Assessing assemblage-wide mammal responses to different types of habitat modification in Amazonian forests
1.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478(7369), 378–381. https://doi.org/10.1038/nature10425 (2011).CAS
Article
ADS
Google Scholar
2.Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B. 281, 20141371. https://doi.org/10.1098/rspb.2014.1371 (2014).Article
PubMed
PubMed Central
Google Scholar
3.Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6(11), eaax8574. https://doi.org/10.1126/sciadv.aax8574 (2020).Article
PubMed
PubMed Central
ADS
Google Scholar
4.Peres, C. A. et al. Biodiversity conservation in human-modified Amazonian Forest landscapes. Biol. Conserv. 143, 2314–2327. https://doi.org/10.1016/j.biocon.2010.01.021 (2010).Article
Google Scholar
5.PRODES INPE. Monitoring Deforestation of the Brazilian Amazon Forest by Satellite. TerraBrasilis (inpe.br) (accessed in october 2020, 2020).6.Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. 104, 18555–18560. https://doi.org/10.1073/pnas.0703333104 (2007).Article
PubMed
PubMed Central
ADS
Google Scholar
7.Peres, C. A., Barlow, J. & Laurance, W. F. Detecting anthropogenic disturbance in tropical forests. Trends Ecol. Evol. 21, 227–229. https://doi.org/10.1016/j.tree.2006.03.007 (2006).Article
PubMed
Google Scholar
8.Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420. https://doi.org/10.1111/ele.13535 (2020).Article
PubMed
Google Scholar
9.Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 1–21. https://doi.org/10.1111/j.1461-0248.2009.01294.x (2009).Article
Google Scholar
10.Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195. https://doi.org/10.1016/j.agrformet.2014.11.010 (2015).Article
PubMed
PubMed Central
ADS
Google Scholar
11.Sambuichi, R. H. et al. Cabruca agroforests in southern Bahia, Brazil: Tree component, management practices and tree species conservation. Biodivers. Conserv. 21, 1055–1077. https://doi.org/10.1007/s10531-012-0240-3 (2012).Article
Google Scholar
12.Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514. https://doi.org/10.1111/j.0030-1299.2008.16215.x (2008).Article
Google Scholar
13.Banks-Leite, C. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045. https://doi.org/10.1126/science.1255768 (2014).CAS
Article
PubMed
ADS
Google Scholar
14.Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163. https://doi.org/10.1111/ecog.01932 (2016).Article
Google Scholar
15.Paglia, A. P. et al. Annotated checklist of Brazilian mammals. Occas. Pap. Conserv. Int. 6, 1–82 (2012).
Google Scholar
16.Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).CAS
Article
PubMed
ADS
Google Scholar
17.Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3, e1600946. https://doi.org/10.1126/sciadv.1600946 (2017).Article
PubMed
PubMed Central
ADS
Google Scholar
18.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324 (2015).CAS
Article
PubMed
ADS
Google Scholar
19.Phillips, H. R., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodivers. Conserv. 26, 2251–2270. https://doi.org/10.1007/s10531-017-1356-2 (2017).Article
PubMed
PubMed Central
Google Scholar
20.Teixeira, D. F., Guillera-Arroita, G., Hilário, R. R., Fonseca, C. & Rosalino, L. M. Influence of life-history traits on the occurrence of carnivores within exotic Eucalyptus plantations. Divers. Distrib. 26, 1071–1082. https://doi.org/10.1111/ddi.13114 (2020).Article
Google Scholar
21.Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480–482. https://doi.org/10.1126/science.1118051 (2005).CAS
Article
PubMed
ADS
Google Scholar
22.Robinson, J. G. & Redford, K. H. Body size, diet, and population density of neotropical forest mammals. Am. Nat. 128, 665–680. https://doi.org/10.1086/284596 (1986).Article
Google Scholar
23.Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241. https://doi.org/10.1890/05-0112 (2005).CAS
Article
PubMed
ADS
Google Scholar
24.Almeida-Maués, P.C.R. Efeitos antropogênicos sobre a diversidade de mamíferos de médio e grande porte na Amazônia Oriental. PhD. Thesis, Graduate Program in Ecology, Federal University of Pará, Belém, Pará, Brazil (2019).25.Parry, L., Barlow, J. & Peres, C. A. Large-vertebrate assemblages of primary and secondary forests in the Brazilian Amazon. J. Trop. Ecol. 23, 653–662. https://doi.org/10.1017/S0266467407004506 (2007).Article
Google Scholar
26.Mendes-Oliveira, A. C. et al. Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna. PLoS ONE 12, e0187650. https://doi.org/10.1371/journal.pone.0187650 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
27.Coelho, M., Juen, L. & Mendes-Oliveira, A. C. The role of remnants of Amazon savanna for the conservation of Neotropical mammal communities in eucalyptus plantations. Biodivers. Conserv. 23, 3171–3184. https://doi.org/10.1007/s10531-014-0772-9 (2014).Article
Google Scholar
28.Bicknell, J. E., Struebig, M. J. & Davies, Z. G. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced-impact logging. J. Appl. Ecol. 52, 379–388. https://doi.org/10.1111/1365-2664.12391 (2015).Article
PubMed
PubMed Central
Google Scholar
29.Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x (2009).Article
PubMed
Google Scholar
30.Koh, L. P. & Wilcove, D. S. Is oil palm agriculture really destroying tropical biodiversity?. Conserv. Lett. 1, 60–64. https://doi.org/10.1111/j.1755-263X.2008.00011.x (2008).Article
Google Scholar
31.Putz, F. E. & Pinard, M. A. Reduced-impact logging as a carbon-offset method. Conserv. Biol. 7, 755–757. https://doi.org/10.1046/j.1523-1739.1993.7407551.x (1993).Article
Google Scholar
32.Pinard, M. A. & Putz, F. E. Retaining forest biomass by reducing logging damage. Biotropica 28, 278–295. https://doi.org/10.2307/2389193 (1996).Article
Google Scholar
33.Prudente, B. S., Pompeu, P. S., Juen, L. & Montag, L. F. A. Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshw. Biol. 62, 303–316. https://doi.org/10.1111/fwb.12868 (2017).Article
Google Scholar
34.Kanowski, J., Catterall, C. P. & Wardell-Johnson, G. W. Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes of tropical and subtropical Australia. For. Ecol. Manage. 208, 359–372. https://doi.org/10.1016/j.foreco.2005.01.018 (2005).Article
Google Scholar
35.Correa, F. S., Juen, L., Rodrigues, L. C., Silva-Filho, H. F. & Santos-Costa, M. C. Effects of oil palm plantations on anuran diversity in the eastern Amazon. Anim. Biol. 65, 321–335. https://doi.org/10.1163/15707563-00002481 (2015).Article
Google Scholar
36.Peres, C. A. & Cunha, A. A. Line-Transect Censuses of Large-Bodied Tropical Forest Vertebrates: A Handbook (Wildlife Conservation Society, 2011).
Google Scholar
37.Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93, 2533–2547. https://doi.org/10.1890/11-1952.1 (2012).Article
PubMed
Google Scholar
38.Oksanen, J. F. et al. vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).39.Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, 6089–6096. https://doi.org/10.1073/pnas.1704949114 (2017).CAS
Article
Google Scholar
40.Kricher, J. Tropical Ecology 632 (Princeton University Press, 2011).
Google Scholar
41.Edwards, D. P. et al. Reduced-impact logging and biodiversity conservation: A case study from Borneo. Ecol. Appl. 22, 561–571. https://doi.org/10.1890/11-1362.1 (2012).Article
PubMed
Google Scholar
42.Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. & Tabarelli, M. On the hope for biodiversity friendly tropical landscapes. Trends Ecol. Evol. 28, 462–468. https://doi.org/10.1016/j.tree.2013.01.001 (2013).Article
PubMed
Google Scholar
43.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188. https://doi.org/10.1016/S0169-5347(03)00011-9 (2003).Article
Google Scholar
44.Almeida-Rocha, J. M., Peres, C. A. & Oliveira, L. C. Primate responses to anthropogenic habitat disturbance: A pantropical meta-analysis. Biol. Conserv. 215, 30–38. https://doi.org/10.1016/j.biocon.2017.08.018 (2017).Article
Google Scholar
45.Palmeirim, A. F., Vieira, M. V. & Peres, C. A. Herpetofaunal responses to anthropogenic forest habitat modification across the neotropics: Insights from partitioning β-diversity. Biodivers. Conserv. 26, 2877–2891. https://doi.org/10.1007/s10531-017-1394-9 (2017).Article
Google Scholar
46.Christie, A. P. et al. Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences. Nat. Commun. 11, 6377. https://doi.org/10.1038/s41467-020-20142-y (2020).CAS
Article
PubMed
PubMed Central
ADS
Google Scholar
47.Whitworth, A. et al. Human disturbance impacts on rainforest mammals are most notable in the canopy, especially for larger-bodied species. Divers. Distrib. 25, 1166–1178. https://doi.org/10.1111/ddi.12930 (2019).Article
Google Scholar
48.Johns, A. D. & Skorupa, J. P. Responses of rain-forest primates to habitat disturbance: A review. Int. J. Primatol. 8, 157–191. https://doi.org/10.1007/BF02735162 (1987).Article
Google Scholar
49.Wearn, O. R. et al. Mammalian species abundance across a gradient of tropical land-use intensity: A hierarchical multi-species modelling approach. Biol. Conserv. 212, 162–171. https://doi.org/10.1016/j.biocon.2017.05.007 (2017).Article
Google Scholar
50.Benchimol, M. & Peres, C. A. Determinants of population persistence and abundance of terrestrial and arboreal vertebrates stranded in tropical forest land-bridge islands. Conserv. Biol. 35(3), 870–883. https://doi.org/10.1111/cobi.13619 (2020).Article
PubMed
Google Scholar
51.Gittleman, J. L. & Harvey, P. H. Carnivore home-range size, metabolic needs and Ecology. Behav. Ecol. Sociobiol. 10(1), 57–63. https://doi.org/10.1007/BF00296396 (1982).Article
Google Scholar
52.Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520. https://doi.org/10.1016/j.tree.2014.07.003 (2014).Article
PubMed
Google Scholar
53.Mollinari, M. M., Peres, C. A. & Edwards, D. P. Rapid recovery of thermal environment after selective logging in the Amazon. Agric. For. Meteorol. 278, 107637. https://doi.org/10.1016/j.agrformet.2019.107637 (2019).Article
ADS
Google Scholar
54.Azevedo-Ramos, C., de Carvalho, O. & de Amaral, B. D. Short-term effects of reduced-impact logging on eastern Amazon fauna. For. Ecol. Manag. 232, 26–35. https://doi.org/10.1016/j.foreco.2006.05.025 (2006).Article
Google Scholar
55.Bicknell, J. E. & Peres, C. A. Vertebrate population responses to reduced-impact logging in a neotropical forest. For. Ecol. Manage. 259, 2267–2275. https://doi.org/10.1016/j.foreco.2010.02.027 (2010).Article
Google Scholar
56.Laufer, J., Michalski, F. & Peres, C. A. Effects of reduced-impact logging on medium and large-bodied forest vertebrates in eastern Amazonia. Biota Neotrop. 15, e20140131. https://doi.org/10.1590/1676-06032015013114 (2015).Article
Google Scholar
57.Carvalho Jr, E. A. R., Mendonça, E. N., Martins, A. & Haugaasen, T. Effects of illegal logging on Amazonian medium and large-sized terrestrial vertebrates. For. Ecol. Manage. 466, 118105. https://doi.org/10.1016/j.foreco.2020.118105 (2020).Article
Google Scholar
58.Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571. https://doi.org/10.1016/j.tree.2009.04.011 (2009).Article
PubMed
Google Scholar
59.Richardson, V. A. & Peres, C. A. Temporal decay in timber species composition and value in Amazonian logging concessions. PLoS ONE 11, e0159035. https://doi.org/10.1371/journal.pone.0159035 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
60.Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (University of Chicago Press, 2014).Book
Google Scholar
61.Acevedo-Charry, O. & Aide, T. M. Recovery of amphibian, reptile, bird and mammal diversity during secondary forest succession in the tropics. Oikos 128, 1065–1078. https://doi.org/10.1111/oik.06252 (2019).Article
Google Scholar
62.Sodhi, N. S. et al. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol. Conserv. 143, 2375–2384. https://doi.org/10.1016/j.biocon.2009.12.029 (2010).Article
Google Scholar
63.Dunn, R. R. Recovery of faunal communities during tropical forest regeneration. Conserv. Biol. 18, 302–309. https://doi.org/10.1111/J.1523-1739.2004.00151.X (2004).Article
Google Scholar
64.Luskin, M. S. & Potts, M. D. Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic Appl. Ecol. 12, 540–551. https://doi.org/10.1016/j.baae.2011.06.004 (2011).Article
Google Scholar
65.Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity?. Trends Ecol. Evol. 23(10), 538–545. https://doi.org/10.1016/j.tree.2008.06.012 (2008).Article
PubMed
Google Scholar
66.Martello, F. et al. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci. Rep. 8, 3266. https://doi.org/10.1038/s41598-018-20823-1 (2018).CAS
Article
PubMed
PubMed Central
ADS
Google Scholar
67.da Rocha, P. L. B. What is the value of eucalyptus monocultures for the biodiversity of the Atlantic Forest? A multitaxa study in southern Bahia, Brazil. J. For. Res. 24, 263–272. https://doi.org/10.1007/s11676-012-0311-z (2013).Article
Google Scholar
68.Martin, P. S., Gheler-Costa, C., Lopes, P. C., Rosalino, L. M. & Verdade, L. M. Terrestrial non-volant small mammals in agro-silvicultural landscapes of Southeastern Brazil. For. Ecol. Manag. 282, 185–195. https://doi.org/10.1016/j.foreco.2012.07.002 (2012).Article
Google Scholar
69.Fayle, T. M. et al. Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl. Ecol. 11, 337–345. https://doi.org/10.1016/j.baae.2009.12.009 (2010).Article
Google Scholar
70.Koh, L. P. Can oil palm plantations be made more hospitable for forest butterflies and birds?. J. Appl. Ecol. 45, 1002–1009. https://doi.org/10.1007/s10531-009-9760-x (2008).Article
Google Scholar
71.Martins, C. A. & Júnior, A. P. P. Production of biodiesel: Source strategies and efficiency in the Brazilian energy matrix. Energy Sour. Part A Recov. Util. Environ. Eff. 38, 277–285. https://doi.org/10.1080/15567036.2012.716139 (2016).CAS
Article
Google Scholar
72.Peres, C. A. Why we need megareserves in Amazonia. Cons. Biol. 19, 728–733. https://doi.org/10.1111/j.1523-1739.2005.00691.x (2005).Article
Google Scholar More