Local adaptation to climate anomalies relates to species phylogeny
Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 1–11 (2019).CAS
Google Scholar
Pandori, L. L. M. & Sorte, C. J. B. The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos 128, 621–629 (2019).
Google Scholar
Palmer, G. et al. Climate change, climatic variation and extreme biological responses. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160144 (2017).Altwegg, R., Visser, V., Bailey, L. D. & Erni, B. Learning from single extreme events. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160141 (2017).
Google Scholar
McDermott Long, O. et al. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk? J. Anim. Ecol. 86, 108–116 (2017).PubMed
Google Scholar
Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate‐change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).
Google Scholar
Suggitt, A. J. et al. Habitat associations of species show consistent but weak responses to climate. Biol. Lett. 8, 590–593 (2012).PubMed
PubMed Central
Google Scholar
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS
PubMed
Google Scholar
Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed
Google Scholar
Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).PubMed
Google Scholar
Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).CAS
PubMed
Google Scholar
Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).CAS
PubMed
Google Scholar
Roy, D. B. et al. Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Glob. Chang. Biol. 21, 3313–3322 (2015).PubMed
PubMed Central
Google Scholar
Titeux, N. et al. The need for large-scale distribution data to estimate regional changes in species richness under future climate change. Divers. Distrib. 23, 1393–1407 (2017).
Google Scholar
Haeler, E., Fiedler, K. & Grill, A. What prolongs a butterfly’s life?: trade-offs between dormancy, fecundity and body size. PLoS One 9, e111955 (2014).PubMed
PubMed Central
Google Scholar
Gonzalez-Suarez, M., Gomez, A. & Revilla, E. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, 1–16 (2013).
Google Scholar
Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 7, 205–208 (2017).
Google Scholar
Kingsolver, J. G. & Watt, W. B. Thermoregulatory strategies in Colias butterflies: thermal stress and the limits to adaptation in temporally varying environments (Colorado). Am. Nat. 121, 32–55 (1983).
Google Scholar
MacLean, H. J., Higgins, J. K., Buckley, L. B. & Kingsolver, J. G. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies. Conserv. Physiol. 4, 1 (2016).Kingsolver, J. G. & Wiernasz, D. C. Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptation in Pieris butterflies. Am. Nat. 137, 816–830 (1991).
Google Scholar
Herrando, S. et al. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 9, 1–7 (2019).CAS
Google Scholar
Thomas, J. A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 339–357 (2005).CAS
PubMed
PubMed Central
Google Scholar
Roy, D. B., Rothery, P., Moss, D., Pollard, E. & Thomas, J. A. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J. Anim. Ecol. 70, 201–217 (2008).
Google Scholar
Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Chang. Biol. 15, 732–743 (2009).
Google Scholar
Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2, 121–124 (2012).
Google Scholar
Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).PubMed
PubMed Central
Google Scholar
Eskildsen, A. et al. Ecological specialization matters: long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers. Distrib. 21, 792–802 (2015).
Google Scholar
Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134 (1977).
Google Scholar
Schmucki, R. et al. A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. J. Appl. Ecol. 53, 501–510 (2016).
Google Scholar
Pollard, E., Lakhani, K. H. & Rothery, P. The detection of density-dependence from a series of annual censuses. Ecology 68, 2046–2055 (1987).CAS
PubMed
Google Scholar
Dooley, C. A., Bonsall, M. B., Brereton, T. & Oliver, T. Spatial variation in the magnitude and functional form of density-dependent processes on the large skipper butterfly Ochlodes sylvanus. Ecol. Entomol. 38, 608–616 (2013).
Google Scholar
Rothery, P., Newton, I., Dale, L. & Wesolowski, T. Testing for density dependence allowing for weather effects. Oecologia 112, 518–523 (1997).PubMed
Google Scholar
Oliver, T. H. et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Chang. 5, 941–946 (2015).
Google Scholar
Stefanescu, C., Carnicer, J. & Peñuelas, J. Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography 34, 353–363 (2011).
Google Scholar
Essens, T., van Langevelde, F., Vos, R. A., Van Swaay, C. A. M. & WallisDeVries, M. F. Ecological determinants of butterfly vulnerability across the European continent. J. Insect Conserv. 21, 439–450 (2017).
Google Scholar
Tolman, T. & Lewington, R. Butterflies of Europe (Harper Collins, 2008).Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 19, 1623–1636 (2019).CAS
PubMed
Google Scholar
Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. Lond. 68, 87–112 (2008).
Google Scholar
Dincă, V. et al. High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Commun. Biol. 4, 1–11 (2021).
Google Scholar
Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).PubMed
PubMed Central
Google Scholar
Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 1–10 (2019).CAS
Google Scholar
Dapporto, L. & Dennis, R. L. H. The generalist–specialist continuum: testing predictions for distribution and trends in British butterflies. Biol. Conserv. 157, 229–236 (2013).
Google Scholar
MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Chang. Biol. 23, 4094–4105 (2017).PubMed
Google Scholar
Morlon, H. et al. Spatial patterns of phylogenetic diversity. Ecol. Lett. 14, 141–149 (2011).PubMed
PubMed Central
Google Scholar
Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
Google Scholar
Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).CAS
PubMed
PubMed Central
Google Scholar
Vanden Broeck, A. et al. Gene flow and effective population sizes of the butterfly Maculinea alcon in a highly fragmented, anthropogenic landscape. Biol. Conserv. 209, 89–97 (2017).
Google Scholar
Haldane, J. B. S. Theoretical genetics of autopolyploids. J. Genet. 22, 359–372 (1930).
Google Scholar
Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. Mol. Ecol. 25, 2144–2164 (2016).PubMed
Google Scholar
Pfeifer, S. P. et al. The evolutionary history of Nebraska deer mice: local adaptation in the face of strong gene flow. Mol. Biol. Evol. 35, 792–806 (2018).CAS
PubMed
PubMed Central
Google Scholar
Reusch, T. B. H. & Wood, T. E. Molecular ecology of global change. Mol. Ecol. 16, 3973–3992 (2007).CAS
PubMed
Google Scholar
DeLong, J. P. & Gibert, J. P. Gillespie eco-evolutionary models (GEMs) reveal the role of heritable trait variation in eco-evolutionary dynamics. Ecol. Evol. 6, 935–945 (2016).PubMed
PubMed Central
Google Scholar
Atkins, K. E. & Travis, J. M. J. Local adaptation and the evolution of species’ ranges under climate change. J. Theor. Biol. 266, 449–457 (2010).CAS
PubMed
Google Scholar
Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).PubMed
Google Scholar
Mills, S. C. et al. European butterfly populations vary in sensitivity to weather across their geographical ranges. Glob. Ecol. Biogeogr. 26, 1374–1385 (2017).
Google Scholar
Van Dyck, H., Bonte, D., Puls, R., Gotthard, K. & Maes, D. The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos 124, 54–61 (2015).
Google Scholar
Hu, G. et al. Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant. Proc. Natl Acad. Sci. USA 118, 2102762118 (2021).
Google Scholar
Merlin, C. & Liedvogel, M. The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. J. Exp. Biol. 222, jeb191890 (2019).Wiemers, M. et al. An updated checklist of the European butterflies (Lepidoptera, Papilionoideae). Zookeys 2018, 9–45 (2018).
Google Scholar
Dennis, E. B., Freeman, S. N., Brereton, T. & Roy, D. B. Indexing butterfly abundance whilst accounting for missing counts and variability in seasonal pattern. Methods Ecol. Evol. 4, 637–645 (2013).
Google Scholar
Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285 (2013).PubMed
Google Scholar
Metzger, M. J. et al. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 22, 630–638 (2013).
Google Scholar
Carnicer, J. et al. A unified framework for diversity gradients: the adaptive trait continuum. Glob. Ecol. Biogeogr. 22, 6–18 (2013).
Google Scholar
Klok, E. J. & Klein Tank, A. M. G. Updated and extended European dataset of daily climate observations. Int. J. Climatol. 29, 1182–1191 (2009).
Google Scholar
Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J. Geophys. Res. Atmos. 113, D20119 (2008).
Google Scholar
Marsh, T. J. The UK drought of 2003: a hydrological review. Weather 59, 224–230 (2004).
Google Scholar
Voyer, A. G. & Garamszegi, L. Z. An introduction to phylogenetic path analysis. in Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology (eds Garamszegi, L. Z. & Mundry, R.) 201–229 (Springer Berlin Heidelberg, 2014).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).CAS
PubMed
Google Scholar
Pöyry, J. et al. The effects of soil eutrophication propagate to higher trophic levels. Glob. Ecol. Biogeogr. 26, 18–30 (2017).
Google Scholar
Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Bartoń, K. MuMIn: Multi-model inference. R package version 1.10.5. (2014).Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). MEE. 3, 217–223 (2012).
Google Scholar
Briere, J. F., Pracros, P., Le Roux, A. Y. & Pierre, J. S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).
Google Scholar
Shi, P. & Ge, F. A comparison of different thermal performance functions describing temperature-dependent development rates. J. Therm. Biol. 35, 225–231 (2010).
Google Scholar
Angilletta, M. J., Wilson, R. S., Navas, C. A. & James, R. S. Tradeoffs and the evolution of thermal reaction norms. Trends Ecol. Evol. 18, 234–240 (2003).
Google Scholar
Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 1–9 (2014).
Google Scholar More