success is influenced by krill (Euphausia superba) density and climate. Sci. Rep. 6, 28205 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Punt, A. E. Extending production models to include process error in the population dynamics. Can. J. Fish. Aquat. Sci. 60, 1217–1228 (2003).
    Google Scholar 
    Tulloch, V. J., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).ADS 

    Google Scholar 
    Witting, L. Selection-delayed population dynamics in baleen whales and beyond. Popul. Ecol. 55, 377–401 (2013).
    Google Scholar 
    Pante, E. & Benoit, S.-B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar  More

  • in

    A near-natural experiment on factors influencing larval drift in Salamandra salamandra

    Müller, K. Investigations on the organic drift in north Swedish streams. Rep. Inst. Freshw. Res. Drottningholm 35, 133–148 (1954).
    Google Scholar 
    Müller, K. Stream drift as a chronobiological phenomenon in running water ecosystems. Annu. Rev. Ecol. Syst. 5, 309–323 (1974).Article 

    Google Scholar 
    Waters, T. F. Interpretation of invertebrate drift in streams. Ecology 46, 327–334. https://doi.org/10.2307/1936336 (1965).Article 

    Google Scholar 
    Waters, T. F. The drift of stream insects. Annu. Rev. Entomol. 17, 253–272 (1972).Article 

    Google Scholar 
    Thiesmeier, B. Der Feuersalamander (Laurenti, 2004).
    Google Scholar 
    Hughes, D. A. Some factors affecting drift and upstream movements of Gammarus pulex. Ecology 51, 301–305. https://doi.org/10.2307/1933668 (1970).Article 

    Google Scholar 
    Humphries, S. & Ruxton, G. D. Is there really a drift paradox?. J. Anim. Ecol. 71, 151–154 (2002).Article 

    Google Scholar 
    Altig, R. & McDiarmid, R. W. In Tadpoles: The Biology of Anuran Larvae (eds McDiarmid, R. W. & Altig, R.) 24–51 (University of Chicago Press, 2000).
    Google Scholar 
    Sherratt, E., Vidal-García, M., Anstis, M. & Keogh, J. S. Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent. Nat. Ecol. Evol. 1, 1385–1391. https://doi.org/10.1038/s41559-017-0268-6 (2017).Article 
    PubMed 

    Google Scholar 
    Griffiths, R. A. Newts and Salamanders of Europe (Poyser Natural History, 1996).
    Google Scholar 
    Cecala, K. K., Price, S. J. & Dorcas, M. E. Evaluating existing movement hypotheses in linear systems using larval stream salamanders. Can. J. Zool. 87, 292–298. https://doi.org/10.1139/z09-013 (2009).Article 

    Google Scholar 
    Grant, E. H. C., Nichols, J. D., Lowe, W. H. & Fagan, W. F. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proc. Natl. Acad. Sci. USA 107, 6936–6940. https://doi.org/10.1073/pnas.1000266107 (2010).ADS 
    Article 

    Google Scholar 
    Lowe, W. H. Linking dispersal to local population dynamics: A case study using a headwater salamander system. Ecology 84, 2145–2154. https://doi.org/10.1890/0012-9658(2003)084[2145:LDTLPD]2.0.CO;2 (2003).Article 

    Google Scholar 
    Bruce, R. C. Upstream and downstream movements of Eurycea bislineata and other salamanders in a southern appalachian stream. Herpetologica 42, 149–155 (1986).
    Google Scholar 
    Thiesmeier, B. Untersuchungen zur Phänologie und Populationsdynamik des Feuersalamanders (Salamandra salamandra terrestris Lacépède, 1788) im Niederbergische Land (BRD). Zool. Jahrbücher Abteilung für Systematik Ökologie Geographie der Tiere 117, 331–353 (1990).
    Google Scholar 
    Thiesmeier, B. & Schuhmacher, H. Causes of larval drift of the fire salamander, Salamandra salamandra terrestris, and its effects on population dynamics. Oecologia 82, 259–263. https://doi.org/10.1007/BF00323543 (1990).ADS 
    Article 
    PubMed 

    Google Scholar 
    Reinhardt, T., Baldauf, L., Ilic, M. & Fink, P. Cast away: Drift as the main determinant for larval survival in western fire salamanders (Salamandra salamandra) in headwater streams. J. Zool. 306, 171–179 (2018).Article 

    Google Scholar 
    Baumgartner, N., Waringer, A. & Waringer, J. Hydraulic microdistribution patterns of larval fire salamanders (Salamandra salamandra salamandra) in the Weidlingbach near Vienna, Austria. Freshw. Biol. 41, 31–41. https://doi.org/10.1046/j.1365-2427.1999.00378.x (1999).Article 

    Google Scholar 
    Krause, E. T., Steinfartz, S. & Caspers, B. A. Poor nutritional conditions during the early larval stage reduce risk-taking activities of fire salamander larvae (Salamandra salamandra). Ethology 117, 416–421. https://doi.org/10.1111/j.1439-0310.2011.01886.x (2011).Article 

    Google Scholar 
    Veith, M. et al. Drift compensation in larval European fire salamanders, Salamandra salamandra (Amphibia: Urodela)?. Hydrobiologia 828, 315–325. https://doi.org/10.1007/s10750-018-3820-8 (2019).Article 

    Google Scholar 
    Arnold, A. Zur Verbreitung des Feuersalamanders im Tal der Zwickauer Mulde. Veröffentlichungen aus dem Museum für Naturkunde Karl-Marx-Stadt 71–79 (1983).Thiesmeier, B. Ökologie des Feuersalamanders (Westarp Wissenschaften, 1992).
    Google Scholar 
    Thiesmeier-Hornberg, B. Zur Ökologie und Populationsdynamik des Feuersalamanders (Salamandra salamandra terrestris Lacépède, 1788) im niederbergischen Land unter besonderer Berücksichtigung der Larvalphase. PhD thesis, Universität-Gesamthochschule Essen (1988).Thiesmeier, B. & Grossenbacher, K. Salamandra salamandra (Linnaeus, 1758)—Feuersalamander. In Die Amphibien und Reptilien Europas. Schwanzlurche IIB (eds Thiesmeier, B. & Grossenbacher, K.) 1059–1132 (Aula, 2004).
    Google Scholar 
    Reques, R. & Tejedo, M. Intraspecific aggressive behaviour in fire salamander larvae (Salamandra salamandra): The effects of density and body size. Herpetol. J. 6, 15–19 (1996).
    Google Scholar 
    Thiesmeier, B. & Günther, R. Feuersalamander: Salamandra salamandra (Linnaeus, 1758). In Die Amphibien und Reptilien Deutschlands (ed. Günther, R.) 82–104 (Fischer, 1996).
    Google Scholar 
    Wagner, N., Pfrommer, J. & Veith, M. Comparison of different methods to estimate abundances of larval fire salamanders (Salamandra salamandra) in first-order creeks. Salamandra 56, 265–274 (2020).
    Google Scholar 
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).Article 

    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).Article 

    Google Scholar 
    Otis, D. L., Burnham, K. P., White, G. C. & Anderson, D. R. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62, 3–135 (1978).MATH 

    Google Scholar 
    Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860–873 (1996).MathSciNet 
    Article 

    Google Scholar 
    Seber, G. A. A note on the multiple-recapture census. Biometrika 52, 249–259 (1965).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Jolly, G. M. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52, 225–247 (1965).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Cormack, R. Estimates of survival from the sighting of marked animals. Biometrika 51, 429–438 (1964).Article 

    Google Scholar 
    Razali, N. M. & Wah, Y. B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2, 21–33 (2011).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    Segev, O. & Blaustein, L. Influence of water velocity and predation risk on fire salamander (Salamandra infraimmaculata) larval drift among temporary pools in ephemeral streams. Freshw. Sci. 33, 950–957. https://doi.org/10.1086/676634 (2014).Article 

    Google Scholar 
    Montori, A., Llorente, G. & Richter-Boix, À. Habitat features affecting the small-scale distribution and longitudinal migration patterns of Calotriton asper in a Pre-Pyrenean population. Amphibia-Reptilia 29, 371–381. https://doi.org/10.1163/156853808785112048 (2008).Article 

    Google Scholar 
    Zakrzewski, M. Effect of definite temperature ranges on development metamorphosis and procreation of the spotted salamander larvae, Salamandra salamandra (L.). Acta Biol. Crac. Ser. Zool. 29, 77–83 (1987).
    Google Scholar 
    Degani, G., Goldenberg, S. & Warburg, M. R. Cannibalistic phenomena in Salamandra salamandra larvae in certain water bodies and under experimental conditions. Hydrobiologia 75, 123–128. https://doi.org/10.1007/BF00007425 (1980).Article 

    Google Scholar 
    Manenti, R., Ficetola, G. F. & De Bernardi, F. Water, stream morphology and landscape: Complex habitat determinants for the fire salamander Salamandra salamandra. Amphibia-Reptilia 30, 7–15. https://doi.org/10.1163/156853809787392766 (2009).Article 

    Google Scholar 
    Klewen, R. Landsalamander Europa: Teil1. Die Gattungen Salamandra und Mertensiella 2nd edn. (Ziemsen-Verlag, 1991).
    Google Scholar 
    Orth, R., Zscheischler, J. & Seneviratne, S. I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    Degani, G. Temperature selection in Salamandra salamandra (L.) larvae and juveniles from different habitats. Biol. Behav. 9, 175–183 (1984).
    Google Scholar  More

  • in

    An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas

    Trenberth, K. E. & Jones, P. D. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 235–335 (Cambridge Univ. Press, 2007).Linderholm, H. W. Growing season changes in the last century. Agr. For. Meteorol. 137, 1–14 (2006).
    Google Scholar 
    Yang, B. et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl Acad. Sci. USA 114, 6966–6971 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shen, M., Tang, Y., Chen, J. & Yang, W. Specification of thermal growing season in temperate China from 1960 to 2009. Clim. Change 114, 783–798 (2012).
    Google Scholar 
    Zhou, B., Zhai, P., Chen, Y. & Yu, R. Projected changes of thermal growing season over Northern Eurasia in a 1.5 °C and 2 °C warming world. Environ. Res. Lett. 13, 35004 (2018).
    Google Scholar 
    Barichivich, J., Briffa, K. R., Osborn, T. J., Melvin, T. M. & Caesar, J. Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob. Biogeochem. Cycles 26, B4015 (2012).
    Google Scholar 
    Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).
    Google Scholar 
    Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol. 24, 2117–2128 (2018).
    Google Scholar 
    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).
    Google Scholar 
    Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proc. Natl Acad. Sci. USA 117, 10397–10405 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).CAS 
    PubMed 

    Google Scholar 
    Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).
    Google Scholar 
    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).PubMed 

    Google Scholar 
    Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).CAS 

    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B 365, 3227–3246 (2010).
    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    PubMed 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 
    PubMed 

    Google Scholar 
    Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol. 25, 2382–2395 (2019).
    Google Scholar 
    Xu, C., Liu, H., Williams, A. P., Yin, Y. & Wu, X. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob. Change Biol. 22, 2852–2860 (2016).
    Google Scholar 
    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, B3018 (2007).
    Google Scholar 
    Buermann, W., Bikash, P. R., Jung, M., Burn, D. H. & Reichstein, M. Earlier springs decrease peak summer productivity in North American boreal forests. Environ. Res. Lett. 8, 24027 (2013).
    Google Scholar 
    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).CAS 
    PubMed 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).CAS 
    PubMed 

    Google Scholar 
    Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 

    Google Scholar 
    Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).
    Google Scholar 
    Huang, J. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, X. et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Sci. Bull. 62, 804–812 (2017).
    Google Scholar 
    Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 17, 696–707 (2008).
    Google Scholar 
    Lenz, A., Vitasse, Y., Hoch, G. & Körner, C. Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit. J. Ecol. 102, 1537–1548 (2014).
    Google Scholar 
    Zeng, Q., Rossi, S., Yang, B., Qin, C. & Li, G. Environmental drivers for cambial reactivation of Qilian junipers (Juniperus przewalskii) in a semi-arid region of northwestern China. Atmosphere 11, 232 (2020).
    Google Scholar 
    Ren, P. et al. Growth rate rather than growing season length determines wood biomass in dry environments. Agr. For. Meteorol. 271, 46–53 (2019).
    Google Scholar 
    Sanginés De Cárcer, P. et al. Vapor-pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 24, 1108–1122 (2017).
    Google Scholar 
    Zhang, J. et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. Catena 196, 104936 (2021).
    Google Scholar 
    Huang, J., Deslauriers, A. & Rossi, S. Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytol. 203, 831–841 (2014).CAS 
    PubMed 

    Google Scholar 
    Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).CAS 
    PubMed 

    Google Scholar 
    Rossi, S., Girard, M. J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Change Biol. 20, 2261–2271 (2014).
    Google Scholar 
    Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).CAS 
    PubMed 

    Google Scholar 
    Pasho, E., Camarero, J. J. & Vicente-Serrano, S. M. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees 26, 1875–1886 (2012).
    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).CAS 

    Google Scholar 
    Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).CAS 

    Google Scholar 
    Körner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114 (2015).PubMed 

    Google Scholar 
    Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).CAS 
    PubMed 

    Google Scholar 
    Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).PubMed 

    Google Scholar 
    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Deslauriers, A. & Morin, H. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19, 402–408 (2005).
    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–828 (2018).CAS 

    Google Scholar 
    Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 185, 471–480 (2010).PubMed 

    Google Scholar 
    Fu, Y. H. et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob. Change Biol. 20, 3743–3755 (2014).
    Google Scholar 
    Wu, X. et al. Uneven winter snow influence on tree growth across temperate China. Glob. Change Biol. 25, 144–154 (2018).
    Google Scholar 
    Wang, X. et al. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Change Biol. 24, 1651–1662 (2018).
    Google Scholar 
    Adams, H. D. et al. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees. Glob. Change Biol. 21, 4210–4220 (2015).
    Google Scholar 
    He, W., Liu, H., Qi, Y., Liu, F. & Zhu, X. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. Glob. Change Biol. 26, 3627–3638 (2020).
    Google Scholar 
    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2012).
    Google Scholar 
    Vitasse, Y. et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Change Biol. 25, 3781–3792 (2019).
    Google Scholar 
    Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).
    Google Scholar 
    Babst, F., Poulter, B., Bodesheim, P., Mahecha, M. D. & Frank, D. C. Improved tree-ring archives will support earth-system science. Nat. Ecol. Evol. 1, 8 (2017).PubMed 

    Google Scholar 
    Elmore, A. J., Guinn, S. M., Minsley, B. J. & Richardson, A. D. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Change Biol. 18, 656–674 (2012).
    Google Scholar 
    Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2018).PubMed 

    Google Scholar 
    Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).PubMed 

    Google Scholar 
    Gao, S. et al. Dynamic responses of tree-ring growth to multiple dimensions of drought. Glob. Change Biol. 24, 5380–5390 (2018).
    Google Scholar 
    Peltier, D. M. P. & Ogle, K. Tree growth sensitivity to climate is temporally variable. Ecol. Lett. 23, 1561–1572 (2020).PubMed 

    Google Scholar 
    Wilmking, M. et al. Global assessment of relationships between climate and tree growth. Glob. Change Biol. 26, 3212–3220 (2020).
    Google Scholar 
    Seftigen, K., Frank, D. C., Björklund, J., Babst, F. & Poulter, B. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob. Ecol. Biogeogr. 27, 1352–1365 (2018).
    Google Scholar 
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).
    Google Scholar 
    Frich, P. L. et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19, 193–212 (2002).
    Google Scholar 
    Selyaninov, G. T. About climate agricultural estimation (in Russian). Proc. Agric. Meteorol. 20, 165–177 (1928).
    Google Scholar 
    Streiner, D. L. Finding our way: an introduction to path analysis. Can. J. Psychiatry 50, 115–122 (2005).PubMed 

    Google Scholar 
    Fox, J., Nie, Z. & Byrnes, J. sem: Structural equation models. R package version 3.1-9 https://CRAN.R-project.org/package=sem (2017).Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).
    Google Scholar 
    Bagozzi, R. P. & Yi, Y. Specification, evaluation, and interpretation of structural equation models. J. Acad. Mark. Sci. 40, 8–34 (2012).
    Google Scholar  More