1.De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56, 879–886. https://doi.org/10.1080/10635150701701083 (2007).Article
PubMed
Google Scholar
2.Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates Inc, 2004).
Google Scholar
3.Endler, J. A. Gene flow and population differentiation: studies of clines suggest that differentiation along environmental gradients may be independent of gene flow. Science 179, 243–250 (1973).CAS
PubMed
ADS
Google Scholar
4.Mayr, E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist (Harvard University Press, 1999).
Google Scholar
5.Richardson, J. L., Urban, M. C., Bolnick, D. I. & Skelly, D. K. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29, 165–176 (2014).PubMed
Google Scholar
6.Nosil, P. Ernst Mayr and the integration of geographic and ecological factors in speciation. Biol. J. Lin. Soc. 95, 26–46 (2008).
Google Scholar
7.Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).PubMed
Google Scholar
8.Leliaert, F. et al. DNA-based species delimitation in algae. Eur. J. Phycol. 49, 179–196 (2014).
Google Scholar
9.Carstens, B. C., Pelletier, T. A., Reid, N. M. & Satler, J. D. How to fail at species delimitation. Mol. Ecol. 22, 4369–4383 (2013).PubMed
Google Scholar
10.Schlick-Steiner, B. C. et al. Integrative taxonomy: a multisource approach to exploring biodiversity. Annu. Rev. Entomol. 55, 421–438 (2010).CAS
PubMed
Google Scholar
11.Capblancq, T., Mavárez, J., Rioux, D. & Després, L. Speciation with gene flow: evidence from a complex of alpine butterflies (Coenonympha, Satyridae). Ecol. Evol. 9, 6444–6457 (2019).PubMed
PubMed Central
Google Scholar
12.Pedraza-Marrón, C. d. R. et al. Genomics overrules mitochondrial DNA, siding with morphology on a controversial case of species delimitation. Proc. R. Soc. B 286, 20182924 (2019).PubMed
PubMed Central
Google Scholar
13.Hinojosa, J. C. et al. A mirage of cryptic species: genomics uncover striking mitonuclear discordance in the butterfly Thymelicus sylvestris. Mol. Ecol. 28, 3857–3868 (2019).PubMed
Google Scholar
14.Nygren, A. et al. A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic. PLoS ONE 13, e0198356 (2018).PubMed
PubMed Central
Google Scholar
15.Thielsch, A., Knell, A., Mohammadyari, A., Petrusek, A. & Schwenk, K. Divergent clades or cryptic species? Mito-nuclear discordance in a Daphnia species complex. BMC Evol. Biol. 17, 1–9 (2017).
Google Scholar
16.Eyer, P. A. & Hefetz, A. Cytonuclear incongruences hamper species delimitation in the socially polymorphic desert ants of the Cataglyphis albicans group in Israel. J. Evol. Biol. 31, 1828–1842 (2018).CAS
PubMed
Google Scholar
17.Borkent, A. Biology of Disease Vectors. 2nd edn, i–xxiii + 1–785 (Elsevier Academic Press, 2004).18.Mellor, P., Boorman, J. & Baylis, M. Culicoides biting midges: their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS
PubMed
Google Scholar
19.Rushton, J. & Lyons, N. Economic impact of Bluetongue: a review of the effects on production. Veterinaria italiana 51, 401–406 (2015).PubMed
Google Scholar
20.Tabachnick, W. J. Culicoides vriipennis and Bluetongue-Virus eidemiology in the United States. Annu. Rev. Entomol. 41, 23–43. https://doi.org/10.1146/annurev.en.41.010196.000323 (1996).CAS
Article
PubMed
Google Scholar
21.Wirth, W. W. & Jones, R. H. The North American Subspecies of Culicoides variipennis (Diptera, Heleidae). U. S. Dep. Agric. Tech. Bull 1170, 1–35 (1957).
Google Scholar
22.Holbrook, F. R. et al. Sympatry in the Culicoides variipennis Complex (Diptera: Ceratopogonidae): a Taxonomic Reassessment. J. Med. Entomol. 37, 65–76. https://doi.org/10.1603/0022-2585-37.1.65 (2000).CAS
Article
PubMed
Google Scholar
23.Hopken, M. W. Pathogen Vectors at the Wildlife-Livestock Interface: Molecular Approaches to Elucidating Culicoides (Diptera: Ceratopogonidae) Biology (University of Colorado, 2016).
Google Scholar
24.Shults, P. A Study of the Taxonomy, Ecology, and Systematics of Culicoides Species (Diptera: Ceratopogonidae) Including those Associated with Deer Breeding Facilities in Southeast Texas (Texas A&M University, 2015).
Google Scholar
25.Velten, R. K. & Mullens, B. A. Field morphological variation and laboratory hybridization of Culicoides variipennis sonorensis and C. v. occidentalis (Diptera:Ceratopogonidae) in southern California. J. Med. Entomol. 34, 277–284 (1997).CAS
PubMed
Google Scholar
26.Fontaine, M. C. et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258522 (2015).PubMed
Google Scholar
27.Bolnick, D. I. & Otto, S. P. The magnitude of local adaptation under genotype-dependent dispersal. Ecol. Evol. 3, 4722–4735 (2013).PubMed
PubMed Central
Google Scholar
28.Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279 (1993).PubMed
Google Scholar
29.Pante, E. et al. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol. Ecol. 24, 525–544 (2015).PubMed
Google Scholar
30.Jacquet, S. et al. Colonization of the Mediterranean basin by the vector biting midge species Culicoides imicola: an old story. Mol. Ecol. 24, 5707–5725. https://doi.org/10.1111/mec.13422 (2015).CAS
Article
PubMed
Google Scholar
31.Onyango, M. G. et al. Genotyping of whole genome amplified reduced representation libraries reveals a cryptic population of Culicoides brevitarsis in the Northern Territory, Australia. BMC Genomics 17, 769. https://doi.org/10.1186/s12864-016-3124-1 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
32.Onyango, M. G. et al. Delineation of the population genetic structure of Culicoides imicola in East and South Africa. Parasit. Vectors 8, 660. https://doi.org/10.1186/s13071-015-1277-4 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
33.Mignotte, A. et al. High dispersal capacity of Culicoides obsoletus (Diptera: Ceratopogonidae), vector of bluetongue and Schmallenberg viruses, revealed by landscape genetic analyses. Parasit. Vectors 14, 1–14 (2021).
Google Scholar
34.Sanders, C. J. & Carpenter, S. Assessment of an immunomarking technique for the study of dispersal of Culicoides biting midges. Infect. Genet. Evol. 28, 583–587 (2014).PubMed
Google Scholar
35.Kluiters, G., Swales, H. & Baylis, M. Local dispersal of palaearctic Culicoides biting midges estimated by mark-release-recapture. Parasit. Vectors 8, 86 (2015).PubMed
PubMed Central
Google Scholar
36.Ducheyne, E. et al. Quantifying the wind dispersal of Culicoides species in Greece and Bulgaria. Geospat. Health 10, 177–189 (2007).
Google Scholar
37.Purse, B. V. et al. Climate change and the recent emergence of bluetongue in Europe. Nat. Rev. Microbiol. 3, 171–181 (2005).CAS
PubMed
Google Scholar
38.Jacquet, S. et al. Range expansion of the Bluetongue vector, Culicoides imicola, in continental France likely due to rare wind-transport events. Sci. Rep. https://doi.org/10.1038/srep27247 (2016).Article
PubMed
PubMed Central
Google Scholar
39.Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).
Google Scholar
40.Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).PubMed
Google Scholar
41.Shults, P. A Study of Culicoides Biting Midges in the Subgenus Monoculicoides: Population Genetics, Taxonomy, Systematics, and Control. Ph.D. thesis, Texas A&M University (2021).42.Jewiss-Gaines, A., Barelli, L. & Hunter, F. F. First records of Culicoides sonorensis (Diptera: Ceratopogonidae), a known vector of bluetongue virus, Southern Ontario. J. Med. Entomol. 54, 757–762. https://doi.org/10.1093/jme/tjw215 (2017).CAS
Article
PubMed
Google Scholar
43.Chan, K. M. & Levin, S. A. Leaky prezygotic isolation and porous genomes: rapid introgression of maternally inherited DNA. Evolution 59, 720–729 (2005).CAS
PubMed
Google Scholar
44.Harrison, R. G. Hybrid zones: windows on evolutionary process. Oxf. Surv. Evol. Biol. 7, 69–128 (1990).
Google Scholar
45.Harrison, R. G. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol. Evol. 4, 6–11 (1989).CAS
PubMed
Google Scholar
46.Després, L. One, Two or More Species? Mitonuclear Discordance and Species Delimitation. Molecular ecology 28(17), 3845–3847 (2019).PubMed
Google Scholar
47.Janes, J. K. et al. The K= 2 conundrum. Mol. Ecol. 26, 3594–3602 (2017).PubMed
Google Scholar
48.De Meester, L., Vanoverbeke, J., Kilsdonk, L. J. & Urban, M. C. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 31, 136–146 (2016).PubMed
Google Scholar
49.Ballard, J. W. O., Chernoff, B. & James, A. C. Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behavior in Drosophila simulans. Evolution 56, 527–545 (2002).PubMed
Google Scholar
50.Behura, S., Sahu, S., Mohan, M. & Nair, S. Wolbachia in the Asian rice gall midge, Orseolia oryzae (Wood-Mason): Correlation between host mitotypes and infection status. Insect Mol. Biol. 10, 163–171 (2001).CAS
PubMed
Google Scholar
51.Covey, H. et al. Cryptic Wolbachia (Rickettsiales: Rickettsiaceae) detection and prevalence in Culicoides (Diptera: Ceratopogonidae) midge populations in the United States. J. Med. Entomol. 57, 1262–1269. https://doi.org/10.1093/jme/tjaa003 (2020).Article
PubMed
Google Scholar
52.Pagès, N., Muñoz-Muñoz, F., Verdún, M., Pujol, N. & Talavera, S. First detection of Wolbachia-infected Culicoides (Diptera: Ceratopogonidae) in Europe: Wolbachia and Cardinium infection across Culicoides communities revealed in Spain. Parasit. Vectors 10, 582. https://doi.org/10.1186/s13071-017-2486-9 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
53.Pilgrim, J. et al. Cardinium symbiosis as a potential confounder of mtDNA based phylogeographic inference in Culicoides imicola (Diptera: Ceratopogonidae), a vector of veterinary viruses. Parasit. Vectors 14, 100. https://doi.org/10.1186/s13071-020-04568-3 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
54.Hare, M. P. Prospects for nuclear gene phylogeography. Trends Ecol. Evol. 16, 700–706 (2001).
Google Scholar
55.Onyango, M. G. et al. Assessment of population genetic structure in the arbovirus vector midge, Culicoides brevitarsis (Diptera: Ceratopogonidae), using multi-locus DNA microsatellites. Vet. Res. 46, 108. https://doi.org/10.1186/s13567-015-0250-8 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
56.Fonseca, D. M., Smith, J. L., Kim, H.-C. & Mogi, M. Population genetics of the mosquito Culex pipiens pallens reveals sex-linked asymmetric introgression by Culex quinquefasciatus. Infect. Genet. Evol. 9, 1197–1203 (2009).CAS
PubMed
PubMed Central
Google Scholar
57.Goubert, C., Minard, G., Vieira, C. & Boulesteix, M. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity 117, 125–134 (2016).CAS
PubMed
PubMed Central
Google Scholar
58.Lehmann, T. et al. Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci. Mol. Ecol. 6, 243–253 (1997).CAS
PubMed
Google Scholar
59.Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631. https://doi.org/10.1093/molbev/msl191 (2006).CAS
Article
PubMed
Google Scholar
60.Manni, M. et al. Molecular markers for analyses of intraspecific genetic diversity in the Asian Tiger mosquito, Aedes albopictus. Parasit. Vectors 8, 1–11 (2015).
Google Scholar
61.Arntzen, J. W., Jehle, R., Bardakci, F., Burke, T. & Wallis, G. P. Asymmetric viability of reciprocal-cross hybrids between Crested and Marbled Newts (Triturus cristatus and T. marmoratus). Evolution 63, 1191–1202. https://doi.org/10.1111/j.1558-5646.2009.00611.x (2009).Article
PubMed
Google Scholar
62.Gibeaux, R. et al. Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature 553, 337. https://doi.org/10.1038/nature25188 (2018).CAS
Article
PubMed
PubMed Central
ADS
Google Scholar
63.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741 (2008).CAS
PubMed
Google Scholar
64.Servedio, M. R. & Kirkpatrick, M. The effects of gene flow on reinforcement. Evolution 51, 1764–1772. https://doi.org/10.1111/j.1558-5646.1997.tb05100.x (1997).Article
PubMed
Google Scholar
65.Howard, D. J. Reinforcement: origin, dynamics, and fate of an evolutionary hypothesis. Hybrid zones and the evolutionary process, 46–69 (1993).66.Yukilevich, R. Asymmetrical patterns of speciation uniquely support reinforcement in Drosophila. Evolution 66, 1430–1446. https://doi.org/10.1111/j.1558-5646.2011.01534.x (2012).Article
PubMed
Google Scholar
67.Downes, J. A. The Culicoides variipennis complex: a necessary re-alignment of nomenclature (Diptera: Ceratopogonidae). Can. Entomol. 110, 63–69 (1978).
Google Scholar
68.Toews, D. P. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).CAS
PubMed
Google Scholar
69.Smith, H. & Mullens, B. A. Seasonal activity, size, and parity of Culicoides occidentalis (Diptera: Ceratopogonidae) in a coastal southern California salt marsh. J. Med. Entomol. 40, 352–355. https://doi.org/10.1603/0022-2585-40.3.352 (2003).Article
PubMed
Google Scholar
70.Linley, J. The effect of salinity on oviposition and egg hatching in Culicoides variipennis sonorensis (Diptera: Ceratopogonidae). J. Am. Mosq. Control Assoc. 2, 79–82 (1986).CAS
PubMed
Google Scholar
71.Gerry, A. C. & Mullens, B. A. Response of Male Culicoides variipennis sonorensis (Diptera: Ceratopogonidae) to carbon dioxide and observations of mating behavior on and near cattle. J. Med. Entomol. 35, 239–244. https://doi.org/10.1093/jmedent/35.3.239 (1998).CAS
Article
PubMed
Google Scholar
72.Nolan, D. V. et al. Rapid diagnostic PCR assays for members of the Culicoides obsoletus and Culicoides pulicaris species complexes, implicated vectors of bluetongue virus in Europe. Vet. Microbiol. 124, 82–94 (2007).CAS
PubMed
Google Scholar
73.Sebastiani, F. et al. Molecular differentiation of the Old World Culicoides imicola species complex (Diptera, Ceratopogonidae), inferred using random amplified polymorphic DNA markers. Mol. Ecol. 10, 1773–1786 (2001).CAS
PubMed
Google Scholar
74.Carlson, D. Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science 207, 1089–1091 (1980).CAS
PubMed
ADS
Google Scholar
75.Palacios, G. et al. Characterization of the Sandfly fever Naples species complex and description of a new Karimabad species complex (genus Phlebovirus, family Bunyaviridae). J. Gen. Virol. 95, 292 (2014).CAS
PubMed
PubMed Central
Google Scholar
76.Rivas, G., Souza, N. & Peixoto, A. A. Analysis of the activity patterns of two sympatric sandfly siblings of the Lutzomyia longipalpis species complex from Brazil. Med. Vet. Entomol. 22, 288–290 (2008).CAS
PubMed
Google Scholar
77.Wilson, W. C. et al. Current status of bluetongue virus in the Americas. Bluetongue 10, 197–220 (2009).
Google Scholar
78.Allen, S. E. et al. Epizootic Hemorrhagic Disease in White-Tailed Deer, Canada. Emerg. Infect. Dis. 25, 832–834. https://doi.org/10.3201/eid2504.180743 (2019).Article
PubMed
PubMed Central
Google Scholar
79.McGregor, B. L. et al. Field data implicating Culicoides stellifer and Culicoides venustus (Diptera: Ceratopogonidae) as vectors of epizootic hemorrhagic disease virus. Parasit. Vectors 12, 258. https://doi.org/10.1186/s13071-019-3514-8 (2019).Article
PubMed
PubMed Central
Google Scholar
80.Shults, P., Ho, A., Martin, E. M., McGregor, B. L. & Vargo, E. L. Genetic diversity of Culicoides stellifer (Diptera: Ceratopogonidae) in the Southeastern United States compared with sequences from Ontario, Canada. J. Med. Entomol. 57, 1324–1327. https://doi.org/10.1093/jme/tjaa025 (2020).CAS
Article
PubMed
Google Scholar
81.Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).PubMed
Google Scholar
82.Ciota, A. T., Chin, P. A. & Kramer, L. D. The effect of hybridization of Culex pipiens complex mosquitoes on transmission of West Nile virus. Parasit. Vectors 6, 1–4 (2013).
Google Scholar
83.Meiswinkel, R., Gomulski, L., Delécolle, J., Goffredo, M. & Gasperi, G. The taxonomy of Culicoides vector complexes-unfinished business. Vet. Ital. 40, 151–159 (2004).CAS
PubMed
Google Scholar
84.Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics (Oxford, England) 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 (2016).CAS
Article
Google Scholar
85.Andrews, S. Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).86.Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).CAS
PubMed
Google Scholar
87.Morales-Hojas, R. et al. The genome of the biting midge Culicoides sonorensis and gene expression analyses of vector competence for bluetongue virus. BMC Genomics 19, 624. https://doi.org/10.1186/s12864-018-5014-1 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
88.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25, 1754–1760 (2009).CAS
Google Scholar
89.Pante, E. et al. Use of RAD sequencing for delimiting species. Heredity 114, 450–459 (2015).CAS
PubMed
Google Scholar
90.Benestan, L. M. et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol. Ecol. 25, 2967–2977 (2016).PubMed
Google Scholar
91.Lischer, H. E. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics (Oxford, England) 28, 298–299 (2012).CAS
Google Scholar
92.Pina-Martins, F., Silva, D. N., Fino, J. & Paulo, O. S. Structure_threader: An improved method for automation and parallelization of programs structure, fastStructure and MavericK on multicore CPU systems. Mol. Ecol. Resour. 17, e268–e274 (2017).CAS
PubMed
Google Scholar
93.Raj, A., Stephens, M. & Pritchard, J. K. Variational Inference of Population Structure in Large SNP Datasets. bioRxiv 10, 001073 (2013).
Google Scholar
94.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.http://www.R-project.org/ (2013).95.Jombart, Thibaut, and Caitlin Collins. A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.0. 0. London: Imperial College London, MRC Centre for Outbreak Analysis and Modelling (2015).96.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30, 1312–1313 (2014).CAS
Google Scholar
97.Leaché, A. D., Banbury, B. L., Felsenstein, J., De Oca, A.N.-M. & Stamatakis, A. Short tree, long tree, right tree, wrong tree: New acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047 (2015).PubMed
PubMed Central
Google Scholar
98.Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R., Moret, B. M. & Stamatakis, A. How many bootstrap replicates are necessary?. J. Comput. Biol. 17, 337–354 (2010).MathSciNet
CAS
PubMed
Google Scholar
99.Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).CAS
PubMed
PubMed Central
Google Scholar
100.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS
PubMed
PubMed Central
Google Scholar
101.Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS
PubMed
Google Scholar
102.Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS
PubMed
Google Scholar
103.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 30. Syst. Biol. 59, 307–321. https://doi.org/10.1093/sysbio/syq010 (2010).CAS
Article
PubMed
Google Scholar
104.Rousset, F. genepop’007: a complete re‐implementation of the genepop software for Windows and Linux. Molecular ecology resources 8(1), 103–106 (2008).
Google Scholar
105.Rousset, F. Genetic differentiation between individuals. J Evol Biol 13, 58–62 (2000).
Google Scholar
106.Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82, 1420–1425 (1995).
Google Scholar
107.Hardy, O. & Vekemans, X. SPAGeDi 1.5. A program for Spatial Pattern Analysis of Genetic Diversity. User’s manual http://ebe.ulb.ac.be/ebe/SPAGeDi_files/SPAGeDi_1.5_Manual.pdf. Université Libre de Bruxelles, Brussells, Belgium.[Google Scholar] (2015).108.Jay, F., Sjödin, P., Jakobsson, M. & Blum, M. G. Anisotropic isolation by distance: the main orientations of human genetic differentiation. Mol. Biol. Evol. 30, 513–525 (2013).CAS
PubMed
Google Scholar
109.Piry, S. et al. Mapping Averaged Pairwise Information (MAPI): a new exploratory tool to uncover spatial structure. Methods Ecol. Evol. 7, 1463–1475 (2016).
Google Scholar
110.Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article
Google Scholar
111.Hopken, M. W. Pathogen Vectors at The Wildlife-Livestock Interface: Molecular Approaches to Elucidating Culicoides (Diptera: Ceratopogonidae) Ph.D. thesis, Colorado State University (2016).112.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS
PubMed
PubMed Central
Google Scholar
113.Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 (1999).CAS
Article
PubMed
Google Scholar More