Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267â282 (2005).ArticleÂ
Google ScholarÂ
Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).ADSÂ
ArticleÂ
Google ScholarÂ
Danell, K. What Is the Arctic? In Which Ways Is the Arctic Different? In Arctic Ecology (ed. Thomas, D. N.) 1â22 (University of Helsinki, 2021).
Google ScholarÂ
Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles 23(2), 1â11. https://doi.org/10.1029/2008GB003327 (2009).CASÂ
ArticleÂ
Google ScholarÂ
Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. U.S.A. 117(34), 20438â20446. https://doi.org/10.1073/pnas.1916387117 (2020).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24(9), 1028â1042. https://doi.org/10.1177/0959683614538073 (2014).ADSÂ
ArticleÂ
Google ScholarÂ
Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Chang. 8(10), 907â913. https://doi.org/10.1038/s41558-018-0271-1 (2018).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
Yu, Z., Beilman, D. W. & Jones, M. C. Sensitivity of Northern Peatland carbon dynamics to holocene climate change. Carbon Cycl. Northern Peatl. C https://doi.org/10.1029/2008GM000822 (2009).ArticleÂ
Google ScholarÂ
Svendsen, J. & Mangerud, J. Paleoclimatic inferences from glacial fluctuations on Svalbard during the last 20 000 years. Clim. Dyn. 6(3â4), 213â220. https://doi.org/10.1007/BF00193533 (1992).ArticleÂ
Google ScholarÂ
Farnsworth, W. R. et al. Holocene glacial history of Svalbard: Status, perspectives and challenges. Earth Sci. Rev. 208(April), 103249. https://doi.org/10.1016/j.earscirev.2020.103249 (2020).CASÂ
ArticleÂ
Google ScholarÂ
DâAndrea, W. J. et al. Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40(11), 1007â1010. https://doi.org/10.1130/G33365.1 (2012).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
Miller, G. H., Landvik, J. Y., Lehman, S. J. & Southon, J. R. Episodic Neoglacial snowline descent and glacier expansion on Svalbard reconstructed from the 14C ages of ice-entombed plants. Quatern. Sci. Rev. 155, 67â78. https://doi.org/10.1016/j.quascirev.2016.10.023 (2017).ADSÂ
ArticleÂ
Google ScholarÂ
Røthe, T. O. et al. Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quatern. Sci. Rev. 109, 111â125. https://doi.org/10.1016/j.quascirev.2014.11.017 (2015).ArticleÂ
Google ScholarÂ
van der Bilt, W. G. M. et al. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quatern. Sci. Rev. 126, 201â218. https://doi.org/10.1016/j.quascirev.2015.09.003 (2015).ADSÂ
ArticleÂ
Google ScholarÂ
Allaart, L. et al. Glacial history of the Ă
sgardfonna Ice Cap, NE Spitsbergen, since the last glaciation. Quatern. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106717 (2021).ArticleÂ
Google ScholarÂ
Humlum, O. et al. Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. Holocene 15(3), 396â407. https://doi.org/10.1191/0959683605hl817rp (2005).ADSÂ
ArticleÂ
Google ScholarÂ
Yang, Z., Yang, W., Yuan, L., Wang, Y. & Sun, L. Evidence for glacial deposits during the Little Ice Age in Ny-Alesund, western Spitsbergen. J. Earth Syst. Sci. https://doi.org/10.1007/s12040-019-1274-7 (2020).ArticleÂ
Google ScholarÂ
AMAP – ARCTIC MONITORING AND ASSESSMENT PROGRAMME. (2019). Arctic Climate Change Update 2019: An update to key findings of Snow, Water, Ice, and Permafrost in the Arctic (SWIPA) 2017. Assessment Report, 12. https://www.amap.no/documents/doc/amap-climate-change-update-2019/1761.Nordli, Ă. et al. Polar Res. 39, 3614. https://doi.org/10.33265/polar.v39.3614 (2020).ArticleÂ
Google ScholarÂ
Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. Temperature and precipitation development at svalbard 1900â2100. Adv. Meteorol. 2011, 1â14. https://doi.org/10.1155/2011/893790 (2011).ArticleÂ
Google ScholarÂ
Van Der Knaap, W. O. (1988). A pollen diagram from Broggerhalvoya, Spitsbergen: changes in vegetation and environment from ca. 4400 to ca. 800 BP. Arctic & Alpine Research, 20(1), 106â116. Doi: https://doi.org/10.2307/1551703Rozema, J. et al. A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000â6000 years BP) from Svalbard. Plant Ecol. 182(1â2), 155â173. https://doi.org/10.1007/s11258-005-9024-0 (2006).ArticleÂ
Google ScholarÂ
Nakatsubo, T. et al. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration. Polar Sci. 9(2), 267â275. https://doi.org/10.1016/j.polar.2014.12.002 (2015).ADSÂ
ArticleÂ
Google ScholarÂ
MagnĂşsson, B., MagnĂşsson, S. & Fridriksson, S. (2009). Developments in plant colonization and succession on Surtsey during 1999â2008. Surtsey Res. pp. 57â76.Zwolicki, A., ZmudczyĹska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36(3), 363â372. https://doi.org/10.1007/s00300-012-1265-5 (2013).ArticleÂ
Google ScholarÂ
Leblans, N. I. W. et al. Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island Surtsey. Biogeosciences 11(22), 6237â6250. https://doi.org/10.5194/bg-11-6237-2014 (2014).ADSÂ
ArticleÂ
Google ScholarÂ
ZmudczyĹska-Skarbek, K. et al. Transfer of ornithogenic influence through different trophic levels of the Arctic terrestrial ecosystem of Bjørnøya (Bear Island), Svalbard. Soil Biol. Biochem. 115, 475â489. https://doi.org/10.1016/j.soilbio.2017.09.008 (2017).CASÂ
ArticleÂ
Google ScholarÂ
Hodkinson, I. D., Coulson, S. J. & Webb, N. R. Community assembly along proglacial chronosequences in the high arctic: vegetation and soil development in north-west Svalbard. J. Ecol. 91(4), 651â663. https://doi.org/10.1046/j.1365-2745.2003.00786.x (2003).ArticleÂ
Google ScholarÂ
Ravolainen, V. et al. High Arctic ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research. Ambio 49(3), 666â677. https://doi.org/10.1007/s13280-019-01310-x (2020).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
van der Wal, R. & Brooker, R. W. Mosses mediate grazer impacts on grass abundance in arctic ecosystems. Funct. Ecol. 18(1), 77â86. https://doi.org/10.1111/j.1365-2435.2004.00820.x (2004).ArticleÂ
Google ScholarÂ
Vanderpuye, A. W., Elvebakk, A. & Nilsen, L. Plant communities along environmental gradients of high-arctic mires in Sassendalen Svalbard. J. Veg. Sci. 13(6), 875â884. https://doi.org/10.1111/j.1654-1103.2002.tb02117.x (2002).ArticleÂ
Google ScholarÂ
Le Moullec, M., Pedersen, Ă
. Ă., Stien, A., Rosvold, J. & Hansen, B. B. A century of conservation: the ongoing recovery of svalbard reindeer. J. Wildl. Manag. 83(8), 1676â1686. https://doi.org/10.1002/jwmg.21761 (2019).ArticleÂ
Google ScholarÂ
Garfelt-Paulsen, I. M. et al. Donât go chasing the ghosts of the past: habitat selection and site fidelity during calving in an Arctic ungulate. Wildl. Biol. https://doi.org/10.2981/wlb.00740 (2021).ArticleÂ
Google ScholarÂ
Moreau, M., Mercier, D., Laffly, D. & Roussel, E. Impacts of recent paraglacial dynamics on plant colonization: a case study on Midtre LovĂŠnbreen foreland, Spitsbergen (79°N). Geomorphology 95(1â2), 48â60. https://doi.org/10.1016/j.geomorph.2006.07.031 (2008).ADSÂ
ArticleÂ
Google ScholarÂ
Moreau, M., Laffly, D. & Brossard, T. Recent spatial development of Svalbard strandflat vegetation over a period of 31 years. Polar Res. 28(3), 364â375. https://doi.org/10.1111/j.1751-8369.2009.00119.x (2009).ArticleÂ
Google ScholarÂ
Wietrzyk, P., WČŠgrzyn, M. & Lisowska, M. Vegetation diversity and selected abiotic factors influencing the primary succession process on the foreland of GĂĽsbreen Svalbard. Pol. Polar Res. 37(4), 493â509. https://doi.org/10.1515/popore-2016-0026 (2016).ArticleÂ
Google ScholarÂ
Divine, D. et al. Thousand years of winter surface air temperature variations in Svalbard and northern norway reconstructed from ice-core data. Polar Res. 30(SUPPL.1), 1â12. https://doi.org/10.3402/polar.v30i0.7379 (2011).ADSÂ
ArticleÂ
Google ScholarÂ
Van Pelt, W. et al. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957â2018). Cryosphere 13(9), 2259â2280. https://doi.org/10.5194/tc-13-2259-2019 (2019).ADSÂ
ArticleÂ
Google ScholarÂ
Johansen, B. E., Karlsen, S. R. & Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 48(1), 47â63. https://doi.org/10.1017/S0032247411000647 (2012).ArticleÂ
Google ScholarÂ
Norwegian Polar Institute. Available online at: https://npolar.no (2021).Norwegian Meteorological Institute. Available online at: https://seklima.met.no (2019).Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468(November), 129â141. https://doi.org/10.1016/j.palaeo.2016.11.039 (2017).ArticleÂ
Google ScholarÂ
Estop-AragonĂŠs, C. et al. Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands. Soil Biol. Biochem. 118, 115â129. https://doi.org/10.1016/j.soilbio.2017.12.010 (2018).CASÂ
ArticleÂ
Google ScholarÂ
Blaauw, M., Christen, J. A. & Aquino-Lopez, M. A. rplum: Bayesian Age-Depth Modelling of Cores Dated by Pb-210. R package version 0.2.2. https://CRAN.R-project.org/package=rplum (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020).Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 25(1), 101â110. https://doi.org/10.1023/A:1008119611481 (2001).ADSÂ
ArticleÂ
Google ScholarÂ
Booth, R. K., Lamentowicz, M. & Charman, D. J. Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies. Mires and Peat 7(2), 1â7 (2010).
Google ScholarÂ
Charman, D., Hendon, D. & Woodland, W. A. The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats (Quaternary Research Association, 2000).
Google ScholarÂ
Siemensma, F. J. Microworld, world of Amoeboid Organisms. World-Wide Electronic Publication, Kortenhoef, the Netherlands. Available online at: https://www.arcella.nl (2019).Payne, R. J. & Mitchell, E. A. D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42(4), 483â495. https://doi.org/10.1007/s10933-008-9299-y (2009).ADSÂ
ArticleÂ
Google ScholarÂ
Swindles, G. T. et al. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data. Q. Sci. Rev. 120, 107â117. https://doi.org/10.1016/j.quascirev.2015.04.019 (2015).ADSÂ
ArticleÂ
Google ScholarÂ
Amesbury, M. J. et al. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quatern. Sci. Rev. 152, 132â151. https://doi.org/10.1016/j.quascirev.2016.09.024 (2016).ADSÂ
ArticleÂ
Google ScholarÂ
Amesbury, M. J. et al. Towards a Holarctic synthesis of peatland testate amoeba ecology: Development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data. Quatern. Sci. Rev. 201, 483â500. https://doi.org/10.1016/j.quascirev.2018.10.034 (2018).ADSÂ
ArticleÂ
Google ScholarÂ
Zhang, H. et al. Testate amoeba as palaeohydrological indicators in the permafrost peatlands of north-east European Russia and Finnish Lapland. J. Quat. Sci. 32(7), 976â988. https://doi.org/10.1002/jqs.2970 (2017).ArticleÂ
Google ScholarÂ
Sim, T. G. et al. Pathways for Ecological Change in Canadian High Arctic Wetlands Under Rapid Twentieth Century Warming. Geophys. Res. Lett. 46(9), 4726â4737. https://doi.org/10.1029/2019GL082611 (2019).ADSÂ
ArticleÂ
Google ScholarÂ
Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecol. Lett. 15(2), 164â175. https://doi.org/10.1111/j.1461-0248.2011.01716.x (2012).ArticleÂ
PubMedÂ
Google ScholarÂ
Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nat. Clim. Chang. 4(1), 51â55. https://doi.org/10.1038/nclimate2058 (2014).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
Bjorkman, A. D. et al. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 49(3), 678â692. https://doi.org/10.1007/s13280-019-01161-6 (2020).MathSciNetÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Egli, M., Mavris, C., Mirabella, A. & Giaccai, D. Soil organic matter formation along a chronosequence in the Morteratsch proglacial area (Upper Engadine, Switzerland). CATENA 82(2), 61â69. https://doi.org/10.1016/j.catena.2010.05.001 (2010).CASÂ
ArticleÂ
Google ScholarÂ
Prach, K. & Rachlewicz, G. Succession of vascular plants in front of retreating glaciers in central Spitsbergen. Polish Polar Research 33(4), 319â328. https://doi.org/10.2478/v10183-012-0022-3 (2012).ArticleÂ
Google ScholarÂ
LĂĽg, J. Special Peat Formations in Svalbard. Acta Agric. Scand. 30(2), 205â210. https://doi.org/10.1080/00015128009435267 (1980).ArticleÂ
Google ScholarÂ
Serebryannyy, L. P., Tishkov, A. A., Malyasova, Y. S., Solomina, O. N. & Ilâves, E. O.,. Reconstruction of the development of vegetation in Arctic high latitudes. Polar Geogr. Geol. 9(4), 308â320. https://doi.org/10.1080/10889378509377261 (1985).ArticleÂ
Google ScholarÂ
Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Punning, Y. M. K. Glacioclimatic conditions in the european arctic in the late holocene. Polar Geogr. Geol. 11(1), 50â57. https://doi.org/10.1080/10889378709377310 (1987).ArticleÂ
Google ScholarÂ
Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Troitskiy, Y. M. K. Changes in glacioclimatic conditions on svalbard during the subboreal period. Polar Geogr. Geol. 12(3), 221â226. https://doi.org/10.1080/10889378809377366 (1988).ArticleÂ
Google ScholarÂ
LĂĽg, J. Peat Accumulation in Steep Hills at Alkhornet Spitsbergen. Acta Agric. Scand. 40(3), 217â219. https://doi.org/10.1080/00015129009438554 (1990).ArticleÂ
Google ScholarÂ
Oliva, M. et al. Sedimentological characteristics of ice-wedge polygon terrain in adventdalen (Svalbard) environmental and climatic implications for the late Holocene. Solid Earth 5(2), 901â914. https://doi.org/10.5194/se-5-901-2014 (2014).ADSÂ
ArticleÂ
Google ScholarÂ
Van der Knaap, W. O. Past Vegetation and Reindeer on Edgeoya (Spitsbergen) Between c. 7900 and c. 3800 BP, Studied by Means of Peat Layers and Reindeer Faecal Pellets. J. Biogeogr. 16(4), 379. https://doi.org/10.2307/2845229 (1989).ArticleÂ
Google ScholarÂ
Røthe, T. O., Bakke, J., Støren, E. W. N. & Bradley, R. S. Reconstructing holocene glacier and climate fluctuations from lake sediments in VĂĽrfluesjøen Northern Spitsbergen. Front. Earth Sci. 6(July), 1â20. https://doi.org/10.3389/feart.2018.00091 (2018).ArticleÂ
Google ScholarÂ
Alsos, I. G. et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene 26(4), 627â642. https://doi.org/10.1177/0959683615612563 (2016).ADSÂ
ArticleÂ
Google ScholarÂ
Klimowicz, Z., Melke, J. & Uziak, S. Peat soils in the Bellsund region Spitsbergen. Pol. Polar Res. 18(1), 25â39 (1997).
Google ScholarÂ
Yang, Z. et al. Total photosynthetic biomass record between 9400 and 2200 BP and its link to temperature changes at a High Arctic site near Ny-Ă
lesund Svalbard. Polar Biol. 42(5), 991â1003. https://doi.org/10.1007/s00300-019-02493-5 (2019).ArticleÂ
Google ScholarÂ
Vickers, H. et al. Changes in greening in the high arctic: insights from a 30-year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/11/10/105004 (2016).ArticleÂ
Google ScholarÂ
Van Der Knaap, W. O. Human influence on natural Arctic vegetation in the 17th century and climatic change since AD 1600 in northwest Spitsbergen: a paleobotanical study. Arct. Alp. Res. 17(4), 371â387. https://doi.org/10.2307/1550863 (1985).ArticleÂ
Google ScholarÂ
MartĂn-Moreno, R., Allende Ălvarez, F. & Hagen, J. O. âLittle Ice Ageâ glacier extent and subsequent retreat in Svalbard archipelago. Holocene 27(9), 1379â1390. https://doi.org/10.1177/0959683617693904 (2017).ADSÂ
ArticleÂ
Google ScholarÂ
Rachlewicz, G., SzczuziĹski, W. & Ewertowski, M. Post-âLittle Ice Ageâ retreat rates of glaciers around Billefjorden in central Spitsbergen Svalbard. Pol. Polar Res. 28(3), 159â186 (2007).
Google ScholarÂ
Matthews, J. A. & Whittaker, R. J. Vegetation succession on the storbreen glacier foreland, Jotunheimen, NorwayâŻ: a review. Arct. Alp. Res. 19(4), 385â395 (1987).ArticleÂ
Google ScholarÂ
Beyens, L. & Chardez, D. Evidence from testate amoebae for changes in some local hydrological conditions between c. 5000 BP and c. 3800 BP on Edgeøya (Svalbard). Polar Res. 5(2), 165â169. https://doi.org/10.1111/j.1751-8369.1987.tb00619.x (1987).ArticleÂ
Google ScholarÂ
Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/10/9/094011 (2015).ArticleÂ
Google ScholarÂ
Isaksen, K., Benestad, R. E., Harris, C. & Sollid, J. L. Recent extreme near-surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophys. Res. Lett. 34(17), 1â5. https://doi.org/10.1029/2007GL031002 (2007).ArticleÂ
Google ScholarÂ
Cable, S., Elberling, B. & Kroon, A. Holocene permafrost history and cryostratigraphy in the High-Arctic Adventdalen Valley, central Svalbard. Boreas 47(2), 423â442. https://doi.org/10.1111/bor.12286 (2018).ArticleÂ
Google ScholarÂ
KĂśnig, M., Kohler, J. & Nuth, C. Glacier Area OutlinesâSvalbard, v1.0, http://data.npolar.no/dataset/89f430f8-862f-11e2-8036-005056ad0004 Delivered by CryoClim service (2013).Box, J. E. et al. Key indicators of Arctic climate change: 1917â2017. Environ. Res. Lett. 14(4), 045010. https://doi.org/10.1088/1748-9326/aafc1b (2019).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
Zhang, H. et al. Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries. Glob. Change Biol. 26(4), 2435â2448. https://doi.org/10.1111/gcb.15005 (2020).ADSÂ
ArticleÂ
Google ScholarÂ
SzymaĹski, W., WojtuĹ, B., Stolarczyk, M., Siwek, J. & WaĹciĹska, J. Organic carbon and nutrients (N, P) in surface soil horizons in a non-glaciated catchment SW Spitsbergen. Pol. Polar Res. 37(1), 49â66. https://doi.org/10.1515/popore-2016-0006 (2016).ArticleÂ
Google ScholarÂ
Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11(23), 6573â6593. https://doi.org/10.5194/bg-11-6573-2014 (2014).ADSÂ
ArticleÂ
Google ScholarÂ
Palmtag, J. et al. Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arct. Antarct. Alp. Res. 47(1), 71â88. https://doi.org/10.1657/AAAR0014-027 (2015).ArticleÂ
Google ScholarÂ
Siewert, M. B. et al. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. J. Geophys. Res. Biogeosci. 120, 1973â1994 (2015).CASÂ
ArticleÂ
Google ScholarÂ
Wojcik, R., Palmtag, J., Hugelius, G., Weiss, N. & Kuhry, P. Land cover and landform-based upscaling of soil organic carbon stocks on the Brøgger Peninsula, Svalbard. Arct. Antarct. Alp. Res. 51(1), 40â57. https://doi.org/10.1080/15230430.2019.1570784 (2019).ArticleÂ
Google ScholarÂ
Yoshitake, S. et al. Vegetation development and carbon storage on a glacier foreland in the High Arctic, Ny-Ă
lesund Svalbard. Polar Sci. 5(3), 391â397. https://doi.org/10.1016/j.polar.2011.03.002 (2011).ADSÂ
ArticleÂ
Google ScholarÂ
Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475(7357), 489â492. https://doi.org/10.1038/nature10283 (2011).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 180(1), 157â167. https://doi.org/10.1016/j.plantsci.2010.09.005 (2011).CASÂ
ArticleÂ
PubMedÂ
Google Scholar More