1.Angel, M. V. Biodiversity of the Pelagic Ocean. Conserv. Biol. 7, 760–772 (1993).Article
Google Scholar
2.Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. https://doi.org/10.1038/ncomms4271 (2014).Article
PubMed
Google Scholar
3.Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiology 503, 163–170. https://doi.org/10.1023/B:HYDR.0000008476.23617.b0 (2003).Article
Google Scholar
4.Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873. https://doi.org/10.1038/srep19873 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
5.Hammerschlag, N., Gallagher, A. J. & Lazarre, D. M. A review of shark satellite tagging studies. J. Exp. Mar. Biol. Ecol. 398, 1–8. https://doi.org/10.1016/j.jembe.2010.12.012 (2011).Article
Google Scholar
6.Dulvy, N. K. et al. You can swim but you can’t hide: The global status and conservation of oceanic pelagic sharks and rays. Aquat. Conserv. 18, 459–482 (2008).Article
Google Scholar
7.Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571. https://doi.org/10.1038/s41586-020-03173-9 (2021).ADS
CAS
Article
PubMed
Google Scholar
8.Compagno, L. J. V. Pelagic elasmobranch diversity. In Sharks of the Open Ocean, 14–23 (2008).9.Howey, L. A. et al. Into the deep: The functionality of mesopelagic excursions by an oceanic apex predator. Ecol. Evol. 6, 5290–5304. https://doi.org/10.1002/ece3.2260 (2016).Article
PubMed
PubMed Central
Google Scholar
10.Francis, M. P. et al. Oceanic nomad or coastal resident? Behavioural switching in the shortfin mako shark (Isurus oxyrinchus). Mar. Biol. 166, 5. https://doi.org/10.1007/s00227-018-3453-5 (2018).Article
Google Scholar
11.Skomal, G. et al. Horizontal and vertical movement patterns and habitat use of juvenile porbeagles (Lamna nasus) in the western north Atlantic. Front. Mar. Sci. 8, 16 (2021).Article
Google Scholar
12.Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363. https://doi.org/10.1038/s41598-018-25565-8 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
13.Coelho, R., Fernandez-Carvalho, J. & Santos, M. N. Habitat use and diel vertical migration of bigeye thresher shark: Overlap with pelagic longline fishing gear. Mar. Environ. Res. 112, 91–99. https://doi.org/10.1016/j.marenvres.2015.10.009 (2015).CAS
Article
PubMed
Google Scholar
14.Arostegui, M. C. et al. Vertical movements of a pelagic thresher shark (Alopias pelagicus): Insights into the species’ physiological limitations and trophic ecology in the Red Sea. Endanger. Species Res. 43, 387–394. https://doi.org/10.3354/esr01079 (2020).Article
Google Scholar
15.Coffey, D. M., Carlisle, A. B., Hazen, E. L. & Block, B. A. Oceanographic drivers of the vertical distribution of a highly migratory, endothermic shark. Sci. Rep. 7, 10434. https://doi.org/10.1038/s41598-017-11059-6 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
16.Coffey, D. M., Royer, M. A., Meyer, C. G. & Holland, K. N. Diel patterns in swimming behavior of a vertically migrating deepwater shark, the bluntnose sixgill (Hexanchus griseus). PLoS One 15, e0228253. https://doi.org/10.1371/journal.pone.0228253 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
17.Francis, M. P., Holdsworth, J. C. & Block, B. A. Life in the open ocean: Seasonal migration and diel diving behaviour of Southern Hemisphere porbeagle sharks (Lamna nasus). Mar. Biol. 162, 2305–2323. https://doi.org/10.1007/s00227-015-2756-z (2015).Article
Google Scholar
18.Jorgensen, S. J. et al. Eating or meeting? Cluster analysis reveals intricacies of white shark (Carcharodon carcharias) migration and offshore behavior. PLoS One 7, e47819. https://doi.org/10.1371/journal.pone.0047819 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
19.Nelson, D. R. et al. An acoustic tracking of a megamouth shark, Megachasma pelagios: A crepuscular vertical migrator. Environ. Biol. Fish. 49, 389–399. https://doi.org/10.1023/A:1007369619576 (1997).Article
Google Scholar
20.Sims, D. W., Southall, E. J., Tarling, G. A. & Metcalfe, J. D. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J. Anim. Ecol. 74, 755–761. https://doi.org/10.1111/j.1365-2656.2005.00971.x (2005).Article
Google Scholar
21.Watanabe, Y. Y. & Papastamatiou, Y. P. Distribution, body size and biology of the megamouth shark Megachasma pelagios. J. Fish Biol. 95, 992–998. https://doi.org/10.1111/jfb.14007 (2019).Article
PubMed
Google Scholar
22.Braun, C. D., Skomal, G. B. & Thorrold, S. R. Integrating archival tag data and a high-resolution oceanographic model to estimate basking shark (Cetorhinus maximus) movements in the Western Atlantic. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00025 (2018).Article
Google Scholar
23.Jorgensen, S. J. et al. Philopatry and migration of Pacific white sharks. Proc. R. Soc. B 277, 679–688. https://doi.org/10.1098/rspb.2009.1155 (2010).Article
PubMed
Google Scholar
24.Lipscombe, R. S. et al. Habitat use and movement patterns of tiger sharks (Galeocerdo cuvier) in eastern Australian waters. ICES J. Mar. Sci. 77, 3127–3137. https://doi.org/10.1093/icesjms/fsaa212 (2020).Article
Google Scholar
25.Walker, T. I. et al. Galeorhinus galeus. The IUCN Red List of Threatened Species 2020: e.T39352A2907336. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T39352A2907336.en (2020). (Downloaded on 18 June 2021).26.Chabot, C. L. Microsatellite loci confirm a lack of population connectivity among globally distributed populations of the tope shark Galeorhinus galeus (Triakidae). J. Fish Biol. 87, 371–385. https://doi.org/10.1111/jfb.12727 (2015).CAS
Article
PubMed
Google Scholar
27.Bester-van der Merwe, A. E. et al. Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus): Intercontinental divergence and constrained gene flow at different geographical scales. PLoS One 12, e0184481. https://doi.org/10.1371/journal.pone.0184481 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
28.Stevens, J. D. Further results from a tagging study of pelagic sharks in the north-east Atlantic. J. Mar. Biol. Assoc. UK 70, 707–720. https://doi.org/10.1017/S0025315400058999 (1990).Article
Google Scholar
29.West, G. J. & Stevens, J. D. Archival tagging of school shark, Galeorhinus galeus, in Australia: Initial results. Environ. Biol. Fish. 60, 283–298 (2001).Article
Google Scholar
30.Thorburn, J. et al. Ontogenetic variation in movements and depth use, and evidence of partial migration in a Benthopelagic Elasmobranch. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00353 (2019).Article
Google Scholar
31.McMillan, M. N., Huveneers, C., Semmens, J. M. & Gillanders, B. M. Partial female migration and cool-water migration pathways in an overfished shark. ICES J. Mar. Sci. 76, 1083–1093. https://doi.org/10.1093/icesjms/fsy181 (2019).Article
Google Scholar
32.Walker, T. Galeorhinus galeus fisheries of the World, in: Case studies of management of elasmobranch fisheries. FAO Fish. Tech. Pap. 378, 728–773 (1999).
Google Scholar
33.Brown, L., Bridge, N. & Walker, T. Summary of tag releases and recaptures in the Southern Shark Fishery. Mar. Freshw. Resour. Inst. Rep. 16, 60 (2000).
Google Scholar
34.Lucifora, L., Menni, R. & Escalante, A. Reproductive biology of the school shark, Galeorhinus galeus, off Argentina: Support for a single south western Atlantic population with synchronized migratory movements. Environ. Biol. Fish. 71, 199–209. https://doi.org/10.1007/s10641-004-0305-6 (2004).Article
Google Scholar
35.Jaureguizar, A. J., Argemi, F., Trobbiani, G., Palma, E. D. & Irigoyen, A. J. Large-scale migration of a school shark, Galeorhinus galeus, in the Southwestern Atlantic. Neotrop. Ichthyol. https://doi.org/10.1590/1982-0224-20170050 (2018).Article
Google Scholar
36.Nosal, A. P. et al. Triennial migration and philopatry in the critically endangered soupfin shark Galeorhinus galeus. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13848 (2021).Article
Google Scholar
37.Cuevas, J., Garcia, M. & Di Giacomo, E. Diving behaviour of the critically endangered tope shark Galeorhinus galeus in the Natural Reserve of Bahia San Blas, northern Patagonia. Anim. Biotelemetry 2, 11 (2014).Article
Google Scholar
38.Iosilevskii, G., Papastamatiou, Y. P., Meyer, C. G. & Holland, K. N. Energetics of the yo-yo dives of predatory sharks. J. Theor. Biol. 294, 172–181. https://doi.org/10.1016/j.jtbi.2011.11.008 (2012).ADS
MathSciNet
Article
PubMed
MATH
Google Scholar
39.Carey, F. G., Scharold, J. V. & Kalmijn, A. J. Movements of blue sharks (Prionace glauca) in depth and course. Mar. Biol. 106, 329–342. https://doi.org/10.1007/BF01344309 (1990).Article
Google Scholar
40.Nakamura, I., Watanabe, Y. Y., Papastamatiou, Y. P., Sato, K. & Meyer, C. G. Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. Mar. Ecol. Prog. Ser. 424, 237–246 (2011).ADS
Article
Google Scholar
41.Thorrold, S. R. et al. Extreme diving behaviour in devil rays links surface waters and the deep ocean. Nat. Commun. https://doi.org/10.1038/ncomms5274 (2014).Article
PubMed
Google Scholar
42.Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proc. Nat. Acad. Sci. 116, 17187–17192. https://doi.org/10.1073/pnas.1903067116 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
43.Andrzejaczek, S., Gleiss, A. C., Pattiaratchi, C. B. & Meekan, M. G. Patterns and drivers of vertical movements of the large fishes of the epipelagic. Rev. Fish. Biol. Fish. 29, 335–354. https://doi.org/10.1007/s11160-019-09555-1 (2019).Article
Google Scholar
44.Papastamatiou, Y. P. et al. Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer?. PLoS One 10, e0127807. https://doi.org/10.1371/journal.pone.0127807 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
45.Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119. https://doi.org/10.1016/j.cub.2016.11.003 (2017).CAS
Article
PubMed
Google Scholar
46.Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. I(126), 85–102. https://doi.org/10.1016/j.dsr.2017.05.006 (2017).Article
Google Scholar
47.Ariza, A. et al. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands. J. Mar. Syst. 157, 82–91. https://doi.org/10.1016/j.jmarsys.2016.01.004 (2016).Article
Google Scholar
48.Peña, M., Cabrera-Gámez, J. & Domínguez-Brito, A. C. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic. Mar. Environ. Res. 154, 104842. https://doi.org/10.1016/j.marenvres.2019.104842 (2020).CAS
Article
PubMed
Google Scholar
49.Peña, M. et al. Acoustic detection of mesopelagic fishes in scattering layers of the Balearic Sea (western Mediterranean). Can. J. Fish. Aquat. Sci. 71, 1186–1197. https://doi.org/10.1139/cjfas-2013-0331 (2014).CAS
Article
Google Scholar
50.Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west Pacific. Deep Sea Res. II(113), 125–144. https://doi.org/10.1016/j.dsr2.2014.10.026 (2015).Article
Google Scholar
51.Urmy, S. S. & Horne, J. K. Multi-scale responses of scattering layers to environmental variability in Monterey Bay, California. Deep Sea Res. I(113), 22–32. https://doi.org/10.1016/j.dsr.2016.04.004 (2016).Article
Google Scholar
52.Korneliussen, R. J. et al. Acoustic target classification. ICES Coop. Res. Rep. 344, 110. https://doi.org/10.17895/ices.pub.4567 (2018).Article
Google Scholar
53.D’Elia, M. et al. Diel variation in the vertical distribution of deep-water scattering layers in the Gulf of Mexico. Deep Sea Res. I(115), 91–102. https://doi.org/10.1016/j.dsr.2016.05.014 (2016).Article
Google Scholar
54.Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000. https://doi.org/10.1121/1.4906177 (2015).ADS
Article
PubMed
Google Scholar
55.Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00364 (2019).Article
Google Scholar
56.Shea, E. K. & Vecchione, M. Ontogenic changes in diel vertical migration patterns compared with known allometric changes in three mesopelagic squid species suggest an expanded definition of a paralarva. ICES J. Mar. Sci. 67, 1436–1443. https://doi.org/10.1093/icesjms/fsq104 (2010).Article
Google Scholar
57.Lucifora, L. O., Garcia, V. B., Menni, R. C. & Escalante, A. H. Food habits, selectivity, and foraging modes of the school shark Galeorhinus galeus. Mar. Ecol. Prog. Ser. 315, 259–270 (2006).ADS
Article
Google Scholar
58.Morato, T., Sola, E., Gros, M. P. & Menezes, G. Diets of thornback ray (Raja clavata) and tope shark (Galeorhinus galeus) in the bottom longline fishery of the Azores, northeastern Atlantic. Fish. Bull. 101, 590–602 (2003).
Google Scholar
59.Ellis, J. R., Pawson, M. G. & Shackley, S. E. The comparative feeding ecology of six species of shark and four species of ray (Elasmobranchii) in the North-East Atlantic. J. Mar. Biol. Assoc. UK. 76, 89–106. https://doi.org/10.1017/S0025315400029039 (1996).Article
Google Scholar
60.Clarke, M. R., Clarke, D. C., Martins, H. R. & Silva, H. M. The diet of blue shark (Prionace glauca) in Azorean waters, Arquipélago. Life Mar. Sci. 14A, 41–56 (1996).
Google Scholar
61.Bond, M. E., Tolentino, E., Mangubhai, S. & Howey, L. A. Vertical and horizontal movements of a silvertip shark (Carcharhinus albimarginatus) in the Fijian archipelago. Anim. Biotelemetry 3, 19. https://doi.org/10.1186/s40317-015-0055-6 (2015).Article
Google Scholar
62.Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1–26. https://doi.org/10.1002/lno.11709 (2021).CAS
Article
Google Scholar
63.Arkhipkin, A. I. Squid as nutrient vectors linking Southwest Atlantic marine ecosystems. Deep Sea Res. II(95), 7–20. https://doi.org/10.1016/j.dsr2.2012.07.003 (2013).CAS
Article
Google Scholar
64.Bird, C. S. et al. A global perspective on the trophic geography of sharks. Nat. Ecol. Evol. 2, 299–305. https://doi.org/10.1038/s41559-017-0432-z (2018).Article
PubMed
Google Scholar
65.Spaet, J. L. Y., Lam, C. H., Braun, C. D. & Berumen, M. L. Extensive use of mesopelagic waters by a Scalloped hammerhead shark (Sphyrna lewini) in the Red Sea. Anim. Biotelemetry 5, 20. https://doi.org/10.1186/s40317-017-0135-x (2017).Article
Google Scholar
66.ICES. Working Group on Elasmobranch Fishes (WGEF). ICES Sci. Rep. 2, 789. https://doi.org/10.17895/ices.pub.7470 (2020).Article
Google Scholar
67.Murgier, J. et al. Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proc. R. Soc. B 288, 20201600. https://doi.org/10.1098/rspb.2020.1600 (2021).Article
PubMed
PubMed Central
Google Scholar
68.Pastoors, M. A., van Helmond, E. B., van Marlen, B., van Overzee, H. & de Graaf, E. Pelagic pilot project discard ban, 2013–2014. (IMARES, Wageningen UR, Report Number C071/14) (2014).69.Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).ADS
Article
Google Scholar
70.NOAA National Geophysical Data Center. ETOPO1 1 Arc-Minute Global Relief Model. (NOAA National Centers for Environmental Information, 2009).71.Pedersen, M. W., Patterson, T. A., Thygesen, U. H. & Madsen, H. Estimating animal behaviour and residency from movement data. Oikos 120, 1281–1290. https://doi.org/10.1111/j.1600-0706.2011.19044.x (2011).Article
Google Scholar
72.Bauer, R. RchivalTag: Analyzing Archival Tagging Data. A set of functions to generate, access and analyze standard data products from archival tagging data. (2020). https://cran.r-project.org/package=RchivalTag.
Accessed on 8 November 2021.73.Cazelles, B. et al. Wavelet analysis of ecological time series. Oecologia 156, 287–304. https://doi.org/10.1007/s00442-008-0993-2 (2008).ADS
Article
PubMed
Google Scholar
74.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S, 4th ed. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2.75.Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL (2012). https://cran.r-project.org/package=mgcv. Accessed on 8 November 2021.76.Wood S. N. Generalized Additive Models. An Introduction with R. 2nd ed. (Chapman & Halll, 2017). https://doi.org/10.1201/9781315370279. More