More stories

  • in

    Direct competition and potential displacement involving managed Trogoderma stored product pests

    Finkelman, S., Navarro, S., Rindner, M. & Dias, R. Effect of low pressure on the survival of Trogoderma granarium Everts, Lasioderma serricorne (F.) and Oryzaephilus surinamensis (L.) at 30°C. J. Stored. Prod. Res. 42, 23–30 (2006).Article 

    Google Scholar 
    Hosseininaveh, V. A., Bandani, A. P., Azmayeshfard, P. S., Hosseinkhani, S. & Kazzazi, M. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored. Prod. Res. 43, 515–522 (2007).Article 
    CAS 

    Google Scholar 
    Burges, H. D. Development of the khapra beetle, Trogoderma granarium, in the lower part of its temperature range. J. Stored. Prod. Res. 44, 32–35 (2008).Article 

    Google Scholar 
    Hagstrum D. W & Subramanyam, B. Stored-Product Insect Resource (AACC International, 2009).Beal, R. S. Synopsis of the economic species of Trogoderma occurring in the United States with description of a new species (Coleoptera: Dermestidae). Ann. Entomol. Soc. Am. 49, 559–566 (1956).Article 

    Google Scholar 
    Kerr, J. A. Khapra beetle returns. Pest Control 49(12), 24–25 (1984).
    Google Scholar 
    Sinha, R. N. & Utida, S. Climatic areas potentially vulnerable to stored product insects in Japan. Appl. Entomol. Zool. 2, 124–132 (1967).Article 

    Google Scholar 
    Banks, H. J. Distribution and establishment of Trogoderma granarium Everts (Coleoptera: Dermestidae): Climatic and other influences. J. Stored. Prod. Res. 13, 183–202 (1977).Article 

    Google Scholar 
    Kavallieratos, N. G., Athanassiou, C. G., Guedes, R. N. C., Drempela, J. D. & Boukouvala, M. C. Invader competition with local competitors: Displacement or coexistence among the invasive khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), and two other major stored-grain beetles?. Front. Plant. Sci. 8, 1837 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lampiri, E., Baliota, G. V., Morrison, W. M., Domingue, M. J. & Athanassiou, C. Comparative population growth of the khapra beetle (Coleoptera: Dermestidae) and the warehouse beetle (Coleoptera: Dermestidae) on wheat and rice. J. Econ. Entomol. 115, 344–352 (2021).Article 

    Google Scholar 
    Athanassiou, C. G., Phillips, T. W. & Wakil, W. Biology and control of the khapra beetle, Trogoderma granarium, a major quarantine threat to global food security. Ann. Rev. Entomol. 64, 131–148 (2019).Article 
    CAS 

    Google Scholar 
    Stibick, J. New pest response guidelines: khapra beetle. APHIS– PPQ–Emergency and Domestic Programs. (U.S Department of Agriculture, 2009).Myers, S. W. & Hagstrum, D. W. Quarantine, In Stored stored product protection, (ed. Hagstrum D.W. Phillips T.W. & Cuperus G.) 297–304 (Kansas State University, 2012).Day, C. & White, B. Khapra beetle, Trogoderma granarium interceptions and eradications in Australia and around the world. In SARE working papers 1609. (Crawley: School of Agricul. Res. Econ. 2016).Burges, H. D. Diapause, pest status and control of the Khapra beetle. Trogoderma Granar. Everts Ann. Appl. Biol. 50, 614–617 (1962).Article 

    Google Scholar 
    Nair, K. & Desai, A. The termination of diapause in Trogoderma granarium Everts (Coleoptera, Dermestidae). J. Stored. Prod. Res. 8, 275–290 (1973).Article 

    Google Scholar 
    Burges, H. D. Studies on the Dermestid beetle Trogoderma granarium Everts—IV. Feeding, growth, and respiration with particular reference to diapause larvae. J. Insect. Physiol. 5, 317–334 (1960).Article 
    CAS 

    Google Scholar 
    Wilches, D., Laird, R. A., Floate, K. & Fields, P. G. A review of diapause and tolerance to extreme temperatures in dermestids (Coleoptera). J. Stored Prod. Res. 68, 50–62 (2016).Article 

    Google Scholar 
    Vick, K. W., Drummond, P. C. & Coffelt, J. A. Trogoderma inclusum and T. glabrum: Effects of time of day on production of female pheromone, male responsiveness and mating. Ann. Entomol. Soc. Am. 66, 1001–1004 (1973).Article 

    Google Scholar 
    Partida, G. J. & Strong, R. G. Distribution and relative abundance of Trogoderma spp. in relation to climate zones of California. J. Econ. Entomol. 63, 1553–1560 (1970).Article 

    Google Scholar 
    Hagstrum, D. W. Seasonal variation of stored wheat environment and insect populations. J. Econ. Entomol. 16, 77–83 (1987).
    Google Scholar 
    Mullen, M. A. & Arbogast, R. T. Insect succession in a stored-corn ecosystem in southeast Georgia. J. Econ. Entomol. 81, 899–912 (1988).
    Google Scholar 
    Partida, G. J. & Strong, R. G. Comparative studies on the biologies of six species of Trogoderma: T. inclusum. Ann. Entomol. Soc. Am. 68, 91–103 (1975).Article 

    Google Scholar 
    Beal, R. S. Biology and taxonomy of the nearctic species of Trogoderma. Univ. Calif. Misc. Publ. Entomol. 10, 35–102 (1954).
    Google Scholar 
    Castañé, C., Agustí, N., del Estal, P. & Riudavets, J. Survey of Trogoderma spp in Spanish mills and warehouses. J. Stored. Prod. Res. 88, 1061 (2020).Article 

    Google Scholar 
    Levinson, H. Z. & Mori, K. The pheromone activity of chiral isomers of trogodermal for male khapra beetles. Naturwissenschaften 67, 148–149 (1980).Article 
    CAS 

    Google Scholar 
    Silverstein, R. M. et al. Perception by Trogoderma species of chirality and methyl branching at a site far removed from a functional group in a pheromone component. J. Chem. Ecol. 6, 911–917 (1980).Article 
    CAS 

    Google Scholar 
    Vick, K. W. Effects of interspecific matings of Trogoderma glabrum and T. inclusum on oviposition and re-mating. Ann. Entomol. Soc. Am. 66, 237–239 (1973).Article 
    MathSciNet 

    Google Scholar 
    Drijfhout, S. et al. Catalogue of abrupt shifts in intergovernmental panel on climate change climate models. Proc. Natl. Acad. Sci. USA 112, E5777–E5786 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, T. W., Pfannenstiel, L. & Hagstrum, D. Survey of Trogoderma species (Coleoptera: Dermestidae) associated with international trade of dried distiller’s grains and solubles in the USA. Julius-Kühn-Archiv 1, 233–238 (2018).
    Google Scholar 
    Hadaway, A. The biology of the beetles, Trogoderma granarium Everts and Trogoderma versicolor (Creutz). Bull. Entomol. Res. 46, 781–796 (1956).Article 
    CAS 

    Google Scholar 
    Gorham, J. R. Insect and Mite Pests in Food: An Illustrated Key. Vols. 1 and 2, (U.S Department of Agriculture, 1991).Furui, S., Miyanoshita, A., Imamura, T., Minegishi, Y. & Kokutani, R. Qualitative real-time PCR identification of the khapra beetle, Trogoderma granarium (Coleoptera: Dermestidae). Appl. Entomol. Zool. 54, 101–107 (2019).Article 
    CAS 

    Google Scholar 
    Olson, R. L., Farris, R. E., Barr, N. B. & Cognato, A. I. Molecular identification of Trogoderma granarium (Coleoptera: Dermestidae) using the 16s gene. J Pest Sci 87, 701–710 (2014).Article 

    Google Scholar 
    Wu, Y. et al. Development of an array of molecular tools for the identification of khapra beetle (Trogoderma granarium), a destructive beetle of stored food products. Sci. Rep. 13, 3327 (2023).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lampiri, E., Athanassiou, C. & Arthur, F. H. Population growth and development of the khapra beetle (Coleoptera: Dermestidae), on different sorghum fractions. J. Econ. Entomol. 114, 424–429 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Athanassiou, C. G., Kavallieratos, N. G. & Boukouvala, M. C. Population growth of the khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) on different commodities. J. Stored. Prod. Res. 69, 72–77 (2016).Article 

    Google Scholar 
    Karnavar, G. K. Mating behaviour and fecundity in Trogoderma granarium (Coleoptera: Dermestidae). J. Stored. Prod. Res. 8, 65–69 (1972).Article 

    Google Scholar 
    Pray, L. A. & Goodnight, C. J. Genetic variation in inbreeding depression in the red flour beetle Tribolium castaneum. Evolution 49, 176–188 (1995).Article 
    PubMed 

    Google Scholar 
    Barzin, S., Naseri, B., Fathi, S. A. A., Razmjou, J. & Aeinehchi, P. Feeding efficiency and digestive physiology of Trogoderma granarium Everts (Coleoptera: Dermestidae) on different rice cultivars. J. Stored. Prod. Res. 84, 101511 (2019).Article 

    Google Scholar 
    Naseri, B., Aeinehchi, P. & Ashjerdi, A. R. Nutritional responses and digestive enzymatic profile of Trogoderma granarium Everts (Coleoptera: Dermestidae) on 10 commercial rice cultivars. J. Stored. Prod. Res. 87, 101591 (2020).Article 

    Google Scholar 
    Sarwar, M. & Sattar, M. Varietals assessment of different wheat varieties for their resistance response to Khapra beetle Trogoderma granarium. Pak. J. Seed. Technol. 1(10), 1–7 (2007).
    Google Scholar 
    Wilches, D., Laird, R., Floate, K. & Fields, P. Effects of acclimation and diapause on the cold tolerance of Trogoderma granarium. Entomol. Exp. Appl. 165, 169–178 (2017).Article 
    CAS 

    Google Scholar 
    Paini, D. R. & Yemshanov, D. Modelling the arrival of invasive organisms via the international marine shipping network: a Khapra beetle study. PLoS ONE 7(9), e44589 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morrison, W. R., Grosdidier, R. F., Arthur, F. H., Myers, S. W. & Domingue, M. J. Attraction, arrestment, and preference by immature Trogoderma variabile and Trogoderma granarium to food and pheromonal stimuli. J. Pest Sci. 93, 135–147 (2020).Article 

    Google Scholar 
    Arthur, F. H. & Morrison, W. M. Methodology for assessing progeny production and grain damage on commodities treated with insecticides. Agronomy 10(6), 804 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    Ecological divergence of syntopic marine bacterial species is shaped by gene content and expression

    Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50:513–24.Article 
    CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappe MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife 2019;8:e46497.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 2008;320:1081–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 1998;393:464–7.Article 
    CAS 
    PubMed 

    Google Scholar 
    Rivas LR. A reinterpretation of the concepts “sympatric” and “allopatric” with proposal for the additional terms “syntopic” and “allotopic”. Syst Zool. 1964;13:42–3.Article 

    Google Scholar 
    Friedman J, Alm EJ, Shapiro BJ. Sympatric speciation: when is it possible in bacteria? PLoS One. 2013;8:e53539.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiene RP, Nowinski B, Esson K, Preston C, Marin R III, Birch J, et al. Unprecedented DMSP concentrations in a massive dinoflagellate bloom in Monterey Bay. Ca Geophys Res Lett. 2019;46:12279–88.Article 

    Google Scholar 
    Scholin CA, Birch J, Jensen S, Marin R, Massion E, Pargett D, et al. The quest to develop ecogenomic sensors a 25-year history of the environmental sample processor (ESP) as a case study. Oceanography. 2017;30:100–13.Article 

    Google Scholar 
    Nowinski B, Smith CB, Thomas CM, Esson K, Marin R, Preston CM, et al. Microbial metagenomes and metatranscriptomes during a coastal phytoplankton bloom. Sci Data. 2019;6:1–7.Article 
    CAS 

    Google Scholar 
    Luo H, Löytynoja A, Moran MA. Genome content of uncultivated marine Roseobacters in the surface ocean. Environ Microbiol. 2012;14:41–51.Article 
    CAS 
    PubMed 

    Google Scholar 
    Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol. 2002;68:3878–85.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng X, Chu X, Qian Y, Henson MW, Lanclos VC, Qin F, et al. Mechanisms driving genome reduction of a novel Roseobacter lineage. ISME J. 2021;15:3576–86.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran MA, Belas R, Schell M, González J, Sun F, Sun S, et al. Ecological genomics of marine roseobacters. Appl Environ Microbiol. 2007;73:4559–69.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.Article 
    CAS 
    PubMed 

    Google Scholar 
    Suzuki MT, Preston CM, Béjà O, De La Torre J, Steward G, DeLong EF. Phylogenetic screening of ribosomal RNA gene-containing clones in bacterial artificial chromosome (BAC) libraries from different depths in Monterey Bay. Micro Ecol. 2004;48:473–88.Article 
    CAS 

    Google Scholar 
    Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giebel H-A, Kalhoefer D, Lemke A, Thole S, Gahl-Janssen R, Simon M, et al. Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J. 2011;5:8–19.Article 
    PubMed 

    Google Scholar 
    Ottesen EA, Marin R, Preston CM, Young CR, Ryan JP, Scholin CA, et al. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J. 2011;5:1881–95.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang Y, Sun Y, Jiao N, Stepanauskas R, Luo H. Ecological genomics of the uncultivated marine Roseobacter lineage CHAB-I-5. Appl Environ Microbiol. 2016;82:2100–11.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Nat Acad Sci. 2015;112:5443–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Nat Acad Sci. 2013;110:E488–E97.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nowinski B, Motard‐Côté J, Landa M, Preston CM, Scholin CA, Birch JM, et al. Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes. Environ Microbiol. 2019;21:1687–701.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi JC, Lee J, et al. Genomes OnLine Database (GOLD) v. 8: overview and updates. Nucleic Acids Res. 2021;49:D723–D33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–D77.Article 
    CAS 
    PubMed 

    Google Scholar 
    Satinsky BM, Gifford SM, Crump BC, Moran MA. Use of internal standards for quantitative metatranscriptome and metagenome analysis. In: DeLong EF, editor. Methods in Enzymology 531: Elsevier; 2013. p. 237–50.Satinsky BM, Gifford SM, Crump BC, Smith C.Moran MA, Internal genomic DNA standard for quantitative metagenome analysis V3. protocols io 2017; https://doi.org/10.17504/protocols.io.jxdcpi6p.Satinsky BM, Gifford SM, Crump BC, Smith C.Moran MA, Preparation of custom synthesized RNAtranscript standard V3. protocols io. 2017; https://doi.org/10.17504/protocols.io.jxccpiwp.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016. Report No.: 2167–9843Lee K, Choo Y-J, Giovannoni SJ, Cho J-C. Maritimibacter alkaliphilus gen. nov., sp. nov., a genome-sequenced marine bacterium of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol. 2007;57:1653–8.Article 
    PubMed 

    Google Scholar 
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015;3:e1319.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020;36:2251–2.Article 
    CAS 
    PubMed 

    Google Scholar 
    Bushnell B. BBMap: a fast, accurate, splice-aware aligner. No. LBNL-7065E. Lawrence Berkeley National Laboratory, Berkeley, CA (United States); 2014.Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res. 2010;38:D382–D90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sun Y, Luo H. Homologous recombination in core genomes facilitates marine bacterial adaptation. Appl Environ Microbiol. 2018;84:e02545–17.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfaffel O. ClustImpute: An R package for K-means clustering with build-in missing data imputation. https://www.researchgate.net/publication/341881683.Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan L-K, et al. Sizing up metatranscriptomics. ISME J 2013;7:237–43.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 
    PubMed 

    Google Scholar 
    Gifford SM, Zhao L, Stemple B, DeLong K, Medeiros PM, Seim H, et al. Microbial niche diversification in the Galápagos Archipelago and its response to El Niño. Front Microbiol. 2020;11:575194.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rich VI, Pham VD, Eppley J, Shi Y, DeLong EF. Time‐series analyses of Monterey Bay coastal microbial picoplankton using a ‘genome proxy’microarray. Environ Microbiol. 2011;13:116–34.Article 
    CAS 
    PubMed 

    Google Scholar 
    Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M, Gerdts G, et al. Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Appl Environ Microbiol. 2010;76:3187–97.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 2012;335:587–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, et al. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 2010;468:60–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wagner-Döbler I, Biebl H. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol. 2006;60:255–80.Article 
    PubMed 

    Google Scholar 
    West NJ, Obernosterer I, Zemb O, Lebaron P. Major differences of bacterial diversity and activity inside and outside of a natural iron‐fertilized phytoplankton bloom in the Southern Ocean. Environ Microbiol. 2008;10:738–56.Article 
    CAS 
    PubMed 

    Google Scholar 
    Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017;11:1483–99.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Comm. 2018;9:1–8.Article 

    Google Scholar 
    Caro‐Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ Microbiol. 2012;14:347–55.Article 
    PubMed 

    Google Scholar 
    Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–66.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cohan FM. What are bacterial species? Ann Rev Microbiol. 2002;56:457–87.Article 
    CAS 

    Google Scholar 
    Mende DR, Sunagawa S, Zeller G, Bork P. Accurate and universal delineation of prokaryotic species. Nat Meth. 2013;10:881–4.Article 
    CAS 

    Google Scholar 
    Olm MR, Crits-Christoph A, Diamond S, Lavy A, Matheus Carnevali PB, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems 2020;5:e00731–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol. 2007;10:504–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Eren EM. Linking pangenomes and metagenomes: The Prochlorococcus metapangenome. PeerJ 2018;2018:e4320–e.Article 

    Google Scholar 
    Neidhardt F, Umbarger H Chemical composition of Escherichia coli. In: FC N, Curtiss R III, JL I, ECC L, KB L, B M, et al., editors. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Washington DC: ASM Press; 1996. p. 13-6.Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329:533–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Gijón A, Nuy JK, Mehrshad M, Buck M, Schulz F, Woyke T, et al. A genomic perspective across Earth’s microbiomes reveals that genome size in Archaea and Bacteria is linked to ecosystem type and trophic strategy. Front Microbiol. 2022;12:761869.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryu K-S, Kim C, Kim I, Yoo S, Choi B-S, Park C. NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J Biol Chem. 2004;279:25544–8.Article 
    CAS 
    PubMed 

    Google Scholar 
    Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol. 2020;114:377–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang X, Zhang Y, Ren M, Xia T, Chu X, Liu C, et al. Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME J. 2020;14:3106–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Uchimiya M, Schroer W, Olofsson M, Edison AS, Moran MA. Diel investments in metabolite production and consumption in a model microbial system. ISME J. 2022;16:1306–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 2012;337:1228–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 2012;3:e00036–12.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Environmental data from CTD during the Fall 2016 ESP deployment in Monterey Bay, CA. Biological and Chemical Oceanography Data Management Office (BCO-DMO). 2019. Available from: https://doi.org/10.1575/1912/bco-dmo.756376.1.Environmental data from Niskin bottle sampling during the Fall 2016 ESP deployment in Monterey Bay. Biological and Chemical Oceanography Data Management Office (BCO-DMO). 2019. Available from: https://doi.org/10.1575/1912/bco-dmo.756413.1. More

  • in

    Living in human-modified landscapes narrows the dietary niche of a specialised mammalian scavenger

    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. B 267, 1947–1952 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).Article 

    Google Scholar 
    Fahrig, L. Non-optimal animal movement in human-altered landscapes. Funct. Ecol. 21, 1003–1015 (2007).Article 

    Google Scholar 
    Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: An empirical review and synthesis. Ecol. Soc. 14, 21 (2009).Article 

    Google Scholar 
    Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).Article 
    PubMed 

    Google Scholar 
    Sévêque, A., Gentle, L. K., López-Bao, J. V., Yarnell, R. W. & Uzal, A. Human disturbance has contrasting effects on niche partitioning within carnivore communities. Biol. Rev. 95, 1689–1705 (2020).Article 
    PubMed 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 1979(280), 2126–2128 (1998).Article 
    ADS 

    Google Scholar 
    Dressel, S., Sandström, C. & Ericsson, G. A meta-analysis of studies on attitudes toward bears and wolves across Europe 1976–2012. Conserv. Biol. 29, 565–574 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Owen, D. & Pemberton, D. Tasmanian Devil: A Unique and Threatened Animal (Allen & Unwin, 2005).
    Google Scholar 
    Yirga, G. et al. Adaptability of large carnivores to changing anthropogenic food sources: diet change of spotted hyena (Crocuta crocuta) during Christian fasting period in northern Ethiopia. J. Anim. Ecol. 81, 1052–1055 (2012).Article 
    PubMed 

    Google Scholar 
    Knight, R. L. & Kawashima, J. Y. Responses of raven and red-tailed hawk populations to linear right-of-ways. J. Wildl. Manag. 57, 266–271 (1993).Article 

    Google Scholar 
    Wilmers, C. C., Stahler, D. R., Crabtree, R. L., Smith, D. W. & Getz, W. M. Resource dispersion and consumer dominance: Scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol. Lett. 6, 996–1003 (2003).Article 

    Google Scholar 
    Lambertucci, S. A., Speziale, K. L., Rogers, T. E. & Morales, J. M. How do roads affect the habitat use of an assemblage of scavenging raptors?. Biodivers. Conserv. 18, 2063–2074 (2009).Article 

    Google Scholar 
    Šálek, M., Kreisinger, J., Sedláček, F. & Albrecht, T. Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape?. Landsc. Urban Plan. 98, 86–91 (2010).Article 

    Google Scholar 
    Bateman, P. W. & Fleming, P. A. Big city life: Carnivores in urban environments. J. Zool. 287, 1–23 (2012).Article 

    Google Scholar 
    Auman, H. J., Meathrel, C. E. & Richardson, A. Supersize me: Does anthropogenic food change the body condition of silver gulls? A comparison between urbanized and remote, non-urbanized areas. Waterbirds 31, 122–126 (2008).Article 

    Google Scholar 
    Coon, C. A. C., Nichols, B. C., McDonald, Z. & Stoner, D. C. Effects of land-use change and prey abundance on the body condition of an obligate carnivore at the wildland-urban interface. Landsc. Urban Plan. 192, 103648 (2019).Article 

    Google Scholar 
    Beckmann, J. P. & Berger, J. Using black bears to test ideal-free distribution models experimentally. J. Mammal. 84, 594–606 (2003).Article 

    Google Scholar 
    Fedriani, J. M., Fuller, T. K. & Sauvajot, R. M. Does availability of anthropogenic food enhance densities of omnivorous mammals? An example with coyotes in southern California. Ecography 24, 325–331 (2001).Article 

    Google Scholar 
    Prange, S., Gehrt, S. D. & Wiggers, E. P. Influences of anthropogenic resources on raccoon (Procyon lotor) movements and spatial distribution. J. Mammal. 85, 483–490 (2004).Article 

    Google Scholar 
    Tucker, M. A., Santini, L., Carbone, C. & Mueller, T. Mammal population densities at a global scale are higher in human-modified areas. Ecography 44, 1–13 (2021).Article 

    Google Scholar 
    Blanco, G., Lemus, J. A. & García-Montijano, M. When conservation management becomes contraindicated: Impact of food supplementation on health of endangered wildlife. Ecol. Appl. 21, 2469–2477 (2011).Article 
    PubMed 

    Google Scholar 
    Fischer, J. R., Stallknecht, D. E., Luttrell, M. P., Dhondt, A. A. & Converse, K. A. Mycoplasmal conjunctivitis in wild songbirds: The spread of a new contagious disease in a mobile host population. Emerg. Infect. Dis. 3, 69–72 (1997).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brittingham, M. C. & Temple, S. A. A survey of avian mortality at winter feeders. Wildl. Soc. Bull. 14, 445–450 (1986).
    Google Scholar 
    Hivert, L. G. et al. High blood lead concentrations in captive Tasmanian devils (Sarcophilus harrisii): A threat to the conservation of the species?. Aust. Vet. J. 96, 442–449 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carrete, M., Donázar, J. A. & Margalida, A. Density-dependent productivity depression in pyrenean bearded vultures: Implications for conservation. Ecol. Appl. 16, 1674–1682 (2006).Article 
    PubMed 

    Google Scholar 
    Bozek, C. K., Prange, S. & Gehrt, S. D. The influence of anthropogenic resources on multi-scale habitat selection by raccoons. Urban Ecosyst. 10, 413–425 (2007).Article 

    Google Scholar 
    Jones, J. D. et al. Supplemental feeding alters migration of a temperate ungulate. Ecol. Appl. 24, 1769–1779 (2014).Article 
    PubMed 

    Google Scholar 
    Šálek, M., Drahníková, L. & Tkadlec, E. Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient. Mamm. Rev. 45, 1–14 (2015).Article 

    Google Scholar 
    Newsome, D. & Rodger, K. To feed or not to feed: a contentious issues in wildlife tourism. In Too Close for Comfort: Contentious Issues in Human-Wildlife Encounters (ed. Lunney, D.) 255–270 (Royal Zoological Society of New South Wales, 2008).Chapter 

    Google Scholar 
    Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science 1979(359), 466–469 (2018).Article 
    ADS 

    Google Scholar 
    Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    Prange, S. & Gehrt, S. D. Changes in mesopredator-community structure in response to urbanization. Can. J. Zool. 82, 1804–1817 (2004).Article 

    Google Scholar 
    Rodewald, A. D., Kearns, L. J. & Shustack, D. P. Anthropogenic resource subsidies decouple predator–prey relationships. Ecol. Appl. 21, 936–943 (2011).Article 
    PubMed 

    Google Scholar 
    Cortés-Avizanda, A., Jovani, R., Carrete, M. & Donázar, J. A. Resource unpredictability promotes species diversity and coexistence in an avian scavenger guild: A field experiment. Ecology 93, 2570–2579 (2012).Article 
    PubMed 

    Google Scholar 
    Arrondo, E., Cortés-Avizanda, A. & Donázar, J. A. Temporally unpredictable supplementary feeding may benefit endangered scavengers. Ibis 157, 648–651 (2015).Article 

    Google Scholar 
    Smith, J. A., Thomas, A. C., Levi, T., Wang, Y. & Wilmers, C. C. Human activity reduces niche partitioning among three widespread mesocarnivores. Oikos 127, 890–901 (2018).Article 

    Google Scholar 
    de León, L. F. et al. Urbanization erodes niche segregation in Darwin’s finches. Evol. Appl. 12, 1329–1343 (2019).Article 
    PubMed 

    Google Scholar 
    Manlick, P. J. & Pauli, J. N. Human disturbance increases trophic niche overlap in terrestrial carnivore communities. PNAS 117, 26842–26848 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blair, R. B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6, 506–519 (1996).Article 

    Google Scholar 
    Dettori, E. E. et al. Distribution and diet of recovering Eurasian otter (Lutra lutra) along the natural-to-urban habitat gradient (river Segura, SE Spain). Urban Ecosyst. 24, 1221–1230 (2021).Article 

    Google Scholar 
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    Guiler, E. R. Temporal and spatial distribution of the Tasmanian Devil, Sarcophilus harrisii (Dasyuridae: Marsupialia). Pap. Proc. R. Soc. Tasman 116, 153–163 (1982).
    Google Scholar 
    Patton, A. H. et al. A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science (1979) 370, eabb9772 (2020).CAS 

    Google Scholar 
    Cunningham, C. X. et al. Quantifying 25 years of disease-caused declines in Tasmanian devil populations: Host density drives spatial pathogen spread. Ecol. Lett. 24, 958–969 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rose, R. K., Pemberton, D. A., Mooney, N. J. & Jones, M. E. Sarcophilus harrisii (Dasyuromorphia: Dasyuridae). Mamm. Species 49, 1–17 (2017).Article 

    Google Scholar 
    Guiler, E. R. Observations on the Tasmanian devil, Sarcophilus harrisii (Marsupialia: Dasyuridae) I. Numbers, home range, movements and food in two populations. Aust. J. Zool. 18, 49–62 (1970).Article 

    Google Scholar 
    Jones, M. E. & Barmuta, L. A. Diet overlap and relative abundance of sympatric dasyurid carnivores: A hypothesis of competition. J. Anim. Ecol. 67, 410–421 (1998).Article 

    Google Scholar 
    Pemberton, D. et al. The diet of the Tasmanian Devil, Sarcophilus harrisii, as determined from analysis of scat and stomach contents. Pap. Proc. R. Soc. Tasman. 142, 13–22 (2008).
    Google Scholar 
    Rogers, T. L., Fox, S., Pemberton, D. & Wise, P. Sympathy for the devil: Captive-management style did not influence survival, body-mass change or diet of Tasmanian devils 1 year after wild release. Wildl. Res. 43, 544–552 (2016).Article 

    Google Scholar 
    Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Dietary partitioning of Australia’s two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range. PLoS ONE 12, e0188529 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Department of Primary Industries Parks Water and Environment. Recovery Plan for the Tasmanian devil (Sarcophilus harrisii) (2010).Brown, O. J. F. Tasmanian devil (Sarcophilus harrisii) extinction on the Australian mainland in the mid-Holocene: multicausality and ENSO intensification. Alcheringa Aust. J. Palaeontol. 30, 49–57 (2006).Article 

    Google Scholar 
    Lewis, A. C., Hughes, C. & Rogers, T. L. Effects of intraspecific competition and body mass on diet specialization in a mammalian scavenger. Ecol. Evol. 12, e8338 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andersen, G. E., McGregor, H. W., Johnson, C. N. & Jones, M. E. Activity and social interactions in a wide-ranging specialist scavenger, the Tasmanian devil (Sarcophilus harrisii), revealed by animal-borne video collars. PLoS ONE 15, e0230216 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, M. E. Road upgrade, road mortality and remedial measures: Impacts on a population of eastern quolls and Tasmanian devils. Wildl. Res. 27, 289–296 (2000).Article 

    Google Scholar 
    Jones, M. E. & Barmuta, L. A. Niche differentiation among sympatric australian dasyurid carnivores. J. Mammal. 81, 434–447 (2000).Article 

    Google Scholar 
    Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Sci. Rep. 7, 11624 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamede, R. K., McCallum, H. & Jones, M. Seasonal, demographic and density-related patterns of contact between Tasmanian devils (Sarcophilus harrisii): Implications for transmission of devil facial tumour disease. Austral. Ecol. 33, 614–622 (2008).Article 

    Google Scholar 
    Kitchener, A. & Harris, S. From Forest to Fjaeldmark: Descriptions of Tasmania’s Vegetation (Department of Primary Industries, Parks, Water and Environment, Tasmania, 2013).
    Google Scholar 
    Wiggins, N. L. & Bowman, D. M. J. S. Macropod habitat use and response to management interventions in an agricultural—Forest mosaic in north-eastern Tasmania as inferred by scat surveys. Wildl. Res. 38, 103–113 (2011).Article 

    Google Scholar 
    Hobday, A. J. & Minstrell, M. L. Distribution and abundance of roadkill on Tasmanian highways: Human management options. Wildl. Res. 35, 712–726 (2008).Article 

    Google Scholar 
    Hingston, A. B. Impacts of logging on autumn bird populations in the southern forests of Tasmania. Pap. Proc. R. Soc. Tasman. 134, 19–28 (2000).
    Google Scholar 
    Taylor, R. J. Notes on the diet of the carnivorous mammals of the Upper Henty River Region, western Tasmania. Pap. Proc. R. Soc. Tasman. 120, 7–10 (1986).
    Google Scholar 
    Hall-Aspland, S., Rogers, T., Canfield, R. & Tripovich, J. Food transit times in captive leopard seals (Hydrurga leptonyx). Polar Biol. 34, 95–99 (2011).Article 

    Google Scholar 
    Bell, O. et al. Age-related variation in the trophic characteristics of a marsupial carnivore, the Tasmanian devil Sarcophilus harrisii. Ecol. Evol. 10, 7861–7871 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bell, O. et al. Isotopic niche variation in Tasmanian devils Sarcophilus harrisii with progression of devil facial tumor disease. Ecol. Evol. 11, 8038–8053 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & MacLeod, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).Article 
    PubMed 

    Google Scholar 
    Crawford, K., McDonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mamm. Rev. 38, 87–107 (2008).Article 

    Google Scholar 
    Bender, M. M., Rouhani, I., Vines, H. M. & Black, C. C. Jr. 13C/12C ratio changes in crassulacean acid metabolism plants. Plant Physiol. 52, 427–430 (1973).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Leary, M. H. Carbon isotope fractionation in plants. Phytochemistry 20, 553–567 (1981).Article 

    Google Scholar 
    Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121–137 (1982).CAS 

    Google Scholar 
    Cernusak, L. A. et al. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 200, 950–965 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    NSW Parliamentary Counsel. Animal Research Act 1985 (NSW Parliamentary Counsel, 1985).
    Google Scholar 
    National Health and Medical Research Council (Australia). Australian Code for the Care and Use of Animals for Scientific Purposes (National Health and Medical Research Council, 2013).
    Google Scholar 
    du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).Article 

    Google Scholar 
    Environmental Systems Research Institute. ArcGIS Desktop Version 10.8.1. https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview (2020).Tasmanian Vegetation Monitoring and Mapping Program. TASVEG 4.0. Natural Values Conservation Branch, Department of Primary Industries, Parks, Water and Environment thelist.tas.gov.au/app/content/data/geo-meta-data-record?detailRecordUID=b5c7a079-14bc-4b3c-af73-db7585d34cdd (2020).Land Tasmania. LIST Land Tenure. Land Tasmania thelist.tas.gov.au/app/content/data/geo-meta-data-record?detailRecordUID=9b8bf099-d668–433d-981b-a0f8f964f827 (2015).Hickey, J. E. & Wilkinson, G. R. The development and current implementation of silvicultural pratices in native forests in Tasmania. Aust. For. 62, 245–254 (1999).Article 

    Google Scholar 
    Whiteley, S. B. Calculating the sustainable yield of Tasmania’s State forests. Tasforests 11, 23–34 (1999).
    Google Scholar 
    Pemberton, D. Social Organisation and Behaviour of the Tasmanian devil, Sarcophilus harrisii (University of Tasmania, 1990).
    Google Scholar 
    Attard, M. R. G., Lewis, A. C., Wroe, S., Hughes, C. & Rogers, T. L. Whisker growth in Tasmanian devils (Sarcophilus harrisii) and applications for stable isotope studies. Ecosphere 12, e03846 (2021).Article 

    Google Scholar 
    von Bertalanffy, L. Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231 (1957).Article 

    Google Scholar 
    Rogers, T. L., Fung, J., Slip, D., Steindler, L. & O’Connell, T. C. Calibrating the time span of longitudinal biomarkers in vertebrate tissues when fine-scale growth records are unavailable. Ecosphere 7, e01449 (2016).Article 

    Google Scholar 
    Qi, H., Coplen, T. B., Geilmann, H., Brand, W. A. & Böhlke, J. K. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil. Rapid Commun. Mass Spectrom. 17, 2483–2487 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Qi, H. et al. A new organic reference material, l-glutamic acid, USGS41a, for δ13C and δ15N measurements—A replacement for USGS41. Rapid Commun. Mass Spectrom. 30, 859–866 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology: Recommended terminology. Guidel. Best Pract. Waterbirds 35, 324–331 (2012).
    Google Scholar 
    O’Connell, T. C. & Hedges, R. E. M. Investigations into the effect of diet on modern human hair isotopic values. Am. J. Phys. Anthropol. 108, 409–425 (1999).Article 
    PubMed 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing Version 4.2.0. https://www.r-project.org/ (2022).Bartoń, K. MuMIn: Multi-model inference. R Package Version 1.47.1. https://cran.r-project.org/package=MuMIn (2022).Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Colorado Cooperative Fish and Wildlife Research Unit, 2002).MATH 

    Google Scholar 
    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stock, B. C. & Semmens, B. X. MixSIAR: Bayesian Mixing Models in R. R Package Version 3.1.12. https://doi.org/10.5281/zenodo.1209993 (2022).Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian graphical models using MCMC. R Package Version 4-13. https://cran.r-project.org/web/packages/rjags/rjags.pdf (2022).Newsome, S. D. et al. Variation in δ13C and δ15N diet–vibrissae trophic discrimination factors in a wild population of California sea otters. Ecol. Appl. 20, 1744–1752 (2010).Article 
    PubMed 

    Google Scholar 
    Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).Article 

    Google Scholar 
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    Pardini, R., Nichols, E. & Püttker, T. Biodiversity response to habitat loss and fragmentation. Encycl. Anthr. 3, 229–239 (2018).Article 

    Google Scholar 
    Koch, A., Munks, S. & Driscoll, D. The use of hollow-bearing trees by vertebrate fauna in wet and dry Eucalyptus obliqua forest, Tasmania. Wildl. Res. 35, 727–746 (2008).Article 

    Google Scholar 
    Donázar, J. A., Cortés-Avizanda, A. & Carrete, M. Dietary shifts in two vultures after the demise of supplementary feeding stations: consequences of the EU sanitary legislation. Eur. J. Wildl. Res. 56, 613–621 (2010).Article 

    Google Scholar 
    Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tucker, M. A., Ord, T. J. & Rogers, T. L. Revisiting the cost of carnivory in mammals. J. Evol. Biol. 29, 2181–2190 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fisher, D. O. & Dickman, C. R. Body size-prey relationships in insectivorous marsupials: Tests of three hypotheses. Ecology 74, 1871–1883 (1993).Article 

    Google Scholar 
    Ruxton, G. D. & Houston, D. C. Obligate vertebrate scavengers must be large soaring fliers. J. Theor. Biol. 228, 431–436 (2004).Article 
    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Pemberton, D. & Renouf, D. A field-study of communication and social-behavior of the Tasmanian devil at feeding sites. Aust. J. Zool. 41, 507–526 (1993).Article 

    Google Scholar 
    Pye, R. J. et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 113, 374–379 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    James, S. et al. Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evol. Appl. 12, 1772–1780 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hawkins, C. E. et al. Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol. Conserv. 131, 307–324 (2006).Article 

    Google Scholar 
    Pearse, A.-M. & Swift, K. Transmission of devil facial-tumour disease. Nature 439, 549 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wood, S. W., Hua, Q. & Bowman, D. M. J. S. Fire-patterned vegetation and the development of organic soils in the lowland vegetation mosaics of south-west Tasmania. Aust. J. Bot. 59, 126–136 (2011).Article 

    Google Scholar 
    Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. PNAS 107, 19691–19695 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayer, M., Ullmann, W., Sunde, P., Fischer, C. & Blaum, N. Habitat selection by the European hare in arable landscapes: The importance of small-scale habitat structure for conservation. Ecol. Evol. 8, 11619–11633 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barker, R. & Vestjens, W. Food of Australian Birds 1. Non-Passerines (CSIRO Publishing, 1989).Book 

    Google Scholar 
    Thomas, D. G. The bird community of Tasmanian temperate rainforest. Ibis 122, 298–306 (1980).Article 

    Google Scholar 
    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).Article 

    Google Scholar 
    DPIPWE. Annual Statewide Spotlight Surveys, Tasmania 2020/2021. Nature Conservation Report 21/2. (2021).Nguyen, H. K. D., Fielding, M. W., Buettel, J. C. & Brook, B. W. Habitat suitability, live abundance and their link to road mortality of Tasmanian wildlife. Wildl. Res. 46, 236–246 (2019).Article 

    Google Scholar  More

  • in

    Impacts of recent climate change on crop yield can depend on local conditions in climatically diverse regions of Norway

    Rahaman, A. et al. The increasing hunger concern and current need in the development of sustainable food security in the developing countries. Trends Food Sci. Technol. 113, 423–429. https://doi.org/10.1016/j.tifs.2021.04.048 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porter, J. R. et al. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 485–533 (Cambridge University Press, 2014).
    Google Scholar 
    Yan, H. et al. Crop traits enabling yield gains under more frequent extreme climatic events. Sci. Total Environ. 808, 152170. https://doi.org/10.1016/j.scitotenv.2021.152170 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lobell, D. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change. 3, 497–501. https://doi.org/10.1038/nclimate1832 (2013).Article 
    ADS 

    Google Scholar 
    Vermeulen, S. J. et al. Addressing uncertainty in adaptation planning for agriculture. Proc. Natl. Acad. Sci. 110, 8357–8362. https://doi.org/10.1073/pnas.1219441110 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    FAO. Climate Change and Food Security: Risks and Responses (FAO, 2015).
    Google Scholar 
    Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989. https://doi.org/10.1038/ncomms6989 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ding, Z. et al. Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agric. Water Manag. 244, 106626. https://doi.org/10.1016/j.agwat.2020.106626 (2021).Article 

    Google Scholar 
    Malhi, G. S., Kaur, M. & Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13, 1318 (2021).Article 
    CAS 

    Google Scholar 
    Persson, T. & Kværnø, S. Impact of projected mid-21st century climate and soil extrapolation on simulated spring wheat grain yield in Southeastern Norway. J. Agric. Sci. 155, 361–377. https://doi.org/10.1017/S0021859616000241 (2017).Article 

    Google Scholar 
    Zhu, X. & Troy, T. J. Agriculturally relevant climate extremes and their trends in the world’s major growing regions. Earth’s Future 6, 656–672. https://doi.org/10.1002/2017EF000687 (2018).Article 
    ADS 

    Google Scholar 
    Fischer, T. et al. Increase in irrigated wheat yield in north-west Mexico from 1960 to 2019: Unravelling the negative relationship to minimum temperature. Field Crops Res. 275, 108331. https://doi.org/10.1016/j.fcr.2021.108331 (2022).Article 
    ADS 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620. https://doi.org/10.1126/science.1204531 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Harkness, C. et al. Adverse weather conditions for UK wheat production under climate change. Agric. For. Meteorol. 282, 107862. https://doi.org/10.1016/j.agrformet.2019.107862 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    Seehusen, T. & Uhlen, A. K. Analyses of yield gaps for the production of wheat and barley in Norway, potential to increase yields on existing farmland. Norwegian Institute for Bioeconomics, Report 5/166/2019 (2020).Hakala, K. et al. Sensitivity of barley varieties to weather in Finland. J. Agric. Sci. 150, 145–160. https://doi.org/10.1017/S0021859611000694 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Peltonen-Sainio, P., Jauhiainen, L., Hakala, K. & Ojanen, H. Climate change and prolongation of growing season, changes in regional potential for field crop production in Finland. Agric. Food Sci. 18, 171–190. https://doi.org/10.2137/145960609790059479 (2009).Article 

    Google Scholar 
    Fleisher, D. H. et al. A potato model intercomparison across varying climates and productivity levels. Glob. Change Biol. 23, 1258–1281. https://doi.org/10.1111/gcb.13411 (2017).Article 
    ADS 

    Google Scholar 
    Moen, A. National Atlas of Norway: Vegetation (Hønefoss, 1999).
    Google Scholar 
    Bakkestuen, V., Erikstad, L. & Halvorsen, R. Step-less models for regional environmental variation in Norway. J. Biogeogr. 35, 1906–1922 (2008).Article 

    Google Scholar 
    Statistics-Norway. 2020. https://www.ssb.no/jord-skog-jakt-og-fiskeri/statistikker/stjord (Accessed 10 November 2020).Hanssen-Bauer, I. et al. Climate in Norway 2100 – a knowledge base for climate adaptation. Norwegian Centre for Climate Sciences, Report 1/2017 49 (2017).Blandford, D., Gaasland, I., Vårdal, E. & McIntosh, C. Greenhouse gas emissions, land use, and food supply under the paris climate agreement—Policy choice in Norway. Appl. Econ. Perspect. Policy 41, 249–264. https://doi.org/10.1093/aepp/ppy011 (2019).Article 

    Google Scholar 
    Rötter, R. P. et al. What would happen to barley production in Finland if global warming exceeded 4 °C? A model-based assessment. Eur. J. Agron. 35, 205–214. https://doi.org/10.1016/j.eja.2011.06.003 (2011).Article 

    Google Scholar 
    Ozturk, I., Sharif, B., Baby, S., Jabloun, M. & Olesen, J. E. The long-term effect of climate change on productivity of winter wheat in Denmark, scenario analysis using three crop models. J. Agric. Sci. 155, 733–750. https://doi.org/10.1017/S0021859616001040 (2017).Article 
    CAS 

    Google Scholar 
    An, H. & Carew, R. Effect of climate change and use of improved varieties on barley and canola yield in Manitoba. Can. J. Plant Sci. 95, 127–139. https://doi.org/10.1139/CJPS-2014-221 (2014).Article 

    Google Scholar 
    Zhou, Z., Plauborg, F., Kristensen, K. & Andersen, M. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes. Agric. For. Meteorol. 232, 595–605. https://doi.org/10.1016/j.agrformet.2016.10.017 (2017).Article 
    ADS 

    Google Scholar 
    Jensen, K. J. S. et al. Yield and development of winter wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) in field experiments with variable weather and drainage conditions. Eur. J. Agron. 122, 126075. https://doi.org/10.1016/j.eja.2020.126075 (2021).Article 
    CAS 

    Google Scholar 
    Lobell, D. B., Cahill, K. N. & Field, C. B. Historical effects of temperature and precipitation on California crop yields. Clim. Change 81, 187–203. https://doi.org/10.1007/s10584-006-9141-3 (2007).Article 
    ADS 

    Google Scholar 
    Skjelvag, A. O. Climatic conditions for crop production in Nordic countries. Agric. Food Sci. Finland 7(2), 149–160 (1998).Article 

    Google Scholar 
    Norsk-Klimaservicesenter. https://seklima.met.no/ (2020).Erikstad, L. & Bakkestuen, V. Calculating cumulative effects in GIS using a stepless multivariate model. MethodsX 8, 101407. https://doi.org/10.1016/j.mex.2021.101407 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aune-Lundberg, L. & Strand, G.-H. The content and accuracy of the CORINE land cover dataset for Norway. Int. J. Appl. Earth Observ. Geoinform. 96, 102266. https://doi.org/10.1016/j.jag.2020.102266 (2021).Article 

    Google Scholar 
    QGIS Geographic Information System (QGIS Association, 2020).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002. https://doi.org/10.1088/1748-9326/2/1/014002 (2007).Article 
    ADS 

    Google Scholar 
    Shumway, R. H. & Stoffer, D. S. Time Series Analysis and its Applications Vol. 560 (Springer, 2016).MATH 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models (2021).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.3.3.0 (2020).Friedman, J. H., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(22), 2010. https://doi.org/10.18637/jss.v033.i01 (2010).Article 

    Google Scholar 
    Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B-Methodol. 58, 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x (1996).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Hastie, T., Tibshirani, R. & Friendman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Meinshausen, N. & Bühlmann, P. Stability selection. J. Roy. Stat. Soc. B 72, 417–473. https://doi.org/10.2307/40802220 (2010).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Efron, B. & Stein, C. The jackknife estimate of variance. Ann. Stat. 9, 586–596. https://doi.org/10.1214/aos/1176345462 (1981).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Milborrow, S. plotmo: Plot a Model’s Residuals, Response, and Partial Dependence Plots. R package version 3.5.7 (2020).Liu, H. Xu, X. & Li, J.J. HDCI: High Dimensional Confidence Interval Based on Lasso and Bootstrap. R package version 1.0–2 (2017).. Seehusen, T. & Uhlen, A. K. Analyses of yield gaps for the production of wheat and barley in Norway, potential to increase yields on existing farmland. Norwegian Institute for Bioeconomics, Report 5/166/2019. http://hdl.handle.net/11250/2637490 (2019).Stabbetorp, H. Dyrkingsomfang og avling i kornproduksjonen. Norsk institutt for bioøkonomi, Report 4 (1) (2017).Ebrahimi, E. et al. Assessing the impact of climate change on crop management in winter wheat—A case study for Eastern Austria. J. Agric. Sci. 154, 1153–1170. https://doi.org/10.1017/S0021859616000083 (2016).Article 

    Google Scholar 
    Kristensen, K., Schelde, K. & Olesen, J. Winter wheat yield response to climate variability in Denmark. J. Agric. Sci. 148, 1–15. https://doi.org/10.1017/S0021859610000675 (2010).Article 

    Google Scholar 
    Thaler, S., Eitzinger, J., Trnka, M. & Dubrovsky, M. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. J. Agric. Sci. 150, 537–555. https://doi.org/10.1017/S0021859612000093 (2012).Article 
    CAS 

    Google Scholar 
    Ortiz, R. et al. Climate change, can wheat beat the heat?. Agr. Ecosyst. Environ. 126, 46–58. https://doi.org/10.1016/j.agee.2008.01.019 (2008).Article 

    Google Scholar 
    Semenov, M., Stratonovitch, P., Alghabari, F. & Gooding, M. Adapting wheat in Europe for climate change. J. Cereal Sci. 59, 245–256. https://doi.org/10.1016/j.jcs.2014.01.006 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts, M. J., Braun, N. O., Sinclair, T. R., Lobell, D. B. & Schlenker, W. Comparing and combining process-based crop models and statistical models with some implications for climate change. Environ. Res. Lett. 12, 095010. https://doi.org/10.1088/1748-9326/aa7f33 (2017).Article 
    ADS 

    Google Scholar 
    Zhu, X., Troy, T. & Devineni, N. Stochastically modeling the projected impacts of climate change on rainfed and irrigated US crop yields. Environ. Res. Lett. 14, 074021. https://doi.org/10.1088/1748-9326/ab25a1 (2019).Article 
    ADS 

    Google Scholar 
    Lobell, D. & Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 12, 015001. https://doi.org/10.1088/1748-9326/aa518a (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Flø, S. et al. Rom for bruk av Norsk korn. Felleskjøpet, Report 49 (2017).Lillemo, M., Reitan, L. & Bjornstad, A. Increasing impact of plant breeding on barley yields in central Norway from 1946 to 2008. Plant Breeding 129, 484–490. https://doi.org/10.1111/j.1439-0523.2009.01710.x (2010).Article 

    Google Scholar 
    Wonneberger, R., Ficke, A. & Lillemo, M. Mapping of quantitative trait loci associated with resistance to net form net blotch (Pyrenophora teres f. teres) in a doubled haploid Norwegian barley population. PLoS One 12, e0175773. https://doi.org/10.1371/journal.pone.0175773 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, F. C. & Lobell, D. B. The fingerprint of climate trends on European crop yields. Proc. Natl. Acad. Sci. 112, 2670–2675. https://doi.org/10.1073/pnas.1409606112 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, P. et al. Recent warming across the North Atlantic region may be contributing to an expansion in barley cultivation. Clim. Change 145, 351–365. https://doi.org/10.1007/s10584-017-2093-y (2017).Article 
    ADS 

    Google Scholar 
    Martin, P., Wishart, J., Dalmannsdottir, S., Halland, H. & Thomsen, a. M. Recent warming and the thermal requirement of barley in coastal Norway. Norwegian Institute for Bioeconomics, Report T2.4.3 ii (2018).Cattivelli, L., Ceccarelli, S., Romagosa, I. & Stanca, M. Abiotic stresses in Barley: Problems and solutions. In Barley: Production, Improvement, and Uses Vol. 4 (ed. Ullrich, S.) 282–306 (Blackwell UP, 2011).
    Google Scholar 
    Hura, T. Wheat and barley acclimatization to abiotic and biotic stress. Int. J. Mol. Sci. 21, 7423. https://doi.org/10.3390/ijms21197423 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kolberg, D., Persson, T., Mangerud, K. & Riley, H. Impact of projected climate change on workability, attainable yield, profitability and farm mechanization in Norwegian spring cereals. Soil Till. Res. 185, 122–138. https://doi.org/10.1016/j.still.2018.09.002 (2019).Article 

    Google Scholar 
    Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).Article 

    Google Scholar 
    Gammans, M., Mérel, P. & Ortiz-Bobea, A. Negative impacts of climate change on cereal yields: Statistical evidence from France. Environ. Res. Lett. 12, 054007. https://doi.org/10.1088/1748-9326/aa6b0c (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Ahmed, I., Harrison, M., Meinke, H. & Zhou, M. Barley phenology: physiological and molecular mechanisms for heading date and modelling of genotype-environment- management interactions. Plant Growth InTech 8, 175–202. https://doi.org/10.5772/64827 (2016).Article 
    CAS 

    Google Scholar 
    Hossain, A., da Silva, J. A. T., Lozovskaya, M. V. & Zvolinsky, V. P. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia. Saudi J. Biol. Sci. 19, 473–487. https://doi.org/10.1016/j.sjbs.2012.07.005 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Møllerhagen, P. Norsk potetproduksjon 2011. Bioforsk, Report 7(1) (2012).Hermansen, A., Lu, D. & Forbes, G. Potato production in China and Norway, similarities, differences and future challenges. Potato Res. 55, 197–203. https://doi.org/10.1007/s11540-012-9224-7 (2012).Article 

    Google Scholar 
    Hermansen, A., Nærstad, R., Le, V. & Nordskog, B. In Proceedings of the Eleventh EuroBlight Workshop (The Norwegian Institute for Agricultural and Environmental Research, Hamar, 2018).Raymundo, R. et al. Climate change impact on global potato production. Eur. J. Agron. 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008 (2018).Article 

    Google Scholar 
    Rabia, A., Yacout, D., Shahin, S., Mohamed, A. & Abdelaty, E. Towards sustainable production of potato under climate change conditions. Curr. J. Appl. Sci. Technol. 18, 200–207. https://doi.org/10.14456/cast.2018.15 (2018).Article 

    Google Scholar 
    Haverkort, A. J., Franke, A. C., Engelbrecht, F. A. & Steyn, J. M. Climate change and potato production in contrasting South African agro-ecosystems. Potato Res. 56, 67–84. https://doi.org/10.1007/s11540-013-9230-4 (2013).Article 

    Google Scholar 
    Martinelli, F. et al. Advanced methods of plant disease detection A review. Agron. Sustain. Dev. 35, 1–25. https://doi.org/10.1007/s13593-014-0246-1 (2015).Article 

    Google Scholar 
    Borus, D. Impacts of Climate Change on the Potato (Solanum Tuberosum L.) Productivity in Tasmania, Australia and Kenya (University of Tasmania, 2017).
    Google Scholar 
    Fageria, N., Baligar, V. & Jones, C. Growth and Mineral Nutrition of Field Crops Vol. 5, 586 (CRC Press, 2010).Book 

    Google Scholar 
    Fleisher, D. H. et al. Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes. Agric. For. Meteorol. 171, 270–280. https://doi.org/10.1016/j.agrformet.2012.12.011 (2013).Article 
    ADS 

    Google Scholar 
    Haverkort, A. J. & Struik, P. C. Yield levels of potato crops: Recent achievements and future prospects. Field Crop Res. 182, 76–85. https://doi.org/10.1016/j.fcr.2015.06.002 (2015).Article 

    Google Scholar 
    Van Oort, P. A. J., Timmermans, B. G. H., Meinke, H. & Van Ittersum, M. K. Key weather extremes affecting potato production in the Netherlands. Eur. J. Agron. 37, 11–22. https://doi.org/10.1016/j.eja.2011.09.002 (2012).Article 

    Google Scholar 
    Najafi, E., Devineni, N., Khanbilvardi, R. & Kogan, F. Understanding the changes in global crop yields through changes in climate and technology. Earth’s Future 6, 410–427. https://doi.org/10.1002/2017EF000690 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Pulatov, B., Anna Maria, J. N., Karin, H. & Maj-Lena, L. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 214, 281–292. https://doi.org/10.1016/j.agrformet.2015.08.266 (2015).Article 
    ADS 

    Google Scholar  More

  • in

    Integrating multiple plant functional traits to predict ecosystem productivity

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv.3, e1602244 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chapin, F. S. III Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann. Bot. 91, 455–463 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chu, C. et al. Does climate directly influence NPP globally? Global Chan. Biol. 22, 12–24 (2016).Article 

    Google Scholar 
    Yao, Y. et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Chan. Biol. 24, 184–196 (2018).Article 

    Google Scholar 
    Fang, J., Lutz, J. A., Wang, L., Shugart, H. H. & Yan, X. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests. Global Chan. Biol. 26, 6974–6988 (2020).Article 

    Google Scholar 
    Fernández-Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Global Chan. Biol. 26, 7067–7078 (2020).Article 

    Google Scholar 
    Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl. Acad. Sci. 111, 13697–13702 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).Article 
    PubMed 

    Google Scholar 
    Lavorel, S. & Garnier, É. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Fun. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    Enquist, B. J. et al. in Advances in Ecological Research 52 (eds Samraat P, Guy W, & Anthony I. D) 249–318 (Academic Press, 2015).Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).Article 

    Google Scholar 
    Enquist, B. J. et al. Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecol. Biogeogr. 26, 1357–1373 (2017).Article 

    Google Scholar 
    Fyllas, N. M. et al. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol. Lett. 20, 730–740 (2017).Article 
    PubMed 

    Google Scholar 
    Van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).Article 
    PubMed 

    Google Scholar 
    Ali, A., Yan, E.-R., Chang, S. X., Cheng, J.-Y. & Liu, X.-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci. Total Environ. 574, 654–662 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yang, J., Cao, M. & Swenson, N. G. Why Functional Traits Do Not Predict Tree Demographic Rates. Trend Ecol. Evol. 33, 326–336 (2018).Article 

    Google Scholar 
    Šímová, I. et al. The relationship of woody plant size and leaf nutrient content to large-scale productivity for forests across the Americas. J. Ecol. 107, 2278–2290 (2019).Article 

    Google Scholar 
    Li, Y. et al. Leaf size of woody dicots predicts ecosystem primary productivity. Ecol. Lett. 23, 1003–1013 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, N. et al. Ecosystem Traits Linking Functional Traits to Macroecology. Trend. Ecol. Evol. 34, 200–210 (2019).Article 

    Google Scholar 
    Rubio, V. E., Zambrano, J., Iida, Y., Umaña, M. N. & Swenson, N. G. Improving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation. J. Ecol. 109, 1331–1343 (2021).Article 

    Google Scholar 
    Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).Article 
    PubMed 

    Google Scholar 
    Hilty, J., Muller, B., Pantin, F. & Leuzinger, S. Plant growth: the What, the How, and the Why. New Phytol. 232, 25–41 (2021).Article 
    PubMed 

    Google Scholar 
    Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl. Acad. Sci. 112, 2788–2793 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Global Chan. Biol. 14, 1125–1140 (2008).Article 

    Google Scholar 
    Liu, C., Li, Y., Yan, P. & He, N. How to Improve the Predictions of Plant Functional Traits on Ecosystem Functioning? Front. Plant Sci. 12, 622260 (2021).Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. of Sci. 94, 13730–13734 (1997).Article 
    CAS 

    Google Scholar 
    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    Monteith, J. L. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B. Biol. Sci. 281, 277–294 (1977).
    Google Scholar 
    Garnier, E. Resource capture, biomass allocation and growth in herbaceous plants. Trend. Ecol. Evol. 6, 126–131 (1991).Article 
    CAS 

    Google Scholar 
    Farnsworth, K. D., Albantakis, L. & Caruso, T. Unifying concepts of biological function from molecules to ecosystems. Oikos 126, 1367–1376 (2017).Article 

    Google Scholar 
    Zhang, R. et al. Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: A global meta-analysis. Global Ecol. Biogeogr. 31, 155–167 (2022).Article 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate. Nat. Commun. 6, 1–8 (2015).Article 

    Google Scholar 
    Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 1–15 (2021).Article 

    Google Scholar 
    Jing, X. et al. The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands. Global Ecol. Biogeogr. 31, 486–500 (2022).Article 

    Google Scholar 
    Jing, X. et al. Above-and belowground complementarity rather than selection drives tree diversity-productivity relationships in European forests. Funct Ecol. 35, 1756–1767 (2021).He, N. et al. Predicting ecosystem productivity based on plant community traits. Trend. Plant Sci. 28, 43–53 (2023).Maynard, D. S. et al. Global relationships in tree functional traits. Nat. Commun. 13, 1–12 (2022).Article 

    Google Scholar 
    Michaletz, S. T., Kerkhoff, A. J. & Enquist, B. J. Drivers of terrestrial plant production across broad geographical gradients. Global Ecol. Biogeogr. 27, 166–174 (2018).Article 

    Google Scholar 
    Shipley, B. Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol. 20, 565–574 (2006).Article 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086 (2015).Article 

    Google Scholar 
    McGill, B. J. Matters of Scale. Science 328, 575 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Communi. Biol. 3, 1–11 (2020).
    Google Scholar 
    Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl. Acad. Sci. 114, 10160–10165 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).Article 
    PubMed 

    Google Scholar 
    Liu, Y. et al. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biol. Biochem. 121, 35–42 (2018).Article 
    CAS 

    Google Scholar 
    Zhao, N. et al. Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Global Ecol. Biogeogr. 25, 359–367 (2016).Article 

    Google Scholar 
    Zhang, J. et al. C: N: P stoichiometry in China’s forests: From organs to ecosystems. Funct. Ecol. 32, 50–60 (2018).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article 

    Google Scholar 
    Dirk Nikolaus, K. et al. Climatologies at high resolution for the earth’s land surface areas. EnviDat. https://doi.org/10.16904/envidat.332 (2021).Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecol. Biogeogr. 14, 585–598 (2005).Article 

    Google Scholar 
    Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Sci. Data 4, 170165 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jolliffe, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Philos. Trans. Soc. A Math. Phys. Eng. Sci. 374, 20150202 (2016).Article 

    Google Scholar 
    Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. 116, 587–592 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Method Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Bürkner, P.-C. Advanced bayesian multilevel modeling with the R Package brms. R J. 10, 395–411 (2018).Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Software 80, 1–28 (2017).Article 

    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar 
    Vehtari, A. et al. loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2, 1003 (2019).
    Google Scholar 
    Gabry, J. & Mahr, T. bayesplot: Plotting for Bayesian models. R package version 1 (2017).Mac Nally, R. & Walsh, C. J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 13, 659 (2004).Article 

    Google Scholar 
    Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).Article 
    PubMed 

    Google Scholar 
    Yan, P., He, N., Yu, K., Xu, L. & Van Meerbeek, K. Integrating multiple functional traits to predict ecosystem productivity. figshare (2023). Dataset. https://doi.org/10.6084/m9.figshare.22081634.v1. More

  • in

    Habitat partitioning, co-occurrence patterns, and mixed-species group formation in sympatric delphinids

    Pianka, E. R. Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. 71, 2141–2145 (1974).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Tokeshi, M. Species Coexistence: Ecological and Evolutionary Perspectives. (Wiley-Blackwell, 2009).Grinnell, J. Geography and evolution. Ecology 5, 225–229 (1924).Article 

    Google Scholar 
    Roughgarden, J. Resource partitioning among competing species—A coevolutionary approach. Theor. Popul. Biol. 9, 388–424 (1976).Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Syme, J., Kiszka, J. J. & Parra, G. J. Dynamics of cetacean mixed-species groups: A review and conceptual framework for assessing their functional significance. Front. Mar. Sci. 8, 1–19 (2021).Article 

    Google Scholar 
    Stensland, E., Angerbjörn, A. & Berggren, P. Mixed species groups in mammals. Mamm. Rev. 33, 205–223 (2003).Article 

    Google Scholar 
    Cords, M. & Würsig, B. A Mix of Species: Associations of Heterospecifics Among Primates and Dolphins. in Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies (eds. Yamagiwa, J. & Karczmarski, L.) 409–431 (Springer, 2014). doi:https://doi.org/10.1007/978-4-431-54523-1_21.Goodale, E., Beauchamp, G. & Ruxton, G. D. Mixed-Species Groups of Animals: Behavior, Community Structure, and Conservation. (Academic Press, 2017).Krause, J. & Ruxton, G. D. Living in Groups. Oxford Series in Ecology and Evolution (Oxford University Press, 2002).Heymann, E. W. & Buchanan-Smith, H. M. The behavioural ecology of mixed-species troops of callitrichine primates. Biol. Rev. 75, 169–190 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sridhar, H. & Guttal, V. Friendship across species borders: factors that facilitate and constrain heterospecific sociality. Philos. Trans. R. Soc. B Biol. Sci. 373, 1–9 (2018).Greenberg, R. Birds of many feathers: The formation and structure of mixed-species flocks of forest birds. in On the Move: How and Why Animals Travel in groups (eds. Boinski, S. & Gerber, P. A.) 521–558 (University of Chicago Press, 2000).Waser, P. M. ‘Chance’ and mixed-species associations. Behav. Ecol. Sociobiol. 15, 197–202 (1984).Article 

    Google Scholar 
    Whitesides, G. H. Interspecific associations of Diana monkeys, Cercopithecus diana, in Sierra Leone, West Africa: biological significance or chance?. Anim. Behav. 37, 760–776 (1989).Article 

    Google Scholar 
    Waser, P. M. Primate polyspecific associations: Do they occur by chance?. Anim. Behav. 30, 1–8 (1982).Article 

    Google Scholar 
    Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).Article 

    Google Scholar 
    Kasozi, H. & Montgomery, R. A. Variability in the estimation of ungulate group sizes complicates ecological inference. Ecol. Evol. 10, 6881–6889 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Syme, J., Kiszka, J. J. & Parra, G. J. How to define a dolphin ‘group’? Need for consistency and justification based on objective criteria. Ecol. Evol. 12, 1–18 (2022).Article 

    Google Scholar 
    Hutchinson, J. M. C. & Waser, P. M. Use, misuse and extensions of ‘ideal gas’ models of animal encounter. Biol. Rev. 82, 335–359 (2007).Article 
    PubMed 

    Google Scholar 
    Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).Article 

    Google Scholar 
    Astaras, C., Krause, S., Mattner, L., Rehse, C. & Waltert, M. Associations between the drill (Mandrillus leucophaeus) and sympatric monkeys in Korup National Park. Cameroon. Am. J. Primatol. 73, 127–134 (2011).Article 
    PubMed 

    Google Scholar 
    Mammides, C., Chen, J., Goodale, U. M., Kotagama, S. W. & Goodale, E. Measurement of species associations in mixed-species bird flocks across environmental and human disturbance gradients. Ecosphere 9, 1–14 (2018).Article 

    Google Scholar 
    Ovaskainen, O., Abrego, N., Halme, P. & Dunson, D. Using latent variable models to identify large networks of species-to-species associations at different spatial scales. Methods Ecol. Evol. 7, 549–555 (2016).Article 

    Google Scholar 
    Pollock, L. J. et al. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 5, 397–406 (2014).Article 

    Google Scholar 
    Warton, D. I. et al. So Many variables: Joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).Article 
    PubMed 

    Google Scholar 
    Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).Article 
    PubMed 

    Google Scholar 
    Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling. (Cambridge University Press, 2020). https://doi.org/10.1017/9781108591720.Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).Article 
    PubMed 

    Google Scholar 
    Haak, C. R., Hui, F. K., Cowles, G. W. & Danylchuk, A. J. Positive interspecific associations consistent with social information use shape juvenile fish assemblages. Ecology 101, 1–16 (2020).Article 

    Google Scholar 
    Bastianelli, G., Wintle, B. A., Martin, E. H., Seoane, J. & Laiolo, P. Species partitioning in a temperate mountain chain: Segregation by habitat vs. interspecific competition. Ecol. Evol. 7, 2685–2696 (2017).Aspin, T. & House, A. Alpha and beta diversity and species co-occurrence patterns in headwaters supporting rare intermittent-stream specialists. Freshw. Biol. n/a, (2022).Astarloa, A. et al. Identifying main interactions in marine predator-prey networks of the Bay of Biscay. ICES J. Mar. Sci. 76, 2247–2259 (2019).Article 

    Google Scholar 
    Parra, G. J. Resource partitioning in sympatric delphinids: space use and habitat preferences of Australian snubfin and Indo-Pacific humpback dolphins. J. Anim. Ecol. 75, 862–874 (2006).Article 
    PubMed 

    Google Scholar 
    Parra, G. J., Wojtkowiak, Z., Peters, K. J. & Cagnazzi, D. Isotopic niche overlap between sympatric Australian snubfin and humpback dolphins. Ecol. Evol. 12, 1–11 (2022).Article 

    Google Scholar 
    Kiszka, J. J. et al. Ecological niche segregation within a community of sympatric dolphins around a tropical island. Mar. Ecol. Prog. Ser. 433, 273–288 (2011).Article 
    ADS 

    Google Scholar 
    Bearzi, M. Dolphin sympatric ecology. Mar. Biol. Res. 1, 165–175 (2005).Article 

    Google Scholar 
    Zaeschmar, J. R. et al. Occurrence of false killer whales (Pseudorca crassidens) and their association with common bottlenose dolphins (Tursiops truncatus) off northeastern New Zealand. Mar. Mammal Sci. 30, 594–608 (2014).Article 

    Google Scholar 
    Elliser, C. R. & Herzing, D. L. Long-term interspecies association patterns of Atlantic bottlenose dolphins, Tursiops truncatus, and Atlantic spotted dolphins, Stenella frontalis, in the Bahamas. Mar. Mammal Sci. 32, 38–56 (2016).Article 

    Google Scholar 
    Kiszka, J. J., Perrin, W. F., Pusineri, C. & Ridoux, V. What drives island-associated tropical dolphins to form mixed-species associations in the southwest Indian Ocean?. J. Mammal. 92, 1105–1111 (2011).Article 

    Google Scholar 
    Brown, A. M., Bejder, L., Cagnazzi, D., Parra, G. J. & Allen, S. J. The north west cape, Western Australia: A potential hotspot for Indo-Pacific humpback dolphins Sousa chinensis?. Pacific Conserv. Biol. 18, 240–246 (2012).Article 

    Google Scholar 
    Allen, S. J., Cagnazzi, D., Hodgson, A. J., Loneragan, N. R. & Bejder, L. Tropical inshore dolphins of north-western Australia: Unknown populations in a rapidly changing region. Pacific Conserv. Biol. 18, 56–63 (2012).Article 

    Google Scholar 
    Palmer, C., Parra, G. J., Rogers, T. & Woinarski, J. Collation and review of sightings and distribution of three coastal dolphin species in waters of the Northern Territory. Australia. Pacific Conserv. Biol. 20, 116–125 (2014).Article 

    Google Scholar 
    Corkeron, P. J. Aspects of the Behavioral Ecology of Inshore Dolphins Tursiops truncatus and Sousa chinensis in Moreton Bay, Australia. in The Bottlenose Dolphin (eds. Leatherwood, S. & Reeves, R.) 285–293 (Elsevier, 1990). https://doi.org/10.1016/B978-0-12-440280-5.50018-4.Haughey, R. et al. Distribution and habitat preferences of Indo-Pacific Bottlenose Dolphins (Tursiops aduncus) inhabiting coastal waters with mixed levels of protection. Front. Mar. Sci. 8, 1–20 (2021).Article 

    Google Scholar 
    Hanf, D., Hodgson, A. J., Kobryn, H., Bejder, L. & Smith, J. N. Dolphin distribution and habitat suitability in North Western Australia: Applications and Implications of a Broad-Scale, Non-targeted Dataset. Front. Mar. Sci. 8, 1–18 (2022).Article 

    Google Scholar 
    Hunt, T. N., Allen, S. J., Bejder, L. & Parra, G. J. Identifying priority habitat for conservation and management of Australian humpback dolphins within a marine protected area. Sci. Rep. 10, 1–14 (2020).Article 

    Google Scholar 
    Hunt, T. N. Demography, habitat use and social structure of Australian humpback dolphins (Sousa sahulensis) around the North West Cape, Western Australia: Implications for conservation and management. PhD Thesis, Flinders University, Adelaide, Australia. (Flinders University, 2018).Cassata, L. & Collins, L. B. Coral reef communities, habitats, and substrates in and near sanctuary zones of Ningaloo marine park. J. Coast. Res. 241, 139–151 (2008).Article 

    Google Scholar 
    CALM MPRA. Management plan for the Ningaloo Marine Park and Muiron Islands Marine Management Area 2005–2015. (2005).Hunt, T. N. et al. Demographic characteristics of Australian humpback dolphins reveal important habitat toward the southwestern limit of their range. Endanger. Species Res. 32, 71–88 (2017).Article 

    Google Scholar 
    Mann, J. Behavioral sampling methods for cetaceans: A review and critique. Mar. Mammal Sci. 15, 102–122 (1999).Article 

    Google Scholar 
    Python Software Foundation. Python Language Reference, version 3.8.0. at https://www.python.org/ (2016).QGIS Development Team. QGIS Geographic Information System, version 3.8.3 Zanzibar. at http://qgis.osgeo.org (2019).Zanardo, N., Parra, G., Passadore, C. & Möller, L. Ensemble modelling of southern Australian bottlenose dolphin Tursiops sp. distribution reveals important habitats and their potential ecological function. Mar. Ecol. Prog. Ser. 569, 253–266 (2017).Hanberry, B. B. Finer grain size increases effects of error and changes influence of environmental predictors on species distribution models. Ecol. Inform. 15, 8–13 (2013).Article 

    Google Scholar 
    Gottschalk, T. K., Aue, B., Hotes, S. & Ekschmitt, K. Influence of grain size on species–habitat models. Ecol. Modell. 222, 3403–3412 (2011).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Passadore, C., Möller, L. M., Diaz-Aguirre, F. & Parra, G. J. Modelling dolphin distribution to inform future spatial conservation decisions in a marine protected area. Sci. Rep. 8, 1–14 (2018).Article 
    CAS 

    Google Scholar 
    Parra, G. J., Schick, R. & Corkeron, P. J. Spatial distribution and environmental correlates of Australian snubfin and Indo-Pacific humpback dolphins. Ecography (Cop.) 29, 396–406 (2006).Article 

    Google Scholar 
    Conrad, O. et al. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007 (2015).R Core Team. R version 3.6.1. at https://www.r-project.org/ (2019).RStudio Team. RStudio: Integrated Develpment for R. at http://rstudio.com/ (2019).Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).Article 

    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the r-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).Article 
    MATH 

    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133, 225–245 (2000).Article 

    Google Scholar 
    Tjur, T. Coefficients of determination in logistic regression models—A new proposal: The coefficient of discrimination. Am. Stat. 63, 366–372 (2009).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Syme, J. The behavioural ecology of mixed-species groups of delphinids. PhD Thesis, Flinders University, Adelaide, Australia. (Flinders University, 2023).Wang, J. Y. Bottlenose Dolphin, Tursiops aduncus, Indo-Pacific Bottlenose Dolphin. in Encyclopedia of Marine Mammals (eds. Würsig, B., Thewissen, J. G. M. & Kovacs, K. M.) 125–130 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-804327-1.00073-X.Parra, G. J. & Jefferson, T. A. Humpback Dolphins. in Encyclopedia of Marine Mammals (eds. Würsig, B., Thewissen, J. G. M. & Kovacs, K. M.) 483–489 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-804327-1.00153-9.Dröge, E., Creel, S., Becker, M. S. & M’soka, J. Spatial and temporal avoidance of risk within a large carnivore guild. Ecol. Evol. 7, 189–199 (2017).Article 
    PubMed 

    Google Scholar 
    Browning, N. E., Cockcroft, V. G. & Worthy, G. A. J. Resource partitioning among South African delphinids. J. Exp. Mar. Bio. Ecol. 457, 15–21 (2014).Article 

    Google Scholar 
    Kiszka, J. J., Méndez-Fernandez, P., Heithaus, M. R. & Ridoux, V. The foraging ecology of coastal bottlenose dolphins based on stable isotope mixing models and behavioural sampling. Mar. Biol. 161, 953–961 (2014).Article 
    CAS 

    Google Scholar 
    Saayman, G. S. & Tayler, C. K. The socioecology of humpback dolphins (Sousa sp.). in Behavior of Marine Animals Current Perspectives in Research Volume 3: Cetaceans (eds. Winn, H. E. & Olla, B. L.) 165–226 (Springer, 1979).Gowans, S. & Whitehead, H. Distribution and habitat partitioning by small odontocetes in the Gully, a submarine canyon on the Scotian Shelf. Can. J. Zool. 73, 1599–1608 (1995).Article 

    Google Scholar 
    Clua, E. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).Article 

    Google Scholar 
    Quérouil, S. et al. Why do dolphins form mixed-species associations in the azores?. Ethology 114, 1183–1194 (2008).Article 

    Google Scholar 
    Heithaus, M. R. & Dill, L. M. Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83, 480–491 (2002).Article 

    Google Scholar  More

  • in

    Sand fly population dynamics in areas of American cutaneous leishmaniasis, Municipality of Paraty, Rio de Janeiro, Brazil

    Owing to drastic changes in the environment caused by human interference, wild mammals that are reservoirs of Leishmania have invaded residential areas where species of sand flies with eclectic feeding habits are found, and established a transmission cycle that eventually reaches humans23,24,25. In the study area, it was observed that the largest frequency of specimens over the years was captured in the residential environment, which are represented by residential and peridomicile areas. The lowest frequency was captured in the borders of the forest.The municipality of Paraty, located on the southern coast in the state of Rio de Janeiro, where the study was conducted, has many preserved areas of the Atlantic Forest and its climate is wet with no dry season13, which was confirmed during the three years of the present study, where the relative air humidity stayed high every month. The highest average rainfalls occur in summer and fall (autumn). The average temperature during the hottest months of the year was between approximately 25 °C and 26 °C, with a maximum of 31 °C, and in the coldest months, the temperature averaged between 20 and 21 °C, with a minimum of 16 °C, exhibiting an ideal environment for the activity of sand flies throughout the year.Barretto26 noted that atmospheric conditions, such as relative humidity, rainfall, and temperature directly influence the activity of these sand fly species. Migonemyia migonei and Ny. whitmani had lower activity at temperatures below 15 °C, Pi. fischeri below 10 °C, and Ny. intermedia at temperatures below 9.5 °C. The author also reported that heavy rains prevent sand flies from leaving their shelters; however, this can increase their density within residences, especially for species located next to residential areas. Light rain will not impede their activity, but in these conditions, they are not as frequently observed as they usually are. However, during rain periods, especially in the hot and humid summer period, the density of sand flies increases considerably.In the present study, four key vector species of Leishmania braziliensis Vianna, 1911, the etiologic agent of tegumentary leishmaniasis, were captured throughout the year. The most frequent was Ny. intermedia, followed by Pi. fischeri, Mg. migonei, and Ny. whitmani. Carvalho et al.27, in the State of Pernambuco, northeast region of Brazil, reported having found Mg. migonei infected with Leishmania infantum Nicolle, 1908, the etiologic agent of visceral leishmaniasis.According to Forattini28, there are sand fly species that are essentially resistant to climate changes throughout the seasons. Several are found, albeit in lower densities, during the cooler, dry months, while others disappear during this period. However, other factors also influence the incidence of sand flies in the same location, even under the same temperature and humidity conditions. Thus, to study the seasonality of sand fly species, it is important to perform systematized captures, for a period exceeding two years, to minimize the effects of these additional factors, for example, atypical years with a longer period of drought or humidity, more or less high temperatures, months with higher than expected rainfall or control measures applied by the municipality.In studies carried out in the Northeast region of Brazil, in a study carried out in the municipality of Codó, in the State of Maranhão, an inversely proportional correlation of the captured sandflies was observed in relation to relative air humidity, a direct correlation in relation to temperature and precipitation, a correlation directly proportional29. In the municipality of Sobral, State of Ceará, in the first year of the study, observed a negative correlation with temperature and a high positive correlation with humidity and precipitation, however, in the following year, there was no correlation between the density of captured sandflies and climatic variables30. The same occurred in this study, in the municipality of Paraty, in relation to relative air humidity and precipitation, but in relation to temperature, a strong positive correlation was obtained.In the studied area Ny. intermedia occurred in greater numbers in every month of the year, except in June and July, when it was less frequent than Pi. fischeri. The same pattern was observed for these two species, i.e., a gradual increase in abundance beginning in August, peak abundance in summer (January), followed by a decrease until winter (July). Brito et al.31, when researching the northern coast of the state of São Paulo, municipality of São Sebastião, noted the opposite, that Ny. intermedia had the highest abundance peaks during the driest and coldest period of the year, i.e., from May to August. However, the authors also emphasized the presence of this species throughout the year, mainly in the residential environment, and they stressed the importance of seasonal analyses for periods longer than a year.In the São Francisco River region, in the state of Minas Gerais, on the banks of the Rio Velhas, Saraiva et al.32, in a study over a two-year period, observed a different pattern. In the first year of study, after the rainy season from February to May, with high humidity and high temperature, Ny. intermedia was captured in greater numbers than during other months of the year. In the second year, peaks occurred in October, March, and June, with the highest peak in March, when there was elevated rainfall, high humidity, and high temperatures.In the state of Rio de Janeiro, in Serra dos Órgãos National Park, Aguiar and Soucasaux33 analyzed the monthly frequency in human bait and observed that Ny. fischeri was captured in every month except November. In the hot and humid period, from December to February, there was a gradual increase in the average abundances of this species, and then a slight decrease began in March and continued into April. During the cold and dry period of May and June, abundances started to increase, then decreased in July, and peaked in August. During August, Pi. fischeri was the dominant species of wildlife, and in September, abundances began to decline again.Mayo et al.34, studying the southeastern region of the state of São Paulo, observed that there was a seasonal trend in the abundance for species Mg. migonei, Ny. whitmani, Ny. intermedia, and Pi. fischeri, with abundance peaks recorded during the cooler, drier season (April to September) and low abundances during the warmer, wetter season (October to March). The authors revealed that the occurrence of intense fires in the study area in October, which caused severe environmental change, possibly interfered with the population dynamics of the species. In the present study, the opposite trend of seasonality was shown for the four key species, Ny. intermedia, Pi. fischeri, Mg. migonei, and Ny. whitmani, then what was observed by the above authors, the highest abundances occurred during the hottest period, increasing gradually until a maximum peak in January, and lowest abundances were seen during the coldest period, in July for the first three species, and in June for Ny. whitmani.In the neighboring municipality of this study in Angra dos Reis, in the Ilha Grande, Carvalho et al.35 reinforced the epidemiological importance of Ny. intermedia in the State of Rio de Janeiro and highlighted the role of Mg. migonei in the transmission of cutaneous leishmaniasis with its high rate of infection natural by Leishmania. Still in the same region, along the southern coast of the State of Rio de Janeiro, Aguiar et al.8 conducted systematic catches for two years, with the aim being to analyze the monthly frequency of sand flies in residential and forest environments. The authors discovered results like what occurred in this study in Paraty, that the four most important species caught, Ny. intermedia, Pi. fischeri, Mg. migonei, and Ny. whitmani, had higher average numbers during the hot and humid period of the year, i.e., between October and January, with a maximum peak in December for Ny. intermedia and Pi. fischeri, and January for Mg. migonei. The prevalence of Ny. intermedia was evident in every month, both inside the residence and around the residential area. In the colder and drier season, from May to August, there was a balance with Pi. fischeri, but from August, inside the residence, and from September, around the residence, the frequency increased until it reached its peak in December. There was a gradual increase in the frequency of this species in the warmer and wetter period (between October and January), with average temperatures ranging from 26 to 29 °C and relative air humidity between 84 and 87%.Condino et al.36, when studying the southwestern region of the state of São Paulo, observed that Ny. intermedia and Ny. whitmani had the highest frequencies during the months of May, September, and December with temperatures ranging from 21 to 25.7 °C and rainfall between 66.7 and 195.1 mm. In June, the lowest frequency of sand flies was observed, which then increased until a maximum peak in September. Temperature data and rainfall index were not correlated with the density of specimens, especially as the study was carried out over only one year. In this study, the opposite was observed for Ny. intermedia and Ny. whitmani in the month of May, one of the months with the lowest density.In the city of Petrópolis, state of Rio de Janeiro, Souza et al.24 observed a prevalence of Ny. intermedia and Ny. whitmani, with the latter species prevailing around the residence. Migonemyia migonei and Pi. fischeri were also present but to a lesser extent. In the forest, Ny. whitmani was more abundant, followed by Pi. fischeri, while Ny. intermedia was found at lower abundances. However, Ny. intermedia and Pi. fischeri were present during every month of the year. The authors also found a significant correlation between the number of sand flies and environmental changes such as temperature, relative humidity, and rainfall. The same was observed, in this study, in the forest with Ny. intermedia, however, in this environment the number of Pi. fischeri specimens was higher than that of Ny. whitmani.In the north of Espírito Santo, Virgens et al.37 observed that Ny. intermedia was present in almost every month of the study period, with peaks in the warmer and wetter months. The authors highlighted that the low numbers of this species were recorded during and after high rainfall periods, suggesting that heavy rain is unfavorable for the development of immature forms, as breeding sites in altered habitats suffered a greater impact because of extreme weather conditions.In a study carried out by Guimarães et al.38 to observe the competence of Mg. Migonei to Leishmania infantum, concluded that this species is highly susceptible to the development of this parasite and that in addition to its anthropophilia and abundance in areas with an active focus of visceral leishmaniasis, it can act as a vector of this disease in Latin America.In the studied area, Ny. intermedia, one of the main vectors of the etiological agent of tegumentary leishmaniasis in the region2, was present in significant numbers in the home environment throughout all months of the year. The species Pi. fischeri was present over the months in expressive numbers in all types and locations of capture, that is, both in the environment altered by human activity and in the natural environment where leishmaniasis occurs in its natural enzootic cycle. Migonemyia migonei, present throughout the year in the peridomestic environment, showed its association with the dog, where it was prevalent throughout the year in the kennel, being an important vector of the etiological agent of tegumentary leishmaniasis, as well as being suspected in areas of visceral leishmaniasis transmission, where the main vector of this disease is not found. And Ny. whitmani present in the peridomicile, mainly in the hottest months of the year, in addition to the forest and forest margins, it was observed that in this study region the species is emerging through a selective process of adaptation in environments that were negatively affected by the increase of human activity. Thus, despite observing a period of greater frequency of sand flies in the hottest months of the year, a period with high rainfall, the high relative humidity is observed throughout the year, as well as the presence of species of epidemiological importance Ny. intermedia, Pi. fischeri, Mg. migonei and Ny. whitmani, who are involved in the propagation of the etiological agent of tegumentary leishmaniasis to humans and animals, causing greater contact between the region’s inhabitants with these dipterans and thus, a greater risk of contracting the disease. More