More stories

  • in

    Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics

    DataSpatial gridWe created a grid whose units measure 250 m by 250 m based on the census tract layer for the city of Rio de Janeiro from the Instituto Brasileiro de Geografia e Estatística [Brazilian Institute of Geography and Statistics] (IBGE) website https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais. Uninhabited locations were excluded.Dengue cases on the gridDengue is a disease of compulsory notification in Brazil, and cases are notified at the Sistema de Informação de Agravos de Notificação [Information System on Diseases of Compulsory Declaration] (SINAN). Dengue cases notified in Rio de Janeiro between January 2010 and March 2015 were geocoded according to address of residency, and then counted for each grid unit by the Secretariat of Health of the city. We obtained the monthly dengue cases data aggregated at the grid level.Population on the gridThe population data is obtained from the Census 2010 (IBGE) (https://www.ibge.gov.br/estatisticas/downloads-estatisticas.html) and it is available at the census tract level. The census tract areas vary in size and can be bigger than the unit of the grid, primarily in the least densely populated zones of the city. To overcome this issue, we cropped from the census tract layer the areas classified as non-urbanized (such as water bodies, swamps, agricultural areas, green areas, beaches, rocky outcrops) in 2010 by the City Hall of Rio de Janeiro (layer available at http://www.data.rio/datasets/uso-do-solo-2010). The population of each census tract is distributed randomly (uniformly) in the areas obtained after deleting the non-urban areas. The population within the units is computed by adding the grid layer. To create the grid and edit the census tract layer we used QGIS (version 3.6.3)45, and to obtain the population in the grid we used the R software46 with the packages tidyverse47 and sf48. We verify the accuracy of our estimated population by comparison with the WordPop dataset49 (see detailed description and Supplementary Fig. 12 and Supplementary Note 2). We chose the WorldPop dataset because: (i) the estimates are also calculated based on census data and are available for 2010, (ii) the pixel size is 100 m, smaller than the size of our grid unit, and (iii) it is open access.Since the units are in fact small and most of them conserve their area of 250 m by 250 m (Supplementary Fig. 1A), we consider population density as the population of each unit. For consistency, we do not consider units with small effective areas and/or populations sizes less than, or equal to, 10 in our analysis. In total, 8954/20212 units were so excluded. This choice circumvents the problem of high sensitivity to random population distribution, and urban vs. non-urban classification, in very small and/or sparsely populated areas. It also facilitates model simulation and does not affect the peak ratio pattern (Supplementary Fig. 1B).Peak ratio and spatial aggregationSince units are small, we binned them into G groups and aggregated their times series of reported cases. The groups were generated according to two aspects: (1) the geographical location of the units as determined by the administrative divisions of the city (10 areas, 33 regions, and 160 neighborhoods); and (2) the population of the units based on quantiles in order to obtain equal size groups. We considered specifically four different partition levels, resulting in 12, 25, 50, and 100 groups with about 900, 450, 225, and 100 units, respectively (from a total number of 11,247 units for the whole city). Groups of unequal size can introduce different statistical effects (it is not the same, for example, to calculate a mean value using 1000 or 10 elements). To compare quantities across groups it is therefore prudent to define groups with the same number of elements. In particular, this consideration becomes important for a large number of groups. Since the population density distribution (number of individuals per unit) is not uniform, groups defined with “equidistant” boundaries would exhibit very different numbers of elements.Given a unit u, we define its time series ({{{{{{bf{v}}}}}}}_{{{{{{bf{u}}}}}}}={{c}_{u}({t}_{1}),{c}_{u}({t}_{2}),…,{c}_{u}({t}_{f})}), where ({c}_{u}({t}_{i})) is the number of reported cases of dengue at time ({t}_{i}) (i = 1, 2, …f) (and the bold symbol is used to indicate a vector). Thus, the aggregated time series is given by$${{{{{{bf{V}}}}}}}_{{{{{{bf{g}}}}}}}=mathop{sum}limits_{uin g}{{{{{{bf{v}}}}}}}_{{{{{{bf{u}}}}}}}={{C}_{g}({t}_{1})=mathop{sum}limits_{uin g}{c}_{u}({t}_{1}),{C}_{g}({t}_{2})=mathop{sum}limits_{uin g}{c}_{u}({t}_{2}),…,{C}_{g}({t}_{f})=mathop{sum}limits_{uin g}{c}_{u}({t}_{f})},$$with (g=1,2,…,G). Then, for each ({{{{{{bf{V}}}}}}}_{{{{{{bf{g}}}}}}}) we computed the ratio between the sizes of the second and first DENV4 peaks, that is$${{{{{rm{peakrati}}}}}}{{{{{{rm{o}}}}}}}_{{{{{{rm{g}}}}}}}=frac{{ma}{x}_{tin {season}2}{{C}_{g}({t}_{1}),{C}_{g}({t}_{2}),…,{C}_{g}({t}_{f})}}{{ma}{x}_{tin {season}1}{{C}_{g}({t}_{1}),{C}_{g}({t}_{2}),…,{C}_{g}({t}_{f})}}$$
    (1)
    (Supplementary Fig. 2).The deterministic SIR modelAlthough dengue is a vector-borne disease, for simplicity we omitted the explicit representation of the dynamics of the mosquito population, and treated vector transmission via the seasonality of the transmission rate26. Thus, for each unit u, the deterministic SIR model is based on the following traditional differential equations:$$frac{d{S}_{u}}{{dt}}=mu {N}_{u}-beta {S}_{u}frac{{I}_{u}}{{N}_{u}}-mu {S}_{u}$$$$frac{d{I}_{u}}{{dt}}=beta {S}_{u}frac{{I}_{u}}{{N}_{u}}-gamma {I}_{u}-mu {I}_{u}$$
    (2)
    $$frac{d{R}_{u}}{{dt}}={gamma I}_{u}-mu {R}_{u},$$where ({S}_{u},{I}_{u},{R}_{u}), are, respectively, the number of susceptible, infected, and recovered individuals, and ({N}_{u}) the number of inhabitants, of the spatial unit u. Parameter (mu) is the mortality rate (equal to the birth rate), and (gamma) is the recovery rate. The seasonal transmission rate is specified as (beta (t)={beta }_{0}(1+delta {{sin }},(omega t+phi ))). The units are considered independent of each other, and the initial conditions establish that the whole population of each unit is susceptible to the virus (({S}_{u}(t=0)={N}_{u}) and ({I}_{u}left(t=0right)={R}_{u}left(t=0right)=0forall u)). Transmission begins with one infected individual at a time ({t}_{0u}ge t=0) where ({t}_{0u}) is obtained from the data.Since the goal of this model is to examine the representative dynamics of different population densities, we binned the units according to their population into 12 groups, and computed the mean value of their number of inhabitants ({N}_{g}=langle {N}_{uin g}rangle) and of their arrival times of the infection ({t}_{0g}sim langle {t}_{0uin g}rangle) (where g = 1, …, 12). We then simulated the system considering the 12 sets ({{N}_{g},{t}_{0g}}) as given.The stochastic modelSince units will suffer local extinction of transmission, a major component of a stochastic implementation is the description of the local reintroduction of the virus, namely the arrival of a ‘spark’ or imported infection, in analogy to fire spread. Because space is described by a highly-resolved lattice, we considered that well-mixed transmission applies within each unit. Moreover, in lieu of  explicit spatial coupling between units, we postulated  the importation of infection through the specification of a spark rate.For this purpose, we constructed a binary representation of the time series of cases per month by defining the spatial units either as positive or negative according to whether they reported cases or not (Supplementary Fig. 3). Then, to derive a spark rate we explored the dynamics of the number of positive units as follows,$${U}^{{{mbox{+}}}}(t+{dt})={U}^{{{mbox{+}}}}(t)+{U}_{{{{{{{mathrm{new}}}}}}}}^{{{mbox{+}}}}(t,t+{dt})-{U}_{{{{{{{mathrm{extinct}}}}}}}}^{{{mbox{+}}}}(t,t+{dt})$$
    (3)
    The number of positive units at time ({t+dt}) is equal to the number of positive units at time t, plus the number of units that have been infected ({{U}_{{{{{{{mathrm{new}}}}}}}}}^{{{mbox{+}}}}(t,t+{dt})) between t and t + dt, minus the number of units that were infected at t but are no longer infected at t + dt (i.e., the number of ‘extinctions’ between t and t + dt, ({{U}_{{{{{{{mathrm{extinct}}}}}}}}}^{{{mbox{+}}}}(t,t+{dt}))).Since uninfected units (i.e., negative units) require the arrival of a spark to become positive, the following equation specifies the mean of ({{U}_{{{{{{{mathrm{new}}}}}}}}}^{{{mbox{+}}}}(t,t+{dt})) under the assumption that a small unit is unlikely to receive more than a single spark in a period of time dt$${{langle }}{U}_{{{{{{{mathrm{new}}}}}}}}^{{+}}(t,t+{dt}){{rangle }}simeq {N}_{{{{{{{mathrm{sparks}}}}}}}}(t,t+{dt})frac{{U}^{{-}}(t)}{U},$$
    (4)
    where ({N}_{{{{{{{mathrm{sparks}}}}}}}}(t,t+{dt})) is the number of sparks produced between t and t + dt, ({U}^{{{{-}}}}(t)) is the number of negative units at a time t, and (U) is the total number of units in the city ((U={U}^{{{mbox{+}}}}+{U}^{{{{-}}}})).By introducing Eq. (4) into Eq. (3) we obtain,$${U}^{{{mbox{+}}}}(t+{dt})simeq {U}^{{{mbox{+}}}}(t)+{N}_{{{{{{{mathrm{sparks}}}}}}}}(t,t+{dt})frac{{U}^{{{{-}}}}(t)}{U}-{{U}_{{{{{{{mathrm{extinct}}}}}}}}}^{{{mbox{+}}}}(t,t+{dt})$$
    (5)
    From Eq. (5) we can now compute the spark rate per unit ({{sigma }_{u}}^{{emp}}(t,t+{dt})) from the high-resolution incidence data as$${{sigma }_{u}}^{{emp}}(t,t+{dt})=frac{{N}_{{{{{{{mathrm{sparks}}}}}}}}(t,t+{dt})}{U}simeq frac{{U}^{{{mbox{+}}}}(t+{dt})-{U}^{{{mbox{+}}}}(t)+{U}_{{{{{{{mathrm{extinct}}}}}}}}(t,t+{dt})}{{U}^{{{{-}}}}(t)}$$
    (6)
    In order to address the effects of human density on the spark rate, we binned the spatial units according to their population into G groups. To avoid statistical effects due to group size, we considered population quantiles. Then, by applying Eq. (6) to each of these groups, we obtained an empirical spark rate per unit that depends on human density,$${sigma }_{uin g}^{{emp}}(t,t+{dt})={sigma }_{u}^{{emp}}(t,t+{dt}{{{{{rm{;}}}}}}{N}_{g}),$$
    (7)
    where ({N}_{g}={{langle }}{N}_{uin g}{{rangle }}) with g = 1, 2, …, G.SimulationsThe associated differential equations of the stochastic model are those shown on Eq. (2) but the transmission component has now an additional term ({sigma }_{u}) to describe the importation of infections.$$frac{d{S}_{u}}{{dt}}=mu {N}_{u}-left(beta {S}_{u}frac{{I}_{u}}{{N}_{u}}+{sigma }_{u}right)-mu {S}_{u}$$$$frac{d{I}_{u}}{{dt}}=left(beta {S}_{u}frac{{I}_{u}}{{N}_{u}}+{sigma }_{u}right)-gamma {I}_{u}-mu {I}_{u}$$
    (8)
    $$frac{d{R}_{u}}{{dt}}={gamma I}_{u}-mu {R}_{u}$$Since the inferred spark rate from the data (Eq. (7)) is obtained from observed infections, we computed the spark rate ({sigma }_{u}) as:$${sigma }_{uin g}={{{{{{mathrm{Poisson}}}}}}}({{sigma }_{uin g}}^{{emp}}/rho )$$
    (9)
    where (rho) is the reporting rate.The model shown on Eq. (8) was formulated as stochastic by incorporating demographic noise (with the different events represented as Poisson processes). It was implemented in R with the package pomp50. We also considered measurement error by assuming that the observed number of cases ({{C}_{u}}^{{obs}}) during a period of time T is,$${{C}_{u}}^{{obs}}left(Tright)={{{{{{mathrm{binomial}}}}}}}left(rho ,{C}_{u}left(Tright)right),$$
    (10)
    where ({C}_{u}(T)) is the number of cases computed in the unit u. We simulated the 11,247 units that compose the city of Rio de Janeiro, and aggregated the resulting time series as for the empirical data (see Peak ratio section).The parameters of the model are given in Supplementary Table 1. We relied on parameters estimated for dengue transmission in Rio de Janeiro by ref. 26. Those estimates were obtained for the aggregated city and for the emergence of DENV1. We use these parameters here as a sufficiently realistic set for illustrating and exploring the behavior of the stochastic model with population density. Moreover, with the exception of the spark rate, the model parameters were considered the same for all units. In particular, we applied a uniform reporting rate because access to the nearest public healthcare clinic does not show a dependency on population density (see Supplementary Note 1).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Prediction of nickel concentration in peri-urban and urban soils using hybridized empirical bayesian kriging and support vector machine regression

    PlantProbs.net. Nickel in plants and soil https://plantprobs.net/plant/nutrientImbalances/sodium.html (accessed Apr 28, 2021).Guodong Liu, E. H. Simonne, and Y. L. Nickel Nutrition in Plants | EDIS. EDis 2011.Liu, G. D. “A New Essential Mineral Element–Nickel.” Plants Nutr. Fertil. Sci. 2001.Kabata-Pendias, A.; Mukherjee, A. Trace Elements from Soil to Human; 2007.Kasprzak, K. S. Nickel advances in modern environmental toxicology. Environ. Toxicol. 11, 145–183 (1987).CAS 

    Google Scholar 
    Cempel, M. & Nikel, G. Nickel: A review of its sources and environmental toxicology. Polish J. Environ. Stud. 15, 375–382 (2006).CAS 

    Google Scholar 
    Bradl, H. B. Chapter Sources and origins of heavy metals. Interface Sci. Technol. 6, 1–27 (2005).CAS 
    Article 

    Google Scholar 
    Von Burg, R. Nickel and some nickel compounds. J. Appl. Toxicol. 17, 425–431 (1997).Article 

    Google Scholar 
    Freedman, B. & Hutchinson, T. C. Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel–copper smelter at Sudbury, Ontario, Canada. Can. J. Bot. 58(1), 108–132. https://doi.org/10.1139/b80-014 (1980).CAS 
    Article 

    Google Scholar 
    Manyiwa, T. et al. Heavy metals in soil, plants, and associated risk on grazing ruminants in the vicinity of Cu–Ni mine in Selebi-Phikwe, Botswana. Environ. Geochem. Health https://doi.org/10.1007/s10653-021-00918-x (2021).Article 
    PubMed 

    Google Scholar 
    Kabata-Pendias. Kabata-Pendias A. 2011. Trace elements in soils and… – Google Scholar https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Kabata-Pendias+A.+2011.+Trace+elements+in+soils+and+plants.+4th+ed.+New+York+%28NY%29%3A+CRC+Press&btnG= (accessed Nov 24, 2020).Almås, A., Singh, B., Agricultural, T. S.-N. J. of & 1995, undefined. The impact of nickel industry in Russia on concentrations of heavy metals in agricultural soils and grass in Soer-Varanger, Norway. agris.fao.org.Nielsen, G. D. et al. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity. Toxicol. Appl. Pharmacol. 154, 67–75 (1999).CAS 
    Article 

    Google Scholar 
    Costa, M. & Klein, C. B. Nickel carcinogenesis, mutation, epigenetics, or selection. Environ. Health Perspect. 107, 2 (1999).Article 

    Google Scholar 
    Agyeman, P. C.; Ahado, S. K.; Borůvka, L.; Biney, J. K. M.; Sarkodie, V. Y. O.; Kebonye, N. M.; Kingsley, J. Trend Analysis of Global Usage of Digital Soil Mapping Models in the Prediction of Potentially Toxic Elements in Soil/Sediments: A Bibliometric Review. Environmental Geochemistry and Health. Springer Science and Business Media B.V. 2020. https://doi.org/10.1007/s10653-020-00742-9.Minasny, B. & McBratney, A. B. Digital soil mapping: A brief history and some lessons. Geoderma 264, 301–311. https://doi.org/10.1016/j.geoderma.2015.07.017 (2016).ADS 
    Article 

    Google Scholar 
    McBratney, A. B., Mendonça Santos, M. L. & Minasny, B. On digital soil mapping. Geoderma 117(1–2), 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4 (2003).ADS 
    Article 

    Google Scholar 
    Deutsch.C.V. Geostatistical Reservoir Modeling,… – Google Scholar https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=C.V.+Deutsch%2C+2002%2C+Geostatistical+Reservoir+Modeling%2C+Oxford+University+Press%2C+376+pages.+&btnG= (accessed Apr 28, 2021).Olea, R. A. Geostatistics for engineers & earth scientists. Stoch. Environ. Res. Risk Assess. 14(3), 207–209. https://doi.org/10.1007/pl00009782 (2000).Article 

    Google Scholar 
    Gumiaux, C., Gapais, D. & Brun, J. P. Geostatistics applied to best-fit interpolation of orientation data. Tectonophysics 376(3–4), 241–259. https://doi.org/10.1016/j.tecto.2003.08.008 (2003).ADS 
    Article 

    Google Scholar 
    Wadoux, A. M. J. C., Minasny, B. & McBratney, A. B. Machine learning for digital soil mapping: applications, challenges and suggested solutions. Earth-Sci Rev. https://doi.org/10.1016/j.earscirev.2020.103359 (2020).Article 

    Google Scholar 
    Tan, K. et al. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. J. Hazard. Mater. 382, 120987. https://doi.org/10.1016/j.jhazmat.2019.120987 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sakizadeh, M., Mirzaei, R. & Ghorbani, H. Support vector machine and artificial neural network to model soil pollution: a case study in Semnan Province, Iran. Neural Comput. Appl. 28(11), 3229–3238. https://doi.org/10.1007/s00521-016-2231-x (2017).Article 

    Google Scholar 
    Vega, F. A., Matías, J. M., Andrade, M. L., Reigosa, M. J. & Covelo, E. F. Classification and regression trees (CARTs) for modelling the sorption and retention of heavy metals by soil. J. Hazard. Mater. 167(1–3), 615–624. https://doi.org/10.1016/j.jhazmat.2009.01.016 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sun, H. et al. Prediction of distribution of soil cd concentrations in Guangdong Province, China. Huanjing Kexue/Environmental Sci. 38(5), 2111–2124. https://doi.org/10.13227/j.hjkx.201611006 (2017).Article 

    Google Scholar 
    Woodcock, C. E. & Gopal, S. Fuzzy set theory and thematic maps: accuracy assessment and area estimation. Int. J. Geogr. Inf. Sci. 14(2), 153–172. https://doi.org/10.1080/136588100240895 (2000).Article 

    Google Scholar 
    Finke, P. A. Chapter 39 Quality assessment of digital soil maps: producers and users perspectives. Dev. Soil Sci. https://doi.org/10.1016/S0166-2481(06)31039-2 (2006).Article 

    Google Scholar 
    Pontius, R. G. & Cheuk, M. L. A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions. Int. J. Geogr. Inf. Sci. 20(1), 1–30. https://doi.org/10.1080/13658810500391024 (2006).Article 

    Google Scholar 
    Grunwald, S. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 152(3–4), 195–207. https://doi.org/10.1016/j.geoderma.2009.06.003 (2009).ADS 
    Article 

    Google Scholar 
    Nelson, M. A., Bishop, T. F. A., Triantafilis, J. & Odeh, I. O. A. An error budget for different sources of error in digital soil mapping. Eur. J. Soil Sci. 62, 417–430 (2011).Article 

    Google Scholar 
    McBratney, A. B., Minasny, B. & ViscarraRossel, R. Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma 136, 272–278 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Stumpf, F. et al. Uncertainty-guided sampling to improve digital soil maps. CATENA 153, 30–38 (2017).Article 

    Google Scholar 
    Legates, D. R. & McCabe, G. J. Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35, 233–241 (1999).ADS 
    Article 

    Google Scholar 
    Sergeev, A. P. et al. High variation subarctic topsoil pollutant concentration prediction using neural network residual kriging. AIP Conf. Proc. 2017, 1836. https://doi.org/10.1063/1.4981963 (2017).CAS 
    Article 

    Google Scholar 
    Subbotina, I. E. et al. Multilayer perceptron, generalized regression neural network, and hybrid model in predicting the spatial distribution of impurity in the topsoil of urbanized area. AIP Conf. Proc. https://doi.org/10.1063/1.5045410 (2018).Article 

    Google Scholar 
    Tarasov, D. A., Buevich, A. G., Sergeev, A. P. & Shichkin, A. V. High variation topsoil pollution forecasting in the Russian subarctic: using artificial neural networks combined with residual kriging. Appl. Geochemistry 88, 188–197. https://doi.org/10.1016/j.apgeochem.2017.07.007 (2018).CAS 
    Article 

    Google Scholar 
    Tarasov, D.; Buevich, A.; Shichkin, A.; Subbotina, I.; Tyagunov, A.; Baglaeva, E. Chromium Distribution Forecasting Using Multilayer Perceptron Neural Network and Multilayer Perceptron Residual Kriging. In AIP Conference Proceedings; American Institute of Physics Inc., 2018; Vol. 1978, p 440019. https://doi.org/10.1063/1.5044048.John, K. et al. Hybridization of cokriging and gaussian process regression modelling techniques in mapping soil sulphur. CATENA 206, 2 (2021).Article 

    Google Scholar 
    Gribov, A. & Krivoruchko, K. Empirical Bayesian Kriging Implementation and Usage. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137290 (2020).Article 
    PubMed 

    Google Scholar 
    Samsonova, V. P., Blagoveshchenskii, Y. N. & Meshalkina, Y. L. Use of empirical Bayesian kriging for revealing heterogeneities in the distribution of organic carbon on agricultural lands. Eurasian Soil Sci. 50(3), 305–311. https://doi.org/10.1134/S1064229317030103 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Fabijańczyk, P., Zawadzki, J. & Magiera, T. Magnetometric assessment of soil contamination in problematic area using empirical bayesian and indicator kriging: a case study in upper Silesia, Poland. Geoderma 308, 69–77. https://doi.org/10.1016/j.geoderma.2017.08.029 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    John, K. et al. Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. Int. J. Environ. Sci. Technol. 2, 1–16. https://doi.org/10.1007/s13762-020-03089-x (2021).CAS 
    Article 

    Google Scholar 
    Li, T. et al. Using self-organizing map for coastal water quality classification: Towards a better understanding of patterns and processes. Sci. Total Environ. 628–629, 1446–1459. https://doi.org/10.1016/j.scitotenv.2018.02.163 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, Z. et al. Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map. Environ. Pollut. https://doi.org/10.1016/j.envpol.2020.114065 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hossain Bhuiyan, M. A., Chandra Karmaker, S., Bodrud-Doza, M., Rakib, M. A. & Saha, B. B. Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM PMF and GIS Methods. Chemosphere https://doi.org/10.1016/j.chemosphere.2020.128339 (2021).Article 
    PubMed 

    Google Scholar 
    Kebonye, N. M. et al. Self-organizing map artificial neural networks and sequential gaussian simulation technique for mapping potentially toxic element hotspots in polluted mining soils. J. Geochemical Explor. 222, 106680. https://doi.org/10.1016/j.gexplo.2020.106680 (2021).CAS 
    Article 

    Google Scholar 
    Weather Spark. Average Weather in Frýdek-Místek, Czechia, Year Round – Weather Spark https://weatherspark.com/y/83671/Average-Weather-in-Frýdek-Místek-Czechia-Year-Round (accessed Sep 14, 2020).Kozák, J. Soil Atlas of the Czech Republic. 2010, 150.Vacek, O., Vašát, R. & Borůvka, L. Quantifying the pedodiversity-elevation relations. Geoderma 373, 114441. https://doi.org/10.1016/j.geoderma.2020.114441 (2020).ADS 
    Article 

    Google Scholar 
    Krivoruchko, K. Empirical Bayesian Kriging; 2012; Vol. Fall 2012.Vapnik, V. The nature of statistical learning theory. Technometrics 38(4), 409. https://doi.org/10.2307/1271324 (1995).Article 
    MATH 

    Google Scholar 
    Li, Z., Zhou, M., Xu, L. J., Lin, H. & Pu, H. Training sparse SVM on the core sets of fitting-planes. Neurocomputing 130, 20–27. https://doi.org/10.1016/j.neucom.2013.04.046 (2014).Article 

    Google Scholar 
    Cherkassky, V.; Mulier, F. Learning from Data: Concepts, Theory, and Methods: Second Edition; 2006. https://doi.org/10.1002/9780470140529.John, K. et al. Using machine learning algorithms to estimate soil organic carbon variability with environmental variables and soil nutrient indicators in an alluvial soil. Land 9(12), 1–20. https://doi.org/10.3390/land9120487 (2020).CAS 
    Article 

    Google Scholar 
    Vohland, M., Besold, J., Hill, J. & Fründ, H. C. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma 166(1), 198–205. https://doi.org/10.1016/j.geoderma.2011.08.001 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Fraser, S. J.; Dickson, B. L. A New Method for Data Integration and Integrated Data Interpretation: Self-Organising Maps; 2007.Melssen, W. J.; Smits, J. R. M.; Buydens, L. M. C.; Kateman, G. Using Artificial Neural Networks for Solving Chemical Problems Part II. Kohonen Self-Organising Feature Maps and Hopfield Networks. Chemometrics and Intelligent Laboratory Systems. Elsevier, Amsterdam, 1, 1994, pp 267–291. https://doi.org/10.1016/0169-7439(93)E0036-4.Kooistra, L. et al. The potential of field spectroscopy for the assessment of sediment properties in river floodplains. Anal. Chim. Acta 484(2), 189–200. https://doi.org/10.1016/S0003-2670(03)00331-3 (2003).CAS 
    Article 

    Google Scholar 
    Li, L. et al. Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica Napus L.) using in situ leaf spectroscopy. Ind. Crops Prod. 91, 194–204. https://doi.org/10.1016/j.indcrop.2016.07.008 (2016).CAS 
    Article 

    Google Scholar 
    Różański, S. Ł, Kwasowski, W., Castejón, J. M. P. & Hardy, A. Heavy metal content and mobility in urban soils of public playgrounds and sport facility areas, Poland. Chemosphere 212, 456–466. https://doi.org/10.1016/j.chemosphere.2018.08.109 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bretzel, F. & Calderisi, M. Metal contamination in urban soils of coastal Tuscany (Italy). Environ. Monit. Assess. 118(1–3), 319–335. https://doi.org/10.1007/s10661-006-1495-5 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jim, C. Y. Urban soil characteristics and limitations for landscape planting in hong kong. Landsc. Urban Plan. 40(4), 235–249. https://doi.org/10.1016/S0169-2046(97)00117-5 (1998).Article 

    Google Scholar 
    Birke, M.; Rauch, U.; Chmieleski, J. Environmental Geochemical Survey of the City of Stassfurt: An Old Mining and Industrial Urban Area in Sachsen-Anhalt, Germany. In Mapping the Chemical Environment of Urban Areas; John Wiley and Sons, 2011; pp 269–306. https://doi.org/10.1002/9780470670071.ch18.Khodadoust, A. P., Reddy, K. R. & Maturi, K. Removal of nickel and phenanthrene from kaolin soil using different extractants. Environ. Eng. Sci. 21(6), 691–704. https://doi.org/10.1089/ees.2004.21.691 (2004).CAS 
    Article 

    Google Scholar 
    Jakovljevic, M.; Kostic, N.; Antic-Mladenovic, S. The Availability of Base Elements (Ca, Mg, Na, K) in Some Important Soil Types in Serbia; 2003. https://doi.org/10.2298/zmspn0304011j.Orzechowski, M.; Smolczynski, S. IN SOILS DEVELOPED FROM THE HOLOCENE DEPOSITS IN NORTH-EASTERN POLAND*; -, 2007; Vol. 15.Pongrac, P. et al. Mineral element composition of cabbage as affected by soil type and phosphorus and zinc fertilisation. Plant Soil 434(1–2), 151–165. https://doi.org/10.1007/s11104-018-3628-3 (2019).CAS 
    Article 

    Google Scholar 
    Kingston, G.; Anink, M. C.; Clift, B. M.; Beattie, R. N. Potassium Management for Sugarcane on Base Saturated Soils in Northern New South Wales; 2009; Vol. 31.Santo, L. T., Nakahata, M. H., & Schell, V. P. Santo LT, Nakahata MH, Ito GP and Schell VP (2000)…. – Google Scholar https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Santo+LT%2C+Nakahata+MH%2C+Ito+GP+and+Schell+VP+%282000%29.+Calcium+and+liming+trials+from+1994+to+1998+at+HC%26S.+Technical+supplement+to+Agronomy+Report+83%2C+Hawaiian+Agricultural+Research+Centre. (accessed May 16, 2021).Burgos, P., Madejón, E., Pérez-de-Mora, A. & Cabrera, F. Horizontal and vertical variability of soil properties in a trace element contaminated area. Int. J. Appl. Earth Obs. Geoinf. 10(1), 11–25. https://doi.org/10.1016/j.jag.2007.04.001 (2008).ADS 
    Article 

    Google Scholar 
    Olinic, T. & Olinic, E. The effect of quicklime stabilization on soil properties. Agric. Agric. Sci. Procedia 10, 444–451. https://doi.org/10.1016/j.aaspro.2016.09.013 (2016).Article 

    Google Scholar 
    Madaras, M.; Lipavský, J. Interannual Dynamics of Available Potassium in a Long-Term Fertilization Experiment; 2009; Vol. 55. https://doi.org/10.17221/34/2009-pse.Madaras, M., Koubova, M. & Lipavský, J. Stabilization of available potassium across soil and climatic conditions of the Czech Republic. Arch. Agron. Soil Sci. 56(4), 433–449. https://doi.org/10.1080/03650341003605750 (2010).CAS 
    Article 

    Google Scholar 
    Pulkrabová, J. et al. Is the long-term application of sewage sludge turning soil into a sink for organic pollutants?: Evidence from field studies in the Czech Republic. J. Soils Sedim. 19(5), 2445–2458. https://doi.org/10.1007/s11368-019-02265-y (2019).CAS 
    Article 

    Google Scholar 
    Asare, M. O., Horák, J., Šmejda, L., Janovský, M. & Hejcman, M. A medieval hillfort as an island of extraordinary fertile archaeological dark earth soil in the Czech Republic. Eur. J. Soil Sci. 72(1), 98–113. https://doi.org/10.1111/ejss.12965 (2021).CAS 
    Article 

    Google Scholar 
    Zádorová, T. et al. Identification of Neolithic to Modern Erosion-Sedimentation Phases Using Geochemical Approach in a Loess Covered Sub-Catchment of South Moravia Czech Republic. Geoderma 195–196, 56–69. https://doi.org/10.1016/j.geoderma.2012.11.012 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Tlustoš, P. et al. Nutrient status of soil and winter wheat (Triticum Aestivum L.) in response to long-term farmyard manure application under different climatic and soil physicochemical conditions in the Czech Republic. Arch. Agron. Soil Sci. 64(1), 70–83. https://doi.org/10.1080/03650340.2017.1331297 (2018).Article 

    Google Scholar 
    Wang, Z. et al. Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map. Environ. Pollut. 260, 2 (2020).
    Google Scholar 
    Yan, P., Peng, H., Yan, L. & Lin, K. Spatial variability of soil physical properties based on GIS and geo-statistical methods in the red beds of the Nanxiong Basin, China. Polish J. Environ. Stud. 28, 2961–2972 (2019).Article 

    Google Scholar 
    Beguin, J., Fuglstad, G. A., Mansuy, N. & Paré, D. Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches. Geoderma 306, 195–205 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Adhikary, P. P., Dash, C. J., Bej, R. & Chandrasekharan, H. Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India. Environ. Monit. Assess. 176, 663–676 (2011).CAS 
    Article 

    Google Scholar 
    John, K. et al. Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. Int. J. Environ. Sci. Technol. 18, 3327–3342 (2021).CAS 
    Article 

    Google Scholar 
    Eldeiry, A. A. & Garcia, L. A. Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing. Soil Sci. Soc. Am. J. 72, 201–211 (2008).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Maternal salinity influences anatomical parameters, pectin content, biochemical and genetic modifications of two Salicornia europaea populations under salt stress

    Plant materials, growth conditions and salt treatmentsSoil samples were performed as in previous experiments with S. europaea25, seeds were collected at two maternal sites, the first of which represents natural salinity related to inland salt springs at the health resort of Ciechocinek (Cie) (52°53′N, 18°47′E) characterised by a high soil salinity of ca 100 dS m−1 (~ 1000 mM NaCl), and the second of which is associated with soda factory waste that affects the local environment in Inowrocław-Mątwy (Inw) (52°48′N, 18°15′E) and with a lower salinity of ca 55 dS m−1 (~ 550 mM NaCl). The complete soil description is reported in Piernik et al.51 and Szymanska et al.52,53. Populations are isolated by a distance of ca 40 km without any saline environment between them, however, they were somehow connected due to the presence of salt springs in the nineteenth century. The seeds came from one generation and were collected in early November 2018. The seeds were germinated and grown according to the same steps reported in Cárdenas-Pérez et al.25 with a slight modification in the number of salt treatments at 0, 200, 400, 600, 800 and 1000 mM NaCl. In total, 144 plants were cultivated, and, therefore, a complete randomised factorial design 26 was used, which included (12 plants × 6 treatments × 2 populations) with 14 response variables. After 2 months of development, anatomical analysis such as cell area (A), roundness (R) and maximum cell diameter (Cdiam) were estimated in 12 samples, whereas high and low methyl esterified pectins (HM-HGs and LM-HGs), proline (P), hydrogen peroxide (HP), total soluble protein (Prot), catalase activity (CAT), peroxidase activity (POD), chlorophyll a, b and total (Cha, Chb and TC), carotenoid (Carot) contents, as well as SeNHX1 and SeSOS1 gene expression, were all determined per triplicate (plants were randomly selected). The collection of plant material, comply with relevant institutional, national, and international guidelines and legislation, IUCN Policy Statement on Research Involving Species at Risk of Extinction and Convention on the Trade in Endangered Species of Wild Fauna and Flora. The voucher specimen of the plant material has been deposited in a publicly available herbarium of the Nicolaus Copernicus University in Toruń (Index Herbarium code TRN), deposition number not available (dr. hab. Agnieszka Piernik, prof. NCU undertook the formal identification of plant species, and permission to work with the seeds was provided by the Regional Director of Environmental Protection in Bydgoszcz, WOP.6400.12.2020.JC).Anatomical image analysisFrom the middle primary branch (fleshy segment shoot) of S. europaea plant treatments (0, 200, 400, 600, 800 and 1000 mM NaCl), slices of fresh tissue were obtained by cutting them with a sharp bi-shave blade. The thinner slices of approximately 0.5 mm were selected and used in the microstructure analysis. The size and shape of the stem-cortex cells from the fresh water-storing tissue were characterised by a light microscope (Olympus BX51, USA) connected to a digital camera (DP72 digital microscope camera) and digital acquisition software (DP2-BSW). The microscope images were captured at a magnification of 10 ×/0.30 in RGB scale and stored in TIFF format at 1280 × 1024 pixels. A total of 300 ± 50 cells from five individuals per treatment were analysed. Finally, the shape and size of the cells were obtained from the captured images. Cell image analysis (IA) was performed in ImageJ v. 1.47 (National Institutes of Health, Bethesda, MD, USA). The following anatomical parameters were obtained. Firstly, the cell area (A) was estimated as the number of pixels within the boundary. Secondly, the maximum cell’s diameter (Cdiam) was determined by the distance between the two points separated by the largest coordinates in different orientations, and the cell roundness (R) was obtained through the equation R = (4 A)/(π (Cdiam)2)—where a perfectly round cell has R = 1.0, while elongated cells will show an R → 0. Finally, the degree of succulence (S) in stem was calculated according to24 with slight change S = (Fresh Weight-Dry Weight)/stem Area, where the Area of the stem (As) was calculated as: As = π × r2, the diameter of the stems was obtained according to Cárdenas-Pérez et al.25.Immunolocalisation experimentsThe samples dissected from the middle segment of the shoot (3 individuals per treatment) were prepared for embedding in BMM resin (butyl methacrylate, methyl methacrylate, 0.5% benzoyl ethyl ether (Sigma) with 10 mM DDT (Thermo Fisher Scientific) according to Niedojadło et al.54. Next, specimens were cut on a Leica UCT ultramicrotome into serial semi-thin cross sections (1.5 µm) that were collected on Thermo Scientific Polysine adhesion microscope slides. Before immunocytochemical reaction, the resin was removed with two changes of acetone and washed in distilled water and PBS pH 7.2. After incubation with blocking solution containing 2% BSA (bovine serum albumin, Sigma) in PBS pH 7.2 for 30 min at room temperature, the sections were incubated with anti-pectin rat monoclonal primary antibody JIM7 (recognises partially methylesterified epitopes of homogalacturonan [HG] but does not bind to fully de-esterified HGs) or antibody LM19 (recognises partially methylesterified epitopes of HG and binds strongly to de-esterified HGs) (Plant Probes) diluted 1:50 in 0.2% BSA in PBS pH 7.2 overnight at 4 °C. After washing with PBS pH 7.2, the material was incubated with AlexaFluor 488-conjugated goat anti-rat secondary antibody (Thermo Fisher Scientific) diluted 1:1000 in 0.2% BSA in PBS pH 7.2 for 1 h at 37 °C. Finally, the sections were washed in PBS pH 7.2, dried at room temperature and covered with ProLongTMGold antifade reagent (Thermo Fisher Scientific). The control reactions were performed with the omission of incubation with primary antibodies. Semithin sections were analysed with an Olympus BX50 fluorescence microscope, with an UPlanFI 1009 (N.A. 1.3) oil immersion lens and narrow band filters (U-MNU, U-MNG). The results were recorded with an Olympus XC50 digital colour camera and CellB software (Olympus Soft Imaging Solutions GmbH, Germany).Fluorescence quantitative evaluationFor the quantitative measurement, each experiment was performed using consistent temperatures, incubation times and concentrations of antibodies. The aforementioned ImageJ (1.47v) software was used for image processing and analysis. The fluorescence intensity was measured for five semi-thin sections for each experimental population (Inowrocław and Ciechocinek) at the same magnification (100 ×) and the constant exposure time to ensure comparable results. The threshold fluorescence in the sample was established based on the autofluorescence of the control reaction. The level of signal intensity was expressed in arbitrary units (a.u.) as the mean intensity per μm2 according to Niedojadło et al.54.Biochemical analysisProline content (P) was measured according to Ábrahám et al.55. Five hundred milligrams of fresh stem material was minced on ice and homogenised with 3% aqueous sulfosalicylic acid solution (5 μl mg−1 fresh plant material), centrifuged at 18,000×g, 10 min at 4 °C, and the supernatant was collected. The reaction mixture: 100 μl of 3% sulphosalicylic acid, 200 μl of glacial acetic acid, 200 μl of acidic ninhydrin reagent and 100 μl of supernatant. Acidic ninhydrin reagent was prepared according to Bates et al.56. The standard curve for proline in the concentration range of 0 to 40 μg ml−1. The standard curve equation was y = 0.0467x − 0.0734, R2 = 0.963. P was expressed in mg of proline per gram of fresh weight. Hydrogen peroxide (HP) levels were determined according to the methods described by Velikova et al.57, and 500 mg of stem tissues were homogenised with 5 ml trichloroacetic acid 0.1% (w:v) in an ice bath. The homogenate was centrifuged (12,000×g, 4 °C, 15 min) and 0.5 ml of the supernatant was added to potassium phosphate buffer (0.5 ml) (10 mM, pH 7.0) and 2 ml of 1 M KI. The absorbance was read at 390 nm, and the HP content was given on a standard curve from 0 to 40 mM. The standard curve equation was y = 0.0188x + 0.046, R2 = 0.987. HP concentrations were expressed in nM per gram of fresh weight. Chlorophylls (Cha and Chb) and carotenoids were extracted from fresh plant stems (100 mg) using 80% acetone for 6 h in darkness, and then centrifuged at 10,000 rpm, 10 min. Supernatants were quantified spectrophotometrically. Absorbance was determined at 646, 663 and 470 nm and calculations were performed according to Lichtenthaler and Wellburn58, when 80% of acetone is used as dissolvent. Total chlorophyll content was calculated as the sum of chlorophyll a and b contents.Total CAT activity was determined spectrophotometrically by following the decline in A240 as H2O2 (ε = 39.9 M−1 cm−1) was catabolised, according to the method of Beers and Sizer59. Decrease in absorbance of the reaction at 240 nm was recorded after every 20 s. One unit CAT was defined as an absorbance change of 0.01 units min−1. Total POD activity was determined spectrophotometrically by monitoring the formation of tetraguaiacol (ε = 26.6 mM−1 cm−1) from guaiacol at A470 in the presence of H2O2 by the method of Chance and Maehly60. Increase in absorbance of the reaction solution at 470 nm was recorded after every 20 s. One unit of POD activity was defined as an absorbance change of 0.01 units min−1. Total soluble protein (Prot) content was measured according to Bradford61 using bovine serum albumin (BSA) as a protein standard. Fresh leaf samples (1 g) were homogenised with 4 ml Na-phosphate buffer (pH 7.2) and then centrifuged at 4 °C. Supernatant and dye were pipetted in spectrophotometer cuvettes and absorbances were measured using a UV–vis spectrophotometer (PG instruments T80) at 595 nm62. Prot was determined based on the standard curve y = 1.6565x + 0.0837, R2 = 0.982, for total soluble protein in the concentration range of 0 to 1.2 mg ml−1 BSA. Triplicates per treatment were used for each analysis.Total RNA isolationAfter 2 months of salt treatment, shoots of S. europaea plants (3 individuals per treatment) were washed several times with tap water and then three times with miliQ water. After drying, plant material was frozen in liquid nitrogen, and stored at − 80 °C. Total RNA isolation was performed using RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. The quality and quantity of RNA was checked on 1.5% agarose gels in TAE (Tris–HCl, acetic acid, EDTA, pH 8.3) buffer stained with ethidium bromide, and by spectrophotometric measurement (NanoDrop Lite, Thermo Fisher Scientific, Waltham, MA, USA).Cloning of SOS1 gene from S. europaea (SeSOS1)One microgram (1 µg) of total RNA isolated from shoots of S. europaea was primed with 0.5 µg of oligo (dT)20 primer for 5 min at 70 °C. Then 4 µl of ImProm-II 5 × reaction buffer, 2 mM MgCl2, 0.5 mM each dNTP, 20 U of recombinant RNasin ribonuclease inhibitor, and 1 µl of ImProm-II reverse transcriptase (Promega, Madison, WI, USA) were added to a final volume of 20 µl. The reaction was performed at 42 °C for 60 min. To design degenerate primers for SOS1, cDNA sequences from Arabidopsis thaliana (NM_126259.4), Lycopersicon esculentum (AJ717346.1), Mesembryanthemum crystallinum (EF207776.1), Oryza sativa (AY785147.1), Triticum aestivum (AY326952.3), Salicornia brachiata (EU879059.1) were obtained from NCBI GeneBank. The sequences were aligned using the Clustal Omega tool (https://www.ebi.ac.uk/Tools/msa/clustalo/) and three pairs of degenerate primes were designed (listed in Table 4). The PCR reaction mixture includes cDNA, 0.2 µM each primer, 0.2 mM each dNTP, 4 µl of 5 × HF buffer, and 0.5 U of Phusion High-Fidelity DNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA) in a total volume of 20 µl. The thermal conditions were as follows: 98 °C for 30 s, 98 °C for 10 s, gradient between 48 °C and 56 °C for 20 s, 72 °C for 60 s, 32 cycle, final extension for 10 min at 72 °C. A pair of primers deg2_F and deg2_R yielded a PCR product with expected size. The PCR product was purified from agarose gel, cloned into pJET1.2 vector (Thermo Fisher Scientific, Waltham, MA, USA) according to manufacturer’s protocol and sequenced (Genomed, Warsaw, Poland). The obtained partial cDNA sequence was named SeSOS1 and deposited in NCBI GeneBank (acc. no. MZ707082).Table 4 Sequences of the primers used for cloning of SeSOS1 and quantitative real-time PCR.Full size tableReverse transcription reaction and quantitative real-time PCR (qPCR) SeNHX1 and SeSOS1 gene expression analysisPrior to reverse transcription reaction, RNA was treated with DNaseI (Thermo Fisher Scientific, Waltham, MA, USA). The cDNA was synthesised from 1.5 µg of total RNA using a mixture of 2.5 µM oligo(dT)20 primer and 0.2 µg of random hexamers with NG dART RT Kit (Eurx, Gdańsk, Poland) according to the manufacturer’s protocol. The reaction was performed at 25 °C for 10 min, followed by 50 min at 50 °C. The cDNA was stored at − 20 °C.The PCR reaction mixture includes 4 µl of 1/20 diluted cDNA, 0.5 µM gene-specific primers (Table 4) and 5 µl of LightCycler 480 SYBR Green I Master (Roche, Penzberg, Germany) in a total volume of 10 µl. Clathrin adaptor complexes (CAC) was used as a reference gene63. The reaction was performed in triplicate (technical replicates) in LightCycler 480 Instrument II (Roche, Penzberg, Germany). The thermal cycling conditions were as follows: 95 °C for 5 min, 95 °C for 10 s, 60 °C for 20 s, 72 °C for 20 s, 40 cycles. The SYBR Green I fluorescence signal was recorded at the end of the extension step in each cycle. The specificity of the assay was confirmed by the melt curve analysis i.e., increasing the temperature from 55 to 95 °C at a ramp rate 0.11 °C/s. The fold-change in gene expression was calculated using LightCycler 480 Software release 1.5.1.62 (Roche, Penzberg, Germany).Statistical and multivariate analysisIn order to determine the projection of the effect of salt treatment in plants we followed Cárdenas-Pérez et al.25 methodology. A principal component analysis (PCA) was developed using XLSTAT software version 2019.4.165. For this analysis, 14 variables were used, (A, Cdiam, R, Prot, CAT, POD, HM-HGs, LM-HGs, P, HP, Cha, Chb, TC, Carot), arranged in a matrix with the average values obtained from replicates of each treatment and population. A two-way ANOVA comparing treatments within populations and populations within treatments was conducted for all the results with the Holm–Sidak method. The data was fit with a modified three parameter exponential decay using SigmaPlot version 11.066. The relationships between variables were performed using a Pearson analysis, while a significance test (Kaisere Meyere Olkin) was performed in order to determine which variables had a significant correlation with each other (α = 0.05). Then, a 3D plot was developed using the three principal component factors according to the Kaiser criterion which stated that the factors below the unit are irrelevant. The three main factorial scores of the PCA from each sample were used to calculate the distance (D) between the two points (populations) under the same treatment P1 = (x1, y1, z1) and P2 = (x2, y2, z2) in 3D space of the PCA (Eq. 1).$$D ( {P_{1} ,, P_{2} } ) = sqrt {( {x_{2} – x_{1} } )^{2} + ( {y_{2} – y_{1} } )^{2} + ( {z_{2} – z_{1} } )^{2} }$$
    (1)
    where x, y, and z are the three main factorial scores in the PCA corresponding to the evaluated treatment in Inw and in Cie. Distances were used to evaluate and determine in which salt treatment the greatest differences between the populations were recorded. More

  • in

    Environmental crises at the Permian–Triassic mass extinction

    Wignall, P. B. The Worst of Times (Princeton Univ. Press, 2015).Black, B. A., Karlstrom, L. & Mather, T. A. The life cycle of large igneous provinces. Nat. Rev. Earth Environ. 2, 840–857 (2021).
    Google Scholar 
    Jin, Y. G. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in south China. Science 289, 432–436 (2000).
    Google Scholar 
    Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).
    Google Scholar 
    Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).
    Google Scholar 
    Benton, M. J. & Newell, A. J. Impacts of global warming on Permo–Triassic terrestrial ecosystems. Gondwana Res. 25, 1308–1337 (2014).
    Google Scholar 
    Brayard, A. et al. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat. Geosci. 4, 693–697 (2011).
    Google Scholar 
    Brayard, A. et al. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325, 1118–1121 (2009).
    Google Scholar 
    Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early triassic marine biotic recovery: the predators’ perspective. PLoS ONE 9, e88987 (2014).
    Google Scholar 
    Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Bull. Geolog. Soc. Am. 108, 195–207 (1996).
    Google Scholar 
    Payne, J. L. et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506–509 (2004).
    Google Scholar 
    Song, H., Wignall, P. B. & Dunhill, A. M. Decoupled taxonomic and ecological recoveries from the Permo–Triassic extinction. Sci. Adv. 4, eaat5091 (2018).
    Google Scholar 
    Retallack, G. J. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney basin, Australia. Bull. Geol. Soc. Am. 111, 52–70 (1999).
    Google Scholar 
    Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the Permian–Triassic extinction. Science 289, 1740–1743 (2000).
    Google Scholar 
    Wignall, P. B. & Twitchett, R. J. Extent, duration, and nature of the Permian–Triassic superanoxic event. Spec. Pap. Geol. Soc. Am. 356, 395–413 (2002).
    Google Scholar 
    Rampino, M. R. & Stothers, R. B. Flood basalt volcanism during the past 250 million years. Science 241, 663–668 (1988).
    Google Scholar 
    Renne, P. R. & Basu, A. R. Rapid eruption of the Siberian traps flood basalts at the Permo–Triassic boundary. Science 253, 176–179 (1991).
    Google Scholar 
    Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).
    Google Scholar 
    Vasiljev, Y. R., Zolotukhin, V. V., Feoktistov, G. D. & Prusskaya, S. N. Volume estimation and genesis of Permian–Triassic trap magmatism from Siberian platform. Russ. Geol. Geophys. 41, 1696–1705 (2000).
    Google Scholar 
    Dobretsov, N. L. Large igneous provinces of Asia (250 Ma): Siberian and Emeishan traps (plateau basalts) and associated granitoids. Geol. Geof. 46, 870–890 (2005).
    Google Scholar 
    Augland, L. E. et al. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 9, 18723 (2019).
    Google Scholar 
    Kasbohm, J., Schoene, B. & Burgess, S. in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes (eds Ernst, R. E., Dickson, A. & Bekker, A.) 27–82 (Wiley, 2021).Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).
    Google Scholar 
    Posenato, R. Marine biotic events in the lopingian succession and latest Permian extinction in the Southern Alps (Italy). Geol. J. 45, 195–215 (2010).
    Google Scholar 
    Posenato, R. The end-Permian mass extinction (EPME) and the early Triassic biotic recovery in the western Dolomites (Italy): state of the art. Bull. Soc. Paleontol. Ital. 58, 11–34 (2019).
    Google Scholar 
    Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).
    Google Scholar 
    Chu, D. et al. Ecological disturbance in tropical peatlands prior to marine Permian–Triassic mass extinction. Geology 48, 288–292 (2020).
    Google Scholar 
    Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1428 (2020).
    Google Scholar 
    Foote, M. Morphological and taxonomic diversity in clade’s history: the blastoid record and stochastic simulations. Contrib. Mus. Paleontol. 28, 101–140 (1991).
    Google Scholar 
    Stanley, S. M. & Yang, X. A double mass extinction at the end of the Paleozoic era. Science 266, 1340–1344 (1994).
    Google Scholar 
    Wang, X. D. & Sugiyama, T. Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33, 285–294 (2000).
    Google Scholar 
    Hallam, A. & Wignall, P. B. Mass Extinctions and their Aftermath (Oxford Univ. Press, 1997).Orchard, M. J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93–117 (2007).
    Google Scholar 
    Romano, C. et al. Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2016).
    Google Scholar 
    Tu, C., Chen, Z. Q. & Harper, D. A. T. Permian–Triassic evolution of the Bivalvia: extinction-recovery patterns linked to ecologic and taxonomic selectivity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 53–62 (2016).
    Google Scholar 
    Schaal, E. K., Clapham, M. E., Rego, B. L., Wang, S. C. & Payne, J. L. Comparative size evolution of marine clades from the Late Permian through Middle Triassic. Paleobiology 42, 127–142 (2016).
    Google Scholar 
    Chen, J. et al. Size variation of brachiopods from the late Permian through the middle Triassic in south China: evidence for the Lilliput effect following the Permian–Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 248–257 (2019).
    Google Scholar 
    Feng, Y., Song, H. & Bond, D. P. G. Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions. Paleobiology 46, 511–532 (2020).
    Google Scholar 
    Luo, G., Lai, X., Jiang, H. & Zhang, K. Size variation of the end-Permian conodont Neogondolella at Meishan section, Changxing, Zhejiang and its significance. Sci. China Ser. D 49, 337–347 (2006).
    Google Scholar 
    Brayard, A. et al. Early Triassic Gulliver gastropods: spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth Sci. Rev. 146, 31–64 (2015).
    Google Scholar 
    Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and late Permian mass extinction. Science 273, 452–457 (1996).
    Google Scholar 
    Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).
    Google Scholar 
    Clapham, M. E. & Payne, J. L. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39, 1059–1062 (2011).
    Google Scholar 
    Vázquez, P. & Clapham, M. E. Extinction selectivity among marine fishes during multistressor global change in the end-Permian and end-Triassic crises. Geology 45, 395–398 (2017).
    Google Scholar 
    Payne, J. L. & Finnegan, S. The effect of geographic range on extinction risk during background and mass extinction. Proc. Natl Acad. Sci. USA 104, 10506–10511 (2007).
    Google Scholar 
    Dai, X. & Song, H. Toward an understanding of cosmopolitanism in deep time: a case study of ammonoids from the middle Permian to the Middle Triassic. Paleobiology 46, 533–549 (2020).
    Google Scholar 
    Kiessling, W. et al. Pre-mass extinction decline of latest Permian ammonoids. Geology 46, 283–286 (2018).
    Google Scholar 
    Rampino, M. R. & Adler, A. C. Evidence for abrupt latest Permian mass extinction of foraminifera: results of tests for the Signor–Lipps effect. Geology 26, 415–418 (1998).
    Google Scholar 
    Song, H., Tong, J., Chen, Z. Q., Yang, H. & Wang, Y. End-Permian mass extinction of foraminifers in the Nanpanjiang basin, south China. J. Paleontol. 83, 718–738 (2009).
    Google Scholar 
    Wignall, P. B. & Hallam, A. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 21–46 (1992).
    Google Scholar 
    Shen, S. Z. et al. A sudden end-Permian mass extinction in south China. Bull. Geol. Soc. Am. 131, 205–223 (2019).
    Google Scholar 
    Angiolini, L., Checconi, A., Gaetani, M. & Rettori, R. The latest Permian mass extinction in the Alborz Mountains (North Iran). Geol. J. 45, 216–229 (2010).
    Google Scholar 
    Yin, H., Feng, Q., Lai, X., Baud, A. & Tong, J. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Glob. Planet. Change 55, 1–20 (2007).
    Google Scholar 
    Wignall, P. B. & Newton, R. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction. Palaios 18, 153–167 (2003).
    Google Scholar 
    Wang, Y. et al. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40, 113–129 (2014).
    Google Scholar 
    Liu, X., Song, H., Bond, D. P. G., Tong, J. & Benton, M. J. Migration controls extinction and survival patterns of foraminifers during the Permian–Triassic crisis in south China. Earth Sci. Rev. 209, 103329 (2020).
    Google Scholar 
    Chen, Z. Q. et al. Environmental and biotic turnover across the Permian–Triassic boundary on a shallow carbonate platform in western Zhejiang, south China. Aust. J. Earth Sci. 56, 775–797 (2009).
    Google Scholar 
    He, W. H. et al. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology 13, 123–138 (2015).
    Google Scholar 
    Burgess, S. D., Bowring, S. & Shen, S. Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).
    Google Scholar 
    Yang, H. et al. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 111–128 (2011).
    Google Scholar 
    Tian, L. et al. Distribution and size variation of ooids in the aftermath of the Permian–Triassic mass extinction. Palaios 30, 714–727 (2015).
    Google Scholar 
    Retallack, G. J. Permian–Triassic life crisis on land. Science 267, 77–80 (1995).
    Google Scholar 
    Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proc. Natl Acad. Sci. USA 96, 13857–13862 (1999).
    Google Scholar 
    Hermann, E. et al. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Res. 20, 630–637 (2011).
    Google Scholar 
    Cascales-Miñana, B., Diez, J. B., Gerrienne, P. & Cleal, C. J. A palaeobotanical perspective on the great end-Permian biotic crisis. Hist. Biol. 28, 1066–1074 (2016).
    Google Scholar 
    Yu, J. et al. Vegetation changeover across the Permian–Triassic boundary in southwest China. Extinction, survival, recovery and palaeoclimate: a critical review. Earth Sci.Rev. 149, 203–224 (2015).
    Google Scholar 
    Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).
    Google Scholar 
    Schneebeli-Hermann, E., Hochuli, P. A. & Bucher, H. Palynofloral associations before and after the Permian–Triassic mass extinction, Kap Stosch, East Greenland. Glob. Planet. Change 155, 178–195 (2017).
    Google Scholar 
    Nowak, H., Schneebeli-Hermann, E. & Kustatscher, E. No mass extinction for land plants at the Permian–Triassic transition. Nat. Commun. 10, 384 (2019).
    Google Scholar 
    Chu, D. et al. Biostratigraphic correlation and mass extinction during the Permian–Triassic transition in terrestrial-marine siliciclastic settings of south China. Glob. Planet. Change 146, 67–88 (2016).
    Google Scholar 
    Zhang, H. et al. The terrestrial end-Permian mass extinction in south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 108–124 (2016).
    Google Scholar 
    Krassilov, V. & Karasev, E. Paleofloristic evidence of climate change near and beyond the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 326–336 (2009).
    Google Scholar 
    Mcloughlin, S., Lindström, S. & Drinnan, A. N. Gondwanan floristic and sedimentological trends during the Permian–Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, east Antarctica. Antarctic Sci. 9, 281–298 (1997).
    Google Scholar 
    Kerp, H., Hamad, A. A., Vörding, B. & Bandel, K. Typical Triassic Gondwanan floral elements in the Upper Permian of the paleotropics. Geology 34, 265–268 (2006).
    Google Scholar 
    Eshet, Y., Rampino, M. R. & Visscher, H. Fungal event and palynological record of ecological crisis and recovery across the Permian–Triassic boundary. Geology 23, 967–970 (1995).
    Google Scholar 
    Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. USA 101, 12952–12956 (2004).
    Google Scholar 
    Looy, C. V., Collinson, M. E., Van Konijnenburg-Van Cittert, J. H. A., Visscher, H. & Brain, A. P. R. The ultrastructure and botanical affinity of end-Permian spore tetrads. Int. J. Plant Sci. 166, 875–887 (2005).
    Google Scholar 
    Foster, C. B. & Afonin, S. A. Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian–Triassic boundary. J. Geol. Soc. 162, 653–659 (2005).
    Google Scholar 
    Hochuli, P. A., Schneebeli-Hermann, E., Mangerud, G. & Bucher, H. Evidence for atmospheric pollution across the Permian–Triassic transition. Geology 45, 1123–1126 (2017).
    Google Scholar 
    Rampino, M. R. & Eshet, Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: an update. Geosci. Front. 9, 147–154 (2018).
    Google Scholar 
    Benca, J. P., Duijnstee, I. A. P. & Looy, C. V. UV-B–induced forest sterility: implications of ozone shield failure in Earth’s largest extinction. Sci. Adv. 4, e1700618 (2018).
    Google Scholar 
    Chu, D. et al. Metal-induced stress in survivor plants following the end-Permian collapse of land ecosystems. Geology 49, 657–661 (2021).
    Google Scholar 
    Schneebeli-Hermann, E. et al. Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range). Gondwana Res. 27, 911–924 (2015).
    Google Scholar 
    Visscher, H. et al. The terminal paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc. Natl Acad. Sci. USA 93, 2155–2158 (1996).
    Google Scholar 
    Visscher, H., Sephton, M. A. & Looy, C. V. Fungal virulence at the time of the end-Permian biosphere crisis? Geology 39, 883–886 (2011).
    Google Scholar 
    Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. A. & Visscher, H. Life in the end-Permian dead zone. Proc. Natl Acad. Sci. USA 98, 7879–7883 (2001).
    Google Scholar 
    Bercovici, A. & Vajda, V. Terrestrial Permian–Triassic boundary sections in south China. Glob. Planet. Change 143, 31–33 (2016).
    Google Scholar 
    Hochuli, P. A. Interpretation of “fungal spikes” in Permian–Triassic boundary sections. Glob. Planet. Change 144, 48–50 (2016).
    Google Scholar 
    Angielczyk, K. D., Roopnarine, P. D. & Wang, S. C. Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo basin, South Africa. New Mex. Mus. Nat. Hist. Sci. Bull. 30, 16–23 (2005).
    Google Scholar 
    Labandeira, C. C. & Sepkoski, J. J. Insect diversity in the fossil record. Science 261, 310–315 (1993).
    Google Scholar 
    Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15–31 (2008).
    Google Scholar 
    Condamine, F. L., Clapham, M. E. & Kergoat, G. J. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci. Rep. 6, 19208 (2016).
    Google Scholar 
    Smith, R. M. H. & Ward, P. D. Pattern of vertebrate extinctions across an event bed at the Permian–Triassic boundary in the Karoo basin of South Africa. Geology 29, 1147 (2001).
    Google Scholar 
    Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature 432, 97–100 (2004).
    Google Scholar 
    Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).
    Google Scholar 
    Sennikov, A. G. & Golubev, V. K. Vyazniki biotic assemblage of the terminal Permian. Paleontol. J. 40, S475–S481 (2006).
    Google Scholar 
    Sennikov, A. G. & Golubev, V. K. On the faunal verification of the Permo–Triassic boundary in continental deposits of eastern Europe: 1. Gorokhovets–Zhukov ravine. Paleontol. J. 46, 313–323 (2012).
    Google Scholar 
    Zhu, Z. et al. Altered fluvial patterns in north China indicate rapid climate change linked to the Permian–Triassic mass extinction. Sci. Rep. 9, 16818 (2019).
    Google Scholar 
    Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011).
    Google Scholar 
    Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H. & Wignall, P. B. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29, 351–354 (2001).
    Google Scholar 
    Biswas, R. K., Kaiho, K., Saito, R., Tian, L. & Shi, Z. Terrestrial ecosystem collapse and soil erosion before the end-Permian marine extinction: organic geochemical evidence from marine and non-marine records. Glob. Planet. Change 195, 103327 (2020).
    Google Scholar 
    Aftabuzzaman, M. D. et al. End-Permian terrestrial disturbance followed by the complete plant devastation, and the vegetation proto-recovery in the earliest-Triassic recorded in coastal sea sediments. Glob. Planet. Change 205, 103621 (2021).
    Google Scholar 
    Gastaldo, R. A., Neveling, J., Geissman, J. W., Kamo, S. L. & Looy, C. V. A tale of two Tweefonteins: what physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bull. https://doi.org/10.1130/b35830.1 (2021).Yan, Z. et al. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the end-Permian mass extinction event. Int. J.Coal Geol. 207, 75–83 (2019).
    Google Scholar 
    DiMichele, W. A., Bashforth, A. R., Falcon-Lang, H. J. & Lucas, S. G. Uplands, lowlands, and climate: taphonomic megabiases and the apparent rise of a xeromorphic, drought-tolerant flora during the Pennsylvanian–Permian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109965 (2020).
    Google Scholar 
    Smith, R. M. H. & Botha-Brink, J. Anatomy of a mass extinction: sedimentological and taphonomic evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo basin, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 99–118 (2014).
    Google Scholar 
    Xiong, C. & Wang, Q. Permian–Triassic land-plant diversity in south China: was there a mass extinction at the Permian/Triassic boundary? Paleobiology 37, 157–167 (2011).
    Google Scholar 
    Yu, J. et al. Terrestrial events across the Permian–Triassic boundary along the Yunnan–Guizhou border, SW China. Glob. Planet. Change 55, 193–208 (2007).
    Google Scholar 
    Becker, L., Poreda, R. J., Hunt, A. G., Bunch, T. E. & Rampino, M. Impact event at the Permian–Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530–1533 (2001).
    Google Scholar 
    Basu, A. R., Petaev, M. I., Poreda, R. J., Jacobsen, S. B. & Becker, L. Chondritic meteorite fragments associated with the Permian–Triassic boundary in Antarctica. Science 302, 1388–1392 (2003).
    Google Scholar 
    Isozaki, Y. Permo–Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235–238 (1997).
    Google Scholar 
    French, B. M. & Koeberl, C. The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci. Rev. 98, 123–170 (2010).
    Google Scholar 
    Saunders, A. D., England, R. W., Reichow, M. K. & White, R. V. A mantle plume origin for the Siberian traps: uplift and extension in the west Siberian basin, Russia. Lithos 79, 407–424 (2005).
    Google Scholar 
    Reichow, M. K. et al. Petrogenesis and timing of mafic magmatism, south Taimyr, Arctic Siberia: a northerly continuation of the Siberian Traps? Lithos 248–251, 382–401 (2016).
    Google Scholar 
    Naldrett, A. J., Lightfoot, P. C., Fedorenko, V., Doherty, W. & Gorbachev, N. S. Geology and geochemistry of intrusions and flood basalts of the Noril’sk region, USSR, with implications for the origin of the Ni-Cu ores. Econ. Geol. 87, 975–1004 (1992).
    Google Scholar 
    Hawkesworth, C. J. et al. Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos 34, 61–88 (1995).
    Google Scholar 
    Fedorenko, V. A. et al. Petrogenesis of the flood-basalt sequence at Noril’sk, north central Siberia. Int. Geol. Rev. 38, 99–135 (1996).
    Google Scholar 
    Arndt, N., Chauvel, C., Czamanske, G. & Fedorenko, V. Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contribut. Mineral. Petrol. 133, 297–313 (1998).
    Google Scholar 
    Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).
    Google Scholar 
    Sobolev, A. V., Arndt, N. T., Krivolutskaya, N. A., Kuzmin, D. V. & Sobolev, S. V. in Volcanism and Global Environmental Change (eds Schmidt, A. Fristad, K. & Elkins-Tanton, L.) 147–163 (Cambridge Univ. Press, 2015).Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet. Sci. Lett. 317–318, 363–373 (2012).
    Google Scholar 
    Broadley, M. W., Barry, P. H., Ballentine, C. J., Taylor, L. A. & Burgess, R. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 11, 682–687 (2018).
    Google Scholar 
    Elkins-Tanton, L. T. et al. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology 48, 986–991 (2020).
    Google Scholar 
    Grasby, S. E. & Beauchamp, B. Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup basin, Arctic Canada. Chem. Geol. 264, 232–246 (2009).
    Google Scholar 
    Grasby, S. E., Sanei, H. & Beauchamp, B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci. 4, 104–107 (2011).
    Google Scholar 
    Sanei, H., Grasby, S. E. & Beauchamp, B. Latest Permian mercury anomalies. Geology 40, 63–66 (2012).
    Google Scholar 
    Reichow, M. K., Saunders, A. D., White, R. V., Al’Mukhamedov, A. I. & Medvedev, A. Y. Geochemistry and petrogenesis of basalts from the west Siberian basin: an extension of the Permo–Triassic Siberian Traps, Russia. Lithos 79, 425–452 (2005).
    Google Scholar 
    Jerram, D. A., Svensen, H. H., Planke, S., Polozov, A. G. & Torsvik, T. H. The onset of flood volcanism in the north-western part of the Siberian Traps: explosive volcanism versus effusive lava flows. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 38–50 (2016).
    Google Scholar 
    Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci.Lett. 277, 490–500 (2009).
    Google Scholar 
    Svensen, H. H. et al. Sills and gas generation in the Siberian Traps. Phil. Trans. R. Soc. A 376, 20170080 (2018).
    Google Scholar 
    Davydov, V. I. Tunguska сoals, Siberian sills and the Permian–Triassic extinction. Earth Sci. Rev. 212, 103438 (2021).
    Google Scholar 
    Callegaro, S. et al. Geochemistry of deep Tunguska basin sills, Siberian Traps: correlations and potential implications for the end-Permian environmental crisis. Contribut. Mineral. Petrol. 176, 49 (2021).
    Google Scholar 
    Wooden, J. L. et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta 57, 3677–3704 (1993).
    Google Scholar 
    Arndt, N. T., Czmanske, G. K., Walker, R. J., Chauvel, C. & Fedorenko, V. A. Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits. Eco. Geol. 98, 495–515 (2003).
    Google Scholar 
    Pang, K. N. et al. A petrologic, geochemical and Sr-Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia. Contrib. Mineral. Petrol. 165, 683–704 (2013).
    Google Scholar 
    Yao, Z. S. & Mungall, J. E. Linking the Siberian flood basalts and giant Ni-Cu-PGE sulfide deposits at Norilsk. J. Geophys. Res. Solid Earth 126, e2020JB020823 (2021).
    Google Scholar 
    Sibik, S., Edmonds, M., Maclennan, J. & Svensen, H. Magmas erupted during the main pulse of Siberian Traps volcanism were volatile-poor. J. Petrol. 56, 2089–2116 (2015).
    Google Scholar 
    Retallack, G. J. & Jahren, A. H. Methane release from igneous intrusion of coal during late Permian extinction events. J. Geol. 116, 1–20 (2008).
    Google Scholar 
    Iacono-Marziano, G. et al. Gas emissions due to magma-sediment interactions during flood magmatism at the Siberian Traps: gas dispersion and environmental consequences. Earth Planet. Sci. Lett. 357–358, 308–318 (2012).
    Google Scholar 
    Fristad, K. E., Svensen, H. H., Polozov, A. & Planke, S. Formation and evolution of the end-Permian Oktyabrsk volcanic crater in the Tunguska basin, eastern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 76–87 (2017).
    Google Scholar 
    Polozov, A. G. et al. The basalt pipes of the Tunguska basin (Siberia, Russia): high temperature processes and volatile degassing into the end-Permian atmosphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 51–64 (2016).
    Google Scholar 
    Elkins-Tanton, L. T. et al. The last lavas erupted during the main phase of the Siberian flood volcanic province: results from experimental petrology. Contribut. Mineral. Petrol. 153, 191–209 (2007).
    Google Scholar 
    Schmidt, A. et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9, 77–82 (2016).
    Google Scholar 
    Black, B. A. et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nat. Geosci. 11, 949–954 (2018).
    Google Scholar 
    Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675–683 (2014).
    Google Scholar 
    Chen, J. et al. Abrupt warming in the latest Permian detected using high-resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol. 560, 109973 (2020).
    Google Scholar 
    Joachimski, M. M., Alekseev, A. S., Grigoryan, A. & Gatovsky, Y. A. Siberian trap volcanism, global warming and the Permian–Triassic mass extinction: new insights from Armenian Permian–Triassic sections. Bull. Geol. Soc. Am. 132, 427–443 (2020).
    Google Scholar 
    Sun, Y. et al. Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366–370 (2012).
    Google Scholar 
    Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).
    Google Scholar 
    Jiang, H., Joachimski, M. M., Wignall, P. B., Zhang, M. & Lai, X. A delayed end-Permian extinction in deep-water locations and its relationship to temperature trends (Bianyang, Guizhou province, south China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 690–695 (2015).
    Google Scholar 
    Chen, J. et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from south China and implications for the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 26–38 (2016).
    Google Scholar 
    Shen, S. et al. Permian integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 154–188 (2019).
    Google Scholar 
    Pörtner, H. O. Oxygen- And capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).
    Google Scholar 
    Pörtner, H. O. Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Progr. Ser. 470, 273–290 (2012).
    Google Scholar 
    Bijma, J., Pörtner, H. O., Yesson, C. & Rogers, A. D. Climate change and the oceans — what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).
    Google Scholar 
    Song, H. et al. Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction. Proc. Natl Acad. Sci. USA 117, 17578–17583 (2020).
    Google Scholar 
    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).
    Google Scholar 
    Benton, M. J. Hyperthermal-driven mass extinctions: killing models during the Permian–Triassic mass extinction. Phil. Trans. R. Soc. A 376, 20170076 (2018).
    Google Scholar 
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Envir. 38, 1699–1712 (2015).
    Google Scholar 
    Cai, Y. F., Zhang, H., Feng, Z. & Shen, S. Z. Intensive wildfire associated with volcanism promoted the vegetation changeover in southwest china during the Permian−Triassic transition. Front. Earth Sci. 9, 615841 (2021).
    Google Scholar 
    Grasby, S. E. et al. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Bull. Geol. Soc. Am. 127, 1331–1347 (2015).
    Google Scholar 
    Beauchamp, B. & Grasby, S. E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350–352, 73–90 (2012).
    Google Scholar 
    Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).
    Google Scholar 
    Wignall, P. B. et al. Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation. Geol. Mag. 153, 316–331 (2016).
    Google Scholar 
    Proemse, B. C., Grasby, S. E., Wieser, M. E., Mayer, B. & Beauchamp, B. Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology 41, 967–970 (2013).
    Google Scholar 
    Grasby, S. E. et al. Transient Permian–Triassic euxinia in the southern Panthalassa deep ocean. Geology 49, 889–893 (2021).
    Google Scholar 
    Wignall, P. B. et al. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Glob. Planet. Change 71, 109–123 (2010).
    Google Scholar 
    Song, H. et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth Planet. Sci. Lett. 353–354, 12–21 (2012).
    Google Scholar 
    Grasby, S. E., Beauchamp, B., Embry, A. & Sanei, H. Recurrent Early Triassic ocean anoxia. Geology 41, 175–178 (2013).
    Google Scholar 
    Takahashi, S., Yamasaki, S. I., Ogawa, K., Kaiho, K. & Tsuchiya, N. Redox conditions in the end-Early Triassic Panthalassa. Palaeogeogr. Palaeoclimato. Palaeoecol. 432, 15–28 (2015).
    Google Scholar 
    Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631–17634 (2011).
    Google Scholar 
    Takahashi, S. et al. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planet. Sci. Lett 393, 94–104 (2014).
    Google Scholar 
    Newton, R. J., Pevitt, E. L., Wignall, P. B. & Bottrell, S. H. Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth Planet. Sci. Lett. 218, 331–345 (2004).
    Google Scholar 
    Grice, K. et al. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307, 706–709 (2005).
    Google Scholar 
    Ingall, E. & Jahnke, R. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta 58, 2571–2575 (1994).
    Google Scholar 
    Sun, Y. D. et al. Ammonium ocean following the end-Permian mass extinction. Earth Planet. Sci. Lett. 518, 211–222 (2019).
    Google Scholar 
    Grasby, S. E., Beauchamp, B. & Knies, J. Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology 44, 779–782 (2016).
    Google Scholar 
    Schoepfer, S. D., Henderson, C. M., Garrison, G. H. & Ward, P. D. Cessation of a productive coastal upwelling system in the Panthalassic Ocean at the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313–314, 181–188 (2012).
    Google Scholar 
    Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298–10303 (2015).
    Google Scholar 
    Grasby, S. E. et al. Global warming leads to Early Triassic nutrient stress across northern Pangea. Bull. Geol. Soc. Am. 132, 943–954 (2020).
    Google Scholar 
    Song, H. et al. Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic. Chem. Geol. 562, 120038 (2021).
    Google Scholar 
    Jurikova, H. et al. Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations. Nat. Geosci. 13, 745–750 (2020).
    Google Scholar 
    Garbelli, C., Angiolini, L. & Shen, S. Z. Biomineralization and global change: a new perspective for understanding the end-Permian extinction. Geology 45, 19–22 (2017).
    Google Scholar 
    Clarkson, M. O. et al. Ocean acidification and the Permo–Triassic mass extinction. Science 348, 229–232 (2015).
    Google Scholar 
    Zhang, S. et al. Investigating controls on boron isotope ratios in shallow marine carbonates. Earth Planet. Sci. Lett. 458, 380–393 (2017).
    Google Scholar 
    Hinojosa, J. L. et al. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology 40, 743–746 (2012).
    Google Scholar 
    Komar, N. & Zeebe, R. E. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. Paleoceanography 31, 115–130 (2016).
    Google Scholar 
    Silva-Tamayo, J. C. et al. Global perturbation of the marine calcium cycle during the Permian–Triassic transition. Bull. Geol. Soc. Am. 130, 1323–1338 (2018).
    Google Scholar 
    Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543–8548 (2010).
    Google Scholar 
    Lau, K. V. et al. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower–Middle Triassic carbonate rocks. Chem. Geol. 471, 13–37 (2017).
    Google Scholar 
    Wang, J. et al. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr geochemistry across the end-Permian mass extinction event. Geochim. Cosmochim. Acta 262, 143–165 (2019).
    Google Scholar 
    Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011).
    Google Scholar 
    Chen, Z. Q., Kaiho, K. & George, A. D. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 270–290 (2005).
    Google Scholar 
    Dai, X., Korn, D. & Song, H. Morphological selectivity of the Permian–Triassic ammonoid mass extinction. Geology 49, 1112–1116 (2021).
    Google Scholar 
    Fijałkowska-Mader, A. in Morphogenesis, Environmental Stress and Reverse Evolution (eds Guex, J., Torday, J. S. & Miller, W. B. Jr) 23–35 (Springer, 2020).Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil. Trans. R. Soc. A 365, 1843–1866 (2007).
    Google Scholar 
    Svensen, H., Schmidbauer, N., Roscher, M., Stordal, F. & Planke, S. Contact metamorphism, halocarbons, and environmental crises of the past. Environ. Chem. 6, 466–471 (2009).
    Google Scholar 
    Black, B. A., Lamarque, J. F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed siberian traps magmatism. Geology 42, 67–70 (2014).
    Google Scholar 
    Likens, G. E. & Butler, T. J. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 23–31 (Elsevier, 2018).Sephton, M. A., Jiao, D., Engel, M. H., Looy, C. V. & Visscher, H. Terrestrial acidification during the end-Permian biosphere crisis? Geology 43, 159–162 (2015).
    Google Scholar 
    Sheldon, N. D. Abrupt chemical weathering increase across the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 315–321 (2006).
    Google Scholar 
    Maruoka, T., Koeberl, C., Hancox, P. J. & Reimold, W. U. Sulfur geochemistry across a terrestrial Permian–Triassic boundary section in the Karoo basin, South Africa. Earth Planet. Sci. Lett. 206, 101–117 (2003).
    Google Scholar 
    Grasby, S. E., Them, T. R., Chen, Z., Yin, R. & Ardakani, O. H. Mercury as a proxy for volcanic emissions in the geologic record. Earth Sci. Rev. 196, 102880 (2019).
    Google Scholar 
    Dal Corso, J. et al. Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nat. Commun. 11, 2962 (2020).
    Google Scholar 
    Rugenstein, M. A. A., Sedláček, J. & Knutti, R. Nonlinearities in patterns of long-term ocean warming. Geophys. Res. Lett. 43, 3380–3388 (2016).
    Google Scholar 
    Yang, H. & Zhu, J. Equilibrium thermal response timescale of global oceans. Geophys. Res. Lett. 38, L14711 (2011).
    Google Scholar 
    Song, H. et al. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Sci. Rep. 4, 4132 (2014).
    Google Scholar 
    Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374–397 (2014).
    Google Scholar 
    Scotese, C. R. Atlas of Permo-Triassic paleogeographic maps (Mollweide projection), maps 43–52, vol. 3/4 of the PALEOMAP Atlas. ResearchGate https://doi.org/10.13140/2.1.2609.9209 (2014).Zhang, F. et al. Two distinct episodes of marine anoxia during the Permian–Triassic crisis evidenced by uranium isotopes in marine dolostones. Geochim. Cosmochim. Acta 287, 165–179 (2020).
    Google Scholar 
    Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nat. Commun. 12, 2137 (2021).
    Google Scholar 
    Grossman, E. L. & Joachimski, M. M. Oxygen isotope stratigraphy. Geol. Time Scale 1, 279–307 (2020).
    Google Scholar 
    Trotter, J. A., Williams, I. S., Barnes, C. R., Männik, P. & Simpson, A. New conodont δ18O records of Silurian climate change: implications for environmental and biological events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 34–48 (2016).
    Google Scholar 
    Kaiho, K. et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29, 815–818 (2001).
    Google Scholar 
    Chu, D. et al. Lilliput effect in freshwater ostracods during the Permian–Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 38–52 (2015).
    Google Scholar 
    Shen, J. et al. Mercury evidence of intense volcanic effects on land during the Permian–Triassic transition. Geology 47, 1117–1121 (2019).
    Google Scholar 
    Cao, C., Wang, W., Liu, L., Shen, S. & Summons, R. E. Two episodes of 13C-depletion in organic carbon in the latest Permian: evidence from the terrestrial sequences in northern Xinjiang, China. Earth Planet. Sci. Lett. 270, 251–257 (2008).
    Google Scholar 
    Shen, J. et al. Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records. Nat. Commun. 10, 1563 (2019).
    Google Scholar 
    Wang, X. et al. Mercury anomalies across the end Permian mass extinction in south China from shallow and deep water depositional environments. Earth Planet Sci.Lett. 496, 159–167 (2018).
    Google Scholar 
    Holser, W. T. et al. A unique geochemical record at the Permian/Triassic boundary. Nature 337, 39–44 (1989).
    Google Scholar 
    Korte, C. & Kozur, H. W. Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J. Asian Earth Sci. 39, 215–235 (2010).
    Google Scholar 
    Luo, G. et al. Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian–Triassic crisis interval. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 70–82 (2011).
    Google Scholar 
    Shen, S. Z. et al. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in south China and Iran. Earth Planet. Sci. Lett. 375, 156–165 (2013).
    Google Scholar 
    Hermann, E. et al. A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark platform). Glob. Planet. Change 74, 156–167 (2010).
    Google Scholar 
    Luo, G. et al. Vertical δ13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 119–131 (2014).
    Google Scholar 
    Schneebeli-Hermann, E. et al. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology 41, 579–582 (2013).
    Google Scholar 
    Williams, M. L., Jones, B. G. & Carr, P. F. The interplay between massive volcanism and the local environment: geochemistry of the Late Permian mass extinction across the Sydney basin, Australia. Gondwana Res. 51, 149–169 (2017).
    Google Scholar 
    Wu, Y. et al. Organic carbon isotopes in terrestrial Permian–Triassic boundary sections of North China: implications for global carbon cycle perturbations. Bull. Geol. Soc. Am. 132, 1106–1118 (2020).
    Google Scholar 
    Grasby, S. E., Liu, X., Yin, R., Ernst, R. E. & Chen, Z. Toxic mercury pulses into late Permian terrestrial and marine environments. Geology 48, 830–833 (2020).
    Google Scholar  More

  • in

    Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia

    Arora, P. K. & Bae, H. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Fact. 13, 31–36 (2014).Article 

    Google Scholar 
    Solyanikova, I. P. & Golovleva, L. A. Bacterial degradation of chlorophenols: Pathways, biochemica, and genetic aspects. J. Environ. Sci. Health B 39, 333–351 (2004).Article 

    Google Scholar 
    Olaniran, A. O. & Igbinosa, E. O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83, 1297–1306 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Kusmierek, K. The removal of chlorophenols from aqueous solutions using activated carbon adsorption integrated with H2O2 oxidation. Reac. Kinet. Mech. Cat. 119, 19–34 (2016).CAS 
    Article 

    Google Scholar 
    Igbinosa, E., Odjadjare, E., Vicent, N. & Ideemndia, O. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 11 (2013).
    Google Scholar 
    Hossain, G. & McLaughlan, R. Kinetic investigations of oxidation of chlorophenols by permanganate. J. Environ. Chem. Ecotoxicol 5, 81–89 (2013).
    Google Scholar 
    Ryan, D., Leukes, W. & Burton, S. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresour. Technol 98, 579–587 (2016).Article 

    Google Scholar 
    Zhao, L., Wu, Q. & Ma, A. Biodegradation of phenolic contaminants: Current status and perspectives. In International Conference on Advanced Environmental Engineering IOP Publishing. Series: Earth and Environmental Science. Vol 111, 012024 (2018).Walter, M., Boul, L., Chong, R. & Ford, C. Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J. Environ. Qual. 24(36), 1749–1759 (2004).
    Google Scholar 
    Cameron, M. D., Timofeevski, S. & Aust, S. D. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl. Microbiol. Biotechnol. 54, 751–758 (2000).CAS 
    Article 

    Google Scholar 
    Tuomela, M., Lyytikainen, M., Oivanena, P. & Hatakka, A. Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol. Biochem. 31, 65–74 (1999).CAS 
    Article 

    Google Scholar 
    Field, J. & Sierra-Alvarez, R. Microbial degradation of chlorinated phenols. Rev. Environ. Sci. Biotechnol 7, 211–241 (2008).CAS 
    Article 

    Google Scholar 
    Bosso, L. & Cristinzio, G. A. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev. Environ. Sci. Biotechnol 13, 387–427 (2014).CAS 
    Article 

    Google Scholar 
    Field, J. A. & Sierra-Alvarez, R. Microbial transformation and degradation of polychlorinated biphenyls. Environ. Pollut 155, 1–12 (2008).CAS 
    Article 

    Google Scholar 
    Nikolaivits, E. et al. Degradation mechanism of 2,4-dichlorophenol by fungi isolated from marine invertebrates. Int. J. Mol. Sci 21, 3317. https://doi.org/10.3390/ijms21093317 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Cser-jesi, A. J. & Johnson, E. Methylation of entachlorophenol by Trichoderma virgatum. Can. J. Microbiol. 18, 45–49 (1972).CAS 
    Article 

    Google Scholar 
    van Leeuwen, J., Nicholson, B., Hayes, K. & Mulcahy, D. Degradation of chlorophenolic compounds by Trichoderma harzianum isolated from Lake Bonney, South-Eastern South Australia. Environ Toxicol. Water Qual. 12, 335–342 (1997).ADS 
    Article 

    Google Scholar 
    Carvalho, M. B. et al. Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J. Ind. Microbiol. Biotechnol. 36, 1249–1256 (2009).CAS 
    Article 

    Google Scholar 
    Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A. & Sayadi, S. Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds ‬. Process Biochem. 45, 507–513 (2010).CAS 
    Article 

    Google Scholar 
    Abdel-Fatah, O. M. et al. Physiological studies on carboxymethyl cellulase formation by Aspergillus terreus DSM 826. Braz. J. Microbiol. 43(1), 01–11 (2012).CAS 
    Article 

    Google Scholar 
    Sonika, P. et al. Trichoderma species cellulases produced by solid state fermentation. J. Data Min. Genom. Proteom. 6, 2 (2015).
    Google Scholar 
    Al-Hawash, B. A. et al. Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field. Iraq. Biotechnol. Rep 17, 104–109. https://doi.org/10.1016/j.btre.2017.12.006 (2018).Article 

    Google Scholar 
    Zafra, G., Absalón, A. E. & Cortes-Espinosa, D. V. Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Braz. J. Microbiol 46, 937–941. https://doi.org/10.1590/S1517-838246320140575 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smit, E., Leeflang, P., Glandorf, B., van Elsas, J. D. & Wernars, K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 65(6), 2614–2621 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    White, T. J. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal genes. In PCR Protocols: A Guide to Methods and Applications 315–22 (1990).Ryu, W. R. et al. Biodegradation of white rot fungi under ligninolytic and nonligninolytic conditions. Biotechnol Bioproc. E 5, 211–214 (2000).CAS 
    Article 

    Google Scholar 
    Dubois, K., Gilles, J., Hamilton, P., Rebers, A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).CAS 
    Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).CAS 
    Article 

    Google Scholar 
    Statistical Packages for Software Sciences. Version 21.0 Armonk (New York: IBM Corporation, 2013).Lin, S.-H. & Juang, R.-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manage 90, 1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kumar, S. N., Subbaiah, V. M., Reddy, S. A. & Krishnaiah, A. Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J. Chem. Technol. Biotechnol 84, 972–981. https://doi.org/10.1002/jctb.2120 (2009).CAS 
    Article 

    Google Scholar 
    Wang, C. C., Lee, C. M., Lu, C. J., Chuang, M. S. & Huang, C. Z. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41, 1873–1879. https://doi.org/10.1016/S00456535(00)00090-4 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kavamura, V. N. & Esposito, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv 28, 61–69 (2010).CAS 
    Article 

    Google Scholar 
    Mohsenzade, F., Chehregani, A. & Akbari, M. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran J. Environ. Health. Eng 9, 26–34 (2012).Article 

    Google Scholar 
    Nikolaivits, E. et al. Unraveling the detoxification mechanism of 2,4-dichlorophenol by marine-derived mesophotic symbiotic fungi isolated from marine invertebrates. Mar. Drugs. 17, 564. https://doi.org/10.3390/md17100564 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Scientific opinion on risk assessment for a selected group of pesticides from the triazole group to test possible methodologies to assess cumulative effects from exposure through food from these pesticides on human health. EFSA J. 7, 1167. https://www.efsa.europa.eu/en/efsajournal/pub/1167 (2009).Brotman, Y., Kapuganti, J. G. & Viterbo, A. Trichoderma. Curr. Biol. 20, R390–R439 (2010).CAS 
    Article 

    Google Scholar 
    Boroujeni, N. A., Hassanshahian, M., Mohammad, S. & Khoshrou, R. Isolation and characterization of phenol degrading bacteria from Persian Gulf. IJABBR 2, 408–416 (2014).CAS 

    Google Scholar 
    Roostaei, N. & Tezel, F. H. Removal of phenol from aqueous solutions by adsorption. J. Environ. Manage 70, 157–164. https://doi.org/10.1016/j.jenvman.2003.11.004 (2004).Article 
    PubMed 

    Google Scholar 
    Demnerova, K. et al. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations. Int. Microbiol 8, 205–211 (2005).CAS 
    PubMed 

    Google Scholar 
    Reddy, G. V. B. & Gold, M. H. Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology 146, 405–413 (2000).CAS 
    Article 

    Google Scholar 
    Cortés, D. V., Bernal, R. & Tomasini, A. Efecto de las condiciones de cultivo sumergido en la degradación de pentaclorofenol. Información Tecnológica 12, 75–80 (2001).
    Google Scholar 
    Crawford, R. L., Jung, C. M. & Strap, J. L. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 18, 525–539 (2007).CAS 
    Article 

    Google Scholar 
    Bergauer, P., Fonteyne, P. A., Nolard, N., Schinner, F. & Margesin, R. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Hemosphere 59, 909–918 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Bovio, E. et al. The culturable mycobiota of a Mediterranean marine site after an oil spill: Isolation, identification and potential application in bioremediation. Sci. Total Environ. 576, 310–318 (2017).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Aversive view memories and risk perception in navigating ants

    Wehner, R., Michel, B. & Antonsen, P. Visual navigation in insects: Coupling of egocentric and geocentric information. J. Exp. Biol. 199(1), 129–140 (1996).CAS 
    PubMed 

    Google Scholar 
    Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).CAS 
    PubMed 

    Google Scholar 
    Cheng, K., Schultheiss, P., Schwarz, S., Wystrach, A. & Wehner, R. Beginnings of a synthetic approach to desert ant navigation. Behav. Proc. 102, 51–61 (2014).
    Google Scholar 
    Freas, C. A. & Schultheiss, P. How to navigate in different environments and situations: Lessons from ants. Front. Psych. 9, 841 (2018).
    Google Scholar 
    Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189(8), 579–588 (2003).ADS 
    CAS 

    Google Scholar 
    Wehner, R. The desert ant’s navigational toolkit: Procedural rather than positional knowledge. Navigation 55(2), 101–114 (2008).
    Google Scholar 
    Wehner, R. Desert Navigator (The Belknap Press of Harvard University Press, 2020).
    Google Scholar 
    Kohler, M. & Wehner, R. Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors?. Neurobiol. Learn. Mem. 83(1), 1–12 (2005).PubMed 

    Google Scholar 
    Müller, M. & Wehner, R. Path integration provides a scaffold for landmark learning in desert ants. Curr. Biol. 20(15), 1368–1371 (2010).PubMed 

    Google Scholar 
    Mangan, M. & Webb, B. Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav. Ecol. 23(5), 944–954 (2012).
    Google Scholar 
    Schwarz, S., Wystrach, A. & Cheng, K. Ants’ navigation in an unfamiliar environment is influenced by their experience of a familiar route. Sci. Rep. 7(1), 1–10 (2017).
    Google Scholar 
    Graham, P. & Cheng, K. Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol. 19, R935–R937 (2009).CAS 
    PubMed 

    Google Scholar 
    Wystrach, A., Beugnon, G. & Cheng, K. Landmarks or panoramas: What do navigating ants attend to for guidance?. Front. Zool. 8(1), 21 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Wehner, R., Meier, C. & Zollikofer, C. The ontogeny of foraging behaviour in desertants, Cataglyphis bicolor. Ecol. Entom. 29, 240–250 (2004).
    Google Scholar 
    Zeil, J. & Fleischmann, P. N. The learning walks of ants (Hymenoptera: Formicidae). Myrmecol. News. 29, 93–110 (2019).
    Google Scholar 
    Schultheiss, P. et al. Crucial role of ultraviolet light for desert ants in determining direction from the terrestrial panorama. Anim. Behav. 115, 19–28 (2016).
    Google Scholar 
    Freas, C. A., Wystrach, A., Narendra, A. & Cheng, K. The view from the trees: Nocturnal bull ants, Myrmecia midas, use the surrounding panorama while descending from trees. Front. Psych. 9, 1–10 (2018).
    Google Scholar 
    Freas, C. A. & Cheng, K. Landmark learning, cue conflict, and outbound view sequence in navigating desert ants. J. Exp. Psych. Anim. Learn. Cogn. 44(4), 409–421 (2018).
    Google Scholar 
    Freas, C. A. & Spetch, M. L. Terrestrial cue learning and retention during the outbound and inbound foraging trip in the desert ant, Cataglyphis bicolor. J. Comp. Physiol. A. 205(2), 177–189 (2019).
    Google Scholar 
    Narendra, A., Si, A., Sulikowski, D. & Cheng, K. Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Myrmecia midas. Behav. Ecol. Sociobiol. 61(10), 1543–1553 (2007).
    Google Scholar 
    Zeil, J. Visual homing: an insect perspective. Curr. Opin. Neurobiol. 22(2), 285–293 (2012).CAS 
    PubMed 

    Google Scholar 
    Zeil, J., Hofmann, M. I. & Chahl, J. S. Catchment areas of panoramic snapshots in outdoor scenes. J. Optic. Soc. Am. A. 20(3), 450 (2003).ADS 

    Google Scholar 
    Wystrach, A., Cheng, K., Sosa, S. & Beugnon, G. Geometry, features, and panoramic views: Ants in rectangular arenas. J. Exp. Psychol. 37(4), 420–435 (2011).
    Google Scholar 
    Baddeley, B., Graham, P., Husbands, P. & Philippides, A. A model of ant route navigation driven by scene familiarity. PLoS Comp. Biol. 8(1), e1002336 (2012).ADS 
    CAS 

    Google Scholar 
    Kodzhabashev, A. & Mangan, M. Route Following Without Scanning In Biomimetic and Biohybrid Systems 199–210 (Springer, 2015).
    Google Scholar 
    Möller, R. A model of ant navigation based on visual prediction. J. Theo. Biol. 305, 118–130 (2012).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Le Möel, F. & Wystrach, A. Opponent processes in visual memories: A model of attraction and repulsion in navigating insects’ mushroom bodies. PLoS Comp. Biol. 16, e1007631 (2020).
    Google Scholar 
    Murray, T. et al. The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). J. Exp. Biol. 223, 21002 (2020).
    Google Scholar 
    Jayatilaka, P., Murray, T., Narendra, A. & Zeil, J. The choreography of learning walks in the Australian jack jumper ant Myrmecia croslandi. J. Exp. Biol. 221(20), 185306 (2018).
    Google Scholar 
    Schwarz, S., Mangan, M., Webb, B. & Wystrach, A. Route-following ants respond to alterations of the view sequence. J. Exp. Biol. 223, 218701 (2020).
    Google Scholar 
    Wystrach, A., Buehlmann, C., Schwarz, S., Cheng, K. & Graham, P. Rapid aversive and memory trace learning during route navigation in desert ants. Curr. Biol. 30(100), 1927–1933 (2020).CAS 
    PubMed 

    Google Scholar 
    Wystrach, A., Philippides, A., Aurejac, A., Cheng, K. & Graham, P. Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J. Comp. Physiol. A 200(7), 615–626 (2014).
    Google Scholar 
    Wystrach, A., Schwarz, S., Graham, P. & Cheng, K. Running paths to nowhere: Repetition of routes shows how navigating ants modulate online the weights accorded to cues. Anim. Cogn. 2, 213–222 (2019).
    Google Scholar 
    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100(916), 603–609 (1966).
    Google Scholar 
    Krebs, J. R. Foraging Theory (Princeton University Press, 1986).
    Google Scholar 
    Kacelnik, A. & Bateson, M. Risky theories: The effects of variance on foraging decisions. Am. Zool. 36(4), 402–434 (1996).
    Google Scholar 
    Kacelnik, A. & Abreu, F. B. Risky choice and Weber’s law. J. Theor. Biol. 194(2), 289–298 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fechner, G. T. Elemente der Psychophysik Vol. 2 (Breitkopf u Härtel, 1860).
    Google Scholar 
    Bruce, A. C. & Johnson, J. E. V. Decision-making under risk: Effect of complexity on performance. Psychol. Rep. 79(1), 67–76 (1996).
    Google Scholar 
    Stevens, S. S. & Marks, L. E. Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects (Routledge, 2017).
    Google Scholar 
    Kacelnik, A. & El Mouden, C. Triumphs and trials of the risk paradigm. Anim. Behav. 86(6), 1117–1129 (2013).
    Google Scholar 
    Hübner, C. & Czaczkes, T. J. Risk preference during collective decision making: Ant colonies make risk-indifferent collective choices. Anim. Behav. 132, 21–28 (2017).
    Google Scholar 
    De Agrò, M., Grimwade, D., Bach, R. & Czaczkes, T. J. Irrational risk aversion in an ant. Anim. Cogn. 1, 1–9 (2021).
    Google Scholar 
    Waddington, K. D., Allen, T. & Heinrich, B. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim. Behav. 29(3), 779–784 (1981).
    Google Scholar 
    Cartar, R. V. A test of risk-sensitive foraging in wild bumble bees. Ecology 72(3), 888–895 (1991).
    Google Scholar 
    Perez, S. M. & Waddington, K. D. Carpenter bee (Xylocopa micans) risk indifference and a review of nectarivore risk-sensitivity studies. Am. Zool. 36(4), 435–446 (1996).
    Google Scholar 
    Fülöp, A. & Menzel, R. Risk-indifferent foraging behaviour in honeybees. Anim. Behav. 60(5), 657–666 (2000).PubMed 

    Google Scholar 
    Burns, D. D., Sendova-Franks, A. B. & Franks, N. R. The effect of social information on the collective choices of ant colonies. Behav. Ecol. 27(4), 1033–1040 (2016).
    Google Scholar 
    Sasaki, T., Pratt, S. C. & Kacelnik, A. Parallel vs. comparative evaluation of alternative options by colonies and individuals of the ant Temnothorax rugatulus. Sci. Rep. 8(1), 1–8 (2018).
    Google Scholar 
    Sasaki, T., Stott, B. & Pratt, S. C. Rational time investment during collective decision making in Temnothorax ants. Biol. Lett. 15(10), 20190542 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Freas, C. A., Fleischmann, P. N. & Cheng, K. Experimental ethology of learning in desert ants: Becoming expert navigators. Behav. Proc. 158, 181–191 (2019).
    Google Scholar 
    Le Moël, F. & Wystrach, A. Towards a multi-level understanding in insect navigation. Curr. Opin. Inst. Sci. 42, 110–117 (2020).
    Google Scholar 
    Heinze, S. Visual navigation: Ants lose track without mushroom bodies. Curr. Biol. 30(17), R984–R986 (2020).CAS 
    PubMed 

    Google Scholar 
    Ardin, P., Peng, F., Mangan, M., Lagogiannis, K. & Webb, B. Using an insect mushroom body circuit to encode route memory in complex natural environments. PLOS Comp. Biol. 12(2), e1004683 (2016).ADS 

    Google Scholar 
    Buehlmann, C. et al. Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr. Biol. 30(17), 3438–3443 (2020).CAS 
    PubMed 

    Google Scholar 
    Kamhi, J. F., Barron, A. B. & Narendra, A. Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian Myrmecia ants. Curr. Biol. 30(17), 3432–3437 (2020).CAS 
    PubMed 

    Google Scholar 
    Heisenberg, M. Mushroom body memoir: From maps to models. Nat. Rev. Neurosci. 4(4), 266–275 (2003).CAS 
    PubMed 

    Google Scholar 
    Webb, B. & Wystrach, A. Neural mechanisms of insect navigation. Curr. Opin. Inst. Sci. 15, 27–39 (2016).
    Google Scholar 
    Habenstein, J., Amini, E., Grübel, K., El Jundi, B. & Rössler, W. The brain of Cataglyphis ants: Neuronal organization and visual projections. J. Comp. Neurol. 528(18), 3479–3506 (2020).PubMed 

    Google Scholar 
    Cohn, R., Morantte, I. & Ruta, V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163(7), 1742–1755 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aso, Y. & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5, e16135 (2015).
    Google Scholar 
    Beck, C. D. O., Schroeder, B. & Davis, R. L. Learning performance of normal and mutant Drosophila after repeated conditioning trials with discrete stimuli. J. Neurosci. 20(8), 2944–2953 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boto, T. & Ramaswami, M. Learning and memory: Clashing engrams in the fly brain. Curr. Biol. 31(16), R1009–R1011 (2021).CAS 
    PubMed 

    Google Scholar 
    Bennett, J. E. M., Philippides, A. & Nowotny, T. Learning with reinforcement prediction errors in a model of the Drosophila mushroom body. Nat. Commun. 12, 22595 (2021).
    Google Scholar 
    Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning Ii: Current Theory and Research (eds Black, A. & Prokasy, W.) (Appleton-Century-Crofts, 1972).
    Google Scholar  More

  • in

    Drivers of migrant passerine composition at stopover islands in the western Mediterranean

    Study islands and bird dataSystematic ringing in spring on Mediterranean islands has been promoted by the Piccole Isole project since 198826. Standard methods of the project involve ringing between 16th April and 15th May attempting to include the peak of the spring passage of long-distance migrants. Ringing is performed from dawn to nightfall using a constant number of nets within ringing stations placed at stable sites located at representative habitats in each island (Supplementary Table S1). The use of tape-lures is not allowed. We have compiled ringing data for all the Spanish Mediterranean islands that have been applying this methodology, with the exception of Mallorca and Menorca where the ringing stations were located in wetlands and captured a large percentage of local birds (Fig. 2, Table 1). The nine study islands are spread along a south-west to north-east gradient and, with the exception of Columbrets, they are distributed in pairs of similar longitude but different latitudes (Fig. 2). Ringing stations have been operating over a variable number of years (5–27 years), with the maximum number of ringing stations operating at the same time occurring between 2003 and 2010. To include between-year variation on islands that started ringing campaigns more recently we used data from the years 2003–2018.Figure 2Image source: Google Earth. Data SIO, NOAA, US Navy, NGA, GEBCO. Image Landsat/Copernicus.Geographical location of studied islands in the western Mediterranean.Full size imageTable 1 Period of activity of the ringing stations located on each island between the years 1992 and 2018.Full size tableThe ringing period within each spring also varied in most islands, owing to funding or logistic limitations; thus, to reduce the possible effects on migrant composition we only used data from the standard period of the Piccole Isole project and from years that included at least one week of ringing in the fortnight of each month within this interval. This procedure excluded the use of some years for several islands, and the final number of data years for islands ranged between 5 and 16 (Table 1).We used only data for trans-Saharan nocturnal migrant passerines, which form the bulk of species ringed on Mediterranean islands during the standard period. The standard ringing period only covers the tail end of the short-distance migrants’ passage; thus, these species were excluded as their contribution to composition of migrants could vary mainly due to between-year variation in migration phenology. Diurnal migrants, like hirundinids and fringillids, also represent a small fraction of birds ringed and may use different cues to select stopover islands. In addition, some of these species nest in some of the islands studied and birds ringed could include breeding birds. To avoid the distorting effect of species that are captured accidentally in very small numbers, we considered only the species that were ringed in at least five separate years, or on five different islands, which limited the species considered to 35 (Supplementary Table S2). This led to the exclusion of just two species (Ficedula semitorquata with three individuals ringed in two islands and Locustella luscinioides with one individual ringed in Aire island). In addition, we only considered the number of ringed birds, since the proportion of recaptures varies among islands, likely reflecting variation in the duration of stopovers21, which could bias the comparison of the patterns of migrant species composition.Island descriptorsWe obtained two groups of variables describing the characteristics of the study islands (Tables 2, 3): (1) Variables related to geographical location: latitude, longitude, straight distance and minimum distance to the North African coast, minimum distance to the closest large body of land (continent or large island) in any direction and to the closest large body of land situated in a southerly angle between SW and SE. (2) Variables related to the habitat characteristics of the islands: area, maximum altitude and Normalized Difference Vegetation Index (NDVI). We estimated NDVI from Landsat 8 Images taken during the standard ringing period in the years 2015 and 2016. Pixels containing shoreline were excluded and the average NDVI was calculated for the rest of the pixels.Table 2 Variables describing the characteristics of the islands that included the ringing stations studied.Full size tableTable 3 Values of the island descriptors (see Table 2) and two measures of temporal variability of migrant composition in each island: average local contribution of each island to beta diversity (LCBD) and beta diversity for each island (BDTi).Full size tableContinental abundance dataAbundance estimates for western Europe were obtained from the European Red List of Birds27. We used the mean of the minimum and maximum number of pairs estimated for the 27 EU Member States as a measure of continental abundance (Supplementary Table S2).Data analysisAll analyses were done using R 3.6.128. We built a matrix of island-year x species containing the number of individuals of each selected species ringed in the study period in each island and year. Average number of individuals of each species ringed at each island was calculated and was used (log-transformed) as a dependent variable in a linear model with continental abundance (log-transformed), island and their interaction as predictors. This model was simplified using AICc as criteria to identify the best model.To analyze variation of species composition, the matrix of island-year x species was transformed using the chord transformation29 with the function decostand in the vegan package30.Using the function beta.div of the adespatial package31 we calculated beta diversity, including temporal and between-island variability (BDI,T), as the total variance of the aforementioned transformed matrix (BDTotal in29), which varies between 0 and 1 when chord distance is used. Considering that yijk is the chord transformed abundance of the species j in the island i and year k and (overline{{y }_{j}}) is the mean for species j in all islands and years altogether, then:$${SS}_{Total}=sum_{i=1}^{n}sum_{j=1}^{p}{sum_{k=1}^{q}{({y}_{ijk}-{overline{y} }_{j})}^{2}}$$$$BD_{I,T} = , SS_{Total} /left( {N – 1} right)$$where N is the total number of samples. The function beta.div also provides an estimation of contribution of localities (LCBD) and species (SCBD) to beta diversity (Table 3). Yearly LCBD (log transformed because of skewed distribution) of each island were averaged and compared between islands using ANOVA and a post-hoc Tukey test.We partitioned the above sum of squares in several ways. First, we calculated a beta diversity that considered only between-island variability, excluding temporal variability (BDI), by averaging the chord transformed abundances of each species j in each island along study years (({overline{y} }_{ij})) and applying the same procedure, but using the number of studied islands (n):$${SS}_{I}=sum_{i=1}^{n}sum_{j=1}^{p}{{({overline{y} }_{ij}-{overline{y} }_{j})}^{2}}$$$$BD_{I} = SS_{I} /left( {n – 1} right)$$Second, we calculated a beta diversity due to inter-annual variation of migrant composition within islands (BDT) as:$${SS}_{Temp}=sum_{i=1}^{n}sum_{j=1}^{p}{sum_{k=1}^{q}{({y}_{ijk}-{overline{y} }_{ij})}^{2}}$$$$BD_{T} = SS_{Temp} /left( {Y – n} right)$$where Y is the total number of study years and n is the number of studied islands (9). We also calculated a temporal beta diversity for each island i (BDTi) as the sum of squares due to variation within the island divided by the number of the island study years (Yi) minus 1:$${SS}_{Temp,i}=sum_{j=1}^{p}sum_{k=1}^{q}{({y}_{ijk}-{overline{y} }_{ij})}^{2}$$$$BD_{Ti} = SS_{Temp,i} /left( {Y_{i} – 1} right)$$Differences in temporal variability between islands could be due to different predominance of species that are more or less variable between years. To check this, we calculated Spearman’s rank correlation between the percentage of captures of each species in the total ringed on each island and BDTi and LCDB indices, for species present on all islands.We tested for the existence of differences between islands in migrant species composition using Permutational Multivariate Analysis of Variance (PERMANOVA) using the function adonis2 in the vegan package. We performed a multivariate test of homogeneity of variances using the betadisper function (vegan package) with the adjustment for small sample bias, to test if temporal variability in species composition differed between islands. We made post-hoc comparisons between islands with False Discovery Rate (FDR) correction using the function pairwise.perm.manova of the package RVAideMemoire32.To identify gradients in migrant species composition and the island characteristics that were associated with them, we employed Redundancy Analysis using the rda function (vegan package). We used the chord transformed matrix of species x island-year as a response matrix. We used two explanatory matrices, one including variables of geographical location and the other the variables related to habitat characteristics of the islands. We evaluated the relative importance of each group of variables to explain migrant species composition by performing a variation partitioning analysis, using the varpart function (vegan package). For that analysis, we followed the steps and R scripts recommended in33.Variables describing island characteristics were transformed using natural logarithms and collinearity within each group was evaluated with variance inflation factor (VIF)34. All the habitat variables presented VIF  More

  • in

    Severe conservation risks of roads on apex predators

    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weng, L. et al. Mineral industries, growth corridors and agricultural development in Africa. Glob. Food Sec. 2, 195–202 (2013).
    Google Scholar 
    Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669 (2009).PubMed 

    Google Scholar 
    Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).
    Google Scholar 
    van der Ree, R., Smith, D. J. & Grilo, C. The ecological effects of linear infrastructure and traffic. in Handbook of road ecology 1–9 (John Wiley and Sons, Ltd., 2015). https://doi.org/10.1002/9781118568170.ch1.Grilo, C., Smith, D. J. & Klar, N. Carnivores: Struggling for survival in roaded landscapes. in Handbook of road ecology 300–312 (John Wiley and Sons, Ltd., 2015). doi:https://doi.org/10.1002/9781118568170.ch35.Wallach, A. D., Izhaki, I., Toms, J. D., Ripple, W. J. & Shanas, U. What is an apex predator?. Oikos 124, 1453–1461 (2015).
    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, (2014).Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stolton, S. & Dudley, N. The New Lion Economy. Unlocking the value of lions and their landscapes. http://lionrecoveryfund.org/newlioneconomy (2019).Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018). Data is available at http://www.globio.infoAscensão, F. et al. Environmental challenges for the belt and road initiative. Nat. Sustain. 1, 206–209 (2018).
    Google Scholar 
    Dulac, J. Global land transport infrastructure requirements – Estimating road and railway infrastructure capacity and costs to 2050. (International Energy Agency, 2013).Laurance, W. F. et al. Reducing the global environmental impacts of rapid infrastructure expansion. Curr. Biol. 25, R259–R262 (2015).CAS 
    PubMed 

    Google Scholar 
    Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl. Acad. Sci. 117, 7095–7102 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laurance, W. F., Sloan, S., Weng, L. & Sayer, J. A. Estimating the environmental costs of Africa’s massive “development corridors”. Curr. Biol. 25, 3202–3208 (2015).CAS 
    PubMed 

    Google Scholar 
    Sharma, R., Rimal, B., Stork, N., Baral, H. & Dhakal, M. Spatial assessment of the potential impact of infrastructure development on biodiversity conservation in lowland Nepal. ISPRS Int. J. Geo Inf. 7, 365 (2018).
    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2018-1. http://www.iucnredlist.org (2018).Garrote, G. et al. Prediction of Iberian lynx road-mortality in southern Spain: A new approach using the MaxEnt algorithm. Anim. Biodivers. Conserv. 41, 217–225 (2018).
    Google Scholar 
    Parchizadeh, J. et al. Roads threaten Asiatic cheetahs in Iran. Curr. Biol. 28, R1141–R1142 (2018).CAS 
    PubMed 

    Google Scholar 
    Crooks, K. R., Burdett, C. L., Theobald, D. M., Rondinini, C. & Boitani, L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos. Trans. R. Soc. B Biol. Sci. 366, 2642–2651 (2011).
    Google Scholar 
    Kattan, G. et al. Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx 38, 155–163 (2004).
    Google Scholar 
    Valeix, M., Loveridge, A. J. & Macdonald, D. W. Influence of prey dispersion on territory and group size of African lions: A test of the resource dispersion hypothesis. Ecology 93, 2490–2496 (2012).PubMed 

    Google Scholar 
    Holderegger, R. & Giulio, M. D. The genetic effects of roads: a review of empirical evidence. Basic Appl. Ecol. 11, 522–531 (2010).
    Google Scholar 
    Riley, S. P. D. et al. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741 (2006).CAS 
    PubMed 

    Google Scholar 
    Proctor, M. F., McLellan, B. N., Strobeck, C. & Barclay, R. M. R. Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations. Proc. R. Soc. B Biol. Sci. 272, 2409–2416 (2005).
    Google Scholar 
    Riley, S. P. D. et al. Individual behaviors dominate the dynamics of an urban mountain lion population isolated by roads. Curr. Biol. 24, 1989–1994 (2014).CAS 
    PubMed 

    Google Scholar 
    Janečka, J. E. et al. Reduced genetic diversity and isolation of remnant ocelot populations occupying a severely fragmented landscape in southern Texas. Anim. Conserv. 14, 608–619 (2011).
    Google Scholar 
    Thatte, P., Joshi, A., Vaidyanathan, S., Landguth, E. & Ramakrishnan, U. Maintaining tiger connectivity and minimizing extinction into the next century: Insights from landscape genetics and spatially-explicit simulations. Biol. Cons. 218, 181–191 (2018).
    Google Scholar 
    Vaeokhaw, S. et al. Effects of a highway on the genetic diversity of Asiatic black bears. Ursus 2020, 1–15 (2020).
    Google Scholar 
    Benı́tez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).ADS 
    PubMed 

    Google Scholar 
    Clements, G. R. et al. Where and how are roads endangering mammals in Southeast Asia’s forests?. PLoS ONE 9, e115376 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, K., Wright, B., Joseph, T. & Desai, N. Tiger poaching and trafficking in India: Estimating rates of occurrence and detection over four decades. Biol. Cons. 179, 33–39 (2014).
    Google Scholar 
    Espinosa, S., Branch, L. C. & Cueva, R. Road development and the geography of hunting by an Amazonian indigenous group: Consequences for wildlife conservation. PLoS ONE 9, e114916 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wato, Y. A., Wahungu, G. M. & Okello, M. M. Correlates of wildlife snaring patterns in Tsavo west national park Kenya. Biol. Conserv. 132, 500–509 (2006).
    Google Scholar 
    Watson, F., Becker, M. S., McRobb, R. & Kanyembo, B. Spatial patterns of wire-snare poaching: Implications for community conservation in buffer zones around national parks. Biol. Cons. 168, 1–9 (2013).
    Google Scholar 
    Henschel, P., Hunter, L. T. B., Coad, L., Abernethy, K. A. & Mühlenberg, M. Leopard prey choice in the Congo Basin rainforest suggests exploitative competition with human bushmeat hunters. J. Zool. 285, 11–20 (2011).
    Google Scholar 
    Espinosa, S., Celis, G. & Branch, L. C. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13, e0189740 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Parsons, M. A., Newsome, T. M. & Young, J. K. The consequences of predators without prey. Front. Ecol. Environ. https://doi.org/10.1002/fee.2419 (2021).Article 

    Google Scholar 
    Caro, T., Dobson, A., Marshall, A. J. & Peres, C. A. Compromise solutions between conservation and road building in the tropics. Curr. Biol. 24, R722–R725 (2014).CAS 
    PubMed 

    Google Scholar 
    Grilo, C. et al. Conservation threats from roadkill in the global road network. Glob. Ecol. Biogeogr. 30, 2200–2210 (2021).
    Google Scholar 
    Carter, N., Killion, A., Easter, T., Brandt, J. & Ford, A. Road development in Asia: assessing the range-wide risks to tigers. Sci. Adv. 6(18), eaaz9619 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ceia-Hasse, A., Borda-de-Água, L., Grilo, C. & Pereira, H. M. Global exposure of carnivores to roads. Glob. Ecol. Biogeogr. 26, 592–600 (2017).
    Google Scholar 
    Gaveau, D. L. A. et al. Four decades of forest persistence, clearance and logging on Borneo. PLoS ONE 9, e101654 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerber, B. D., Karpanty, S. M. & Randrianantenaina, J. The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests. Oryx 46, 414–422 (2012).
    Google Scholar 
    Cullen, L. et al. Implications of fine-grained habitat fragmentation and road mortality for jaguar conservation in the Atlantic forest, Brazil. PLoS ONE 11, e0167372 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kirby, K. R. et al. The future of deforestation in the Brazilian Amazon. Futures 38, 432–453 (2006).
    Google Scholar 
    UNEP-WCMC & IUCN. Protected planet: The world database on protected areas. http://www.protectedplanet.net (2019).de la Torre, J. A., Gonzalez-Maya, J. F., Zarza, H., Ceballos, G. & Medellin, R. A. The jaguars spots are darker than they appear: assessing the global conservation status of the jaguar Panthera onca. Oryx 52, 300–315 (2017).
    Google Scholar 
    Coelho, L., Romero, D., Queirolo, D. & Guerrero, J. C. Understanding factors affecting the distribution of the maned wolf (Chrysocyon brachyurus) in South America: spatial dynamics and environmental drivers. Mamm. Biol. 92, 54–61 (2018).
    Google Scholar 
    Fearnside, P. M. Brazil’s Cuiabá- Santarém (BR-163) highway: The environmental cost of paving a soybean corridor through the Amazon. Environ. Manage. 39, 601–614 (2007).ADS 
    PubMed 

    Google Scholar 
    Vetter, D., Hansbauer, M. M., Végvári, Z. & Storch, I. Predictors of forest fragmentation sensitivity in neotropical vertebrates: A quantitative review. Ecography 34, 1–8 (2011).
    Google Scholar 
    Morcatty, T. Q. et al. Illegal trade in wild cats and its link to Chinese-led development in central and South America. Conserv. Biol. 34, 1525–1535 (2020).PubMed 

    Google Scholar 
    Ramsar. Ngiri-Tumba-Maindombe. Ramsar Sites Information Service https://rsis.ramsar.org/ris/1784 (2017).Dobson, A. P. et al. Road will ruin Serengeti. Nature 467, 272–273 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Riggio, J. et al. The size of savannah Africa: A lion’s (Panthera leo) view. Biodivers. Conserv. 22, 17–35 (2012).
    Google Scholar 
    Government of Nepal. Economic survey 2019/20. (Ministry of Finance, 2020).Jnawali, S. R. et al. The status of Nepal mammals: The national red list series. (Department of National Parks and Wildlife Conservation, 2011).Joshi, A. R. Nepal court blocks road construction in rhino stronghold of Chitwan Park. https://news.mongabay.com/2019/02/nepal-court-blocks-road-construction-in-rhino-stronghold-of-chitwan-park/ (2019).Government of Nepal. Conservation Landscapes of Nepal. (Ministry of Forest and Soil Conservation, 2016).Poudel, A. et al. Biological and socio-economic study in corridors of Terai Arc Landscape, Nepal. (Center for Policy Analysis; Development, 2013).Arlidge, W. N. S. et al. A Global Mitigation Hierarchy for Nature Conservation. Bioscience 68, 336–347 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Ekstrom, J., Bennun, L. & Mitchell, R. A Cross-Sector Guide for Implementing the Mitigation Hierarchy. (The Biodiversity Consultancy, 2015).Malo, J. E., Suárez, F. & Díez, A. Can we mitigate animal-vehicle accidents using predictive models?. J. Appl. Ecol. 41, 701–710 (2004).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (Version 4.0.3). https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Tucker, M. A., Ord, T. J. & Rogers, T. L. Evolutionary predictors of mammalian home range size: body mass, diet and the environment. Glob. Ecol. Biogeogr. 23, 1105–1114 (2014).
    Google Scholar 
    Santini, L., Boitani, L., Maiorano, L. & Rondinini, C. Effectiveness of protected areas in conserving large carnivores in Europe. in Protected areas 122–133 (John Wiley and Sons, Ltd., 2016). https://doi.org/10.1002/9781118338117.ch7.Rodrigues, A. S. L., Pilgrim, J. D., Hoffmann, M. & Lamoreux, J. F. The value of the IUCN red list for conservation. Trends Ecol. Evol. 21, 71–76 (2006).PubMed 

    Google Scholar 
    Government of Brazil. Mapas multimodais. Ministério da Infraestrutura http://www.infraestrutura.gov.br/ (2018).Assis, L. F. F. G. et al. TerraBrasilis: A spatial data analytics infrastructure for large-scale thematic mapping. ISPRS Int. J. Geo Inf. 8, 513 (2019).
    Google Scholar  More