More stories

  • in

    Bifidobacterium castoris strains isolated from wild mice show evidence of frequent host switching and diverse carbohydrate metabolism potential

    Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol. 2011;149:37–44.CAS 
    PubMed 

    Google Scholar 
    O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016;7:925.PubMed 
    PubMed Central 

    Google Scholar 
    Ferrario C, Milani C, Mancabelli L, Lugli GA, Duranti S, Mangifesta M, et al. Modulation of the eps-ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiol Ecol. 2016;92:fiw056.PubMed 

    Google Scholar 
    Sayers EW, Beck J, Brister JR, Bolton EE, Canese K, Comeau DC, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020;48:D9–D16.CAS 
    PubMed 

    Google Scholar 
    Bottacini F, Medini D, Pavesi A, Turroni F, Foroni E, Riley D, et al. Comparative genomics of the genus Bifidobacterium. Microbiology. 2010;156:3243–54.CAS 
    PubMed 

    Google Scholar 
    Turroni F, Duranti S, Bottacini F, Guglielmetti S, Van Sinderen D, Ventura M. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol. 2014;5:437.PubMed 
    PubMed Central 

    Google Scholar 
    Bottacini F, Motherway MO, Kuczynski J, O’Connell KJ, Serafini F, Duranti S, et al. Comparative genomics of the Bifidobacterium breve taxon. BMC Genomics. 2014;15:170.PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M, et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol. 2014;80:6290–302.PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep. 2015;5:15782.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, et al. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol. 2016;82:980–91.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8:14319.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaulke CA, Arnold HK, Humphreys IR, Kembel SW, O’Dwyer JP, Sharpton TJ. Ecophylogenetics clarifies the evolutionary association between mammals and their gut microbiota. mBio. 2018;9:e01348–18.PubMed 
    PubMed Central 

    Google Scholar 
    Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10:2200.PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone CA, Hamady M, Cantarel BL, Coutinho PM, Henrissat B, Gordon JI, et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci USA. 2008;105:15076–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA. 2006;103:15611–6.PubMed 
    PubMed Central 

    Google Scholar 
    Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. Transmission modes of the mammalian gut microbiota. Science. 2018;362:453–7.CAS 
    PubMed 

    Google Scholar 
    Browne HP, Almeida A, Kumar N, Vervier K, Adoum AT, Viciani E, et al. Host adaptation in gut Firmicutes is associated with sporulation loss and altered colonisation patterns. 2020. https://www.biorxiv.org/content/10.1101/2020.09.09.289504v1.Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suzuki TA. Links between natural variation in the microbiome and host fitness in wild mammals. Integr Comp Biol. 2017;57:756–69.CAS 
    PubMed 

    Google Scholar 
    McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lugli GA, Alessandri G, Milani C, Mancabelli L, Ruiz L, Fontana F, et al. Evolutionary development and co-phylogeny of primate-associated bifidobacteria. Environ Microbiol. 2020;22:3375–93.PubMed 

    Google Scholar 
    Lugli GA, Mancino W, Milani C, Duranti S, Mancabelli L, Napoli S, et al. Dissecting the evolutionary development of the species Bifidobacterium animalis through comparative genomics analyses. Appl Environ Microbiol. 2019;85:e02806–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lugli GA, Duranti S, Albert K, Mancabelli L, Napoli S, Viappiani A, et al. Unveiling genomic diversity among members of the species Bifidobacterium pseudolongum, a widely distributed gut commensal of the animal kingdom. Appl Environ Microbiol. 2019;85:e03065–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Mangifesta M, Mancabelli L, Lugli GA, James K, Duranti S, et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 2017;11:2834–47.PubMed 
    PubMed Central 

    Google Scholar 
    Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Vliet S, Doebeli M. The role of multilevel selection in host microbiome evolution. Proc Natl Acad Sci USA. 2019;116:20591–7.PubMed 
    PubMed Central 

    Google Scholar 
    Groussin M, Mazel F, Alm EJ. Co-evolution and co-speciation of host-gut bacteria systems. Cell Host Microbe. 2020;28:12–22.CAS 
    PubMed 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Firek B, Baker R, Burstein D, et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 2017;27:601–12.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duranti S, Lugli GA, Napoli S, Anzalone R, Milani C, Mancabelli L, et al. Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov. Int J Syst Evol Microbiol. 2019;69:1288–98.CAS 
    PubMed 

    Google Scholar 
    Lugli GA, Milani C, Duranti S, Mancabelli L, Mangifesta M, Turroni F, et al. Tracking the taxonomy of the genus Bifidobacterium based on a phylogenomic approach. Appl Environ Microbiol. 2017;84:e02249–17.
    Google Scholar 
    Snel B, Bork P, Huynen MA. Genome phylogeny based on gene content. Nat Genet. 1999;21:108–10.CAS 
    PubMed 

    Google Scholar 
    Dutilh BE, Huynen MA, Bruno WJ, Snel B. The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J Mol Evol. 2004;58:527–39.CAS 
    PubMed 

    Google Scholar 
    Legendre P, Desdevises Y, Bazin E. A statistical test for host-parasite coevolution. Syst Biol. 2002;51:217–34.PubMed 

    Google Scholar 
    Michaux JR, Chevret P, Filippucci MG, Macholan M. Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA. Mol Phylogenet Evol. 2002;23:123–36.CAS 
    PubMed 

    Google Scholar 
    Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14:635–48.CAS 
    PubMed 

    Google Scholar 
    Van Den Broek LAM, Voragen AGJ. Bifidobacterium glycoside hydrolases and (potential) prebiotics. Innov Food Sci Emerg Technol 2008;9:401–7.
    Google Scholar 
    Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011;6:285–306.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez CI, Martiny JBH. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genomics. 2020;21:26.PubMed 
    PubMed Central 

    Google Scholar 
    Henrissat B, Davies GJ. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 2000;124:1515–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel. 2006;19:555–62.CAS 
    PubMed 

    Google Scholar 
    Miyazaki T, Ishizaki Y, Ichikawa M, Nishikawa A, Tonozuka T. Structural and biochemical characterization of novel bacterial alpha-galactosidases belonging to glycoside hydrolase family 31. Biochem J. 2015;469:145–58.CAS 
    PubMed 

    Google Scholar 
    Hachem MA, Fredslund F, Andersen JM, Jonsgaard Larsen R, Majumder A, Ejby M, et al. Raffinose family oligosaccharide utilisation by probiotic bacteria: insight into substrate recognition, molecular architecture and diversity of GH36 α-galactosidases. Biocatal Biotransform. 2012;30:316–25.CAS 

    Google Scholar 
    Kujawska M, La Rosa SL, Roger LC, Pope PB, Hoyles L, McCartney AL, et al. Succession of Bifidobacterium longum strains in response to a changing early life nutritional environment reveals dietary substrate adaptations. iScience. 2020;23:101368.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu H, Ren W, Ly M, Li H, Wang S. Characterization of an alkaline GH49 dextranase from marine bacterium Arthrobacter oxydans KQ11 and its application in the preparation of isomalto-oligosaccharide. Mar Drugs. 2019;17:479.CAS 
    PubMed Central 

    Google Scholar 
    Michlmayr H, Hell J, Lorenz C, Bohmdorfer S, Rosenau T, Kneifel W. Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl Environ Microbiol. 2013;79:6747–54.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fujita K, Takashi Y, Obuchi E, Kitahara K, Suganuma T. Characterization of a novel beta-l-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. J Biol Chem. 2014;289:5240–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viens P, Lacombe-Harvey ME, Brzezinski R. Chitosanases from Family 46 of glycoside hydrolases: from proteins to phenotypes. Mar Drugs. 2015;13:6566–87.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, et al. Bifidobacterium longum subsp. infantis ATCC 15697 alpha-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol. 2012;78:795–803.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM, Lemay DG, et al. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp longum SC596. Sci Rep-Uk. 2016;6:35045.CAS 

    Google Scholar 
    Kitaoka M. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv Nutr. 2012;3:422S–9S.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiyohara M, Tanigawa K, Chaiwangsri T, Katayama T, Ashida H, Yamamoto K. An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology. 2011;21:437–47.CAS 
    PubMed 

    Google Scholar 
    Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A. Structures and mechanisms of glycosyltransferases. Glycobiology. 2006;16:29R–37R.CAS 
    PubMed 

    Google Scholar 
    Hidalgo-Cantabrana C, Sanchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol. 2014;80:9–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.CAS 
    PubMed 

    Google Scholar 
    Lavrinienko A, Tukalenko E, Mousseau TA, Thompson LR, Knight R, Mappes T, et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. Sci Data. 2020;7:312.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baumler A, Fang FC. Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med. 2013;3:a010041.PubMed 
    PubMed Central 

    Google Scholar 
    Glazko GV, Nei M. Estimation of divergence times for major lineages of primate species. Mol Biol Evol. 2003;20:424–34.CAS 
    PubMed 

    Google Scholar 
    Milton K. The critical role played by animal source foods in human (Homo) evolution. J Nutr. 2003;133:3886S–92S.CAS 
    PubMed 

    Google Scholar 
    Renaud S, Michaux J, Schmidt DN, Aguilar JP, Mein P, Auffray JC. Morphological evolution, ecological diversification and climate change in rodents. Proc Biol Sci. 2005;272:609–17.PubMed 
    PubMed Central 

    Google Scholar 
    Michaux JR, Libois R, Filipucci M-G. So close and so different: comparative phylogeography of two small mammal species, the Yellow-necked fieldmouse (Apodemus flavicollis) and the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Heredity. 2005;94:52–63.CAS 
    PubMed 

    Google Scholar 
    Ge D, Feijó A, Cheng J, Lu L, Liu R, Abramov AV, et al. Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species. Zool J Linn Soc. 2019;187:5188–534.
    Google Scholar 
    Moeller AH, Peeters M, Ndjango JB, Li Y, Hahn BH, Ochman H. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res. 2013;23:1715–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knowles SCL, Eccles RM, Baltrunaite L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett. 2019;22:826–37.CAS 
    PubMed 

    Google Scholar 
    Watts CHS. The foods eaten by wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) in Wytham Woods, Berkshire. J Anim Ecol. 1968;37:25–41.
    Google Scholar 
    Abt KF, Bock WF. Seasonal variations of diet composition in farmland field mice Apodemus spp. and bank voles Clethrionomys glareolus. Acta Theriol. 1998;43:379–89.
    Google Scholar 
    Rogers LM, Gorman ML. The diet of the wood mouse Apodemus sylvaticus on set‐aside land. J Zool. 1995;235:77–83.
    Google Scholar 
    Van Laere KM, Beldman G, Voragen AG. A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan. Appl Microbiol Biotechnol. 1997;47:231–5.PubMed 

    Google Scholar 
    Margolles A, de los Reyes-Gavilan CG. Purification and functional characterization of a novel alpha-L-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol. 2003;69:5096–103.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. Substrate specificity of three recombinant alpha-L-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem Biophys Res Commun. 2010;402:644–50.CAS 
    PubMed 

    Google Scholar 
    Ito T, Saikawa K, Kim S, Fujita K, Ishiwata A, Kaeothip S, et al. Crystal structure of glycoside hydrolase family 127 beta-l-arabinofuranosidase from Bifidobacterium longum. Biochem Biophys Res Commun. 2014;447:32–7.CAS 
    PubMed 

    Google Scholar 
    Kataržytė M, Kutorga E. Small mammal mycophagy in hemiboreal forest communities of Lithuania. Central Eur J Biol. 2011;6:446–56.
    Google Scholar 
    Lee HW, Park YS, Jung JS, Shin WS. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe. 2002;8:319–24.PubMed 

    Google Scholar 
    Vernazza CL, Gibson GR, Rastall RA. In vitro fermentation of chitosan derivatives by mixed cultures of human faecal bacteria. Carbohyd Polym. 2005;60:539–45.CAS 

    Google Scholar 
    Yang CM, Ferket PR, Hong QH, Zhou J, Cao GT, Zhou L, et al. Effect of chito-oligosaccharide on growth performance, intestinal barrier function, intestinal morphology and cecal microflora in weaned pigs. J Anim Sci. 2012;90:2671–6.CAS 
    PubMed 

    Google Scholar 
    Zhang C, Jiao S, Wang ZA, Du Y. Exploring effects of chitosan oligosaccharides on mice gut microbiota in in vitro fermentation and animal model. Front Microbiol. 2018;9:2388.PubMed 
    PubMed Central 

    Google Scholar 
    Wu J, Zhang L. Dissolution behavior and conformation change of chitosan in concentrated chitosan hydrochloric acid solution and comparison with dilute and semidilute solutions. Int J Biol Macromol. 2019;121:1101–8.CAS 
    PubMed 

    Google Scholar 
    Costa CN, Teixeira VG, Delpech MC, Souza JV, Costa MA. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohydr Polym. 2015;133:245–50.CAS 
    PubMed 

    Google Scholar 
    Kiu R, Treveil A, Harnisch LC, Caim S, Leclaire C, van Sinderen D, et al. Bifidobacterium breve UCC2003 induces a distinct global transcriptomic program in neonatal murine intestinal epithelial cells. iScience. 2020;23:101336.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes KR, Harnisch LC, Alcon-Giner C, Mitra S, Wright CJ, Ketskemety J, et al. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner. Open Biol. 2017;7:160155.Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA. 2012;109:2108–13.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roca C, Alves VD, Freitas F, Reis MA. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front Microbiol. 2015;6:288.PubMed 
    PubMed Central 

    Google Scholar 
    Balzaretti S, Taverniti V, Guglielmetti S, Fiore W, Minuzzo M, Ngo HN, et al. A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Appl Environ Microbiol. 2017;83:e02702–16.PubMed 
    PubMed Central 

    Google Scholar 
    Stradiotto A, Cagnacci F, Delahay R, Tioli S, Nieder L, Rizzoli A. Spatial organization of the yellow-necked mouse: effects of density and resource availability. J Mammal. 2009;90:704–14.
    Google Scholar 
    Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.PubMed 
    PubMed Central 

    Google Scholar 
    Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i90.PubMed 
    PubMed Central 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 

    Google Scholar 
    Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18:691–9.CAS 
    PubMed 

    Google Scholar 
    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.CAS 
    PubMed 

    Google Scholar 
    Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–24.
    Google Scholar 
    Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.CAS 
    PubMed 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGillin D, et al. vegan: community ecology package. R package version 25-6. 2019. https://CRAN.R-project.org/package=vegan.De Caceres M, Legendre P, Moretti M. Improving indicator species analysis by combining groups of sites. Oikos. 2010;119:1674–84.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.PubMed 
    PubMed Central 

    Google Scholar 
    Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, et al. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics. 2006;7:142.PubMed 
    PubMed Central 

    Google Scholar 
    Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Functionally distinct T-helper cell phenotypes predict resistance to different types of parasites in a wild mammal

    Abolins, S. et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8, 14811. https://doi.org/10.1038/ncomms14811 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, F. E. G. Concomitant infections, parasites and immune responses. Parasitology 122, S23–S38. https://doi.org/10.1017/S003118200001698X (2001).Article 
    PubMed 

    Google Scholar 
    Seder, R. A., Darrah, P. A. & Roederer, M. T-cell quality in memory and protection: Implications for vaccine design. Nat. Rev. Immunol. 8, 247–258. https://doi.org/10.1038/nri2274 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Demas, G. E., Zysling, D. A., Beechler, B. R., Muehlenbein, M. P. & French, S. S. Beyond phytohaemagglutinin: Assessing vertebrate immune function across ecological contexts. J. Anim. Ecol. 80, 710–730. https://doi.org/10.1111/j.1365-2656.2011.01813.x (2011).Article 
    PubMed 

    Google Scholar 
    Pedersen, A. B. & Babayan, S. A. Wild immunology. Mol. Ecol. 20, 872–880. https://doi.org/10.1111/j.1365-294X.2010.04938.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abolins, S. et al. The ecology of immune state in a wild mammal, Mus musculus domesticus. PLoS Biol. 16, e2003538. https://doi.org/10.1371/journal.pbio.2003538 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O. Helminth–microparasite co-infection in wildlife: Lessons from ruminants, rodents and rabbits. Parasite Immunol. 38, 527–534. https://doi.org/10.1111/pim.12348 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Craig, B. H., Tempest, L. J., Pilkington, J. G. & Pemberton, J. M. Metazoan-protozoan parasite co-infections and host body weight in St Kilda Soay sheep. Parasitology 135, 433–441. https://doi.org/10.1017/S0031182008004137 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Graham, A. L. et al. Exposure to viral and bacterial pathogens among Soay sheep (Ovis aries) of the St Kilda archipelago. Epidemiol. Infect. 144, 1879–1888. https://doi.org/10.1017/S0950268816000017 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Murphy, K., Travers, P., Walport, M. & Janeway, C. Janeway’s Immunobiology (Garland Science, 2012).
    Google Scholar 
    Parkin, J. & Cohen, B. An overview of the immune system. Lancet 357, 1777–1789. https://doi.org/10.1016/S0140-6736(00)04904-7 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173. https://doi.org/10.1146/annurev.iy.07.040189.001045 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nakayamada, S., Takahashi, H., Kanno, Y. & O’Shea, J. J. Helper T cell diversity and plasticity. Curr. Opin. Immunol. 24, 297–302. https://doi.org/10.1016/j.coi.2012.01.014 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230. https://doi.org/10.1038/nature16527 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jain, A. & Pasare, C. Innate control of adaptive immunity: Beyond the three-signal paradigm. J. Immunol. (Baltimore, Md.: 1950) 198, 3791–3800. https://doi.org/10.4049/jimmunol.1602000 (2017).CAS 
    Article 

    Google Scholar 
    Schmitt, N. & Ueno, H. Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 34, 130–136. https://doi.org/10.1016/j.coi.2015.03.007 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793. https://doi.org/10.1038/383787a0 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Seder, R. A. & Paul, W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673. https://doi.org/10.1146/annurev.iy.12.040194.003223 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grencis, R. K. Immunity to helminths: Resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu. Rev. Immunol. 33, 201–225. https://doi.org/10.1146/annurev-immunol-032713-120218 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    O’Garra, A. & Robinson, D. In Advances in Immunology vol. 83 133–162 (Academic Press, 2004).Pereira, L. M. S., Gomes, S. T. M., Ishak, R. & Vallinoto, A. C. R. Regulatory T cell and forkhead box protein 3 as modulators of immune homeostasis. Front. Immunol. https://doi.org/10.3389/fimmu.2017.00605 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 85, 9–21. https://doi.org/10.1016/S1081-1206(10)62426-X (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sandquist, I. & Kolls, J. Update on regulation and effector functions of Th17 cells. F1000Res 7, 205–205. https://doi.org/10.12688/f1000research.13020.1 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544. https://doi.org/10.1038/nri.2017.50 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilson, K., Fenton, A. & Tompkins, D. Wildlife Disease Ecology: Linking Theory to Data and Application (Cambridge University Press, 2019).Book 

    Google Scholar 
    Graham, A. L. Ecological rules governing helminth–microparasite coinfection. PNAS 105, 566–570. https://doi.org/10.1073/pnas.0707221105 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. & Jolles, A. E. Hidden consequences of living in a wormy world: Nematode-induced immune suppression facilitates tuberculosis invasion in African Buffalo. Am. Nat. 176, 613–624. https://doi.org/10.1086/656496 (2010).Article 
    PubMed 

    Google Scholar 
    Ezenwa, V. O. & Jolles, A. E. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science 347, 175–177. https://doi.org/10.1126/science.1261714%JScience (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Arriero, E. et al. From the animal house to the field: Are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?. PLoS One 12, e0183450. https://doi.org/10.1371/journal.pone.0183450 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, J. A. et al. An immunological marker of tolerance to infection in wild rodents. PLoS Biol. 12, e1001901. https://doi.org/10.1371/journal.pbio.1001901 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beirne, C., Delahay, R. & Young, A. Sex differences in senescence: The role of intra-sexual competition in early adulthood. Proc. R. Soc. B. 282, 20151086. https://doi.org/10.1098/rspb.2015.1086 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Young, S. et al. Relationships between immune gene expression and circulating cytokine levels in wild house mice. Ecol. Evol. 10, 13860–13871. https://doi.org/10.1002/ece3.6976 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turner, J. D. et al. Th2 cytokines are associated with reduced worm burdens in a human intestinal helminth infection. J. Infect. Dis. 188, 1768–1775. https://doi.org/10.1086/379370 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Craig, B. H., Pilkington, J. G., Kruuk, L. E. B. & Pemberton, J. M. Epidemiology of parasitic protozoan infections in Soay sheep (Ovis aries L.) on St Kilda. Parasitology 134, 9–21. https://doi.org/10.1017/S0031182006001144 (2006).Article 
    PubMed 

    Google Scholar 
    Maizels, R. M., Hewitson, J. P. & Smith, K. A. Susceptibility and immunity to helminth parasites. Curr. Opin. Immunol. 24, 459–466. https://doi.org/10.1016/j.coi.2012.06.003 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ozmen, O., Adanir, R. & Haligur, M. Immunohistochemical detection of the cytokine and chemokine expression in the gut of lambs and kids with coccidiosis. Small Rumin. Res. 105, 345–350. https://doi.org/10.1016/j.smallrumres.2011.11.010 (2012).Article 

    Google Scholar 
    Woolhouse, M. E. J. Patterns in parasite epidemiology: The peak shift. Parasitol. Today 14, 428–434. https://doi.org/10.1016/S0169-4758(98)01318-0 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gibson, T. E. & Parfitt, J. W. The effect of age on the development by sheep of resistance to Trichostrongylus colubriformis. Res. Vet. Sci. 13, 529–535 (1972).CAS 
    Article 

    Google Scholar 
    Smith, W. D., Jackson, F., Jackson, E. & Williams, J. Age immunity to Ostertagia circumcincta: Comparison of the local immune responses of 4 1/2- and 10-month-old lambs. J. Comp. Pathol. 95, 235–245. https://doi.org/10.1016/0021-9975(85)90010-6 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A. & Verhulst, S. Immunosenescence in wild animals: Meta-analysis and outlook. Ecol. Lett. 22, 1709–1722. https://doi.org/10.1111/ele.13343 (2019).Article 
    PubMed 

    Google Scholar 
    Sparks, A. M. et al. Natural selection on antihelminth antibodies in a wild mammal population. Am. Nat. 192, 745–760. https://doi.org/10.1086/700115 (2018).Article 
    PubMed 

    Google Scholar 
    Froy, H. et al. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 365, 1296–1298. https://doi.org/10.1126/science.aaw5822%JScience (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R. & McNeilly, T. N. Age-related variation in immunity in a wild mammal population. Aging Cell 11, 178–180. https://doi.org/10.1111/j.1474-9726.2011.00771.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Watson, R. L. et al. Cellular and humoral immunity in a wild mammal: Variation with age & sex and association with overwinter survival. Ecol. Evol. 6, 8695–8705. https://doi.org/10.1002/ece3.2584 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pennock, N. D. et al. T cell responses: Naive to memory and everything in between. Adv. Physiol. Educ. 37, 273–283. https://doi.org/10.1152/advan.00066.2013 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chipeta, J. et al. CD4+and CD8+Cell cytokine profiles in neonates, older children, and adults: Increasing T helper type 1 and T cytotoxic type 1 cell populations with age. Cell. Immunol. 183, 149–156. https://doi.org/10.1006/cimm.1998.1244 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sakata-Kaneko, S., Wakatsuki, Y., Matsunaga, Y., Usui, T. & Kita, T. Altered Th1/Th2 commitment in human CD4+ T cells with ageing. Clin. Exp. Immunol. 120, 267–273. https://doi.org/10.1046/j.1365-2249.2000.01224.x (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duddy, M. E., Alter, A. & Bar-Or, A. Distinct profiles of human B cell effector cytokines: A role in immune regulation?. J. Immunol. (Baltimore, Md.: 1950) 172, 3422–3427. https://doi.org/10.4049/jimmunol.172.6.3422 (2004).CAS 
    Article 

    Google Scholar 
    Varma, T. K., Lin, C. Y., Toliver-Kinsky, T. E. & Sherwood, E. R. Endotoxin-induced gamma interferon production: Contributing cell types and key regulatory factors. Clin. Diagn. Lab. Immunol. 9, 530–543. https://doi.org/10.1128/CDLI.9.3.530-543.2002 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNeilly, T. N. et al. Suppression of ovine lymphocyte activation by Teladorsagia circumcincta larval excretory-secretory products. Vet. Res. 44, 70. https://doi.org/10.1186/1297-9716-44-70 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Restif, O. & Amos, W. The evolution of sex-specific immune defences. Proc. R. Soc. B Biol. Sci. 277, 2247–2255. https://doi.org/10.1098/rspb.2010.0188 (2010).Article 

    Google Scholar 
    Hayward, A. D. et al. Heritable, heterogeneous, and costly resistance of sheep against nematodes and potential feedbacks to epidemiological dynamics. Am. Nat. 184, S58–S76. https://doi.org/10.1086/676929 (2014).Article 
    PubMed 

    Google Scholar 
    Sparks, A. M. et al. The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries). PLoS Genet. 15, e1008461. https://doi.org/10.1371/journal.pgen.1008461 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayward, A. D., Wilson, A. J., Pilkington, J. G., Pemberton, J. M. & Kruuk, L. E. B. Ageing in a variable habitat: Environmental stress affects senescence in parasite resistance in St Kilda Soay sheep. Proc. R. Soc. B. 276, 3477–3485. https://doi.org/10.1098/rspb.2009.0906 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146. https://doi.org/10.1016/0167-5699(96)80606-2 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hassan, M., Hanrahan, J. P., Good, B., Mulcahy, G. & Sweeney, T. A differential interplay between the expression of Th1/Th2/Treg related cytokine genes in Teladorsagia circumcincta infected DRB1*1101 carrier lambs. Vet. Res. 42, 45. https://doi.org/10.1186/1297-9716-42-45 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noordwijk, A. J. V. & Jong, G. D. Acquisition and allocation of resources: Their influence on variation in life history tactics. Am. Nat. 128, 137–142. https://doi.org/10.1086/284547 (1986).Article 

    Google Scholar 
    Grainger, J. R. et al. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J. Exp. Med. 207, 2331–2341. https://doi.org/10.1084/jem.20101074 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, K. A. et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 9, 428–443. https://doi.org/10.1038/mi.2015.73 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Beirne, C., Waring, L., McDonald, R. A., Delahay, R. & Young, A. Age-related declines in immune response in a wild mammal are unrelated to immune cell telomere length. Proc. R. Soc. B. 283, 20152949. https://doi.org/10.1098/rspb.2015.2949 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zaros, L. G. et al. Response of resistant and susceptible Brazilian Somalis crossbreed sheep naturally infected by Haemonchus contortus. Parasitol. Res. 113, 1155–1161. https://doi.org/10.1007/s00436-014-3753-8 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gossner, A., Wilkie, H., Joshi, A. & Hopkins, J. Exploring the abomasal lymph node transcriptome for genes associated with resistance to the sheep nematode Teladorsagia circumcincta. Vet. Res. 44, 68. https://doi.org/10.1186/1297-9716-44-68 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkie, H., Gossner, A., Bishop, S. & Hopkins, J. Variations in T cell transcription factor sequence and expression associated with resistance to the sheep nematode Teladorsagia circumcincta. PLoS One 11, e0149644. https://doi.org/10.1371/journal.pone.0149644 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nussey, D. H., Coulson, T., Festa-Bianchet, M. & Gaillard, J.-M. Measuring senescence in wild animal populations: Towards a longitudinal approach. Funct. Ecol. 22, 393–406. https://doi.org/10.1111/j.1365-2435.2008.01408.x (2008).Article 

    Google Scholar 
    Seguel, M. et al. Immune stability predicts tuberculosis infection risk in a wild mammal. Proc. Biol. Sci. 286, 20191401. https://doi.org/10.1098/rspb.2019.1401 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pemberton, J. M. & Clutton-Brock, T. H. Soay Sheep: Dynamics and Selection in an Island Population (Cambridge University Press, 2004).
    Google Scholar 
    Corripio-Miyar, Y. et al. Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity. Vet. Res. 46, 112. https://doi.org/10.1186/s13567-015-0246-4 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, L. S. et al. Development of an ELISA for bovine IL-10. Vet. Immunol. Immunopathol. 85, 213–223. https://doi.org/10.1016/S0165-2427(02)00007-7 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wattegedera, S. R. et al. Enhancing the toolbox to study IL-17A in cattle and sheep. Vet. Res. 48, 20–20. https://doi.org/10.1186/s13567-017-0426-5 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, F. New technique for obtaining nematode ova from sheep faeces. Lab. Pract. 23, 65–66 (1974).ADS 
    CAS 
    PubMed 

    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing. Accessed Feb 2020. https://www.R-project.org/ (2019).
    Venables, W. N. & Ripley, B. D. Random and Mixed Effects. In Modern Applied Statistics with S. Statistics and Computing. (2002).Package “corrplot”: visualization of a correlation matrix v. (Version 0.84) (2017).Jari Oksanen, F. et al. vegan: Community Ecology Package. R package version 2.5-6. Accessed Feb 2020. https://CRAN.R-project.org/package=vegan (2019). More

  • in

    Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes

    Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh HJ, Ring D, et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol. 2016;2:16215.CAS 
    PubMed 

    Google Scholar 
    Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015;517:205–8.CAS 
    PubMed 

    Google Scholar 
    He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017;7:54.PubMed 
    PubMed Central 

    Google Scholar 
    Ma W, Mao Q, Xia W, Dong G, Yu C, Jiang F. Gut microbiota shapes the efficiency of cancer therapy. Front Microbiol. 2019;10:1050.PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez J, Hiel S, Neyrinck AM, Le Roy T, Potgens SA, Leyrolle Q, et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut 2020;69:1975–87.CAS 
    PubMed 

    Google Scholar 
    Schubert AM, Sinani H, Schloss PD. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. mBio 2015;6:e00974.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, et al. Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel). 2019;11:38.Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: Tools and biological insights. PLoS Comput Biol. 2016;12:e1004977.PubMed 
    PubMed Central 

    Google Scholar 
    Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–33.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rastelli M, Knauf C, Cani PD. Gut microbes and health: A focus on the mechanisms linking microbes, obesity, and related disorders. Obes (Silver Spring) 2018;26:792–800.
    Google Scholar 
    Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016;535:56–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science 2012;336:1255–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koskella B, Hall LJ, Metcalf CJE. The microbiome beyond the horizon of ecological and evolutionary theory. Nat Ecol Evol. 2017;1:1606–15.PubMed 

    Google Scholar 
    Walter J, Ley R. The human gut microbiome: Ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–29.CAS 
    PubMed 

    Google Scholar 
    Walter J, Maldonado-Gomez MX, Martinez I. To engraft or not to engraft: An ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol. 2018;49:129–39.CAS 
    PubMed 

    Google Scholar 
    Le Roy T, Debedat J, Marquet F, Da-Cunha C, Ichou F, Guerre-Millo M, et al. Comparative evaluation of microbiota engraftment following fecal microbiota transfer in mice models: Age, kinetic and microbial status matter. Front Microbiol. 2018;9:3289.PubMed 

    Google Scholar 
    Maldonado-Gomez MX, Martinez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe. 2016;20:515–26.CAS 
    PubMed 

    Google Scholar 
    Martinez I, Maldonado-Gomez MX, Gomes-Neto JC, Kittana H, Ding H, Schmaltz R, et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. Elife. 2018;7:e36521.Podlesny D, Durdevic M, Paramsothy S, Kaakoush NO, Högenauer C, Gorkiewicz G, et al. Intraspecies strain exclusion, antibiotic pretreatment, and donor selection control microbiota engraftment after fecal transplantation. medRxiv. 2021;08.18.21262200.Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 2016;352:586–89.CAS 
    PubMed 

    Google Scholar 
    Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, et al. Recovery of the gut microbiome following fecal microbiota transplantation. mBio 2014;5:e00893–00814.PubMed 
    PubMed Central 

    Google Scholar 
    Shahinas D, Silverman M, Sittler T, Chiu C, Kim P, Allen-Vercoe E, et al. Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16S rRNA gene deep sequencing. mBio. 2012;3:e00338–12.Hardin G. The competitive exclusion principle. Science 1960;131:1292–7.CAS 
    PubMed 

    Google Scholar 
    Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S, Weber TC, et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010;6:e1000711.PubMed 
    PubMed Central 

    Google Scholar 
    Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.
    Google Scholar 
    Grainger TN, Letten AD, Gilbert B, Fukami T. Applying modern coexistence theory to priority effects. Proc Natl Acad Sci USA. 2019;116:6205–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 2013;501:426–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Onderdonk A, Marshall B, Cisneros R, Levy SB. Competition between congenic Escherichia coli K-12 strains in vivo. Infect Immun. 1981;32:74–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014;63:727–35.CAS 

    Google Scholar 
    Dingemanse C, Belzer C, van Hijum SA, Gunthel M, Salvatori D, den Dunnen JT, et al. Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis 2015;36:1388–96.CAS 
    PubMed 

    Google Scholar 
    Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–8.CAS 
    PubMed 

    Google Scholar 
    Zhai R, Xue X, Zhang L, Yang X, Zhao L, Zhang C. Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice. Front Cell Infect Microbiol. 2019;9:239.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011;9:e1001221.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pudlo NA, Urs K, Crawford R, Pirani A, Atherly T, Jimenez R, et al. Phenotypic and genomic diversification in complex carbohydrate-degrading human gut bacteria. mSystems. 2022;7:e0094721.Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:16131.CAS 
    PubMed 

    Google Scholar 
    Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. The gut microbiota of wild mice. PLoS One. 2015;10:e0134643.PubMed 
    PubMed Central 

    Google Scholar 
    Segura Munoz RR, Quach T, Gomes-Neto JC, Xian Y, Pena PA, Weier S, et al. Stearidonic-enriched soybean oil modulates obesity, glucose metabolism, and fatty acid profiles independently of Akkermansia muciniphila. Mol Nutr Food Res. 2020;64:e2000162.PubMed 
    PubMed Central 

    Google Scholar 
    Bindels LB, Segura Munoz RR, Gomes-Neto JC, Mutemberezi V, Martinez I, Salazar N, et al. Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome 2017;5:12.PubMed 
    PubMed Central 

    Google Scholar 
    Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–D677.CAS 
    PubMed 

    Google Scholar 
    Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.CAS 
    PubMed 

    Google Scholar 
    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Katta HY, Mojica A, et al. Genomes OnLine database (GOLD) v.7: Updates and new features. Nucleic Acids Res.2019;47:D649–D659.CAS 
    PubMed 

    Google Scholar 
    Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomes-Neto JC, Mantz S, Held K, Sinha R, Segura Munoz RR, Schmaltz R, et al. A real-time PCR assay for accurate quantification of the individual members of the Altered Schaedler Flora microbiota in gnotobiotic mice. J Microbiol Methods. 2017;135:52–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomes-Neto JC, Kittana H, Mantz S, Segura Munoz RR, Schmaltz RJ, Bindels LB, et al. A gut pathobiont synergizes with the microbiota to instigate inflammatory disease marked by immunoreactivity against other symbionts but not itself. Sci Rep. 2017;7:17707.PubMed 
    PubMed Central 

    Google Scholar 
    Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338.PubMed 
    PubMed Central 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Gotz S, Tarazona S, et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012;28:2678–79.CAS 
    PubMed 

    Google Scholar 
    Thomsen MCF, Hasman H, Westh H, Kaya H, Lund O. RUCS: rapid identification of PCR primers for unique core sequences. Bioinformatics 2017;33:3917–21.PubMed 
    PubMed Central 

    Google Scholar 
    Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–1403.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Genome [Internet] (2004). National Library of Medicine (US), National Center for Biotechnology Information: Bethesda (MD). https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/1218/Genome [Internet] (2004). National Library of Medicine (US), National Center for Biotechnology Information: Bethesda (MD). https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/1598/Beghini F, McIver LJ, Blanco-Miguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife. 2021;10:e65088.Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 2015;3:e1029.PubMed 
    PubMed Central 

    Google Scholar 
    Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mavromatis K, Chu K, Ivanova N, Hooper SD, Markowitz VM, Kyrpides NC. Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. PLoS One 2009;4:e7979.PubMed 
    PubMed Central 

    Google Scholar 
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019;47:D427–D432.CAS 
    PubMed 

    Google Scholar 
    The UniProt Consortium. The universal protein resource (UniProt). Nucleic Acids Res 2008;36:D190–195.
    Google Scholar 
    Obadia B, Guvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL, Ja WW, et al. Probabilistic invasion underlies natural gut microbiome stability. Curr Biol 2017;27:1999–2006 e1998.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meszena G, Gyllenberg M, Pasztor L, Metz JA. Competitive exclusion and limiting similarity: A unified theory. Theor Popul Biol. 2006;69:68–87.PubMed 

    Google Scholar 
    Cavender-Bares J, Kozak KH, Fine PV, Kembel SW. The merging of community ecology and phylogenetic biology. Ecol Lett. 2009;12:693–715.PubMed 

    Google Scholar 
    Tramontano M, Andrejev S, Pruteanu M, Klunemann M, Kuhn M, Galardini M, et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol 2018;3:514–22.CAS 
    PubMed 

    Google Scholar 
    Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004;54:1469–1476.CAS 
    PubMed 

    Google Scholar 
    Walker AW, Lawley TD. Therapeutic modulation of intestinal dysbiosis. Pharm Res 2013;69:75–86.CAS 

    Google Scholar 
    Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 2016;1:16140.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, et al. Gut microbiota disturbance during antibiotic therapy: A multi-omic approach. Gut 2013;62:1591–1601.CAS 
    PubMed 

    Google Scholar 
    Adler PB, Hillerislambers J, Levine JM. A niche for neutrality. Ecol Lett. 2007;10:95–104.PubMed 

    Google Scholar 
    Levine JM, HilleRisLambers J. The importance of niches for the maintenance of species diversity. Nature 2009;461:254–57.CAS 
    PubMed 

    Google Scholar 
    Forstner G. Signal transduction, packaging and secretion of mucins. Annu Rev Physiol. 1995;57:585–605.CAS 
    PubMed 

    Google Scholar 
    Ottman N, Davids M, Suarez-Diez M, Boeren S, Schaap PJ, Martins Dos Santos VAP, et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl Environ Microbiol. 2017;83:e01014-17.Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE, Tasseva G et al. Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species. Appl Environ Microbiol. 2017;83:e00132–17.Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet. 2011;7:e1001314.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 2017;171:1015–1028 e1013.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karcher N, Nigro E, Puncochar M, Blanco-Miguez A, Ciciani M, Manghi P, et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol. 2021;22:209.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365.Mark Welch JL, Hasegawa Y, McNulty NP, Gordon JI, Borisy GG. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc Natl Acad Sci USA. 2017;114:E9105–E9114.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whitaker WR, Shepherd ES, Sonnenburg JL. Tunable expression tools enable single-cell strain distinction in the gut microbiome. Cell 2017;169:538–546. e512.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becken B, Davey L, Middleton DR, Mueller KD, Sharma A, Holmes ZC, et al. Genotypic and phenotypic diversity among human isolates of Akkermansia muciniphila. mBio. 2021;12:e00478–21.Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 2017;27:626–38.
    Google Scholar 
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science 2013;341:1237439.PubMed 
    PubMed Central 

    Google Scholar 
    Mehta RS, Abu-Ali GS, Drew DA, Lloyd-Price J, Subramanian A, Lochhead P, et al. Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol. 2018;3:347–355.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–45 e135.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 2018;28:561–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freitag TL, Hartikainen A, Jouhten H, Sahl C, Meri S, Anttila VJ, et al. Minor effect of antibiotic pre-treatment on the engraftment of donor microbiota in fecal transplantation in mice. Front Microbiol. 2019;10:2685.PubMed 
    PubMed Central 

    Google Scholar 
    Ji SK, Yan H, Jiang T, Guo CY, Liu JJ, Dong SZ, et al. Preparing the gut with antibiotics enhances gut microbiota reprogramming efficiency by promoting xenomicrobiota colonization. Front Microbiol. 2017;8:1208.PubMed 
    PubMed Central 

    Google Scholar 
    Divya Ganeshan S, Hosseinidoust Z. Phage therapy with a focus on the human microbiota. Antibiotics (Basel). 2019;8:131.Ramachandran G, Bikard D. Editing the microbiome the CRISPR way. Philos Trans R Soc Lond B Biol Sci. 2019;374:20180103.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    How colonialism fed the flames of Australia’s catastrophic wildfires

    .readcube-buybox { display: none !important;}

    The unprecedented fires that devastated parts of Australia in 2020 can be attributed in part to colonialism1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00509-5

    ReferencesMariani, M. et al. Front. Ecol. Environ. https://doi.org/10.1002/fee.2395 (2022).Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Apply Singapore Index on Cities’ Biodiversity at scale
    Correspondence 22 FEB 22

    Marching in the streets for climate-crisis action
    Career Q&A 22 FEB 22

    From the archive
    News & Views 22 FEB 22

    Jobs

    PhD position (m/f/d) – Metabolomics

    Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. (ISAS)
    Dortmund, Germany

    PhD position (m/f/d) – Computational Mass spectrometry and Metabolomics

    Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. (ISAS)
    Dortmund, Germany

    Laboratory technician – Metabolomics Platform

    University of Luxembourg
    Luxembourg, Luxembourg

    PhD Position – Protein Phase Separation and Microbiology

    The University of British Columbia (UBC)
    Vancouver, Canada More

  • in

    Alternative stable states of the forest mycobiome are maintained through positive feedbacks

    van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).Article 

    Google Scholar 
    McGuire, K. L. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88, 567–574 (2007).Article 

    Google Scholar 
    Selosse, M.-A., Richard, F., He, X. & Simard, S. W. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628 (2006).Article 

    Google Scholar 
    Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).CAS 
    Article 

    Google Scholar 
    Klein, T., Siegwolf, R. T. W. & Korner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).CAS 
    Article 

    Google Scholar 
    Franklin, O., Näsholm, T., Högberg, P. & Högberg, M. N. Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. 203, 657–666 (2014).CAS 
    Article 

    Google Scholar 
    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).CAS 
    Article 

    Google Scholar 
    Cheng, L. et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337, 1084–1087 (2012).CAS 
    Article 

    Google Scholar 
    Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).Article 

    Google Scholar 
    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).Article 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    Article 

    Google Scholar 
    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).CAS 
    Article 

    Google Scholar 
    Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).CAS 
    Article 

    Google Scholar 
    Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).Article 

    Google Scholar 
    Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).Blanchet, F. G., Cazelles, K. & Gravel, D. Co‐occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).Article 

    Google Scholar 
    Connor, E. F. & Simberloff, D. The assembly of species communities: chance or competition? Ecology 60, 1132 (1979).Article 

    Google Scholar 
    Molofsky, J. & Bever, J. D. A novel theory to explain species diversity in landscapes: positive frequency dependence and habitat suitability. Proc. R. Soc. Lond. B 269, 2389–2393 (2002).Article 

    Google Scholar 
    Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities: phylogeny and coexistence. Ecol. Lett. 13, 1085–1093 (2010).Article 

    Google Scholar 
    Beisner, B., Haydon, D. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).Article 

    Google Scholar 
    Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553 (2018).Article 

    Google Scholar 
    Frelich, L. E., Calcote, R. R., Davis, M. B. & Pastor, J. Patch formation and maintenance in an old-growth hemlock-hardwood forest. Ecology 74, 513–527 (1993).Article 

    Google Scholar 
    Davis, M. B., Calcote, R. R., Sugita, S. & Takahara, H. Patchy invasion and the origin of a hemlock-hardwood forest mosaic. Ecology 79, 2641–2659 (1998).
    Google Scholar 
    Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358 (2019).CAS 
    Article 

    Google Scholar 
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).CAS 
    Article 

    Google Scholar 
    Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).CAS 
    Article 

    Google Scholar 
    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 16, 23163–23168 (2019). https://doi.org/10.1073/pnas.1906655116Hodge, A. & Fitter, A. H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl Acad. Sci. USA 107, 13754–13759 (2010).CAS 
    Article 

    Google Scholar 
    Fernandez, C. W. & Kennedy, P. G. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol. 209, 1382–1394 (2016).CAS 
    Article 

    Google Scholar 
    The Forest Inventory and Analysis Database: Database Description and User Guide Version 7.0 for Phase 2 (USDA Forest Service, 2018).Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).CAS 
    Article 

    Google Scholar 
    van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).Article 

    Google Scholar 
    NRSP-3 (National Atmospheric Deposition Program, 2015).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models: estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Hartigan, J. & Hartigan, P. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).Article 

    Google Scholar 
    Dickie, I. A., Hurst, J. M. & Bellingham, P. J. Comment on ‘conspecific negative density dependence and forest diversity’. Science 338, 469–469 (2012).CAS 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems: data exploration. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).Article 

    Google Scholar 
    Masek, J. G. et al. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 112, 2914–2926 (2008).Article 

    Google Scholar 
    Averill, C. colinaverill/altSS_forest_mycorrhizas: First release to establish Zenodo DOI for Nature Ecology & Evolution. Zenodo https://zenodo.org/record/5744063 (2021). More

  • in

    Mycorrhizal dominance reduces local tree species diversity across US forests

    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008).Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).CAS 
    Article 

    Google Scholar 
    Connell, J. H. & Lowman, M. D. Low-diversity tropical rain forests: some possible mechanisms for their existence. Am. Nat. 134, 88–119 (1989).Article 

    Google Scholar 
    Brundrett, M. in Advances in Ecological Research, Vol. 21 (eds Begon M. et al.) 171–313 (Academic Press, 1991).Allen, E. B. et al. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170, 47–62 (1995).CAS 
    Article 

    Google Scholar 
    Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol. 206, 507–521 (2015).Article 

    Google Scholar 
    Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).CAS 
    Article 

    Google Scholar 
    Teste, F. P. et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355, 173–176 (2017).CAS 
    Article 

    Google Scholar 
    van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).CAS 
    Article 

    Google Scholar 
    Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database Description and User Guide Version 8.0 for Phase 2 (U.S. Department of Agriculture, Forest Service, 2018).Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358 (2019).CAS 
    Article 

    Google Scholar 
    Jo, I. & Fei, S. Responses of Dominant Tree-Mycorrhizal Associations to Anthropogenic Impacts in the USA (Purdue Univ. Research Repository, 2019).Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).Article 

    Google Scholar 
    Laliberté, E., Zemunik, G. & Turner, B. L. Environmental filtering explains variation in plant diversity along resource gradients. Science 345, 1602–1605 (2014).Article 

    Google Scholar 
    Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).CAS 
    Article 

    Google Scholar 
    Cleland, D. T. et al. Ecological Subregions: Sections and Subsections for the Conterminous United States. General Technical Report WO-76D (U.S. Department of Agriculture, 2007).Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. Camb. Philos. Soc. 94, 1857–1880 (2019).Article 

    Google Scholar 
    Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).Article 

    Google Scholar 
    Mariotte, P. et al. Plant–soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).Article 

    Google Scholar 
    Zemunik, G., Turner, B. L., Lambers, H. & Laliberté, E. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nat. Plants 1, 15050 (2015).CAS 
    Article 

    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).CAS 
    Article 

    Google Scholar 
    Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).CAS 
    Article 

    Google Scholar 
    Lin, G., McCormack, M. L. & Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. 103, 1224–1232 (2015).CAS 
    Article 

    Google Scholar 
    Hartnett, D. C. & Wilson, G. W. T. The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244, 319–331 (2002).CAS 
    Article 

    Google Scholar 
    Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).CAS 
    Article 

    Google Scholar 
    Peh, K. S.-H., Lewis, S. L. & Lloyd, J. Mechanisms of monodominance in diverse tropical tree-dominated systems. J. Ecol. 99, 891–898 (2011).Article 

    Google Scholar 
    ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).Article 

    Google Scholar 
    Newman, E. I. & Reddell, P. Relationship between mycorrhizal infection and diversity in vegetation: evidence from the Great Smoky Mountains. Funct. Ecol. 2, 259–262 (1988).Article 

    Google Scholar 
    Bahram, M. et al. Plant nutrient-acquisition strategies drive topsoil microbiome structure and function. New Phytol. 227, 1189–1199 (2020).CAS 
    Article 

    Google Scholar 
    Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).Article 

    Google Scholar 
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).Article 

    Google Scholar 
    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).CAS 
    Article 

    Google Scholar 
    Jenkins, C. N., Van Houtan, K. S., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl Acad. Sci. USA 112, 5081–5086 (2015).CAS 
    Article 

    Google Scholar 
    Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’ R package version 1.14.0 https://CRAN.R-project.org/package=data.table (2017).Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 1.0.2 https://CRAN.R-project.org/package=dplyr (2017).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 

    Google Scholar 
    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 3.3.3 https://CRAN.R-project.org/package=ggpubr (2018).Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.1 https://CRAN.R-project.org/package=ggspatial (2018).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4-5 https://CRAN.R-project.org/package=raster (2019).Wickham, H. Reshaping data with the reshape Package. J. Stat. Softw. 21, 1–20 (2007).Article 

    Google Scholar 
    Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).Article 

    Google Scholar 
    Wickham, H. & Henry, L. tidyr: Tidy messy data. R package version 1.1.0 https://CRAN.R-project.org/package=tidyr (2019).Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-6 https://cran.r-project.org/web/packages/vegan/index.html (2017).Forest Inventory and Analysis; https://apps.fs.usda.gov/fia/datamart/CSV/ENTIRE.zipCarteron, A. alexiscarter/mycorrhiza_tree_diversity: custom code https://doi.org/10.5281/ZENODO.5713273 (2021). More

  • in

    Carbon parks could secure essential ecosystems for climate stabilization

    Anderegg, W. R. L. AGU Advances 2, e2021AV000490 (2021).Article 

    Google Scholar 
    Goldstein, A. et al. Nat. Clim. Chang. 10, 287–295 (2020).CAS 
    Article 

    Google Scholar 
    Tanneberger, F. et al. Adv. Sustain. Syst. 5, 2000146 (2021).CAS 
    Article 

    Google Scholar 
    Paustian, K. et al. Nature 532, 49–57 (2016).CAS 
    Article 

    Google Scholar 
    Magill, B. Biden climate plan to save forests pivots on swamps, wetland (1). Bloomberg Law, https://go.nature.com/3gzaYKM (2 November 2021).Meier, J. Designating Dark Sky Areas: Actors and Interests (Routledge, 2014).Climate Action Reserve. Key Accounting Principles for Improved Forest Management Projects within the Forest Protocol (Climate Action Reserve, 2019).Verified Carbon Standard. VM0007 REDD+ Methodology Framework (REDD+ MF), v1.6. verra.org, https://go.nature.com/3GCEKbZ (8 September 2020).PCAF. The Global GHG Accounting and Reporting Standard for the Financial Industry (Partnership for Carbon Accounting Financials, 2021).Xu, J., Morris, P. J., Liu, J. & Holden, J. Catena 160, 134–140 (2018).Article 

    Google Scholar 
    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Geophys. Res. Lett. 37, L13402 (2010).
    Google Scholar 
    Loisel, J. et al. Nat. Clim. Chang. 11, 70–77 (2021).Article 

    Google Scholar 
    Leifeld, J., Wüst-Galley, C. & Page, S. Nat. Clim. Chang. 9, 945–947 (2019).CAS 
    Article 

    Google Scholar 
    Leifeld, J. & Menichetti, L. Nat. Commun. 9, 1071 (2018).CAS 
    Article 

    Google Scholar 
    Juffe-Bignoli, D. et al. Protected Planet Report 2014 (UNEP-WCMC: 2014).Hoyos-Santillan, J., Miranda, A., Lara, A., Rojas, M. & Sepulveda-Jauregui, A. Science 366, 1207–1208 (2019).Article 

    Google Scholar 
    von Unger, M. & Emmer, I. Carbon Market Incentives to Conserve, Restore and Enhance Soil Carbon. (The Nature Conservancy, 2018).Bonn, A. et al. (eds). Peatland Restoration and Ecosystem Services: Science, Policy and Practice (Cambridge Univ. Press, 2016).Buotte, P. C., Law, B. E., Ripple, W. J. & Berner, L. T. Ecol. Appl. 30, e02039 (2020).Article 

    Google Scholar 
    Soto-Navarro, C. et al. Phil. Trans. R. Soc. Lond. B 375, 20190128 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Getting serious about aquaculture risk

    Chemical and pathogenic hazards in aquaculture supply chains threaten the provision of safe aquatic food. The Seafood Risk Tool is an integrated, semi-quantitative system that develops bespoke supply chain and risk management strategies.Although wild fish catches have plateaued globally, the aquaculture sector continues to expand in response to increasing demand for fish and other aquatic foods. Economic progress and the growing consumer awareness of aquatic foods in sustainable, healthy and nutritious diets are contributing to sector expansion1. However, rapid expansion must be achieved in a socially responsible and environmentally sustainable manner. Aquaculture produces over 400 different species across marine and freshwater fish, crustaceans, molluscs, plants and algae2 — all presenting complex and unique risk profiles to the environment, the industry, investors and consumers. Measures to mitigate these risks, including aquaculture certification and legislation, are inconsistent across nations and regions, and cohesive risk management has been difficult to manage and implement. More