More stories

  • in

    Long horns protect Hestina japonica butterfly larvae from their natural enemies

    Lincoln, G. A. Teeth, horns and antlers: the weapons of sex. In The Differences between the Sexes (eds R. V. Short & E. Balaban) 131–158 (Cambridge Univ. Press, 1994).Lundrigan, B. Morphology of horns and fighting behavior in the family bovidae. J. Mammal. 77, 462–475 (1996).Article 

    Google Scholar 
    Bro-Jorgensen, J. The intensity of sexual selection predicts weapon size in male bovids. Evolution 61, 1316–1326 (2007).Article 

    Google Scholar 
    Plard, F., Bonenfant, C. & Gaillard, J. M. Revisiting the allometry of antlers among deer species: male-male sexual competition as a driver. Oikos 120, 601–606 (2011).Article 

    Google Scholar 
    Okada, K. & Miyatake, T. Sexual dimorphism in mandibles and male aggressive behavior in the presence and absence of females in the beetle Librodor japonicus (Coleoptera: Nitidulidae). Ann. Entomol. Soc. Am. 97, 1342–1346 (2004).Article 

    Google Scholar 
    Emlen, D. J., Marangelo, J., Ball, B. & Cunningham, C. W. Diversity in the weapons of sexual selection: Horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution 59, 1060–1084 (2005).CAS 
    Article 

    Google Scholar 
    Pomfret, J. C. & Knell, R. J. Sexual selection and horn allometry in the dung beetle Euoniticellus intermedius. Anim. Behav. 71, 567–576 (2006).Article 

    Google Scholar 
    McCullough, E. L., Weingarden, P. R. & Emlen, D. J. Costs of elaborate weapons in a rhinoceros beetle: how difficult is it to fly with a big horn?. Behav. Ecol. 23, 1042–1048 (2012).Article 

    Google Scholar 
    David, P., Bjorksten, T., Fowler, K. & Pomiankowski, A. Condition-dependent signalling of genetic variation in stalk-eyes flies. Nature 406, 186–188 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, R. H. & Wilkinson, G. S. Phylogenetic analysis of sexual dimorphism and eye-span allometry in stalk-eyed flies (Diopsidae). Evolution 55, 1373–1385 (2001).CAS 
    Article 

    Google Scholar 
    Stankowich, T. Armed and dangerous: predicting the presence and function of defensive weaponry in mammals. Adapt. Behav. 20, 32–43 (2012).Article 

    Google Scholar 
    Hashimoto, K. & Hayashi, F. Structure and function of the large pronotal horn of the sand-living anthicid beetle Mecynotarsus tenuipes. Entomol. Sci. 15, 274–279 (2012).Article 

    Google Scholar 
    Hayashi, M. & Ohba, S. Y. Mouth morphology of the diving beetle Hyphydrus japonicus (Dytiscidae: Hydroporinae) is specialized for predation on seed shrimps. Biol. J. Linn. Soc. 125, 315–320 (2018).Article 

    Google Scholar 
    Stocker, R. F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3–26 (1994).CAS 
    Article 

    Google Scholar 
    Dweck, H. K. M. Antennal sensory receptors of Pteromalus puparum female (Hymenoptera: Pteromalidae), a gregarious pupal endoparasitoid of Pieris rapae. Micron 40, 769–774 (2009).Article 

    Google Scholar 
    Crespo, J. G. A review of chemosensation and related behavior in aquatic insects. J. Insect Sci. 11, 1–39 (2011).Article 

    Google Scholar 
    Stoffolano, J. G. Jr., Rice, M. & Murphy, W. L. The importance of antennal mechanosensilla of Sepedon fuscipennis (Diptera: Sciomyzidae). Can. Entomol. 145, 265–272 (2013).Article 

    Google Scholar 
    Gabel, B. et al. Floral volatiles of Tanacetum vulgare L. attractive to Lobesia botrana Den. et Schiff. females. J. Chem. Ecol. 18, 693–701 (1992).CAS 
    Article 

    Google Scholar 
    Fox, H. Barbels and barbel-like tentacular structures in sub-mammalian vertebrates: a review. Hydrobiologia 403, 153–193 (1999).Article 

    Google Scholar 
    Plepys, D., Ibarra, F., Francke, W. & Lofstedt, C. Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99, 75–82 (2002).CAS 
    Article 

    Google Scholar 
    Stankowich, T. & Caro, T. Evolution of weaponry in female bovids. Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 4329–4334 (2009).Bergmann, P. J. & Berk, C. P. The Evolution of Positive Allometry of Weaponry in Horned Lizards (Phrynosoma). Evol. Biol. 39, 311–323 (2012).Article 

    Google Scholar 
    Damman, H. The osmaterial glands of the swallowtail butterfly Eurytide marcellus as a defense against natural enemies. Ecol. Entomol. 11, 261–265 (1986).Article 

    Google Scholar 
    Berenbaum, M. R., Moreno, B. & Green, E. Soldier bug predation on swallowtail caterpillars (Lepidoptera, Papilionidae): circumvention of defensive chemistry. J. Insect Behav. 5, 547–553 (1992).Article 

    Google Scholar 
    Juma, G. et al. Distribution of chemo- and mechanoreceptors on the antennae and maxillae of Busseola fusca larvae. Entomol. Exp. Appl. 128, 93–98 (2008).Article 

    Google Scholar 
    Liu, Z., Hua, B.-Z. & Liu, L. Ultrastructure of the sensilla on larval antennae and mouthparts in the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae). Micron 42, 478–483 (2011).Article 

    Google Scholar 
    Kandori, I., Tsuchihara, K., Suzuki, T. A., Yokoi, T. & Papaj, D. R. Long frontal projections help Battus philenor (Lepidoptera: Papilionidae) larvae find host plants. PLoS ONE 10, e0131596 (2015).Article 

    Google Scholar 
    Greeney, H. F., Dyer, L. A. & Smilanich, A. M. Feeding by lepidopteran larvae is dangerous: A review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. ISJ Invert. Surviv. J. 9, 7–34 (2012).
    Google Scholar 
    Sugiura, S. Predators as drivers of insect defenses. Entomol. Sci. 23, 316–337 (2020).Article 

    Google Scholar 
    Martin, W. R. & Nordlund, D. A. Ovipositional behavior of the parasitoid Palexorista laxa (Diptera, Tachinidae) on Heliothis zea (Lepidoptera, Noctuidae) larvae. J. Entomol. Sci. 24, 460–464 (1989).Article 

    Google Scholar 
    Constantino, L. M. Notes on Haetera from Colombia, with description of the immature stages of Haetera piera (Lepidoptera:Nymphalidae: Satyrinae). Trop. Lepid. 4(1), 13–15 (1993).
    Google Scholar 
    Devries, P. J., Kitching, I. J. & Vanewright, R. I. The systematic position of Antirrhea and Caerois, with comments on the classification of the Nymphalidae (Lepidoptera). Syst. Entomol. 10, 11–32. https://doi.org/10.1111/j.1365-3113.1985.tb00561.x (1985).Article 

    Google Scholar 
    Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Biology and external morphology of immature stages of Memphis appias (Hubner) (Lepidoptera: Nymphalidae: Charaxinae). Zootaxa, 21–32 (2010).Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Biology and external morphology of the immature stages of the butterfly Callicore pygas eucale, with comments on the taxonomy of the genus Callicore (Nymphalidae: Biblidinae). J. Insect Sci. 14, doi:https://doi.org/10.1093/jis/14.1.91 (2014).Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Immature stages of the turquoise-banded shoemaker Archaeoprepona amphimachus pseudomeander (Fruhstorfer, 1906) and a comparative review of the Preponini (Lepidoptera: Nymphalidae). Aust. Entomol. 58, 451–462. https://doi.org/10.1111/aen.12339 (2019).Article 

    Google Scholar 
    Dias, F. M. S., de Oliveira-Neto, J. F., Casagrande, M. M. & Mielke, O. H. H. External morphology of immature stages of Zaretis strigosus (Gmelin) and Siderone galanthis catarina Dottax and Pierre comb. nov., with taxonomic notes on Siderone (Lepidoptera: Nymphalidae: Charaxinae). Rev. Bras. Entomol. 59, 307–319, doi:https://doi.org/10.1016/j.rbe.2015.07.007 (2015).Dias, F. M. S. et al. An integrative approach elucidates the systematics of Sea Hayward and Cybdelis Boisduval (Lepidoptera: Nymphalidae: Biblidinae). Syst. Entomol. 44, 226–250. https://doi.org/10.1111/syen.12327 (2019).Article 

    Google Scholar 
    Freitas, A. V. L., Barbosa, E. P. & Marin, M. A. Immature Stages and Natural History of the Neotropical Satyrine Pareuptychia ocirrhoe Interjecta (Nymphalidae: Euptychiina). J. Lepid. Soc. 70, 271–276. https://doi.org/10.18473/lepi.70i4.a4 (2016).Article 

    Google Scholar 
    Freitas, A. V. L., Kaminski, L. A., Mielke, O. H. H., Barbosa, E. P. & Silva-Brandao, K. L. A new species of Yphthimoides (Lepidoptera: Nymphalidae: Satyrinae) from the southern Atlantic forest region. Zootaxa, 31–44 (2012).Furtado, E. & Campos-Neto, F. C. Caligopsis seleucida (Hewitson) and its immature stages (Lepidoptera, Nymphalidae, Brassolinae). Rev. Bras. Zool. 21(3), 593–597 (2004).Article 

    Google Scholar 
    Greeney, H. F. et al. The early stages and natural history of Antirrhea adoptiva porphyrosticta (Watkins, 1928) in eastern Ecuador (Lepidoptera: Nymphalidae: Morphinae). J. Insect Sci. 9 (2009).Greeney, H. F. et al. Early stages and natural history of Perisama oppelii (Nymphalidae, Lepidoptera) in eastern Ecuador. Kempffiana 6(1), 16–30 (2010).
    Google Scholar 
    Greeney, H. F., Dyer, L. A. & Pyrcz, T. W. First description of the early stage biology of the genus Mygona: The natural history of the satyrine butterfly, Mygona irmina in eastern Ecuador. J. Insect Sci. 11, doi:https://doi.org/10.1673/031.011.0105 (2011).Greeney, H. F., Pyrcz, T. W., DeVries, P. J. & Dyer, L. A. The early stages of Pedaliodes poesia (Hewitson, 1862) in eastern Ecuador (Lepidoptera: Satyrinae: Pronophilina). J. Insect Sci. 9 (2009).Greeney, H. F., Whitfield, J. B., Stireman, J. O., Penz, C. M. & Dyer, L. A. Natural history of Eryphanis greeneyi (Lepidoptera: Nymphalidae) and its enemies, with a description of a new species of Braconid parasitoid and notes on its Tachinid parasitoid. Ann. Entomol. Soc. Am. 104, 1078–1090. https://doi.org/10.1603/an10064 (2011).Article 

    Google Scholar 
    Kaminski, L. A. & Freitas, A. V. L. Immature stages of the butterfly Magneuptychia libye (L.) (Lepidoptera : Nymphalidae, Satyrinae). Neotrop. Entomol. 37, 169–172, doi:https://doi.org/10.1590/s1519-566×2008000200010 (2008).Lambkin, T. & Kendall, R. The status of Yoma algina (boisduval, 1832) & Y. sabina (cramer, 1780) (Lepidoptera: Nymphalidae: Nymphalinae) in Australia. Aust. Entomol. 43 (4), 211–234 (2016).Leite, L. A. R., Casagrande, M. M., Mielke, O. H. H. & Freitas, A. V. L. Immature stages of the Neotropical butterfly, Dynamine agacles agacles. J. Insect Sci. 12 (2012).Leite, L. A. R., Dias, F. M. S., Carneiro, E., Casagrande, M. M. & Mielke, O. H. H. Immature stages of the Neotropical cracker butterfly, Hamadryas epinome. J. Insect Sci. 12 (2012).Murillo, L. R. & Nishida, K. Life history of Manataria maculata (Lepidoptera : Satyrinae) from Costa Rica. Rev. Biol. Trop. 51, 463–469 (2003).PubMed 

    Google Scholar 
    Nakahara, S., Janzen, D. H., Hallwachs, W. & Espeland, M. Description of a new genus for Euptychia hilara (C. Felder & R. Felder, 1867) (Lepidoptera: Nymphalidae: Satyrinae). Zootaxa 4012, 525-541, doi:https://doi.org/10.11646/zootaxa.4012.3.7 (2015).Penz, C. M., Freitas, A. V. L., Kaminski, L. A., Casagrande, M. M. & Devries, P. J. Adult and early-stage characters of Brassolini contain conflicting phylogenetic signal (Lepidoptera, Nymphalidae). Syst. Entomol. 38, 316–333. https://doi.org/10.1111/syen.12000 (2013).Article 

    Google Scholar 
    Pyrcz, T. W. et al. Uncovered diversity of a predominantly Andean butterfly clade in the Brazilian Atlantic forest: a revision of the genus Praepedaliodes Forster (Lepidoptera: Nymphalidae, Satyrinae, Satyrini). Neotrop. Entomol. 47, 211–255. https://doi.org/10.1007/s13744-017-0543-x (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shirai, L. T. et al. Natural history of Selenophanes cassiope guarany (Lepidoptera: Nymphalidae: Brassolini): an integrative approach, from molecules to ecology. Ann. Entomol. Soc. Am. 110, 145–159. https://doi.org/10.1093/aesa/saw068 (2017).Article 

    Google Scholar 
    Silva, P. L. et al. Immature Stages of the Brazilian Crescent Butterfly Ortilia liriope (Cramer) (Lepidoptera: Nymphalidae). Neotrop. Entomol. 40, 322–327. https://doi.org/10.1590/s1519-566×2011000300006 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Song-yun, L. Immature stages of Faunis aerope (Leech, 1890) (Lepidoptera, Nymphalidae). Atalanta 42, 221–222 (2011).
    Google Scholar 
    Steiner, H. Life history of Melanocyma faunula in Malaysia (Lepidoptera: Nymphalidae: Morphinae). Trop. Lepid. Res. 16, 23–26 (2005).
    Google Scholar 
    Velez, P. D., Montoya, H. H. V. & Wolff, M. Immature stages and natural history of the Andean butterfly Altinote ozomene (Nymphalidae: Heliconiinae: Acraeini). Zoologia 28, 593–602. https://doi.org/10.1590/s1984-46702011000500007 (2011).Article 

    Google Scholar 
    Wahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 4295–4302, doi:https://doi.org/10.1098/rspb.2009.1303 (2009).Willmott, K. R., Elias, M. & Sourakov, A. Two possible caterpillar mimicry complexes in neotropical Danaine butterflies (Lepidoptera: Nymphalidae). Ann. Entomol. Soc. Am. 104, 1108–1118. https://doi.org/10.1603/an10086 (2011).Article 

    Google Scholar 
    Willmott, K. R. & Freitas, A. V. L. Higher-level phylogeny of the Ithomiinae (Lepidoptera : Nymphalidae): classification, patterns of larval hostplant colonization and diversification. Cladistics 22, 297–368. https://doi.org/10.1111/j.1096-0031.2006.00108.x (2006).Article 
    PubMed 

    Google Scholar 
    Zacca, T. et al. Revision of Godartiana Forster (Lepidoptera: Nymphalidae), with the description of a new species from northeastern Brazil. Aust. Entomol. 56, 169–190. https://doi.org/10.1111/aen.12223 (2017).Article 

    Google Scholar 
    Bossart, J.L., Fetzner Jr., J.F. & Rawlins, J.E. Ghana Butterfly Biodiversity Project website. https://www.invertebratezoology.org/GhanaBfly/default.asp (2007).Butterflies and Moths of North America project. Butterflies and Moths of North America website. https://www.butterfliesandmoths.org/ (2021).Dauphin, D. & Dauphin, J. The Rio Grande Valley’s Nature Site website. http://www.thedauphins.net (2021).Eeles, P. UK Butterflies website. https://www.ukbutterflies.co.uk/index.php. (2021).Florida Museum of Natural History. Florida Museum website. https://www.floridamuseum.ufl.edu/ (2021).Khew, S. K. et al. Butterflies of Singapore website. https://butterflycircle.blogspot.com/ (2021).Kunte, K., Sondhi, S. & Roy, P. Butterflies of India, v. 3.24. Indian Foundation for Butterflies website. https://www.ifoundbutterflies.org (2021).Miller, S. & Morrison, C. Parasitoid-Caterpillar-Plant Interactions in the Americas website. https://caterpillars.myspecies.info/ (2021).National Biodiversity Network Trust. iNaturalistUK website. https://uk.inaturalist.org/ (2021).Nature Picture Library Limited. Nature Picture Library website. https://www.naturepl.com/blog/ (2021).Project Noah Team. Project Noah website. https://www.projectnoah.org/ (2021).Shiraiwa, K. Pteron World. The encyclopedia website of the butterflies. https://www.pteron-world.com/index.html (2021).Wagner, W. Lepidoptera and Their Ecology website. http://www.pyrgus.de/ (2021).Wahlberg, N. & Peña, C. Nymphalidae.net. website. http://www.nymphalidae.net/ (2021).Wikimedia Foundation, Inc. Wikimedia Commons website. https://commons.wikimedia.org/ (2021).Matsuura, M. Social Wasps of Japan in Color. (in Japanese) (Hokkaido university press 2015).IBM SPSS. SPSS Base 25.0 User’s Guide. (SPSS Inc., 2017). More

  • in

    Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures

    Phyla Bdellovibrionota, Fusobacteriota, and Myxococcota were present in the green microbial mat but in negligible quantities in the brown mat. The unique phyla detected in the brown mat, but not in the green microbial mat, included Caldatribacteriota, Thermodesulfobacteriota, Dictyoglomota, Elusimicrobiota, Thermotogota, Candidatus Calescamantes, Fervidibacteria, Hydrothermae, GAL15 and TA06. The Candidatus Caldatribacterium (phyla Caldatribacteriota), earlier named OP9 was also detected in this work. Using single-cell and metagenome sequencing, data elucidated that Ca. Caldatribacterium conducts anaerobic sugar fermentation and exhibited diverse glycosyl hydrolases, including endoglucanase37.Cyanobacteria and Chloroflexota were the main identified phyla in the green microbial mat. Because the hot spring is almost stagnant, undisturbed, and the water surface temperature ( More

  • in

    Population genomic signatures of the oriental fruit moth related to the Pleistocene climates

    Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 359, 183–195 (2004).CAS 

    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 

    Google Scholar 
    Abellán, P., Benetti, C. J., Angus, R. B. & Ribera, I. A review of Quaternary range shifts in European aquatic Coleoptera. Glob. Ecol. Biogeogr. 20, 87–100 (2011).
    Google Scholar 
    Geber, M. A. Ecological and evolutionary limits to species geographic ranges. Am. Naturalist 178, S1–S5 (2011).
    Google Scholar 
    Miller, T. E. X. et al. Eco-evolutionary dynamics of range expansion. Ecology 101, e03139 (2020).PubMed 

    Google Scholar 
    Clark, P. U. et al. The last glacial maximum. Science 325, 710 (2009).CAS 
    PubMed 

    Google Scholar 
    Bidegaray-Batista, L. et al. Imprints of multiple glacial refugia in the Pyrenees revealed by phylogeography and palaeodistribution modelling of an endemic spider. Mol. Ecol. 25, 2046–2064 (2016).CAS 
    PubMed 

    Google Scholar 
    Stone, G. N. et al. Tournament ABC analysis of the western Palaearctic population history of an oak gall wasp, Synergus umbraculus. Mol. Ecol. 26, 6685–6703 (2017).PubMed 

    Google Scholar 
    Walton, W., Stone, G. N. & Lohse, K. Discordant Pleistocene population size histories in a guild of hymenopteran parasitoids. Mol. Ecol. https://doi.org/10.1111/mec.16074 (2021).Grant, K. M. et al. Sea-level variability over five glacial cycles. Nat. Commun. 5, 5076 (2014).CAS 
    PubMed 

    Google Scholar 
    Ye, Z., Zhu, G., Chen, P., Zhang, D. & Bu, W. Molecular data and ecological niche modelling reveal the Pleistocene history of a semi-aquatic bug (Microvelia douglasi douglasi) in East Asia. Mol. Ecol. 23, 3080–3096 (2014).CAS 
    PubMed 

    Google Scholar 
    Wei, S. J. et al. Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol. Ecol. 24, 4094–4111 (2015).PubMed 

    Google Scholar 
    Petit, R. et al. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003).CAS 
    PubMed 

    Google Scholar 
    Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 

    Google Scholar 
    Hewitt, G. M. Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol. Ecol. 10, 537–549 (2001).CAS 
    PubMed 

    Google Scholar 
    Bradburd, G. S. & Ralph, P. L. Spatial population genetics: it’s about time. Annu. Rev. Ecol., Evol. Syst. 50, 427–449 (2019).
    Google Scholar 
    de Lafontaine, G., Ducousso, A., Lefevre, S., Magnanou, E. & Petit, R. J. Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Mol. Ecol. 22, 4397–4412 (2013).PubMed 

    Google Scholar 
    Hoban, S., Dawson, A., Robinson, J. D., Smith, A. B. & Strand, A. E. Inference of biogeographic history by formally integrating distinct lines of evidence: genetic, environmental niche and fossil. Ecography 42, 1991–2011 (2019).
    Google Scholar 
    Stone, G. N. et al. The phylogeographical clade trade: tracing the impact of human‐mediated dispersal on the colonization of northern Europe by the oak gallwasp Andricus kollari. Mol. Ecol. 16, 2768–2781 (2007).PubMed 

    Google Scholar 
    McGaughran, A., Laver, R. & Fraser, C. Evolutionary responses to warming. Trends Ecol. Evol. 36, 591–600 (2021).PubMed 

    Google Scholar 
    van Boheemen, L. A. & Hodgins, K. A. Rapid repeatable phenotypic and genomic adaptation following multiple introductions. Mol. Ecol. 29, 4102–4117 (2020).PubMed 

    Google Scholar 
    Ruegg, K. et al. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett. 21, 1085–1096 (2018).PubMed 

    Google Scholar 
    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).PubMed 

    Google Scholar 
    Sun, Y., Bossdorf, O., Grados, R. D., Liao, Z. & Müller-Schärer, H. Rapid genomic and phenotypic change in response to climate warming in a widespread plant invader. Glob. Change Biol. 26, 6511–6522 (2020).
    Google Scholar 
    Høye, T. T. Arthropods and climate change-arctic challenges and opportunities. Curr. Opin. Insect Sci. 41, 40–45 (2020).PubMed 

    Google Scholar 
    Maino, J. L., Kong, J. D., Hoffmann, A. A., Barton, M. G. & Kearney, M. R. Mechanistic models for predicting insect responses to climate change. Curr. Opin. Insect Sci. 17, 81–86 (2016).PubMed 

    Google Scholar 
    Hoffmann, A. A., Weeks, A. R. & Sgrò, C. M. Opportunities and challenges in assessing climate change vulnerability through genomics. Cell 184, 1420–1425 (2021).CAS 
    PubMed 

    Google Scholar 
    van der Geest, L. P. S. & Evenhuis, H. H. World Crop Pests 5: Tortricid Pests Their Biology, Natural Enemies and Control. Vol. 5 (Elsevier, 1991).Wan, F. H. et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat. Commun. 10, https://doi.org/10.1038/s41467-41019-12175-41469 (2019).Kirk, H., Dorn, S. & Mazzi, D. Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol. 13, 12 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Torriani, M. V., Mazzi, D., Hein, S. & Dorn, S. Structured populations of the oriental fruit moth in an agricultural ecosystem. Mol. Ecol. 19, 2651–2660 (2010).CAS 
    PubMed 

    Google Scholar 
    Song, W. et al. Multiple refugia from penultimate glaciations in East Asia demonstrated by phylogeography and ecological modelling of an insect pest. BMC Evolut. Biol. 18, 152 (2018).
    Google Scholar 
    SuomMainen, E. in Chromosome Today Vol. 2 (eds. Darlington, C. D. & Lewis, K. R.) 122–138 (Plenum Press, 1969).Nguyen, P. et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl Acad. Sci. USA 110, 6931–6936 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuková, I., Nguyen, P. & Marec, F. E. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48, 1083–1092 (2005).PubMed 

    Google Scholar 
    Cao, L. J. et al. Local climate adaptation and gene flow in the native range of two co-occurring fruit moths with contrasting invasiveness. Mol. Ecol. 30, 4204–4219 (2021).CAS 
    PubMed 

    Google Scholar 
    Caprioli, M. et al. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow. PLoS ONE 7, 7 (2012).
    Google Scholar 
    Krabbenhoft, T. J. & Turner, T. F. clock gene evolution: seasonal timing, phylogenetic signal, or functional constraint? J. Heredity 105, 407–415 (2014).
    Google Scholar 
    Zhang, J. et al. Comparative transcriptomes analysis of the wing disc between two silkworm strains with different size of wings. PLoS ONE 12, e0179560 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, Q. S., Arakane, Y., Beeman, R. W., Kramer, K. J. & Muthukrishnan, S. Functional specialization among insect chitinase family genes revealed by RNA interference. Proc. Natl Acad. Sci. USA 105, 6650–6655 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, C., Yang, H., Tang, B., Yang, W.-J. & Jin, D.-C. Identification and functional analysis of chitinase 7 gene in white-backed planthopper, Sogatella furcifera. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 208, 19–28 (2017).PubMed 

    Google Scholar 
    Yang, X. et al. Characterization and functional analysis of chitinase family genes involved in nymph-adult transition of Sogatella furcifera. Insect Sci. 28, 901–916 (2021).CAS 
    PubMed 

    Google Scholar 
    Pesch, Y. Y., Riedel, D., Patil, K. R., Loch, G. & Behr, M. Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci. Rep. 6, 18340 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charron, Y. et al. The serpin Spn5 is essential for wing expansion in Drosophila melanogaster. Int. J. Dev. Biol. 52, 933–942 (2008).CAS 
    PubMed 

    Google Scholar 
    Charlesworth, B., Campos, J. L. & Jackson, B. C. Faster-X evolution: theory and evidence from Drosophila. Mol. Ecol. 27, 3753–3771 (2018).CAS 
    PubMed 

    Google Scholar 
    Meisel, R. P. & Connallon, T. The faster-X effect: integrating theory and data. Trends Genet. 29, 537–544 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sayres, M. A. W. Genetic diversity on the sex chromosomes. Genome Biol. Evol. 10, 1064–1078 (2018).
    Google Scholar 
    Ellegren, H. The different levels of genetic diversity in sex chromosomes and autosomes. Trends Genet. 25, 278–284 (2009).CAS 
    PubMed 

    Google Scholar 
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).CAS 
    PubMed 

    Google Scholar 
    Pool, J. E. et al. Population genomics of sub-saharan Drosophila melanogaster: African diversity and non-african admixture. PLoS Genet. 8, e1003080–e1003080 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Sackton, T. B. et al. Positive selection drives faster-Z evolution in silkmoths. Evolution 68, 2331–2342 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Fraisse, C., Picard, M. A. L. & Vicoso, B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 8, https://doi.org/10.1038/s41467-017-01663-5 (2017).Sahara, K., Yoshido, A. & Traut, W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 20, 83–94 (2012).CAS 
    PubMed 

    Google Scholar 
    Ma, C. et al. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Mol. Ecol. 21, 4344–4358 (2012).PubMed 

    Google Scholar 
    Zhang, B., Edwards, O., Kang, L. & Fuller, S. Russian wheat aphids (Diuraphis noxia) in China: native range expansion or recent introduction? Mol. Ecol. 21, 2130–2144 (2012).CAS 
    PubMed 

    Google Scholar 
    Provan, J. & Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571 (2008).PubMed 

    Google Scholar 
    Saino, N. et al. Polymorphism at the Clock gene predicts phenology of long-distance migration in birds. Mol. Ecol. 24, 1758–1773 (2015).CAS 
    PubMed 

    Google Scholar 
    Zhang, S. P., Xu, X. L., Wang, W. W., Yang, W. Y. & Liang, W. Clock gene is associated with individual variation in the activation of reproductive endocrine and behavior of Asian short toed lark. Sci. Rep. 7, 8 (2017).CAS 

    Google Scholar 
    Liedvogel, M., Szulkin, M., Knowles, S. C. L., Wood, M. J. & Sheldon, B. C. Phenotypic correlates of Clock gene variation in a wild blue tit population: evidence for a role in seasonal timing of reproduction. Mol. Ecol. 18, 2444–2456 (2009).PubMed 

    Google Scholar 
    Saino, N. et al. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow. Sci. Rep. 7, 10 (2017).
    Google Scholar 
    e Silva, O. A. B. N., Bernardi, D., Botton, M. & Garcia, M. S. Biological characteristics of Grapholita molesta (Lepidoptera: Tortricidae) induced to diapause in laboratory. J. Insect Sci. 14, 217 (2014).
    Google Scholar 
    Renfree, M. B. & Shaw, G. Diapause. Annu. Rev. Physiol. 62, 353–375 (2000).CAS 
    PubMed 

    Google Scholar 
    Ochocki, B. M. & Miller, T. E. X. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 8 (2017).
    Google Scholar 
    Ochocki, B. M., Saltz, J. B. & Miller, T. E. X. Demography-dispersal trait correlations modify the eco-evolutionary dynamics of range expansion. Am. Naturalist 195, 231–246 (2020).
    Google Scholar 
    Travis, J. M. J. & Dytham, C. Dispersal evolution during invasions. Evolut. Ecol. Res. 4, 1119–1129 (2002).
    Google Scholar 
    Phillips, B. L., Brown, G. P. & Shine, R. Life-history evolution in range-shifting populations. Ecology 91, 1617–1627 (2010).PubMed 

    Google Scholar 
    Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. Proc. Natl Acad. Sci. USA 108, 5708–5711 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perkins, T. A., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).PubMed 

    Google Scholar 
    Phillips, B. L. & Perkins, T. A. Spatial sorting as the spatial analogue of natural selection. Theor. Ecol. 12, 155–163 (2019).
    Google Scholar 
    Angert, A. L., Bontrager, M. G. & Ågren, J. What do we really know about adaptation at range edges? Annu. Rev. Ecol., Evol. Syst. 51, 341–361 (2020).
    Google Scholar 
    Hoffmann, A. A. & Rieseberg, L. H. Revisiting the impact of inversions in evolution: From population genetic markers to drivers of adaptive shifts and speciation? Annu. Rev. Ecol. Evol. Syst. 39, 21–42 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33, 427–440 (2018).PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vurture, G. W. et al. GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics (Oxford, England) 33, https://doi.org/10.1093/bioinformatics/btx153 (2017).Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptivek-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinforma. 19, 460 (2018).CAS 

    Google Scholar 
    Neva, C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
    Google Scholar 
    Dudchenko et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).CAS 
    PubMed 

    Google Scholar 
    Cheng, T. et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 1, 1747–1756 (2017).PubMed 

    Google Scholar 
    Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinforma. 25, unit 4.10 (2009).
    Google Scholar 
    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).
    Google Scholar 
    Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).PubMed 

    Google Scholar 
    Brian, J. H. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
    Google Scholar 
    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knaus, B. J. & Grünwald, N. J. vcfr: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).CAS 
    PubMed 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. (Austin) 6, 80–92 (2012).CAS 

    Google Scholar 
    Zhang, C., Dong, S. S., Xu, J. Y., He, W. M. & Yang, T. L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).CAS 
    PubMed 

    Google Scholar 
    Gautier, M. & Vitalis, R. Inferring Population Histories Using Genome-Wide Allele Frequency Data. Mol. Biol. Evol. 30, 654–668 (2013).CAS 
    PubMed 

    Google Scholar 
    Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).CAS 
    PubMed 

    Google Scholar 
    Keightley, P. D. et al. Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol. Biol. Evol. 32, 239–243 (2015).CAS 
    PubMed 

    Google Scholar 
    Ahn, J. J., Yang, C. Y. & Jung, C. Model of Grapholita molesta spring emergence in pear orchards based on statistical information criteria. J. Asia-Pac. Entomol. 15, 589–593 (2012).
    Google Scholar 
    Amat, C., Bosch-Serra, D., Avilla, J. & Escudero Colomar, L. A. Different Population Phenologies of Grapholita molesta (Busck) in Two Hosts and Two Nearby Regions in the NE of Spain. Insects 12, https://doi.org/10.3390/insects12070612 (2021).Li, H. & Ralph, P. Local PCA shows how the effect of population structure differs along the genome. Genetics 211, 289–304 (2019).CAS 
    PubMed 

    Google Scholar 
    Todesco, M. et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584, 602–607 (2020).CAS 
    PubMed 

    Google Scholar 
    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei, S. J. et al. Population genomic signatures of the oriental fruit moth related to the Pleistocene climates. Dryad Digital Repository. https://doi.org/10.5061/dryad.6wwpzgmzm (2021). More

  • in

    Forest fragmentation impacts the seasonality of Amazonian evergreen canopies

    Peñuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).PubMed 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. Meteorol. 169, 156–173 (2013).
    Google Scholar 
    Wu, J. et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351, 972–976 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wright, J. S. et al. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA 114, 8481–8486 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 111, 16041–16046 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).ADS 
    CAS 

    Google Scholar 
    Maeda, E. E. et al. Consistency of vegetation index seasonality across the Amazon rainforest. Int. J. Appl. Earth Obs. Geoinf. 52, 42–53 (2016).ADS 

    Google Scholar 
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016). vol.CAS 
    PubMed 

    Google Scholar 
    Chen, X. et al. Vapor pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across amazonian evergreen broadleaved forest. Global Biogeochem. Cycles https://doi.org/10.13140/2.1.5019.5520 (2021).Hashimoto, H. et al. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 12, 684 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brando, P. M. et al. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc. Natl. Acad. Sci. USA 107, 14685–14690 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, J. et al. Seasonality of Central Amazon forest leaf flush using tower-mounted RGB camera. In AGU Fall Meeting https://doi.org/10.13140/2.1.5019.5520 (2014).Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025583 (2006).Restrepo-Coupe, N. et al. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. Meteorol. 182-183, 128–144 (2013).
    Google Scholar 
    Manoli, G., Ivanov, V. Y. & Fatichi, S. Dry-season greening and water stress in Amazonia: the role of modeling leaf phenology. J. Geophys. Res. Biogeosci. 123, 1909–1926 (2018).
    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).ADS 
    CAS 

    Google Scholar 
    Lopes, A. P. et al. Leaf flush drives dry season green-up of the Central Amazon. Remote Sens. Environ. 182, 90–98 (2016).ADS 

    Google Scholar 
    Smith, M. N. et al. Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. N. Phytol. 222, 1284–1297 (2019).
    Google Scholar 
    Mitchell Aide, T. Herbivory as a selective agent on the timing of leaf production in a tropical understory community. Nature 336, 574–575 (1988).
    Google Scholar 
    Myneni, R. B. et al. Large seasonal swings in leaf area of Amazon rainforests. Proc. Natl. Acad. Sci. USA 104, 4820–4823 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, J. et al. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Glob. Chang. Biol. 23, 1240–1257 (2017).ADS 
    PubMed 

    Google Scholar 
    Nunes, M. H. et al. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño. Nat. Commun. 12, 1526 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vasconcelos, H. L. & Luizão, F. J. Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecol. Appl. 14, 884–892 (2004).
    Google Scholar 
    Laurance, W. F. et al. Rain forest fragmentation and the proliferation of successional trees. Ecology 87, 469–482 (2006).PubMed 

    Google Scholar 
    Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).
    Google Scholar 
    Ewers, R. M. & Banks-Leite, C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS One 8, e58093 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).ADS 

    Google Scholar 
    Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. N. Phytol. 223, 1253–1266 (2019).CAS 

    Google Scholar 
    Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J. Ecol. 107, 318–333 (2019).
    Google Scholar 
    Signori-Müller, C. et al. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nat. Commun. 12, 2310 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coelho de Souza, F. et al. Evolutionary heritage influences Amazon tree ecology. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2016.1587 (2016).Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morton, D. C. et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506, 221–224 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Draper, F. C. et al. Amazon tree dominance across forest strata. Nat. Ecol. Evol. 5, 757–767 (2020).
    Google Scholar 
    Calders, K. et al. Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements. Agric. Meteorol. 203, 158–168 (2015).
    Google Scholar 
    Disney, M. Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. N. Phytol. 222, 1736–1741 (2019).
    Google Scholar 
    Tang, H. & Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 114, 2640–2644 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laurance, W. F. et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. Camb. Philos. Soc. 93, 223–247 (2018).PubMed 

    Google Scholar 
    Correction for Tang and Dubayah, Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 116, 9137 (2019).Ma, L. et al. Characterizing the three-dimensional spatiotemporal variation of forest photosynthetically active radiation using terrestrial laser scanning data. Agric. Meteorol. 301-302, 108346 (2021).
    Google Scholar 
    Laurans, M., Hérault, B., Vieilledent, G. & Vincent, G. Vertical stratification reduces competition for light in dense tropical forests. Ecol. Manag. 329, 79–88 (2014).
    Google Scholar 
    Garcia, M. N. et al. Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in Central Amazon. Oecologia https://doi.org/10.1007/s00442-021-04924-9 (2021).Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).ADS 
    CAS 

    Google Scholar 
    Brando, P. Tree height matters. Nat. Geosci. 11, 390–391 (2018).ADS 
    CAS 

    Google Scholar 
    Stark, S. C. et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett. 15, 1406–1414 (2012).PubMed 

    Google Scholar 
    Pyle, E. H. et al. Dynamics of carbon, biomass, and structure in two Amazonian forests. J. Geophys. Res. https://doi.org/10.1029/2007JG000592 (2008).Gorgens, E. B. et al. Resource availability and disturbance shape maximum tree height across the Amazon. Glob. Chang. Biol. 27, 177–189 (2021).ADS 
    PubMed 

    Google Scholar 
    Oliveira, R. S. et al. Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. N. Phytol. 230, 904–923 (2021).
    Google Scholar 
    Falster, D. S. & Westoby, M. Leaf size and angle vary widely across species: what consequences for light interception? N. Phytol. 158, 509–525 (2003).
    Google Scholar 
    Chavana-Bryant, C. et al. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. N. Phytol. 214, 1049–1063 (2017).CAS 

    Google Scholar 
    Brando, P. M. et al. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1839–1848 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, D., Momo Takoudjou, S. & Casella, E. LeWoS: a universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR. Methods Ecol. Evol. 11, 376–389 (2020).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).CAS 
    PubMed 

    Google Scholar 
    Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 9, 384–388 (2019).ADS 

    Google Scholar 
    Lohbeck, M. et al. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94, 1211–1216 (2013).PubMed 

    Google Scholar 
    Lambers, H. & Oliveira, R. S. in Plant Physiological Ecology (eds. Lambers, H. & Oliveira, R. S.) 385–449 (Springer International Publishing, 2019).Reich, P. B. Key canopy traits drive forest productivity. Proc. Biol. Sci. 279, 2128–2134 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Albiero-Júnior, A., Venegas-González, A., Camargo, J. L. C., Roig, F. A. & Tomazello-Filho, M. Amazon forest fragmentation and edge effects temporarily favored understory and midstory tree growth. Trees https://doi.org/10.1007/s00468-021-02172-1 (2021).Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    San-José, M., Werden, L., Peterson, C. J., Oviedo-Brenes, F. & Zahawi, R. A. Large tree mortality leads to major aboveground biomass decline in a tropical forest reserve. Oecologia https://doi.org/10.1007/s00442-021-05048-w (2021).Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang. 11, 442–448 (2021).Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA 112, 13172–13177 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3101–3112 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Park, J. Y. et al. Quantifying leaf phenology of individual trees and species in a tropical forest using unmanned aerial vehicle (UAV) images. Remote Sens. 11, 1534 (2019).ADS 

    Google Scholar 
    Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Egypt. J. Remote Sens. Space Sci. 1, 100002 (2020).
    Google Scholar 
    Coomes, D. A. et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ. 194, 77–88 (2017).ADS 

    Google Scholar 
    Calders, K. et al. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sens. Environ. 251, 112102 (2020).ADS 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 113, 10759–10768 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Almeida, D. R. A. et al. Persistent effects of fragmentation on tropical rainforest canopy structure after 20 yr of isolation. Ecol. Appl. 29, e01952 (2019).PubMed 

    Google Scholar 
    Wilkes, P. et al. Data acquisition considerations for terrestrial laser scanning of forest plots. Remote Sens. Environ. 196, 140–153 (2017).ADS 

    Google Scholar 
    Vincent, G. et al. Mapping plant area index of tropical evergreen forest by airborne laser scanning. A cross-validation study using LAI2200 optical sensor. Remote Sens. Environ. 198, 254–266 (2017).ADS 

    Google Scholar 
    Pimont, F., Allard, D., Soma, M. & Dupuy, J.-L. Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR. Remote Sens. Environ. 215, 343–370 (2018).ADS 

    Google Scholar 
    Vincent, G., Pimont, F. & Verley, P. A note on PAD/LAD Estimators Implemented in AMAPVox 1.7.https://doi.org/10.23708/1AJNMP (2021)Ross, J. The radiation regime and architecture of plant stands (Springer, 1981).Béland, M., Widlowski, J.-L., Fournier, R. A., Côté, J.-F. & Verstraete, M. M. Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements. Agric. Meteorol. 151, 1252–1266 (2011).
    Google Scholar 
    Almeida, D. R. Ade et al. Optimizing the remote detection of tropical rainforest structure with airborne LiDAR: leaf area profile sensitivity to pulse density and spatial sampling. Remote Sens. 11, 92 (2019).ADS 

    Google Scholar 
    Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Росс, Ю. & Ross, J. The radiation regime and architecture of plant stands (Springer Science & Business Media, 1981).Berry, Z. C. & Goldsmith, G. R. Diffuse light and wetting differentially affect tropical tree leaf photosynthesis. N. Phytol. 225, 143–153 (2020).CAS 

    Google Scholar 
    Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    USGS. LP DAAC—MCD18A1. https://lpdaac.usgs.gov/products/mcd18a1v006/ (2008).Maeda, E. E. et al. Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proc. Natl. Acad. Sci. USA 118, e2023787118 (2021).Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wild, J. et al. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric. Meteorol. 268, 40–47 (2019).
    Google Scholar 
    Camargo, J. L. C. & Kapos, V. Complex edge effects on oil moisture and microclimate in Central Amazonian forest. J. Trop. Ecol. 11, 205–221 (1995).
    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).Malhi, Y., Phillips, O. L. & Laurance, W. F. Forest-climate interactions in fragmented tropical landscapes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 345–352 (2004).
    Google Scholar  More

  • in

    Morpho-physiological adaptations of Leptocylindrus aporus and L. hargravesii to phosphate limitation in the northern Adriatic

    Nanjappa, D., Kooistra, W. H. & Zingone, A. A reappraisal of the genus Leptocylindrus (B acillariophyta), with the addition of three species and the erection of Tenuicylindrus gen. nov. J. Phycol. 49, 917–936 (2013).Article 

    Google Scholar 
    Hasle, G. & Syvertsen, E. (Academic Press, 1997).Gómez, F., Simão, T. L., Utz, L. R. & Lopes, R. M. The nature of the diatom Leptocylindrus mediterraneus (Bacillariophyceae), host of the enigmatic symbiosis with the stramenopile Solenicola setigera. Phycologia 55, 265–273 (2016).Article 

    Google Scholar 
    Ivančić, I. et al. Survival mechanisms of phytoplankton in conditions of stratification-induced deprivation of orthophosphate: Northern Adriatic case study. Limnol. Oceanogr. https://doi.org/10.4319/lo.2012.57.6.0000 (2012).Article 

    Google Scholar 
    Ivančić, I. et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions. Prog. Oceanogr. 146, 175–186. https://doi.org/10.1016/j.pocean.2016.07.003 (2016).ADS 
    Article 

    Google Scholar 
    Smodlaka, N. Primary production of the organic matter as an indicator of the eutrophication in the northern Adriatic sea. Sci. Total Environ. 56, 211–220. https://doi.org/10.1016/0048-9697(86)90325-6 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Degobbis, D. & Gilmartin, M. Nitrogen, phosphorus, and biogenic silicon budgets for the northern Adriatic Sea. Oceanol. Acta 13, 31–45 (1990).CAS 

    Google Scholar 
    Zavatarelli, M., Raicich, F., Bregant, D., Russo, A. & Artegiani, A. Climatological biogeochemical characteristics of the Adriatic Sea. J. Mar. Syst. 18, 227–263 (1998).Article 

    Google Scholar 
    Socal, G. et al. Hydrological and biogeochemical features of the Northern Adriatic Sea in the period 2003–2006. Mar. Ecol. 29, 449–468. https://doi.org/10.1111/J.1439-0485.2008.00266.X (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 115, 1–13. https://doi.org/10.1016/j.ecss.2012.08.023 (2012).ADS 
    Article 

    Google Scholar 
    Marić, D. et al. Phytoplankton response to climatic and anthropogenic influences in the north-eastern Adriatic during the last four decades. Estuar. Coast. Shelf Sci. 115, 98–112. https://doi.org/10.1016/J.Ecss.2012.02.003 (2012).ADS 
    Article 

    Google Scholar 
    Smodlaka Tanković, M. et al. Insights into the life strategy of the common marine diatom Chaetoceros peruvianus Brightwell. PLoS ONE 13, e0203634 (2018).Article 

    Google Scholar 
    Marić Pfannkuchen, D. et al. The ecology of one cosmopolitan, one newly introduced and one occasionally advected species from the genus Skeletonema in a highly structured ecosystem, the northern Adriatic. Microb. Ecol. 75, 674–687 (2018).Article 

    Google Scholar 
    Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51, 109–135 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).CAS 
    Article 

    Google Scholar 
    Price, N. M. & Morel, F. M. Role of extracellular enzymatic reactions in natural waters. (1990).Hoppe, H.-G. Phosphatase activity in the sea. Hydrobiologia 493, 187–200 (2003).CAS 
    Article 

    Google Scholar 
    Fields, M. W. et al. Sources and resources: Importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl. Microbiol. Biotechnol. 98, 4805–4816 (2014).CAS 
    Article 

    Google Scholar 
    Van Mooy, B. A. S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458, 69–72 (2009).ADS 
    Article 

    Google Scholar 
    Gašparović, B. et al. Adaptation of marine plankton to environmental stress by glycolipid accumulation. Mar. Environ. Res. 92, 120–132. https://doi.org/10.1016/J.Marenvres.2013.09.009 (2013).Article 
    PubMed 

    Google Scholar 
    Gašparović, B. et al. Factors influencing particulate lipid production in the East Atlantic Ocean. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 89, 56–67. https://doi.org/10.1016/j.dsr.2014.04.005 (2014).CAS 
    Article 

    Google Scholar 
    Finenko, Z. & Krupatkina-Akinina, D. Effect of inorganic phosphorus on the growth rate of diatoms. Mar. Biol. 26, 193–201 (1974).CAS 
    Article 

    Google Scholar 
    Lombardi, A. & Wangersky, P. Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar. Ecol. Prog. Ser. Oldendorf 77, 39–47 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    Pan, Y., Subba Rao, D. V. & Mann, K. H. Changes in domoic acid production and cellular chemical composition of the toxigenic diatom Pseudo-nitzschia miltiseries under phosphate limitation. J. Phycol. 32, 371–381 (1996).CAS 
    Article 

    Google Scholar 
    Liu, S., Guo, Z., Li, T., Huang, H. & Lin, S. Photosynthetic efficiency, cell volume, and elemental stoichiometric ratios in Thalassirosira weissflogii under phosphorus limitation. Chin. J. Oceanol. Limnol. 29, 1048 (2011).CAS 
    Article 

    Google Scholar 
    Alipanah, L. et al. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS ONE 13, e0193335 (2018).Article 

    Google Scholar 
    Guillard, R. R. L. in Culture of Marine Invertebrate Animals (eds W.L. Smith & M.H. Chanley) 29–60 (Plenum Press, New York, USA, 1975).Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen des Internationale Vereinigung für theoretische und angewandte Limnologie 9, 1–38 (1958).
    Google Scholar 
    Keller, M. D., Bellows, W. K. & Guillard, R. R. L. Microwave treatment for sterilization of phytoplankton culture media. J. Exp. Mar. Biol. Ecol. 117, 279–283. https://doi.org/10.1016/0022-0981(88)90063-9 (1988).Article 

    Google Scholar 
    Gračan, R., Mladineo, I., Kučinić, M., Lazar, B. & Lacković, G. Gastrointestinal helminth community of loggerhead sea turtle Caretta caretta in the Adriatic Sea. Dis. Aquat. Org. 99, 227–236 (2012).Article 

    Google Scholar 
    Anonymous, X. Proposals for a standardization of diatom terminology and diagnoses. Nova Hedwig. Beih. 53, 323–354 (1975).
    Google Scholar 
    Ross, R. et al. An amended terminology for the siliceous components of the diatom cell. (1979).Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).Article 

    Google Scholar 
    Alverson, A. J. Molecular systematics and the diatom species. Protist 159, 339 (2008).Article 

    Google Scholar 
    Macgillivary, M. & Kaczmarska, I. Survey of the Efficacy of a Short Fragment of the rbcL Gene as a Supplemental DNA Barcode for Diatoms. Vol. 58 (2011).Zimmermann, J., Jahn, R. & Gemeinholzer, B. Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org. Divers. Evol. 11, 173–192 (2011).Article 

    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    Article 

    Google Scholar 
    Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).CAS 
    Article 

    Google Scholar 
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    Article 

    Google Scholar 
    Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, e0146021. https://doi.org/10.1371/journal.pone.0146021 (2016).CAS 
    Article 

    Google Scholar 
    Lomas, M. W., Swain, A., Shelton, R. & Ammerman, J. W. Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton. Limnol. Oceanogr. 49, 2303–2310 (2004).ADS 
    Article 

    Google Scholar 
    Yamaguchi, H., Yamaguchi, M. & Adachi, M. Specific-detection of alkaline phosphatase activity in individual species of marine phytoplankton. Plankon Benthos Res. 1, 2014–2217 (2006).Article 

    Google Scholar 
    Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Snalysis. (Fisheries Resrach Board of Canada, 1972).Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37, 911–917 (1959).CAS 
    Article 

    Google Scholar 
    Gašparović, B., Kazazić, S. P., Cvitešić, A., Penezić, A. & Frka, S. Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection. J. Chromatogr. A 1409, 259–267 (2015).Article 

    Google Scholar 
    Gašparović, B., Kazazić, S. P., Cvitešić, A., Penezić, A. & Frka, S. Corrigendum to “Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection”[J. Chromatogr. A 1409 (2015) 259–267]. (2017).Fonda Umani, S. et al. Inter-annual variations of planktonic food webs in the northern Adriatic Sea. Sci. Total Environ. 353, 218–231. https://doi.org/10.1016/j.scitotenv.2005.09.016 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2015).Sprouffske, K. & Wagner, A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 17, 172. https://doi.org/10.1186/s12859-016-1016-7 (2016).Article 

    Google Scholar 
    Schlitzer, R. Ocean Data View. http://odv.awi.de (2018).Smodlaka Tanković, M. et al. Experimental evidence for shaping and bloom inducing effects of decapod larvae of Xantho poressa (Olivi, 1792) on marine phytoplankton. J. Mar. Biol. Assoc. United Kingdom 98, 1881–1887 (2018).Article 

    Google Scholar 
    Dyhrman, S. T. et al. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS ONE 7, e33768 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Novak, T. et al. Global warming and oligotrophication lead to increased lipid production in marine phytoplankton. Sci Total Environ 668, 171–183 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, P., Van Mooy, B. A., Heithoff, A. & Dyhrman, S. T. Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J. 5, 1057–1060 (2011).CAS 
    Article 

    Google Scholar 
    Abida, H. et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 167, 118–136 (2015).CAS 
    Article 

    Google Scholar 
    Ivančić, I. & Degobbis, D. Mechanisms of production and fate of organic phosphorus in the northern Adriatic Sea. Mar. Biol. 94, 117–125 (1987).
    Article 

    Google Scholar 
    Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).ADS 
    CAS 
    Article 

    Google Scholar 
    Hutchinson, G. E. The paradox of the plankton. Am Nat 95, 137–145 (1961).Article 

    Google Scholar  More

  • in

    Host-trailing satellite flight behaviour is associated with greater investment in peripheral visual sensory system in miltogrammine flies

    Chapman, R. F. Chemoreception: The significance of receptor numbers. Adv. Insect Physiol. 16, 247–356 (1982).CAS 

    Google Scholar 
    Greenfield, M. D. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication (Oxford University Press, 2002).
    Google Scholar 
    Wyatt, T. D. Pheromones and Animal Behavior: Chemical Signals and Signatures (Cambridge University Press, 2014).
    Google Scholar 
    Elgar, A. et al. Insect antennal morphology: The evolution of diverse solutions to odorant perception. Yale J. Biol. Med. 91, 457–469 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Dötterl, S. & Vereecken, N. J. The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can. J. Zool. 88, 668–697 (2010).
    Google Scholar 
    Leonard, A. S., Dornhaus, A. & Papaj, D. R. Why are floral signals complex, an outline of functional hypotheses. In Evolution of Plant-Pollinator Relationships (ed. Patiny, S.) (Cambridge University Press, USA, 2012).
    Google Scholar 
    Colazza, S., Peri, E., Salerno, G. & Conti, E. Host Searching by Egg Parasitoids: Exploitation of Host Chemical Cues. In Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma (eds Consoli, F. L. et al.) 97–147 (Springer, 2010).
    Google Scholar 
    Kelber, A. et al. Light intensity limits the foraging activity in nocturnal and crepuscular bees. Behav. Ecol. 17, 63–72 (2006).
    Google Scholar 
    Polidori, C., Jorge, A. & Ornosa, C. Antennal morphology and sensillar equipment vary with pollen diet specialization in Andrena bees. Arthropod Struct. Develop. 57, 100950 (2020).
    Google Scholar 
    Spaethe, J., Brockmann, A., Halbig, C. & Tautz, J. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften. 94, 733–739 (2007).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Warrant, E. J., Kelber, A., Wallén, R. & Wcislo, W. The physiological optics of ocelli in nocturnal and diurnal bees and wasps. Arthropod Struct. Dev. 35, 293–305 (2006).PubMed 

    Google Scholar 
    Keesey, I. W. et al. Inverse resource allocation between vision and olfaction across the genus Drosophila. Nat. Commun. 10, 1162. https://doi.org/10.1038/s41467-019-09087-z (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Keil, T. A. Morphology and Development of the Peripheral Olfactory Organs. In Insect Olfaction (ed. Hansson, B. S.) 5–47 (Springer, 1999).
    Google Scholar 
    Stöckl, A. et al. Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths. Sci. Rep. 6, 26041. https://doi.org/10.1038/srep26041 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Bulova, S., Purce, K., Khodak, P., Sulger, E. & O’Donnell, S. Into the black and back: The ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae). Sci. Nat. 103, 31. https://doi.org/10.1007/s00114-016-1353-4 (2016).CAS 
    Article 

    Google Scholar 
    Freelance, C. B. et al. The eyes have it: Dim-light activity is associated with the morphology of eyes but not antennae across insect orders. Biol. J. Linn. Soc. 134, 303–315 (2021).
    Google Scholar 
    Barrett, M. et al. Neuroanatomical differentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 207, 497–504 (2021).PubMed 

    Google Scholar 
    Newland, P. Physiological properties of afferents from tactile hairs on the hindlegs of the locust. J. Exp. Biol. 155, 487–503 (1991).CAS 
    PubMed 

    Google Scholar 
    Dahake, A., Stöckl, A., Foster, J., Sane, S. P. & Kelber, A. The roles of vision and antennal mechanoreception in hawkmoth flight control. eLife e37606 (2018).Sane, S. P., Dieudonné, A., Willis, M. A. & Daniel, T. L. Antennal mechanosensors mediate flight control in moths. Science 315, 863–866 (2007).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Land, M. F. Compound Eye Structure: Matching Eye to Environment. In Adaptive Mechanisms in the Ecology of Vision (eds Archer, S. et al.) 51–72 (Kluwer Academic Publishers, 1998).
    Google Scholar 
    Land, M. F. Visual acuity in insects. Ann. Rev. Entomol. 42, 147–177 (1997).CAS 

    Google Scholar 
    Land, M. F. & Nilsson, D. E. Animal Eyes (Oxford University Press, 2003).
    Google Scholar 
    Jander, U. & Jander, R. Allometry and resolution of bee eyes (Apoidea). Arthropod Struct. Dev. 30, 179–193 (2002).PubMed 

    Google Scholar 
    Berry, R., van Kleef, J. & Stange, G. The mapping of visual space by dragonfly lateral ocelli. J. Comp. Physiol. A 193, 495–513 (2007).
    Google Scholar 
    Hung, Y. S. & Ibbotson, M. R. Ocellar structure and neural innervation in the honeybee. Front. Neuroanat. https://doi.org/10.3389/fnana.2014.00006 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greiner, B. Visual adaptations in the night-active wasp Apoica pallens. J. Comp. Neurol. 495, 255–262 (2006).PubMed 

    Google Scholar 
    Klotz, J. H., Reid, B. L. & Gordon, W. C. Variation of ommatidia number as a function of worker size in Camponotus pennsylvanicus (DeGeer) (Hymenoptera, Formicidae). Insect Soc. 39, 233–236 (1992).
    Google Scholar 
    Narendra, A. et al. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc. R. Soc. B 278, 1141–1149 (2011).PubMed 

    Google Scholar 
    Piwczyński, M. et al. Molecular phylogeny of Miltogramminae (Diptera: Sarcophagidae): Implications for classification, systematics and evolution of larval feeding strategies. Mol. Phyl. Evol. 116, 49–60 (2017).
    Google Scholar 
    Spofford, M. G. & Kurczewski, F. E. Comparative larvipositional behaviors and cleptoparasitic frequencies of Nearctic species of Miltogrammini (Diptera, Sarcophagidae). J. Nat. Hist. 24, 731–755 (1990).
    Google Scholar 
    Alcock, J. The natural history of a miltogrammine fly, Miltogramma rectangularis (Diptera: Sarcophagidae). J. Kansas Entomol. Soc. 73, 208–219 (2000).
    Google Scholar 
    Newcomer, E. J. Notes on the habits of a digger wasp and its inquiline flies. Ann. Entomol. Soc. Am. 23, 552–563 (1930).
    Google Scholar 
    Ristich, S. S. The host relationship of a miltogrammid fly Senotainia trilineata (VDW). Ohio J. Sci. 56, 271–274 (1956).
    Google Scholar 
    Giordani, G. Contributo alla conoscenza della Senotainia tricuspis Meig, dittero sarcofagide, endoparassita dell’ape domestica. Boll. Istit. Entomol. Univ. Bologna 21, 61–84 (1955).
    Google Scholar 
    Povolný, D. & Verves, Yu. G. The flesh-flies of Central Europe (Insecta, Diptera, Sarcophagidae). Spixiana (Supplement) 24, 1–260 (1997).
    Google Scholar 
    Evans, H. E. & O’Neill, K. M. The sand wasps: Natural history and behavior (Harvard University Press, 2007).
    Google Scholar 
    O’Neill, K. M. Solitary Wasps: Natural History and Behavior (Cornell University Press, 2001).
    Google Scholar 
    Pape, T. The Sarcophagidae (Diptera) of Fennoscandia and Denmark. Fauna Entomol. Scand. 19, 1–203 (1987).
    Google Scholar 
    Polidori, C., Ouadragou, M., Gadallah, N. & Andrietti, F. Potential role of evasive flights and nest closures in an African sand wasp, Bembix sp. near capensis Lepeletier 1845 (Hymenoptera Crabronidae), against a parasitic satellite fly. Trop. Zool. 22, 1–14 (2009).
    Google Scholar 
    Polidori, C. Interactions between the social digger wasp, Cerceris rubida, and its brood parasitic flies at a Mediterranean nest aggregation. J. Insect Behav. 30, 86–102 (2017).
    Google Scholar 
    Pape, T. A new species of Hoplacephala Macquart (Diptera: Sarcophagidae) from Namibia, with a discussion of generic monophyly. Zootaxa 1183, 57–68 (2006).
    Google Scholar 
    Haynie, J. L. & Bryant, P. J. Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J. Exp. Zool. 237, 293–308 (1986).CAS 
    PubMed 

    Google Scholar 
    Hódar, J. A. The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecol. 17, 421–433 (1996).
    Google Scholar 
    Hogue, J. N. & Hawkins, C. P. Morphological variation in adult aquatic insects: Associations with developmental temperature and seasonal growth patterns. J. N. Am. Benthol. Soc. 10, 309–321 (1991).
    Google Scholar 
    Seidl, R. & Kaiser, W. Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees. J. Comp. Physiol. A 143, 17–26 (1981).
    Google Scholar 
    Stuckenberg, B. R. Antennal evolution in the Brachycera (Diptera), with a reassessment of terminology relating to the flagellum. Stud. Dipterol. 6, 33–48 (1999).
    Google Scholar 
    Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).CAS 
    PubMed 

    Google Scholar 
    Young, A. D. et al. Anchored enrichment dataset for true flies (order Diptera) reveals insights into the phylogeny of flower flies (family Syrphidae). BMC Evol. Biol. 16, 1–13 (2016).
    Google Scholar 
    Gillung, J. P. et al. Anchored phylogenomics unravels the evolution of spider flies (Diptera, Acroceridae) and reveals discordance between nucleotides and amino acids. Mol. Phyl. Evol. 128, 233–245 (2018).CAS 

    Google Scholar 
    Buenaventura, E., Szpila, K., Cassel, B. K., Wiegmann, M. & Pape, T. An anchored hybrid enrichment-based dataset challenges the traditional classification of flesh flies (Diptera: Sarcophagidae). Syst. Entomol. 45, 281–301 (2020).
    Google Scholar 
    Grzywacz, A. et al. Towards a new classification of Muscidae (Diptera): A comparison of hypotheses based on multiple molecular phylogenetic approaches. Syst. Entomol. 46, 508–525 (2021).
    Google Scholar 
    Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 

    Google Scholar 
    Yan, L. et al. A phylotranscriptomic framework for flesh fly evolution (Diptera, Calyptratae, Sarcophagidae). Cladistics https://doi.org/10.1111/cla.12449 (2020).Article 
    PubMed 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Maddison, W. P. & Maddison, D. R. Mesquite: A Modular System for Evolutionary analysis. Version 3.61. http://www.mesquiteproject.org (2019).Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341–1351 (1997).PubMed 

    Google Scholar 
    Hansen, T. F., Pienaar, J. & Orzack, S. H. A comparative method for studying adaptation to a randomly evolving environment. Evolution 62, 1965–1977 (2008).PubMed 

    Google Scholar 
    Labra, A., Pienaar, J. & Hansen, T. F. Evolution of thermal physiology in Liolaemus lizards: Adaptation, phylogenetic inertia and niche tracking. Am. Nat. 174, 204–220 (2009).PubMed 

    Google Scholar 
    Hansen, T. F. Use and Misuse of Comparative Methods in the Study of Adaptation. In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L. Z.) 351–379 (Springer, 2014).
    Google Scholar 
    Greiner, B., Ribi, W. A. & Warrant, E. J. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res. 316, 377–390 (2004).PubMed 

    Google Scholar 
    Warrant, E. J. et al. Nocturnal vision and landmark orientation in a tropical halictid bee. Curr. Biol. 14, 1309–1318 (2004).CAS 
    PubMed 

    Google Scholar 
    Somanathan, H., Kelber, A., Wallén, R., Borges, R. M. & Warrant, E. J. Visual ecology of Indian carpenter bees II: Visual adaptations to nocturnal and diurnal lifestyles. J. Comp. Physiol. A 195, 571–583 (2009).
    Google Scholar 
    Menzi, U. Visual adaptation in nocturnal and diurnal ants. J. Comp. Physiol. 160, 11–21 (1987).
    Google Scholar 
    Moser, J. C. et al. Eye size and behaviour of day and night-flying leafcutting ant alates. J. Zool. 264, 69–75 (2004).
    Google Scholar 
    Greiner, B. et al. Eye structure correlates with distinct foraging-bout timing in primitive ants. Curr. Biol. 17, R879–R880 (2007).CAS 
    PubMed 

    Google Scholar 
    Warrant, E. J. Seeing in the dark: Vision and visual behaviour in nocturnal bees and wasps. J. Exp. Biol. 211, 1737–1746 (2008).PubMed 

    Google Scholar 
    Leys, R. & Hogendoorn, K. Correlated evolution of mating behaviour and morphology in large carpenter bees (Xylocopa). Apidologie 39, 119–132 (2008).
    Google Scholar 
    Snyder, A. W. Physics of Vision in Compound Eyes. In Handbook of Sensory Physiology: Vision in Invertebrates (ed. Autrum, H. J.) (Springer, 1979).
    Google Scholar 
    McCorquodale, D. B. Digger wasp provisioning flights as a defense against a nest parasite, Senotainia trilineata. Can. J. Zool. 64, 1620–1627 (1986).
    Google Scholar 
    Gilbert, C. & Strausfeld, N. J. The functional organization of male-specific visual neurons in flies. J. Comp. Physiol. A 169, 395–411 (1991).CAS 
    PubMed 

    Google Scholar 
    Trischler, C., Boeddeker, N. & Egelhaaf, M. Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli. J. Comp. Physiol. A 193, 559–572 (2007).
    Google Scholar 
    Taylor, G. J. et al. The dual function of orchidbee ocelli as revealed by X-Ray microtomography. Curr. Biol. 26, 1319–1324 (2016).CAS 
    PubMed 

    Google Scholar 
    Hengstenberg, R. Multisensory Control in Insect Oculomotor Systems. In Visual Motion and Its Role in the Stabilization of Gaze (eds Miles, F. A. & Wallmann, J.) (Elsevier, 1993).
    Google Scholar 
    Schuppe, H. & Hengstenberg, R. Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response. J. Comp. Physiol. A 173, 143–149 (1993).
    Google Scholar 
    Crosskey, R. W. & Lane, R. P. Introduction to Diptera. In Medical Insects and Arachnids (eds Lane, R. P. & Crosskey, R. W.) (Chapman and Hall, 1993).
    Google Scholar 
    Abouzied, E. M. Antennal and maxillary palp sensillae of male and female Liosarcophaga babiyari Lehrer (Diptera: Sarcophagidae). Bull. Ent. Soc. Egypt 85, 29–48 (2008).
    Google Scholar 
    Wasserman, S. L. & Itagaki, H. The olfactory responses of the antenna and maxillary palp of the fleshfly, Neobellieria bullata (Diptera: Sarcophagidae), and their sensitivity to blockage of nitric oxide synthase. J. Insect Physiol. 49, 271–280 (2003).CAS 
    PubMed 

    Google Scholar 
    Khedre, A. M. Olfactory sensilla on the antennae and maxillary palps of the fleshfly Wohlfahrtia nuba (Wied.) (Diptera: Sarcophagidae). J. Egypt Ger. Soc. Zool. 24, 171–193 (1997).
    Google Scholar 
    Pezzi, M. et al. Ultrastructural morphology of the antenna and maxillary palp of Sarcophaga tibialis (Diptera: Sarcophagidae). J. Med. Entomol. 53, 807–814 (2016).CAS 
    PubMed 

    Google Scholar 
    Smallegange, R. C., Kelling, F. J. & Den Otter, C. J. Types and numbers of sensilla on antennae and maxillary palps of small and large houseflies, Musca domestica (Diptera, Muscidae). Microsc. Res. Tech. 71, 880–886 (2008).PubMed 

    Google Scholar 
    Zhang, D., Wang, Q. K., Yang, Y. Z., Chen, Y. O. & Li, K. Sensory organs of the antenna of two Fannia species (Diptera: Fanniidae). Parasitol. Res. 112, 2177–2185 (2013).CAS 
    PubMed 

    Google Scholar 
    Been, T. H., Schomaker, C. H. & Thomas, G. Olfactory sensilla on the antenna and maxillary palp of the sheep head fly, Hydrotaea irritans (Fallen) (Diptera: Muscidae). Int. J. Insect Morphol. Embryol. 17, 121–133 (1998).
    Google Scholar 
    Zacharuk, R. Y. & Antennal, S. Comparative Insect Physiology, Biochemistry and Pharmacology. In Pergamon Press (eds Kerkut, G. A. & Gilbert, L. I.) (1985).
    Google Scholar 
    Sukontason, K. et al. Antennal sensilla of some forensically important flies in families Calliphoridae Sarcophagidae and Muscidae. Micron 35, 671–679 (2004).PubMed 

    Google Scholar 
    Mamiya, A., Straw, A. D., Tómasson, E. & Dickinson, M. H. Active and passive antennal movements during visually guided steering in flying Drosophila. J Neurosci 31, 6900–6914 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuller, S. B., Straw, A. D., Peek, M. Y., Murray, R. M. & Dickinson, M. H. Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae. Proc. Nat. Acad. Sci. 111, E1182–E1191 (2014).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Nalbach, G. Extremely non-orthogonal axes in a sense organ for rotation: Behavioural analysis of the dipteran haltere system. Neuroscience 61, 149–163 (1994).CAS 
    PubMed 

    Google Scholar 
    Rozanski, A. N. et al. Differential investment in visual and olfactory brain regions is linked to the sensory needs of a wasp social parasite and its host. J. Comp. Neurol. https://doi.org/10.1002/cne.25242 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Crop–livestock integration enhanced soil aggregate-associated carbon and nitrogen, and phospholipid fatty acid

    Aggregate size distributionAs hypothesized, the improved soil aggregation was observed under ICL, which is attributed to the presence of animals resulting in higher organic matter contents of total C and N fractions that can significantly enhance soil health over time32. Moreover, well-aggregated soils as observed under ICL ( > 4 mm) at site 1 and NE (2–4 mm) at site 2 have a greater potential of retaining their structure and may have higher macropores, which facilitate sustained root growth than soils with low aggregation such as under CNT (corn–soybean without grazing or CC) in this study. It also explains the significance of ICL systems with no-tillage and undisturbed grassland, where the formation of stable macroaggregates may occur as a result of incorporation of plant residues, stimulation of root exudates and increased biological activity. Furthermore, it was noticed that ICL system not only enhanced the macroaggregates but accentuated the presence of microaggregates due to persistent binding agents, which are critical in SOC protection against microbial decomposition. When integrating grazing livestock into crop rotation, soil aggregation is typically improved under moderate and controlled grazing than the high intensity grazing systems33. Compared to the long-term sites ( > 30 years), short-term site 4 did not result in discernible effects of grazing or CC on soil aggregation. However, within this short-term study, grazed pasture mix was able to enhance aggregation of 1–2 and 2–4 mm sized aggregates compared with oats, oats with CC, oats with CC and grazing. To observe the influence of CC and grazing on  > 4 mm or  4 mm) under ICL at site 1 resulted in 1.3–1.5 times significantly higher SOC concentration than NE and CNT. The greater concentration of SOC and N in ICL and NE is attributed to the lack of soil disturbance, crop residue retention, and rhizodeposition, which reduces macroaggregate turnover rate14. At site 3, NE enhanced aggregate-associated C and N concentrations and performed significantly better than both ICL and CNT treatments. The higher C and N accrual in the NE than ICL and CNT, especially at site 3, can be due to massive root systems, long-term establishment and absence of cultivation, which contributes to enhanced soil quality, while reducing nutrient vulnerability to loss by oxidation18,36. For short-term study at site 4, insignificant differences in aggregate-associated SOC suggested that longer study period of at least  > 5 years is required for SOC to respond to grazing and cover crop management. The higher total N under ICL and NE can also be due to the presence of legumes, and brassicas in CC, which are effective at recycling N and may have helped in scavenging N.An overall increase in C and N cycling under ICL and NE systems has been attributed to ingested pasture being converted into urine and manure. Under these systems, livestock catalyze nutrient cycling by breakdown of complex plant molecules, greater soil incorporation and decomposition of plant residues and soil organic matter, which can maintain or even improve soil fertility by production of organic acids such as fulvic and humic acids6,8,19. Moreover, grazing stimulates the carbohydrate exudation from grass roots, which is mostly composed of polysaccharides, a C-O alkyl source37. The enhanced C concentration under ICL and NE can also be associated with higher MWD. Integrated system cool-season pasture and winter CC had significantly higher total C and N than the non-integrated continuous corn in previous study6. The results from another integrated system study7 showed that soybean and oat-Italian ryegrass CC increased total C (1.16 Mg ha−1 yr−1) and N stocks (0.12 Mg ha−1 yr−1) under 7 year study period. It is previously reported that ICL system contains labile organic matter pools10,38, subsequently showing higher C stocks and greater root densities near soil-surface, which promotes aggregate-associated C stabilization18,39,40, higher infiltration rates, thus providing likely benefits to soil function linked to erosion control and soil water relations41.Soil microbial community compositionTotal bacterial biomass, AM fungi, and PLFA were enhanced under NE, which can be result of accumulation of organic residues and higher pasture root mass7,32, pasture being grazed can promote exudation of organic compounds by roots, serving as energy sources for microorganisms. The consistent increase in microbial population under NE can also be result of increased SOC and N, however, the same does not hold true for ICL system, where despite observing greater SOC and N, a significant decrease in the microbial population at site 2 was noticed. The enhanced total PLFA under NE system at site 2 is due to concomitant increase in AM fungi, gram (−), fungal/bacterial ratio, and total bacterial biomass compared to ICL. The fungal to bacterial ratio was reduced under ICL compared to NE at sites 1 and 2, pertaining to relatively low abundance of the fungal fatty acid 18:2ɷ6 in grazed system as compared to unmanaged grassland. This finding corroborates the notion that livestock-grazing systems contain bacterial-based decomposition channels and are mostly dominated by gram (+) bacteria and that the fungal population is comparatively more important in decomposer food-webs of native grasslands. These results coincide with previous studies42,43. Moreover, the increase in fungal to bacterial ratios under NE system in contrast to ICL at sites 1 and 2 can relate to modifications in soil health with C sequestration, as fungal populations incline towards higher C assimilation proficiencies and greater storage of metabolized C than bacterial populations9,44. The grazing intensity also plays a significant role in bacterial and fungal presence. It is previously reported that high grazing intensity had greater bacterial PLFA concentration than the low grazing counterparts in grassland systems45. It is considered that under heavily grazed sites in grasslands, bacteria-based energy channels of decomposition dominate other microbial communities, while fungi can successfully enable decomposition in both slightly grazed and non-grazed systems43. Grazed pasture mix at short-term study site 4 showed 12–21% higher total PLFA than the oats, oats with CC, oats with CC + grazing systems. It is also possible that this increased total PLFA at site 4 under grazed pasture mix contributed to enhancing the 1–2 and 2–4 mm sized aggregates compared to other treatments. It indicated that though physicochemical properties can take longer ( > 8–15 years) in significantly responding to changes in management systems, soil microbial community and structure may show a rapid response (~ 3 years), thus it can be used as an early indicator while assessing the variations in soil health18,46.Overall, NE exemplified the undisturbed grazed mixture with a greater microbial population at sites 1, 2, and 3, when compared to other agricultural systems. Our findings coincide with previous studies where pasture systems performed better than the agricultural soil, in terms of, showing greater microbial biomass and fatty acid signatures related to bacterial and fungal populations, which is mostly attributed to greater surface coverage and absence of tillage practices in pasture systems9,47,48. Lower soil microbial communities under ICL system than native Cerrado pasture have been found previously because of reduced soil porosity and macropore continuity resulting in restricted gas diffusion and water movement18.Although the AM fungi abundance was not significant for sites 3 and 4, and significantly lower for ICL system than NE at sites 1 and 2, it should be taken into consideration that FAME analysis cannot reflect species-level changes for fungi and/or bacteria and the variations in microbial community structure for ICL system can be due to changes in abundance and distribution among microbial groups. For example, in a previous study9, while increased bacterial population was observed for continuous cotton compared to the ICL system, however, pyrosequencing for bacterial diversity assessment demonstrated disparities between both systems, where greater Proteobacteria was seen under ICL system than continuous cotton. Numerous factors such as degree of disturbance, pH level, bulk density, porosity, soil water content, C and N distribution, and residue positioning regulate the amount of bacterial and fungal biomass in agroecosystems18,49. Arbuscular mycorrhizal fungi are responsible for formation of macroaggregates ( > 0.25 mm) by producing a glycoprotein called glomalin, which is present abundantly in natural and agricultural systems. However, increased grazing intensity, use of excess fertilizers and fungicides can directly or indirectly reduce mycorrhizal population by influencing soil organisms accountable for converting soil organic matter into plant nutrients38. Animals may also cause moderate soil compaction affecting the fungal biodiversity and soil pore space6,38.Relationship among measured soil propertiesBased on PCA, it is derived that integrated crop–livestock and natural ecosystem of native grassland can provide substrate for the microbial composition and enhance aggregate-associated C and N fractions. A positive correlation between SOC and microbial communities suggested the inclination of microbes to affect SOC and N turnover and vice-versa through interaction with crop–livestock grazing, vegetation, and soil properties. Fungi exhibited insignificant responses to changes in soil pH and bulk density than bacteria because chitinous cell walls make fungi more resistant and resilient to variations in soil conditions50,51. A reduction in gram (−) bacteria may indicate the presence of stressed soil conditions due to pH and increased bulk density, which has previously been observed in other studies52,53. A significant negative correlation between bulk density and SOC, N, gram (−), actinomycetes, total bacteria, and total PLFA indicated that the microorganisms influenced the soil compaction and related SOC and N. Moreover, positive correlation between SOC and microbial composition suggested that microbes can influence C sequestration in the soil via a shift in community structure. Microbial composition is influenced by soil C, whereas N is a critical biogenic element that improves microbial growth and their ability to utilize soil C54. More

  • in

    Tropical forest restoration under future climate change

    Tropical forest restoration areaTo determine the geographic distribution of land available for tropical forest restoration, we used a widely applied global forest restoration map2. This dataset limits potential restoration area to regions that are biogeophysically suitable for forest, and excludes croplands. To define the tropics, we masked the potential restoration map with the following three ecoregions from the Ecoregions2017 vegetation map34: ‘Tropical and Subtropical Moist Broadleaf Forests’, ‘Tropical and Subtropical Dry Broadleaf Forests’, and ‘Tropical and Subtropical Coniferous Forests’. The resulting restoration mask includes all tropical and subtropical forest ecoregions with some that are outside the tropical latitudes, but excludes wetlands and high mountain areas (Extended Data Fig. 4). The restoration mask was converted from a presence–absence raster at its native ~350 m resolution to a 0.5° geographical grid by aggregating to the fraction of each 0.5° grid cell available for restoration. Any uncertainties in the allocation of restorable area, distinguishing crop and pasture, and forest to non-forest classification from the original forest restoration map were also implicitly included in our restoration extent. While the resulting restoration area is relatively small, its spatial distribution is representative for most of the humid tropics.To prioritize for carbon uptake capacity, we selected all grid cells with restoration area greater than 1 ha and ranked these by carbon storage density (above ground and below ground; g m−2) at 2100 under the default scenario. We then selected the top n grid cells with greatest carbon density until cumulatively 64 Mha of restored area was reached. Similarly, for cost we calculated the restoration cost for each grid cell following ref. 27 and sorted the grid cells by their cost, beginning with the lowest value, until 64 Mha were reached. To consider the combined impact of carbon uptake and restoration costs, we divided our restoration cost layer by the total carbon uptake per grid cell from restoration and ranked the cost per carbon uptake from cheapest to most expensive, selecting the n grid cells with the lowest values until 64 Mha were reached. We then used the selected grid cells to mask carbon uptake under the various climate change and CO2 fertilization scenarios. To factor in climate change in the prioritization process, we used the same restoration cost layer but used the carbon density and total carbon uptake layers with climate change impacts in CO22014 for the year 2100.Vegetation modelWe used the LPJ-LMfire DGVM19, a version of the Lund-Potsdam-Jena DGVM (LPJ)35. LPJ-LMfire is driven by gridded fields of climate, soil texture and topography at 0.5° resolution, and with a time series of atmospheric CO2 concentrations (see Supplementary Information). To simulate land use, LPJ-LMfire separates grid cells into fractional tiles of ‘unmanaged’ land that has never been under land use, ‘managed’ land, and areas ‘recovering’ from land use36. Restoration removes land from the ‘managed’ tile and transfers it to the ‘recovering’ tile; land is never reallocated to the ‘unmanaged’ tile. The tiles are treated differently with respect to wildfire: on the ‘unmanaged’ and ‘recovering’ tiles, lightning-ignited wildfires are not suppressed, while fire is excluded from ‘managed’ tiles. For our analysis of total carbon (above and below ground), we only used the ‘recovering’ tile.Climate dataClimate forcing used to drive LPJ-LMfire comes from the output of 13 GCMs in simulations produced for the CMIP6 Supplementary Table 2 (refs. 37,38). For each GCM, we obtained simulations for the historical period (1850–2014) and four future SSPs (SSP1-26, SSP2-45, SSP3-70 and SSP5-85 covering 2015–2100). We used only GCMs that archived all seven climate variables needed to run LPJ-LMfire: 2 m temperature (tas, K), precipitation (pr, kg m−2 s−1), convective precipitation (prc, kg m−2 s−1), cloud cover (clt, %), minimum and maximum daily temperature (tmin, tmax, K), and 10 m surface wind speed (sfcWind, m s−1) (Supplementary Fig. 2). For each model, we concatenated the historical simulation with a future scenario, calculated anomalies with respect to 1971–1990 and added those to observed 30 year climatologies to create bias-corrected monthly climate time series covering 1850–2100 (see Supplementary Information). Where multiple ensemble members were available from a GCM, we chose the first simulation.Simulation protocolWe drove LPJ-LMfire with the GCM simulations described in the previous section, and the same atmospheric CO2 concentrations and land use boundary conditions as those used in the CMIP6 simulations. All forcings cover the historical period (1850–2014) and the individual future SSPs (2015–2100). Each LPJ-LMfire simulation was initialized for 1,020 years with 1850 atmospheric CO2 and land use, and the 1850s climatology of each CMIP6 GCM. This was followed by simulations with transient climate from 1850 to 2100 for each CMIP6 GCM under each of the four SSPs. For each the 13 CMIP6 GCMs running each of the SSP scenarios, we conducted two CO2 experiments (CO22014 and CO2free) and two fire experiments. In total, we ran 221 vegetation model simulations covering the range of future climate, CO2 and fire scenarios.Atmospheric CO2 in these simulations either followed the CMIP6 historical and SSP trajectory for the entire 1850–2100 run (CO2free), or followed the historical CMIP6 trajectory until 2014, and was then fixed at 2014 concentrations for the remainder of the simulation (CO22014). This allowed us to test the vegetation response to future climate change in the absence of additional CO2 fertilization of photosynthesis. Our simulations ended with the standard SSP projections in 2100, 80 years after restoration begins. We therefore could not assess the fate of restored carbon beyond that point. On the basis of the trends in the multi-model mean carbon uptake rates, we estimated that only under severe climate change will carbon storage be reduced shortly after 2100 in CO22014.In control simulations, land use followed the historical CMIP6 trajectory until 2014, after which it was fixed under 2014 conditions until 2100. Land use after 2014 was fixed at 2014 levels because it is the last year with common land use between all scenarios, which allowed us to identify future climate change impacts on restoration permanence and avoid influences from land abandonment and expansion prescribed in the different SSP scenarios.In the restoration experiments, land use also followed the historical CMIP6 trajectory until 2014, but then diverged: cropland extent remained at 2014 levels until 2100, while pasture (or non-cropland land use) remained constant from 2014 to 2020 and was then linearly reduced by the restoration area from 2020 to 2030. From 2030, land use remained constant at that lower level until 2100. The amount of restoration in a grid cell was limited by the pasture area, that is, once all of the available pasture area had been restored, no additional restoration took place. Because it is highly unlikely to be practical to restore the entire target area of tropical forest at once, we linearly increased the restoration area from 2020 to 2030, which caused an expansion-driven increase in carbon uptake over the 11 year period (Extended Data Fig. 1). This means that two factors controlled carbon uptake over time in our experimental design: first the expansion of the restoration area, accounting for approximately 19.7 Pg C, and second the long-term effect of carbon accumulation (Extended Data Fig. 5).Primary climate change impacts, such as drought and heat stress that reduce carbon uptake, were implicitly included in the climate forcing data, while secondary climate change impacts from wildfire were simulated by LPJ-LMfire on the basis of climate. To quantify the contribution of wildfire on the carbon storage from restoration, we repeated the simulations described above with fires turned off in LPJ-LMfire.Restoration opportunity indexWe created a restoration opportunity index to evaluate the suitability of locations for restoration on the basis of the ability for restoration to result in net carbon uptake over 2020–2100 and to store this carbon without episodes of major loss. For each of the 13 realizations of the four SSPs in the CO22014 experiment, we identified all restoration grid cells (1) that had a net carbon uptake by 2100 relative to 2030, and (2) where temporal reductions in total carbon storage over 2030–2100 were More