More stories

  • in

    Response of N2O emission and denitrification genes to different inorganic and organic amendments

    IPCC. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
    Google Scholar 
    Pachauri, R. K. et al. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).
    Google Scholar 
    Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2, 410–416 (2012).ADS 
    CAS 

    Google Scholar 
    Jassal, R. S., Black, T. A., Roy, R. & Ethier, G. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration. Geoderma 162, 182–186 (2011).ADS 
    CAS 

    Google Scholar 
    Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).CAS 
    PubMed 

    Google Scholar 
    Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).CAS 

    Google Scholar 
    Yang, Y. D., Hu, Y. G., Wang, Z. M. & Zeng, Z. H. Variations of the nirS-, nirK-, and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes. Environ. Sci. Pollut. Res. 25, 14057–14067 (2018).CAS 

    Google Scholar 
    Pan, Y., Ye, L., Ni, B. & Yuan, Z. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Res. 46, 4832–4840 (2012).CAS 
    PubMed 

    Google Scholar 
    Hallin, S., Philippot, L., Loffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 1485, 43–55 (2017).
    Google Scholar 
    Yang, L., Zhang, X. & Ju, X. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil. Sci. Rep. 7, 43283 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui, P. Y. et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biol. Biochem. 93, 131–141 (2016).CAS 

    Google Scholar 
    Gerber, J. S. et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Glob. Change Biol. 22, 3383–3394 (2016).ADS 

    Google Scholar 
    Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. 111, 9199–9204 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, J., Chadwick, D. R., Cheng, Y. & Yan, X. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. Sci. Total Environ. 616, 908–917 (2018).ADS 
    PubMed 

    Google Scholar 
    Albanito, F. et al. Direct nitrous oxide emissions from tropical and sub-tropical agricultural systems—A review and modelling of emission factors. Sci. Rep. 7, 44235 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wolsing, M. & Priemé, A. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. FEMS Microbiol. Ecol. 48, 261–271 (2004).CAS 
    PubMed 

    Google Scholar 
    Akiyama, H., McTaggart, I. P., Ball, B. C. & Scott, A. N2O, NO, and NH3 emissions from soil after the application of organic fertilizers, urea and water. Water Air Soil Pollut. 156, 113–129 (2004).ADS 
    CAS 

    Google Scholar 
    Wang, Y. Y. et al. Responses of N2O reductase gene (nosZ)-denitrifer communities to long-term fertilization follow a depth pattern in calcareous purplish paddy soil. J. Integr. Agric. 16, 2597–2611 (2017).CAS 

    Google Scholar 
    Fernandez-Luqueno, F. et al. Emission of CO2 and N2O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources. Sci. Total Environ. 407, 4289–4296 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yin, C. et al. Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS-and nirK-denitrifying bacterial community. Eur. J. Soil Biol. 65, 47–56 (2014).CAS 

    Google Scholar 
    Harter, J. et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J. 8, 660–674 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hai, B. et al. Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl. Environ. Microbiol. 75, 4993–5000 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, R. et al. Nitrous oxide emission and the related denitrifier community: A short-term response to organic manure substituting chemical fertilizer. Ecotoxicol. Environ. Saf. 192, 110291 (2020).CAS 
    PubMed 

    Google Scholar 
    Xu, X. et al. NosZ clade II rather than clade I determine in situ N2O emissions with different fertilizer types under simulated climate change and its legacy. Soil Biol. Biochem. 150, 107974 (2020).CAS 

    Google Scholar 
    Henderson, S. L. et al. Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Appl. Environ. Microbiol. 76, 2155–2164 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palmer, K., Biasi, C. & Horn, M. A. Contrasting denitrififier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 6, 1058–1077 (2012).CAS 
    PubMed 

    Google Scholar 
    Dandie, C. E. et al. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol. Ecol. 77, 69–82 (2011).CAS 
    PubMed 

    Google Scholar 
    Avrahami, S., Conrad, R. & Braker, G. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl. Environ. Microbiol. 68, 5685–5692 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, Y. J. et al. Compost supplementation with nitrogen loss and greenhouse gas emissions during pig manure composting. Bioresour. Technol. 297, 122435 (2019).PubMed 

    Google Scholar 
    Yang, Y. J. et al. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. Bioresour. Technol. 313, 123647 (2020).CAS 
    PubMed 

    Google Scholar 
    Yang, J. H., Wang, C. L. & Dai, H. L. Agricultural Soil Analysis and Environmental Monitoring (China Land Press, 2008) (in Chinese).
    Google Scholar 
    Wang, Q. R., Li, Y. C. & Klassen, W. Changes of soil microbial biomass carbon and nitrogen with cover crops and irrigation in a tomato field. J. Plant Nutr. 30, 623–639 (2007).CAS 

    Google Scholar 
    Moore, J. M., Klose, S. & Tabatabai, M. A. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol. Fertil. Soils 31, 200–210 (2000).CAS 

    Google Scholar 
    Jones, D. L. & Willett, V. B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 38, 991–999 (2006).CAS 

    Google Scholar 
    Ghani, A., Dexter, M. & Perrott, K. W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol. Biochem. 35, 1231–1243 (2003).CAS 

    Google Scholar 
    Huang, R. et al. Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils. Appl. Soil. Ecol. 137, 57–68 (2019).
    Google Scholar 
    Yang, Y. J. et al. Soil organic carbon transformation and dynamics of microorganisms under different organic amendments. Sci. Total Environ. 750, 141719 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    López-Fernández, S. et al. Effects of fertiliser type and the presence or absence of plants on nitrous oxide emissions from irrigated soils. Nutr. Cycl. Agroecosyst. 78, 279–289 (2007).
    Google Scholar 
    Wallenstein, M. D., Myrold, D. D., Firestone, M. & Voytek, M. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol. Appl. 16, 2143–2152 (2006).PubMed 

    Google Scholar 
    Ciarlo, E., Conti, M., Bartoloni, N. & Rubio, G. Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture. Biol. Fertil. Soils 44, 991–995 (2008).CAS 

    Google Scholar 
    Dandie, C. E. et al. Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity. Appl. Environ. Microbiol. 74, 5997–6005 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Francis, C. A., O’Mullan, G. D., Cornwell, J. C. & Ward, B. B. Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the Chesapeake Bay estuary. Front. Microbiol. 4, 237 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lin, W. et al. Evaluation of N2O sources after fertilizers application in vegetable soil by dual isotopocule plots approach. Environ. Res. 188, 109818 (2020).CAS 
    PubMed 

    Google Scholar 
    Chen, M. M. et al. Nitrosospira cluster 3 lineage of AOB and nirK of Rhizobiales respectively dominated N2O emissions from nitrification and denitrification in organic and chemical N fertilizer treated soils. Ecol. Indic. 127, 107722 (2021).CAS 

    Google Scholar 
    Malghani, S., Kim, J., Lee, S. H., Yoo, G. Y. & Kang, H. Application of two contrasting rice-residue-based biochars triggered gaseous loss of nitrogen under denitrification-favoring conditions: a short-term study based on acetylene inhibition technique. Appl. Soil Ecol. 127, 112–119 (2018).
    Google Scholar 
    Sun, R., Guo, X., Wang, D. & Chu, H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil. Ecol. 95, 171–178 (2015).
    Google Scholar 
    Philippot, L., Andert, J., Jones, C. M., Bru, D. & Hallin, S. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob. Change Biol. 17, 1497–1504 (2011).ADS 

    Google Scholar 
    Chen, Z. et al. Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb. Ecol. 63, 446–459 (2012).PubMed 

    Google Scholar 
    Yoshida, M., Ishii, S., Otsuka, S. & Senoo, K. nirK-harboring denitrifiers are more responsive to denitrification-inducing conditions in rice paddy soil than nirS-harboring bacteria. Microbes Environ. 25, 45–48 (2010).PubMed 

    Google Scholar 
    Yin, C. et al. Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil. Appl. Microbiol. Biotechnol. 99, 5719–5729 (2015).CAS 
    PubMed 

    Google Scholar 
    Barrett, M. et al. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Environ. Sci. Pollut. Res. 23, 7899–7910 (2016).CAS 

    Google Scholar 
    Yoshida, M., Ishii, S., Otsuka, S. & Senoo, K. Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil. Soil Biol. Biochem. 41, 2044–2051 (2009).CAS 

    Google Scholar 
    Kandeler, E., Deiglmayr, K., Tscherko, D., Bru, D. & Philippot, L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 72, 5957–5962 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The accumulation of microplastic pollution in a commercially important fishing ground

    PlasticsEurope. Plastics – the Facts 2019, Avenue E. van Nieuwenhuyse 4/3, 1160 Brussels. Belgium: PlasticsEurope. https://www.plasticseurope.org/de/resources/publications/4312-plastics-facts-2020 (2020).Mattsson, K., Jocic, S., Doverbratt, I. & Hansson, L. A. In Nanoplastics in the Aquatic Environment: Microplastic Contamination in Aquatic Environments (ed. Zheng, E. Y.) 379–399 (Elsevier, 2018).Chapter 

    Google Scholar 
    Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947. https://doi.org/10.1038/srep14947 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waller, C. L. et al. Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total. Environ. 598, 220–227. https://doi.org/10.1016/j.scitotenv.2017.03.283 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, R. C. et al. Lost at sea: where is all the plastic?. Sci. 304, 838–838 (2004).CAS 
    Article 

    Google Scholar 
    Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kroon, F. J., Motti, C. E., Jensen, L. H. & Berry, K. L. Classification of marine microdebris: A review and case study on fish from the Great Barrier Reef, Australia. Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-34590-6 (2018).CAS 
    Article 

    Google Scholar 
    Cunningham, E. M. & Sigwart, J. D. Environmentally accurate microplastic levels and their absence from exposure studies. Integr. Comp. Biol. 59, 1485–1496. https://doi.org/10.1093/icb/icz068 (2019).Article 
    PubMed 

    Google Scholar 
    Welden, N. A. & Cowie, P. R. Long-term microplastic retention causes reduced body condition in the langoustine Nephrops norvegicus. Environ. Pollut. 218, 895–900. https://doi.org/10.1016/j.envpol.2016.08.020 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Green, D. S., Colgan, T. J., Thompson, R. C. & Carolan, J. C. Exposure to microplastics reduces attachment strength and alters the haemolymph proteome of blue mussels (Mytilus edulis). Environ. Pollut. 246, 423–434. https://doi.org/10.1016/j.envpol.2018.12.017 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schéré, C. M., Dawson, T. P. & Schreckenberg, K. Multiple conservation designations: what impact on the effectiveness of marine protected areas in the Irish Sea?. Int. J. Sustain. Dev. 27, 596–610. https://doi.org/10.1080/13504509.2019.1706058 (2020).Article 

    Google Scholar 
    Ungfors, A. et al. Nephrops fisheries in European waters. In Advances in Marine Biology 247–314 (Academic Press, 2013).
    Google Scholar 
    ICES. Celtic Seas Ecosystem—Fisheries Overview. In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, Section 7.2. 40 pp https://doi.org/10.17895/ices.advice.5708. (2019).Becker, C., Dick, J. T., Cunningham, E. M., Schmitt, C. & Sigwart, J. D. The crustacean cuticle does not record chronological age: New evidence from the gastric mill ossicles. Arthropod. Struct. Dev. 47, 498–512. https://doi.org/10.1016/j.asd.2018.07.002 (2018).Article 
    PubMed 

    Google Scholar 
    Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317. https://doi.org/10.1098/rsos.140317 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yin, J., Li, J. Y., Craig, N. J. & Su, L. Microplastic pollution in wild populations of decapod crustaceans: A review. Chemosphere https://doi.org/10.1016/j.chemosphere.2021.132985 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cau, A. et al. Benthic crustacean digestion can modulate the environmental fate of microplastics in the deep sea. Environ. Sci. Technol. 54, 4886–4892. https://doi.org/10.1021/acs.est.9b07705 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hara, J., Frias, J. & Nash, R. Quantification of microplastic ingestion by the decapod crustacean Nephrops norvegicus from Irish waters. Mar. Pollut. Bull. 152, 110905. https://doi.org/10.1016/j.marpolbul.2020.110905 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hill, A. E., Durazo, R. & Smeed, D. A. Observations of a cyclonic gyre in the western Irish Sea. Cont. Shelf Res. 14, 479–490. https://doi.org/10.1016/0278-4343(94)90099-X (1994).ADS 
    Article 

    Google Scholar 
    Horsburgh, K. J. & Hill, A. E. A three-dimensional model of density-driven circulation in the Irish Sea. J. Phys. Oceanogr. 33, 343–365. https://doi.org/10.1175/1520-0485(2003)033%3c0343:ATDMOD%3e2.0.CO;2 (2003).ADS 
    Article 

    Google Scholar 
    Hill, A.E., Brown, J., & Fernand, L. The western Irish Sea gyre: a retention system for Norway lobster (Nephrops norvegicus)? Oceanol. Acta. 19, 357–368. (1996). https://archimer.ifremer.fr/doc/00094/20493/Lebreton, L. et al. Evidence that the great pacific garbage patch is rapidly accumulating plastic. Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-22939-w (2018).CAS 
    Article 

    Google Scholar 
    Charlesworth, M., Mitchell, S. H. & Oliver, W. T. Metals in surficial sediments of the north-west Irish Sea. Bull. Environ. Contam. Toxicol. 62, 40–47. https://doi.org/10.1007/s001289900839 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Charlesworth, M. E., Service, M. & Gibson, C. E. The distribution and transport of Sellafield derived 137Cs and 241Am to western Irish Sea sediments. Sci. Total. Environ. 354, 83–92. https://doi.org/10.1016/j.scitotenv.2004.12.062 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Global Monitoring and Forecasting Center. Atlantic-European North West Shelf – Ocean Physics Analysis and Forecast, E.U Copernicus Marine Service Information . Available at: https://resources.marine.copernicus.eu/product-detail/NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013/INFORMATION (Accessed: 8th December 2021).Cunningham, E. M. et al. High abundances of microplastic pollution in deep-sea sediments: Evidence from antarctica and the Southern Ocean. Environ. Sci. Technol. 54, 13661–13671. https://doi.org/10.1021/acs.est.0c03441 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, S. et al. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total. Environ. 616, 1056–1065. https://doi.org/10.1016/j.scitotenv.2017.10.213 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Martin, J., Lusher, A., Thompson, R. C. & Morley, A. The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish continental shelf. Sci. Rep. 7, 10772. https://doi.org/10.1038/s41598-017-11079-2 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    Nor, N. H. M. & Obbard, J. P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bullet. 79, 278–283. https://doi.org/10.1016/j.marpolbul.2013.11.025 (2014).CAS 
    Article 

    Google Scholar 
    Lacerda, A. L. D. F. et al. Plastics in sea surface waters around the Antarctic Peninsula. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-40311-4 (2019).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Tata, T., Belabed, B. E., Bououdina, M. & Bellucci, S. Occurrence and characterization of surface sediment microplastics and litter from North African coasts of Mediterranean Sea: Preliminary research and first evidence. Sci. Total. Environ. 713, 136664. https://doi.org/10.1016/j.scitotenv.2020.136664 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lorenz, C. et al. Spatial distribution of microplastics in sediments and surface waters of the southern North Sea. Environ. Pollut. 252, 1719–1729 (2019).CAS 
    Article 

    Google Scholar 
    Chouchene, K. et al. Microplastics on Barra beach sediments in Aveiro, Portgal. Mar. Pollut. Bull. 167, 112264. https://doi.org/10.1016/j.marpolbul.2021.112264 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kane, I. A. et al. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 368, 1140–1145. https://doi.org/10.1126/science.aba5899 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gaylarde, C. C., Neto, J. A. B. & da Fonseca, E. M. Paint fragments as polluting microplastics: A brief review. Mar. Pollut. Bull. 162, 111847. https://doi.org/10.1016/j.marpolbul.2020.111847 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sait, S. T. L. et al. Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content. Environ. Pollut. 268, 115745. https://doi.org/10.1016/j.envpol.2020.115745 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen, Q. et al. Bioassay guided analysis coupled with non-target chemical screening in polyethylene plastic shopping bag fragments after exposure to simulated gastric juice of Fish. J. Hazard. Mater. 401, 123421. https://doi.org/10.1016/j.jhazmat.2020.123421 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, X. et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water. Res. 188, 116456. https://doi.org/10.1016/j.watres.2020.116456 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zabaniotou, A. & Kassidi, E. Life cycle assessment applied to egg packaging made from polystyrene and recycled paper. J. Clean. Prod. 11, 549–559. https://doi.org/10.1016/S0959-6526(02)00076-8 (2003).Article 

    Google Scholar 
    Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 34351. https://doi.org/10.1038/srep34351 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biamis, C., O’Driscoll, K. & Hardiman, G. Microplastic toxicity: A review of the role of marine sentinel species in assessing the environmental and public health impacts. CSCEE. https://doi.org/10.1016/j.cscee.2020.100073 (2020).Article 

    Google Scholar 
    Bakir, A., Rowland, S. J. & Thompson, R. C. Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar. Coast. 140, 14–21. https://doi.org/10.1016/j.ecss.2014.01.004 (2014).CAS 
    Article 

    Google Scholar 
    Nelson, A. M. & Long, T. E. A perspective on emerging polymer technologies for bisphenol-A replacement. Polym. Int. 61, 1485–1491. https://doi.org/10.1002/pi.4323 (2012).CAS 
    Article 

    Google Scholar 
    Le Bihanic, F. et al. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar. Pollut. Bull. 154, 111059. https://doi.org/10.1016/j.marpolbul.2020.111059 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Murray, F. & Cowie, P. R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 62, 1207–1217. https://doi.org/10.1016/j.marpolbul.2011.03.032 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cobb, J. S. & Phillips, B. F. (eds) The Biology and Management of Lobsters, Physiology and Behaviour 2–61 (Academic Press Inc., 1980).
    Google Scholar 
    Quintana, M. M., Motova, A., Wilkie, O., Patience, N. Seafish: Economics of the UK fishing fleet 2020. Seafish Report No. SR758. Edinburgh, UK. https://www.seafish.org/document/?id=d9e7982d-e374-4de7-85a4-ca80c35f5666 (2021). More

  • in

    Macroalgae and interspecific alarm cues regulate behavioral interactions between sea urchins and sea cucumbers

    Lawrence, J.M. Sea urchins: biology and ecology. Amsterdam, The Netherlands: Elsevier B.V. (2020)Purcell, S.W., Samyn, Y. & Conand, C. Commercially important sea cucumbers of the world. Rome, Italy: FAO. (2012)Yorke, C. E., Page, H. M. & Miller, R. J. Sea urchins mediate the availability of kelp detritus to benthic consumers. Proc. R. Soc. B. 286(1906), 20190846 (2019).CAS 
    Article 

    Google Scholar 
    Dethier, M. N. et al. Feces as food: The nutritional value of urchin feces and implications for benthic food webs. J. Exp. Mar. Biol. Ecol. 514, 95–102 (2019).Article 

    Google Scholar 
    Purcell, S. W. et al. Ecological roles of exploited sea cucumbers. Oceanogr. Mar. Biol. 54, 367–386 (2017).
    Google Scholar 
    Hamel, J. F. & Mercier, A. Early development, settlement, growth, and spatial distribution of the sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea). Can. J. Fish. Aquat. Sci. 53(2), 253–271 (1996).Article 

    Google Scholar 
    Grosso, L. et al. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 534, 736268 (2021)Gabara, S.S., Konar, B.H. & Edwards, M.S. Biodiversity loss leads to reductions in community-wide trophic complexity. Ecosphere 12(2), e03361 (2021)Duffy, J. E. et al. The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecol. Lett. 10(6), 522–538 (2010).ADS 
    Article 

    Google Scholar 
    Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc. R. Soc. B. 285(1874), 20172571 (2018).Article 

    Google Scholar 
    Soulsby, P. G., Lowthion, D. & Houston, M. Effects of macroalgal mats on the ecology of intertidal mudflats. Mar. Pollut. Bull. 13(5), 162–166 (1982).Article 

    Google Scholar 
    Filbee-Dexter, K. & Scheibling, R.E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol.: Prog. Ser. 495(1), 1–25 (2014)Hendler, G., Miller, J. E., Pawson, D. L. & Kier, P. M. Sea stars, sea urchins and allies: echinoderms of Florida and the Caribbean (Smithsonian Institution Press, 1995).
    Google Scholar 
    James, D. B. Sea cucumber and sea urchin resources. CMFRI Bull. 34, 85–93 (1983).
    Google Scholar 
    Muthiga, N.A. & Kawaka, J.A. The effects of temperature and light on the gametogenesis and spawning of four sea urchin and one sea cucumber species on coral reefs in Kenya. Proceedings of the 11th international coral reef symposium. Fort Lauderdale, Florida pp 356–360 (2008)Byrnes, J., Cardinale, B. & Reed, D. Interactions between sea urchin grazing and prey diversity on temperate rocky reef communities. Ecology 94(7), 1636–1646 (2013).Article 

    Google Scholar 
    Vanderklift, M.A. & Kendrick, G.A. Contrasting influence of sea urchins on attached and drift macroalgae. Mar. Ecol.: Prog. Ser. 299, 101–110 (2005)Duggins, D. O. Interspecific facilitation in a guild of benthic marine herbivores. Oecologia 48(2), 157–163 (1981).ADS 
    Article 

    Google Scholar 
    Bonaviri, C. et al. Fish versus starfish predation in controlling sea urchin populations in Mediterranean rocky shores. Mar. Ecol.: Prog. Ser. 382(1), 129–138 (2009)Purcell, S. W. & Simutoga, M. Spatio-temporal and size-dependent variation in the success of releasing cultured sea cucumbers in the wild. Rev. Fish. Sci. 16, 204–214 (2008).Article 

    Google Scholar 
    Scheibling, R. E. & Robinson, M. C. Settlement behaviour and early post-settlement predation of the sea urchin Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 365(1), 59–66 (2008).Article 

    Google Scholar 
    Francour, P. Predation on holothurians: a literature review. Invertebr. Biol. 116(1), 52–60 (1997).Article 

    Google Scholar 
    Scheibling, R. E. & Hamm, J. Interactions between sea urchins (Strongylocentrotus droebachiensis) and their predators in field and laboratory experiments. Mar. Biol. 110(1), 105–116 (1991).Article 

    Google Scholar 
    Bartumeus, F., Romero, J. & Alcoverro, T. The scent of fear makes sea urchins go ballistic. Mov. Ecol. 9(1), 1–12 (2021).Article 

    Google Scholar 
    Campbell, A.C. & Coppard, S., Tudor-Thomas CD. Escape and aggregation responses of three echinoderms to conspecific stimuli. Biol. Bull. 201(2), 175–185 (2001)Chi, X. et al. Conspecific alarm cues are a potential effective barrier to regulate foraging behavior of the sea urchin Mesocentrotus nudus. Mar. Environ. Res. 171(8), 105476 (2021)Chi, X. et al. Foraging behavior of the sea urchin Mesocentrotus nudus exposed to conspecific alarm cues in various conditions. Sci. Rep. 11(1), 1–6 (2021).Article 

    Google Scholar 
    Zhadan, P.M. & Vaschenko, M.A. Long-term study of behaviors of two cohabiting sea urchin species, Mesocentrotus nudus and Strongylocentrotus intermedius, under conditions of high food quantity and predation risk in situ. PeerJ 7(1), e8087 (2019)Bshary, R. & Noë, R. Red colobus and Diana monkeys provide mutual protection against predators. Anim. Behav. 54(6), 1461–1474 (1997).CAS 
    Article 

    Google Scholar 
    Peres, C. A. Anti-predation benefits in a mixed-species group of Amazonian tamarins. Folia Primatol. 61(2), 61–76 (1993).CAS 
    Article 

    Google Scholar 
    Fuji, A. Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Mem. Fac. Fish. Hokkaido Univ. 15(2), 83–160 (1967)Chang, Y., Ding, J., Song, J. & Yang, W. Biology and aquaculture of sea cucumbers and sea urchins (Ocean Press, 2004).
    Google Scholar 
    Yang, H., Hamel, J. F. & Mercier, A. The sea cucumber Apostichopus japonicus: history, biology and aquaculture (Elsevier Inc., 2015).
    Google Scholar 
    Zhao, C. et al. Carryover effects of short-term UV-B radiation on fitness related traits of the sea urchin Strongylocentrotus intermedius. Ecotoxicol. Environ. Saf. 164, 659–664 (2018).CAS 
    Article 

    Google Scholar 
    Zhang, L. et al. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ 5, e3122 (2017)Zhao, C. et al. Effects of covering behavior and exposure to a predatory crab Charybdis japonica on survival and HSP70 expression of juvenile sea urchins Strongylocentrotus intermedius. PloS One 9(5), e97840 (2014)Kawai, T. & Agatsuma, Y. Predators on released seed of the sea urchin Strongylocentrotus intermedius at Shiribeshi, Hokkaido, Japan. Fish. Sci. (Tokyo, Jpn.) 62(2), 317–318 (1996)Hatanaka, H. Experimental studies on the predation of juvenile sea cucumber, Stichopus japonicus by sea star Asterina pectinifera. Aquacult. Sci. 42(4), 563–566 (1994).
    Google Scholar 
    Guidetti, P. & Mori, M. Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators. Mar. Biol. 147(3), 797–802 (2005).Article 

    Google Scholar 
    Moitoza, D.J & Phillips, D.W. Prey defense, predator preference, and nonrandom diet: the interactions between Pycnopodia helianthoides and two species of sea urchins. Mar. Biol. 53(4), 299–304 (1979)Williams, J.P. et al. Sea urchin mass mortality rapidly restores kelp forest communities. Mar. Ecol.: Prog. Ser. 664, 117–131 (2021)Pearse, J. Ecological role of purple sea urchins. Science 314(5801), 940–941 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Vadas, R. L. Preferential feeding: an optimization strategy in sea urchins. Ecol. Monogr. 47(4), 337–371 (1977).Article 

    Google Scholar 
    Lowe, A. T. et al. Sedentary urchins influence benthic community composition below the macroalgal zone. Mar. Biol. 36(2), 129–140 (2015).
    Google Scholar 
    Layton, C. et al. Kelp Forest Restoration in Australia. Front. Mar. Sci. 7(74) (2020)Eger, A.M. et al. Global Kelp forest restoration: Past lessons, status, and future goals. Preprint. EcoEvoRxiv. https://doi.org/10.32942/osf.io/emaz2 (2021)Ritson-Williams, R. & Paul, V. J. Marine benthic invertebrates use multimodal cues for defense against reef fish. Mar. Ecol. Prog. Ser. 340, 29–39 (2007).ADS 
    Article 

    Google Scholar 
    Hu, F. et al. Effects of artificial reefs on selectivity and behaviors of the sea cucumber Apostichopus japonicas: New insights into the pond culture. Aquacult. Rep. 21(3), 100842 (2021)Sun, J. et al. Light intensity regulates phototaxis, foraging and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ 7, e8001 (2019)Bi, S., Shi, J. & Liu, A. Exploitation and utilization of Ulva lactuca L. Mod. Fish. Inf. 11, 21–23 (1993).
    Google Scholar 
    Chang, Y. Q., Wang, Z. C. & Wang, G. J. Effect of temperature and algae on feeding and growth in sea urchin Strongylocentrotus intermedius. J. Fish. China 23(1), 69–76 (1999).
    Google Scholar 
    Dumont, C., Himmelman, J.H. & Russell, M.P. Size-specific movement of green sea urchins Strongylocentrotus droebachiensis on urchin barrens in eastern Canada. Mar. Ecol.: Prog. Ser. 276, 93–101 (2004)Sun, J. et al. Interaction among sea urchins in response to food cues. Sci. Rep. 11(1), 1–9 (2021).ADS 
    Article 

    Google Scholar 
    Węglarczyk, S. Kernel density estimation and its application. ITM Web Conf. 23(2), 00037 (2018).Article 

    Google Scholar  More

  • in

    The macroparasite fauna of cichlid fish from Nicaraguan lakes, a model system for understanding host–parasite diversification and speciation

    Price, P. W. Evolutionary Biology of Parasites (Princeton University Press, 1980).
    Google Scholar 
    Lima, L. B., Bellay, S., Giacomini, H. C., Isaac, A. & Lima-Junior, D. P. Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain. Parasitology 143, 343–349 (2016).CAS 
    PubMed 

    Google Scholar 
    Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat. Commun. 3, 1–6 (2012).
    Google Scholar 
    Bashey, F. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140301 (2015).
    Google Scholar 
    Jolles, J. W., Mazué, G. P. F., Davidson, J., Behrmann-Godel, J. & Couzin, I. D. Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions. Sci. Rep. 10, 12282 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Demandt, N. et al. Parasite-infected sticklebacks increase the risk-taking behaviour of uninfected group members. Proc. R. Soc. B Biol. Sci. 285, 20180956 (2018).
    Google Scholar 
    Poulin, R. Parasite manipulation of host behavior: An update and frequently asked questions. Adv. Study Behav. 41, 151–186 (2010).
    Google Scholar 
    Terui, A., Ooue, K., Urabe, H. & Nakamura, F. Parasite infection induces size-dependent host dispersal: Consequences for parasite persistence. Proc. R. Soc. B Biol. Sci. 284, 20171491 (2017).
    Google Scholar 
    Raeymaekers, J. A. M. et al. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus. BMC Evol. Biol. 13, 41 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, B. S. et al. An exploration of the links between parasites, trophic ecology, morphology, and immunogenetics in the Lake Tanganyika cichlid radiation. Hydrobiologia 832, 215–233 (2019).PubMed 

    Google Scholar 
    Gobbin, T. P. et al. Temporally consistent species differences in parasite infection but no evidence for rapid parasite-mediated speciation in Lake Victoria cichlid fish. J. Evol. Biol. 33, 556–575 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Karvonen, A., Wagner, C. E., Selz, O. M. & Seehausen, O. Divergent parasite infections in sympatric cichlid species in Lake Victoria. J. Evol. Biol. 31, 1313–1329 (2018).PubMed 

    Google Scholar 
    Bush, S. E. et al. Host defense triggers rapid adaptive radiation in experimentally evolving parasites. Evol. Lett. 3, 120–128 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Waid, R. M., Raesly, R. L., Mckaye, K. R. & McCrary, J. Zoogeografía íctica de lagunas cratéricas de Nicaragua. Encuentro 51, 65–80 (1999).
    Google Scholar 
    Barluenga, M., Stölting, K., Salzburger, W., Muschick, M. & Meyer, A. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439, 719–723 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K., Fan, S. & Meyer, A. Crater lake colonization by neotropical cichlid fishes. Evolution 67, 281–288 (2012).PubMed 

    Google Scholar 
    Kautt, A. F. et al. Contrasting signatures of genomic divergence during sympatric speciation. Nature 588, 106–111 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K., Kautt, A. F., Harrod, C. & Meyer, A. Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biol. 8, 1–15 (2010).
    Google Scholar 
    Kautt, A. F., Machado-Schiaffino, G., Torres-Dowdall, J. & Meyer, A. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecol. Evol. 6, 5342–5357 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Barluenga, M. & Meyer, A. Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes. BMC Evol. Biol. 10, 326 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K. & Meyer, A. Color assortative mating contributes to sympatric divergence of neotropical cichlid fish. Evolution 63, 2750–2757 (2009).PubMed 

    Google Scholar 
    Kautt, A. F., Machado-Schiaffino, G. & Meyer, A. Lessons from a natural experiment: Allopatric morphological divergence and sympatric diversification in the Midas cichlid species complex are largely influenced by ecology in a deterministic way. Evol. Lett. 2, 323–340 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Kusche, H., Lehtonen, T. K. & Meyer, A. Local variation and parallel evolution: Morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philos. Trans. R. Soc. B Biol. Sci. 365, 1763–1782 (2010).
    Google Scholar 
    Elmer, K. R. et al. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5, 1–8 (2014).
    Google Scholar 
    Vanhove, M. P. M. et al. Cichlids: A host of opportunities for evolutionary parasitology. Trends Parasitol. 32, 820–832 (2016).PubMed 

    Google Scholar 
    Choudhury, A. et al. Trematode diversity in freshwater fishes of the Globe II: ‘New World’. Syst. Parasitol. 93, 271–282 (2016).PubMed 

    Google Scholar 
    Watson, D. E. Digenea of fishes from Lake Nicaragua. In Investigations of the Ichthyofauna of Nicaraguan Lakes Vol. 15 (ed. Thorson, T. B.) 251–260 (University of Nebraska Press, 1976).
    Google Scholar 
    Aguirre-Macedo, M. L. et al. Larval helminths parasitizing freshwater fishes from the Atlantic coast of Nicaragua. Comp. Parasitol. 68, 42–51 (2001).
    Google Scholar 
    Aguirre-Macedo, M. L. et al. Some adult endohelminths parasitizing freshwater fishes from the Atlantic Drainages of Nicaragua. Comp. Parasitol. 68, 190–195 (2001).
    Google Scholar 
    Mendoza-Franco, E. F., Posel, P. & Dumailo, S. Monogeneans (Dactylogyridae: Ancyrocephalinae) of freshwater fishes from the Caribbean coast of Nicaragua. Comp. Parasitol. 70, 32–41 (2003).
    Google Scholar 
    Andrade-Gómez, L., Pinacho-Pinacho, C. D. & García-Varela, M. Molecular, morphological, and ecological data of Saccocoelioides Szidat, 1954 (Digenea: Haploporidae) from Middle America supported the reallocation from Culuwiya cichlidorum to Saccocoelioides. J. Parasitol. 103, 257–267 (2017).PubMed 

    Google Scholar 
    López-Jiménez, A., Pérez-Ponce de León, G. & García-Varela, M. Molecular data reveal high diversity of Uvulifer (Trematoda: Diplostomidae) in Middle America, with the description of a new species. J. Helminthol. 92, 725–739 (2018).PubMed 

    Google Scholar 
    Vidal-Martínez, V. M., Scholz, T. & Aguirre-Macedo, M. L. Dactylogyridae of cichlid fishes from Nicaragua, Central America, with descriptions of Gussevia herotilapiae sp. n. and three new species of Sciadicleithrum (Monogenea: Ancyrocephalinae). Comp. Parasitol. 68, 76–86 (2001).
    Google Scholar 
    de Chambrier, A. & Vaucher, C. Proteocephalus gaspari n. sp. (Cestoda: Proteocephalidae), parasite de Lepisosteus tropicus (Gill.) au Lac Managua (Nicaragua). Rev. suisse Zool. 91, 229–233 (1984).
    Google Scholar 
    González-Solís, A. D. & Jiménez-García, M. I. Parasitic nematodes of freshwater fishes from two nicaraguan crater lakes. Comp. Parasitol. 73, 188–192 (2006).
    Google Scholar 
    Santacruz, A., Morales-Serna, F. N., Leal-Cardín, M., Barluenga, M. & Pérez-Ponce de León, G. Acusicola margulisae n. sp. (Copepoda: Ergasilidae) from freshwater fishes in a Nicaraguan crater lake based on morphological and molecular evidence. Syst. Parasitol. 97, 165–177 (2020).PubMed 

    Google Scholar 
    Santacruz, A., Barluenga, M. & Pérez-Ponce de León, G. Taxonomic assessment of the genus Procamallanus (Nematoda) in Middle American cichlids (Osteichthyes) with molecular data, and the description of a new species from Nicaragua and Costa Rica. Parasitol. Res. 120, 1965–1977 (2021).PubMed 

    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997).CAS 
    PubMed 

    Google Scholar 
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).PubMed 

    Google Scholar 
    Krebs, C. J. Species diversity measures. In Ecological Methodology (ed. Krebs, C. J.) (Addison-Wesley Educational Publishers, 2014).
    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
    Google Scholar 
    R Core Team. A language and environment for statistical computing. R Found. Stat. Comput. (2018). https://www.R-project.org.Wickham, H. Elegant Graphics for Data Analysis: ggplot2 (Springer, 2008).MATH 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT-package: Interpolation and extrapolation for species diversity. Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
    Google Scholar 
    Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).PubMed 

    Google Scholar 
    Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).CAS 
    PubMed 

    Google Scholar 
    Barluenga, M. & Meyer, A. The Midas cichlid species complex: Incipient sympatric speciation in Nicaraguan cichlid fishes? Mol. Ecol. 13, 2061–2076 (2004).CAS 
    PubMed 

    Google Scholar 
    Elmer, K. R. & Meyer, A. Adaptation in the age of ecological genomics: Insights from parallelism and convergence. Trends Ecol. Evol. 26, 298–306 (2011).PubMed 

    Google Scholar 
    Pérez-Ponce de León, G. & Choudhury, A. Biogeography of helminth parasites of freshwater fishes in Mexico: The search for patterns and processes. J. Biogeogr. 32, 645–659 (2005).
    Google Scholar 
    Blais, J. et al. MHC adaptive divergence between closely related and sympatric African cichlids. PLoS ONE 2, e734 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pariselle, A. et al. The monogenean parasite fauna of cichlids: A potential tool for host biogeography. Int. J. Evol. Biol. 2011, 1–15 (2011).
    Google Scholar 
    Aguilar-Aguilar, R., Salgado-Maldonado, G., Contreras-Medina, R. & Martínez-Aquino, A. Richness and endemism of helminth parasites of freshwater fishes in Mexico. Biol. J. Linn. Soc. 94, 435–444 (2008).
    Google Scholar 
    Dogiel, V. A. Ecology of parasites of freshwater fish. In Parasitology of Fishes (eds Dogiel, V. A. et al.) 1–47 (Edinburgh Oliver & Boyd, 1961).
    Google Scholar 
    Poulin, R. & Valtonen, E. T. The predictability of helminth community structure in space: A comparison of fish populations from adjacent lakes. Int. J. Parasitol. 32, 1235–1243 (2002).PubMed 

    Google Scholar 
    Razo-Mendivil, U., Rosas-Valdez, R. & Pérez-Ponce de León, G. A new Cryptogonimid (Digenea) from the mayan cichlid, Cichlasoma urophthalmus (Osteichthyes: Cichlidae), in several localities of the Yucatán Peninsula, Mexico. J. Parasitol. 94, 1371–1378 (2009).
    Google Scholar 
    Mendoza-Franco, E. F. et al. Occurrence of Sciadicleithrum mexicanum Kritsky, Vidal-Martinez et Rodríguez-Canul, 1994 (Monogenea: Dactylogyridae) in the Cichlid Cichlasoma urophthalmus from a flooded quarry in Yucatan, Mexico. Mem. Inst. Oswaldo Cruz 90, 319–324 (1995).
    Google Scholar 
    Blasco-Costa, I. & Poulin, R. Host traits explain the genetic structure of parasites: A meta-analysis. Parasitology 140, 1316–1322 (2013).PubMed 

    Google Scholar 
    Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Salgado-Maldonado, G. et al. Helminth parasites of freshwater fishes of the Balsas River drainage basin of southwestern Mexico. Comp. Parasitol. 68, 196–203 (2001).
    Google Scholar 
    McCrary, J. K., Murphy, B. R., Stauffer, J. R. & Hendrix, S. S. Tilapia (Teleostei: Cichlidae) status in Nicaraguan natural waters. Environ. Biol. Fishes 78, 107–114 (2007).
    Google Scholar 
    García-Vásquez, A., Pinacho-Pinacho, C. D., Guzmán-Valdivieso, I., Calixto-Rojas, M. & Rubio-Godoy, M. Morpho-molecular characterization of Gyrodactylus parasites of farmed tilapia and their spillover to native fishes in Mexico. Sci. Rep. 11, 1–17 (2021).
    Google Scholar 
    Paredes-Trujillo, A., Velázquez-Abunader, I., Torres-Irineo, E., Romero, D. & Vidal-Martínez, V. M. Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (L.) (Perciformes: Cichlidae) in Yucatán, México. Parasit. Vectors 9, 66 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, S. et al. Monogenean fauna of alien tilapias (Cichlidae) in south China. Parasite 26, 4 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Outa, J. O., Dos Santos, Q. M., Avenant-Oldewage, A. & Jirsa, F. Parasite diversity of introduced fish Lates niloticus, Oreochromis niloticus and endemic Haplochromis spp. of Lake Victoria. Kenya. Parasitol. Res. 120, 1583 (2021).PubMed 

    Google Scholar 
    Smit, N. J., Malherbe, W. & Hadfield, K. A. Alien freshwater fish parasites from South Africa: Diversity, distribution, status and the way forward. Int. J. Parasitol. Parasites Wildl. 6, 386–401 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Ponce de León, G., Lagunas-Calvo, O., García-Prieto, L., Briosio-Aguilar, R. & Aguilar-Aguilar, R. Update on the distribution of the co-invasive Schyzocotyle acheilognathi (= Bothriocephalus acheilognathi), the Asian fish tapeworm, in freshwater fishes of Mexico. J. Helminthol. 92, 279–290 (2018).PubMed 

    Google Scholar 
    Scholz, T., Šimková, A., Razanabolana, J. R. & Kuchta, R. The first record of the invasive Asian fish tapeworm (Schyzocotyle acheilognathi) from an endemic cichlid fish in Madagascar. Helminthol. 55, 84–87 (2018).CAS 

    Google Scholar 
    Acosta, A., Carvalho, E. & da Silva, R. First record of Lernaea cyprinacea (copepoda) in a native fish species from a Brazilian river. Neotrop. Helminthol. 7, 7–12 (2013).
    Google Scholar 
    Choudhury, A. et al. The invasive asian fish tapeworm, Bothriocephalus acheilognathi Yamaguti, 1934, in the chagres river/panama canal drainage, Panama. BioInvas. Rec. 2, 99–104 (2013).
    Google Scholar 
    Schatz, H. & Behan-Pelletier, V. Global diversity of oribatids (Oribatida: Acari: Arachnida). Hydrobiologia 595, 323–328 (2008).
    Google Scholar 
    Choudhury, A., Hoffnagle, T. L. & Cole, R. A. Parasites of native and nonnative fishes of the Little Colorado River, Grand Canyon, Arizona. J. Parasitol. 90, 1042–1053 (2004).PubMed 

    Google Scholar 
    Vanhove, M. P. M. Part 6: Evolutionary parasitology of African freshwater fishes—And its implications for the sustainable management of aquatic resources. In A Guide to the Parasites of African Freshwater Fishes (eds Scholz, T. et al.) 403–412 (Royal Belgian Institute of Natural Sciences, 2018).
    Google Scholar 
    Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach. Int. J. Parasitol. Parasites Wildl. 3, 220–226 (2014).PubMed 

    Google Scholar 
    Baldwin, R. E., Banks, M. A. & Jacobson, K. C. Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax). Rev. Fish Biol. Fish. 22, 137–156 (2011).
    Google Scholar 
    Criscione, C. D. & Blouin, M. S. Parasite phylogeographical congruence with salmon host evolutionarily significant units: Implications for salmon conservation. Mol. Ecol. 16, 993–1005 (2007).CAS 
    PubMed 

    Google Scholar 
    Vanhove, M. P. M. et al. Hidden biodiversity in an ancient lake: Phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci. Rep. 5, 1–15 (2015).
    Google Scholar 
    Matschiner, M., Böhne, A., Ronco, F. & Salzburger, W. The genomic timeline of cichlid fish diversification across continents. Nat. Commun. 11, 1–8 (2020).
    Google Scholar 
    Choudhury, A., García-Varela, M. & Pérez-Ponce de León, G. Parasites of freshwater fishes and the Great American biotic interchange: A bridge too far? J. Helminthol. 91, 174–196 (2017).CAS 
    PubMed 

    Google Scholar 
    Mendoza-Franco, E. F. & Vidal-Martínez, V. M. Phylogeny of species of Sciadicleithrum (Monogenoidea: Ancyrocephalinae), and their historical biogeography in the Neotropics. J. Parasitol. 91, 253–259 (2005).PubMed 

    Google Scholar 
    de Chambrier, A., Pinacho-Pinacho, C. D., Hernández-Orts, J. S. & Scholz, T. T. A new genus and two new species of proteocephalidean tapeworms (Cestoda) from cichlid fish (Perciformes: Cichlidae) in the neotropics. J. Parasitol. 103, 83–94 (2017).PubMed 

    Google Scholar 
    Mendoza-Palmero, C. A., Blasco-Costa, I., Hernández-Mena, D. & Pérez-Ponce de León, G. Parasciadicleithrum octofasciatum n. gen., n. sp. (Monogenoidea: Dactylogyridae), parasite of Rocio octofasciata (Regan) (Cichlidae: Perciformes) from Mexico characterised by morphological and molecular evidence. Parasitol. Int. 66, 152–162 (2017).PubMed 

    Google Scholar 
    Pinacho-Pinacho, C. D., Hernández-Orts, J. S., Sereno-Uribe, A. L., Pérez-Ponce de León, G. & García-Varela, M. Mayarhynchus karlae n. g., n. sp. (Acanthocephala: Neoechinorhynchidae), a parasite of cichlids (Perciformes: Cichlidae) in southeastern Mexico, with comments on the paraphyly of Neoechynorhynchus Stiles & Hassall, 1905. Syst. Parasitol. 94, 351–365 (2017).PubMed 

    Google Scholar 
    Razo-Mendivil, U., Vázquez-Domínguez, E., Rosas-Valdez, R., Pérez-Ponce de León, G. & Nadler, S. A. Phylogenetic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of Middle-American cichlids. Int. J. Parasitol. 40, 471–486 (2010).CAS 
    PubMed 

    Google Scholar 
    Razo-Mendivil, U., Rosas-Valdez, R., Rubio-Godoy, M. & Pérez-Ponce de León, G. The use of mitochondrial and nuclear sequences in prospecting for cryptic species in Tabascotrema verai (Digenea: Cryptogonimidae), a parasite of Petenia splendida (Cichlidae) in Middle America. Parasitol. Int. 64, 173–181 (2015).CAS 
    PubMed 

    Google Scholar 
    Pinacho-Pinacho, C. D., García-Varela, M., Sereno-Uribe, A. L. & Pérez-Ponce de León, G. A hyper-diverse genus of acanthocephalans revealed by tree-based and non-tree-based species delimitation methods: Ten cryptic species of Neoechinorhynchus in Middle American freshwater fishes. Mol. Phylogenet. Evol. 127, 30–45 (2018).PubMed 

    Google Scholar 
    Martínez-Aquino, A. et al. Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences. J. Parasitol. 95, 1040–1047 (2009).PubMed 

    Google Scholar  More

  • in

    Predicting the possibility of African horse sickness (AHS) introduction into China using spatial risk analysis and habitat connectivity of Culicoides

    Kumar, N. et al. Peste des petits ruminants virus infection of small ruminants: A comprehensive review. Viruses 6, 2287–2327. https://doi.org/10.3390/v6062287 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zientara, S., Weyer, C. T. & Lecollinet, S. African horse sickness. Rev. Sci. Tech. 34, 315–327. https://doi.org/10.20506/rst.34.2.2359 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rutkowska, D. A., Mokoena, N. B., Tsekoa, T. L., Dibakwane, V. S. & O’Kennedy, M. M. Plant-produced chimeric virus-like particles—A new generation vaccine against African horse sickness. BMC Vet. Res. 15, 1. https://doi.org/10.1016/j.rvsc.2010.05.031 (2019).CAS 
    Article 

    Google Scholar 
    Barnard, B. J. H. Epidemiology of African horse sickness and the role of zebra in South Africa. Arch. Virol. Suppl. 14, 13–19. https://doi.org/10.1007/978-3-7091-6823-3_3 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hamblin, C., Salt, J. S., Mellor, P. S., Graham, S. D. & Wohlsein, P. Donkeys as reservoirs of African horse sickness virus. Arch. Virol. Suppl. 14, 37–47. https://doi.org/10.1007/978-3-7091-6823-3_5 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mellor, P. S., Boorman, J. P. T. & Baylis, M. Culicoides biting midges: their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    Article 

    Google Scholar 
    Redmond, E. F., Jones, D. & Rushton, J. Economic assessment of african horse sickness vaccine impact. Equine Vet. J. https://doi.org/10.1111/j.2042-3306.1982.tb02404.x (2021).Article 
    PubMed 

    Google Scholar 
    Venter, G. J., Wright, I. M., Linde, T. C. V. D. & Paweska, J. T. The oral susceptibility of South African field populations of Culicoides to African horse sickness virus. Med. Vet. Entomol. 23, 367–378. https://doi.org/10.1111/j.1365-2915.2009.00829.x (2010).Article 

    Google Scholar 
    Mellor, P. S., Boned, J., Hamblin, C. & Graham, S. D. Isolations of African horse sickness virus from vector insects made during the 1988 epizootic in Spain. Epidemiol. Infect. 105, 447–454. https://doi.org/10.1017/s0950268800048020 (1990).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meiswinkel, R. & Paweska, J. T. Evidence for a new field Culicoides vector of African horse sickness in South Africa. Prev. Vet. Med. 60, 243–253. https://doi.org/10.1016/s0167-5877(02)00231-3 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howell, P. G. The isolation and identification of further antigenic types of African horsesickness virus. Onderstepoort. J. Vet. Res. 29, 139–149 (1962).
    Google Scholar 
    Calisher, C. H. & Mertens, P. P. C. Taxonomy of African horse sickness viruses. Arch. Virol. Suppl. 14, 3 (1998).CAS 
    PubMed 

    Google Scholar 
    Rodriguez, M., Hooghuis, H. & Castaño, M. African horse sickness in Spain. Vet. Microbiol. 33, 129–142. https://doi.org/10.1016/0378-1135(92)90041-q (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howell, P. G. The 1960 epizootic of African Horsesickness in the Middle East and S.W. Asia (268KB) (268KB). J. South Afr. Vet. Med. Assoc. (1960).King, S., RajkoEnow, P., Ashby, M., Frost, L. & Batten, C. Outbreak of African Horse Sickness in Thailand, 2020. Transbound. Emerg. Dis. (2020).OIE. World Animal Health Information System. https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=33768 (2020).Castillo-Olivares, J. African horse sickness in Thailand: Challenges of Controlling an outbreak by vaccination. Equine Vet. J. (2020).Gibbens, N. Schmallenberg virus: a novel viral disease in northern Europe. Vet. Rec. 170, 58. https://doi.org/10.1136/vr.e292 (2012).Article 
    PubMed 

    Google Scholar 
    Purse, B. V., Brown, H. E., Harrup, L., Mertens, P. & Rogers, D. J. Invasion of bluetongue and other orbivirus infections into Europe: the role of biological and climatic processes. Rev. Sci. Tech. 27, 427–442 (2008).CAS 
    Article 

    Google Scholar 
    Leta, S., Fetene, E., Mulatu, T., Amenu, K. & Revie, C. W. Modeling the global distribution of Culicoides imicola: an Ensemble approach. Sci. Rep. 9, 1 (2019).CAS 
    Article 

    Google Scholar 
    Thepparat, A., Bellis, G., Ketavan, C., Ruangsittichai, J. & Apiwathnasorn, C. T. species of Culicoides Latreille (Diptera: Ceratopogonidae) newly recorded from Thailand. Zootaxa 4033, 48–56. https://doi.org/10.11646/zootaxa.4033.1.2 (2015).Article 
    PubMed 

    Google Scholar 
    Raksakoon, C. & Potiwat, R. Current arboviral threats and their potential vectors in Thailand. Pathogens 10, 80 (2021).CAS 
    Article 

    Google Scholar 
    Gao, S. et al. Transboundary spread of peste des petits ruminants virus in western China: A prediction model. PLoS ONE 16, e0257898–e0257898. https://doi.org/10.1371/journal.pone.0257898 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joka, F. R., Van Gils, H., Huang, L. & Wang, X. High probability areas for ASF infection in china along the russian and korean borders. Transbound. Emerg. Dis. https://doi.org/10.1016/j.watres.2015.05.061.Steven et al. Opening the black box: an open-source release of Maxent. Ecography (2017).Gils, H. V., Westinga, E., Carafa, M., Antonucci, A. & Ciaschetti, G. Where the bears roam in Majella National Park, Italy. J. Nat. Conser. 22, 23–34. https://doi.org/10.1016/j.jnc.2013.08.001 (2014).Article 

    Google Scholar 
    Duque-Lazo, J., Navarro-Cerrillo, R. M., Van Gils, H. & Groen, T. A. Forecasting oak decline caused by Phytophthora cinnamomi in Andalusia : identification of priority areas for intervention. For. Ecol. Manage. 417, 122–136 (2018).Article 

    Google Scholar 
    Duque-Lazo, J., Gils, H. V., Groen, T. A. & Cerrillo, R. M. N. Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol. Model. 320, 62–70 (2016).Article 

    Google Scholar 
    Zeng, Z., Gao, S., Wang, H.-N., Huang, L.-Y. & Wang, X.-L. A predictive analysis on the risk of peste des petits ruminants in livestock in the Trans-Himalayan region and validation of its transboundary transmission paths. PLoS ONE 16, e0257094–e0257094. https://doi.org/10.1371/journal.pone.0257094 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joka, F. R., Wang, H., van Gils, H. & Wang, X. Could wild boar be the Trans-Siberian transmitter of African swine fever?. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.13814 (2020).Article 
    PubMed 

    Google Scholar 
    Robin, M., Page, P., Archer, D. & Baylis, M. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. 48, 659–669. https://doi.org/10.1111/evj.12600 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Maclachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. 41, 35. https://doi.org/10.1051/vetres/2010007 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    M. et al. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. https://doi.org/10.1111/evj.12600 (2016).Eagles, D., Melville, L., Weir, R. & Davis, S. Long-distance aerial dispersal modelling of Culicoides biting midges: case studies of incursions into Australia. BMC Vet. Res. 10, 1. https://doi.org/10.1186/1746-6148-10-135 (2014).Article 

    Google Scholar 
    Pedgley, D. E. & Tucker, M. R. Possible spread of African horse sickness on the wind. J. Hygiene 79, 279–298 (1977).CAS 
    Article 

    Google Scholar 
    Riddin, M. A., Venter, G. J., Labuschagne, K. & Villet, M. H. Culicoides species as potential vectors of African horse sickness virus in the southern regions of South Africa. Med. Vet. Entomol. 33, 1 (2019).Article 

    Google Scholar 
    Carpenter, S., Mellor, P. S., Fall, A. G., Garros, C. & Venter, G. J. African horse sickness Virus: History, transmission, and current status. Annu. Rev. Entomol. 62, 343–358. https://doi.org/10.1146/annurev-ento-031616-035010 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    https://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports. (Accessed 12 August 2020).OIE. African horse sickness(updated April 2013). OIE Technical Disease Cards, Paris, France: World Organisation for Animal Health. (2013).Ciss, M. et al. Ecological niche modelling to estimate the distribution of Culicoides, potential vectors of bluetongue virus in Senegal. BMC Ecology 19, doi:https://doi.org/10.1186/s12898-019-0261-9 (2019).Harrup, L. E. et al. Does covering of farm-associated Culicoides larval habitat reduce adult populations in the United Kingdom?. Vet. Parasitol. 201, 137–145. https://doi.org/10.1016/j.vetpar.2013.11.028 (2013).Article 
    PubMed 

    Google Scholar 
    Hoch, A. L., Roberts, D. R. & Pinheiro, F. P. Host-seeking behavior and seasonal abundance of Culicoides paraensis (Diptera: Ceratopogonidae) in Brazil. J. Am. Mosq. Control Assoc. 6, 110–114 (1990).CAS 
    PubMed 

    Google Scholar 
    Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L. & Purse, B. V. Culicoides biting midges, arboviruses and public health in Europe. Antiviral Res. 100, 102–113. https://doi.org/10.1016/j.antiviral.2013.07.020 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carpenter, S., Wilson, A., Barber, J., Veronesi, E. & Gubbins, S. Temperature Dependence of the Extrinsic Incubation Period of Orbiviruses in Culicoides Biting Midges. PLoS ONE 6, e27987. https://doi.org/10.1371/journal.pone.0027987 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yanase, T. et al. Molecular Identification of Field-CollectedCulicoidesLarvae in the Southern Part of Japan. J. Med. Entomol. (2013).Meiswinkel, R. Afrotropical Culicoides: C (Avaritia) miombo sp. nov., a widespread species closely allied to C. (A.) imicola Kieffer, 1913 (Diptera: Ceratopogonidae). Onderstepoort. J. Vet. Res. 58, 155–170 (1991).Sloyer, K. E. et al. Ecological niche modeling the potential geographic distribution of four Culicoides species of veterinary significance in Florida, USA. PLoS ONE 14, 1 (2019).Article 

    Google Scholar 
    Reynolds, D. R., Chapman, J. W. & Harrington, R. The migration of insect vectors of plant and animal viruses. Adv. Virus Res. 67, 453–517 (2006).CAS 
    Article 

    Google Scholar 
    L. et al. Investigating Incursions of Bluetongue Virus Using a Model of Long-Distance Culicoides Biting Midge Dispersal. Transbound. Emerg. Dis. https://doi.org/10.1111/j.1865-1682.2012.01345.x (2013).Notice of the general office of the Ministry of agriculture and rural areas and the general office of the State General Administration of sports on printing and distributing the national horse industry development plan (2020–2025). (Animal Husbandry and Veterinary Bureau, 2020.09.29). More

  • in

    Field experiments underestimate aboveground biomass response to drought

    Literature search and study selectionA systematic literature search was conducted in the ISI Web of Science database for observational and experimental studies published from 1975 to 13 January 2020 using the following search terms: TOPIC: (grassland* OR prairie* OR steppe* OR shrubland* OR scrubland* OR bushland*) AND TOPIC: (drought* OR ‘dry period*’ OR ‘dry condition*’ OR ‘dry year*’ OR ‘dry spell*’) AND TOPIC: (product* OR biomass OR cover OR abundance* OR phytomass). The search was refined to include the subject categories Ecology, Environmental Sciences, Plant Sciences, Biodiversity Conservation, Multidisciplinary Sciences and Biology, and the document types Article, Review and Letter. This yielded a total of 2,187 peer-reviewed papers (Supplementary Fig. 1). At first, these papers were screened by title and abstract, which resulted in 197 potentially relevant full-text articles. We then examined the full text of these papers for eligibility and selected 87 studies (43 experimental, 43 observational and 1 that included both types) on the basis of the following criteria:

    (1)

    The research was conducted in the field, in natural or semi-natural grasslands or shrublands (for example, artificially constructed (seeded or planted) plant communities or studies using monolith transplants were excluded). We used this restriction because most reports on observational droughts are from intact ecosystems, and experiments in disturbed sites or using artificial communities would thus not be comparable to observational drought studies.

    (2)

    In the case of observational studies, the drought year or a multi-year drought was clearly specified by the authors (that is, we did not arbitrarily extract dry years from a long-term dataset). Please note that some observational data points are from control plots of experiments (of any kind), where the authors reported that a drought had occurred during the study period. We did not involve gradient studies that compare sites of different climates, which are sometimes referred to as ‘observational studies’.

    (3)

    The paper reported the amount or proportion of change in annual or growing-season precipitation (GSP) compared with control conditions. We consistently use the term ‘control’ for normal precipitation (non-drought) year or years in observational studies and for ambient precipitation (no treatment) in experimental studies hereafter. Similarly, we use the term ‘drought’ for both drought year or years in observational studies and drought treatment in experimental studies. In the case of multi-factor experiments, where precipitation reduction was combined with any other treatment (for example, warming), data from the plots receiving drought only and data from the control plots were used.

    (4)

    The paper contained raw data on plant production under both control and drought conditions, expressed in any of the following variables: ANPP, aboveground plant biomass (in grassland studies only) or percentage plant cover. In 79% of the studies that used ANPP as a production variable, ANPP was estimated by harvesting peak or end-of-season AGB. We therefore did not distinguish between ANPP and AGB, which are referred to as ‘biomass’ hereafter. We included the papers that reported the production of the whole plant community, or at least that of the dominant species or functional groups approximating the abundance of the whole community.

    (5)

    When multiple papers were published on the same experiment or natural drought event at the same study site, the most long-term study including the largest number of drought years was chosen.

    In addition to the systematic literature search, we included 27 studies (9 experimental, 17 observational and 1 that included both types) meeting the above criteria from the cited references of the Web of Science records selected for our meta-analyses, and from previous meta-analyses and reviews on the topic. In total, this resulted in 114 studies (52 experimental, 60 observational and 2 that included both types; Supplementary Note 9, Supplementary Fig. 2 and ref. 25).Data compilationData were extracted from the text or tables, or were read from the figures using Web Plot Digitizer26. For each study, we collected the study site, latitude, longitude, mean annual temperature (MAT) and precipitation (MAP), study type (experimental or observational), and drought length (the number of consecutive drought years). When MAT or MAP was not documented in the paper, it was extracted from another published study conducted at the same study site (identified by site names and geographic coordinates) or from an online climate database cited in the respective paper. We also collected vegetation type—that is, grassland when it was dominated by grasses, or shrubland when the dominant species included one or more shrub species (involving communities co-dominated by grasses and shrubs). Data from the same study (that is, paper) but from different geographic locations or environmental conditions (for example, soil types, land uses or multiple levels of experimental drought) were collected as distinct data points (but see ‘Statistical analysis’ for how these points were handled). As a result, the 114 published papers provided 239 data points (112 experimental and 127 observational)25.For the observational studies, normal precipitation year or years specified by the authors was used as the control. If it was not specified in the paper, the year immediately preceding the drought year(s) was chosen as the control. When no data from the pre-drought year were available, the year immediately following the drought year(s) (14 data points) or a multi-year period given in the paper (22 data points) was used as the control. For the experimental studies, we also collected treatment size (that is, rainout shelter area or, if it was not reported in the paper, the experimental plot size).For the calculation of drought severity, we used yearly precipitation (YP), which was reported in a much higher number of studies than GSP. We extracted YP for both control (YPcontrol) and drought (YPdrought). For the observational studies, when a multi-year period was used as the control or the natural drought lasted for more than one year, precipitation values were averaged across the control or drought years, respectively. Consistently, in the case of multi-year drought experiments, YPcontrol and YPdrought were averaged across the treatment years. When only GSP was published in the paper (63 of 239 data points), we used this to obtain YP data as follows: we regarded MAP as YPcontrol, and YPdrought was calculated as YPdrought = MAP − (GSPcontrol − GSPdrought). From YPcontrol and YPdrought data, we calculated drought severity as follows: (YPdrought − YPcontrol)/YPcontrol × 100.For production, we compiled the mean, replication (N) and, if the study reported it, a variance estimate (s.d., s.e.m. or 95% CI) for both control and drought. In the case of multi-year droughts, data only from the last drought year were extracted, except in five studies (17 data points) where production data were given as an average for the drought years. When both biomass and cover data were presented in the paper, we chose biomass. For each study, we consistently considered replication as the number of the smallest independent study unit. When only the range of replications was reported in a study, we chose the smallest number.To quantify climatic aridity for each study site, we used an aridity index (AI), calculated as the ratio of MAP and mean annual PET (AI = MAP/PET). This is a frequently used index in recent climate change research27,28. AI values were extracted from the Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v.2 for the period of 1970–2000 (aggregated on annual basis)29.Because we wanted to prevent our analysis from being distorted by a strongly unequal distribution of studies between the two study types regarding some potentially important explanatory variables, we left out studies from our focal meta-analysis in three steps. First, we left out studies that were conducted at wet sites—that is, where site AI exceeded 1. The value of 1 was chosen for two reasons: above this value, the distribution of studies between the two study types was extremely uneven (22 experimental versus 2 observational data points with AI  > 1)25, and the AI value of 1 is a bioclimatically meaningful threshold, where MAP equals PET. Second, we left out shrublands, because we had only 14 shrubland studies (out of 105 studies with AI  More

  • in

    Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80- ). 359, 80–83 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: Insights and impacts. Coral Reefs 38, 539–545 (2019).ADS 

    Google Scholar 
    Glynn. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).ADS 

    Google Scholar 
    Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138 (1997).
    Google Scholar 
    Maynard, J. A. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Chang. 5, 688–694 (2015).ADS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl. Acad. Sci. U. S. A. 105, 17442–17446 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, H. et al. Positive and negative responses of coral calcification to elevated pCO2: Case studies of two coral species and the implications of their responses. Mar. Ecol. Prog. Ser. 502, 145–156 (2014).ADS 
    CAS 

    Google Scholar 
    Hoadley, K. D. et al. Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host + symbiont response. Sci. Rep. 5, 1–15 (2015).
    Google Scholar 
    Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One. 8, e75049 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, (eds. Pörtner, H.-O. et al.) 1–36 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2019).Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions. Coral Reefs 35, 729–738 (2016).ADS 

    Google Scholar 
    Dove, S. G., Brown, K. T., Van Den Heuvel, A., Chai, A. & Hoegh-Guldberg, O. Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Commun. Earth Environ. 1, 1–9 (2020).
    Google Scholar 
    Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. O. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Bio. Ecol. 479, 60–68 (2016).
    Google Scholar 
    Amid, C. et al. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam. Environ. Sci. Pollut. Res. 25, 13360–13372 (2018).CAS 

    Google Scholar 
    Anthony, K. R. N., Connolly, S. R. & Willis, B. L. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).ADS 

    Google Scholar 
    Edmunds, P. J. & Davies, P. S. An energy budget for Porites porites (Scleractinia). Mar. Biol. 92, 339–347 (1986).
    Google Scholar 
    Stimson, J. S. Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull. Mar. Sci. 41, 889–904 (1987).ADS 

    Google Scholar 
    Harland, A. D., Navarro, J. C., Spencer Davies, P. & Fixter, L. M. Lipids of some Caribbean and Red Sea corals: Total lipid, wax esters, triglycerides and fatty acids. Mar. Biol. 117, 113–117 (1993).CAS 

    Google Scholar 
    Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the northern gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 1–12 (2017).
    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).ADS 

    Google Scholar 
    Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. Funct. Ecol. 23, 539–550 (2009).
    Google Scholar 
    Baumann, J. H., Grottoli, A. G., Hughes, A. D. & Matsui, Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J. Exp. Mar. Bio. Ecol. 461, 469–478 (2014).CAS 

    Google Scholar 
    Hughes, A. D. & Grottoli, A. G. Heterotrophic compensation: A possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?. PLoS ONE 8, 1–10 (2013).
    Google Scholar 
    Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).ADS 
    PubMed 

    Google Scholar 
    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Levas, S. J. et al. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?. Coral Reefs 35, 495–506 (2016).ADS 

    Google Scholar 
    Jury, C. P., Delano, M. N. & Toonen, R. J. High heritability of coral calcification rates and evolutionary potential under ocean acidification. Sci. Rep. 9, 1–13 (2019).
    Google Scholar 
    Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. R. Soc. B Biol. Sci. 286, 20190614 (2019).
    Google Scholar 
    Concepcion, G. T., Polato, N. R., Baums, I. B. & Toonen, R. J. Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata and Porites lobata. Conserv. Genet. Resour. 2, 11–15 (2010).

    Google Scholar 
    Gorospe, K. D. & Karl, S. A. Genetic relatedness does not retain spatial pattern across multiple spatial scales: Dispersal and colonization in the coral, Pocillopora damicornis. Mol. Ecol. 22, 3721–3736 (2013).PubMed 

    Google Scholar 
    Wall, C. B., Ritson-Williams, R., Popp, B. N. & Gates, R. D. Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnol. Oceanogr. 64, 2011–2028 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahr, K. D., Tran, T., Jury, C. P. & Toonen, R. J. Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. PLoS ONE 15, 1–13 (2020).
    Google Scholar 
    Rogelj, J. et al. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: A review of methods. Coral Reefs 39, 885–902 (2020).
    Google Scholar 
    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grottoli, A. G. Variability of stable isotopes and maximum linear extension in reef-coral skeletons at Kaneohe Bay, Hawaii. Mar. Biol. 135, 437–449 (1999).
    Google Scholar 
    McLachlan, R. H., Dobson, K. L., Grottoli, A. G. Quantification of Total Biomass in Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdyai7se.McLachlan, R. H., Muñoz-Garcia, A., Grottoli, A. G. Extraction of Total Soluble Lipid from Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bc4qiyvw.McLachlan, R. H., Price, J. T., Dobson, K. L., Weisleder, N. & Grottoli, A. G. Microplate Assay for Quantification of Soluble Protein in Ground Coral Samples. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdc8i2zw.McLachlan, R. H., Juracka, C. & Grottoli, A. G. Symbiodiniaceae Enumeration in Ground Coral Samples Using Countess™ II FL Automated Cell Counter. Protocols.io (2020). https://doi.org/10.17504/protocols.io.bdc5i2y6.McLachlan, R. H. & Grottoli, A. G. Geometric Method for Estimating Coral Surface Area Using Image Analysis. Protocols.io https://doi.org/10.17504/protocols.io.bdyai7se(2021).Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).ADS 
    CAS 

    Google Scholar 
    Levas, S. J. et al. Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Mar. Ecol. Prog. Ser. 519, 153–164 (2015).ADS 
    CAS 

    Google Scholar 
    Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woodley, C. M., Burnett, A. & Downs, C. A. Epidemiological Assessment of Reproductive Condition of ESA Priority Coral (2013).Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139 (2014).ADS 
    PubMed 

    Google Scholar 
    Rodrigues, L. J., Grottoli, A. G. & Lesser, M. P. Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii. J. Exp. Biol. 211, 2502–2509 (2008).PubMed 

    Google Scholar 
    Rowan, H. et al. Environmental gradients drive physiological variation in Hawaiian corals. Coral Reefs 40(5), 1505–1523. https://doi.org/10.1007/s00338-021-02140-8 (2021).Article 

    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed 

    Google Scholar 
    J. T. Price, thesis, The Ohio State University (2020). More

  • in

    The AI that deciphers ancient Greek graffiti

    NATURE PODCAST
    09 March 2022

    The AI that deciphers ancient Greek graffiti

    An artificial intelligence that restores illegible inscriptions, and the project that’s reintroducing lost species in Argentina.

    Nick Petrić Howe

    &

    Benjamin Thompson

    Nick Petrić Howe

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Benjamin Thompson

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Subscribe
    Subscribe

    iTunes
    Google Podcast
    acast
    RSS

    Listen to the latest from the world of science, with Nick Petrić Howe and Benjamin Thompson.

    Your browser does not support the audio element.

    Download MP3

    In this episode:00:46 The AI helping historians read ancient textsResearchers have developed an artificial intelligence that can restore and date ancient Greek inscriptions. They hope that it will help historians by speeding up the process of reconstructing damaged texts. Research article: Assael et al.News and Views: AI minds the gap and fills in missing Greek inscriptionsVideo: The AI historian: A new tool to decipher ancient textsIthaca platform08:53 Research HighlightsPollinators prefer nectar with a pinch of salt, and measurements of a megacomet’s mighty size.Research Highlight: Even six-legged diners can’t resist sweet-and-salty snacksResearch Highlight: Huge comet is biggest of its kind11:10 Rewilding ArgentinaThis week Nature publishes a Comment article from a group who aim to reverse biodiversity loss by reintroducing species to areas where they are extinct. We speak to one of the Comment’s authors about the project and their hopes that it might kick start ecosystem restoration.Comment: Rewilding Argentina: lessons for the 2030 biodiversity targets21:02 Briefing ChatWe discuss some highlights from the Nature Briefing. This time, giant bacteria that can be seen with the naked eye, and how record-breaking rainfall has caused major floods in Australia.Science: Largest bacterium ever discovered has an unexpectedly complex cellNew Scientist: Record flooding in Australia driven by La Niña and climate changeThe Conversation: The east coast rain seems endless. Where on Earth is all the water coming from?Subscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed.

    doi: https://doi.org/10.1038/d41586-022-00701-7

    Related Articles

    Read the paper: Restoring and attributing ancient texts using deep neural networks

    Rewilding Argentina: lessons for the 2030 biodiversity targets

    Subjects

    Machine learning

    History

    Ecology

    Latest on:

    Machine learning

    AI minds the gap and fills in missing Greek inscriptions
    News & Views 09 MAR 22

    The evolution, evolvability and engineering of gene regulatory DNA
    Article 09 MAR 22

    Gran Turismo champion, reimagined urine — the week in infographics
    News 15 FEB 22

    History

    AI minds the gap and fills in missing Greek inscriptions
    News & Views 09 MAR 22

    Police rely on radiocarbon dating to identify forged paintings
    News 09 MAR 22

    Restoring and attributing ancient texts using deep neural networks
    Article 09 MAR 22

    Ecology

    Discovery of a Ni2+-dependent guanidine hydrolase in bacteria
    Article 09 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    How itchy vicuñas remade a vast wilderness
    Research Highlight 04 MAR 22

    Jobs

    Principal Investigator / Faculty

    San Diego Biomedical Research Institute (SDBRI)
    Multiple locations

    Research Associate / Light Microscopy Imaging Specialist (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Bioinformatician (m/f/div)

    Max Planck Institute for Plant Breeding Research (MPIPZ)
    Cologne, Germany

    Research Coordinator / Institute Manager (div/f/m)

    Max Planck Institute for Astrophysics (MPA)
    Garching near Munich, Germany More