More stories

  • in

    Assessing the values of nature to promote a sustainable future

    Pascual, U. et al. Nature https://doi.org/10.1038/s41586-023-06406-9 (2023).Article 

    Google Scholar 
    IPBES. Methodological Assessment Report on the Diverse Values and Valuation of Nature of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (Balvanera, P. et al. eds) https://doi.org/10.5281/zenodo.6522522 (IPBES Secretariat, 2022).
    Google Scholar 
    Kolinjivadi, V., van Hecken, G., Rodríguez de Francisco, J. C., Pelenc, J. & Kosoy, N. Curr. Opin. Environ. Sustain. 26–27, 1–6 (2017).Article 

    Google Scholar 
    Pascual, U. et al. BioScience 64, 1027–1036 (2014).Article 

    Google Scholar 
    Costanza, R. et al. Ecosystem Serv. 28, 1–16 (2017).Article 

    Google Scholar 
    Sikor, T. (ed.) The Justices and Injustices of Ecosystem Services (Routledge, 2013).
    Google Scholar 
    Dowie, M. Conservation Refugees (The MIT Press, 2009).
    Google Scholar 
    Girard, F., Hall, I. & Frison, C. (eds) Biocultural Rights (Routledge, 2022).
    Google Scholar 
    Kosoy, N. & Corbera, E. Ecol. Econ. 69, 1228–1236 (2010).Article 

    Google Scholar  More

  • in

    European river recovery might have run out of steam

    Dudgeon, D. et al. Biol. Rev. 81, 163–182 (2006).Article 
    PubMed 

    Google Scholar 
    WWF. Living Planet Report 2022 Building a Nature-Positive Society (eds Almond, R. E. A. et al.) (WWF, 2022).
    Google Scholar 
    van Klink, R. et al. Science 368, 417–420 (2020).Article 
    PubMed 

    Google Scholar 
    Haase, P. et al. Nature https://doi.org/10.1038/s41586-023-06400-1 (2023).Article 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. Trends Ecol. Evol. 28, 167–177 (2013).Article 
    PubMed 

    Google Scholar 
    Pharaoh, E., Diamond, M., Ormerod, S. J., Rutt, G. & Vaughan, I. P. Sci. Total Environ. 878, 163107 (2023).Article 
    PubMed 

    Google Scholar 
    Rumschlag, S. L. et al. Sci. Adv. 9, eadf4896 (2023).Article 
    PubMed 

    Google Scholar 
    Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Nature Ecol. Evol. 4, 384–392 (2020).Article 
    PubMed 

    Google Scholar 
    Tickner, D. et al. BioScience 70, 330–342 (2020).Article 
    PubMed 

    Google Scholar  More

  • in

    A coupled land–sea approach to coral-reef conservation in a warming ocean

    RESEARCH BRIEFINGS
    09 August 2023

    Local human-derived stressors combine with global ocean warming to threaten coral-reef persistence. Simultaneous reduction of human-derived stressors that originate on land, such as coastal run-off, and sea-based stressors, such as fishing pressure, resulted in greater coral-reef persistence before, during and after severe heat stress than did reduction of either alone. More

  • in

    Ethiopia paved the way for the Nagoya Protocol

    The Nagoya Protocol on Access and Benefit-sharing (ABS), adopted in 2010, ensures that the advantages arising from the use of genetic resources are distributed fairly (www.cbd.int/abs/). Ethiopia established a similar treaty four years earlier, in part to protect its rich and unique biodiversity against biopiracy. Contrary to the suggestion by ThankGod Ebenezer and his colleagues (Nature 603, 388–392; 2022), this ‘Access to Genetic Resources and Community Knowledge, and Community Rights law’ welcomes applications from non-parties to the Nagoya Protocol, as well as from parties to it (go.nature.com/3oxztad).
    Competing Interests
    The authors declare no competing interests. More

  • in

    What whale falls can teach us about biodiversity and climate change

    For her master’s degree, Anaëlle Durfort calculated levels of carbon sequestered by whale carcasses that had fallen to the ocean floor in the Southern Hemisphere.Credit: Raphael Seguin

    Anaëlle Durfort quantifies carbon sequestered in marine fauna for her PhD in ecology at the University of Montpellier, France, to highlight the links between biodiversity and climate change.Why are you investigating carbon sequestration in animals?The way in which carbon moves into the ocean through whales demonstrates the complex links between biodiversity and climate. Climate change affects living organisms, which themselves affect greenhouse-gas emissions.One striking example comes from my master’s degree, also at Montpellier, which focused on quantifying the carbon sequestered in the Southern Hemisphere since 1890 by the carcasses of five species of whale. Because they’re so huge, whales hold a lot of carbon in their tissues and, after dying, they trap that carbon on the ocean floor for more than a century. But the effectiveness of these animals as a carbon ‘pump’, moving carbon from the atmosphere, and eventually to the bottom of the ocean, varies according to the size of cetacean populations.Before they were exploited on an industrial scale, whales were abundant in the Antarctic, and a team that I worked with during my master’s estimated that they sequestered a total of 400,000 tonnes of carbon per year1. We calculated that this figure had dropped to 60,000 tonnes by 1972, because of the impact of centuries of commercial whaling. Since whaling was banned temporarily through an international agreement in 1986, populations have been slowly recovering.
    The ancient whale from my Egyptian home town
    But the projected restoration of whale populations depends on the extent of climate change (as well as on factors such as the incidence of collisions between whales and ships). Looking at two scenarios, we estimated what the biomass of whale carcasses on the sea floor would be by 2100. Under the worst-case scenario proposed by the Intergovernmental Panel on Climate Change (in which global warming ranges from 3.3 °C to 5.4 °C by 2100), the sequestration would reach 170,000 tonnes per year. Without climate change, recovered whale populations would be able to sequester nearly twice as much carbon.Whales won’t save the climate — global carbon emissions reached 10 gigatonnes (10 × 109 tonnes) in 2021 (ref. 2) — but my work shows how human activities are affecting the carbon sink that these animals provide, and might stop its recovery.Your research now focuses on krill. Why?Yes, I’ve moved down the food chain. My research focuses on assessing the biomass of Antarctic krill (Euphausia superba), small crustaceans that are essential to the Antarctic food web — and especially to whale diets.Looking at carbon sequestration mediated by exploited species such as whales and krill, the team I work with highlights the links between biodiversity, human activities and climate. Krill catching on an industrial scale, often for pet food or aquaculture supplements, has an impact on the entire marine food chain, as well as on biogeochemical cycles.More generally, the practice raises questions about using krill as a resource: are the benefits worth the environmental and climate damages? All of us should consider our activities with these questions in mind.

    The skeletal remains of a whale fall at the bottom of the Andaman Sea, off the coast of Thailand.Credit: Getty

    What do you think of putting a carbon price on whales?Looking at how much carbon whales can lock in, some economists and non-governmental organizations put a carbon price on the animals, betting that having this in place will encourage carbon offsetting and protect the animals. The idea is that companies, by paying the price in funding whale protection, can claim carbon credits for every whale they save.But this commodification of nature in the name of conservation seems problematic to me. These solutions are part of the same economic and societal framework that put us in the ecological and social crisis we are facing. This is not in line with the transformative changes that we need. What needs to change is our relationship with nature.You attended COP15, the United Nations biodiversity conference held in Montreal, Canada, in December 2022. What was it like?I was part of the Global Youth Biodiversity Network (GYBN), with more than 100 young representatives from all continents. This was a great experience for me, both as a scientist and as an environmental activist.
    France’s research minister has a plan to shake up science
    The conference was also an opportunity to get to know more about international biodiversity-conservation policies, to see the underlying mechanisms. What struck me most was the complexity of the negotiations — groups of all sorts were attending, including states and observers, such as non-profit entities, businesses, Indigenous people — and the technical nature of the debates. A lot is going on apart from the main negotiations between states’ representatives, with many interests represented at networking sessions and lobbying during the side events.At the GYBN, we had some victories, including Target 22 of the new Global Biodiversity Framework, which guarantees the participation of Indigenous peoples and local communities in decision-making on biodiversity-conservation policies.Have you ever seen a whaleUnfortunately, no. My work is in front of a computer, making models to look at how carbon-sequestration dynamics evolve under global warming and in response to commercial fishing. This work requires a lot of scientific collaboration, to access models of ocean change and population dynamics. I do a lot of cooperation, but no fieldwork. More

  • in

    A call to reduce the carbon costs of forest harvest

    Law, B. E. et al. Commun. Earth Environ. 2, 254 (2021).Article 

    Google Scholar 
    Peng, L., Searchinger, T. D., Zionts, J. & Waite, R. Nature 620, 110–115 (2023).Article 

    Google Scholar 
    Erb, K.-H. et al. Nature 553, 73–76 (2018).Article 
    PubMed 

    Google Scholar 
    Marques, A. et al. Nat. Ecol. Evol. 3, 628–637 (2019).Article 
    PubMed 

    Google Scholar 
    Hudiburg, T. W. et al. Environ. Res. Lett. 14, 095005 (2019).Article 

    Google Scholar 
    Mackey, B. et al. Environ. Res. Lett. 17, 054028 (2022).Article 

    Google Scholar 
    Mildrexler, D. J. et al. Front. For. Glob. Change 3, 594274 (2020).Article 

    Google Scholar 
    Law, B. E. et al. Land 11, 721 (2022).Article 

    Google Scholar 
    Birdsey, R. A. et al. Front. For. Glob. Change 5, 1074508 (2022).Article 

    Google Scholar 
    Lutz, J. A. et al. Glob. Ecol. Biogeogr. 27, 849–864 (2018).Article 

    Google Scholar 
    REN21. Renewables 2022 Global Status Report (REN21 Secretariat, 2022).
    Google Scholar 
    Sterman, J. D. et al. Environ. Res. Lett. 13, 015007 (2018).Article 

    Google Scholar 
    Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).
    Google Scholar 
    Searchinger, T. D. et al. Science 326, 527–528 (2009).Article 
    PubMed 

    Google Scholar 
    Giles-Hansen, K. & Wei, X. Environ. Res. Lett. 17, 044049 (2022).Article 

    Google Scholar 
    Moomaw, W. R. et al. Front. For. Glob. Change 2, 27 (2019).Article 

    Google Scholar 
    Parmesan, C. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
    Google Scholar  More

  • in

    AI helps scientists to eavesdrop on endangered pink dolphins

    Botos use clicks and whistles to communicate with each other and to find prey.Credit: Sylvain Cordier/Gamma-Rapho via Getty

    Researchers have used artificial intelligence (AI) to map the movements of two endangered species of dolphin in the Amazon River by training a neural network to recognize the animals’ unique clicks and whistles.The findings, published in Scientific Reports on 27 July1, could lead to better conservation strategies by helping researchers to build an accurate picture of the dolphins’ movements across a vast area of rainforest that becomes submerged each year after the rainy season.Using sound is much less invasive than conventional tracking techniques, such as the use of GPS tags, boats or aerial drones.
    Saving the Amazon: how science is helping Indigenous people protect their homelands
    “Sound is probably the only sense that we know of that we all share on Earth,” says co-author Michel André, a bioacoustician at the Technical University of Catalonia in Barcelona, Spain.André and his colleagues wanted to explore the activity of two species, the boto (Inia geoffrensis) — also known as the pink river dolphin — and the tucuxi (Sotalia fluviatilis) across the floodplains of the Mamirauá reserve in northern Brazil. The researchers placed underwater microphones at several sites to eavesdrop on the animals’ whereabouts.To distinguish the dolphin sounds from the noisy soundscape of the Amazon, they turned to AI, feeding the recordings into a deep-learning neural network capable of categorizing sounds in real time, “exactly as we do with our own brain”, says André.Using this technology, researchers can analyse volumes of information “that would otherwise be almost impossible”, says Federico Mosquera-Guerra, who studies Amazonian dolphins at the National University of Colombia in Bogotá.The AI was trained to identify three types of sound: dolphin, rainfall and boat engines. Both dolphin species use echolocation clicks almost constantly to sense their environment, and they communicate to others by whistling. Detecting these clicks and whistles enabled the researchers to map the animals’ movements. Botos and tucuxis have distinct whistles, so the neural network could distinguish between the species.Conservation effortsThe study is a part of a collaboration between the Technical University of Catalonia and the Mamirauá Institute of Sustainable Development in Tefé, Brazil, which aims to use this technology for monitoring the Amazon’s biodiversity and threats to it.
    AI empowers conservation biology
    Both dolphin species are endangered: estimates suggest that the boto population is declining by 50% every ten years, and the tucuxi population every nine years2. Monitoring when and where the animals move will allow researchers to help protect their populations and come up with measures to help “Indigenous communities to cohabitate with the presence of dolphins”, says André. Dolphins can disrupt fisheries across the floodplains, for example, by competing for fish or becoming tangled in nets.Mosquera-Guerra says that collecting such information is “fundamental” to inform decisions on conservation across the Amazon region.In future, the team wants to train the neural network to detect other aquatic species, and to deploy the system over a wider area. The same approach could also be used in the ocean. André’s previous work using this system has shown the effects of human-made noise pollution on sperm whales, and has enabled the development of a warning system for ships to help avoid the animals3. More

  • in

    Global map of wildlife trade reveals true cost to the planet

    Helmeted hornbills (Rhinoplax vigil) eat fruit and so are key to seed dispersal. Over-trading in this species is likely to damage its native ecosystem.Credit: Tim Plowden/Alamy

    Every year, more than 100 million plants and animals are traded legally and illegally around the world. But whether this is sustainable remains hotly debated by researchers. A study published on 26 July in Nature1 sheds some light on the issue by creating a global map of ecosystems’ resilience to current levels of wildlife trade.The findings could help to show conservation scientists and policymakers where to focus resources, by identifying the hotspots where wildlife trade could cause the most damage.
    Major wildlife report struggles to tally humanity’s exploitation of species
    “It’s one thing to say, ‘we know that trade is unsustainable’,” says study co-author Oscar Morton, a conservation biologist at the University of Sheffield, UK. “It’s another thing to say, ‘we know what happens to ecosystem X when we take out species A’.”For example, he says more than one million tokay geckos (Gekko gecko) — small, colourful lizards common in southeast Asia — are traded every year as pets. But whether that volume of trade is sustainable is unknown.Whole-ecosystem effectsWhen measuring the overall sustainability of the wildlife trade, individual species cannot be considered in isolation, says Morton. Yet it’s so complex to analyse the impact of the industry on ecosystems as a whole that few attempt it.Morton and his colleagues addressed this gap by collating data on the legal trade in birds and mammals collected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and legal and illegal trade from the International Union for Conservation of Nature (IUCN). The researchers overlaid this information on maps of the distribution of various species across the world.

    Source: Ref 1.

    They added data on the phylogeny of species — their evolutionary histories — to indicate whether each has unique traits (See ‘Hotspots of uniqueness’). They also included information about the species’ functional role in the ecosystem — for example, whether it is a large predator or a tiny grazer. “In a healthy ecosystem, you want a wide range of traits, because then they do all of your ecosystem services — so seed dispersal, carbon stocking, pest control,” says Morton.The resulting maps allow the team to visualize the potential impact of removing a species from an ecosystem.For example, hornbill birds are heavily traded for their casques, the bony protrusions on their upper beaks. But as large fruit-eaters, the birds have a key role in seed dispersal in their ecosystems. If hornbills were to be depleted from an area, the vegetation would change radically, with knock-on effects for the birds, insects and other animals that inhabit the ecosystem, says Morton.Damaging tradeThe map revealed global hotspots where trade has the most potential to damage, that is, ecosystems where functional and evolutionary diversity was high. “It’s an impressive piece of research that brings together a huge amount of data,” says Vincent Nijman, a specialist in wildlife trade at Oxford Brookes University, UK. He says the map clearly shows that in relatively small areas of the world, the industry could put ecosystems at risk. He points to parts of Africa and southeast Asia as being important hotspots.
    Ivory hunting drives evolution of tuskless elephants
    “If we were to be able to pay more attention” to regulating trade in those regions, says Nijman, “then we’re going to get a much better return on our investment”.International and domestic policies should require assessments of the impact of the wildlife trade on entire ecosystems, says Morton. “We should be looking at ecosystem sustainability as well as species sustainability, when we talk about trade sustainability,” he says.As well as playing a part in their ecosystems, many species have intrinsic scientific value, says data scientist Mike Massam at the University of Sheffield, a co-author of the study. “We don’t want to lose millions and millions of years of evolutionary history.” More