Fish diversity patterns along coastal habitats of the southeastern Galapagos archipelago and their relationship with environmental variables
Witman, J. D. & Smit, F. Rapid community change at a tropical upwelling site in the Galapagos Marine Reserve. Biodivers. Conserv. 12, 25–45 (2003).
 Google Scholar 
 Edgar, G. J., Banks, S., Fariña, J. M., Calvopiña, M. & Martínez, C. Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. J. Biogeogr. 31, 1107–1124 (2004).
 Google Scholar 
 Okey, T. A. et al. A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol. Model. 172, 383–401 (2004).
 Google Scholar 
 Briggs, J. C. & Bowen, B. W. A realignment of marine biogeographic provinces with particular reference to fish distributions. J. Biogeogr. 39, 12–30 (2012).
 Google Scholar 
 Salinas de León, P. et al. Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf. PeerJ 4, e1911. https://doi.org/10.7717/peerj.1911 (2016).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Humann, P. & DeLoach, N. Reef Fish Identification: Galápagos (ed. Humann, P.) (New World Publications, Inc., 2003).McCosker, J. E. & Rosenblatt, R. H. The fishes of the Galápagos archipelago: An update. Proc. Calif. Acad. Sci. 61, 167–195 (2010).
 Google Scholar 
 Grove, J. S. & Lavenberg, R. J. The Fishes of the Galapagos Islands (Stanford University Press, 1997).Allen, G. & Ross-Robertson, D. Fishes of Tropical Eastern Pacific (University of Hawaii Press, 1994).Ruttenberg, B. I., Haupt, A. J., Chiriboga, A. I. & Warner, R. R. Patterns, causes and consequences of regional variation in the ecology and life history of a reef fish. Oecologia 145, 394–403 (2005).ADS 
 PubMed 
 Google Scholar 
 Bernardi, G. et al. Darwin’s fishes: Phylogeography of Galápagos Islands reef fishes. Bull. Mar. Sci. 90, 533–549 (2014).
 Google Scholar 
 Banks, S., Vera, M. & Chiriboga, A. Establishing reference points to assess long-term change in zooxanthellate coral communities of the northern Galápagos coral reefs. Galapagos Res. 66, 43–64 (2009).
 Google Scholar 
 Palacios, D., Bograd, S., Foley, D. & Schwing, F. Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep Sea Res Part II Top. Stud. Oceanogr. 53, 250–269 (2006).ADS 
 Google Scholar 
 Sweet, W. V. et al. Water mass seasonal variability in the Galapagos Archipelago. Deep Sea Res. Part I Oceanogr. Res. Pap. 54, 2023–2035 (2007).ADS 
 Google Scholar 
 Schaeffer, B. et al. Phytoplankton biomass distribution and identification of productive habitats within the Galapagos Marine Reserve by MODIS, a surface acquisition system, and in-situ measurements. Remote Sens. Environ. 112, 3044–3054 (2008).ADS 
 Google Scholar 
 Witman, J. D., Brandt, M. & Smith, F. Coupling between subtidal prey and consumers along a mesoscale upwelling gradient in the Galapagos Islands. Ecol. Monogr. 80, 153–177 (2010).
 Google Scholar 
 Moity, N. Evaluation of no-take zones in the Galápagos marine reserve, zoning plan 2000. Frontiers. 5, 244. https://doi.org/10.3389/fmars.2018.00244 (2018).Article 
 Google Scholar 
 Lamb, R. W., Smith, F. & Witman, J. D. Consumer mobility predicts impacts of herbivory across an environmental stress gradient. Ecology 101, e02910. https://doi.org/10.1002/ecy.2910 (2020).Article 
 PubMed 
 Google Scholar 
 Edgar, G. J. et al. Conservation of threatened species in the Galapagos Marine Reserve through identification and protection of marine key biodiversity areas. Aquat. Conserv. 18, 955–968 (2008).
 Google Scholar 
 Carrión-Cortez, J. A., Zárate, P. & Seminoff, J. A. Feeding ecology of the green sea turtle (Chelonia mydas) in the Galapagos Islands. J. Mar. Biol. Assoc. U. K. 90, 1005–1013 (2010).
 Google Scholar 
 Moity, N., Delgado, B. & Salinas-de-León, P. Correction: Mangroves in the Galapagos islands: Distribution and dynamics. PLoS One 14, e0212440. https://doi.org/10.1371/journal.pone.0212440 (2019).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N. & Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71, 648–665 (2014).
 Google Scholar 
 Aguaiza, C. The role of mangrove as nursery habitats for coral reef fish species in the Galapagos Islands. MSc Thesis (University of Queensland, 2016).Llerena-Martillo, Y., Peñaherrera-Palma, C. & Espinoza, E. Fish assemblages in three fringed mangrove bays of Santa Cruz Island, Galapagos Marine Reserve. Rev. Biol. Trop. 66, 674–687 (2018).
 Google Scholar 
 Fierro-Arcos, D. et al. Mangrove fish assemblages reflect the environmental diversity of the Galapagos Islands. Mar. Ecol. Prog. Ser. 664, 183–205 (2021).ADS 
 Google Scholar 
 Henseler, C. et al. Coastal habitats and their importance for the diversity of benthic communities: A species-and trait-based approach. Estuar. Coast. Shelf Sci. 226, 106272. https://doi.org/10.1016/j.ecss.2019.106272 (2019).Article 
 Google Scholar 
 Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
 CAS 
 Google Scholar 
 Menezes, R. F. et al. Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: Does the method matter?. Hydrobiologia 710, 47–59 (2013).
 Google Scholar 
 Hu, M., Wang, C., Liu, Y., Zhang, X. & Jian, S. Fish species composition, distribution and community structure in the lower reaches of Ganjiang River, Jiangxi, China. Sci. Rep. 9, 10100. https://doi.org/10.1038/s41598-019-46600-2 (2019).ADS 
 CAS 
 Article 
 PubMed 
 Google Scholar 
 Clarke, K. R. & Warwick, R. M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. (PRIMER-E Ltd, Plymouth Marine Laboratory, 2001).Warwick, R. M. & Clarke, K. R. New biodiversity measures reveal a decrease in taxonomic distinctness with increasing stress. Mar. Ecol. Prog. Ser. 129, 301–305 (1995).ADS 
 Google Scholar 
 Clarke, K. R. & Warwick, R. M. The taxonomic distinctness measure of biodiversity: Weighting of step lengths between hierarchical levels. Mar. Ecol. Prog. Ser. 184, 21–29 (1999).ADS 
 Google Scholar 
 Nieto-Navarro, J. T., Zetina-Rejón, M. A., Arreguín-Sánchez, F., Palacios-Salgado, D. & Jordán, F. Changes in fish bycatch during the shrimp fishing season along the eastern coast of the mouth of the Gulf of California. J. Appl. Ichthyol. 29, 610–616 (2013).
 Google Scholar 
 Escobar-Toledo, F., Zetina-Rejón, M. J. & Duarte, L. O. Measuring the spatial and seasonal variability of community structure and diversity of fish by-catch from tropical shrimp trawling in the Colombian Caribbean Sea. Mar. Biol. Res. 11, 528–539 (2015).
 Google Scholar 
 Herrera-Valdivia, E., López-Martínez, J., Castillo Vargasmachuca, S. & García-Juárez, A. R. Diversidad taxonómica y funcional en la comunidad de peces de la pesca de arrastre de camarón en el norte del Golfo de California, México. Rev. Biol. Trop. 64, 587–602 (2016).PubMed 
 Google Scholar 
 Heylings, P., Bensted-Smith, R. & Altamirano, M. Zonificación e historia de la Reserva Marina de Galápagos. In Reserva Marina de Galápagos. Línea Base de la Biodiversidad (eds. Danulat, E. & Edgar, G. J.) 10–21 (Fundación Charles Darwin y Servicio Parque Nacional de Galápagos, 2002).Edgar, G. J. et al. Bias in evaluating the effects of marine protected areas: The importance of baseline data for the Galapagos Marine Reserve. Environ. Conserv. 3, 212–218. https://doi.org/10.1017/S0376892904001584 (2004).Article 
 Google Scholar 
 Jennings, S., Brierley, A. S. & Walker, J. W. The inshore fish assemblages of the Galápagos archipelago. Biol. Conserv. 70, 49–57 (1994).
 Google Scholar 
 Brito, A., Pérez-Ruzafaga, A. & Bacallado, J. J. Ictiofauna costera de las islas Galápagos: composición y estructura del poblamiento de los fondos rocosos. Res. Cient. Proy. Galápagos TFCM 5, 61 (1997).
 Google Scholar 
 Bruneel, S. et al. Assessing the drivers behind the structure and diversity of fish assemblages associated with rocky shores in the Galapagos Archipelago. J. Mar. Sci. Eng. 9, 375. https://doi.org/10.3390/jmse9040375 (2021).Article 
 Google Scholar 
 Wellington, G. M., Strong, A. E. & Merlen, G. Sea surface temperature variation in the Galápagos Archipelago: A comparison between AVHRR nighttime satellite data and in-situ instrumentation (1982–1998). Bull. Mar. Res. 69, 27–42 (2001).
 Google Scholar 
 Snell, H., Stone, P. & Snell, H. L. A summary of geographical characteristics of the Galapagos Islands. J. Biogeogr. 23, 619–624 (1996).
 Google Scholar 
 Bustamante, R. H., et al. Outstanding marine features of Galápagos. In A Biodiversity Vision for the Galapagos Islands: An Exercise for Ecoregional Planning (eds. Bensted-Smith, R. & Dinnerstein, E.) 60–71 (WWF, 2002).Airoldi, L. & Beck, M. W. Loss, status and trends for coastal marine habitats of Europe. In Oceanography and Marine Biology: An Annual Review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) vol. 45, 345–405 (Taylor & Francis, 2007).Carr, M. H., Malone, D. P., Hixon, M. A., Holbrook, S. J. & Schmitt, R. J. How Scuba changed our understanding of nature: underwater breakthrough in reef fish ecology. In Research and Discoveries: The Revolution of Science Through Scuba vol. 39, 157–167 (Smithsonian Contributions to the Marine Sciences, 2013).Durkacz, S. Assessing the Oceanographic Conditions and Distribution of Reef Fish Assemblages Throughout the Galápagos Islands Using Underwater Visual Survey Methods. MSc Thesis (Texas A & M University, 2014).Fischer, W. et al. Guía FAO para la identificación de especies para los fines de pesca. Pacífico Centro-Oriental vol. II–III, 648–1652 (FAO, 1995).Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
 Google Scholar 
 Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
 Google Scholar 
 Rosenberg, A., Binford, T. E., Leathery, S., Hill, R. L. & Bickers, K. Ecosystem approaches to fishery management through essential fish habitat. Bull. Mar. Sci. 66, 535–542 (2000).
 Google Scholar 
 Aburto-Oropeza, O. & Balart, E. F. Community structure of reef fish in several habitats of a rocky reef in the Gulf of California. Mar. Ecol. 22, 283–305 (2001).ADS 
 Google Scholar 
 Fulton, C. J., Bellwood, D. R. & Wainwright, P. C. Wave energy and swimming performance shape coral reef fish assemblages. Proc. R. Soc. B 272, 827–832 (2005).CAS 
 PubMed 
 Google Scholar 
 Dominici-Arosemena, A. & Wolff, M. Reef fish community structure in the Tropical Eastern Pacific (Panamá): Living on a relatively stable rocky reef environment. Helgol. Mar. Res. 60, 287–305 (2006).ADS 
 Google Scholar 
 Villegas-Sánchez, C. A., Abitia-Cárdenas, L. A., Gutiérrez-Sánchez, F. J. & Galván-Magaña, F. Rocky-reef fish assemblages at San José Island, Mexico. Rev. Mex. Biodivers. 80, 169–179 (2009).
 Google Scholar 
 Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
 Google Scholar 
 Glynn, P. Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol. Monogr. 46, 431–456 (1976).
 Google Scholar 
 Ramos-Miranda, J. et al. Changes in four complementary facets of fish diversity in a tropical coastal lagoon after 18 years: A functional interpretation. Mar. Ecol. Prog. Ser. 304, 1–13 (2005).ADS 
 Google Scholar 
 Gristina, M., Bahri, T., Fiorentino, F. & Garofalo, G. Comparison of demersal fish assemblages in three areas of the Strait of Sicily under different trawling pressure. Fish. Res. 81, 60–71 (2006).
 Google Scholar 
 Pérez-Ruzafa, A. P., Marcos, C. & Bacallado, J. J. Biodiversidad marina en archipiélagos e islas: patrones de riqueza específica y afinidades faunísticas. Vieraea Folia Scientarum Biologicarum Canariensium. 33, 455–476 (2005).
 Google Scholar 
 Malcolm, H. A., Jordan, A. & Smith, S. D. Biogeographical and cross-shelf patterns of reef fish assemblages in a transition zone. Mar. Biodivers. 40(3), 181–193 (2010).
 Google Scholar 
 García-Charton, J. A. & Pérez-Ruzafa, A. P. Correlation between habitat structure and a rocky reef fish assemblage in the Southwest Mediterranean. Mar. Ecol. 19(2), 111–128 (1998).ADS 
 Google Scholar 
 Mumby, P. J. et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–536 (2004).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Unsworth, R. K. F. et al. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Prog. Ser. 353, 213–224 (2008).ADS 
 Google Scholar 
 Birkeland, C. & Amesbury, S. S. Fish-transect surveys to determine the influence of neighboring habitats on fish community structure in the tropical Pacific. Co-operation for environmental protection in the Pacific. UNEP Reg. Seas Rep. Stud. 97, 195–202 (1988).
 Google Scholar 
 Thollot, P., Kulbicki, M., & Wantiez, L. Temporal patterns of species composition in three habitats of the St Vincent Bay area (New Caledonia): Coral reefs, soft bottoms and mangroves. In Proceedings International Soc. Reef Studies. 127–137 (1991).Kulbicki, M. Present knowledge of the structure of coral reef fish assemblages in the Pacific. UNEP Reg. Seas Rep. Stud. 147, 31–53 (1992).
 Google Scholar 
 Cruz-Romero, M., Chávez, E.A., Espino, E. & García, A. Assessment of a snapper complex (Lutjanus spp.) of the eastern tropical Pacific. In Biology, Fisheries and Culture of Tropical Groupers and Snappers (eds. Arreguín-Sánchez, F., Munro, J. L., Balgos, M. C. & Pauly, D.) 324–330 (ICLARM Conf. Proc. 48, 1996).Aguilar-Santana, F. Biología reproductiva de Prionurus laticlavius (Valenciennes, 1846) (Teleostei: Acanthuridae) en la Costa Sudoccidental del Golfo de California, México. PhD Thesis (Instituto Politécnico Nacional, 2020).Hall, S. The Effects of Fishing on Marine Ecosystems and Communities (Blackwell Science Ltd., 1999).Mangi, S. C. & Roberts, C. M. Quantifying the environmental impacts of artisanal fishing gear on Kenya’s coral reef ecosystems. Mar. Pollut. Bull. 52, 1646–1660 (2006).CAS 
 PubMed 
 Google Scholar 
 Rees, M. J., Jordan, A., Price, O. F., Coleman, M. A. & Davis, A. R. Abiotic surrogates for temperate rocky reef biodiversity: Implications for marine protected areas. Divers. Distrib. 20(3), 284–296 (2014).
 Google Scholar 
 Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41(7), 1077–1091 (2018).
 Google Scholar 
 Pihl, L. & Wennhage, H. Structure and diversity of fish assemblages on rocky and soft bottom shores on the Swedish west coast. J. Fish Biol. 61, 148–166 (2002).
 Google Scholar 
 La Mesa, G., Molinari, A., Gambaccini, S. & Tunesi, L. Spatial pattern of coastal fish assemblages in different habitats in North-western Mediterranean. Mar. Ecol. 32, 104–114 (2011).ADS 
 Google Scholar 
 Kristensen, L. D. et al. Establishment of blue mussel beds to enhance fish habitats. Appl. Ecol. Environ. Res. 13, 783–798 (2015).
 Google Scholar 
 Bergström, L., Karlsson, M., Bergström, U., Pihl, L. & Kraufvelin, P. Distribution of mesopredatory fish determined by habitat variables in a predator-depleted coastal system. Mar. Biol. 163, 201. https://doi.org/10.1007/s00227-016-2977-9 (2016).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Galván-Villa, C. M., Arreola-Robles, J. L., Ríos-Jara, E. & Rodríguez-Zaragoza, F. A. Ensamblajes de peces arrecifales y su relación con el hábitat bentónico de la Isla Isabel, Nayarit, México. Rev. Biol. Mar. Oceanogr. 45, 311–324 (2010).
 Google Scholar 
 Lunt, J. & Smee, D. L. Turbidity alters estuarine biodiversity and species composition. ICES J. Mar. Sci. 77, 379–387 (2019).
 Google Scholar 
 Anthony, K. R., Ridd, P. V., Orpin, A. R., Larcombe, P. & Lough, J. Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides. Limnol. Oceanogr. 49, 2201–2211 (2004).ADS 
 Google Scholar 
 Helfman, G. S. Patterns of community structure in fishes: Summary and overview’. Environ. Biol. Fishes 3, 129–148 (1978).
 Google Scholar 
 Helfman, G. S. Fish behaviour by day, night and twilight. In The Behaviour of Teleost Fishes (ed. Pitcher T.J.) (Springer, 1986).Warwick, R. M. & Clarke, K. R. Taxonomic distinctness and environmental assessment. J. Appl. Ecol. 35, 532–543 (1998).
 Google Scholar 
 Rogers, S. I., Clarke, K. R. & Reynolds, J. D. The taxonomic distinctness of coastal bottom-dwelling fish communities of the North-east Atlantic. J. Anim. Ecol. 68, 769–782 (1999).
 Google Scholar 
 Robertson, A. I., & Blaber, S. J. M. Plankton, epibenthos and fish communities. In Tropical Mangrove Ecosystems (eds. Robertson, A. I. & Alongi, D. M.) Coastal and Estuarine Studies No. 41, 173–224 (American Geophysical Union, 1992).Koranteng, K. A. Diversity and stability of demersal species assemblages in the Gulf of Guinea. West Afr. J. Appl. Ecol. 2, 49–63 (2001).
 Google Scholar 
 McCormick, M. I. Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Mar. Ecol. Prog. Ser. 112, 87–96 (1994).ADS 
 Google Scholar 
 Moraes, L. E., Paes, E., Garcia, A., Möller, O. Jr. & Vieira, J. Delayed response of fish abundance to environmental changes: A novel multivariate time-lag approach. Mar. Ecol. Prog. Ser. 456, 159–168 (2012).ADS 
 Google Scholar 
 Edgar, G. J. et al. El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Glob. Change. Biol. 16, 2876–2890 (2010).ADS 
 Google Scholar 
 Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W. & Serafy, J. E. Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar. Ecol. Prog. Ser. 495, 233–247 (2014).ADS 
Google Scholar More
 