More stories

  • in

    Belowground mechanism reveals climate change impacts on invasive clonal plant establishment

    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710. https://doi.org/10.1890/1051-0761 (2000).Article 

    Google Scholar 
    Dukes, J. S. & Mooney, H. A. Disruption of ecosystem processes in western North America by invasive species. Rev. Chil. Hist. Nat. 77, 411–437 (2004).Article 

    Google Scholar 
    Vitousek, P. M. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57, 7–13. https://doi.org/10.2307/3565731 (1990).Article 

    Google Scholar 
    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Diver. Distrib. 6, 93–107 (2000).Article 

    Google Scholar 
    Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256–273 (2007).Article 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774. https://doi.org/10.1890/14-1005.1 (2015).Article 
    PubMed 

    Google Scholar 
    Estrada, J. A., Wilson, C. H. & Flory, S. L. Clonal integration enhances performance of an invasive grass. Oikos https://doi.org/10.1111/oik.07016 (2020).Article 

    Google Scholar 
    Otfinowski, R. & Kenkel, N. C. Clonal integration facilitates the proliferation of smooth brome clones invading northern fescue prairies. Plant Ecol. 199, 235–242. https://doi.org/10.1007/s11258-008-9428-8 (2008).Article 

    Google Scholar 
    Pyšek, P. & Richardson, D. M. in Biological Invasions (ed N. Nentwig) pp. 97–125 (Springer, New York, 2007).Klimešová, J. & Klimeš, L. Clonal growth diversity and bud banks of plants in the Czech flora: an evaluation using the CLO-PLA3 database. Preslia 80, 255–275 (2008).
    Google Scholar 
    Klimešová, J. et al. Handbook of standardized protocols for collecting plant modularity traits. Persp. Plant Ecol. https://doi.org/10.1016/j.ppees.2019.125485 (2019).Article 

    Google Scholar 
    Wang, Y. J. et al. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytol. 216, 1072–1078 (2017).Article 

    Google Scholar 
    Klimešová, J. in Encyclopedia of Invasive Introduced Species (eds D. Simberloff & M. Reimanek) pp. 678–679 (University of California Press, California, 2011).Ott, J. P., Klimešová, J. & Hartnett, D. C. The ecology and significance of below-ground bud banks in plants. Ann. Bot. Lond. 123, 1099–1118. https://doi.org/10.1093/aob/mcz051 (2019).Article 

    Google Scholar 
    Sanchez, J. M., Sanchez, C. & Navarro, L. Can asexual reproduction by plant fragments help to understand the invasion of the NW Iberian coast by Spartina patens? Flora 257, 151410. https://doi.org/10.1016/j.flora.2019.05.009 (2019).Speek, T. A. A. et al. Factors relating to regional and local success of exotic plant species in their new range. Diver. Distrib. 17, 542–551 (2011).Article 

    Google Scholar 
    Wang, J. Y. et al. A meta-analysis of effects of physiological integration in clonal plants under homogeneous vs heterogeneous environments. Funct. Ecol. https://doi.org/10.1111/1365-2435.13732 (2020).Article 

    Google Scholar 
    Maurer, D. A. & Zedler, J. B. Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 131, 279–288. https://doi.org/10.1007/s00442-002-0886-8 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Mueller, I. M. & Weaver, J. E. Relative drought resistance of seedlings of dominant prairie grasses. Ecology 23, 387–398 (1942).Article 

    Google Scholar 
    Vetter, V. M. S. et al. Invasion windows for a global legume invader are revealed after joint examination of abiotic and biotic filters. Plant Biol. 21, 832–843. https://doi.org/10.1111/plb.12987 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ibanez, I. et al. Integrated assessment of biological invasions. Ecol. Appl. 24, 25–37. https://doi.org/10.1890/13-0776.1 (2014).Article 
    PubMed 

    Google Scholar 
    Diez, J. M. et al. Will extreme climatic events facilitate biological invasions?. Front. Ecol. Environ. 10, 249–257. https://doi.org/10.1890/110137 (2012).Article 

    Google Scholar 
    Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88, 528–534. https://doi.org/10.1046/j.1365-2745.2000.00473.x (2000).Article 

    Google Scholar 
    Li, W. & Stevens, M. H. H. Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121, 435–441. https://doi.org/10.1111/j.1600-0706.2011.19762.x (2012).Article 

    Google Scholar 
    Koerner, S. E. et al. Invasibility of a mesic grassland depends on the time-scale of fluctuating resources. J. Ecol. 103, 1538–1546. https://doi.org/10.1111/1365-2745.12479 (2015).Article 

    Google Scholar 
    Hendrickson, J. R. & Lund, C. Plant community and target species affect responses to restoration strategies. Rangel. Ecol. Manag. 63, 435–442 (2010).Article 

    Google Scholar 
    Bennett, J., Smart, A. & Perkins, L. Using phenological niche separation to improve management in a Northern Glaciated Plains grassland. Restor. Ecol. 27, 745–749. https://doi.org/10.1111/rec.12932 (2019).Article 

    Google Scholar 
    Jordan, N. R., Larson, D. L. & Huerd, S. C. Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol. Invas. 10, 177–190. https://doi.org/10.1007/s10530-007-9121-1 (2008).Article 

    Google Scholar 
    Piper, C. L., Lamb, E. G. & Siciliano, S. D. Smooth brome changes gross soil nitrogen cycling processes during invasion of a rough fescue grassland. Plant Ecol. 216, 235–246. https://doi.org/10.1007/s11258-014-0431-y (2015).Article 

    Google Scholar 
    Stotz, G. C., Gianoli, E. & Cahill, J. F. Biotic homogenization within and across eight widely distributed grasslands following invasion by Bromus inermis. Ecology https://doi.org/10.1002/ecy.2717 (2019).Article 
    PubMed 

    Google Scholar 
    Dillemuth, F. P., Rietschier, E. A. & Cronin, J. T. Patch dynamics of a native grass in relation to the spread of invasive smooth brome (Bromus inermis). Biol. Invas. 11, 1381–1391. https://doi.org/10.1007/s10530-008-9346-7 (2009).Article 

    Google Scholar 
    Trammell, M. A. & Butler, J. L. Effects of exotic plants on native ungulate use of habitat. J. Wildlife Manag. 59, 808–816. https://doi.org/10.2307/3801961 (1995).Article 

    Google Scholar 
    Gibson, D. J. Grasses and Grassland Ecology (Oxford Univ. Press, 2009).
    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484. https://doi.org/10.1126/science.291.5503.481 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Easterling, D. R. et al. Precipitation change in the United States. pp. 207–230 (Washington, D.C. USA, 2017).Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42. https://doi.org/10.1046/j.1469-8137.2003.00866.x (2003).Article 
    PubMed 

    Google Scholar 
    Briske, D. D. in Grazing management: An ecological perspective (eds R.K. Heitschmidt & J.W. Stuth) pp. 85–108 (Timber Press, Inc., 1991).Liu, F., Liu, J. & Dong, M. Ecological consequences of clonal integration in plants. Front. Plant Sci. 217, 277–287 (2016).
    Google Scholar 
    Hoover, D. L., Knapp, A. K. & Smith, M. D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95, 2646–2656. https://doi.org/10.1890/13-2186.1 (2014).Article 

    Google Scholar 
    VanderWeide, B. L., Hartnett, D. C. & Carter, D. L. Belowground bud banks of tallgrass prairie are insensitive to multi-year, growing-season drought. Ecosphere. https://doi.org/10.1890/Es14-00058.1 (2014).Article 

    Google Scholar 
    VanderWeide, B. L. & Hartnett, D. C. Belowground bud bank response to grazing under severe, short-term drought. Oecologia 178, 795–806. https://doi.org/10.1007/s00442-015-3249-y (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    Ott, J. P., Butler, J. L., Rong, Y. P. & Xu, L. Greater bud outgrowth of Bromus inermis than Pascopyrum smithii under multiple environmental conditions. J. Plant Ecol. 10, 518–527. https://doi.org/10.1093/jpe/rtw045 (2017).Article 

    Google Scholar 
    Oesterheld, M., Loreti, J., Semmartin, M. & Sala, O. E. Inter-annual variation in primary production of a semi-arid grassland related to previous-year production. J. Veg. Sci. 12, 137–142. https://doi.org/10.1111/j.1654-1103.2001.tb02624.x (2001).Article 

    Google Scholar 
    Ott, J. P. & Hartnett, D. C. Bud bank dynamics and clonal growth strategy in the rhizomatous grass, Pascopyrum smithii. Plant Ecol. 216, 395–405. https://doi.org/10.1007/s11258-014-0444-6 (2015).Article 

    Google Scholar 
    Carlsson, B. A. & Callaghan, T. V. Programmed tiller differentiation, intraclonal density regulation and nutrient dynamics in Carex bigelowii. Oikos 58, 219–230. https://doi.org/10.2307/3545429 (1990).Article 

    Google Scholar 
    Ye, X. H., Yu, F. H. & Dong, M. A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Ann. Bot. Lond. 98, 187–191. https://doi.org/10.1093/aob/mcl086 (2006).Article 

    Google Scholar 
    Dibbern, J. C. Vegetative responses of Bromus inermis to certain variations in environment. Bot. Gazette 109, 44–58 (1947).Article 

    Google Scholar 
    Dong, X., Patton, J., Wang, G., Nyren, P. & Peterson, P. Effect of drought on biomass allocation in two invasive and two native grass species dominating the mixed-grass prairie. Grass Forage Sci. 69, 160–166. https://doi.org/10.1111/gfs.12020 (2014).Article 

    Google Scholar 
    Saeidnia, F., Majidi, M. M., Mirlohi, A. & Soltan, S. Physiological and tolerance indices useful for drought tolerance selection in smooth bromegrass. Crop Sci. 57, 282–289. https://doi.org/10.2135/cropsci2016.07.0636 (2017).CAS 
    Article 

    Google Scholar 
    Vinton, M. A. & Hartnett, D. C. Effects of bison grazing on Andropogon gerardii and Panicum virgatum in burned and unbruned tallgrass prairie. Oecologia 90, 374–382. https://doi.org/10.1007/bf00317694 (1992).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Eneboe, E. J., Sowell, B. F., Heitschmidt, R. K., Karl, M. G. & Haferkamp, M. R. Drought and grazing: IV. Blue grama and western wheatgrass. J. Range Manag. 55, 197–203. https://doi.org/10.2307/4003357 (2002).Article 

    Google Scholar 
    Broadbent, T. S., Bork, E. W. & Willms, W. D. Divergent effects of defoliation intensity and frequency on tiller growth and production dynamics of Pascopyrum smithii and Hesperostipa comata. Grass Forage Sci. 73, 532–543. https://doi.org/10.1111/gfs.12318 (2018).Article 

    Google Scholar 
    Donkor, N. T., Bork, E. W. & Hudson, R. J. Bromus-Poa response to defoliation intensity and frequency under three soil moisture levels. Can. J. Plant Sci. 82, 365–370. https://doi.org/10.4141/p01-040 (2002).Article 

    Google Scholar 
    Reynolds, J. H. & Smith, D. Trend of carbohydrate reserves in alfalfa, smooth bromegrass, and timothy grown under various cutting schedules. Crop Sci. 2, 333–336 (1962).CAS 
    Article 

    Google Scholar 
    Lamp, H. F. Reproductive activity in Bromus inermis in relation to phases of tiller development. Bot. Gazette 113, 413–438 (1952).Article 

    Google Scholar 
    Paulsen, G. M. & Smith, D. Organic reserves, axillary bud activity, and herbage yields of smooth bromegrass as influenced by time of cutting, nitrogen fertilization, and shading. Crop Sci. 9, 529–534 (1969).Article 

    Google Scholar 
    Ott, J. P. & Hartnett, D. C. Contrasting bud bank dynamics of two co-occurring grasses in tallgrass prairie: implications for grassland dynamics. Plant Ecol. 213, 1437–1448. https://doi.org/10.1007/s11258-012-0102-9 (2012).Article 

    Google Scholar 
    Busso, C. A., Mueller, R. J. & Richards, J. H. Effects of drought and defoliation on bud viability in 2 caespitose grasses. Ann. Bot. Lond. 63, 477–485. https://doi.org/10.1093/oxfordjournals.aob.a087768 (1989).Article 

    Google Scholar 
    Tuomi, J., Nilsson, P. & Astrom, M. Plant compensatory responses-bud dormancy as an adaptation to herbivory. Ecology 75, 1429–1436. https://doi.org/10.2307/1937466 (1994).Article 

    Google Scholar 
    US Department of Agriculture. The PLANTS Database, (2006).Gong, K. et al. Analysis on the distribution, breeding and utilization of Bromus inermis germplasm resource in China. Heilongjiang Anim. Sci. Vet. Med. 21, 33–36 (2019).
    Google Scholar 
    Coupland, R. T. & Johnson, R. E. Rooting characteristics of native grassland species in Saskatchewan. J. Ecol. 53, 475–507 (1965).Article 

    Google Scholar 
    Gist, G. R. & Smith, R. M. Root development of several common forage grasses to a depth of eighteen inches. Agron. J. 1036–1042 (1948).Okamoto, H., Ishii, K. & An, P. Effects of soil moisture deficit and subsequent watering on the growth of four temperate grasses. Grassl. Sci. 57, 192–197. https://doi.org/10.1111/j.1744-697X.2011.00232.x (2011).Article 

    Google Scholar 
    Morrow, L. A. & Power, J. F. Effect of soil temperature on development of perennial forage grasses. Agron. J. 71, 7–10 (1979).Article 

    Google Scholar 
    Duell, E. B., Wilson, G. W. T. & Hickman, K. R. Above- and below-ground responses of native and invasive prairie grasses to future climate scenarios. Botany 94, 471–479. https://doi.org/10.1139/cjb-2015-0238 (2016).Article 

    Google Scholar 
    Duell, E. B., Londe, D. W., Hickman, K. R., Greer, M. J. & Wilson, G. W. T. Superior performance of invasive grasses over native counterparts will remain problematic under warmer and drier conditions. Plant Ecol. 222, 993–1006 (2021).Article 

    Google Scholar 
    Cully, A. C., Cully, J. F. & Hiebert, R. D. Invasion of exotic plant species in tallgrass prairie fragments. Conser. Biol. 17, 990–998. https://doi.org/10.1046/j.1523-1739.2003.02107.x (2003).Article 

    Google Scholar 
    DeKeyser, E. S., Meehan, M., Clambey, G. & Krabbenhoft, K. Cool season invasive grasses in northern great plains natural areas. Nat. Areas J. 33, 81–90. https://doi.org/10.3375/043.033.0110 (2013).Article 

    Google Scholar 
    Grant, T. A., Shaffer, T. L. & Flanders, B. Resiliency of native prairies to invasion by kentucky bluegrass, smooth brome, and woody vegetation. Rangeland Ecol. Manag. 73, 321–328. https://doi.org/10.1016/j.rama.2019.10.013 (2020).Article 

    Google Scholar 
    Otfinowski, R., Kenkel, N. C. & Catling, P. M. The biology of Canadian weeds. 134. Bromus inermis Leyss. Can. J. Plant Sci. 87, 183–198. https://doi.org/10.4141/p06-071 (2007).Article 

    Google Scholar 
    Moore, K. J. et al. Describing and quantifying growth stages of perennial forage grasses. Agron. J. 83, 1073–1077 (1991).Article 

    Google Scholar 
    SAS Institute. SAS 9.4. (SAS Institute Inc, 2017). More

  • in

    Universal relation for life-span energy consumption in living organisms: Insights for the origin of aging

    We showed that the new metabolic rate relation13 can be directly linked to the total energy consumed in a lifespan if a constant number ({mathrm{N}}_{mathrm{r}}) of respiration cycles per lifespan is conjectured, and a corrected relation for the total energy consumed in a lifespan was found [Eq. (1)] that can explain the origin of variations in the ‘rate of living’ theory2,5 and unify them into a single formulation. It is important to note that Eq. (1) is a direct consequence of combining the two empirical relations mentioned (the new metabolic rate relation and the relation of the total number ({mathrm{N}}_{mathrm{r}}) of respiration cycles per lifespan) and is not an assumption (based on the lifespan energy expenditure per gram) as in the traditional ‘rate of living’ theory2,5. We test the validity and accuracy of the predicted relation [Eq. (1)] for the total energy consumed in a lifespan with (sim 300) species representing different classes of living organisms, and we find that the relation has an average scatter of only 0.3 dex, with 95% of the organisms having departures of less than a factor of (pi) from the relation, despite the difference of (sim 20) orders of magnitude in body mass.Successful testing of predictions is crucial in any proposed theory according to Popper’s deductive method of falsification (27), which is the criterion for identifying a successful scientific theory. Therefore, the success of the predicted Eq. (1) that is displayed in Fig. 1 implies that the corrected metabolic rate relation13 has passed an initial test. This prediction also reduces any possible interclass variation in the relation, which has been considered the most persuasive evidence against the ‘rate of living’ theory, to only a geometrical factor and strongly supports the conjectured invariant number ({mathrm{N}}_{mathrm{r}} sim 10^8) of respiration cycles per lifespan in all living organisms.Invariant quantities in physics traditionally reflect fundamental underlying constraints, a principle that has also been applied recently to life sciences such as ecology21,22. Figure 2 indicates the fact that, for a given temperature, the total lifespan energy consumption per gram per ‘generalized beat’ (({mathrm{N}}_{{mathrm{b}}}^{mathrm{G}} equiv mathrm{a} {mathrm{N}}_{{mathrm{r}}} = {mathrm{a}} ,1.62 times 10^8)) is remarkably constant (around ({mathrm{E}}_{2019})), a result that is also in agreement with previous expectations based on (lifespan) basal oxygen consumption at the molecular level38. This supports the idea that the overall energetics during the lifespan are the same for all the organisms studied, as it is predetermined by the basic energetics of respiration, and therefore, Rubner’s original picture is shown to be valid without systematic exceptions but in a more general form. Moreover, since the value determined from Fig. 2 is remarkably similar to ({mathrm{E}}_{2019} {mathrm{N}}_{mathrm{r}}), it can be considered an independent determination of ({mathrm{E}}_{2019}), suggesting that ({mathrm{E}}_{2019}) is a candidate for being a universal constant and not just a fitting parameter from the corrected metabolic relation13.In addition, we showed here that the invariant total lifespan energy consumption per gram per ‘generalized beat’ comes directly from the existence of another invariant, the approximately constant total number ({mathrm{N}}_{mathrm{r}} sim 10^8) of respiration cycles per lifetime, effectively converting the ‘generalized beat’ into the characteristic clock during the lifespan. Therefore, the exact physical relation between (oxidative) free radical damage and the origin of aging is most likely related to the striking existence of a constant total number of respiration cycles ({mathrm{N}}_{{mathrm{r}}}) over the lifetime of all organisms, which predetermines the extension of life. Moreover, the relation ({mathrm{t}}_{{mathrm{life}}} = mathrm{N}_{mathrm{r}}/mathrm{f}_{{{mathrm{resp}}}}) quantifies the ideas of oxidative damage by the respiratory metabolism, which are motivated mainly by biomedical considerations, into a simple mathematical form that could be included in a broader life-history framework; this is needed to produce testable predictions for the ‘free-radical’ hypothesis in the life-history context28. Future theoretical and experimental studies that investigate the exact link between the constant number ({mathrm{N}}_{mathrm{r}} sim 10^8) of respiration cycles per lifespan and the production rates of free radicals (or alternatively, other byproducts of metabolism) should shed light on the origin of aging and the physical cause of natural mortality.Although this relation ({mathrm{t}}_{{mathrm{life}}} = mathrm{N}_{mathrm{r}}/mathrm{f}_{{mathrm{resp}}}) has only been empirically examined for mammalian vertebrates, in terms of heartbeats per lifetime, there is evidence to believe that the relative constancy of the number of respiration cycles per lifetime is more widely distributed in the animal kingdom. For example, a reptile such as the Galapagos tortoise with a life expectancy of 177 years and a respiration rate of 3 breaths/min has (2.8 times 10^8) breaths per lifetime29, which is within a factor of 2 of the value determined for mammals. A more different case is that of birds, which have more heartbeats/lifetime by a factor of 330; this difference is reduced to a factor of 1.5 in terms of breaths/lifetime ((mathrm{N}_{mathrm{r}} = mathrm{N}_{mathrm{b}}/{mathrm{a}}), with (hbox {a}=9) for birds and 4.5 for mammals; 17). Among fish, the average number of heartbeats/lifetime tends to be an order of magnitude less than that in mammals ((mathrm{N}_{mathrm{b}} = 7.3 times 10^8);16), for example, (mathrm{N}_{mathrm{b}} = 6.7 times 10^7) for trout31, but in such cases, the parameter a can be as low as 0.5 (i.e., a heart frequency lower than the respiratory frequency; 32), again implying a similar ({mathrm{N}}_{mathrm{r}} ,(= mathrm{N}_{mathrm{b}}/{mathrm{a}} = 1.3 times 10^8)). A more extreme difference in terms of heartbeats is the tiny Daphnia, which uses up to (1.7 times 10^7) heartbeats (at 25 C) in a short lifespan of 30 days33. Simple invertebrates, such as Daphnia, do not have a complex respiratory system with lungs and obtain oxygen for respiration through diffusion, but a “breath frequency” can be estimated from its respiration rate ((sim mu {mathrm{l}} {mathrm{O}}_2 hbox {hr}^{-1});34) divided by ({mathrm{E}}_{2019} M) (with ({mathrm{M}} sim 100 mu {mathrm{g}});35), giving ({mathrm{N}}_{mathrm{r}} = 1.5 times 10^8) respiration cycles per lifetime. In summary, a difference of two orders of magnitude in total heartbeats (between Daphnia and birds) is reduced to less than a factor of 2 in breaths per lifetime, further supporting that all organisms seem to live for the same span in units of respiration cycles (({mathrm{N}}_{mathrm{r}} sim 10^8)).It has also been suggested that an analogous invariant originates at the molecular level23, the number of ATP turnovers of the molecular respiratory complexes per cell in a lifetime, which, from an energy conservation model that extends metabolism to intracellular levels, is estimated to be (sim 1.5 times 10^{16})23. A similar number can be determined by taking into account that human cells require the synthase of approximately 100 moles of ATP daily, equivalent to (7 times 10^{20}) molecules per second. For (sim 3 times 10^{13}) cells in the human body and for a respiration rate of 15 breaths per minute, this gives (sim 9 times 10^{7}) ATP molecules synthesized per cell per breath, which for the invariant total number ({mathrm{N}}_{mathrm{r}}) of respiration cycles per lifetime found in this work, rises to the same number of (sim 1.5 times 10^{16}) ATP turnovers in a lifetime per cell, showing the equivalence between both invariants and linking ({mathrm{N}}_{mathrm{r}}) to the energetics of respiratory complexes at the cellular level.The excellent agreement between the predicted relation [Eq. (1)] and the data across all types of organisms emphasizes the fact that lifespan indeed depends on multiple factors (B, a, M, T & (mathrm{T}_{mathrm{a}})) and strongly supports the methodology presented in this work of multifactorial testing, as shown in Fig. 1, since quantities in life sciences generally suffer from a confounding variable problem. An example of this problem, illustrated by individually testing each of the relevant factors, is given in24, which for a large (and noisy) sample test for ({mathrm{t}}_{{{mathrm{life}}}} propto 1/B) shows no clear correlation. From Eq. (1), it is clear that in an uncontrolled experiment, the dependence on the rest of the parameters (M, a, T, & ({mathrm{T}}_{mathrm{a}})) might eliminate the dependence on the metabolic rate B (in fact, this may be for the same reason that Rubner’s work7 focused on the mass-specific metabolic rate B/M instead of B). This work24 finds only a residual inverse dependence of ({mathrm{t}}_{{mathrm{life}}}) on the ambient temperature ({mathrm{T}}_{{mathrm{a}}}) for ectotherms, which is expected according to Eq. (1) (Big (mathrm{t}_{{mathrm{life}}} propto {mathrm{exp}}Big ({small frac{mathrm{E}_{mathrm{a}}}{mathrm{k} {mathrm{T}}_{mathrm{a}}}}Big ) Big )).Finally, the empirical support in favor of Eq. (1) allows us to perform several estimations regarding how much the energy consumption will vary with changing physical conditions on Earth. For example, computing by how much the energy consumption will vary in biomass performing aerobic respiration as the Earth’s temperature increases is relevant in the current context of possible global warming. This is given by the factor ({mathrm{exp}}Big [{small frac{mathrm{E}_{mathrm{a}}}{{mathrm{k}}} Big (frac{1}{ {mathrm{T}}}} – {small frac{1}{ {mathrm{T}}+1}}Big ) Big ]), which for an activation energy of ({mathrm{E}}_{mathrm{a}} = 0.63 ,hbox {eV}) and a temperature of (30^{circ }hbox {C}) implies an increase of 8.3% in energy consumption per 1 degree increase in the average Earth temperature. This result can be straightforwardly applied in ectotherms since their body temperatures adapt to the environmental temperature (({mathrm{T}}={mathrm{T}}_{mathrm{a}})), but its implications for endothermic organisms are less clear. Another relevant estimation is to compute by how much B({mathrm{t}}_{{mathrm{life}}})/M would vary from Eq. (1) (i.e., the difference between Figs. 2 and 3) as a function of body temperature (T) and the ratio of heart rate to respiratory rate ((mathrm{a}= mathrm{f}_{mathrm{H}}/ {mathrm{f}}_{{mathrm{resp}}})). Variations in B({mathrm{t}}_{{mathrm{life}}})/M are relevant since this is a key quantity in the estimation of the energy allocation to fitness, which aims to explain in terms of trade offs the so-called ‘Equal Fitness Paradigm’39 that concerns why most organisms in the biosphere are more or less equally fit, other than the diversity seen in the size, form and function of living organisms on Earth.In the near future, our plan is to generate a (metabolic) theory starting from the new metabolic rate relation13 by assuming that it is the controlling rate in ecology in order to explain a variety of ecological phenomena in a similar fashion as the metabolic theory of ecology18 does using Kleiber’s law. A first step in this direction looks very promising40, as it can show that ontogenetic growth can be described by a universal growth curve without the aid of fitting parameters, can explain the origin of several ‘Life History Invariants’21 and can show how the heart rate may actually set several biological times (i.e., lifespan and generation time) and even some ecological rates (i.e., The Malthusian parameter). More

  • in

    Investigating weighted fishing hooks for seabird bycatch mitigation

    Phillips, R. et al. The conservation status and priorities for albatrosses and large petrels. Biol. Conserv. 201, 169–183. https://doi.org/10.1016/j.biocon.2016.06.017 (2016).Article 

    Google Scholar 
    Dias, M. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537. https://doi.org/10.1016/j.biocon.2019.06.033 (2019).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-1, www.iucnredlist.org, ISSN 2307-8235. (International Union for the Conservation of Nature, 2021).Brothers, N., Cooper, J. & Løkkeborg, S. The Incidental Catch of Seabirds by Longline Fisheries: Worldwide Review and Technical Guidelines for Mitigation. FAO Fisheries Circular No. 937. (Food and Agriculture Organization of the United Nations, 1999)Gilman, E., Brothers, N. & Kobayashi, D. Principles and approaches to abate seabird bycatch in longline fisheries. Fish Fish. 6, 35–49. https://doi.org/10.1111/j.1467-2679.2005.00175.x (2005).Article 

    Google Scholar 
    Løkkeborg, S. Best practices to mitigate seabird by—catch in longline, trawl and gillnet fisheries—efficiency and practical applicability. Mar. Ecol. Prog. Ser. 435, 285–303. https://doi.org/10.3354/meps09227 (2011).ADS 
    Article 

    Google Scholar 
    Gilman, E., Chaloupka, M., Peschon, J. & Ellgen, S. Risk factors for seabird bycatch in a pelagic longline tuna fishery. PLoS One 11, e0155477 (2016).Article 

    Google Scholar 
    Gilman, E., Kobayashi, D. & Chaloupka, M. Reducing seabird bycatch in the Hawaii longline tuna fishery. Endanger. Species Res. 5, 309–323. https://doi.org/10.3354/esr00133 (2008).Article 

    Google Scholar 
    WPRFMC. Annual Stock Assessment and Fishery Evaluation Report for U.S. Pacific Island Pelagic Fisheries Ecosystem Plan 2019. (Western Pacific Regional Fishery Management Council, Honolulu, 2020).Wren, J., Shaffer, S. & Polovina, J. Variations in black-footed albatross sightings in a North Pacific transition area due to changes in fleet dynamics and oceanography 2006–2017. Deep. Sea. Res. Part II Top. Stud. Oceanogr. 169–170, 104605. https://doi.org/10.1016/j.dsr2.2019.06.013 (2019).Article 

    Google Scholar 
    NMFS. Seabird Interactions and Mitigation Efforts in Hawaii Longline Fisheries. 2019 Annual Report. (Pacific Islands Regional Office, National Marine Fisheries Service, 2021).Hall, M., Gilman, E., Minami, H., Mituhasi, T. & Carruthers, E. Mitigating bycatch in tuna fisheries. Rev. Fish. Biol. Fisher. 27, 881–908. https://doi.org/10.1007/s11160-017-9478-x (2017).Article 

    Google Scholar 
    ACAP. ACAP Review and Best Practice Advice for Reducing the Impact of Pelagic Longline Fisheries on Seabirds. (Agreement on the Conservation of Albatrosses and Petrels, 2019).NMFS. Fisheries off west coast states and in the western Pacific; pelagic fisheries; additional measures to reduce the incidental catch of seabirds in the Hawaii pelagic longline fishery. US National Marine Fisheries Service. Fed. Regist. 70, 75075–77508 (2005).
    Google Scholar 
    Robertson, G., Candy, S. & Hall, S. New branch line weighting regimes to reduce the risk of seabird mortality in pelagic longline fisheries without affecting fish catch. Aquat. Conserv. 23, 885–900. https://doi.org/10.1002/aqc.2346 (2013).Article 

    Google Scholar 
    Melvin, E., Guy, T. & Read, L. Reducing seabird bycatch in the South African tuna fishery using bird-scaring lines, branch line weighting and nighttime setting of hooks. Fish. Res. 147, 72–82 (2013).Article 

    Google Scholar 
    Melvin, E., Guy, T. & Read, L. Best practice seabird bycatch mitigation for pelagic longline fisheries targeting tuna and related species. Fish. Res. 149, 5–18 (2014).Article 

    Google Scholar 
    Santos, R. et al. Improved line weighting reduces seabird bycatch without affecting fish catch in the Brazilian pelagic longline fishery. Aquat. Conserv. 29, 442–449. https://doi.org/10.1002/aqc.3002 (2019).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M., Wiedoff, B. & Willson, J. Mitigating seabird bycatch during hauling by pelagic longline vessels. PLoS One 9, e84499. https://doi.org/10.1371/journal.pone.0084499 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brothers, N. Incidence of Live Bird Haul Capture in Pelagic Longline Fisheries. Examination and Comparison of Live Bird Haul Captures in Fisheries Other Than the Hawaii Shallow Set Fishery Agreement on the Conservation of Albatrosses and Petrels. SBWG7 Doc 18. (Agreement on the Conservation of Albatrosses and Petrels, 2016).Jiminez, S., Domingo, A., Forselledo, R., Sullivan, B. & Yates, O. Mitigating bycatch of threatened seabirds: The effectiveness of branch line weighting in pelagic longline fisheries. Anim. Conserv. 22, 376–385. https://doi.org/10.1111/acv.12472 (2019).Article 

    Google Scholar 
    Bentley, L., Kato, A., Ropert-Coudert, Y., Manica, A. & Phillips, R. Diving behaviour of albatrosses: Implications for foraging ecology and bycatch susceptibility. Mar. Biol. 168, 36. https://doi.org/10.1007/s00227-021-03841-y (2021).Article 

    Google Scholar 
    Prince, P., Huin, N. & Weimerskirch, H. Diving depths of albatrosses. Antarct. Sci. 6, 353–354. https://doi.org/10.1017/S0954102094000532 (1994).ADS 
    Article 

    Google Scholar 
    Kazama, K., Harada, T., Deguchi, T., Suzuki, H. & Watanuki, Y. Foraging behavior of black-footed albatross Phoebastria nigripes rearing chicks on the Ogasawara Islands. Ornithol. Sci. 18, 27–37 (2019).Article 

    Google Scholar 
    Jiminez, S., Domingo, A., Abreu, M. & Brazeiro, A. Bycatch susceptibility in pelagic longline fisheries: Are albatrosses affected by the diving behaviour of medium-sized petrels?. Aquat. Conserv. 22, 436–445. https://doi.org/10.1002/aqc.2242 (2012).Article 

    Google Scholar 
    Barrington, J., Robertson, G. & Candy, S. Categorising Branchline Weighting for Pelagic Longline Fishing According to Sink Rate. ACAP-SBWG7-Doc7. (Agreement on the Conservation of Albatrosses and Petrels, 2016).NOAA. Endangered and threatened wildlife and plants: Listing the oceanic whitetip shark as threatened under the Endangered Species Act. Fed. Regist. 83, 4153–4165 (2018).
    Google Scholar 
    WPRFMC. Council Adopts Oceanic Whitetip Shark Protections for Hawaii and American Samoa Longline Fisheries. (Western Pacific Regional Fishery Management Council, 2021).Pierre, J., Goad, D. & Abraham, E. Novel Approaches to Line-Weighting in New Zealand’s Inshore Surface-Longline Fishery. (Dragonfly Data Science, 2015).Rawlinson, N., et al. The Relative Safety of Weighted Branchlines During Simulated Fly-backs (Cut-offs and Tear-outs). (AMC Research, 2018).Gilman, E., Beverly, S., Musyl, M. & Chaloupka, M. Commercial viability of alternative designs placing pelagic longline branchline weights at the hook to reduce seabird bycatch. Endanger. Species Res. 43, 223–233 (2020).Article 

    Google Scholar 
    Fenaughty, J. & Smith, N. A Simple New Method for Monitoring Longline Sink Rate to Selected Depths. Document WG-FSA-01/46. (Commission for the Conservation of Antarctic Marine Living Resources, 2001).Wienecke, B. & Robertson, G. Validation of sink rates of longlines measured using two different methods. CCAMLR Sci. 11, 179–187 (2004).
    Google Scholar 
    Melvin, E. & Wainstein, M. Seabird Avoidance Measures for Small Alaskan Longline Vessels (University of Washington, 2006).
    Google Scholar 
    CCAMLR. Longline Weighting for Seabird Conservation. Conservation Measure 24-02. (Commission for the Conservation of Antarctic Marine Living Resources, 2014).Robertson, G., Candy, S., Wienecke, B. & Lawton, K. Experimental determinations of factors affecting the sink rates of baited hooks to minimize seabird mortality in pelagic longline fisheries. Aquat. Conserv. 20, 632–643. https://doi.org/10.1002/aqc.1140 (2010).Article 

    Google Scholar 
    Wondershare Technology. Wondershare Filmora X. Version 10.2.0.32. (Wondershare Technology Co., 2021).Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Ser. A 182, 1–14. https://doi.org/10.1111/rssa.12378 (2019).MathSciNet 
    Article 

    Google Scholar 
    Gelman, A., et al. Bayesian Workflow. arXiv:2011.01808v1 (2020).Gelman, A, & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2007).Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32. https://doi.org/10.18637/jss.v076.i01 (2017).Article 

    Google Scholar 
    Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28. https://doi.org/10.18637/jss.v080.i01 (2017).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M. & Musyl, M. Effects of pelagic longline hook size on species- and size-selectivity and survival. Rev. Fish. Biol. Fish. 28, 417–433. https://doi.org/10.1007/s11160-017-9509-7 (2018).Article 

    Google Scholar 
    Signorell, A., et al. DescTools: Tools for Descriptive Statistics. R package version 0.99.18. (R Core Team, 2016).Wackerly, D., Mendenhall, W. & Scheaffer, R. Mathematical Statistics with Applications. 3rd ed. (Duxbury Press, 1986).van Houwelingen, H., Arends, L. & Stijnen, T. Advanced methods in meta-analysis: Multivariate approach and meta-regression. Stat. Med. 21, 589–624. https://doi.org/10.1002/sim.1040 (2002).Article 
    PubMed 

    Google Scholar 
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48. https://doi.org/10.18637/jss.v036.i03 (2010).Article 

    Google Scholar 
    Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90. https://doi.org/10.1002/jrsm.1370 (2020).Article 
    PubMed 

    Google Scholar 
    Lemoine, N. Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses. Oikos 128, 912–928. https://doi.org/10.1111/oik.05985 (2019).Article 

    Google Scholar 
    Schild, A. & Voracek, M. Finding your way out of the forest without a trail of bread crumbs: Development and evaluation of two novel displays of forest plots. Res. Synth. Methods 6, 74–86. https://doi.org/10.1002/jrsm.1125 (2015).Article 
    PubMed 

    Google Scholar 
    van der Bles, A. et al. Communicating uncertainty about facts, numbers and science. R. Soc. Open Sci. 6, 181870. https://doi.org/10.1098/rsos.181870 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. (Springer, 2016).Zeileis, A. et al. colorspace: A toolbox for manipulating and assessing colors and palettes. J. Stat. Softw. 96, 1–4. https://doi.org/10.18637/jss.v096.i01 (2020).Article 

    Google Scholar 
    Vovk, V. & Wang, R. Combining p-values via averaging. Biometrika 107, 791–808. https://doi.org/10.1093/biomet/asaa027 (2020).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Gilman, E., Brothers, N. & Kobayashi, D. Comparison of the efficacy of three seabird bycatch avoidance methods in Hawaii pelagic longline fisheries. Fish. Sci. 73, 208–210 (2007).CAS 
    Article 

    Google Scholar 
    Star-Oddi. DST centi-TD Miniature Temperature and Depth Data Logger. (Star-Oddi, 2021).Frankish, C., Manica, A., Navarro, J. & Phillips, R. Movements and diving behaviour of white-chinned petrels: Diurnal variation and implications for bycatch mitigation. Aquat. Conserv. 31, 1715–1729. https://doi.org/10.1002/aqc.3573 (2021).Article 

    Google Scholar 
    Cooke, S. & Suski, C. Are circular hooks and effective tool for conserving marine and freshwater recreational catch-and-release fisheries?. Aquat. Conserv. 14, 299–326. https://doi.org/10.1002/aqc.614 (2004).Article 

    Google Scholar 
    Ward, P., Lawrence, E., Darbyshire, R. & Hindmarsh, S. Large-scale experiment shows that nylon leaders reduce shark bycatch and benefit pelagic longline fishers. Fish. Res. 90, 100–108. https://doi.org/10.1016/j.fishres.2007.09.034 (2008).Article 

    Google Scholar 
    McCormack, E. & Rawlinson, N. The Relative Safety of the Agreement on the Conservation of Albatrosses and Petrels (ACAP) Recommended Minimum Specifications for the Weighting of Branchlines during Simulated Fly-backs. ACAP-SBWG7-Doc8. (Agreement on the Conservation of Albatrosses and Petrels, 2016).Goad, D., Debski, I. & Potts, J. Hookpod-mini: A smaller potential solution to mitigate seabird bycatch in pelagic longline fisheries. Endanger. Species Res. 39, 1–8. https://doi.org/10.3354/esr00953 (2019).Article 

    Google Scholar 
    WHO. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. (World Health Organization, 2009).Grade, T. et al. Lead poisoning from ingestion of fishing gear: A review. Ambio 48, 1023–1038. https://doi.org/10.1007/s13280-019-01179-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilman, E. et al. Highest risk abandoned, lost and discarded fishing gear. Sci. Rep. 11, 7195. https://doi.org/10.1038/s41598-021-86123-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brothers, N. In Pursuit of Procella—A Heavy Hook for Pelagic Longlines to Reduce Procellariiforme Bycatch. SBWG 10 Inf 09. (Agreement on the Conservation of Albatrosses and Petrels, 2021).Bluhm, R. From hierarchy to network: A richer view of evidence for evidence-based medicine. Perspect. Biol. Med. 48, 535–547. https://doi.org/10.1353/pbm.2005.0082 (2005).Article 
    PubMed 

    Google Scholar 
    Stegenga, J. Down with the hierarchies. Topoi 33, 313–322. https://doi.org/10.1007/s11245-013-9189-4 (2014).Article 

    Google Scholar 
    Marchionni, C. & Reijula, S. What is mechanistic evidence, and why do we need it for evidence-based policy?. Stud. Hist. Philos. Sci. A 73, 54–63. https://doi.org/10.1016/j.shpsa.2018.003 (2019).Article 

    Google Scholar 
    Beverly, S., Chapman, L. & Sokimi, W. Horizontal Longline Fishing Methods and Techniques. Manual for Fishermen. (Secretariat of the Pacific Community, 2003).Guilford, T., Padget, O., Maurice, L. & Catry, P. Unexpectedly deep diving in an albatross. Curr. Biol. 32, R26–R28. https://doi.org/10.1016/j.cub.2021.11.036 (2022).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Probing the antioxidant activity of functional proteins and bioactive peptides in Hermetia illucens larvae fed with food wastes

    Ebner, J., Babbitt, C., Winer, M., Hilton, B. & Williamson, A. Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products. Appl. Energy 130, 86–93 (2014).CAS 

    Google Scholar 
    Tonini, D., Albizzati, P. F. & Astrup, T. F. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 76, 744 (2018).PubMed 

    Google Scholar 
    Sze, E., Yau, Y. H. & Wu, K. C. Application of anaerobic bacterial ammonification pretreatment to microalgal food waste leachate cultivation and biofuel production. Mar. Pollut. Bull. 153, 111007 (2020).PubMed 

    Google Scholar 
    Winkel, T. D., Wahlen, S. & Jensen, T. in Nordic Conference on Consumer Research.Wang, P. et al. Effects of graphite, graphene, and graphene oxide on the anaerobic co-digestion of sewage sludge and food waste: attention to methane production and the fate of antibiotic resistance genes. Bioresour. Technol. 339, 125585 (2021).CAS 
    PubMed 

    Google Scholar 
    Gianico, A., Gallipoli, A., Pagliaccia, P. & Braguglia, C. M. Anaerobic bioconversion of food waste into energy: A critical review (2013).Smetana, S., Ites, S., Parniakov, O., Aganovic, K. & Heinz, V. in 71st Annual Meeting of the European Federation of Animal Science.Ojha, S., Buler, S. & Schlüter, O. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 118, 600–609 (2020).CAS 
    PubMed 

    Google Scholar 
    Scala, A. et al. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 10, 1–8 (2020).ADS 

    Google Scholar 
    McDonald, C., Campbell, K. A., Benson, C., Davis, M. J. & Frost, C. J. Workforce development and multiagency collaborations: a presentation of two case studies in child welfare. Sustainability 13, 10190 (2021).
    Google Scholar 
    Kim, C.-H. et al. Use of black soldier fly larvae for food waste treatment and energy production in asian countries: a review. Processes 9, 161 (2021).CAS 

    Google Scholar 
    Julita, U., Fitri, L., Putra, R. & Permana, A. Mating success and reproductive behavior of black soldier fly Hermetia illucens L. (diptera, stra-tiomyidae) in tropics. J. Ento-mol. 17, 117–127 (2020).CAS 

    Google Scholar 
    Rehman, K. U. et al. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod. 154, 366–373 (2017).CAS 

    Google Scholar 
    Li, Q., Zheng, L., Hao, C., Garza, E. & Zhou, S. From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel 90, 1545–1548 (2011).CAS 

    Google Scholar 
    Köhler, R., Kariuki, L., Lambert, C. & Biesalski, H. K. Protein, amino acid and mineral composition of some edible insects from Thailand. J. Asia Pac. Entomol. 22, 372–378 (2019).
    Google Scholar 
    Belghit, I. et al. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture (2018).Moretta, A. et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol. 11, 453 (2021).
    Google Scholar 
    Manniello, M. et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 89, 1–24 (2021).
    Google Scholar 
    Henriques, B. S., Garcia, E. S., Azambuja, P. & Genta, F. A. Determination of chitin content in insects: an alternate method based on calcofluor staining. Front. Physiol. 11, ARTN 11710.3389/fphys.2020.00117 (2020).Hbl, M., Mráz, P., Ipo, J., Hotiková, I. & Kopec, T. Polyphenols as food supplement improved food consumption and longevity of honey bees (Apis mellifera) intoxicated by pesticide thiacloprid. Insects 12 (2021).Li, H., Dai, C., Zhu, Y. & Hu, Y. Larvae crowding increases development rate, improves disease resistance, and induces expression of antioxidant enzymes and heat shock proteins in Mythimna separata (Lepidoptera: Noetuidae). J. Econ. Entomol. 4 (2021).Hao, et al. Effects of enzymatic hydrolysis assisted by high hydrostatic pressure processing on the hydrolysis and allergenicity of proteins from ginkgo seeds. Food Bioprocess Technol. 9, 839–848 (2016).
    Google Scholar 
    Nadeem, M., Mumtaz, M. W., Danish, M., Rashid, U. & Raza, S. A. Calotropis procera: UHPLC-QTOF-MS/MS based profiling of bioactives, antioxidant and anti-diabetic potential of leaf extracts and an insight into molecular docking. J. Food Meas. Charact. 13, 3206–3220 (2019).
    Google Scholar 
    Altomare, A. A., Baron, G., Aldini, G., Carini, M. & D’Amato, A. Silkworm pupae as source of high-value edible proteins and of bioactive peptides. Food Sci. Nutr. 8, 2652–2661 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zielińska, E., Baraniak, B. & Karaś, M. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol. 53, 2542–2551 (2018).
    Google Scholar 
    Sousa, P., Borges, S. & Pintado, M. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates. Food Funct. 11, 3539–3548 (2020).CAS 
    PubMed 

    Google Scholar 
    Jakubczyk, A., Karaś, M., Rybczyńska-Tkaczyk, K., Zielińska, E. & Zieliński, D. Current trends of bioactive peptides—New sources and therapeutic effect. Foods 9, 846 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Li, K., Li, X.-M., Ji, N.-Y. & Wang, B.-G. Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): structural elucidation and DPPH radical-scavenging activity. Bioorg. Med. Chem. 15, 6627–6631 (2007).CAS 
    PubMed 

    Google Scholar 
    He, R., Girgih, A. T., Malomo, S. A., Ju, X. R. & Aluko, R. E. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J. Funct. Foods 5, 219–227. https://doi.org/10.1016/j.jff.2012.10.008 (2013).CAS 
    Article 

    Google Scholar 
    Cui, Q., Sun, Y. X., Cheng, J. J. & Guo, M. R. Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate. Food Chem. 366, 10. https://doi.org/10.1016/j.foodchem.2021.130711 (2022).CAS 
    Article 

    Google Scholar 
    Liu, Y., Wan, S., Liu, J., Zou, Y. & Liao, S. Antioxidant activity and stability study of peptides from enzymatically hydrolyzed male silkmoth. J. Food Process. Preserv. 41 (2017).Carrasco-Castilla, J. et al. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem. 135, 1789–1795 (2012).CAS 
    PubMed 

    Google Scholar 
    Phongthai, S., D’Amico, S., Schoenlechner, R., Homthawornchoo, W. & Rawdkuen, S. Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem. 240, 156 (2018).CAS 
    PubMed 

    Google Scholar 
    Lee, S. J. et al. Antioxidant activity of a novel synthetic hexa-peptide derived from an enzymatic hydrolysate of duck skin by-products. Food Chem. Toxicol. 62, 276–280 (2013).CAS 
    PubMed 

    Google Scholar 
    Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 20, 2407 (2019).PubMed Central 

    Google Scholar 
    Xiang, Q., Yu, J. & Wong, P. K. Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J. Colloid Interface Sci. 357, 163–167 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wang, Y. et al. Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Phys. Chem. Chem. Phys. 21, 1336–1343 (2019).CAS 
    PubMed 

    Google Scholar 
    Arise, A. K. et al. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions. Food Funct. 7, 2431–2437. https://doi.org/10.1039/c6fo00057f (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ren, J. et al. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 108, 727–736. https://doi.org/10.1016/j.foodchem.2007.11.010 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, C., Wei, X., Omenn, G. S. & Zhang, Y. Structure and protein interaction-based gene ontology annotations reveal likely functions of uncharacterized proteins on human chromosome 17. 17 (2018).Long, C. N. et al. High-level production of Monascus pigments in Monascus ruber CICC41233 through ATP-citrate lyase overexpression. Biochem. Eng. J. 146, 160–169. https://doi.org/10.1016/j.bej.2019.03.007 (2019).CAS 
    Article 

    Google Scholar 
    Brito Querido, J. et al. The cryo-EM structure of a novel 40S kinetoplastid-specific ribosomal protein. Structure 25, 1785–1794 e1783. https://doi.org/10.1016/j.str.2017.09.014 (2017).Hamey, J. J. & Wilkins, M. R. Methylation of elongation factor 1A: Where, who, and why?. Trends Biochem. Sci. 43, 211–223. https://doi.org/10.1016/j.tibs.2018.01.004 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kuo, C. P. et al. Analysis of the immune response of human dendritic cells to Mycobacterium tuberculosis by quantitative proteomics. Proteome Sci. 14, 1–11 (2016).
    Google Scholar 
    Zhu, J. et al. Expression and RNA interference of ribosomal protein L5 gene in Nilaparvata lugens (Hemiptera: Delphacidae). J. Insect. Sci. 3 (2017).Teng, T., Mercer, C. A., Hexley, P., Thomas, G. & Fumagalli, S. Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol. Cell. Biol. 33, 4660–4671. https://doi.org/10.1128/mcb.01174-13 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rittschof, C. C. & Schirmeier, S. Insect models of central nervous system energy metabolism and its links to behavior. Glia (2017).Alar, A. F., Akr, B. & Gülseren, I. LC-Q-TOF/MS based identification and in silico verification of ACE-inhibitory peptides in Giresun (Turkey) hazelnut cakes. Eur. Food Res. Technol. (2021).Shang, W. H. et al. In silico assessment and structural characterization of antioxidant peptides from major yolk protein of sea urchin Strongylocentrotus nudus. Food Funct. 9, 6435–6443 (2018).CAS 
    PubMed 

    Google Scholar 
    Ajibola, C. F., Fashakin, J. B., Fagbemi, T. N. & Aluko, R. E. Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int. J. Mol. Sci. 12, 6685–6702 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, H. et al. Enhancing the antioxidative effects of foods containing rutin and α-amino acids via the Maillard reaction: A model study focusing on rutin-lysine system. J. Food Biochem. 44, e13086 (2020).PubMed 

    Google Scholar 
    Tsopmo, A. et al. Tryptophan released from mother’s milk has antioxidant properties. Pediatr. Res. 66, 614–618 (2009).CAS 
    PubMed 

    Google Scholar 
    Yu, Z. et al. Identification and molecular docking study of fish roe-derived peptides as potent BACE 1, AChE, and BChE inhibitors. Food Funct. 11 (2020).Li, C. et al. Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri. Fish Shellf. Immunol. 22, 663–672 (2007).
    Google Scholar 
    Arockiaraj, J. et al. An unconventional antimicrobial protein histone from freshwater prawn Macrobrachium rosenbergii: analysis of immune properties. Fish Shellfish Immunol. 35, 1511–1522 (2013).CAS 
    PubMed 

    Google Scholar 
    Ju, J. et al. Major components in Lilac and Litsea cubeba essential oils kill Penicillium roqueforti through mitochondrial apoptosis pathway. Ind. Crops Products 149, 112349 (2020).CAS 

    Google Scholar 
    Al-Dhafri, K., Chai, L. C. & Karsani, S. A. Purification and characterization of antimicrobial peptide fractions of Junipers seravschanica. Biocatal. Agric. Biotechnol. 28, 101554 (2020).
    Google Scholar 
    Ratnakomala, S., Ridwan, R., Lisdiyanti, P., Abinawanto, A. & Andi, U. Screening of actinomycetes producing an ATPase inhibitor of japanese encephalitis virus RNA helicase from soil and leaf litter samples. Microbiol. Indonesia 5, 15–20 (2011).
    Google Scholar 
    Zhao, X., Zhang, J. & Zhu, K. Y. Chito-protein matrices in arthropod exoskeletons and peritrophic matrices (2019).Pustylnikov, S., Sagar, D., Jain, P. & Khan, Z. K. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. J. Pharm. Pharm. Sci. 17 (2014).Kiew, P. L. & Don, M. M. Jewel of the seabed: sea cucumbers as nutritional and drug candidates. Int. J. Food Sci. Nutr. 63, 616–636 (2012).CAS 
    PubMed 

    Google Scholar 
    Liu, Z., Su, Y. & Zeng, M. Amino acid composition and functional properties of giant red sea cucumber (Parastichopus californicus) collagen hydrolysates. J. Ocean Univ. China 10, 80–84 (2011).ADS 
    CAS 

    Google Scholar 
    Zaky, A. A., Liu, Y., Han, P., Chen, Z. & Jia, Y. Effect of pepsin–trypsin in vitro gastro-intestinal digestion on the antioxidant capacities of ultra-filtrated rice bran protein hydrolysates (molecular weight > 10 kDa; 3–10 kDa, and< 3 kDa). Int. J. Pept. Res. Ther. 1–7 (2019).Kim, S.-B., Yoon, N. Y., Shim, K.-B. & Lim, C.-W. Antioxidant and angiotensin I-converting enzyme inhibitory activities of northern shrimp (Pandalus borealis) by-products hydrolysate by enzymatic hydrolysis. Fish. Aquat. Sci. 19, 1–6 (2016). Google Scholar  Chung, Y. C., Chang, C. T., Chao, W. W., Lin, C. F. & Chou, S. T. Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 50, 2454–2458. https://doi.org/10.1021/jf011369q (2002).CAS  Article  PubMed  Google Scholar  Zielińska, E., BaRaniak, B. & Karaś, M. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 9, 1–14 (2017). Google Scholar  Rahman, M. M., Byanju, B., Grewell, D. & Lamsal, B. P. High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrason. Sonochem. 64, 105019 (2020).CAS  PubMed  Google Scholar  More

  • in

    Soil fungal communities affect the chemical quality of flue-cured tobacco leaves in Bijie, Southwest China

    Wu, X. et al. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement. Biocontrol Sci. Technol. 30, 351–369 (2020).
    Google Scholar 
    Hu, W. et al. Flue-cured tobacco (Nicotiana tabacum L.) leaf quality can be improved by grafting with potassium-efficient rootstock. Field Crop. Res. 274, 108305 (2021).
    Google Scholar 
    Wu, X. et al. Bioaugmentation of Bacillus amyloliquefaciens-Bacillus kochii co-cultivation to improve sensory quality of flue-cured tobacco. Arch. Microbiol. 203, 5723–5733 (2021).CAS 
    PubMed 

    Google Scholar 
    Jiang, C. et al. Optimal lime application rates for ameliorating acidic soils and improving the yield and quality of tobacco leaves. Appl. Ecol. Environ. Res. 18, 5411–5423 (2020).
    Google Scholar 
    Yin, Q. et al. Investigation of associations between rhizosphere microorganisms and the chemical composition of flue-cured tobacco leaves using canonical correlation analysis. Commun. Soil Sci. Plant 44, 1524–1539 (2013).CAS 

    Google Scholar 
    Shen, H. et al. Promotion of lateral root growth and leaf quality of flue-cured tobacco by the combined application of humic acids and npk chemical fertilizers. Exp. Agric. 53, 59–70 (2017).CAS 

    Google Scholar 
    Hu, W. Q. et al. Grafting alleviates potassium stress and improves growth in tobacco. BMC Plant Biol. 19, 130 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zhong, J. Study of K+ uptake kinetics of flue-cured tobacco in K+-enriched and conventional tobacco genotypes. J. Plant Nutr. 42(7), 1–7 (2019).
    Google Scholar 
    Tang, Z. et al. Climatic factors determine the yield and quality of Honghe flue-cured tobacco. Sci. Rep. 10, 19868 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yan, S. et al. Correlation between soil microbial communities and tobacco aroma in the presence of different fertilizers. Ind. Crop. Prod. 151, 112454 (2020).CAS 

    Google Scholar 
    Tabaxi, I. Effect of organic fertilization on quality and yield of oriental tobacco (Nicotiana tabacum L.) under Mediterranean conditions. Asian J. Agric. Biol. https://doi.org/10.35495/ajab.2020.05.274 (2021).Article 

    Google Scholar 
    Chen, Y. L. et al. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol. Ecol. 26, 6608–6620 (2017).CAS 
    PubMed 

    Google Scholar 
    Wagg, C. et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    French, E. et al. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).PubMed 

    Google Scholar 
    Cui, Y. et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma 338, 118–127 (2019).ADS 
    CAS 

    Google Scholar 
    Zheng, J. et al. The effects of tetracycline residues on the microbial community structure of tobacco soil in pot experiment. Sci. Rep. 10, 8804 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. Effects of tobacco planting systems on rates of soil N transformation and soil microbial community. Int. J. Agric. Biol. 19, 992–998 (2017).CAS 

    Google Scholar 
    Yang, Y. et al. Metagenomic insights into effects of wheat straw compost fertiliser application on microbial community composition and function in tobacco rhizosphere soil. Sci. Rep. 9, 6168 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Response of soil fungal communities to continuous cropping of flue-cured tobacco. Sci. Rep. 10, 19911 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ehrmann, J. & Ritz, K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376, 1–29 (2013).
    Google Scholar 
    Liu, H. et al. Response of soil fungal community structure to long-term continuous soybean cropping. Front. Microbiol. 9, 3316 (2018).PubMed 

    Google Scholar 
    Gao, Z. et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front. Microbiol. 10, 2269 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Li, J. Analysis on the method selection of tobacco disease control. South China Agric. 15, 49–50 (2021).
    Google Scholar 
    Dai, C. et al. Comprehensive evaluation of soil fertility status of tobacco-planting district in Bijie area. Acta Agric. Jiangxi 23, 9–11 (2011).
    Google Scholar 
    Wang, Z. et al. Time-course relationship between environmental factors and microbial diversity in tobacco soil. Sci. Rep. 9, 19969 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. et al. Study on the primary chemical components, sensory quality of flue-cured tobacco and their correlativity in Bijie. J. Henan Agric. Sci. 41, 58–61 (2012).
    Google Scholar 
    Zhang, S. et al. Analysis of variation characteristics and coordination of conventional chemical components of flue-cured tobacco in Youyang County, Chongqing City. Acta Agric. Jiangxi 32, 75–86 (2020).
    Google Scholar 
    Lakatos, L. et al. The influence of meteorological variables on sour cherry quality parameters. In Vi International Cherry Symposium (Int Soc Horticultural Science, Leuven 1), Vol. 1020, 287–292 (2014).Zhao, Z. et al. Why does potassium concentration in flue-cured tobacco leaves decrease after apex excision? Field Crop. Res. 116, 86–91 (2010).
    Google Scholar 
    Travlos, I. S. et al. Green manure and pendimethalin impact on oriental sun-cured tobacco. Agron. J. 106, 1225–1230 (2014).
    Google Scholar 
    Bilalis, D. et al. Effect of organic fertilization on soil characteristics, yield and quality of Virginia Tobacco in Mediterranean area. Emir. J. Food Agric. https://doi.org/10.9755/ejfa.2020.v32.i8.2138 (2020).Article 

    Google Scholar 
    Henry, J. B., Vann, M. C. & Lewis, R. S. Agronomic practices affecting nicotine concentration in flue-cured tobacco: A review. Agron. J. 111, 3067–3075 (2019).CAS 

    Google Scholar 
    Lamarre, M. & Payette, S. Influence of nitrogen-fertilization on Quebec flue-cured tobacco production. Can. J. Plant Sci. 72, 411–419 (1992).CAS 

    Google Scholar 
    Zhang, L. et al. Dynamic changes of nutrients in tobacco-planting soils in Bijie City during 2014–2016. Guizhou Agric. Sci. 45, 51–55 (2017).CAS 

    Google Scholar 
    Lisuma, J. B., Mbega, E. R. & Ndakidemi, P. A. Dynamics of nicotine across the soil–tobacco plant interface is dependent on agro-ecology, nitrogen source, and rooting depth. Rhizosphere 12, 100175 (2019).
    Google Scholar 
    Cosme, M. & Wurst, S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biol. Biochem. 57, 436–443 (2013).CAS 

    Google Scholar 
    Chandanie, W. A., Kubota, M. & Hyakumachi, M. Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Appl. Soil Ecol. 41, 336–341 (2009).
    Google Scholar 
    Liu, D. et al. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. Sci. Total Environ. 660, 1058–1069 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, S. & Wu, F. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01521 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. Chaetosemins A-E, new chromones isolated from an Ascomycete Chaetomium seminudum and their biological activities. RSC Adv. 5, 29185–29192 (2015).ADS 
    CAS 

    Google Scholar 
    Gorte, O., Kugel, M. & Ochsenreither, K. Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding. Biotechnol. Biofuels 13, 181 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. et al. Biochar applied to consolidated land increased the quality of an acid surface soil and tobacco crop in Southern China. J. Soil. Sediment. 20, 3091–3102 (2019).
    Google Scholar 
    Zong, J. et al. Effect of two drying methods on chemical transformations in flue-cured tobacco. Dry Technol. https://doi.org/10.1080/07373937.2020.1779287 (2020).Article 

    Google Scholar 
    Ismail, E. et al. Evaluation of in vitro antifungal activity of potassium bicarbonate on Rhizoctonia solani AG 4 HG-I, Sclerotinia sclerotiorum and Trichoderma sp.. Afr. J. Biotechnol. 10, 8605–8612 (2011).
    Google Scholar 
    d’Aquino, L. et al. Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biol. Biochem. 41, 2406–2413 (2009).CAS 

    Google Scholar 
    Bijie Municipal Government. Statistical Yearbooks of Bijie City (2016)He, R., Liu, S. & Liu, Y. Application of SD model in analyzing the cultivated land carrying capacity: A case study in Bijie Prefecture, Guizhou Province, China. Procedia Environ. Sci. 10, 1985–1991 (2011).
    Google Scholar 
    Wang, M. et al. Spatial variation and fractionation of fluoride in tobacco-planted soils and leaf fluoride concentration in tobacco in Bijie City, Southwest China. Environ. Sci. Pollut. Res. 28, 26112–26123 (2021).CAS 

    Google Scholar 
    Wang, J. T. et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb. Ecol. 69, 135–145 (2015).PubMed 

    Google Scholar 
    Zhang, Q. et al. Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils. Sci. Total Environ. 658, 723–731 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cui, Q. et al. Sulfur application improved leaf yield and quality of flue-cured tobacco by maintaining soil sulfur balance. Int. J. Agric. Biol. 23, 357–363 (2020).CAS 

    Google Scholar 
    Cao, X. et al. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ. Pollut. 252, 733–741 (2019).CAS 
    PubMed 

    Google Scholar 
    Wang, C. et al. Prevalence of antibiotic resistance genes and bacterial pathogens along the soil-mangrove root continuum. J. Hazard. Mater. 408, 124985 (2021).CAS 
    PubMed 

    Google Scholar 
    Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).CAS 
    PubMed 

    Google Scholar 
    Wang, Q. et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).CAS 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindstrom, E. S. et al. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71, 8201–8206 (2005).ADS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Two new Russula species (fungi) from dry dipterocarp forest in Thailand suggest niche specialization to this habitat type

    Phylogenetic analysesA total of 21 sequences were newly generated and deposited in GenBank (Supplementary Table 1). The concatenated sequence alignment of the three loci comprised 100 sequences (38 for ITS, 30 for rpb2 and 32 for mtSSU) from 43 collections (Supplementary Table 1). The alignment was 2,004 characters long, including gaps. Multi-locus trees generated from ML and BI analyses showed similar topologies without any supported topological conflict. The multi-locus phylogeny (Fig. 1) confirmed placement of all Thai collections within the well-supported R. subsect. Amoeninae (ML = 99, BI = 1.0). Five collections from northeastern Thailand and two collections from northern Thailand form two strongly supported clades and are described below as the new species R. bellissima sp. nov. and R. luteonana sp. nov. The new species are not resolved as sister. The first species, R. bellissima, is strongly supported as sister to a clade of Australian sequestrate species that includes R. variispora T. Lebel and an undescribed Russula sp. labeled as Macowanites sp. The Indian species R. intervenosa S. Paloi, A.K. Dutta & K. Acharya is placed as sister to them with bootstrap support of 77. The second species, R. luteonana, is placed with moderate support as sister to the sequestrate European species R. andaluciana T.F. Elliott & Trappe.Figure 1ML phylogenetic tree inferred from the three-gene dataset (ITS, rpb2, mtSSU) of Russula subsection Amoeninae species, using ML and BI analyses. Three members of R. subg. Heterophyllidiae are used as outgroup. Species in boldface are new species in this study. Bootstrap support values (BS ≥ 50%) and posterior probabilities (PP ≥ 0.90) are shown at the supported branches.Full size imageThe ITS tree (Fig. 2) shows a similar topology and relationships for the studied specimens. In addition, R. intervenosa received good support (ML = 84, BI = 0.99) as sister to the clade of R. bellissima and R. variispora. Five additional ITS sequences that are grouped with strong support within R. bellissima species clade were recovered, three from Thailand, one from Laos, and one from Singapore. We did not recover any other Amoeninae ITS sequences from Thailand.Figure 2ML phylogenetic tree inferred from the ITS region of Russula subsection Amoeninae species and allied groups, using ML and BI methods. Samples in boldface are new species in this study. Bootstrap support values (BS ≥ 50%) and posterior probabilities (PP ≥ 0.90) are shown at the supported branches.Full size imageTaxonomy
    Russula bellissima Manz & F. Hampe sp. nov.
    Mycobank: MB 840549Holotype THAILAND, Theong district, Chiang Rai, 19°36′45”N 100°4′00”E, alt. 500 m, dry dipterocarpus forest in small groups on loamy soil, 12 July 2012, F. Hampe (Holotype: GENT FH 12-127; Isotype: MFLU12-0619).Etymology ’bellus’ = latin for beautiful, pretty, lovely; ’bellissima’ = the most beautiful. Resembling the species Russula bella which is also belonging to Russula subsection Amoeninae.Diagnosis Pileus small to medium-sized; cuticle dry, smooth, matt and pruinose, red; stipe white or with a red flush; spore ornamentation of moderately distant to dense amyloid spines or warts, frequently fused into short crests or even long wings; suprahilar spot inamyloid; hymenial cystidia and pileocystidia absent.Pileus (Fig. 3) small to medium sized, 10–50 mm diam., young hemispherical or convex, becoming plane and depressed at the centre; margin first even, when old distinctly tuberculate-striate up to 10 mm from the margin, often radially cracking; cuticle hardly peeling, radially disrupted into small patches, pruinose when young, later dry, smooth, matt and pruinose in the centre, colour near the margin when young varnish red (9C8), later red to coral red (9B6-7); near the centre deep red, blood red, dark red (10C7-8), raspberry red (10D7), strawberry red (10D8) or purple brown (10E-F8). Lamellae: 3–5 mm deep, thin, moderately dense, 6–8 at 1 cm near the pileus margin, adnexed, white, slightly anastomosing at the base; lamellulae absent, occasionally forked near the stipe; edges concolorous, entire but pruinose under lens. Stipe: 10–30 × 3–7 mm, usually narrowed towards the base, sometimes cylindrical, surface smooth, white and mainly with a distinct pastel red to red flush, occasionally completely white or sometimes also almost completely red, interior stuffed. Context: white, fragile, unchanging when damaged, reaction with guaiac after 5 s negative on both stipe and lamellae surfaces, reaction to FeSO4 and sulfovanillin negative; taste mild; odour inconspicuous. Spore print: not observed.Figure 3Basidiomata of Russula bellissima. (A) FH12-127 (Holotype). (B) FH12-158. Scale bar = 1 cm. Photos by Felix Hampe.Full size imageSpores (Figs. 4, 5) (6.9–)7.3–7.8–8.3(–8.9) × (6.1–)6.8–7.2–7.6(–8.4) µm, subglobose to broadly ellipsoid, Q = 1.01–1.1–1.2(–1.29); ornamentation of moderately distant [(4–)5–6(–7) in a 3 µm diam. circle] amyloid spines or warts, (1.1–)1.2–1.4–1.6(–1.7) µm high, fused or connected by fine line connections into often long crests or wings, [(0–)1–3(–4) fusions and the same number of line connections in a 3 µm diam. circle], crests and wings frequently branched and occasionally form closed loops, isolated elements dispersed, edge of crests and wings irregularly wavy; suprahilar spot moderately large, inamyloid. Basidia: (30.5–)34.5–44.1–53.5(–65.0) × (10.5–)11.5–12.6–14.0(–16.0) µm, broadly clavate or obpyriform, 4-spored; basidiola cylindrical, ellipsoid or broadly clavate, ca. 5–10 µm wide. Hymenial cystidia on lamellae sides: absent. Lamellae edges: covered by densely arranged or fasciculate marginal cells. Marginal cells: (27.0–)38.5–46.4–54.5(–61.0) × (5.0–)5.5–6.7–7.5(–9.0) µm; subulate or narrowly lageniform, apically attenuated and constricted to ca. 1–2 µm, sometimes slightly moniliform or flexuous. Pileipellis: (Fig. 6) orthochromatic in Cresyl Blue, gradually passing to the underlying context, 200–300 µm deep; suprapellis 60–130 µm deep, composed of erect or ascending hyphal terminations forming a dry trichoderm, well delimited from 140 to 210 µm deep subpellis composed of horizontally oriented, strongly gelatinized narrow hyphae. Subpellis not well delimited from the underlying context, elongate hyphae gradually changing to sphaerocytes. Acid- resistant incrustations: absent. Hyphal terminations near the pileus margin: composed of long apically attenuated terminal cell and a chain of 1–4 ovoid to barrel shaped, short unbranched cells with one distinctly longer apical cell; constricted on septa, usually not flexuous, oriented towards the pileus surface, usually thin-walled, sometimes slightly thick-walled (up to 1 µm thick); terminal cells mainly subulate or lageniform, apically attenuated and acute, measuring (19–)27.5–38.3–49.0(–66.5) × (3.3–)4.5–5.8–7.0(–9.0) µm, rarely with a forked apex, mixed with dispersed, cylindrical or ellipsoid, distinctly shorter, obtuse terminal cells measuring (7.5–)11.5–17.8–29.5(–42.5) × (3.0–)4.0–4.5–5.0 µm; subterminal cells measuring (4.5–)5.5–8.3–11.5(–16.0) × 4.5–5.3–6.0(–7.0) µm. Hyphal terminations near the pileus centre: similar in shape and also with a mixture of long acute and short obtuse terminal cells, acute ones measuring (12.0–)22.0–35.2–48.5(–79.0) × (2.5–)3.5–4.9–6.5(–8.0) µm, obtuse ones more frequent, measuring (6.5–)8.5–12.0–15.5(–22.0) × (3.5–)4.0–4.9–6.0(–7.5) µm. Primordial hyphae or pileocystidia: absent. Cystidioid hyphae and oleipherous hyphae not observed.Figure 4Hymenial elements of Russula bellissima (holotype, FH 12-127). (A) Basidia and basidiolae. (B) Marginal cells. (C) Spores as seen in Melzer’s reagent. Scale bar = 10 µm, but only 5 µm for spores.Full size imageFigure 5Scanning electron microscope photo of spore ornamentation. Russula bellissima (holotype, FH 12-127). Scale bar = 2 μm.Full size imageFigure 6Elements of the pileipellis of Russula bellissima (holotype, FH 12-127). (A) Hyphal terminations near the pileus margin. (B) Hyphal terminations near the pileus centre. Scale bar = 10 μm.Full size imageAdditional material studied THAILAND, Chiang Mai Province, Mae On District, about 3 km from Tharnthong lodges, 18° 51′ 55″ N 99° 17′ 23″ E, alt. 725 m, Dipterocarpaceae dominated forest with the presence of some Castanopsis trees, in small groups on loamy soil, 17 July 2012, F. Hampe (GENT FH 12-158, duplicate: MFLU12-0648).Note Russula bellissima is a small species with a bright red pileus and pink colour on the stipe. This colour is distinctive and resembles North American R. mariae, Indian R. intervenosa and Asian R. bella. It is very unlikely that the distribution of any European or North American species is overlapping with the Thai species. However, little is known about the distributional ranges and the ecological niches of other Asian Russula species. Therefore discussing the morphological distinguishing characters between Asian species and R. bellissima is more relevant. Russula bellissima is not closely related to R. bella and it differs from this species by larger spores with a more prominent spore ornamentation, absence of hymenial cystidia on lamellae sides, and subterminally short, ellipsoid cells in the suprapellis arranged in unbranched chains of up to four7. The Thai species resembles and is closely related to the Indian R. intervenosa, but it has a more prominent spore ornamentation, hymenial cystidia (on lamellae sides) are absent, and hyphal terminations in the pileipellis are wider22.
    Russula luteonana M. Pobkwamsuk & K. Wisitrassameewong sp. nov.
    Mycobank: MB 840550Holotype: THAILAND, Amnat Charoen province, Hua Taphan district, Junction near Watbochaneng , dry dipterocarp forest, alt. 145 m, 15° 41′ 28″ N 104° 31′ 41″ E, 13 July 2016, Thitiya Boonpratuang, Rattaket Choeyklin, Prapapan Sawhasan, Maneerat Pobkwamsuk, Pattrachai Juthamas, Nattawut Wiriyathanawudhiwong, Patcharee Patangwesa (BBH41120).Etymology ‘Luteolus’ = yellow colour, ‘Nanus’ = small. Refer to pileus color and size of the species.Diagnosis Pileus medium-sized, dry, usually yellow, spores with subreticulate amyloid ornamentation and inamyloid suprahilar spot, hymenial cystidia on lamellae sides large, lamellae edges with combination of subulate, clavate and pyriform marginal cells.Pileus (Fig. 7) medium-sized, 28‒53 mm diam., plano-convex with depressed centre, infundibuliform when mature; margin striated and radially cracking in dry condition; cuticle dry, peeling to almost ½ of radius, smooth to minutely wrinkled, dull in dry condition, color very variable, some collections pale cream and with darker pale brownish-yellow centre, other yellow brownish and with darker orange-brown centre, sometimes also bright red-brown and with discolored centre, always with rusty-brown spots especially when near the centre. Lamellae: 3‒5 mm deep, moderately distant, intervenose, forking near the stipe, white to cream, edges even, concolorous. Stipe: 26‒40 × 6‒9 mm, cylindrical or narrowed at the base, surface dry, longitudinally wrinkled, white, turning brown when bruised. Context: 2‒4 mm in at the half pileus radius, soft, solid, becoming partially hollow when mature, white, unchanging when cut. Taste mild; odour rather strong, fishy. Spore print: not observed.Figure 7Basidiomata of Russula luteonana. (A) BBH41120 (Holotype). (B) BBH41121. (C) BBH41122. (D) BBH42510. Scale bar = 1 cm. Photos by Thitiya Boonpratuang.Full size imageSpores (Figs. 8, 9) (7.4‒)8.1‒8.6‒9(‒10.1) × (6.1‒)7.4‒7.5‒7.9(‒9.1) μm, subglobose to broadly ellipsoid, Q = (1.03‒)1.09‒1.15‒1.20(‒1.30), ornamentation of moderately distant, obtuse, (0.7‒)1.1‒1.3‒1.5(‒1.9) μm high spines, connected by abundant line connections [(0‒)3‒6(‒8) in in a 3 µm diam. circle], branched, forming an incomplete reticulum, crest irregularly wavy and occasionally fused [(0‒)1‒2(‒5) fusions in the circle], isolated elements rare; suprahilar spot inamyloid. Basidia: (29‒)34.5‒39.1‒44(‒51.5) × (10‒)12‒13.2‒14.5(‒16.5) μm, clavate, 4-spored, rarely 2-spored, basidiola subcylindrical to subclavate, (25.5‒)30‒35.4‒41(‒47) × (9‒)11‒12.2‒14 (‒16) μm. Hymenial cystidia on lamellae sides: usually protruding over other elements of hymenium, widely dispersed ( More

  • in

    Long horns protect Hestina japonica butterfly larvae from their natural enemies

    Lincoln, G. A. Teeth, horns and antlers: the weapons of sex. In The Differences between the Sexes (eds R. V. Short & E. Balaban) 131–158 (Cambridge Univ. Press, 1994).Lundrigan, B. Morphology of horns and fighting behavior in the family bovidae. J. Mammal. 77, 462–475 (1996).Article 

    Google Scholar 
    Bro-Jorgensen, J. The intensity of sexual selection predicts weapon size in male bovids. Evolution 61, 1316–1326 (2007).Article 

    Google Scholar 
    Plard, F., Bonenfant, C. & Gaillard, J. M. Revisiting the allometry of antlers among deer species: male-male sexual competition as a driver. Oikos 120, 601–606 (2011).Article 

    Google Scholar 
    Okada, K. & Miyatake, T. Sexual dimorphism in mandibles and male aggressive behavior in the presence and absence of females in the beetle Librodor japonicus (Coleoptera: Nitidulidae). Ann. Entomol. Soc. Am. 97, 1342–1346 (2004).Article 

    Google Scholar 
    Emlen, D. J., Marangelo, J., Ball, B. & Cunningham, C. W. Diversity in the weapons of sexual selection: Horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution 59, 1060–1084 (2005).CAS 
    Article 

    Google Scholar 
    Pomfret, J. C. & Knell, R. J. Sexual selection and horn allometry in the dung beetle Euoniticellus intermedius. Anim. Behav. 71, 567–576 (2006).Article 

    Google Scholar 
    McCullough, E. L., Weingarden, P. R. & Emlen, D. J. Costs of elaborate weapons in a rhinoceros beetle: how difficult is it to fly with a big horn?. Behav. Ecol. 23, 1042–1048 (2012).Article 

    Google Scholar 
    David, P., Bjorksten, T., Fowler, K. & Pomiankowski, A. Condition-dependent signalling of genetic variation in stalk-eyes flies. Nature 406, 186–188 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, R. H. & Wilkinson, G. S. Phylogenetic analysis of sexual dimorphism and eye-span allometry in stalk-eyed flies (Diopsidae). Evolution 55, 1373–1385 (2001).CAS 
    Article 

    Google Scholar 
    Stankowich, T. Armed and dangerous: predicting the presence and function of defensive weaponry in mammals. Adapt. Behav. 20, 32–43 (2012).Article 

    Google Scholar 
    Hashimoto, K. & Hayashi, F. Structure and function of the large pronotal horn of the sand-living anthicid beetle Mecynotarsus tenuipes. Entomol. Sci. 15, 274–279 (2012).Article 

    Google Scholar 
    Hayashi, M. & Ohba, S. Y. Mouth morphology of the diving beetle Hyphydrus japonicus (Dytiscidae: Hydroporinae) is specialized for predation on seed shrimps. Biol. J. Linn. Soc. 125, 315–320 (2018).Article 

    Google Scholar 
    Stocker, R. F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3–26 (1994).CAS 
    Article 

    Google Scholar 
    Dweck, H. K. M. Antennal sensory receptors of Pteromalus puparum female (Hymenoptera: Pteromalidae), a gregarious pupal endoparasitoid of Pieris rapae. Micron 40, 769–774 (2009).Article 

    Google Scholar 
    Crespo, J. G. A review of chemosensation and related behavior in aquatic insects. J. Insect Sci. 11, 1–39 (2011).Article 

    Google Scholar 
    Stoffolano, J. G. Jr., Rice, M. & Murphy, W. L. The importance of antennal mechanosensilla of Sepedon fuscipennis (Diptera: Sciomyzidae). Can. Entomol. 145, 265–272 (2013).Article 

    Google Scholar 
    Gabel, B. et al. Floral volatiles of Tanacetum vulgare L. attractive to Lobesia botrana Den. et Schiff. females. J. Chem. Ecol. 18, 693–701 (1992).CAS 
    Article 

    Google Scholar 
    Fox, H. Barbels and barbel-like tentacular structures in sub-mammalian vertebrates: a review. Hydrobiologia 403, 153–193 (1999).Article 

    Google Scholar 
    Plepys, D., Ibarra, F., Francke, W. & Lofstedt, C. Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99, 75–82 (2002).CAS 
    Article 

    Google Scholar 
    Stankowich, T. & Caro, T. Evolution of weaponry in female bovids. Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 4329–4334 (2009).Bergmann, P. J. & Berk, C. P. The Evolution of Positive Allometry of Weaponry in Horned Lizards (Phrynosoma). Evol. Biol. 39, 311–323 (2012).Article 

    Google Scholar 
    Damman, H. The osmaterial glands of the swallowtail butterfly Eurytide marcellus as a defense against natural enemies. Ecol. Entomol. 11, 261–265 (1986).Article 

    Google Scholar 
    Berenbaum, M. R., Moreno, B. & Green, E. Soldier bug predation on swallowtail caterpillars (Lepidoptera, Papilionidae): circumvention of defensive chemistry. J. Insect Behav. 5, 547–553 (1992).Article 

    Google Scholar 
    Juma, G. et al. Distribution of chemo- and mechanoreceptors on the antennae and maxillae of Busseola fusca larvae. Entomol. Exp. Appl. 128, 93–98 (2008).Article 

    Google Scholar 
    Liu, Z., Hua, B.-Z. & Liu, L. Ultrastructure of the sensilla on larval antennae and mouthparts in the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae). Micron 42, 478–483 (2011).Article 

    Google Scholar 
    Kandori, I., Tsuchihara, K., Suzuki, T. A., Yokoi, T. & Papaj, D. R. Long frontal projections help Battus philenor (Lepidoptera: Papilionidae) larvae find host plants. PLoS ONE 10, e0131596 (2015).Article 

    Google Scholar 
    Greeney, H. F., Dyer, L. A. & Smilanich, A. M. Feeding by lepidopteran larvae is dangerous: A review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. ISJ Invert. Surviv. J. 9, 7–34 (2012).
    Google Scholar 
    Sugiura, S. Predators as drivers of insect defenses. Entomol. Sci. 23, 316–337 (2020).Article 

    Google Scholar 
    Martin, W. R. & Nordlund, D. A. Ovipositional behavior of the parasitoid Palexorista laxa (Diptera, Tachinidae) on Heliothis zea (Lepidoptera, Noctuidae) larvae. J. Entomol. Sci. 24, 460–464 (1989).Article 

    Google Scholar 
    Constantino, L. M. Notes on Haetera from Colombia, with description of the immature stages of Haetera piera (Lepidoptera:Nymphalidae: Satyrinae). Trop. Lepid. 4(1), 13–15 (1993).
    Google Scholar 
    Devries, P. J., Kitching, I. J. & Vanewright, R. I. The systematic position of Antirrhea and Caerois, with comments on the classification of the Nymphalidae (Lepidoptera). Syst. Entomol. 10, 11–32. https://doi.org/10.1111/j.1365-3113.1985.tb00561.x (1985).Article 

    Google Scholar 
    Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Biology and external morphology of immature stages of Memphis appias (Hubner) (Lepidoptera: Nymphalidae: Charaxinae). Zootaxa, 21–32 (2010).Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Biology and external morphology of the immature stages of the butterfly Callicore pygas eucale, with comments on the taxonomy of the genus Callicore (Nymphalidae: Biblidinae). J. Insect Sci. 14, doi:https://doi.org/10.1093/jis/14.1.91 (2014).Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Immature stages of the turquoise-banded shoemaker Archaeoprepona amphimachus pseudomeander (Fruhstorfer, 1906) and a comparative review of the Preponini (Lepidoptera: Nymphalidae). Aust. Entomol. 58, 451–462. https://doi.org/10.1111/aen.12339 (2019).Article 

    Google Scholar 
    Dias, F. M. S., de Oliveira-Neto, J. F., Casagrande, M. M. & Mielke, O. H. H. External morphology of immature stages of Zaretis strigosus (Gmelin) and Siderone galanthis catarina Dottax and Pierre comb. nov., with taxonomic notes on Siderone (Lepidoptera: Nymphalidae: Charaxinae). Rev. Bras. Entomol. 59, 307–319, doi:https://doi.org/10.1016/j.rbe.2015.07.007 (2015).Dias, F. M. S. et al. An integrative approach elucidates the systematics of Sea Hayward and Cybdelis Boisduval (Lepidoptera: Nymphalidae: Biblidinae). Syst. Entomol. 44, 226–250. https://doi.org/10.1111/syen.12327 (2019).Article 

    Google Scholar 
    Freitas, A. V. L., Barbosa, E. P. & Marin, M. A. Immature Stages and Natural History of the Neotropical Satyrine Pareuptychia ocirrhoe Interjecta (Nymphalidae: Euptychiina). J. Lepid. Soc. 70, 271–276. https://doi.org/10.18473/lepi.70i4.a4 (2016).Article 

    Google Scholar 
    Freitas, A. V. L., Kaminski, L. A., Mielke, O. H. H., Barbosa, E. P. & Silva-Brandao, K. L. A new species of Yphthimoides (Lepidoptera: Nymphalidae: Satyrinae) from the southern Atlantic forest region. Zootaxa, 31–44 (2012).Furtado, E. & Campos-Neto, F. C. Caligopsis seleucida (Hewitson) and its immature stages (Lepidoptera, Nymphalidae, Brassolinae). Rev. Bras. Zool. 21(3), 593–597 (2004).Article 

    Google Scholar 
    Greeney, H. F. et al. The early stages and natural history of Antirrhea adoptiva porphyrosticta (Watkins, 1928) in eastern Ecuador (Lepidoptera: Nymphalidae: Morphinae). J. Insect Sci. 9 (2009).Greeney, H. F. et al. Early stages and natural history of Perisama oppelii (Nymphalidae, Lepidoptera) in eastern Ecuador. Kempffiana 6(1), 16–30 (2010).
    Google Scholar 
    Greeney, H. F., Dyer, L. A. & Pyrcz, T. W. First description of the early stage biology of the genus Mygona: The natural history of the satyrine butterfly, Mygona irmina in eastern Ecuador. J. Insect Sci. 11, doi:https://doi.org/10.1673/031.011.0105 (2011).Greeney, H. F., Pyrcz, T. W., DeVries, P. J. & Dyer, L. A. The early stages of Pedaliodes poesia (Hewitson, 1862) in eastern Ecuador (Lepidoptera: Satyrinae: Pronophilina). J. Insect Sci. 9 (2009).Greeney, H. F., Whitfield, J. B., Stireman, J. O., Penz, C. M. & Dyer, L. A. Natural history of Eryphanis greeneyi (Lepidoptera: Nymphalidae) and its enemies, with a description of a new species of Braconid parasitoid and notes on its Tachinid parasitoid. Ann. Entomol. Soc. Am. 104, 1078–1090. https://doi.org/10.1603/an10064 (2011).Article 

    Google Scholar 
    Kaminski, L. A. & Freitas, A. V. L. Immature stages of the butterfly Magneuptychia libye (L.) (Lepidoptera : Nymphalidae, Satyrinae). Neotrop. Entomol. 37, 169–172, doi:https://doi.org/10.1590/s1519-566×2008000200010 (2008).Lambkin, T. & Kendall, R. The status of Yoma algina (boisduval, 1832) & Y. sabina (cramer, 1780) (Lepidoptera: Nymphalidae: Nymphalinae) in Australia. Aust. Entomol. 43 (4), 211–234 (2016).Leite, L. A. R., Casagrande, M. M., Mielke, O. H. H. & Freitas, A. V. L. Immature stages of the Neotropical butterfly, Dynamine agacles agacles. J. Insect Sci. 12 (2012).Leite, L. A. R., Dias, F. M. S., Carneiro, E., Casagrande, M. M. & Mielke, O. H. H. Immature stages of the Neotropical cracker butterfly, Hamadryas epinome. J. Insect Sci. 12 (2012).Murillo, L. R. & Nishida, K. Life history of Manataria maculata (Lepidoptera : Satyrinae) from Costa Rica. Rev. Biol. Trop. 51, 463–469 (2003).PubMed 

    Google Scholar 
    Nakahara, S., Janzen, D. H., Hallwachs, W. & Espeland, M. Description of a new genus for Euptychia hilara (C. Felder & R. Felder, 1867) (Lepidoptera: Nymphalidae: Satyrinae). Zootaxa 4012, 525-541, doi:https://doi.org/10.11646/zootaxa.4012.3.7 (2015).Penz, C. M., Freitas, A. V. L., Kaminski, L. A., Casagrande, M. M. & Devries, P. J. Adult and early-stage characters of Brassolini contain conflicting phylogenetic signal (Lepidoptera, Nymphalidae). Syst. Entomol. 38, 316–333. https://doi.org/10.1111/syen.12000 (2013).Article 

    Google Scholar 
    Pyrcz, T. W. et al. Uncovered diversity of a predominantly Andean butterfly clade in the Brazilian Atlantic forest: a revision of the genus Praepedaliodes Forster (Lepidoptera: Nymphalidae, Satyrinae, Satyrini). Neotrop. Entomol. 47, 211–255. https://doi.org/10.1007/s13744-017-0543-x (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shirai, L. T. et al. Natural history of Selenophanes cassiope guarany (Lepidoptera: Nymphalidae: Brassolini): an integrative approach, from molecules to ecology. Ann. Entomol. Soc. Am. 110, 145–159. https://doi.org/10.1093/aesa/saw068 (2017).Article 

    Google Scholar 
    Silva, P. L. et al. Immature Stages of the Brazilian Crescent Butterfly Ortilia liriope (Cramer) (Lepidoptera: Nymphalidae). Neotrop. Entomol. 40, 322–327. https://doi.org/10.1590/s1519-566×2011000300006 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Song-yun, L. Immature stages of Faunis aerope (Leech, 1890) (Lepidoptera, Nymphalidae). Atalanta 42, 221–222 (2011).
    Google Scholar 
    Steiner, H. Life history of Melanocyma faunula in Malaysia (Lepidoptera: Nymphalidae: Morphinae). Trop. Lepid. Res. 16, 23–26 (2005).
    Google Scholar 
    Velez, P. D., Montoya, H. H. V. & Wolff, M. Immature stages and natural history of the Andean butterfly Altinote ozomene (Nymphalidae: Heliconiinae: Acraeini). Zoologia 28, 593–602. https://doi.org/10.1590/s1984-46702011000500007 (2011).Article 

    Google Scholar 
    Wahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 4295–4302, doi:https://doi.org/10.1098/rspb.2009.1303 (2009).Willmott, K. R., Elias, M. & Sourakov, A. Two possible caterpillar mimicry complexes in neotropical Danaine butterflies (Lepidoptera: Nymphalidae). Ann. Entomol. Soc. Am. 104, 1108–1118. https://doi.org/10.1603/an10086 (2011).Article 

    Google Scholar 
    Willmott, K. R. & Freitas, A. V. L. Higher-level phylogeny of the Ithomiinae (Lepidoptera : Nymphalidae): classification, patterns of larval hostplant colonization and diversification. Cladistics 22, 297–368. https://doi.org/10.1111/j.1096-0031.2006.00108.x (2006).Article 
    PubMed 

    Google Scholar 
    Zacca, T. et al. Revision of Godartiana Forster (Lepidoptera: Nymphalidae), with the description of a new species from northeastern Brazil. Aust. Entomol. 56, 169–190. https://doi.org/10.1111/aen.12223 (2017).Article 

    Google Scholar 
    Bossart, J.L., Fetzner Jr., J.F. & Rawlins, J.E. Ghana Butterfly Biodiversity Project website. https://www.invertebratezoology.org/GhanaBfly/default.asp (2007).Butterflies and Moths of North America project. Butterflies and Moths of North America website. https://www.butterfliesandmoths.org/ (2021).Dauphin, D. & Dauphin, J. The Rio Grande Valley’s Nature Site website. http://www.thedauphins.net (2021).Eeles, P. UK Butterflies website. https://www.ukbutterflies.co.uk/index.php. (2021).Florida Museum of Natural History. Florida Museum website. https://www.floridamuseum.ufl.edu/ (2021).Khew, S. K. et al. Butterflies of Singapore website. https://butterflycircle.blogspot.com/ (2021).Kunte, K., Sondhi, S. & Roy, P. Butterflies of India, v. 3.24. Indian Foundation for Butterflies website. https://www.ifoundbutterflies.org (2021).Miller, S. & Morrison, C. Parasitoid-Caterpillar-Plant Interactions in the Americas website. https://caterpillars.myspecies.info/ (2021).National Biodiversity Network Trust. iNaturalistUK website. https://uk.inaturalist.org/ (2021).Nature Picture Library Limited. Nature Picture Library website. https://www.naturepl.com/blog/ (2021).Project Noah Team. Project Noah website. https://www.projectnoah.org/ (2021).Shiraiwa, K. Pteron World. The encyclopedia website of the butterflies. https://www.pteron-world.com/index.html (2021).Wagner, W. Lepidoptera and Their Ecology website. http://www.pyrgus.de/ (2021).Wahlberg, N. & Peña, C. Nymphalidae.net. website. http://www.nymphalidae.net/ (2021).Wikimedia Foundation, Inc. Wikimedia Commons website. https://commons.wikimedia.org/ (2021).Matsuura, M. Social Wasps of Japan in Color. (in Japanese) (Hokkaido university press 2015).IBM SPSS. SPSS Base 25.0 User’s Guide. (SPSS Inc., 2017). More

  • in

    Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures

    Phyla Bdellovibrionota, Fusobacteriota, and Myxococcota were present in the green microbial mat but in negligible quantities in the brown mat. The unique phyla detected in the brown mat, but not in the green microbial mat, included Caldatribacteriota, Thermodesulfobacteriota, Dictyoglomota, Elusimicrobiota, Thermotogota, Candidatus Calescamantes, Fervidibacteria, Hydrothermae, GAL15 and TA06. The Candidatus Caldatribacterium (phyla Caldatribacteriota), earlier named OP9 was also detected in this work. Using single-cell and metagenome sequencing, data elucidated that Ca. Caldatribacterium conducts anaerobic sugar fermentation and exhibited diverse glycosyl hydrolases, including endoglucanase37.Cyanobacteria and Chloroflexota were the main identified phyla in the green microbial mat. Because the hot spring is almost stagnant, undisturbed, and the water surface temperature ( More