Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).PubMed 
 PubMed Central 
 Google Scholar 
 Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
 Google Scholar 
 Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357, 495–498 (2017).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499–504 (2019).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Therkildsen, N. O. et al. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487–490 (2019).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Brennan, R. S., Garrett, A. D., Huber, K. E., Hargarten, H. & Pespeni, M. H. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions. Proc. R. Soc. B: Biol. Sci. 286, 20190943 (2019).CAS 
 Google Scholar 
 Stearns, S. C. The evolutionary significance of phenotypic plasticity. Bioscience 39, 436–445 (1989).Thompson, J. D. Phenotypic plasticity as a component of evolutionary change. Trends Ecol. Evol. 6, 246–249 (1991).CAS 
 PubMed 
 Google Scholar 
 Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180176 (2019).PubMed 
 PubMed Central 
 Google Scholar 
 Chevin, L. M., Collins, S. & Lefèvre, F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct. Ecol. https://doi.org/10.1111/j.1365-2435.2012.02043.x (2013).Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).PubMed 
 Google Scholar 
 Calosi, P., De Wit, P., Thor, P. & Dupont, S. Will life find a way? Evolution of marine species under global change. Evol. Appl. 9, 1035–1042 (2016).PubMed 
 PubMed Central 
 Google Scholar 
 Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174 (2019).PubMed 
 PubMed Central 
 Google Scholar 
 Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).PubMed 
 Google Scholar 
 Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Posavi, M., Gulisija, D., Munro, J. B., Silva, J. C. & Lee, C. E. Rapid evolution of genome-wide gene expression and plasticity during saline to freshwater invasions by the copepod Eurytemora affinis species complex. Mol. Ecol. 29, 4835–4856 (2020).CAS 
 PubMed 
 Google Scholar 
 Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Kelly, M. W., Pankey, M. S., DeBiasse, M. B. & Plachetzki, D. C. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. 31, 398–406 (2017).
 Google Scholar 
 Sikkink, K. L., Reynolds, R. M., Ituarte, C. M., Cresko, W. A. & Phillips, P. C. Rapid evolution of phenotypic plasticity and shifting thresholds of genetic assimilation in the nematode Caenorhabditis remanei. G3 4, 1103–1112 (2014).PubMed 
 PubMed Central 
 Google Scholar 
 Brennan, R. S., Galvez, F. & Whitehead, A. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus. J. Exp. Biol. 218, 1212–1222 (2015).PubMed 
 Google Scholar 
 Kelly, M. W., Pankey, M. S. & DeBiasse, M. B. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. https://doi.org/10.1111/1365-2435.12725 (2017).Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7, 118–126 (1953).
 Google Scholar 
 Schlötterer, C., Kofler, R., Versace, E., Tobler, R. & Franssen, S. U. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity 114, 431–440 (2015).PubMed 
 Google Scholar 
 Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).PubMed 
 Google Scholar 
 Huang, Y. & Agrawal, A. F. Experimental evolution of gene expression and plasticity in alternative selective regimes. PLoS Genet. 12, e1006336 (2016).PubMed 
 PubMed Central 
 Google Scholar 
 Mallard, F., Nolte, V. & Schlötterer, C. The evolution of phenotypic plasticity in response to temperature stress. Genome Biol. Evol. 12, 2429–2440 (2020).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Schaum, C. E. & Collins, S. Plasticity predicts evolution in a marine alga. Proc. Biol. Sci. 281, 20141486 (2014).Kelly, S. A., Czech, P. P., Wight, J. T., Blank, K. M. & Garland, T. Jr Experimental evolution and phenotypic plasticity of hindlimb bones in high-activity house mice. J. Morphol. 267, 360–374 (2006).PubMed 
 Google Scholar 
 Garland, T. Jr & Kelly, S. A. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 209, 2344–2361 (2006).PubMed 
 Google Scholar 
 Gibbin, E. M., Massamba N’Siala, G., Chakravarti, L. J., Jarrold, M. D. & Calosi, P. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 McCairns, R. J. S. & Bernatchez, L. Adaptive divergence between freshwater and marine sticklebacks: insights into the role of phenotypic plasticity from an integrated analysis of candidate gene expression. Evolution 64, 1029–1047 (2010).CAS 
 PubMed 
 Google Scholar 
 Whitehead, A. The evolutionary radiation of diverse osmotolerant physiologies in killifish (Fundulus sp.). Evolution 64, 2070–2085 (2010).PubMed 
 Google Scholar 
 Lind, M. I. & Johansson, F. The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria. J. Evol. Biol. 20, 1288–1297 (2007).CAS 
 PubMed 
 Google Scholar 
 Lázaro-Nogal, A. et al. Environmental heterogeneity leads to higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into climate change responses. J. Ecol. 103, 338–350 (2015).
 Google Scholar 
 Gianoli, E. Plasticity of traits and correlations in two populations of Convolvulus arvensis (Convolvulaceae) differing in environmental heterogeneity. Int. J. Plant Sci. 165, 825–832 (2004).
 Google Scholar 
 Fischer, E. K., Song, Y., Hughes, K. A., Zhou, W. & Hoke, K. L. Nonparallel transcriptional divergence during parallel adaptation. Mol. Ecol. 30, 1516–1530 (2021).PubMed 
 Google Scholar 
 Gunter, H. M., Schneider, R. F., Karner, I., Sturmbauer, C. & Meyer, A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol. Ecol. 26, 6634–6653 (2017).CAS 
 PubMed 
 Google Scholar 
 Bitter, M. C. et al. Fluctuating selection and global change: a synthesis and review on disentangling the roles of climate amplitude, predictability and novelty. Proc. Biol. Sci. 288, 20210727 (2021).CAS 
 PubMed 
 Google Scholar 
 Skliris, N. et al. Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Clim. Dyn. 43, 709–736 (2014).
 Google Scholar 
 Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. in Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1029–1136 (Cambridge University Press, 2013).Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).PubMed 
 Google Scholar 
 Reusch, T. B. H. & Boyd, P. W. Experimental evolution meets marine phytoplankton. Evolution 67, 1849–1859 (2013).PubMed 
 Google Scholar 
 Palumbi, S. R., Evans, T. G., Pespeni, M. H. & Somero, G. N. Present and future adaptation of marine species assemblages. Oceanography https://doi.org/10.5670/oceanog.2019.314 (2019).Helmuth, B. et al. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci. Data 3, 160087 (2016).MathSciNet 
 PubMed 
 PubMed Central 
 Google Scholar 
 Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive ‘acidified’ water onto the continental shelf. Science 320, 1490–1492 (2008).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 
 Google Scholar 
 Huys, R. & Boxshall, G. A. Copepod Evolution. (marinespecies.org, 1991).Langer, J. A. F. et al. Acclimation and adaptation of the coastal calanoid copepod Acartia tonsa to ocean acidification: a long-term laboratory investigation. Mar. Ecol. Prog. Ser. 619, 35–51 (2019).ADS 
 CAS 
 Google Scholar 
 Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Ann. Rev. Mar. Sci. 5, 349–370 (2013).PubMed 
 Google Scholar 
 De Wit, P., Dupont, S. & Thor, P. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol. Appl. 9, 1112–1123 (2016).PubMed 
 Google Scholar 
 Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Chang. Biol. 21, 2261–2271 (2015).ADS 
 PubMed 
 Google Scholar 
 Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180186 (2019).PubMed 
 PubMed Central 
 Google Scholar 
 Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).PubMed 
 Google Scholar 
 Mauchline, J. The Biology of Calanoid Copepods (Academic Press, 1998).Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).PubMed 
 Google Scholar 
 Gobler, C. J. & Baumann, H. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett. 12, 20150976 (2016).Rice, E., Dam, H. G. & Stewart, G. Impact of climate change on estuarine zooplankton: surface water warming in Long Island Sound is associated with changes in copepod size and community structure. Estuaries Coasts 38, 13–23 (2015).
 Google Scholar 
 IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 1454 (IPCC, 2014).Caldeira, K. & Wickett, M. E. Oceanography: anthropogenic carbon and ocean pH. Nature 425, 365 (2003).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Chang. 11, 780–786 (2021).ADS 
 Google Scholar 
 Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Barghi, N., Hermisson, J. & Schlötterer, C. Polygenic adaptation: a unifying framework to understand positive selection. Nat. Rev. Genet. 21, 769–781 (2020).CAS 
 PubMed 
 Google Scholar 
 Láruson, Á. J., Yeaman, S. & Lotterhos, K. E. The importance of genetic redundancy in evolution. Trends Ecol. Evol. 35, 809–822 (2020).PubMed 
 Google Scholar 
 Tobler, R. et al. Massive habitat-specific genomic response in D. melanogaster populations during experimental evolution in hot and cold environments. Mol. Biol. Evol. 31, 364–375 (2014).CAS 
 PubMed 
 Google Scholar 
 Belhadj Slimen, I. et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperth. 30, 513–523 (2014).CAS 
 Google Scholar 
 Downs, C. A. & Heckathorn, S. A. The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett. 430, 246–250 (1998).CAS 
 PubMed 
 Google Scholar 
 Harada, A. E., Healy, T. M. & Burton, R. S. Variation in thermal tolerance and its relationship to mitochondrial function across populations of Tigriopus californicus. Front. Physiol. 10, 213 (2019).PubMed 
 PubMed Central 
 Google Scholar 
 Chung, D. J. & Schulte, P. M. Mitochondria and the thermal limits of ectotherms. J. Exp. Biol. 223 (2020).Mathew, A. N. U. & Morimoto, R. I. Role of the heat-shock response in the life and death of proteins. Ann. N. Y. Acad. Sci. 851, 99–111 (1998).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Evans, T. G., Pespeni, M. H., Hofmann, G. E., Palumbi, S. R. & Sanford, E. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic. Mol. Ecol. 26, 2257–2275 (2017).CAS 
 PubMed 
 Google Scholar 
 Bailey, A. et al. Regulation of gene expression is associated with tolerance of the Arctic copepod Calanus glacialis to CO2-acidified sea water. Ecol. Evol. 7, 7145–7160 (2017).PubMed 
 PubMed Central 
 Google Scholar 
 Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Anjum, R. & Blenis, J. The RSK family of kinases: emerging roles in cellular signalling. Nat. Rev. Mol. Cell Biol. 9, 747–758 (2008).CAS 
 PubMed 
 Google Scholar 
 Marshall, D. J. Transgenerational plasticity in the sea: context-dependent maternal effects across the life history. Ecology 89, 418–427 (2008).PubMed 
 Google Scholar 
 Vehmaa, A., Brutemark, A. & Engström-Öst, J. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS ONE 7, e48538 (2012).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Skinner, M. K. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol. 25, 2–6 (2008).CAS 
 PubMed 
 Google Scholar 
 Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Chang. Biol. 25, 4147–4164 (2019).ADS 
 PubMed 
 Google Scholar 
 Sasaki, M. C. & Dam, H. G. Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short‐lived copepod. Ecol. Evol. 90, 193 (2020).
 Google Scholar 
 Ho, W.-C., Li, D., Zhu, Q. & Zhang, J. Phenotypic plasticity as a long-term memory easing readaptations to ancestral environments. Sci. Adv. 6, eaba3388 (2020).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Caswell, H. Matrix population models. Encyclopedia of Environmetrics 3, https://doi.org/10.1002/9781118445112.stat07481 (2006).Huey, R. B., Wakefield, T., Crill, W. D. & Gilchrist, G. W. Within- and between-generation effects of temperature on early fecundity of Drosophila melanogaster. Heredity 74, 216–223 (1995). Pt 2.PubMed 
 Google Scholar 
 Zwaan, B., Bijlsma, R. & Hoekstra, R. F. Direct selection on life span in Drosophila melanogaster. Evolution 49, 649–659 (1995).PubMed 
 Google Scholar 
 Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359 (1990).ADS 
 Google Scholar 
 Jerison, E. R., Nguyen Ba, A. N., Desai, M. M. & Kryazhimskiy, S. Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat. Ecol. Evol. 4, 601–611 (2020).PubMed 
 PubMed Central 
 Google Scholar 
 Zhong, S., Khodursky, A., Dykhuizen, D. E. & Dean, A. M. Evolutionary genomics of ecological specialization. Proc. Natl Acad. Sci. USA 101, 11719–11724 (2004).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 MacLean, R. C., Bell, G. & Rainey, P. B. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc. Natl Acad. Sci. USA 101, 8072–8077 (2004).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Bettencourt, B. R., Feder, M. E. & Cavicchi, S. Experimental evolution of HSP70 expression and thermotolerance in Drosophila melanogaster. Evolution 53, 484–492 (1999).CAS 
 PubMed 
 Google Scholar 
 Schaum, C.-E., Buckling, A., Smirnoff, N., Studholme, D. J. & Yvon-Durocher, G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat. Commun. 9, 1719 (2018).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Orr, H. A. Adaptation and the cost of complexity. Evolution 54, 13–20 (2000).CAS 
 PubMed 
 Google Scholar 
 Chen, P. & Zhang, J. Antagonistic pleiotropy conceals molecular adaptations in changing environments. Nat. Ecol. Evol. 4, 461–469 (2020).PubMed 
 PubMed Central 
 Google Scholar 
 Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Mayor, D. J., Sommer, U., Cook, K. B. & Viant, M. R. The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Sci. Rep. 5, 13690 (2015).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Pedersen, S. A. et al. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates. Environ. Sci. Technol. 48, 12275–12284 (2014).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Bono, L. M., Smith, L. B. Jr, Pfennig, D. W. & Burch, C. L. The emergence of performance trade-offs during local adaptation: insights from experimental evolution. Mol. Ecol. 26, 1720–1733 (2017).PubMed 
 Google Scholar 
 Masel, J., King, O. D. & Maughan, H. The loss of adaptive plasticity during long periods of environmental stasis. Am. Nat. 169, 38–46 (2007).PubMed 
 Google Scholar 
 Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Bay, R. A. et al. Predicting responses to contemporary environmental change using evolutionary response architectures. Am. Nat. 189, 463–473 (2017).PubMed 
 Google Scholar 
 Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).PubMed 
 Google Scholar 
 Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 
 Google Scholar 
 Feinberg, L. R. & Dam, H. G. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 175, 87–96 (1998).ADS 
 Google Scholar 
 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Jørgensen, T. S. et al. The genome and mRNA transcriptome of the cosmopolitan calanoid copepod Acartia tonsa Dana improve the understanding of copepod genome size evolution. Genome Biol. Evol. https://doi.org/10.1093/gbe/evz067 (2019).Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 
 Google Scholar 
 Davidson, N. M., Hawkins, A. D. K. & Oshlack, A. SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes. Genome Biol. 18, 148 (2017).PubMed 
 PubMed Central 
 Google Scholar 
 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2016).Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
 PubMed Central 
 Google Scholar 
 Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 14 (2016).PubMed 
 Google Scholar 
 Campbell-Staton, S. C., Velotta, J. P. & Winchell, K. M. Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands. Nat. Commun. 12, 6195 (2021).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics https://doi.org/10.1093/bioinformatics/btr521 (2011).Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).
 Google Scholar 
 Orozco-terWengel, P. et al. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Mol. Ecol. 21, 4931–4941 (2012).PubMed 
 PubMed Central 
 Google Scholar 
 Kofler, R. et al. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS ONE 6, e15925 (2011).ADS 
 CAS 
 Google Scholar 
 Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 16, 371 (2015).PubMed 
 PubMed Central 
 Google Scholar 
 Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2013).Therneau, T. A Package for Survival Analysis in S. version 2.38. (Mayo Foundation, 2015).Kassambara, A., Kosinski, M., Biecek, P. & Fabian, S. Package ‘survminer’. Drawing Survival Curves using ‘ggplot2’. (R package version 0. 3. 1.) (2017).Houde, S. E. L. & Roman, M. R. Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 40, 69–77 (1987).ADS 
 Google Scholar 
 Brennan, R. S. et al. Code repository for ‘Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod’. Zenodo https://doi.org/10.5281/zenodo.5840148 (2022). More