More stories

  • in

    Energy allocation shifts from sperm production to self-maintenance at low temperatures in male bats

    1.Thomas, D. W., Fenton, M. B. & Barclay, R. M. R. Social-behavior of the little brown bat, myotis-lucifugus. 1. mating-behavior. Behav. Ecol. Sociobiol. 6, 129–136. https://doi.org/10.1007/bf00292559 (1979).Article 

    Google Scholar 
    2.Weiner, J. Physiological limits to sustainable energy budgets in birds and mammals-ecological implications. Trends Ecol. Evol. 7, 384–388. https://doi.org/10.1016/0169-5347(92)90009-z (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Becker, N. I., Encarnação, J. A., Kalko, E. K. V. & Tschapka, M. The effects of reproductive state on digestive efficiency in three sympatric bat species of the same guild. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 162, 386–390. https://doi.org/10.1016/j.cbpa.2012.04.021 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Becker, N. I., Encarnação, J. A., Tschapka, M. & Kalko, E. K. V. Energetics and life-history of bats in comparison to small mammals. Ecol. Res. 28, 249–258. https://doi.org/10.1007/s11284-012-1010-0 (2012).CAS 
    Article 

    Google Scholar 
    5.Ruf, T. & Bieber, C. Physiological, behavioral, and life-history adaptations to environmental fluctuations in the edible dormouse. Front. Physiol. https://doi.org/10.3389/fphys.2020.00423 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Scholander, P. F., Hock, R., Walters, V. & Irving, L. Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol. Bull. 99, 259–271. https://doi.org/10.2307/1538742 (1950).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Geiser, F. & Ruf, T. Hibernation versus daily torpor in mammals and birds-physiological variables and classification of torpor patterns. Physiol. Zool. 68, 935–966. https://doi.org/10.1086/physzool.68.6.30163788 (1995).Article 

    Google Scholar 
    8.Aschoff, J. Thermal conductance in mammals and birds-its dependence on body size and circadian phase. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 69, 611–619. https://doi.org/10.1016/0300-9629(81)90145-6 (1981).Article 

    Google Scholar 
    9.McNab, B. K. The economics of temperature regulation in neotropical bats. Comp. Biochem. Physiol 31, 227–268. https://doi.org/10.1016/0010-406X(69)91651-X (1969).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Speakman, J. R. & Thomas, D. W. in Bat ecology (ed Thomas H. Kunz and M. Brock Fenton) 430–490 (University of Chicago Press, 2003).11.Wang, L. C. H. & Wolowyk, M. W. Torpor in mammals and birds. Can. J. Zool.-Rev. Can. Zool. 66, 133–137. https://doi.org/10.1139/z88-017 (1988).CAS 
    Article 

    Google Scholar 
    12.Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274. https://doi.org/10.1146/annurev.physiol.66.032102.115105 (2004).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    13.Geiser, F. & Masters, P. Torpor in relation to reproduction in the mulgara, dasycercus-cristicauda (dasyuridae, marsupialia). J. Therm. Biol. 19, 33–40. https://doi.org/10.1016/0306-4565(94)90007-8 (1994).Article 

    Google Scholar 
    14.Wojciechowski, M. S., Jefimow, M. & Tęgowska, E. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147, 828–840. https://doi.org/10.1016/j.cbpa.2006.06.039 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926. https://doi.org/10.1111/brv.12137 (2015).Article 
    PubMed 

    Google Scholar 
    16.Tuttle, M. D. Population ecology of the gray bat (Myotis grisescens): factors Iifluencing growth and survival of newly volant young. Ecology 57, 587–595. https://doi.org/10.2307/1936443 (1976).Article 

    Google Scholar 
    17.Racey, P. A. & Swift, S. M. Variations in gestation length in a colony of Pipistrelle bats (Pipistrellus pipistrellus) from year to year. J. Reprod. Fertil. 61, 123–129. https://doi.org/10.1530/jrf.0.0610123 (1981).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Audet, D. & Fenton, M. B. Heterothermy and the use of torpor by the bat Eptesicus fuscus (Chiroptera, Vespertilionidae)-a field study. Physiol. Zool. 61, 197–204. https://doi.org/10.1086/physzool.61.3.30161232 (1988).Article 

    Google Scholar 
    19.Barnes, B. M., Kretzmann, M., Licht, P. & Zucker, I. The influence of hibernation on testis growth and spermatogenesis in the golden mantled ground squirrel, Spermophilus lateralis. Biol. Reprod. 35, 1289–1297. https://doi.org/10.1095/biolreprod35.5.1289 (1986).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Gagnon, M. F., Lafleur, C., Landry-Cuerrier, M., Humphries, M. M. & Kimmins, S. Torpor expression is associated with differential spermatogenesis in hibernating eastern chipmunks. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R455–R465. https://doi.org/10.1152/ajpregu.00328.2019 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.McLean, J. A. & Speakman, J. R. Energy budgets of lactating and non-reproductive Brown Long-Eared Bats (Plecotus auritus) suggest females use compensation in lactation. Funct. Ecol. 13, 360–372. https://doi.org/10.1046/j.1365-2435.1999.00321.x (1999).Article 

    Google Scholar 
    22.Wilde, C. J., Knight, C. R. & Racey, P. A. Influence of torpor on milk protein composition and secretion in lactating bats. J. Exp. Zool. 284, 35–41. https://doi.org/10.1002/(sici)1097-010x(19990615)284:1%3c35::aid-jez6%3e3.0.co;2-z (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Racey, P. A. The prolonged storage and survival of spermatozoa in Chiroptera. J. Reprod. Fertil. 56, 391–402. https://doi.org/10.1530/jrf.0.0560391 (1979).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Racey, P. A. The reproductive cycle in male noctule bats, Nyctalus noctula. J. Reprod. Fertil. 41, 169–182. https://doi.org/10.1530/jrf.0.0410169 (1974).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Gustafson, A. W. Male reproductive patterns in hibernating bats. J. Reprod. Fertil. 56, 317–0 (1979).CAS 
    Article 

    Google Scholar 
    26.Komar, E., Dechmann, D. K. N., Fasel, N. J., Zegarek, M. & Ruczyński, I. Food restriction delays seasonal sexual maturation but does not increase torpor use in male bats. J. Exp. Biol. https://doi.org/10.1242/jeb.214825 (2020).Article 
    PubMed 

    Google Scholar 
    27.Wilkinson, G. S. & McCracken, G. F. in Bat ecology (eds Thomas H. Kunz & M. Brock Fenton) 128–155 (University of Chicago Press, 2003).28.Pescovitz, O. H., Srivastava, C. H., Breyer, P. R. & Monts, B. A. Paracrine control of spermatogenesis. Trends Endocrinol. Metab. 5, 126–131. https://doi.org/10.1016/1043-2760(94)90094-9 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Sharpe, R. M., Kerr, J. B., McKinnell, C. & Millar, M. Temporal relationship between androgen-dependent changes in the volume of seminiferous tubule fluid, lumen size and seminiferous tubule protein secretion in rats. J. Reprod. Fertil. 101, 193–198 (1994).CAS 
    Article 

    Google Scholar 
    30.Becker, N. I., Tschapka, M., Kalko, E. K. V. & Encarnacao, J. A. Balancing the energy budget in free ranging male Myotis daubentonii bats. Physiol. Biochem. Zool. 86, 361–369. https://doi.org/10.1086/670527 (2013).Article 
    PubMed 

    Google Scholar 
    31.Entwistle, A. C., Racey, P. A. & Speakman, J. R. The reproductive cycle and determination of sexual maturity in male brown long eared bats, Plecotus auritus (Chiroptera: Vespertilionidae). J. Zool. 244, 63–70. https://doi.org/10.1111/j.1469-7998.1998.tb00007.x (1998).Article 

    Google Scholar 
    32.Fasel, N. J., Kołodziej-Sobocińska, M., Komar, E., Zegarek, M. & Ruczyński, I. Penis size and sperm quality, are all bats grey in the dark?. Curr. Zool. 65, 697–703. https://doi.org/10.1093/cz/zoy094 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Dietz, M. & Kalko, E. K. V. Reproduction affects flight activity in female and male Daubenton’s bats, Myotis daubentoni. Can. J. Zool.-Rev. Can. Zool. 85, 653–664. https://doi.org/10.1139/z07-045 (2007).Article 

    Google Scholar 
    34.Encarnação, J. A. Spatiotemporal pattern of local sexual segregation in a tree dwelling temperate bat Myotis daubentonii. J. Ethol. 30, 271–278. https://doi.org/10.1007/s10164-011-0323-8 (2012).Article 

    Google Scholar 
    35.Safi, K. & Kerth, G. Comparative analyses suggest that information transfer promoted sociality in male bats in the temperate zone. Am. Nat. 170, 465–472. https://doi.org/10.1086/520116 (2007).Article 
    PubMed 

    Google Scholar 
    36.Hałat, Z., Dechmann, D. K. N., Zegarek, M. & Ruczyński, I. Male bats respond to adverse conditions with larger colonies and increased torpor use during sperm production. Mamm. Biol. 22, 2109 (2020).
    Google Scholar 
    37.Dietz, M. & Horig, A. Thermoregulation of tree dwelling temperate bats-a behavioural adaptation to force live history strategy. Folia Zool. 60, 5–16. https://doi.org/10.25225/fozo.v60.i1.a2.2011 (2011).Article 

    Google Scholar 
    38.Ruczyński, I., Zahorowicz, P., Borowik, T. & Hałat, Z. Activity patterns of two syntopic and closely related aerial-hawking bat species during breeding season in Bialowieza Primaeval Forest. Mammal Res. 62, 65–73. https://doi.org/10.1007/s13364-016-0298-5 (2017).Article 

    Google Scholar 
    39.Jolly, S. E. & Blackshaw, A. W. Prolonged epididymal sperm storage, and the temporal dissociation of testicular and accessory gland activity in the common sheath-tail bat, Taphozous georgianus, of tropical Australia. J. Reprod. Fertil. 81, 205–211. https://doi.org/10.1530/jrf.0.0810205 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Boyles, J. G., Dunbar, M. B., Storm, J. J. & Brack, V. Energy availability influences microclimate selection of hibernating bats. J. Exp. Biol. 210, 4345–4350. https://doi.org/10.1242/jeb.007294 (2007).Article 
    PubMed 

    Google Scholar 
    41.Ruczyński, I., Hałat, Z., Zegarek, M., Borowik, T. & Dechmann, D. K. N. Camera transects as a method to monitor high temporal and spatial ephemerality of flying nocturnal insects. Methods Ecol. Evol. https://doi.org/10.1111/2041-210x.13339 (2020).Article 

    Google Scholar 
    42.Safi, K. Social bats: the males’ perspective. J. Mammal. 89, 1342–1350. https://doi.org/10.1644/08-mamm-s-058.1 (2008).Article 

    Google Scholar 
    43.Webb, P. I., Speakman, J. R. & Racey, P. A. The implication of small reductions in body temperature for radiant and convective heat loss in resting endothermic brown long eared bats (Pecotus auritus). J. Therm. Biol. 18, 131–135. https://doi.org/10.1016/0306-4565(93)90026-p (1993).Article 

    Google Scholar 
    44.Boratyński, J. S., Iwińska, K. & Bogdanowicz, W. An intrapopulation heterothermy continuum: notable repeatability of body temperature variation in food deprived yellow necked mice. J. Exp. Biol. 222, 197152. https://doi.org/10.1242/jeb.197152 (2019).Article 

    Google Scholar 
    45.Christian, N. & Geiser, F. To use or not to use torpor? Activity and body temperature as predictors. Naturwissenschaften 94, 483–487. https://doi.org/10.1007/s00114-007-0215-5 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    46.Smith, L. B. & Walker, W. H. The regulation of spermatogenesis by androgens. Semin. Cell Dev. Biol. 30, 2–13. https://doi.org/10.1016/j.semcdb.2014.02.012 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Macdonald, J. & Harrison, R. G. Effect of low temperatures on rat spermatogenesis. Fertil. Steril. 5, 205–216 (1954).CAS 
    Article 

    Google Scholar 
    48.Fowler, P. A. & Racey, P. A. Relationship between body and testis temperatures in the European hedgehog, Erinaceus europaeus, during hibernation and sexual reactivation. Reproduction 81, 567. https://doi.org/10.1530/jrf.0.0810567 (1987).CAS 
    Article 

    Google Scholar 
    49.Davis, J. R., Firlit, C. F. & Hollinger, M. A. Effect of temperature on incorporation of l-lysine-U-C14 into testicular proteins. Am. J. Physiol. 204, 696–698. https://doi.org/10.1152/ajplegacy.1963.204.4.696 (1963).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.LeVier, R. R. & Spaziani, E. The influence of temperature on steroidogenesis in the rat testis. J. Exp. Zool. 169, 113–120. https://doi.org/10.1002/jez.1401690113 (1968).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Geiser, F. & Brigham, R. M. in Living in a seasonal world (eds Thomas Ruf, Claudia Bieber, Walter Arnold, & Eva Millesi) 109–121 (Springer, 2012).52.Safi, K. Die Zweifarbfledermaus in der Schweiz: Status und Grundlagen zum Schutz. (Haupt Verlag, 2006).53.Hałat, Z., Dechmann, D. K. N., Zegarek, M., Visser, A. F. J. & Ruczyński, I. Sociality and insect abundance affect duration of nocturnal activity of male parti-colored bats. J. Mammal. 99, 1503–1509. https://doi.org/10.1093/jmammal/gyy141 (2018).Article 

    Google Scholar 
    54.Ruczyński, I. Influence of temperature on maternity roost selection by noctule bats (Nyctalus noctula) and Leisler’s bats (N-leisleri) in Biaowieza Primeval Forest, Poland. Can. J. Zool. 84, 900–907. https://doi.org/10.1139/z06-060 (2006).Article 

    Google Scholar 
    55.Ruczyński, I. & Bartoń, K. A. Seasonal changes and the influence of tree species and ambient temperature on the fission-fusion dynamics of tree-roosting bats. Behav. Ecol. Sociobiol. 74, 63. https://doi.org/10.1007/s00265-020-02840-1 (2020).Article 

    Google Scholar 
    56.Linton, D. M. & Macdonald, D. W. Phenology of reproductive condition varies with age and spring weather conditions in male Myotis daubentonii and Myotis nattereri (Chiroptera: Vespertilionidae). Sci. Rep. 10, 6664. https://doi.org/10.1038/s41598-020-63538-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    57.Dammhahn, M., Landry-Cuerrier, M., Reale, D., Garant, D. & Humphries, M. M. Individual variation in energy-saving heterothermy affects survival and reproductive success. Funct. Ecol. 31, 866–875. https://doi.org/10.1111/1365-2435.12797 (2017).Article 

    Google Scholar 
    58.Boyles, J. G., Johnson, J. S., Blomberg, A. & Lilley, T. M. Optimal hibernation theory. Mammal. Rev. 50, 91–100. https://doi.org/10.1111/mam.12181 (2020).Article 

    Google Scholar 
    59.Boratyński, J. S., Willis, C. K. R., Jefimow, M. & Wojciechowski, M. S. Huddling reduces evaporative water loss in torpid Natterer’s bats, Myotis nattereri. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 179, 125–132. https://doi.org/10.1016/j.cbpa.2014.09.035 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Ruczyński, I., Kalko, E. K. V. & Siemers, B. M. The sensory basis of roost finding in a forest bat, Nyctalus noctula. J. Exp. Biol. 210, 3607–3615. https://doi.org/10.1242/jeb.009837 (2007).Article 
    PubMed 

    Google Scholar 
    61.Lovegrove, B. G. Modification and miniaturization of Thermochron iButtons for surgical implantation into small animals. J. Comp. Physiol. B 179, 451–458. https://doi.org/10.1007/s00360-008-0329-x (2009).Article 
    PubMed 

    Google Scholar 
    62.Willis, C. K. R., Lane, J. E., Liknes, E. T., Swanson, D. L. & Brigham, R. M. Thermal energetics of female big brown bats (Eptesicus fuscus). Can. J. Zool. 83, 871–879. https://doi.org/10.1139/z05-074 (2005).Article 

    Google Scholar 
    63.Willis, C. K. R. An energy-based body temperature threshold between torpor and normothermia for small mammals. Physiol. Biochem. Zool. 80, 643–651. https://doi.org/10.1086/521085 (2007).Article 
    PubMed 

    Google Scholar 
    64.Krutzsch, P. H. in Reproductive Biology of Bats (ed Academic Press) 91–155 (2000).65.Wood, S. N. Generalized Additive Models: An Introduction With R. Vol. 66 (2006).66.Jackman, S. Bayesian Analysis for the Social Sciences. (Wiley, 2009).67.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455. https://doi.org/10.2307/1390675 (1998).MathSciNet 
    Article 

    Google Scholar 
    68.Kellner, K. jagsUI: A Wrapper Around ‘rjags’ to Streamline ‘JAGS’ Analyses. v.R package version 1.5.1. (2019). More

  • in

    Consider fungal friends

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Pantanal fires

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Giant sponge grounds of Central Arctic seamounts are associated with extinct seep life

    1.Maldonado, M. et al. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S., Bramanti, L., Gori, A. & del Valle, C.) (Springer, 2016).2.de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).ADS 
    PubMed 

    Google Scholar 
    3.Beazley, L., Kenchington, E., Yashayaev, I. & Murillo, F. J. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest. Atl. Deep. Res. Part I 98, 102–114 (2015).
    Google Scholar 
    4.Klitgaard, A. B. & Tendal, O. S. Progress in oceanography distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).ADS 

    Google Scholar 
    5.Kazanidis, G. et al. Distribution of deep-sea sponge aggregations in an area of multisectoral activities and changing oceanic conditions. Front. Mar. Sci. 6, 163 (2019).
    Google Scholar 
    6.Hanz, U., Roberts, E. M., Duineveld, G., Davies, A. & Rapp, H. T. Long – term observations reveal environmental conditions and food supply mechanisms at an Arctic deep-sea sponge ground. J. Geophisical. Res. 126, 1–18 (2021).
    Google Scholar 
    7.Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic Seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).ADS 

    Google Scholar 
    8.Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 37 (2015).
    Google Scholar 
    9.Kahn, A. S., Yahel, G., Chu, J. W. F., Tunnicliffe, V. & Leys, S. P. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60, 78–88 (2015).ADS 

    Google Scholar 
    10.Morganti, T., Coma, R., Yahel, G. & Ribes, M. Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol. Oceanogr. 62, 1963–1983 (2017).ADS 
    CAS 

    Google Scholar 
    11.Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA — Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).ADS 

    Google Scholar 
    12.Bart, M. C. et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol. Oceanogr. 9999, 1–14 (2020).
    Google Scholar 
    13.Gloeckner, V. et al. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 

    Google Scholar 
    14.Bruck, T. B., Self, W. T., Reed, J. K., Nitecki, S. S. & McCarthy, P. J. Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida. ISME J. 4, 686–699 (2010).PubMed 

    Google Scholar 
    15.Schottner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, 1–11 (2013).
    Google Scholar 
    16.Hoffmann, F. et al. An anaerobic world in sponges. Geomicrobiol. J. 22, 1–10 (2005).
    Google Scholar 
    17.Schlindwein, V. & Schmid, F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 535, 276–279 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Cochran, J. R. Seamount volcanism along the Gakkel Ridge. Arct. Ocean. Geophys. J. Int. 174, 1153–1173 (2008).ADS 

    Google Scholar 
    19.Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603 (2008).ADS 

    Google Scholar 
    20.Wassmann, P., Slagstad, D. & Ellingsen, I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results. Polar Biol. 33, 1641–1650 (2010).
    Google Scholar 
    21.Wiedmann, I. et al. What feeds the Benthos in the Arctic Basins? Assembling a carbon budget for the deep Arctic Ocean. Front. Mar. Sci. 7, 224 (2020).
    Google Scholar 
    22.Boetius, A. & Purser, A. The Expedition PS101 of the Research Vessel POLARSTERN to the Arctic Ocean in 2016, Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research. (2017).23.Alvizu, A., Xavier, J. R. & Rapp, H. T. Description of new chiactine-bearing sponges provides insights into the higher classification of Calcaronea (Porifera: Calcarea). Zootaxa 4615, 201–251 (2019).
    Google Scholar 
    24.Rybakova, E., Kremenetskaia, A., Vedenin, A., Boetius, A. & Gebruk, A. Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls. PLoS ONE 14, 1–27 (2019).
    Google Scholar 
    25.Astrom, E. K. L. et al. Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr. 63, 209–231 (2018).
    Google Scholar 
    26.Sen, A., Didriksen, A., Hourdez, S., Svenning, M. M. & Rasmussen, T. L. Frenulate siboglinids at high Arctic methane seeps and insight into high latitude frenulate distribution. Ecol. Evol. 10, 1339–1351 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    27.Henrich, R. et al. Facies belts and communities of the arctic Vesterisbanken Seamount (Central Greenland Sea). Facies 27, 71 (1992).
    Google Scholar 
    28.Leys, S. P., Kahn, A. S., Fang, J. K. H., Kutti, T. & Bannister, R. J. Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep-water boreal sponge Geodia barretti. Limnol. Oceanogr. 63, 187–202 (2018).ADS 
    CAS 

    Google Scholar 
    29.Druffel, E. R. M., Griffin, S., Glynn, C. S., Benner, R. & Walker, B. D. Radiocarbon in dissolved organic and inorganic carbon of the Arctic Ocean. Geophys. Res. Lett. 44, 2369–2376 (2017).ADS 
    CAS 

    Google Scholar 
    30.Mehrshad, M., Rodriguez-Valera, F., Amoozegar, M. A., López-García, P. & Ghai, R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J. 12, 655–668 (2018).CAS 
    PubMed 

    Google Scholar 
    31.Petersen, J. M., Wentrup, C., Verna, C., Knittel, K. & Dubilier, N. Origins and evolutionary flexibility of chemosynthetic symbionts from deep-sea animals. Biol. Bull. 223, 123–137 (2012).CAS 
    PubMed 

    Google Scholar 
    32.Rubin-Blum, M. et al. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. ISME J. 13, 1209–1225 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bayer, K., Jahn, M. T., Slaby, B. M., Moitinho-Silva, L. & Hentschel, U. Marine sponges as chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems 3, e00150–18 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kamke, J. et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 7, 2287–2300 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Bayer, K. et al. Microbial strategies for survival in the glass sponge Vazella pourtalesii. mSystems 5, e00473–20 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Van Duyl, F. C., Hegeman, J., Hoogstraten, A. & Maier, C. Dissolved carbon fixation by sponge-microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. Mar. Ecol. Prog. Ser. 358, 137–150 (2008).ADS 

    Google Scholar 
    37.Leitner, A. B., Neuheimer, A. B. & Drazen, J. C. Evidence for long-term seamount-induced chlorophyll enhancements. Sci. Rep. 10, 12729 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.von Appen, W.-J., Latarius, K. & Kanzow, T. Physical oceanography and current meter data from mooring F6-17. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven (2017). https://doi.org/10.1594/PANGAEA.870845.39.Woodgate, R. Arctic ocean circulation: going around at the top of the world. Nat. Educ. Knowl. 4, 8 (2013).
    Google Scholar 
    40.White, M., Bashmachnikov, I., Arístegui, J. & Martins, A. in Seamounts: Ecology, Fisheries & Conservation (eds Pitcher, T. J. et al.) Ch. 4 (Wiley, 2007).41.Buchs, D. M., Hoernle, K. & Grevemeyer, I. In Encyclopedia of Marine Geosciences (eds Harff, J., Meschede, M., Petersen, S. & Thiede, J.) (Springer, Dordrecht, 2015). https://doi.org/10.1007/978-94-007-6644-0_34-2.42.Emerson, D. & Moyer, C. Microbiology of seamounts: common patterns observed in community structure. Oceanography 23, 148–163 (2010).
    Google Scholar 
    43.Rimskaya-Korsakova, N. N. et al. First discovery of pogonophora (Annelida, Siboglinidae) in the Kara Sea coincide with the area of high methane concentration. Dokl. Biol. Sci. 490, 25–27 (2020).CAS 
    PubMed 

    Google Scholar 
    44.Cardenas, P. & Rapp, H. T. Demosponges from the Northern mid-Atlantic ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. J. Mar. Biol. Assoc. U. Kindom 95, 1475–1516 (2015).
    Google Scholar 
    45.Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep. Res. Part I Oceanogr. Res. Pap. 153, 103137 (2019).
    Google Scholar 
    46.Grebmeier, J. M. et al. Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic. Prog. Oceanogr. 136, 92–114 (2015).ADS 

    Google Scholar 
    47.Oevelen, D. Van et al. The cold-water coral community as a hot spot for carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol. Oceanogr. 54, 1829–1844 (2009).ADS 

    Google Scholar 
    48.Hammel, J. U., Herzen, J., Beckmann, F. & Nickel, M. Sponge budding is a spatiotemporal morphological patterning process: insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma. Front. Zool. 6, 19 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Witte, U. & Graf, G. Metabolism of deep-sea sponges in the Greenland- Norwegian Sea. Mar. Biol. 198, 223–235 (1996).
    Google Scholar 
    50.Rovelli, L. et al. Benthic O2 uptake of two cold-water coral communities estimated with the non-invasive eddy correlation technique. Mar. Ecol. Prog. Ser. 525, 97–104 (2015).ADS 

    Google Scholar 
    51.De Clippele, L. H. et al. Mapping cold-water coral biomass: an approach to derive ecosystem functions. Coral Reefs 40, 215–231 (2021).
    Google Scholar 
    52.de Kluijver, A. et al. An integrative model of carbon and nitrogen metabolism in a common deep-sea sponge (Geodia barretti). Front. Mar. Sci. 7, 1–18 (2021).
    Google Scholar 
    53.Lalande, C., Nothig, E.-M. & Fortier, L. Algal export in the Arctic ocean in times of global warming. Geophys. Res. Lett. 46, 1–9 (2019).
    Google Scholar 
    54.Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1433 (2013).55.Maier, S. R. et al. Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol. Oceanogr. 64, 1651–1671 (2019).ADS 
    CAS 

    Google Scholar 
    56.Rix, L. et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 14, 2554–2567 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Ann. Rev. Mar. Sci. 5, 421–445 (2013).PubMed 

    Google Scholar 
    58.Bart, M. C. et al. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci. Rep. 10, 1–13 (2020).
    Google Scholar 
    59.Anderson, L. G. & Amon, R. M. W. DOM in the Arctic Ocean. In Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) Ch. 14 (Academic Press, 2015).60.Rossel, P. E., Bienhold, C., Boetius, A. & Dittmar, T. Dissolved organic matter in pore water of Arctic Ocean sediments: environmental influence on molecular composition. Org. Geochem. 97, 41–52 (2016).CAS 

    Google Scholar 
    61.Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R. & Giovannoni, S. J. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio 8, e00413–e00417 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Radax, R. et al. Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ. Microbiol. 14, 1308–1324 (2012).63.Busch, K. et al. Chloroflexi dominate the deep-sea golf ball sponges Craniella zetlandica and Craniella infrequens throughout different life stages. Front. Mar. Sci. 7, 1–13 (2020).
    Google Scholar 
    64.Raimundo, I. et al. Functional metagenomics reveals differential chitin degradation and utilization features across free-living and host-associated marine microbiomes. Microbiome 9, 1–18 (2021).
    Google Scholar 
    65.Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).CAS 
    PubMed 

    Google Scholar 
    66.Radax, R., Hoffmann, F., Rapp, H. T., Leininger, S. & Schleper, C. Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environ. Microbiol. 14, 909–923 (2012).CAS 
    PubMed 

    Google Scholar 
    67.Kahn, A. S., Chu, J. W. F. & Leys, S. P. Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia. Sci. Rep. 8, 756 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Thiel, V. et al. Mid-chain branched alkanoic acids from “living fossil” demosponges: a link to ancient sedimentary lipids? Org. Geochem. 30, 1–14 (1999).CAS 

    Google Scholar 
    69.de Kluijver, A. et al. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS ONE 16, 1–18 (2021).
    Google Scholar 
    70.Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Freeman, C. J. et al. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 14, 1571–1583 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    72.Middelburg, J. J. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11, 2357–2371 (2014).ADS 

    Google Scholar 
    73.Åström, E. et al. Chemosynthesis influences food web and community structure in high-Arctic benthos. Mar. Ecol. Prog. Ser. 629, 19–42 (2019).ADS 

    Google Scholar 
    74.Ravaux, J. et al. Comparative degradation rates of chitinous exoskeletons from deep-sea environments. Mar. Biol. 143, 405–412 (2003).CAS 

    Google Scholar 
    75.Gooday, G. W. The Ecology of Chitin Degradation. In Advances in Microbial Ecology, (ed. Marshall, K. C.) vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7612-5_10.76.Schwarz, J. R., Yayanos, A. A. & Colwell, R. R. Metabolic activities of the intestinal microflora of a deep-sea invertebrate. Appl. Environ. Microbiol. 31, 46 LP–46 48 (1976).ADS 

    Google Scholar 
    77.Godefroy, N. et al. Sponge digestive system diversity and evolution: filter feeding to carnivory. Cell Tissue Res. 377, 341–351 (2019).PubMed 

    Google Scholar 
    78.Ehrlich, H. et al. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J. Exp. Zool. Part B Mol. Dev. Evol. 308B, 347–356 (2007).CAS 

    Google Scholar 
    79.Bowden, D. A. et al. Cold seep epifaunal communities on the Hikurangi Margin, New Zealand: composition, succession, and vulnerability to human activities. PLoS ONE 8, e76869 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Georgieva, M. N. et al. Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps. J. Syst. Palaeontol. 17, 287–329 (2017).
    Google Scholar 
    81.Morganti, T. M. et al. In situ observation of sponge trails suggests common sponge locomotion in the deep central Arctic. Curr. Biol. 31, R368–R370 (2021).CAS 
    PubMed 

    Google Scholar 
    82.Maldonado, M. An experimental approach to the ecological significance of microhabitat-scale movement in an encrusting sponge. Mar. Ecol. Prog. Ser. 185, 239–255 (1999).ADS 

    Google Scholar 
    83.Rice, A. L., Thurston, M. H. & New, A. L. Dense aggregations of a hexactinellid sponge, Pheronema carpenteri, in the Porcupine Seabight (northeast Atlantic Ocean), and possible causes. Prog. Oceanogr. 24, 179–196 (1990).ADS 

    Google Scholar 
    84.Roberts, E. M. et al. Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground. Deep. Res. Part I Oceanogr. Res. Pap. 138, 98–113 (2018).ADS 

    Google Scholar 
    85.Purser, A. et al. Ocean floor observation and bathymetry system (OFOBS): a new towed camera/sonar system for deep-sea habitat surveys. IEEE J. Ocean. Eng. 44, 1–13 (2019).
    Google Scholar 
    86.Marcon, Y. & Purser, A. PAPARA(ZZ)I: an open-source software interface for annotating photographs of the deep-sea. SoftwareX 6, 69–80 (2017).ADS 

    Google Scholar 
    87.Morganti, T. M., Ribes, M., Yahel, G. & Coma, R. Size is the major determinant of pumping rates in marine sponges. Front. Physiol. 10, 1474 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    88.Zelles, L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35, 275–294 (1997).ADS 
    CAS 
    PubMed 

    Google Scholar 
    89.Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Bio. Ecol. 128, 219–240 (1989).CAS 

    Google Scholar 
    90.Koopmans, M. et al. Seasonal variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: biomarkers in sponges identified. Mar. Biotechnol. 17, 43–54 (2015).CAS 

    Google Scholar 
    91.Mollenhauer, G., Grotheer, H., Gentz, T., Bonk, E. & Hefter, J. Standard operation procedures and performance of the MICADAS radiocarbon laboratory at Alfred Wegener Institute (AWI). Ger. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 496, 45–51 (2021).ADS 
    CAS 

    Google Scholar 
    92.Fallon, S. J., James, K., Norman, R., Kelly, M. & Ellwood, M. J. A simple radiocarbon dating method for determining the age and growth rate of deep-sea sponges. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 1241–1243 (2010).ADS 
    CAS 

    Google Scholar 
    93.Griffith, D. R. et al. Carbon dynamics in the western Arctic Ocean: insights from full-depth carbon isotope profiles of DIC, DOC, and POC. Biogeosciences 9, 1217–1224 (2012).ADS 
    CAS 

    Google Scholar 
    94.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    96.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).CAS 
    PubMed 

    Google Scholar 
    98.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS 
    PubMed 

    Google Scholar 
    102.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.De Anda, V. et al. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 6, 1–17 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Benner, R., Benitez-Nelson, B., Kaiser, K. & Amon, R. M. W. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett. 31, 10–13 (2004).
    Google Scholar 
    105.Thibodeau, B., Bauch, D. & Voss, M. Nitrogen dynamic in Eurasian coastal Arctic ecosystem: Insight from nitrogen isotope. Glob. Biogeochem. Cycles 31, 836–849 (2017).ADS 
    CAS 

    Google Scholar 
    106.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011). More

  • in

    Study on landscape evaluation and optimization strategy of Central Park in Qingkou Town

    Comprehensive parks in small towns generally serve the urban residents within a few kilometers of the park. Parks are generally in an area with a large flow of people in a small town15. However, the geographical blockage indicates that the users of parks in small towns are generally of limited educational level, so the investigation process is more complicated. This study adopts a multimethod design with DPOE (diagnostic post-use evaluation) as the main research method, supplemented by the analytic hierarchy process (AHP) and GIS technology, to quantitatively evaluate the current use of comprehensive parks in small cities and towns, and make a decision based on the evaluation results regarding the corresponding optimization and promotion strategy. The research was divided into the following three stages.EvaluateBasis of evaluationBased on the perspective of “human body—movement—space—place—environment”21, stimulation theory and control theory in environmental psychology are used as the main directions for setting up and investigating recreational behaviors. Field investigations were conducted on the current environment, region, culture and other relevant factors of Central Park in Qingkou Town from April to May 2020. The survey covered weekdays, weekends and holidays, sunny/rainy days and mornings and evenings. The main task of the survey was to supervise the development and use of parks in small towns, the number of users, the types of facilities, and the appearance and maintenance of the park22 and to list the problems related to the environment and its ecology, the benefits provided by groups of parks, or the benefits provided to the surrounding enterprises and schools. Especially after the epidemic, residents have had a more active and urgent need for the participation of green space. To cover a wider range of weather and time conditions, data were collected in sequence during the observation period according to a preset scheme for four periods of the day, alternating between two working days and one weekend each week23. Two team members (interviewers) were in contact with tourists at different times in the park from 8 am to 8 pm. In order to minimize selection errors, each respondent was invited to participate in the survey (the targets included adults, children, and adolescents). Elderly people who agreed to participate in the survey were asked about their visit activities and usage behaviors in the park, such as the frequency of visits, distance, and satisfaction with respect to park maintenance, safety, and infrastructure construction24. Finally, the survey requested relevant social demographic information, such as age, highest education level, and marital status (with or without children).Construction of a performance evaluation index system for comprehensive park landscapes in small townsThe evaluation index of the general applicability of small-town parks was established using a field investigation and the combination of the American landscape performance series (LPS)25. The index system was divided into three levels. The first level was the target level, that is, the evaluation index system of the comprehensive landscape performance of small-town parks. The second level was the criterion level, including environmental performance, health performance and economic performance. As the embodiment of the second level, the three-level index layer mainly includes park construction, infrastructure setting, landscape quality, garden atmosphere, and tourist behavior. Considering the accuracy of comprehensive park evaluation in small towns, the three-level index layer was used to obtain 19 related indexes after expert advice and screening20.Questionnaire designSince this study is aimed at parks in small towns and the surrounding residents generally have a low level of education, to obtain more effective data, the questionnaire was in the form of ticking. In terms of content, the questionnaire was divided into two parts. The first part collected basic information about tourists, such as the mode of transportation to the park and visit frequency. Second, there were 19 evaluation index factors. The Likert method was used to evaluate the index26, and the answers each had five levels: very satisfied, satisfied, average, dissatisfied and very dissatisfied.Combination weight analysisSome papers in the past ten years have discussed the limitations of the AHP in dealing with the complexity and uncertainty of evaluation indicators and used fuzzy comprehensive evaluation methods to deal with the problem of uncertainty27,28,29,30. However, the fuzzy evaluation method has gradually been eliminated due to its inability to quickly determine the evaluation content31. Therefore, this study used indicator weights for analysis and evaluation. On the basis of the AHP analytic hierarchy process, the coefficient of variation (CV) is added to the weight of each indicator32. The main purpose of adopting this method is to establish a landscape performance evaluation system for Qingkou Central Park, refer to the satisfaction evaluation of tourists through the DPOE, and determine the content that the park needs to be optimized.SurveyThe places where tourists gather or where tourists are the most often have a certain reference significance for the planning and design of parks. Therefore, collecting data on tourist gathering places is needed in the research process33. An increasing number of studies have pointed to the use of social media to examine users’ daily life behaviors and spatial distribution relationships. Wood et al. attempted to evaluate the access rate of entertainment venues based on the location of photos posted on Flickr34. Hamstead et al. use geolocation data from Flickr and Twitter to assess changes in the use of all parks in New York city35. Because the identification system for comprehensive parks in most small towns is not clear, tourists cannot clearly identify a place to visit or a location they often visit. Therefore, the following attempts were made: (1) A total of 182 points of interest of tourists in Qingkou Central Park were collected through Octopus Aata Collector 8, Six-Feet and other software. (2) The distribution of interest points and on-site observations were used to identify five gathering points that cover most of the park landscape. They were named A, B, C, D and E (Table 1) for fixed video recording. The average weekday traffic and weekend traffic information was obtained. (3) The collected data were imported into Excel for sorting, and the utilization of parks was visually expressed in different time periods through GIS. (4) From May to August 2020, 300 copies of paper questionnaires were distributed at nodes A, B, C, D and E. (5) In addition, the questionnaire content was imported into Excel for simple processing, classification and deletion of duplicate data. (6) Finally, the spatial and temporal distribution results and comprehensive evaluation results of tourists in comprehensive parks in small towns were obtained, and optimization suggestions were summarized.Table 1 Landscape node and application of the Central Park.Full size tableSpatial distribution and experience of respondentsThe behavior track, gathering area and spatial distribution of tourists in the park affect the evaluation of the park. However, due to the different behavioral habits of tourists, some areas of the park will have a crowd gathering effect36. As a result, the use of environmental resources in the park is uneven, resulting in the waste of environmental resources and ecological damage.During the study, to make the data more accurate, a total of six samples were randomly selected from three working days and three weekends from May to July 2020 for data collection. The collection method consisted of five people at five important nodes in the park that basically cover the popular areas (including A. Northeast Main Entrance Square, B. Southwest Main Entrance Square, C. West Secondary Entrance Square, D. Sports Theme Square, and E. Waterfront wooden platform); the sites were filmed from 06:00 to 20:00 (fifteen minutes were taken from 06:00–08:00, 08:00–11:00, 11:00–13:00, 13:00–17:00 and 17:00–20:00 for each time period) to record the activity track of tourists in a day. Then, the average weekday samples and weekend samples were averaged, and the data of the flow of people and the length of stay were processed. The flow of people in the different periods of each node of the two samples was sorted using Excel, and coordinate marks were made on the construction drawings according to the image data to screen out repeated and unreasonable data37,38. Then, ArcGIS was used to perform data visualization (scenic spot heat), and the following conclusions could be drawn: there was a significant difference in the stay time of tourists at different nodes (Fig. 2).Figure 2Schematic diagram of the flow of people in different times and spaces.Full size imageThrough node analysis, it was found that tourists stayed in the park for at least 30 min. Compared with the research process, it took approximately 1 h and 10 min to complete the whole track through the Six-Foot app, which showed that tourists stayed in the park for a longer time. Among them, the passenger flow peaks were during 06:00–08:00, 11:00–13:00 and 17:00–20:00, while the passenger flow was lower at other times. In addition, according to observation and survey data summary, passenger flow was not evenly concentrated among the five node areas6. Overall, node A and node B had a large flow of tourists and a longer stay time. Node D was ranked next, while node C and node E had less traffic and shorter stay times.Overview of respondentsAccording to the POE field survey and questionnaire survey, 292 valid questionnaires (recovery rate 97.3%) were obtained, among which 58.2% (169 persons) were female, slightly higher than the 41.8% (123 persons) that were male. Among them, 40.5% (118 persons) were carrying children under 8 years old. In terms of age, young people between 30 and 39 years old accounted for 43.7% (128 people), most of whom carried children, followed by younger people between 19 and 29 years old and young people between 40 and 49 years old, which fully showed that the urban center where the park is located was dominated by young people. Among the visitors, 71.9% (210 people) were local residents, 18.5% (54 people) were temporary residents, and 9.6% (28 people) were foreign tourists. In terms of how people arrived at the park, most of them came by walking (116 people), accounting for 38.9%, followed by electric vehicles and private cars (61 people each), accounting for 21.6%. Among them, 53% (154 people) chose to come to the park when they were free, and 24% (70 people) came to the park three or four times a week. In the park system of this small town, the public green space served the local residents to a large extent and gradually became a recreational place for the real-time entertainment of nearby residents (Table 2).AHP-CV comprehensive weight analysisThe development of the AHP-CV combined weights has led to a change in the method of determining indicator weights from a single subjectiveness to a comprehensive objectivity39. In order to avoid the evolution of the AHP to a single weighting method, the AHP method is combined with the SW and CV methods here to calculate objective weight, based on the principle of minimum information entropy combining two kinds of weighted information40.

    1.

    To ensure the reliability of the data, first, check the consistency of the paired comparison matrix:$${text{RC }} = {text{ IC}}/{text{IR}}$$
    If RC  More

  • in

    Double-observer approach with camera traps can correct imperfect detection and improve the accuracy of density estimation of unmarked animal populations

    Model frameworkThe capture-recapture model applied here is the hierarchical model for stratified populations proposed by Royle et al.48. The model aims to estimate local population size or community structure49 using capture-recapture data from multiple independent locations. In the following, we briefly describe the model in our context, including addressing heterogeneity in detection probability.Let us consider that we establish S independent camera stations in a survey area. Then, we install K camera traps at each station to monitor exactly the same focal area (totally S × K camera traps will be used). We assume that these camera traps detect animals within the focal areas NT times in total. For animal pass i (i = 1, 2, 3, …, NT), we will obtain (1) at the station where the animal is detected (hereafter station identity; gi), and (2) how many of the K cameras at the station were successful in detecting the animal pass (hereafter detection history; yi). The hierarchal capture-recapture model uses these two data, gi and yi.Let the number of the animal passes at station s be Ns (s = 1, 2, 3, …, S). Then, we assume that Ns follows a Poisson distribution with a parameter λ. In this case, the probability of passage i occurring at station s is expected to be (frac{lambda }{lambda times S}). Thus, station identity, gi, can be modelled as follows:$$g_{i} sim {text{ Categorical}}; left(frac{lambda }{lambda times S}right)$$
    When the number of the animal passes at station s, Ns, may have larger variation than expected from the Poisson case, we may assume a negative binomial distribution model or may give a random effect to the parameter of the Poisson distribution at the camera station level.The detection history Y with elements yi can be modelled using a data augmentation procedure47. Specifically, the original detection Y is artificially augmented by many M – n passes with all-zero histories (i.e. not detected by any camera). The augmented data W with elements wi (y1, y2…yNT, 0, 0, … 0) will consist of the passage that occurred but was not detected by any camera (false zero), which occurs with probability ψ, and the passage that did not occur (structural zeros) with the probability 1 − ψ. A set of latent augmentation binary variables, z1, z2, … zM, is introduced, which denotes the false zero (z = 1) and the structural zero (z = 0). That is$$z_{i} sim {text{ Bernoulli }}left( psi right).$$The elements of the augmented data, wi, can be modelled conditional on the latent variables zi. There would be two alternative approaches to modelling the wi.The simplest one may regard wi as random binomial variables. That is$$w_{i} |z_{i} = , 1sim {text{ Binomial }}left( {K,p} right)$$When accounting for the heterogeneity of detection among animal passes, it can be accommodated using a beta distribution as follows;$$w_{i} |z_{i} = , 1sim {text{ Binomial }}left( {K,p_{i} } right)$$$$p_{i} sim {text{ Beta}}left( {alpha ,beta } right)$$The expected detection probability can be derived from (widehat{alpha }/(widehat{alpha }+widehat{beta })) and the correlation coefficients can be calculated by (1/(widehat{alpha }+widehat{beta }+1)).Alternatively, we can regard wi as a categorical variable that takes values from zero to K.$$w_{i} sim {text{ Categorical }}left( pi right)$$
    where π is a probability vector of length K + 1. For simplicity, let us consider two camera traps installed at each station, and those cameras have equal detection probability. Then, wi can take either 0 (i.e. zi = 0 or both camera traps missed animals with conditional on zi = 1), 1 (i.e. only one camera trap detected animals with conditional on zi = 1), or 2 (i.e. both camera traps detected animals with conditional on zi = 1). Thus, when we define the probability that wi takes 0, 1, 2 with conditional on zi = 1, as φm (m = 1, 2, 3), the elements of π is equal to {zi × φ0 + (1 − zi)}, {zi × φ1}, {zi × φ2}, respectively.We then take different modelling approaches depending on whether detection probability among animal passes is heterogeneous or not. When two camera traps at a station detect animals independently with the same probability ρ, φ0, φ1, and φ2 can be expressed as a function of ρ, i.e. (1 − ρ)2, 2 × ρ × (1 − ρ)2, ρ2, respectively (Clare et al.47). On the other hand, when detections by the two camera traps are correlated, we need to estimate three real parameters φm that designate the probabilities of all outcomes wi|zi = 1. We assume that ρm follows the Dirichlet distribution with the parameter γm (m = 1, 2, 3). That is$$varphi_{m} sim {text{ Dirichlet}}left( {gamma_{1} ,gamma_{2} , , gamma_{3} } right)$$In this approach, the expected detection probability can be derived from ({widehat{varphi }}_{1}/2+{widehat{varphi }}_{2}) and the correlation coefficients can be calculated by ({widehat{varphi }}_{2}-{({widehat{varphi }}_{1}/2+{widehat{varphi }}_{2})}^{2}).Compared to the beta-binomial distribution approach, the approach using categorical-Dirichlet distribution might be more flexible in accommodating detection heterogeneity while it might be more challenging to estimate the model parameters. In either approach, the expected total number of animal passes can be expressed as (lambda times S). Thus, ψ can be fixed as follows:$$psi = frac{lambda times S}{M}$$For more details of the models, see Royle et al.48 and Clare et al.44.Testing the effectiveness of the hierarchical capture-recapture modelWe performed Monte Carlo simulations to evaluate the effectiveness of the hierarchical capture-recapture model. Because the model reliability has been confirmed well48, we here focused on the effects of heterogeneity in detection probability on the accuracy and precision of the estimates.We assumed that the number of detections by camera traps followed a negative binomial distribution with a mean of 5.0 and dispersion parameter 1.27, which derived the actual data on an ungulate in African rainforests34. We also assumed two camera traps each at 30 stations (i.e. 60 camera traps in total). We generated detection histories (i.e. the number of camera traps successfully detecting animals in each animal passage) using a beta-binomial distribution with the expected detection probability at 0.8 or 0.4. We varied the correlation coefficients (= 1/(α + β + 1)), from 0.1 to 0.5 in 0.1 increments. The scale parameters of the beta distributions for each scenario are shown in Table 1. Additionally, to determine the effects of sample sizes on the accuracy and precision of estimates, we increased the number of camera stations at 100. Since this setting requires much computation time, we only assumed a detection probability of 0.4 and a correlation coefficient of 0.3.We estimated the parameters of the hierarchical capture-recapture models assuming a beta-binomial distribution and a categorical-Dirichlet distribution using the Markov chain Monte Carlo (MCMC) implemented in JAGS (version 3.4.0) in all the simulations. We assumed that the number of animal passes followed a negative binomial distribution. For the model assuming a beta-binomial distribution, we transformed the scale parameters, α and β as p*phi and p*(1 − phi), respectively (p is an expected detection probability). Then we used a weakly informative prior (gamma distribution with shape = 10 and rate = 2) for phi and a non-informative uniform distribution from 0 to 1 for the detection probability49. For the model assuming a categorical-Dirichlet distribution, the Dirichlet prior distribution was induced by treating each γm ~ Gamma(1, 1) and calculating each probability by ({varphi }_{m}={{gamma }_{m}}/{sum }_{m=1}^{M}{gamma }_{m}) followingv and Clare et al.44. We generated three chains of 3000 iterations after a burn-in of 1000 and thinned by 5. The convergence of models was determined using the Gelman–Rubin statistic, where values  More

  • in

    Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating

    Timeseries imaging tracks gene expression in spatial systemsRecent studies have shown it possible to identify the members of microbial consortia as well as their gene expression within spatially-structured systems30,33,34. However, these methods capture data cross-sectionally and are unable to provide temporal insight into gene expression patterning as it emerges in these cell populations. To bridge this gap, we built a fluorescent imager inside an incubator (Supplementary Fig. 1). Our framework characterizes cellular growth and gene expression in spatially-structured environments with previously unattainable time-resolution and throughput. Fluorescently labeled cells are illuminated using LEDs connected to a custom-built control system (see methods). The images are background corrected and analyzed, tracking colony growth and gene expression information (Supplementary Figs. 2, 3) straight from the spatially-structured system.In our experiments, we utilized a dual-labeled P. aeruginosa PA14 strain harboring PBad-DsRed(EC2)35 driven by L-arabinose in the plate media, which cannot be metabolized by the cells36, and PrhlAB-GFP28,37. When grown in spatial structure, the constitutive expression of DsRed provided a measure of the local density of bacteria (Supplementary Fig. 4). In all our experiments, the dynamical expression of GFP, validated by RT-qPCR (Supplementary Fig. 5) (see methods), reported on the expression of rhlAB.Using these data, we were able to characterize how the surroundings experienced by these microbes influence the dynamics of their cooperative behavior directly in a spatially-structured setting.Rhamnolipid production differs in liquid and spatial environmentsRhamnolipids are necessary for cooperative swarming behavior in P. aeruginosa and for other traits related to virulence26. Rhamnolipids can be produced in liquid culture10,20,28,38, thus rhamnolipid production is often studied in detail there. Despite recent work indicating that gene expression related to quorum signaling systems in P. aeruginosa may differ in spatial structure29, no studies assess how downstream genes, such as rhlAB, may be affected in spatially-structured colonies. Given the relevance of these diffusible inputs to the rhlAB system, we hypothesized that there could be differences between gene expression patterns in liquid and spatial environments.We compared P. aeruginosa biomass growth and gene expression in the liquid and spatial environments (Fig. 1a). Liquid culture data was collected following prior methods28. To interrogate the spatial system, we used the protocol from the classic Colony Forming Unit (CFU) assay. Cells were seeded with extreme dilution and we observed the behavior of the resultant colonies (cCFUs) across time and within the random configurations generated.Fig. 1: Rhamnolipid production differs between liquid culture and surface-attached P. aeruginosa.a Cartoon depictions of liquid and spatially-structured environments used in this study. b Optical density timeseries describing P. aeruginosa growth in liquid culture. [Blue] Biomass growth without exogenous quorum signals. [Purple] Biomass growth with exogenous quorum signals. c DsRed fluorescent timeseries generated from a custom-built imager (Supplementary Fig. 1) and custom software (Supplementary Fig. 3) describing P. aeruginosa growth in colony forming units (CFU). [Blue] Biomass growth without exogenous quorum signals [Purple] Biomass growth with exogenous quorum signals added to the plate media. [Inset] Example plate showing colonies at 48 h. Scale bar 1 cm. d Promoter activity (left[frac{{dGFP}}{{dt}}cdot frac{1}{{{OD}}_{600}}right]) of PrhlAB with respect to culture growth rate (left[frac{d{{OD}}_{600}}{{dt}}cdot frac{1}{{{OD}}_{600}}right]). [Blue] without exogenous quorum signals [Purple] with exogenous quorum signals. e Promoter activity (left[frac{{dGFP}}{{dt}}cdot frac{1}{{DsRed}}right]) of PrhlAB with respect to CFU growth rate (left[frac{{dDsRed}}{{dt}}cdot frac{1}{{DsRed}}right]). [Blue] without exogenous quorum signals [Purple] with exogenous quorum signals provided in the plate media.Full size imageWe observed differences in growth between cells grown in liquid culture (Fig. 1b) and spatial structure (Fig. 1c) with the same media composition. The growth pattern observed in liquid culture recapitulates previously reported data22,28. In comparing WT growth (dark blue data in Fig. 1b, c) between environments, we observed that both achieve a period of exponential growth, followed by a period of slowed growth. This sub-exponential growth is prolonged and no period of biomass decay is observed in the spatially-structured environment during our observation window.Quorum signal perturbation has long been an experimental tool to determine if a phenotype is responsive to social signaling9,10. rhlAB gene expression in particular is known to be downstream of both the las and rhl quorum signal systems39,40. However, it has previously been shown that liquid culture perturbation with additional C4-HSL and 3-oxo-C12-HSL, the rhl and las quorum signal system auto-inducers respectively, do not illicit significant change in growth or PrhlAB dynamics in this strain of P. aeruginosa22. We replicated this liquid culture result (Fig. 1b, purple data). In the spatially-structured system, we performed this perturbation by including both quorum signal molecules in the plate media in the same concentration by volume as previously published22. This analysis was done using biological replicates with More

  • in

    Extensive oceanic mesopelagic habitat use of a migratory continental shark species

    1.Angel, M. V. Biodiversity of the Pelagic Ocean. Conserv. Biol. 7, 760–772 (1993).Article 

    Google Scholar 
    2.Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. https://doi.org/10.1038/ncomms4271 (2014).Article 
    PubMed 

    Google Scholar 
    3.Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiology 503, 163–170. https://doi.org/10.1023/B:HYDR.0000008476.23617.b0 (2003).Article 

    Google Scholar 
    4.Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873. https://doi.org/10.1038/srep19873 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Hammerschlag, N., Gallagher, A. J. & Lazarre, D. M. A review of shark satellite tagging studies. J. Exp. Mar. Biol. Ecol. 398, 1–8. https://doi.org/10.1016/j.jembe.2010.12.012 (2011).Article 

    Google Scholar 
    6.Dulvy, N. K. et al. You can swim but you can’t hide: The global status and conservation of oceanic pelagic sharks and rays. Aquat. Conserv. 18, 459–482 (2008).Article 

    Google Scholar 
    7.Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571. https://doi.org/10.1038/s41586-020-03173-9 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Compagno, L. J. V. Pelagic elasmobranch diversity. In Sharks of the Open Ocean, 14–23 (2008).9.Howey, L. A. et al. Into the deep: The functionality of mesopelagic excursions by an oceanic apex predator. Ecol. Evol. 6, 5290–5304. https://doi.org/10.1002/ece3.2260 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Francis, M. P. et al. Oceanic nomad or coastal resident? Behavioural switching in the shortfin mako shark (Isurus oxyrinchus). Mar. Biol. 166, 5. https://doi.org/10.1007/s00227-018-3453-5 (2018).Article 

    Google Scholar 
    11.Skomal, G. et al. Horizontal and vertical movement patterns and habitat use of juvenile porbeagles (Lamna nasus) in the western north Atlantic. Front. Mar. Sci. 8, 16 (2021).Article 

    Google Scholar 
    12.Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363. https://doi.org/10.1038/s41598-018-25565-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Coelho, R., Fernandez-Carvalho, J. & Santos, M. N. Habitat use and diel vertical migration of bigeye thresher shark: Overlap with pelagic longline fishing gear. Mar. Environ. Res. 112, 91–99. https://doi.org/10.1016/j.marenvres.2015.10.009 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Arostegui, M. C. et al. Vertical movements of a pelagic thresher shark (Alopias pelagicus): Insights into the species’ physiological limitations and trophic ecology in the Red Sea. Endanger. Species Res. 43, 387–394. https://doi.org/10.3354/esr01079 (2020).Article 

    Google Scholar 
    15.Coffey, D. M., Carlisle, A. B., Hazen, E. L. & Block, B. A. Oceanographic drivers of the vertical distribution of a highly migratory, endothermic shark. Sci. Rep. 7, 10434. https://doi.org/10.1038/s41598-017-11059-6 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Coffey, D. M., Royer, M. A., Meyer, C. G. & Holland, K. N. Diel patterns in swimming behavior of a vertically migrating deepwater shark, the bluntnose sixgill (Hexanchus griseus). PLoS One 15, e0228253. https://doi.org/10.1371/journal.pone.0228253 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Francis, M. P., Holdsworth, J. C. & Block, B. A. Life in the open ocean: Seasonal migration and diel diving behaviour of Southern Hemisphere porbeagle sharks (Lamna nasus). Mar. Biol. 162, 2305–2323. https://doi.org/10.1007/s00227-015-2756-z (2015).Article 

    Google Scholar 
    18.Jorgensen, S. J. et al. Eating or meeting? Cluster analysis reveals intricacies of white shark (Carcharodon carcharias) migration and offshore behavior. PLoS One 7, e47819. https://doi.org/10.1371/journal.pone.0047819 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Nelson, D. R. et al. An acoustic tracking of a megamouth shark, Megachasma pelagios: A crepuscular vertical migrator. Environ. Biol. Fish. 49, 389–399. https://doi.org/10.1023/A:1007369619576 (1997).Article 

    Google Scholar 
    20.Sims, D. W., Southall, E. J., Tarling, G. A. & Metcalfe, J. D. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J. Anim. Ecol. 74, 755–761. https://doi.org/10.1111/j.1365-2656.2005.00971.x (2005).Article 

    Google Scholar 
    21.Watanabe, Y. Y. & Papastamatiou, Y. P. Distribution, body size and biology of the megamouth shark Megachasma pelagios. J. Fish Biol. 95, 992–998. https://doi.org/10.1111/jfb.14007 (2019).Article 
    PubMed 

    Google Scholar 
    22.Braun, C. D., Skomal, G. B. & Thorrold, S. R. Integrating archival tag data and a high-resolution oceanographic model to estimate basking shark (Cetorhinus maximus) movements in the Western Atlantic. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00025 (2018).Article 

    Google Scholar 
    23.Jorgensen, S. J. et al. Philopatry and migration of Pacific white sharks. Proc. R. Soc. B 277, 679–688. https://doi.org/10.1098/rspb.2009.1155 (2010).Article 
    PubMed 

    Google Scholar 
    24.Lipscombe, R. S. et al. Habitat use and movement patterns of tiger sharks (Galeocerdo cuvier) in eastern Australian waters. ICES J. Mar. Sci. 77, 3127–3137. https://doi.org/10.1093/icesjms/fsaa212 (2020).Article 

    Google Scholar 
    25.Walker, T. I. et al. Galeorhinus galeus. The IUCN Red List of Threatened Species 2020: e.T39352A2907336. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T39352A2907336.en (2020). (Downloaded on 18 June 2021).26.Chabot, C. L. Microsatellite loci confirm a lack of population connectivity among globally distributed populations of the tope shark Galeorhinus galeus (Triakidae). J. Fish Biol. 87, 371–385. https://doi.org/10.1111/jfb.12727 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Bester-van der Merwe, A. E. et al. Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus): Intercontinental divergence and constrained gene flow at different geographical scales. PLoS One 12, e0184481. https://doi.org/10.1371/journal.pone.0184481 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Stevens, J. D. Further results from a tagging study of pelagic sharks in the north-east Atlantic. J. Mar. Biol. Assoc. UK 70, 707–720. https://doi.org/10.1017/S0025315400058999 (1990).Article 

    Google Scholar 
    29.West, G. J. & Stevens, J. D. Archival tagging of school shark, Galeorhinus galeus, in Australia: Initial results. Environ. Biol. Fish. 60, 283–298 (2001).Article 

    Google Scholar 
    30.Thorburn, J. et al. Ontogenetic variation in movements and depth use, and evidence of partial migration in a Benthopelagic Elasmobranch. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00353 (2019).Article 

    Google Scholar 
    31.McMillan, M. N., Huveneers, C., Semmens, J. M. & Gillanders, B. M. Partial female migration and cool-water migration pathways in an overfished shark. ICES J. Mar. Sci. 76, 1083–1093. https://doi.org/10.1093/icesjms/fsy181 (2019).Article 

    Google Scholar 
    32.Walker, T. Galeorhinus galeus fisheries of the World, in: Case studies of management of elasmobranch fisheries. FAO Fish. Tech. Pap. 378, 728–773 (1999).
    Google Scholar 
    33.Brown, L., Bridge, N. & Walker, T. Summary of tag releases and recaptures in the Southern Shark Fishery. Mar. Freshw. Resour. Inst. Rep. 16, 60 (2000).
    Google Scholar 
    34.Lucifora, L., Menni, R. & Escalante, A. Reproductive biology of the school shark, Galeorhinus galeus, off Argentina: Support for a single south western Atlantic population with synchronized migratory movements. Environ. Biol. Fish. 71, 199–209. https://doi.org/10.1007/s10641-004-0305-6 (2004).Article 

    Google Scholar 
    35.Jaureguizar, A. J., Argemi, F., Trobbiani, G., Palma, E. D. & Irigoyen, A. J. Large-scale migration of a school shark, Galeorhinus galeus, in the Southwestern Atlantic. Neotrop. Ichthyol. https://doi.org/10.1590/1982-0224-20170050 (2018).Article 

    Google Scholar 
    36.Nosal, A. P. et al. Triennial migration and philopatry in the critically endangered soupfin shark Galeorhinus galeus. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13848 (2021).Article 

    Google Scholar 
    37.Cuevas, J., Garcia, M. & Di Giacomo, E. Diving behaviour of the critically endangered tope shark Galeorhinus galeus in the Natural Reserve of Bahia San Blas, northern Patagonia. Anim. Biotelemetry 2, 11 (2014).Article 

    Google Scholar 
    38.Iosilevskii, G., Papastamatiou, Y. P., Meyer, C. G. & Holland, K. N. Energetics of the yo-yo dives of predatory sharks. J. Theor. Biol. 294, 172–181. https://doi.org/10.1016/j.jtbi.2011.11.008 (2012).ADS 
    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    39.Carey, F. G., Scharold, J. V. & Kalmijn, A. J. Movements of blue sharks (Prionace glauca) in depth and course. Mar. Biol. 106, 329–342. https://doi.org/10.1007/BF01344309 (1990).Article 

    Google Scholar 
    40.Nakamura, I., Watanabe, Y. Y., Papastamatiou, Y. P., Sato, K. & Meyer, C. G. Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. Mar. Ecol. Prog. Ser. 424, 237–246 (2011).ADS 
    Article 

    Google Scholar 
    41.Thorrold, S. R. et al. Extreme diving behaviour in devil rays links surface waters and the deep ocean. Nat. Commun. https://doi.org/10.1038/ncomms5274 (2014).Article 
    PubMed 

    Google Scholar 
    42.Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proc. Nat. Acad. Sci. 116, 17187–17192. https://doi.org/10.1073/pnas.1903067116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Andrzejaczek, S., Gleiss, A. C., Pattiaratchi, C. B. & Meekan, M. G. Patterns and drivers of vertical movements of the large fishes of the epipelagic. Rev. Fish. Biol. Fish. 29, 335–354. https://doi.org/10.1007/s11160-019-09555-1 (2019).Article 

    Google Scholar 
    44.Papastamatiou, Y. P. et al. Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer?. PLoS One 10, e0127807. https://doi.org/10.1371/journal.pone.0127807 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119. https://doi.org/10.1016/j.cub.2016.11.003 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. I(126), 85–102. https://doi.org/10.1016/j.dsr.2017.05.006 (2017).Article 

    Google Scholar 
    47.Ariza, A. et al. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands. J. Mar. Syst. 157, 82–91. https://doi.org/10.1016/j.jmarsys.2016.01.004 (2016).Article 

    Google Scholar 
    48.Peña, M., Cabrera-Gámez, J. & Domínguez-Brito, A. C. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic. Mar. Environ. Res. 154, 104842. https://doi.org/10.1016/j.marenvres.2019.104842 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Peña, M. et al. Acoustic detection of mesopelagic fishes in scattering layers of the Balearic Sea (western Mediterranean). Can. J. Fish. Aquat. Sci. 71, 1186–1197. https://doi.org/10.1139/cjfas-2013-0331 (2014).CAS 
    Article 

    Google Scholar 
    50.Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west Pacific. Deep Sea Res. II(113), 125–144. https://doi.org/10.1016/j.dsr2.2014.10.026 (2015).Article 

    Google Scholar 
    51.Urmy, S. S. & Horne, J. K. Multi-scale responses of scattering layers to environmental variability in Monterey Bay, California. Deep Sea Res. I(113), 22–32. https://doi.org/10.1016/j.dsr.2016.04.004 (2016).Article 

    Google Scholar 
    52.Korneliussen, R. J. et al. Acoustic target classification. ICES Coop. Res. Rep. 344, 110. https://doi.org/10.17895/ices.pub.4567 (2018).Article 

    Google Scholar 
    53.D’Elia, M. et al. Diel variation in the vertical distribution of deep-water scattering layers in the Gulf of Mexico. Deep Sea Res. I(115), 91–102. https://doi.org/10.1016/j.dsr.2016.05.014 (2016).Article 

    Google Scholar 
    54.Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000. https://doi.org/10.1121/1.4906177 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    55.Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00364 (2019).Article 

    Google Scholar 
    56.Shea, E. K. & Vecchione, M. Ontogenic changes in diel vertical migration patterns compared with known allometric changes in three mesopelagic squid species suggest an expanded definition of a paralarva. ICES J. Mar. Sci. 67, 1436–1443. https://doi.org/10.1093/icesjms/fsq104 (2010).Article 

    Google Scholar 
    57.Lucifora, L. O., Garcia, V. B., Menni, R. C. & Escalante, A. H. Food habits, selectivity, and foraging modes of the school shark Galeorhinus galeus. Mar. Ecol. Prog. Ser. 315, 259–270 (2006).ADS 
    Article 

    Google Scholar 
    58.Morato, T., Sola, E., Gros, M. P. & Menezes, G. Diets of thornback ray (Raja clavata) and tope shark (Galeorhinus galeus) in the bottom longline fishery of the Azores, northeastern Atlantic. Fish. Bull. 101, 590–602 (2003).
    Google Scholar 
    59.Ellis, J. R., Pawson, M. G. & Shackley, S. E. The comparative feeding ecology of six species of shark and four species of ray (Elasmobranchii) in the North-East Atlantic. J. Mar. Biol. Assoc. UK. 76, 89–106. https://doi.org/10.1017/S0025315400029039 (1996).Article 

    Google Scholar 
    60.Clarke, M. R., Clarke, D. C., Martins, H. R. & Silva, H. M. The diet of blue shark (Prionace glauca) in Azorean waters, Arquipélago. Life Mar. Sci. 14A, 41–56 (1996).
    Google Scholar 
    61.Bond, M. E., Tolentino, E., Mangubhai, S. & Howey, L. A. Vertical and horizontal movements of a silvertip shark (Carcharhinus albimarginatus) in the Fijian archipelago. Anim. Biotelemetry 3, 19. https://doi.org/10.1186/s40317-015-0055-6 (2015).Article 

    Google Scholar 
    62.Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1–26. https://doi.org/10.1002/lno.11709 (2021).CAS 
    Article 

    Google Scholar 
    63.Arkhipkin, A. I. Squid as nutrient vectors linking Southwest Atlantic marine ecosystems. Deep Sea Res. II(95), 7–20. https://doi.org/10.1016/j.dsr2.2012.07.003 (2013).CAS 
    Article 

    Google Scholar 
    64.Bird, C. S. et al. A global perspective on the trophic geography of sharks. Nat. Ecol. Evol. 2, 299–305. https://doi.org/10.1038/s41559-017-0432-z (2018).Article 
    PubMed 

    Google Scholar 
    65.Spaet, J. L. Y., Lam, C. H., Braun, C. D. & Berumen, M. L. Extensive use of mesopelagic waters by a Scalloped hammerhead shark (Sphyrna lewini) in the Red Sea. Anim. Biotelemetry 5, 20. https://doi.org/10.1186/s40317-017-0135-x (2017).Article 

    Google Scholar 
    66.ICES. Working Group on Elasmobranch Fishes (WGEF). ICES Sci. Rep. 2, 789. https://doi.org/10.17895/ices.pub.7470 (2020).Article 

    Google Scholar 
    67.Murgier, J. et al. Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proc. R. Soc. B 288, 20201600. https://doi.org/10.1098/rspb.2020.1600 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Pastoors, M. A., van Helmond, E. B., van Marlen, B., van Overzee, H. & de Graaf, E. Pelagic pilot project discard ban, 2013–2014. (IMARES, Wageningen UR, Report Number C071/14) (2014).69.Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).ADS 
    Article 

    Google Scholar 
    70.NOAA National Geophysical Data Center. ETOPO1 1 Arc-Minute Global Relief Model. (NOAA National Centers for Environmental Information, 2009).71.Pedersen, M. W., Patterson, T. A., Thygesen, U. H. & Madsen, H. Estimating animal behaviour and residency from movement data. Oikos 120, 1281–1290. https://doi.org/10.1111/j.1600-0706.2011.19044.x (2011).Article 

    Google Scholar 
    72.Bauer, R. RchivalTag: Analyzing Archival Tagging Data. A set of functions to generate, access and analyze standard data products from archival tagging data. (2020). https://cran.r-project.org/package=RchivalTag.
    Accessed on 8 November 2021.73.Cazelles, B. et al. Wavelet analysis of ecological time series. Oecologia 156, 287–304. https://doi.org/10.1007/s00442-008-0993-2 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    74.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S, 4th ed. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2.75.Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL (2012). https://cran.r-project.org/package=mgcv. Accessed on 8 November 2021.76.Wood S. N. Generalized Additive Models. An Introduction with R. 2nd ed. (Chapman & Halll, 2017). https://doi.org/10.1201/9781315370279. More