More stories

  • in

    Leucistic plumage as a result of progressive greying in a cryptic nocturnal bird

    Rutz, C. Predator fitness increases with selectivity for odd prey. Curr. Biol. 22, 820–824 (2012).CAS 
    PubMed 

    Google Scholar 
    Santos, C. D. et al. Personality and morphological traits affect pigeon survival from raptor attacks. Sci. Rep. 5, 1–8 (2015).
    Google Scholar 
    Brown, M. B. & Wells, E. Skeletal dysplasia-like syndromes in wild giraffe. BMC Res. Notes 13, 569 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    van Grouw, H. What colour is that bird? The causes and recognition of common colour aberrations in birds. Br. Birds 106, 17–29 (2013).
    Google Scholar 
    Slagsvold, T., Rofstad, G. & Sandvik, J. Partial albinism and natural selection in the hooded crow Corvus corone cornix. J. Zool. 214, 157–166 (1988).
    Google Scholar 
    Stevens, M. et al. Revealed by conspicuousness: distractive markings reduce camouflage. Behav. Ecol. 24, 213–222 (2013).
    Google Scholar 
    van Grouw, H. What’s in a name? Nomenclature for colour aberrations in birds reviewed. Bull. Br. Ornithol. Club 141, 276–299 (2021).
    Google Scholar 
    Parsons, G. J. & Bonderup-Nielsen, S. Partial albinism in an island population of Meadow Voles, Microtus pennsylvanicus, from Nova Scotia. Can. Field-Nat. 109, 263–264 (1995).
    Google Scholar 
    Reis, A. da S., Zampaulo, R. de A. & Talamoni, S. A. Frequency of leucism in a colony of Anoura geoffroyi (Chiroptera: Phyllostomidae) roosting in a ferruginous cave in Brazil. Biota Neotropica 19(3): e20180676. https://doi.org/10.1590/1676-0611-BN-2018-0676 (2019).Jehl, J. R. Leucism in Eared Grebes in western north America. Condor 87, 439–441 (1985).
    Google Scholar 
    Forrest, S. & Naveen, R. Prevalence of leucism in Pygoscelid penguins of the Antarctic peninsula. Waterbirds 23, 283–285 (2000).
    Google Scholar 
    González-Ortegón, E., Drake, P., Quigley, D. T. G. & Cuesta, J. A. Leucism in the European sardine Sardina pilchardus (Clupeidae). Ecol. Indic. 117, 106544 (2020).
    Google Scholar 
    David, B. Z. First report of partial leucism in the poison frog Epipedobates anthonyi (Anura: Dendrobatidae) in El Oro, Ecuador. Neotrop. Biodivers. 7, 1–4 (2021).
    Google Scholar 
    Krecsák, L. Albinism and leucism among European Viperinae: a review. Russ. J. Herpetol. 15, 97–102 (2008).
    Google Scholar 
    Ritland, K., Newton, C. & Marshall, H. D. Inheritance and population structure of the white-phased “Kermode” black bear. Curr. Biol. 11, 1468–1472 (2001).CAS 
    PubMed 

    Google Scholar 
    Galván, I., Bijlsma, R. G., Negro, J. J., Jarén, M. & Garrido-Fernández, J. Environmental constraints for plumage melanization in the northern goshawk Accipiter gentilis. J. Avian Biol. 41, 523–531 (2010).
    Google Scholar 
    Pijpe, A., Gardien, K. L. M., Meijeren-Hoogendoorn, R. E. van, Middelkoop, E. & Zuijlen, P. P. M. van. Scar Symptoms: Pigmentation Disorders in Textbook On Scar Management (eds. Téot, L., Mustoe, T. A., Middelkoop, E. & Gauglitz, G. G.) 109–115 (Springer, 2020).Edelaar, P. et al. Apparent selective advantage of leucism in a coastal population of Southern caracaras (Falconidae). Evol. Ecol. Res. 13, 187–196 (2011).
    Google Scholar 
    Ellegren, H., Lindgren, G., Primmer, C. R. & Møller, A. P. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389, 593–596 (1997).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Benítez-López, A. & García-Egea, I. First record of an aberrantly colored Pin-tailed Sandgrouse (Pterocles alchata). Wilson J. Ornithol. 127, 755–759 (2015).
    Google Scholar 
    Zbyryt, A., Mikula, P., Ciach, M., Morelli, F. & Tryjanowski, P. A large-scale survey of bird plumage colour aberrations reveals a collection bias in Internet-mined photographs. Ibis 163, 566–578 (2020).
    Google Scholar 
    Bensch, S., Hansson, B., Hasselquist, D. & Nielsen, B. Partial albinism in a semi-isolated population of Great Reed Warblers. Hereditas 133, 167–170 (2000).CAS 
    PubMed 

    Google Scholar 
    Izquierdo, L. et al. Factors associated with leucism in the common blackbird Turdus merula. J. Avian Biol. 49, e01778 (2018).
    Google Scholar 
    Møller, A. P. & Mousseau, T. A. Albinism and phenotype of barn swallows (Hirundo rustica) from Chernobyl. Evolution 55, 2097–2104 (2001).PubMed 

    Google Scholar 
    Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 1–8 (2016).
    Google Scholar 
    Aragonés, J., Arias de Reyna, L. & Recuerda, P. Visual communication and sexual selection in a nocturnal bird species, Caprimulgus ruficollis, a balance between crypsis and conspicuousness. Wilson Bull. 111, 340–345 (1999).
    Google Scholar 
    Negro, J. J., Bortolotti, G. R. & Sarasola, J. H. Deceptive plumage signals in birds: manipulation of predators or prey? Biol. J. Linn. Soc. 90, 467–477 (2007).
    Google Scholar 
    Brooke, M. de L. Unexplained recurrent features of the plumage of birds. Ibis 152, 845–847 (2010).Forero, M. G., Tella, J. L. & García, L. Age related evolution of sexual dimorphism in the Red-necked Nightjar Caprimulgus ruficollis. J. Ornithol. 136, 447–451 (1995).
    Google Scholar 
    Camacho, C. Early age at first breeding and high natal philopatry in the Red-necked Nightjar Caprimulgus ruficollis. Ibis 156, 442–445 (2014).
    Google Scholar 
    Camacho, C. et al. The road to opportunities: landscape change promotes body-size divergence in a highly mobile species. Curr. Zool. 62, 7–14 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Forero, M. G., Tella, J. L. & Oro, D. Annual survival rates of adult Red-necked Nightjars Caprimulgus ruficollis. Ibis 143, 273–277 (2001).
    Google Scholar 
    Henner, J. et al. Genetic mapping of the (G)-locus responsible for the coat color phenotype “Progressive Greying with Age” in horses (Equus caballus). Mamm. Genome 13, 535–537 (2002).CAS 
    PubMed 

    Google Scholar 
    Edson, J. M. An epidemic of albinism. Auk 45, 377–378 (1928).
    Google Scholar 
    Camacho, C., Palacios, S., Sáez, P., Sánchez, S. & Potti, J. Human-induced changes in landscape configuration influence individual movement routines: lessons from a versatile, highly mobile species. PLoS ONE 9, e104974 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Enders, F. & Post, W. White-spotting in the genus Ammospiza and other grassland sparrows. Bird-Band. 42, 210–219 (1971).
    Google Scholar 
    Sage, B. L. Albinism and melanism in birds. Br. Birds 55, 201–225 (1962).
    Google Scholar 
    O’Sullivan, J. D. B. et al. The biology of human hair greying. Biol. Rev. 96, 107–128 (2021).PubMed 

    Google Scholar 
    Nichols, J. D., Hines, J. E. & Blums, P. Tests for senescent decline in annual survival probabilities of common pochards, Aythya ferina. Ecology 78, 1009–1018 (1997).
    Google Scholar 
    Owen, M. & Skimmings, P. The occurrence and performance of leucistic Barnacle Geese Branta leucopsis. Ibis 134, 22–26 (1992).
    Google Scholar 
    Mulder, T., Campbell, C. J. & Ruxton, G. D. Evaluation of disruptive camouflage of avian cup-nests. Ibis 163, 150–158 (2021).
    Google Scholar 
    Holyoak, D. Variable albinism of the flight feathers as an adaptation for recognition of individual birds in some Polynesian populations of Acrocephalus warblers. Ardea 66, 112–117 (1978).
    Google Scholar 
    Griffith, S. C., Parker, T. H. & Olson, V. A. Melanin- versus carotenoid-based sexual signals: is the difference really so black and red? Anim. Behav. 71, 749–763 (2006).
    Google Scholar 
    Galván, I., Jorge, A., Nielsen, J. T. & Møller, A. P. Pheomelanin synthesis varies with protein food abundance in developing goshawks. J. Comp. Physiol. B 189, 441–450 (2019).PubMed 

    Google Scholar 
    Zaragoza-Trello, C., Vilà, M., Botías, C. & Bartomeus, I. Interactions among global change pressures act in a non-additive way on bumblebee individuals and colonies. Funct. Ecol. 35, 420–434 (2021).
    Google Scholar 
    Rollin, N. A note on abnormally marked Song Thrushes and Blackbirds. Trans. Nat. Hist. Soc. Northumberl. Durh. Newctle upon Tyne 10, 183–184 (1953).Guerrero-Bosagna, C. et al. Transgenerational epigenetic inheritance in birds. Environ. Epigenet. 4, dvy008 (2018).Camacho, C., Negro, J. J., Redondo, I., Palacios, S. & Sáez-Gómez, P. Correlates of individual variation in the porphyrin-based fluorescence of red-necked nightjars (Caprimulgus ruficollis). Sci. Rep. 9, 1–9 (2019).
    Google Scholar 
    Camacho, C. Tropical phenology in temperate regions: extended breeding season in a long-distance migrant. Condor 115, 830–837 (2013).
    Google Scholar 
    Cleere, N. Nightjars: a guide to nightjars and related birds (A&C Black, London, 2010).
    Google Scholar 
    Gargallo, G. Flight feather moult in the red-necked nightjar Caprimulgus ruficollis. J. Avian Biol. 25, 119–124 (1994).
    Google Scholar 
    Jackson, H. D. A field survey to investigate why nightjars frequent roads at night. Ostrich 74, 97–101 (2003).
    Google Scholar 
    Jackson, H. D. Finding and trapping nightjars. Bokmakierie 36, 86–89 (1984).
    Google Scholar 
    Sénar, J. C. & Pascual, J. Keel and tarsus length may provide a good predictor of avian body size. Ardea 85, 269–274 (1997).
    Google Scholar 
    Svensson, L. Identification Guide To European Passerines (Lars Svensson, Cleveland, 1992).
    Google Scholar 
    van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 
    Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).PubMed 

    Google Scholar 
    Rising, J. D. & Somers, K. M. The measurement of overall body size in birds. Auk 106, 666–674 (1989).
    Google Scholar 
    Magnusson, A. et al. Package “glmmTMB”. R Package Version 0.2.0. (2017).Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2, 4. (2019).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Barton, K. MuMIn: Multi-Model inference. Model selection and model averaging based on information criteria (AICc and alike). R package version 1.43.17. (2020). More

  • in

    Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai–Tibet Plateau

    Boutaiba, S., Hacene, H., Bidle, K. A. & Maupin-Furlow, J. A. Microbial diversity of the hypersaline Sidi Ameur and Himalatt Salt Lakes of the Algerian Sahara. J. Arid Environ. 75, 909–916. https://doi.org/10.1016/j.jaridenv.2011.04.010 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ventosa, A. Unusual micro-organisms from unusual habitats: hypersaline environments. Symposia Society for General Microbiology (2006).Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M. & Nishikawa, K. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 327, 347–357 (2003).CAS 
    Article 

    Google Scholar 
    Pillai, S. D., Nakatsu, C. H., Miller, R. V. & Yates, M. V. Manual of environmental microbiology. Life High-Salinity Environ. https://doi.org/10.1128/9781555818821 (2015).Article 

    Google Scholar 
    Poli, A. et al. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5, 25. https://doi.org/10.3390/microorganisms5020025 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Azpiazu-Muniozguren, M., Martinez-Ballesteros, I., Gamboa, J., Seoane, S. & Bikandi, J. Altererythrobacter muriae sp. nov., isolated from hypersaline Aana Salt Valley spring water, a continental thalassohaline-type solar saltern. Int. J. Syst. Evol. Microbiol. 71, 3 (2021).
    Google Scholar 
    Zhang, J. et al. Bacterial diversity in Bohai Bay Solar Saltworks, China. Curr. Microbiol. 72, 55–63 (2016).CAS 
    Article 

    Google Scholar 
    Highfield, A., Ward, A., Pipe, R. & Schroeder, D. C. Molecular and phylogenetic analysis reveals new diversity of Dunaliella salina from hypersaline environments. J. Mar. Biol. Assoc. UK 101, 27–37. https://doi.org/10.1017/s0025315420001319 (2021).CAS 
    Article 

    Google Scholar 
    Cycil, L. M. et al. Metagenomic insights into the diversity of halophilic microorganisms indigenous to the Karak Salt Mine, Pakistan. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01567 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jacob, J. H., Hussein, E. I., Shakhatreh, M. A. K. & Cornelison, C. T. Microbial community analysis of the hypersaline water of the Dead Sea using high-throughput amplicon sequencing. Microbiol. Open 6, e00500. https://doi.org/10.1002/mbo3.500 (2017).CAS 
    Article 

    Google Scholar 
    Ben Abdallah, M. et al. Abundance and diversity of prokaryotes in ephemeral hypersaline lake Chott El Jerid using Illumina Miseq sequencing, DGGE and qPCR assay. Extremophiles 22, 811–823. https://doi.org/10.1007/s00792-018-1040-9 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tazi, L., Breakwell, D. P., Harker, A. R. & Crandall, K. A. Life in extreme environments: Microbial diversity in Great Salt Lake, Utah. Extremophiles 18, 525–535. https://doi.org/10.1007/s00792-014-0637-x (2014).Article 
    PubMed 

    Google Scholar 
    Kashi, F. J., Owlia, P., Amoozegar, M. A. & Kazemi, B. Halophilic prokaryotes in Urmia Salt Lake, a hypersaline environment in Iran. Curr. Microbiol. 78(8), 3230–3238 (2021).Article 

    Google Scholar 
    Sorokin, D. Y., Roman, P. & Kolganova, T. V. Halo(natrono)archaea from hypersaline lakes can utilize sulfoxides other than DMSO as electron acceptors for anaerobic respiration. Extremophiles 25, 173–180 (2021).CAS 
    Article 

    Google Scholar 
    Hwang, K., Choe, H. & Kim, K. M. Complete genome of Nocardioides aquaticus KCTC 9944T isolated from meromictic and hypersaline Ekho Lake, Antarctica. Mar. Genom. 1, 100889 (2021).Article 

    Google Scholar 
    Didari, M. et al. Diversity of halophilic and halotolerant bacteria in the largest seasonal hypersaline lake (Aran-Bidgol-Iran). J. Environ. Health Sci. Eng. 18, 961–971. https://doi.org/10.1007/s40201-020-00519-3 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28, 56–63 (2002).CAS 
    Article 

    Google Scholar 
    Mutlu, M. B. et al. Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol. Ecol. 65, 474–483. https://doi.org/10.1111/j.1574-6941.2008.00510.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Antón, J. et al. Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber. Saline Syst. 4, 15. https://doi.org/10.1186/1746-1448-4-15 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oren, A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. 4, 2. https://doi.org/10.1186/1746-1448-4-2 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdeljabbar, H., Badiaa, E., Jean-Luc, C., Marie-Laure, F. & Najla, S. Prokaryotic biodiversity of halophilic microorganisms isolated from Sehline Sebkha Salt Lake (Tunisia). Afr. J. Microbiol. Res. 8, 355–367. https://doi.org/10.5897/ajmr12.1087 (2014).Article 

    Google Scholar 
    Najjari, A., Elshahed, M. S., Cherif, A., Youssef, N. H. & Löffler, F. E. Patterns and determinants of halophilic archaea (Class Halobacteria) diversity in Tunisian endorheic salt lakes and Sebkhet systems. Appl. Environ. Microbiol. 81, 4432–4441. https://doi.org/10.1128/aem.01097-15 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aharon, O. The ecology of the extremely halophilic archaea. FEMS Microbiol. Rev. 1, 415–440 (1994).
    Google Scholar 
    Oren, A. Halophilic Archaea. FEMS Microbiol. Rev. https://doi.org/10.1016/b978-0-12-809633-8.20800-5 (2019).Article 

    Google Scholar 
    Feng, Y. et al. The evolutionary origins of extreme halophilic archaeal lineages. Genome Biol. Evol. 13, 8. https://doi.org/10.1093/gbe/evab166 (2021).CAS 
    Article 

    Google Scholar 
    Ventosa, A., Nieto, J. J. & Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544 (1998).CAS 
    Article 

    Google Scholar 
    Kushner, D. J. Halophilic bacteria. Adv. Appl. Microbiol. 10, 73–99 (1968).CAS 
    Article 

    Google Scholar 
    Ghozlan, H., Deif, H., Kandil, R. A. & Sabry, S. Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J. Gen. Appl. Microbiol. 52, 63–72 (2006).CAS 
    Article 

    Google Scholar 
    Ali, I., Prasongsuk, S., Akbar, A., Aslam, M. & Rakshit, S. K. Hypersaline habitats and halophilic microorganisms. Maejo Int. J. Sci. Technol. 10, 330–345 (2016).CAS 

    Google Scholar 
    Margesin, R. & Schinner, F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56, 650–663. https://doi.org/10.1007/s002530100701 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poosarla, V. G. & Ts, C. Xylanase production by halophilic bacterium Gracilibacillus sp. TSCPVG under solid state fermentation. Res. J. Biotechnol. 16, 92–100 (2021).Article 

    Google Scholar 
    Foti, M. et al. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl. Environ. Microbiol. 73, 2093–2100. https://doi.org/10.1128/aem.02622-06 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boujelben, I. et al. Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Antonie Van Leeuwenhoek 101, 845–857. https://doi.org/10.1007/s10482-012-9701-7 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    García-Maldonado, J. Q., Bebout, B. M., Everroad, R. C. & López-Cortés, A. Evidence of novel phylogenetic lineages of methanogenic archaea from hypersaline microbial mats. Microb. Ecol. 69, 106–117. https://doi.org/10.1007/s00248-014-0473-7 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abed, R. M. M., de Beer, D. & Stief, P. Functional-structural analysis of nitrogen-cycle bacteria in a hypersaline mat from the omani desert. Geomicrobiol. J. 32, 119–129. https://doi.org/10.1080/01490451.2014.932033 (2014).CAS 
    Article 

    Google Scholar 
    Coban, O., Rasigraf, O., Jong, A., Spott, O. & Bebout, B. M. Quantifying potential N turnover rates in hypersaline microbial mats by 15 N tracer techniques. Appl. Environ. Microbiol. 87, 8 (2021).Article 

    Google Scholar 
    Rodriguez-Valera, F. Introduction to Saline Environments (Springer, 1993).
    Google Scholar 
    Wei, H. C., Qi-Shun, F., Fu-Yuan, A., Fa-Shou, S. & Qin, Z. J. Chemical elements in core sediments of the qarhan salt lake and palaeoclimate evolution during 94–9 ka. Acta Geosci. Sin. (2016).Yu, S., Liu, X., Tan, H. & Cao, G. Sustainable Utilization of Qarhan Salt Lake Resources 27–265 (Science Press, 2009).
    Google Scholar 
    Zhu, D. et al. An evaluation of the core bacterial communities associated with hypersaline environments in the Qaidam Basin, China. Arch. Microbiol. 202, 2093–2103. https://doi.org/10.1007/s00203-020-01927-7 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, W., Jiang, H., Yang, J. & Wu, G. Gammaproteobacterial diversity and carbon utilization in response to salinity in the lakes on the qinghai-tibetan plateau. Geomicrobiol. J. 35, 392–403. https://doi.org/10.1080/01490451.2017.1378951 (2018).CAS 
    Article 

    Google Scholar 
    Zhong, Z.-P. et al. Prokaryotic community structure driven by salinity and ionic concentrations in plateau lakes of the tibetan plateau. Appl. Environ. Microbiol. 82, 1846–1858. https://doi.org/10.1128/aem.03332-15 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, C. et al. Synergistic effect of magnetite and zero-valent iron on anaerobic degradation and methanogenesis of phenol. Biores. Technol. 291, 121874. https://doi.org/10.1016/j.biortech.2019.121874 (2019).CAS 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Zhang, J., Kassian, K., Tomáš, F. & Alexandros, S. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614 (2014).CAS 
    Article 

    Google Scholar 
    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).CAS 
    Article 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–1000 (2013).CAS 
    Article 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12, 35. https://doi.org/10.1186/1471-2105-12-35 (2011).Article 

    Google Scholar 
    McArdle, B. H. et al. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–290 (2001).Article 

    Google Scholar 
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821. https://doi.org/10.1038/nbt.2676 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1–3 (2017).
    Google Scholar 
    Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Junker, B. H. & Schreiber, F. Analysis of Biological Networks 283–304 (Analysis of biological networks, 2008).Book 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550. https://doi.org/10.1038/nrmicro2832 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Behzad, H., Ibarra, M. A., Mineta, K. & Gojobori, T. Metagenomic studies of the Red Sea. Gene 576, 717–723. https://doi.org/10.1016/j.gene.2015.10.034 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naghoni, A. et al. Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci. Rep. https://doi.org/10.1038/s41598-017-11585-3 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kambura, A. K. et al. Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya. BMC Microbiol. https://doi.org/10.1186/s12866-016-0748-x (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paul, D. et al. Exploration of microbial diversity and community structure of Lonar lake: The only hypersaline meteorite crater lake within basalt rock. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01553 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ventosa, A., de la Haba, R. R., Sánchez-Porro, C. & Papke, R. T. Microbial diversity of hypersaline environments: A metagenomic approach. Curr. Opin. Microbiol. 25, 80–87. https://doi.org/10.1016/j.mib.2015.05.002 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, F. H. et al. Bacterial and archaeal assemblages in sediments of a large shallow freshwater lake, Lake Taihu, as revealed by denaturing gradient gel electrophoresis. J. Appl. Microbiol. 106, 1022–1032. https://doi.org/10.1111/j.1365-2672.2008.04069.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Song, H., Li, Z., Du, B., Wang, G. & Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 112, 79–89. https://doi.org/10.1111/j.1365-2672.2011.05187.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, Q. L., Zwart, G., Schauer, M., Agterveld, K. V. & Hahn, M. W. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl. Environ. Microbiol. 72, 5478–5485 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Xing, P., Hahn, M. W. & Wu, Q. L. Low taxon richness of bacterioplankton in high-altitude lakes of the Eastern Tibetan Plateau, with a predominance of bacteroidetes and Synechococcus spp. Appl. Environ. Microbiol. 75, 7017–7025. https://doi.org/10.1128/aem.01544-09 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y. et al. Bacterial diversity of freshwater Alpine Lake Puma Yumco on the Tibetan Plateau. Geomicrobiol. J. 26, 131–145. https://doi.org/10.1080/01490450802660201 (2009).CAS 
    Article 

    Google Scholar 
    MounÃc, S., Caumette, P., Matheron, R. & Willison, J. C. Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol. Ecol. 44, 117–130. https://doi.org/10.1016/s0168-6496(03)00017-5 (2003).Article 

    Google Scholar 
    Valenzuela-Encinas, C. et al. Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding. Extremophiles 13, 609–621. https://doi.org/10.1007/s00792-009-0244-4 (2009).Article 
    PubMed 

    Google Scholar 
    Kim, T. J., Lee, E. Y., Kim, Y. J., Cho, K.-S. & Ryu, H. W. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A–12. World J. Microbiol. Biotechnol. 19, 411–417. https://doi.org/10.1023/A:1023998719787 (2003).CAS 
    Article 

    Google Scholar 
    Gales, G. et al. Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir. Sci. Rep. https://doi.org/10.1038/srep22960 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kleinsteuber, S., Riis, V., Fetzer, I., Harms, H. & Müller, S. Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl. Environ. Microbiol. 72, 3531–3542. https://doi.org/10.1128/aem.72.5.3531-3542.2006 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela-Encinas, C. et al. The archaeal diversity and population in a drained alkaline saline soil of the former lake Texcoco (Mexico). Geomicrobiol. J. 29, 18–22. https://doi.org/10.1080/01490451.2010.520075 (2012).Article 

    Google Scholar 
    He, S., Tan, J., Hu, W. & Mo, C. Diversity of archaea and its correlation with environmental factors in the Ebinur Lake Wetland. Curr. Microbiol. 76, 1417–1424. https://doi.org/10.1007/s00284-019-01768-8 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sandaa, R. A., Enger, O. & Torsvik, V. Abundance and diversity of Archaea in heavy-metal-contaminated soils. Appl. Environ. Microbiol. 65, 3293–3297 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Dave, B. P. & Soni, A. Diversity of halophilic archaea at salt pans around Bhavnagar Coast, Gujarat. Proc. Natl. Acad. Sci. India B 83, 225–232. https://doi.org/10.1007/s40011-012-0124-z (2012).Article 

    Google Scholar 
    Zafrilla, B., Martínez-Espinosa, R., Alonso, M. A. & Bonete, M. J. Biodiversity of Archaea and floral of two inland saltern ecosystems in the Alto Vinalopó Valley, Spain. Saline Syst. 6, 10 (2010).Article 

    Google Scholar 
    Costa, M., Santos, H. & Galinski, E. A. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv. Biochem. Eng. Biotechnol. 61, 117 (1998).PubMed 

    Google Scholar 
    Williams, R. J., Howe, A. & Hofmockel, K. S. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00358 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, T. S. B., MatiasRodrigues, J. F. & von Mering, C. A family of interaction-adjusted indices of community similarity. ISME J. 11, 791–807. https://doi.org/10.1038/ismej.2016.139 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oyewusi, H. A. et al. Functional profiling of bacterial communities in Lake Tuz using 16S rRNA gene sequences. Biotechnol. Biotechnol. Equip. 35, 1–10. https://doi.org/10.1080/13102818.2020.1840437 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Oceanographic setting influences the prokaryotic community and metabolome in deep-sea sponges

    Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S. et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12, 2070–2082 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sipkema, D. et al. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission: Microbial transmission in Petrosia ficiformis. Environ. Microbiol. 17, 3807–3821 (2015).CAS 
    PubMed 

    Google Scholar 
    Cleary, D. F. R. et al. The sponge microbiome within the greater coral reef microbial metacommunity. Nat. Commun. 10, 1644 (2019).Björk, J. R., Díez-Vives, C., Astudillo-García, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 14, 335–346 (2012).CAS 
    PubMed 

    Google Scholar 
    Kennedy, J. et al. Evidence of a putative deep sea specific microbiome in marine sponges. PLoS ONE 9, e91092 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinert, G. et al. Compositional and quantitative insights into bacterial and archaeal communities of south pacific deep-sea sponges (Demospongiae and Hexactinellida). Front. Microbiol. 11, 716 (2020).Busch, K. et al. On giant shoulders: How a seamount affects the microbial community composition of seawater and sponges. Biogeosciences 17, 3471–3486 (2020).ADS 
    CAS 

    Google Scholar 
    Olson, J. B. & Gao, X. Characterizing the bacterial associates of three Caribbean sponges along a gradient from shallow to mesophotic depths. FEMS Microbiol. Ecol. 85, 74–84 (2013).PubMed 

    Google Scholar 
    Steinert, G. et al. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ 4, e1936 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Morrow, K. M., Fiore, C. L. & Lesser, M. P. Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient. Environ. Microbiol. 18, 2025–2038 (2016).CAS 
    PubMed 

    Google Scholar 
    Ebada, S. S. & Proksch, P. The chemistry of marine sponges. In Handbook of Marine Natural Products (eds Fattorusso, E. et al.) 191–293 (Springer, 2012). https://doi.org/10.1007/978-90-481-3834-0_4.Chapter 

    Google Scholar 
    Kornprobst, J.-M. Porifera (Sponges). Encyclopedia of Marine Natural Products (Wiley, 2014).
    Google Scholar 
    Leal, M. C., Puga, J., Serôdio, J., Gomes, N. C. M. & Calado, R. Trends in the discovery of new marine natural products from invertebrates over the last two decades—Where and what are we bioprospecting?. PLoS ONE 7, e30580 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G. & Prinsep, M. R. Marine natural products. Nat. Prod. Rep. 34, 235–294 (2017).CAS 
    PubMed 

    Google Scholar 
    Unson, M. D., Holland, N. D. & Faulkner, D. J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119, 1–11 (1994).CAS 

    Google Scholar 
    Bewley, C. A., Holland, N. D. & Faulkner, D. J. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52, 716–722 (1996).CAS 
    PubMed 

    Google Scholar 
    Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tianero, M. D., Balaich, J. N. & Donia, M. S. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat. Microbiol. 4, 1149–1159 (2019).CAS 
    PubMed 

    Google Scholar 
    Ivanišević, J., Thomas, O. P., Lejeusne, C., Chevaldonné, P. & Pérez, T. Metabolic fingerprinting as an indicator of biodiversity: Towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics 7, 289–304 (2011).
    Google Scholar 
    Pérez, T. et al. Oscarella balibaloi, a new sponge species (Homoscleromorpha: Plakinidae) from the Western Mediterranean Sea: Cytological description, reproductive cycle and ecology: O. balibaloi: Description, reproductive cycle and ecology. Mar. Ecol. (Berl.) 32, 174–187 (2011).ADS 

    Google Scholar 
    Reveillaud, J. et al. Relevance of an integrative approach for taxonomic revision in sponge taxa: Case study of the shallow-water Atlanto-Mediterranean Hexadella species (Porifera: Ianthellidae: Verongida). Invertebr. Syst. 26, 230–248 (2012).
    Google Scholar 
    Olsen, E. K. et al. Marine AChE inhibitors isolated from Geodia barretti: Natural compounds and their synthetic analogs. Org. Biomol. Chem. 14, 1629–1640 (2016).CAS 
    PubMed 

    Google Scholar 
    Reverter, M., Perez, T., Ereskovsky, A. V. & Banaigs, B. Secondary metabolome variability and inducible chemical defenses in the Mediterranean Sponge Aplysina cavernicola. J. Chem. Ecol. 42, 60–70 (2016).CAS 
    PubMed 

    Google Scholar 
    Reverter, M., Tribalat, M.-A., Pérez, T. & Thomas, O. P. Metabolome variability for two Mediterranean sponge species of the genus Haliclona: Specificity, time, and space. Metabolomics 14, 114 (2018).Villegas-Plazas, M. et al. Variations in microbial diversity and metabolite profiles of the tropical marine sponge Xestospongia muta with season and depth. Microb. Ecol. 78, 243–256 (2019).CAS 
    PubMed 

    Google Scholar 
    Mohanty, I. et al. Multi-omic profiling of Melophlus sponges reveals diverse metabolomic and microbiome architectures that are non-overlapping with ecological neighbors. Mar. Drugs 18, 124 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Bowerbank, J. S. On the anatomy and physiology of the Spongiadae. Part I. On the spicula. Philos. Trans. R. Soc. Lond. 148, 279–332 (1858).ADS 

    Google Scholar 
    Vosmaer, G. C. J. The sponges of the ‘Willem Barents’ expedition 1880 and 1881. Bijdragen tot de Dierkunde 12, 1–47 (1885).
    Google Scholar 
    Radax, R. et al. Metatranscriptomics of the marine sponge Geodia barretti: Tackling phylogeny and function of its microbial community. Environ. Microbiol. 14, 1308–1324 (2012).CAS 
    PubMed 

    Google Scholar 
    Topsent, E. Spongiaires provenant des campagnes scientifiques de la ‘Princesse Alice’ dans les Mers du Nord (1898–1899—1906–1907). Résultats des campagnes scientifiques accomplies par le Prince Albert I. Monaco 45, 1–67 (1913).
    Google Scholar 
    Yashayaev, I. & Loder, J. W. Further intensification of deep convection in the Labrador Sea in 2016. Geophys. Res. Lett. 44, 1429–1438 (2017).ADS 

    Google Scholar 
    Gutleben, J. et al. Diversity of tryptophan halogenases in sponges of the genus Aplysina. FEMS Microbiol. Ecol. 95, fiz108 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Indraningrat, A. et al. Cultivation of sponge-associated bacteria from Agelas sventres and Xestospongia muta collected from different depths. Mar. Drugs 17, 578 (2019).CAS 
    PubMed Central 

    Google Scholar 
    Ramiro-Garcia, J. et al. NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000 Res. 5, 1791 (2018).
    Google Scholar 
    Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl. Acids Res. 42, D643–D648 (2014).CAS 
    PubMed 

    Google Scholar 
    Erngren, I., Smit, E., Pettersson, C., Cárdenas, P. & Hedeland, M. The effects of sampling and storage conditions on the metabolite profile of the marine sponge Geodia barretti. Front. Chem. 9:662659 (2021)Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).CAS 
    PubMed 

    Google Scholar 
    Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012).CAS 
    PubMed 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package (2017).Dat, T. T. H., Steinert, G., Thi Kim Cuc, N., Smidt, H. & Sipkema, D. Archaeal and bacterial diversity and community composition from 18 phylogenetically divergent sponge species in Vietnam. PeerJ 6, e4970 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010). https://doi.org/10.1109/GCE.2010.5676129.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucl. Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thévenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 14, 3322–3335 (2015).PubMed 

    Google Scholar 
    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinform. 13, 113 (2012).
    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durno, W. E., Hanson, N. W., Konwar, K. M. & Hallam, S. J. Expanding the boundaries of local similarity analysis. BMC Genom. 14, S3 (2013).
    Google Scholar 
    Reshef, D. N. et al. Detecting novel associations in large data sets. Science 334, 1518–1524 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Hall, M. M., Torres, D. J. & Yashayaev, I. Absolute velocity along the AR7W section in the Labrador Sea. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 72, 72–87 (2013).
    Google Scholar 
    Reveillaud, J. et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 8, 1198–1209 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front. Microbiol. 8, 752 (2017).Lidgren, G., Bohlin, L. & Bergman, J. Studies of Swedish marine organisms VII. A novel biologically active indole alkaloid from the sponge Geodia barretti. Tetrahedron Lett. 27, 3283–3284 (1986).CAS 

    Google Scholar 
    Sjögren, M. et al. Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. J. Nat. Prod. 67, 368–372 (2004).PubMed 

    Google Scholar 
    Sölter, S. Identifizierung und Synthese von Naturstoffen aus Borealen Schwämmen (Universität Hamburg, 2004).
    Google Scholar 
    Di, X. et al. 6-Bromoindole derivatives from the Icelandic marine sponge Geodia barretti: Isolation and anti-inflammatory activity. Mar. Drugs 16, 437 (2018).CAS 
    PubMed Central 

    Google Scholar 
    Carstens, B. B. et al. Isolation, characterization, and synthesis of the barrettides: Disulfide-containing peptides from the marine sponge Geodia barretti. J. Nat. Prod. 78, 1886–1893 (2015).CAS 
    PubMed 

    Google Scholar 
    Hedner, E. et al. Brominated cyclodipeptides from the marine sponge Geodia barretti as selective 5-HT ligands. J. Nat. Prod. 69, 1421–1424 (2006).CAS 
    PubMed 

    Google Scholar 
    Hedner, E. et al. Antifouling activity of a dibrominated cyclopeptide from the marine sponge Geodia barretti. J. Nat. Prod. 71, 330–333 (2008).CAS 
    PubMed 

    Google Scholar 
    Erwin, P. M., Pita, L., López-Legentil, S. & Turon, X. Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance. Appl. Environ. Microbiol. 78, 7358–7368 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cárdenas, C. A., Bell, J. J., Davy, S. K., Hoggard, M. & Taylor, M. W. Influence of environmental variation on symbiotic bacterial communities of two temperate sponges. FEMS Microbiol. Ecol. 88, 516–527 (2014).PubMed 

    Google Scholar 
    Glasl, B., Smith, C. E., Bourne, D. G. & Webster, N. S. Exploring the diversity-stability paradigm using sponge microbial communities. Sci. Rep. 8, 8425 (2018).Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lurgi, M., Thomas, T., Wemheuer, B., Webster, N. S. & Montoya, J. M. Modularity and predicted functions of the global sponge-microbiome network. Nat. Commun. 10, 992 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luter, H. M. et al. Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti. FEMS Microbiol. Ecol. 93, fix074 (2017).Thistle, D. Ecosystems of the Deep Oceans (Elsevier, 2003).
    Google Scholar 
    Pita, L., Erwin, P. M., Turon, X. & López-Legentil, S. Till death do us part: Stable sponge-bacteria associations under thermal and food shortage stresses. PLoS ONE 8, e80307 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S., Cobb, R. E. & Negri, A. P. Temperature thresholds for bacterial symbiosis with a sponge. ISME J. 2, 830–842 (2008).CAS 
    PubMed 

    Google Scholar 
    Gerringer, M. E., Drazen, J. C. & Yancey, P. H. Metabolic enzyme activities of abyssal and hadal fishes: Pressure effects and a re-evaluation of depth-related changes. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 125, 135–146 (2017).CAS 

    Google Scholar 
    Yashayaev, I. Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr. 73, 242–276 (2007).ADS 

    Google Scholar 
    Rhein, M., Steinfeldt, R., Kieke, D., Stendardo, I. & Yashayaev, I. Ventilation variability of Labrador Sea Water and its impact on oxygen and anthropogenic carbon: A review. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160321 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galand, P. E., Potvin, M., Casamayor, E. O. & Lovejoy, C. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J. 4, 564–576 (2010).PubMed 

    Google Scholar 
    Frank, A. H., Garcia, J. A. L., Herndl, G. J. & Reinthaler, T. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water: North Atlantic dark ocean prokaryotic biogeography. Environ. Microbiol. 18, 2052–2063 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Agogué, H., Lamy, D., Neal, P. R., Sogin, M. L. & Herndl, G. J. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol. Ecol. 20, 258–274 (2011).PubMed 

    Google Scholar 
    Djurhuus, A., Boersch-Supan, P. H., Mikalsen, S.-O. & Rogers, A. D. Microbe biogeography tracks water masses in a dynamic oceanic frontal system. R. Soc. Open Sci. 4, 170033 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Müller, O. et al. Spatiotemporal dynamics of ammonia-oxidizing Thaumarchaeota in distinct Arctic water masses. Front. Microbiol. 9, 1–13 (2018).ADS 

    Google Scholar 
    Kraemer, S., Ramachandran, A., Colatriano, D., Lovejoy, C. & Walsh, D. A. Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. ISME J. https://doi.org/10.1038/s41396-019-0499-4 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Monier, A. et al. Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates. Biogeosciences 10, 4273–4286 (2013).ADS 

    Google Scholar 
    Monier, A. et al. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. 9, 990–1002 (2015).CAS 
    PubMed 

    Google Scholar 
    Corrège, T. The relationship between water masses and benthic ostracod assemblages in the western Coral Sea, Southwest Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 245–266 (1993).
    Google Scholar 
    Muhling, B. A., Beckley, L. E., Koslow, J. A. & Pearce, A. F. Larval fish assemblages and water mass structure off the oligotrophic south-western Australian coast: SW Australian larval fish assemblages. Fish. Oceanogr. 17, 16–31 (2007).
    Google Scholar 
    Eerkes-Medrano, D. et al. A community assessment of the demersal fish and benthic invertebrates of the Rosemary Bank Seamount Marine Protected Area (NE Atlantic). Deep Sea Res. Part 1 Oceanogr. Res. Pap. https://doi.org/10.1016/j.dsr.2019.103180 (2019).Article 

    Google Scholar 
    Puerta, P. et al. Influence of water masses on the biodiversity and biogeography of deep-sea benthic ecosystems in the North Atlantic. Front. Mar. Sci. 7, 239 (2020).Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic Seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).ADS 

    Google Scholar 
    Kenchington, E. et al. Connectivity modelling of areas closed to protect vulnerable marine ecosystems in the northwest Atlantic. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 143, 85–103 (2019).
    Google Scholar 
    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 

    Google Scholar 
    McCauley, M., Chiarello, M., Atkinson, C. L. & Jackson, C. R. Gut microbiomes of freshwater mussels (Unionidae) are taxonomically and phylogenetically variable across years but remain functionally stable. Microorganisms 9, 411 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Page, M., West, L., Northcote, P., Battershill, C. & Kelly, M. Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand Sponge Mycale hentscheli. J. Chem. Ecol. 31, 1161–1174 (2005).CAS 
    PubMed 

    Google Scholar 
    Ternon, E., Perino, E., Manconi, R., Pronzato, R. & Thomas, O. P. How environmental factors affect the production of guanidine alkaloids by the Mediterranean sponge Crambe crambe. Mar. Drugs 15, 181 (2017).PubMed Central 

    Google Scholar 
    Sacristán-Soriano, O., Banaigs, B. & Becerro, M. A. Temporal trends in the secondary metabolite production of the sponge Aplysina aerophoba. Mar. Drugs 10, 677–693 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Ivanisevic, J. et al. Biochemical trade-offs: Evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi. PLoS ONE 6, e28059 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burg, M. B. & Ferraris, J. D. Intracellular organic osmolytes: Function and regulation. J. Biol. Chem. 283, 7309–7313 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nau-Wagner, G., Boch, J., Le Good, J. A. & Bremer, E. High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis. Appl. Environ. Microbiol. 65, 560–568 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Popowich, A., Zhang, Q. & Le, X. C. Arsenobetaine: The ongoing mystery. Natl. Sci. Rev. 3, 451–458 (2016).CAS 

    Google Scholar 
    Connor, K. M. & Gracey, A. Y. High-resolution analysis of metabolic cycles in the intertidal mussel Mytilus californianus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R103–R111 (2012).CAS 
    PubMed 

    Google Scholar 
    Cárdenas, P. Who produces Ianthelline? The Arctic sponge Stryphnus fortis or its sponge Epibiont Hexadella dedritifera: A probable case of sponge–sponge contamination. J. Chem. Ecol. 42, 339–347 (2016).PubMed 

    Google Scholar 
    Steffen, K. et al. Barrettides: A peptide family specifically produced by the deep-sea sponge Geodia barretti. J. Nat. Prod. 84, 3138–3146 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abbamondi, G. R., De Rosa, S., Iodice, C. & Tommonaro, G. Cyclic dipeptides produced by marine sponge-associated bacteria as quorum sensing signals. Nat. Prod. Commun. 9, 229–232 (2014).CAS 
    PubMed 

    Google Scholar 
    Kasheverov, I. et al. 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor. Mar. Drugs 13, 1255–1266 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, 1–7 (2017).CAS 
    PubMed 

    Google Scholar 
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 7, 744 (2016).Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Active swimming and transphort by currents observed in Japanese eels (Anguilla japonica) acoustically tracked in the western North Pacific

    To our knowledge, this study provides the first recorded information on the active swimming of Japanese eels and on their transport by currents in the open ocean. Specifically, the strong flow of the KC largely dominated the movements of the eels and transported them northeastward while they swam mainly southward, and active swimming contributed a little to their travel trajectories. In contrast, the swimming of eels made a relatively higher contribution to their travel trajectories in the TS area.Our in situ estimates of the mean swimming speeds of Japanese eels (26–41 cm/s) were similar or slightly lower than those of European eels. In the acoustic tracking experiment of European eels considering environmental current vectors, their swimming speeds were 35–58 cm/s in the coastal midwater26. In a laboratory experiment using stamina tunnels with stable temperatures, the optimal swimming speeds of European eels were estimated to be 61–68 cm/s (0.74–1.02 BL/s)56, which were higher than the in situ estimates. The minimum swimming speed of European eels is considered to be 40 cm/s if they will arrive at their spawning area in the Sargasso Sea (distance of 5500 km) in 6 months, and their optimal swimming speeds were sufficient to migrate over the long distance in time for the near-spawning period after escape from their growth habitats56. However, field studies using PSAT tagging also reported that in situ migration speeds (including transport by currents) were less than the optimal swimming speeds and suggested that some European eels could reach their spawning area within the near-spawning periods and that others only arrive in time for the following spawning season19.Our estimated effective swimming speed of Japanese eels, all day and all night over the tracking periods, ranged from 3 to 30 cm/s with individual variations. These estimates were consistent with the swimming speeds (excluding transport by currents) of 2.2–15.1 km/day (2–18 cm/s) estimated in the PSAT study of Japanese eels14. Silver-phase Japanese eels start migrating from their coastal growth habitats in Japan primarily in October to December57, 58, and spawning near the West Mariana Ridge occurs in April to August33, 35. Numerical models assuming that migrating eels use true navigation (readjusted compass) or a constant compass heading (fixed compass from the departure place to the spawning site) indicate that the minimal swimming speed required to arrive at the spawning area within 8 months is 10–12 cm/s37. Our estimated effective swimming speeds of five out of ten eels during the day and eight out of ten eels during the night were similar or higher than these minimal speeds. The low effective swimming speeds frequently observed during the day might be due to the relatively low values observed in the swimming speed at 10 min intervals and the swimming directions often varying during the day. When eels swim with stable orientation, as observed in three of the eels (WE2999_TS, WE3001_TS, and WE3002_TS) during the night, the effective swimming speeds exceeded 25 cm/s. If such a stable orientation is maintained and compensate the low speeds during the day, the eels that leave during autumn and winter will be able to arrive at the spawning area during the next spring to summer.It should also be noted that the swimming speeds in body length per second were significantly higher in shallow water during the night than in deep water during the day. In the open ocean, anguillid species exhibit DVMs during oceanic migration, swimming at depth during the day and in the shallows during the night9,10,11,12,13,14,15,16,17,18,19,20,21,22. These DVMs are likely related to the possible avoidance from visual predators under light conditions19 or maturation control59. Essentially, through the DVMs, the eels encounter low temperatures ( 20 °C) during the same day. Generally, the swimming speeds of fishes are restricted by the ambient water temperature60, and the water temperature encountered through DVMs might influence the horizontal-swimming speeds of Japanese eels.Other factors besides swimming speed are important for the success of eel migrations, such as adapting to mesopelagic zones that silver eels undergo during their spawning migrations. The most important and obvious morphological adaptation in mesopelagic fish is their well-developed eyes, and migrating eels also seem to use this strategy. These fish often have relatively large pupils61, high photosensitive structures, such as tubular eyes62, a pure rod multibank retina63, and maximum rhodopsin absorption to adapt to the blue-green light in the deep sea64. The eyes of catadromous eels displayed enlargement during their transformation into migrating silver-phase eels65, 66 and potentially increase their retinal surface area, which results in the possibility of increased photon capture. In addition, the rhodopsins in the eyes change from a freshwater type with a maximum absorption of ~ 500 nm to a deep-sea type with a maximum absorption of ~ 480 nm67,68,69. Their extreme sensitivity to light is evident through their DVM in mesopelagic water, where the timing of a large descent and ascent in the DVM demonstrated by migrating catadromous eels is precisely synchronized with sunrise and sunset. Furthermore, eels alter their swimming depth in response to the phase of the Moon9, 15, 20, 21, appearing to be capable of perceiving extremely low-intensity moonlight.This study showed that three eels released in the TS area (mainly 300–400-m depth) and one eel in the KC area (near surface) were found to change their swimming direction around the time of the solar culmination when the Sun’s bearing changed. The clockwise and counterclockwise trajectories of these eels corresponded to whether the Sun moved from the east to west in the southern and northern sky, suggesting that they demonstrated horizontal negative phototaxis swimming to avoid sunlight. They might move to avoid high-intensity sunlight horizontally, not vertically, as they gradually increase the swimming depths possibly due to acclimation to cold deep water after release. The daytime swimming depths of the eels became deeper day-by-day after their release (Fig. 4); a similar phenomenon was observed in European eels12, American eels17, and long fin eels13. Recently, Higuchi et al.20 observed that the daytime swimming depths of Japanese eels released in the TS area gradually became deeper until 13 days after their release. These facts indicate that they gradually acclimate to the cold water at the deep depths after release. Since this tracking study was conducted 2–8 days after their release, the daytime swimming depth of eels would not have reached a steady state yet. The relatively high intensity from sunlight at the shallow depths where eels swam immediately after release in the TS area might cause horizontal avoidance behavior from the light.In other cases, many eels, especially those released in the KC area, did not demonstrate the rotational behavior. The eels in the KC area mostly stayed deeper (500–800 m) during the day than the eels in the TS area (stayed at depths of 300–600 m) even during the periods shortly after their release. This is possibly due to higher water temperatures even at the deeper depths in the KC area (Fig. 4). The eels in the TS area did not demonstrate clear rotational behavior at depths of more than 400 m. The PSAT studies have reported that the steady swimming depths during the day were 500–800 m14, 20. Therefore, it was assumed that the rotational behavior observed in some eels was not a regular behavior during their migration. However, the rotational behavior observed in this study suggests that they surely perceive the horizontal direction of Sun’s bearing at 400 m depths at least. Generally, they exhibit DVM precisely synchronizing with sunrise and sunset and surely perceive the change in sunlight intensity at deeper depths9,10,11,12,13,14,15,16,17,18,19,20,21,22. Even though the rotational behavior were not observed below 400 m, it remains unknown whether the eels could not perceive the Sun’s bearing from the light penetrated at depth; thus, further investigation of response to underwater light is required in future.While possible negative phototaxis behaviors were observed in some eels after release around the time of solar culmination, the trajectories of ten eels during the entire period of tracking experiments implied that each eel tended to swim meridionally toward the bearing of the Sun at culmination. We observed that eels released at middle (20°–34° N) and low (12°–13°N) latitudes tended to swim southward and northward in the meridional direction, respectively (Fig. 6A, B). The tendency to move in a north–south swimming direction corresponded to whether the Sun culminated to the north or south: eels swam southward if the culmination occurred in the southern sky, but they swam northward if it occurred in the northern sky (Fig. 6). In the KC area (33°–35° N), the Sun rose in the southeast, passed celestial meridian in the southern sky, and set in the southwest (Fig. 6C). At 20° N in the summer time when the tracking study was conducted, the Sun also passed a celestial meridian in the southern sky, but rose in the northeast and set in the northwest (Fig. 6C). When Sun culmination occurred in the southern sky, the meridional swimming directions tended to be southward (Fig. 6A). However, at 12° to 13° N in the summer time, the Sun rose in the northeast, passed the celestial meridian in the northern sky, and set in the northwest (Fig. 6D). When the Sun at culmination appeared in the northern sky, the meridional swimming directions tended to be northward (Fig. 6B). Furthermore, the swimming behavior by one eel (WE4264_TS) that was released slightly south (14° 15′ N) from the latitude with the Sun passing through the zenith was also indicative of the meridional swimming traits. This eel moved in a northerly direction on the first day, but then it lost its north–south bias in swimming around 14° 30′ N, where the Sun nearly passed through the zenith (Figs. 1 and 6D). These observations imply that the eels might move toward the latitude with the Sun passing through the zenith.Figure 6Swimming trajectories of eels and solar paths in the celestial sphere viewed from east during each tracking period. Swimming trajectories of eels released at (A) 20°N in the tropical–subtropical area and the Kuroshio Current area, and (B) 12°–14°15′N in the tropical–subtropical area. Solar paths through the north (N)–south (S) axis and the zenith at the time of tracking in (C) 20°N in the tropical–subtropical area and the Kuroshio Current area, and (D) 12°–14°15′N in the tropical–subtropical area.Full size imageTheoretically, it is possible for mesopelagic animals to use solar cues for navigation at depths shallower than the asymptotic depth, below which penetrating light rays are symmetrical around the vertical axis and the polarization plane becomes horizontal. For example, the Sargasso Sea, where the two Atlantic catadromous eels spawn1, 3, has extremely transparent water70, and the major axis of radiance distribution still remains tilted in the mesopelagic zone. The angle of maximum radiance of sunlight at 475 nm was 13° at depths of 400 m when the Sun’s elevation was 60° (Fig. 7)52, 53. In highly transparent water, the asymptotic depth could be as high as 1000–1200 m, and the depths below this cannot be utilized for compass use53. Currently, it is not possible to verify whether the Sun culminating to north or south caused the meridional swimming tendencies of eels in this study. Potentially, these meridional swimming tendencies could be due to other orientation clues, such as the geomagnetic field, as discussed for temperate anguillid eels17, 45. Nevertheless, in future studies, it would be worthwhile considering solar cues as a possible candidate factor in the orientation of eels, even when under faint underwater light conditions.Figure 7Optical features of underwater sunlight. (A) Schematic diagram of sunlight penetrating the deep ocean at 90° to the solar bearing. The line of arrows indicates the major axis of the incident beam in a vertical plane perpendicular to the Sun’s bearing. Blue light (around 475 nm) reaches the lowest depths. With increasing depth, the light field alters its character into a less directed distribution and a lower energetic level through scattering and absorption processes. Penetrating light rays are symmetrical around the region below the asymptotic depth. (B) An example of spectral radiance distribution (e. g. 475 nm) at a certain depth. The radiance distribution is shown by an ellipsoid and the major axis is drawn by a line with arrow. The refracted angular deviation (a) of the major axis of underwater radiance distribution from the vertical axis equals the tilt of the electric vector (ee bar) from the horizontal axis53. When the Sun’ s elevation was 60° in the Sargasso Sea, the radiance distributions were measured at three different depths and the tilt of the electric vector were estimated to be 24° at depths of 100 m and 200 m and 13° at depth of 400 m52, 53.Full size imageGiven that eels might be able to use the Sun’s bearing at culmination to orient their meridional swimming direction, this orientation scheme could support a clockwise eel migration route following a partial subtropical gyre2, 37. Japanese eels that departed from the nursery area first transported northeastward via the strong KC. Maintaining southward swimming in the current, they eventually crossed the current and shifted to the southward migration course. When they enter the KC, movement to the left of the bearing of the Sun at culmination (i.e., south) is the typical pattern for the early migration of eels from Japan. The movements of eels observed in the KC were consistent with the expected route; however, eels released at low latitudes of the TS area often swam northward but also westward, which resulted in their traveling an unreasonable distance from the spawning area. This might be due to their behavior during early migration. In this study, eels were transported from Japan and released into the open ocean at low latitudes. They might have swum toward the expected bearing of the Sun at culmination as if they were in the north and moved to the left of the Sun’s bearing along with the North Equatorial Current, which would mimic the early migration of eels leaving Japan and moving along the KC.Among the eels tracked in this study were individuals with impaired swim bladders, yellow-phase eels in the process of hormone-treatment maturation, and silver-phase eels collected from different rivers in different years. Despite these variations, the swimming characteristics of the eels did not differ in terms of their DVM behavior16 and swimming speed. Nevertheless, confirmation of our results using samples with a uniform status in future research would be highly desirable. In this study, the tracked eel position was assumed to be identical to that of the tracking ship and the errors between these two positions could not be evaluated; thus, the positioning of tracked fish also may need to be improved in future studies. Experimental studies, such as tracking of blind, magnetically disturbed, or olfactory-blocked eels, could help obtain or eliminate alternative candidate clues and enhance our understanding of the navigational system of anguillid eels. Controlled laboratory experiments are required to directly quantify the ability of eels to perceive radiance distribution or polarization, along with any associated behaviors. In addition, the internal clock of eels required to perform celestial navigation should be investigated. Meanwhile, the results obtained from this study can enhance our knowledge of the mechanisms underlying the migratory behaviors of eels in the open ocean. More

  • in

    Large university with high COVID-19 incidence is not associated with excess cases in non-student population

    We used publicly available, daily, county-level COVID-19 cases and deaths from the Pennsylvania Department of Health (PA DOH) (https://www.health.pa.gov/topics/disease/coronavirus/pages/cases.aspx)13,14 for Centre County and the six neighboring counties with which it shares borders: Blair, Clearfield, Clinton, Huntingdon, Mifflin, and Union (Table 1, Fig. 1). Official COVID-19 reporting for these counties began on March 1, 2020 and is ongoing.Table 1 Summary statistics. COVID-19 reporting, census data, SafeGraph mobile-device derived data.Full size tableFigure 1(a) The cumulative COVID-19 case trajectory for Centre County minus the student cases (red line) has the same shape as the outbreak for the neighboring counties. When looking at student cases only (blue line), the curve leads other counties. Centre County cumulative cases including the university (purple line) take on the shape of an early increase because of the student cases. (b) When aggregating cases from students and non-students, Centre County (purple dot) reported about the number of cases expected for its population size, relative to the neighboring counties (black dots). When the university-reported student cases are separated from the non-student residents of the county, cases reported in Centre County non-students (red dots show possible range of total cases) fall below the number of cases we would expect for the population size. Student cases only (blue dot) are high for the student population size.Full size imageWithin Centre County, PSU provided COVID-19 testing for UP students from August 7, 2020 onward and reported anonymized weekly (2020) and daily (2021) confirmed cases, negative test results, and total tests completed for each campus in a public dashboard (Figs. 1a, S1) (https://virusinfo.psu.edu/covid-19-dashboard/)8. Two types of testing were conducted: students who were enrolled in on-campus classes were randomly selected for surveillance testing and all students could use on-demand testing. Through March 23, 2021, a total of 45,092 random tests were conducted for surveillance, of which 462, or 1.0%, were infected. Surveillance testing efforts ranged from 2440 to 4020 weekly tests through the Fall 2020 semester and were designed to consistently test approximately 1% of students throughout the school year.During the same time period, 75,436 on-demand tests were conducted, of which 6093, or 8.1%, were infected. Students living in both on-campus dorms and off-campus apartments had equal access to university-provided testing. Both on-campus and off-campus residences are within Centre County so positive and negative tests results were also included in the overall Centre County reports of COVID-19 cases.Pre-arrival testing was required for students returning to campus from transmission hotspots. Students with positive tests from pre-arrival testing were required to isolate for 10–14 days after their positive test before arriving on campus. Results from pre-arrival testing for students returning to campus in the Fall of 2020 are not included in these data.At the county level, PA DOH reports the total positive, probable, and negative tests for each county. Because PSU is within Centre County, we estimated the number of total positive and negative tests for non-student Centre County residents by subtracting the PSU estimates (from the PSU dashboard) from the Centre County estimates provided by PA DOH. However, not all student tests were reported to DOH. A portion of the on-demand tests conducted for PSU UP students were completed by a third-party vendor, which required student registration. At the time of student registration, an estimated 0–25% of students registered with an address for a family home that did not reflect their residence in Centre County. Their test results were reported to the county of their registered address. This impacts a maximum of 1,166 positive student test results and 10,760 negative student tests.We conducted a sensitivity analysis to assess the uncertainty in reporting around the negative and positive students tests that may have been misallocated due to the reported residence of student tests. We have calculated the minimum and maximum number of affected positive and negative student tests. This uncertainty from student tests impacts non-student values, which are calculated by subtracting student values from county level reports. The calculations are based on a range of a possible 0–1166 positive student tests misallocated to other counties and up to 10,760 misallocated negative student tests. We have used the ranges of misallocated student tests to calculate, for non-student Centre County residents, the full possible range of (1) total cases, (2) reported cases per capita, and (3) tests per capita (Table 1, Fig. 1b). As a result, our estimates of cases and per capita testing among non-student residents in Centre County are imprecise (Table 1).We also used publicly available data from PA DOH data and PSU to calculate COVID-19 deaths per 100,000 for Centre County, the six neighboring counties, and PSU UP.We acquired county-level data on median household income, population size, and college enrollment status from the 2019 United States Census Bureau’s American Community Survey (ACS) 5-year data (https://www.census.gov/data/developers/data-sets/acs-5year.html) for all seven previously mentioned counties in central PA15.We divide the census block groups (CBG) of Centre County into two categories. We first designated ‘student-dominated CBGs’ as CBGs where  > 50% of ACS responses report enrollment as undergraduate students. We consider data from the 19 student-dominated CBGs in Centre County to be representative of the student population in Centre County. In addition to off-campus locations, the 19 student-dominated CBGs include all on-campus dorms. These 19 CBGs are either on or adjacent to PSU’s UP campus and occupy exactly 6 census tracts. The remaining 25 county census tracts were designated as non-student dominated areas.SafeGraph16 receives geolocation data from anonymized mobile devices collected from numerous applications. We analyzed SafeGraph’s mobile device-derived daily visit counts to points of interest (POI), which are fixed locations, such as businesses or attractions. SafeGraph data provide daily counts for total numbers of visits by mobile devices while using at least one application that provides geolocation data to SafeGraph. A “visit” indicates that the device entered the building or spatial perimeter designated as a POI. We acquired daily visit counts for POIs in the seven previously mentioned counties in central PA from January 1, 2019 forward (Table 1) and within Centre County grouped counts into student-dominated CBGs and non-student dominated CBGs. From January 1, 2020 forward, we used SafeGraph data on the median daily minutes that devices spent outside of their home in each county and the student- and non-student dominated CBG divisions in Centre County. The “home location” of each device is defined by its location overnight. Finally, we used SafeGraph’s weekly calculated number of devices residing in each county and the CBGs of Centre County for 2019 to measure SafeGraph’s data representation across the seven counties and the CBGs of Centre County.No administrative permissions were required to obtain these data. Academic researchers can register to receive access to SafeGraph data at no charge for non-commercial purposes only. See Data Availability statement below for details. More

  • in

    Social networks and the conservation of fish

    Wilson, A. D. M. et al. Social networks in changing environments. Behav. Ecol. Sociobiol. 69, 1617–1629 (2015).
    Google Scholar 
    Ward, A. J. W. et al. Association patterns and shoal fidelity in the three–spined stickleback. Proc. R. Soc. Lond. Ser. B Biol. Sci. 269, 2451–2455 (2002).
    Google Scholar 
    Croft, D. P. et al. Assortative interactions and social networks in fish. Oecologia 143, 211–219 (2005).CAS 
    PubMed 

    Google Scholar 
    Helfman, G. S. & Schultz, E. T. Social transmission of behavioural traditions in a coral reef fish. Anim. Behav. 32, 379–384 (1984).
    Google Scholar 
    Wong, M. Y. L., Buston, P. M., Munday, P. L. & Jones, G. P. The threat of punishment enforces peaceful cooperation and stabilizes queues in a coral-reef fish. Proc. R. Soc. B Biol. Sci. 274, 1093–1099 (2007).
    Google Scholar 
    King, A. J., Fehlmann, G., Biro, D., Ward, A. J. & Fürtbauer, I. Re-wilding collective behaviour: an ecological perspective. Trends Ecol. Evol. 33, 347–357 (2018).PubMed 

    Google Scholar 
    Bro-Jørgensen, J., Franks, D. W. & Meise, K. Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190008 (2019).
    Google Scholar 
    Rose, G. A. Cod spawning on a migration highway in the north-west Atlantic. Nature 366, 458 (1993).
    Google Scholar 
    Wilson, A. D. M., Croft, D. P. & Krause, J. Social networks in elasmobranchs and teleost fishes. Fish Fish. 15, 676–689 (2014). This study reviewed the state of knowledge of the mechanisms and functions underpinning social network structure in fishes, including a discussion on methodological issues and developments in this area of research.Taborsky, M. & Wong, M. In Comparative Social Evolution (eds. Rubenstein, D. R., Abbot, P.) 354–389 (Cambridge University Press, 2017).Lusseau, D. Evidence for social role in a dolphin social network. Evol. Ecol. 21, 357–366 (2007).
    Google Scholar 
    Krause, J., James, R., Franks, D. W. & Croft, D. P. Animal social networks. (Oxford University Press, 2015).Smith, J. E. & Pinter‐Wollman, N. Observing the unwatchable: Integrating automated sensing, naturalistic observations and animal social network analysis in the age of big data. J. Anim. Ecol. 90, 62–75 (2021).PubMed 

    Google Scholar 
    Webber, Q. M. R. & Vander Wal, E. Trends and perspectives on the use of animal social network analysis in behavioural ecology: a bibliometric approach. Anim. Behav. 149, 77–87 (2019).
    Google Scholar 
    Aspillaga, E., Arlinghaus, R., Martorell-Barceló, M., Barcelo-Serra, M. & Alós, J. High-throughput tracking of social networks in marine fish populations. Front. Mar. Sci. 8, 794 (2021). This original and pioneering study demonstrated the use of high-resolution tracking to infer social behaviour and social structure in the marine environment.Silk, M. J., Jackson, A. L., Croft, D. P., Colhoun, K. & Bearhop, S. The consequences of unidentifiable individuals for the analysis of an animal social network. Anim. Behav. 104, 1–11 (2015).
    Google Scholar 
    Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A. & Jensen, F. H. Challenges and solutions for studying collective animal behaviour in the wild. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170005 (2018).
    Google Scholar 
    Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).PubMed 

    Google Scholar 
    Barkley, A. N. et al. A framework to estimate the likelihood of species interactions and behavioural responses using animal-borne acoustic telemetry transceivers and accelerometers. J. Anim. Ecol. 89, 146–160 (2020).PubMed 

    Google Scholar 
    Baktoft, H., Gjelland, K. Ø., Økland, F. & Thygesen, U. H. Positioning of aquatic animals based on time-of-arrival and random walk models using YAPS (Yet Another Positioning Solver). Sci. Rep. 7, 14294 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Aspillaga, E. et al. Performance of a novel system for high-resolution tracking of marine fish societies. Anim. Biotelemetry 9, 1 (2021).
    Google Scholar 
    Jacoby, D. M. P., Papastamatiou, Y. P. & Freeman, R. Inferring animal social networks and leadership: applications for passive monitoring arrays. J. R. Soc. Interface 13, 20160676 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Papastamatiou, Y. P., Meyer, C. G., Watanabe, Y. & Heithaus, M. in Shark Research: Emerging Technologies and Applications for the Field and Laboratory, (eds. Carrier, J. C., Heithaus, M. R., Simpfendorfer, C. A.) 83–119 (C. R. C. Press, 2018).Butcher, P. A. et al. The drone revolution of shark. Sci. A Rev. Drones 5, 8 (2021).
    Google Scholar 
    Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).PubMed 

    Google Scholar 
    Sih, A., Spiegel, O., Godfrey, S., Leu, S. & Bull, C. M. Integrating social networks, animal personalities, movement ecology and parasites: a framework with examples from a lizard. Anim. Behav. 136, 195–205 (2018).
    Google Scholar 
    Carne, C., Semple, S., Morrogh-Bernard, H., Zuberbühler, K. & Lehmann, J. Predicting the vulnerability of great apes to disease: the role of superspreaders and their potential vaccination. PLoS ONE 8, e84642 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Fielding, H. R. et al. Spatial and temporal variation in proximity networks of commercial dairy cattle in Great Britain. Prev. Vet. Med. 194, 105443 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Haulsee, D. E. et al. Social network analysis reveals potential fission-fusion behavior in a shark. Sci. Rep. 6, 34087 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Merrick, M. J. & Koprowski, J. L. Should we consider individual behavior differences in applied wildlife conservation studies? Biol. Conserv. 209, 34–44 (2017).
    Google Scholar 
    Kressler, M. M., Gerlam, A., Spence-Jones, H. & Webster, M. M. Passive traps and sampling bias: Social effects and personality affect trap entry by sticklebacks. Ethology 127, 446–452 (2021).
    Google Scholar 
    Blumstein, D. T. In Social Behaviour (eds. Szekely, T., Moore, A. J., Komdeur, J.) 520–534 (Cambridge University Press, 2010).Berger-Tal, O. et al. A systematic survey of the integration of animal behavior into conservation. Conserv. Biol. 30, 744–753 (2016).PubMed 

    Google Scholar 
    Mucientes, G. R., Queiroz, N., Sousa, L. L., Tarroso, P. & Sims, D. W. Sexual segregation of pelagic sharks and the potential threat from fisheries. Biol. Lett. 5, 156–159 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Mourier, J., Vercelloni, J. & Planes, S. Evidence of social communities in a spatially structured network of a free-ranging shark species. Anim. Behav. 83, 389–401 (2012).
    Google Scholar 
    Perryman, R. J. Y. et al. Social preferences and network structure in a population of reef manta rays. Behav. Ecol. Sociobiol. 73, 114 (2019).
    Google Scholar 
    He, P., Maldonado-Chaparro, A. A. & Farine, D. R. The role of habitat configuration in shaping social structure: a gap in studies of animal social complexity. Behav. Ecol. Sociobiol. 73, 9 (2019).
    Google Scholar 
    Mourier, J., Lédée, E. J. I. & Jacoby, D. M. P. A multilayer perspective for inferring spatial and social functioning in animal movement networks. bioRxiv https://www.biorxiv.org/content/10.1101/749085v1.full (2019).Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32, 567–577 (2017). This review paper outlines how understanding of direct and indirect relationships between animals can be profitably applied by wildlife managers and conservationists.Beyer, K., Gozlan, R. E. & Copp, G. H. Social network properties within a fish assemblage invaded by non-native sunbleak Leucaspius delineatus. Ecol. Modell. 221, 2118–2122 (2010).
    Google Scholar 
    Hasenjager, M. J., Leadbeater, E. & Hoppitt, W. Detecting and quantifying social transmission using network-based diffusion analysis. J. Anim. Ecol. 90, 8–26 (2021).PubMed 

    Google Scholar 
    Fritzsche McKay, A. & Hoye, B. J. Are migratory animals superspreaders of infection? Integr. Comp. Biol. 56, 260–267 (2016).PubMed 

    Google Scholar 
    Albery, G. F., Kirkpatrick, L., Firth, J. A. & Bansal, S. Unifying spatial and social network analysis in disease ecology. J. Anim. Ecol. 90, 45–61 (2021).PubMed 

    Google Scholar 
    Salvanes, A. & Braithwaite, V. The need to understand the behaviour of fish reared for mariculture or restocking. ICES J. Mar. Sci. 63, 345–354 (2006).
    Google Scholar 
    Andrew, J. E., Holm, J., Kadri, S. & Huntingford, F. A. The effect of competition on the feeding efficiency and feed handling behaviour in gilthead sea bream (Sparus aurata L.) held in tanks. Aquaculture 232, 317–331 (2004).
    Google Scholar 
    Muñoz, L., Aspillaga, E., Palmer, M., Saraiva, J. L. & Arechavala-Lopez, P. Acoustic telemetry: a tool to monitor fish swimming behavior in sea-cage aquaculture. Front. Mar. Sci. 7, 645 (2020).
    Google Scholar 
    Macaulay, G., Bui, S., Oppedal, F. & Dempster, T. Challenges and benefits of applying fish behaviour to improve production and welfare in industrial aquaculture. Rev. Aquac. 13, 934–948 (2021).
    Google Scholar 
    Jacoby, D. M. P. et al. Social network analysis reveals the subtle impacts of tourist provisioning on the social behavior of a generalist marine apex predator. Front. Mar. Sci. 8, 1202 (2021).
    Google Scholar 
    Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. 31, 1–11 (2020).
    Google Scholar 
    Guerra, A. S., Kao, A. B., McCauley, D. J. & Berdahl, A. M. Fisheries-induced selection against schooling behaviour in marine fishes. Proc. R. Soc. B Biol. Sci. 287, 20201752 (2020).
    Google Scholar 
    Frisch, A. Sex-change and gonadal steroids in sequentially-hermaphroditic teleost fish. Rev. Fish. Biol. Fish. 14, 481–499 (2004).
    Google Scholar 
    Webber, Q. M. R. & Vander Wal, E. An evolutionary framework outlining the integration of individual social and spatial ecology. J. Anim. Ecol. 87, 113–127 (2018).PubMed 

    Google Scholar 
    Staveley, T. A. B. et al. Sea surface temperature dictates movement and habitat connectivity of Atlantic cod in a coastal fjord system. Ecol. Evol. 9, 9076–9086 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Sosa, S., Jacoby, D. M. P., Lihoreau, M. & Sueur, C. Animal social networks: towards an integrative framework embedding social interactions, space and time. Methods Ecol. Evol. 12, 4–9 (2021).
    Google Scholar 
    Albery, G. F. et al. Multiple spatial behaviours govern social network positions in a wild ungulate. Ecol. Lett. 24, 676–686 (2021).PubMed 

    Google Scholar 
    Ellis, S. et al. Mortality risk and social network position in resident killer whales: sex differences and the importance of resource abundance. Proc. R. Soc. B Biol. Sci. 284, 20171313 (2017).
    Google Scholar 
    Ellis, S., Snyder-Mackler, N., Ruiz-Lambides, A., Platt, M. L. & Brent, L. J. N. Deconstructing sociality: the types of social connections that predict longevity in a group-living primate. Proc. R. Soc. B Biol. Sci. 286, 20191991 (2019).
    Google Scholar 
    Kohn, G. M. Friends give benefits: autumn social familiarity preferences predict reproductive output. Anim. Behav. 132, 201–208 (2017).
    Google Scholar 
    Villegas-Ríos, D., Freitas, C., Moland, E., Thorbjørnsen, S. H. & Olsen, E. M. Inferring individual fate from aquatic acoustic telemetry data. Methods Ecol. Evol. 11, 1186–1198 (2020).
    Google Scholar 
    Mourier, J., Bass, N. C., Guttridge, T. L., Day, J. & Brown, C. Does detection range matter for inferring social networks in a benthic shark using acoustic telemetry? R. Soc. open Sci. 4, 170485 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vanovac, S., Howard, D., Monk, C. T., Arlinghaus, R. & Giabbanelli, P. J. Network analysis of intra- and interspecific freshwater fish interactions using year-around tracking. J. R. Soc. Interface 18, 20210445 (2021).PubMed 

    Google Scholar 
    Dahl, K. A., Patterson, W. F. & Snyder, R. A. Experimental assessment of lionfish removals to mitigate reef fish community shifts on northern Gulf of Mexico artificial reefs. Mar. Ecol. Prog. Ser. 558, 207–221 (2016).
    Google Scholar 
    Fitzpatrick, J. L. et al. Female-mediated causes and consequences of status change in a social fish. Proc. R. Soc. B Biol. Sci. 275, 929–936 (2008).CAS 

    Google Scholar 
    Mourier, J., Brown, C. & Planes, S. Learning and robustness to catch-and-release fishing in a shark social network. Biol. Lett. 13, 20160824 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rutledge, L. Y. et al. Protection from harvesting restores the natural social structure of eastern wolf packs. Biol. Conserv. 143, 332–339 (2010).
    Google Scholar 
    Jacoby, D. M. P. et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob. Ecol. Conserv 4, 321–333 (2015).
    Google Scholar 
    Geffroy, B., Bru, N., Dossou-Gbété, S., Tentelier, C. & Bardonnet, A. The link between social network density and rank-order consistency of aggressiveness in juvenile eels. Behav. Ecol. Sociobiol. 68, 1073–1083 (2014).
    Google Scholar  More

  • in

    Environmental influences on human innovation and behavioural diversity in southern Africa 92–80 thousand years ago

    Lombard, M. et al. South African and Lesotho Stone Age sequence updated. S. Afr. Archaeol. Bull. 67, 120–144 (2012).
    Google Scholar 
    Kandel, A. W. et al. Increasing behavioral flexibility? An integrative macro-scale approach to understanding the Middle Stone Age of southern Africa. J. Archaeol. Method Theory 23, 623–628 (2015).
    Google Scholar 
    Porraz, G. et al. Experimentation preceding innovation in a MIS5 Pre-Still Bay layer from Diepkloof Rock Shelter (South Africa): emerging technologies and symbols. Preprint at EcoEvoRxiv https://ecoevorxiv.org/ch53r/ (2020).Texier, P. J. et al. A Howiesons Poort tradition of engraving ostrich eggshell containers dated to 60,000 years ago at Diepkloof Rock Shelter, South Africa. Proc. Natl Acad. Sci. USA 107, 6180–6185 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Henshilwood, C. S. et al. Klipdrift Shelter, southern Cape, South Africa: preliminary report on the Howiesons Poort layers. J. Archaeol. Sci. 45, 284–303 (2014).
    Google Scholar 
    Powell, A., Shennan, S. & Thomas, M. G. Late Pleistocene demography and the appearance of modern human behavior. Science 324, 1298–1301 (2009).CAS 
    PubMed 

    Google Scholar 
    Marean, C. W. The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Phil. Trans. R. Soc. B 371, 20150239 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Mackay, A., Stewart, B. A. & Chase, B. M. Coalescence and fragmentation in the late Pleistocene archaeology of southernmost Africa. J. Hum. Evol. 72, 26–51 (2014).PubMed 

    Google Scholar 
    Wilkins, J. et al. Innovative Homo sapiens behaviours 105,000 years ago in a wetter Kalahari. Nature 592, 248–252 (2021).CAS 
    PubMed 

    Google Scholar 
    Dewar, G. & Stewart, B. A. Preliminary results of excavations at Spitzkloof Rockshelter, Richtersveld, South Africa. Quat. Int. 270, 30–39 (2012).
    Google Scholar 
    Cowling, R. M. & Pierce, S. Namaqualand: A Succulent Desert (Fernwood Press, 1999).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 
    Mucina, L. et al. in The Vegetation of South Africa, Lesotho and Swaziland (eds Mucina, L. & Rutherford, M. C.) 221–299 (SANBI, 2006).Rebelo, A. G., Boucher, C., Helme, N., Mucina, L. & Rutherford, M. C. in The Vegetation of South Africa, Lesotho and Swaziland (eds Mucina, L. & Rutherford, M. C.) 53–219 (SANBI, 2006).Marean, C. W. et al. in Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region (eds Allsopp, N. et al.) 164–199 (Oxford Univ. Press, 2014).Carr, A. S., Chase, B. M. & Mackay, A. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. & Stewart, B. A.) 23–47 (Springer, 2016).Chase, B. M. & Meadows, M. E. Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth Sci. Rev. 84, 103–138 (2007).
    Google Scholar 
    Steele, T. E. et al. Varsche Rivier 003: a Middle and Later Stone Age site with Still Bay and Howiesons Poort assemblages in southern Namaqualand, South Africa. Paleoanthropology 2016, 100–163 (2016).
    Google Scholar 
    Sharp, W. D. et al. 230Th/U burial dating of ostrich eggshell. Quat. Sci. Rev. 219, 263–276 (2019).
    Google Scholar 
    Chase, B. M. et al. South African speleothems reveal influence of high- and low-latitude forcing over the last 113.5 kyr. Geology 49, 1353–1357 (2021).CAS 

    Google Scholar 
    Chase, B. M. et al. Influence of tropical easterlies in southern Africa’s winter rainfall zone during the Holocene. Quat. Sci. Rev. 107, 138–148 (2015).
    Google Scholar 
    Manning, J. Namaqualand (Briza, 2008).Skinner, J. D. & Chimimba, C. T. The Mammals of the Southern African Subregion 3rd edn (Cambridge Univ. Press, 2005).Skead, C. J. Historical Mammal Incidence in the Cape Province Vol 1: The Western and Northern Cape (Cape Town Department of Nature and Environmental Conservation, 1980).Churcher, C. S. Distribution and history of the Cape zebra (Equus capensis) in the Quaternary of Africa. Trans. R. Soc. S. Afr. 61, 89–95 (2006).
    Google Scholar 
    Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Climate 12, 1079–1092 (2016).
    Google Scholar 
    De Wet, W. Bathymetry of the South African Continental Shelf. MSc thesis, Univ. Cape Town (2013).Jerardino, A. & Marean, C. W. Shellfish gathering, marine paleoecology and modern human behavior: perspectives from Cave PP13B, Pinnacle Point, South Africa. J. Hum. Evol. 59, 412–424 (2010).PubMed 

    Google Scholar 
    Marean, C. W. Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: the Cape Floral kingdom, shellfish, and modern human origins. J. Hum. Evol. 59, 425–443 (2010).PubMed 

    Google Scholar 
    Kandel, A. W. Modification of ostrich eggs by carnivores and its bearing on the interpretation of archaeological and paleontological find. J. Archaeol. Sci. 31, 377–391 (2004).
    Google Scholar 
    Steele, T. E. & Klein, R. G. The Middle and Later Stone Age faunal remains from Diepkloof Rock Shelter, Western Cape, South Africa. J. Archaeol. Sci. 40, 3453–3462 (2013).
    Google Scholar 
    Klein, R. G. et al. The Ysterfontein 1 Middle Stone Age site, South Africa, and early human exploitation of coastal resources. Proc. Natl Acad. Sci. USA 101, 5708–5715 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vogelsang, R. et al. New excavations of Middle Stone Age deposits at Apollo 11 Rockshelter, Namibia: stratigraphy, archaeology, chronology and past environments. J. Afr. Archaeol. 8, 185–218 (2010).Marean, C. W. et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905–908 (2007).CAS 
    PubMed 

    Google Scholar 
    Schmidt, I. et al. New investigations at the Middle Stone Age site of Pockenbank Rockshelter, Namibia. Antiquity 90, e2 (2016).
    Google Scholar 
    Vogelsang, R. Middle Stone Age Fundstellen in Südwest-Namibia, Africa (Heinrich-Barth-Institut, 1998).Plug, I. Aquatic animals and their associates from the Middle Stone Age levels at Sibudu. South. Afr. Humanit. 18, 289–299 (2006).
    Google Scholar 
    Wurz, S. Technological trends in the Middle Stone Age of South Africa between MIS 7 and MIS 3. Curr. Anthropol. 54, S305–S319 (2013).
    Google Scholar 
    Volman, T. P. The Middle Stone Age in the Southern Cape. PhD thesis, Univ. Chicago (1981).Schmidt, P. & Mackay, A. Why was silcrete heat-treated in the Middle Stone Age? An early transformative technology in the context of raw material use at Mertenhof Rock Shelter, South Africa. PloS ONE 11, e0149243 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Porraz, G. et al. Technological successions in the Middle Stone Age sequence of Diepkloof Rock Shelter, Western Cape, South Africa. J. Archaeol. Sci. 40, 3376–3400 (2013).
    Google Scholar 
    Schmid, V., Conard, N. J., Parkington, J., Texier, P. J. & Porraz, G. The ‘MSA 1’ of Elands Bay Cave (South Africa) in the context of the southern African early MSA technologies. South. Afr. Humanit. 29, 153–201 (2016).
    Google Scholar 
    Evans, U. Hollow Rock Shelter, a Middle Stone Age site in the Cederberg. South. Afr. Field Archaeol. 3, 63–73 (1994).
    Google Scholar 
    Mackay, A., Jacobs, Z. & Steele, T. E. Pleistocene archaeology and chronology of Putslaagte 8 (PL8) rockshelter, Western Cape, South Africa. J. Afr. Archaeol. 13, 71–98 (2015).
    Google Scholar 
    Thompson, J. C. et al. Ecological risk, demography and technological complexity in the Late Pleistocene of northern Malawi: implications for geographical patterning in the Middle Stone Age. J. Quat. Sci. 33, 261–284 (2018).
    Google Scholar 
    Vaesen, K. & Houkes, W. Is human culture cumulative? Curr. Anthropol. 62, 218–238 (2021).
    Google Scholar 
    Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 10918–10925 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sterelny, K. From hominins to humans: how sapiens became behaviourally modern. Phil. Trans. R. Soc. B 366, 809–822 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Gärdenfors, P. & Högberg, A. The archaeology of teaching and the evolution of Homo docens. Curr. Anthropol. 58, 188–208 (2017).
    Google Scholar 
    Marwick, B. Pleistocene exchange networks as evidence for the evolution of language. Camb. Archaeol. J. 13, 67–81 (2003).
    Google Scholar 
    Blegen, N. The earliest long-distance obsidian transport: evidence from the ∼200 ka Middle Stone Age Sibilo School Road Site, Baringo, Kenya. J. Hum. Evol. 103, 1–19 (2017).PubMed 

    Google Scholar 
    McBrearty, S. & Brooks, A. S. The revolution that wasn’t: a new interpretation of the origin of modern human behavior. J. Hum. Evol. 39, 453–563 (2000).CAS 
    PubMed 

    Google Scholar 
    Klein, R. G. Archeology and the evolution of human behavior. Evol. Anthropol. 9, 17–36 (2000).
    Google Scholar 
    Wynn, T. & Coolidge, F. L. Archeological insights into hominin cognitive evolution. Evol. Anthropol. 25, 200–213 (2016).PubMed 

    Google Scholar 
    Derex, M. & Mesoudi, A. Cumulative cultural evolution within evolving population structures. Trends Cogn. Sci. 24, 654–667 (2020).PubMed 

    Google Scholar 
    Sterelny, K. Adaptable individuals and innovative lineages. Phil. Trans. R. Soc. B 371, 20150196 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Henshilwood, C. S. & Marean, C. W. The origin of modern human behavior: critique of the models and their test implications. Curr. Anthropol. 44, 627–651 (2003).PubMed 

    Google Scholar 
    Stoops, G., Marcelino, V. & Mees, F. (eds) Interpretation of Micromorphological Features of Soils and Regoliths (Elsevier, 2010).Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections (Soil Science Society of America, 2003).McPherron, S. P. Additional statistical and graphical methods for analyzing site formation processes using artifact orientations. PLoS ONE 13, e0190195 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Thomsen, K. J., Murray, A. S., Jain, M. & Bøtter-Jensen, L. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiat. Meas. 43, 1474–1486 (2008).CAS 

    Google Scholar 
    Armitage, S. J. & Bailey, R. M. The measured dependence of laboratory beta dose rates on sample grain size. Radiat. Meas. 39, 123–127 (2005).CAS 

    Google Scholar 
    Huntley, D. J. & Lamothe, M. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can. J. Earth Sci. 38, 1093–1106 (2001).CAS 

    Google Scholar 
    Jaffey, A. H., Flynn, K. F., Glendenin, L. E. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).
    Google Scholar 
    Cheng, H. et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013).
    Google Scholar 
    Holden, N. E. Total half-lives for selected nuclides. Pure Appl. Chem. 62, 941–958 (1990).CAS 

    Google Scholar 
    Ludwig, K. R. Isoplot/Ex Version 3.75: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center Special Publication, 2010).Collins, B. & Steele, T. E. An often overlooked resource: ostrich (Struthio spp.) eggshell in the archaeological record. J. Archaeol. Sci. Rep. 13, 121–131 (2017).
    Google Scholar 
    Schmidt, P. How reliable is the visual identification of heat treatment on silcrete? A quantitative verification with a new method. Archaeol. Anthropol. Sci. 11, 713–726 (2017).
    Google Scholar 
    Roberts, D. L. Age, Genesis and Significance of South African Coastal Belt Silcretes (Council for Geoscience, South Africa, 2003).Schmidt, P. et al. A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age. J. Hum. Evol. 85, 22–34 (2015).PubMed 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 (figshare, 2019); https://doi.org/10.6084/m9.figshare.7504448.v3World Atlas of Desertification 2nd edn (UNEP, 1997).Mucina, L. & Rutherford, M. C. The Vegetation of South Africa, Lesotho and Swaziland (South African National Biodiversity Institute, 2006).Cordova, C. E. C3 Poaceae and Restionaceae phytoliths as potential proxies for reconstructing winter rainfall in South Africa. Quat. Int. 287, 121–140 (2013).
    Google Scholar 
    Esteban, I. et al. Modern soil phytolith assemblages used as proxies for paleoscape reconstruction on the south coast of South Africa. Quat. Int. 434, 160–179 (2017).
    Google Scholar 
    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).
    Google Scholar 
    Chase, B. M. et al. Orbital controls on Namib Desert hydroclimate over the past 50,000 years. Geology 47, 867–871 (2019).
    Google Scholar 
    Farmer, E. C., deMenocal, P. B. & Marchitto, T. M. Holocene and deglacial ocean temperature variability in the Benguela upwelling region: implications for low‐latitude atmospheric circulation. Paleoceanography 20, PA2018 (2005).
    Google Scholar 
    Pichevin, L., Cremer, M., Giraudeau, J. & Bertrand, P. A 190 kyr record of lithogenic grain size on the Namibian slope: forging a tight link between past wind‐strength and coastal upwelling dynamics. Mar. Geol. 218, 81–96 (2005).
    Google Scholar 
    Little, M. G. et al. Trade wind forcing of upwelling, seasonality, and Heinrich events as a response to sub‐Milankovitch climate variability. Paleoceanography 12, 568–576 (2005).
    Google Scholar 
    Stuut, J.-B. et al. A 300‐kyr record of aridity and wind strength in southwestern Africa: inferences from grain‐size distributions of sediments on Walvis Ridge, SE Atlantic. Mar. Geol. 180, 221–233 (2002).
    Google Scholar 
    Kandel, A. W. & Conard, N. J. Production sequences of ostrich eggshell beads and settlement dynamics in the Geelbek Dunes of the Western Cape, South Africa. J. Archaeol. Sci. 32, 1711–1721 (2005).
    Google Scholar  More

  • in

    An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas

    Trenberth, K. E. & Jones, P. D. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 235–335 (Cambridge Univ. Press, 2007).Linderholm, H. W. Growing season changes in the last century. Agr. For. Meteorol. 137, 1–14 (2006).
    Google Scholar 
    Yang, B. et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl Acad. Sci. USA 114, 6966–6971 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shen, M., Tang, Y., Chen, J. & Yang, W. Specification of thermal growing season in temperate China from 1960 to 2009. Clim. Change 114, 783–798 (2012).
    Google Scholar 
    Zhou, B., Zhai, P., Chen, Y. & Yu, R. Projected changes of thermal growing season over Northern Eurasia in a 1.5 °C and 2 °C warming world. Environ. Res. Lett. 13, 35004 (2018).
    Google Scholar 
    Barichivich, J., Briffa, K. R., Osborn, T. J., Melvin, T. M. & Caesar, J. Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob. Biogeochem. Cycles 26, B4015 (2012).
    Google Scholar 
    Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).
    Google Scholar 
    Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol. 24, 2117–2128 (2018).
    Google Scholar 
    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).
    Google Scholar 
    Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proc. Natl Acad. Sci. USA 117, 10397–10405 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).CAS 
    PubMed 

    Google Scholar 
    Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).
    Google Scholar 
    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).PubMed 

    Google Scholar 
    Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).CAS 

    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B 365, 3227–3246 (2010).
    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    PubMed 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 
    PubMed 

    Google Scholar 
    Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol. 25, 2382–2395 (2019).
    Google Scholar 
    Xu, C., Liu, H., Williams, A. P., Yin, Y. & Wu, X. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob. Change Biol. 22, 2852–2860 (2016).
    Google Scholar 
    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, B3018 (2007).
    Google Scholar 
    Buermann, W., Bikash, P. R., Jung, M., Burn, D. H. & Reichstein, M. Earlier springs decrease peak summer productivity in North American boreal forests. Environ. Res. Lett. 8, 24027 (2013).
    Google Scholar 
    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).CAS 
    PubMed 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).CAS 
    PubMed 

    Google Scholar 
    Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 

    Google Scholar 
    Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).
    Google Scholar 
    Huang, J. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, X. et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Sci. Bull. 62, 804–812 (2017).
    Google Scholar 
    Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 17, 696–707 (2008).
    Google Scholar 
    Lenz, A., Vitasse, Y., Hoch, G. & Körner, C. Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit. J. Ecol. 102, 1537–1548 (2014).
    Google Scholar 
    Zeng, Q., Rossi, S., Yang, B., Qin, C. & Li, G. Environmental drivers for cambial reactivation of Qilian junipers (Juniperus przewalskii) in a semi-arid region of northwestern China. Atmosphere 11, 232 (2020).
    Google Scholar 
    Ren, P. et al. Growth rate rather than growing season length determines wood biomass in dry environments. Agr. For. Meteorol. 271, 46–53 (2019).
    Google Scholar 
    Sanginés De Cárcer, P. et al. Vapor-pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 24, 1108–1122 (2017).
    Google Scholar 
    Zhang, J. et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. Catena 196, 104936 (2021).
    Google Scholar 
    Huang, J., Deslauriers, A. & Rossi, S. Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytol. 203, 831–841 (2014).CAS 
    PubMed 

    Google Scholar 
    Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).CAS 
    PubMed 

    Google Scholar 
    Rossi, S., Girard, M. J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Change Biol. 20, 2261–2271 (2014).
    Google Scholar 
    Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).CAS 
    PubMed 

    Google Scholar 
    Pasho, E., Camarero, J. J. & Vicente-Serrano, S. M. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees 26, 1875–1886 (2012).
    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).CAS 

    Google Scholar 
    Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).CAS 

    Google Scholar 
    Körner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114 (2015).PubMed 

    Google Scholar 
    Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).CAS 
    PubMed 

    Google Scholar 
    Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).PubMed 

    Google Scholar 
    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Deslauriers, A. & Morin, H. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19, 402–408 (2005).
    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–828 (2018).CAS 

    Google Scholar 
    Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 185, 471–480 (2010).PubMed 

    Google Scholar 
    Fu, Y. H. et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob. Change Biol. 20, 3743–3755 (2014).
    Google Scholar 
    Wu, X. et al. Uneven winter snow influence on tree growth across temperate China. Glob. Change Biol. 25, 144–154 (2018).
    Google Scholar 
    Wang, X. et al. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Change Biol. 24, 1651–1662 (2018).
    Google Scholar 
    Adams, H. D. et al. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees. Glob. Change Biol. 21, 4210–4220 (2015).
    Google Scholar 
    He, W., Liu, H., Qi, Y., Liu, F. & Zhu, X. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. Glob. Change Biol. 26, 3627–3638 (2020).
    Google Scholar 
    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2012).
    Google Scholar 
    Vitasse, Y. et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Change Biol. 25, 3781–3792 (2019).
    Google Scholar 
    Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).
    Google Scholar 
    Babst, F., Poulter, B., Bodesheim, P., Mahecha, M. D. & Frank, D. C. Improved tree-ring archives will support earth-system science. Nat. Ecol. Evol. 1, 8 (2017).PubMed 

    Google Scholar 
    Elmore, A. J., Guinn, S. M., Minsley, B. J. & Richardson, A. D. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Change Biol. 18, 656–674 (2012).
    Google Scholar 
    Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2018).PubMed 

    Google Scholar 
    Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).PubMed 

    Google Scholar 
    Gao, S. et al. Dynamic responses of tree-ring growth to multiple dimensions of drought. Glob. Change Biol. 24, 5380–5390 (2018).
    Google Scholar 
    Peltier, D. M. P. & Ogle, K. Tree growth sensitivity to climate is temporally variable. Ecol. Lett. 23, 1561–1572 (2020).PubMed 

    Google Scholar 
    Wilmking, M. et al. Global assessment of relationships between climate and tree growth. Glob. Change Biol. 26, 3212–3220 (2020).
    Google Scholar 
    Seftigen, K., Frank, D. C., Björklund, J., Babst, F. & Poulter, B. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob. Ecol. Biogeogr. 27, 1352–1365 (2018).
    Google Scholar 
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).
    Google Scholar 
    Frich, P. L. et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19, 193–212 (2002).
    Google Scholar 
    Selyaninov, G. T. About climate agricultural estimation (in Russian). Proc. Agric. Meteorol. 20, 165–177 (1928).
    Google Scholar 
    Streiner, D. L. Finding our way: an introduction to path analysis. Can. J. Psychiatry 50, 115–122 (2005).PubMed 

    Google Scholar 
    Fox, J., Nie, Z. & Byrnes, J. sem: Structural equation models. R package version 3.1-9 https://CRAN.R-project.org/package=sem (2017).Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).
    Google Scholar 
    Bagozzi, R. P. & Yi, Y. Specification, evaluation, and interpretation of structural equation models. J. Acad. Mark. Sci. 40, 8–34 (2012).
    Google Scholar  More