More stories

  • in

    Mangrove diversity is more than fringe deep

    1.Tomlinson, P. B. The Botany of Mangroves. (Cambridge University Press, 1994).2.Carrasquilla-Henao, M. & Juanes, F. Mangroves enhance local fisheries catches: A global meta-analysis. Fish Fish. 18, 79–93 (2017).
    Google Scholar 
    3.del Valle, A., Eriksson, M., Ishizawa, O. A. & Miranda, J. J. Mangroves protect coastal economic activity from hurricanes. Proc. Natl. Acad. Sci. U.S.A. 117, 265–270 (2020).PubMed 

    Google Scholar 
    4.Zhang, K. et al. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 102–103, 11–23 (2012).ADS 

    Google Scholar 
    5.Menendez, P., Losada, I. J., Torres-Ortega, S., Narayan, S. & Beck, M. W. The global flood protection benefits of mangroves. Sci. Rep. 10, 1–11 (2020).
    Google Scholar 
    6.Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 1–13 (2019).
    Google Scholar 
    7.Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience 51, 807–815 (2001).
    Google Scholar 
    8.Bryan-Brown, D. N. et al. Global trends in mangrove forest fragmentation. Sci. Rep. https://doi.org/10.1038/s41598-020-63880-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Duke, N. C. et al. A world without mangroves ?. Science 317, 41–43 (2007).CAS 

    Google Scholar 
    10.Friess, D. A. et al. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).
    Google Scholar 
    11.Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).CAS 
    PubMed 

    Google Scholar 
    12.Reynolds, L. K., McGlathery, K. J. & Waycott, M. Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS ONE 7, 1–7 (2012).
    Google Scholar 
    13.Lowenfeld, R. & Klekowski, E. J. Mangrove genetics. I. Mating system and mutation rates of rhizophora mangle in Florida and San Salvador Island, Bahamas. Int. J. Plant Sci. 153, 394–399 (1992).14.Kennedy, J. P., Sammy, J. M., Rowntree, J. K. & Preziosi, R. F. Mating system variation in neotropical black mangrove, Avicennia germinans, at three spatial scales towards an expanding northern distributional limit. Estuarine Coastal Shelf Sci. https://doi.org/10.1016/j.ecss.2020.106754 (2020).Article 

    Google Scholar 
    15.Van Der Stocken, T. et al. Impact of landscape structure on propagule dispersal in mangrove forests. Mar. Ecol. Prog. Ser. 524, 95–106 (2015).ADS 

    Google Scholar 
    16.Hamilton, J. F., Osman, R. W. & Feller, I. C. Modeling local effects on propagule movement and the potential expansion of mangroves and associated fauna: Testing in a sub-tropical lagoon. Hydrobiologia 803, 173–187 (2017).
    Google Scholar 
    17.Binks, R. M. et al. Habitat discontinuities form strong barriers to gene flow among mangrove populations, despite the capacity for long-distance dispersal. Divers. Distrib. 25, 298–309 (2019).
    Google Scholar 
    18.Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108 (2017).
    Google Scholar 
    19.Cisneros-de la Cruz, D. J. et al. Short-distance barriers affect genetic variability of Rhizophora mangle in the Yucatan Peninsula. Ecol. Evolut. https://doi.org/10.1002/ece3.4575 (2018).Article 

    Google Scholar 
    20.Kennedy, J. P. et al. Postglacial expansion pathways of red mangrove Rhizophora mangle, in the Caribbean Basin and Florida. Am. J. Bot. 103, 260–276 (2016).PubMed 

    Google Scholar 
    21.Wee, A. K. S. et al. Vicariance and oceanic barriers drive contemporary genetic structure of widespread mangrove species Sonneratia alba. J. Sm Indo-West Pac. For. 8, 1–21 (2017).
    Google Scholar 
    22.Iuit, L. R. C. et al. Genetic structure and connectivity of the red mangrove at different geographic scales through a complex transverse hydrological system from freshwater to marine ecosystems. Diversity 12, 113 (2020).
    Google Scholar 
    23.Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia 803, 189–207 (2017).
    Google Scholar 
    24.Triest, L. et al. Channel network structure determines genetic connectivity of landward–seaward Avicennia marina populations in a tropical bay. Ecol. Evol. 10, 12059–12075 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    25.Canty, S. W. J., Fox, G., Rowntree, J. K. & Preziosi, R. F. Genetic structure of a remnant Acropora cervicornis population. Sci. Rep. 11, 1–9 (2021).
    Google Scholar 
    26.Kettenring, K. M., Mossman, B. N., Downard, R. & Mock, K. E. Fine-scale genetic diversity and landscape-scale genetic structuring in three foundational bulrush species: Implications for wetland revegetation. Restor. Ecol. 27, 408–420 (2019).
    Google Scholar 
    27.Mijangos, J. L., Pacioni, C., Spencer, P. B. S. & Craig, M. D. Contribution of genetics to ecological restoration. Mol. Ecol. 24, 22–37 (2015).PubMed 

    Google Scholar 
    28.Ross, M. S. et al. Early post-hurricane stand development in Fringe mangrove forests of contrasting productivity. Plant Ecol. 185, 283–297 (2006).
    Google Scholar 
    29.Kennedy, J. P. et al. Hurricanes overcome migration lag and shape intraspecific genetic variation beyond a poleward mangrove range limit. Mol. Ecol. https://doi.org/10.1111/mec.15513 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.NOAA. Historical Hurricane Tracks. https://coast.noaa.gov/hurricanes/ (National Hurricane Center | National Oceanic and Atmospheric Administration).31.Cahoon, D. R. et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105 (2003).
    Google Scholar 
    32.Cannicci, S. et al. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquat. Bot. 89, 186–200 (2008).
    Google Scholar 
    33.Krauss, K. W. et al. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 89, 105–127 (2008).
    Google Scholar 
    34.Clarke, P. J. Effects of experimental canopy gaps on mangrove recruitment: Lack of habitat partitioning may explain stand dominance. J. Ecol. 92, 203–213 (2004).
    Google Scholar 
    35.Sandoval-Castro, E. et al. Post-glacial expansion and population genetic divergence of Mangrove species Avicennia germinans (L.) stearn and Rhizophora mangle L. along the Mexican coast. PLoS ONE 9, 113 (2014).
    Google Scholar 
    36.Rabinowitz, D. Dispersal properties of Mangrove propagules. Biotropica 10, 47–57 (1978).
    Google Scholar 
    37.Chollett, I. et al. A case for redefining the boundaries of the Mesoamerican reef ecoregion. Coral Reefs https://doi.org/10.1007/s00338-017-1595-4 (2017).Article 

    Google Scholar 
    38.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1–10 (2015).
    Google Scholar 
    39.Jump, A. S. & Peñuelas, J. Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc. Natl. Acad. Sci. U.S.A. 103, 8096–8100 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Jalonen, R., Hong, L. T., Lee, S. L., Loo, J. & Snook, L. Integrating genetic factors into management of tropical Asian production forests: A review of current knowledge. For. Ecol. Manag. 315, 191–201 (2014).
    Google Scholar 
    41.Pacioni, C., Trocini, S., Wayne, A. F., Rafferty, C. & Page, M. Integrating population genetics in an adaptive management framework to inform management strategies. Biodivers. Conserv. 29, 947–966 (2020).
    Google Scholar 
    42.Van der Stocken, T. et al. A general framework for propagule dispersal in mangroves. Biol. Rev. 94, 1547–1575 (2019).PubMed 

    Google Scholar 
    43.Bologna, P. A. X. et al. Lingering impacts of Hurricane Hugo on Rhizophora mangle (Red Mangrove) population genetics on St. John, USVI. Diversity 11, 1–14 (2019).
    Google Scholar 
    44.Cerón-Souza, I., Bermingham, E., McMillan, W. O. & Jones, F. A. Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama. BMC Evol. Biol. 12, 205 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    45.Núñez-Farfán, J. et al. Genetic divergence among Mexican populations of red mangrove (Rhizophora mangle): Geographic and historic effects. Evol. Ecol. Res. 4, 1049–1064 (2002).
    Google Scholar 
    46.Coleman, M. A. et al. Restore or redefine: Future trajectories for restoration. Front. Mar. Sci. 7, 1–12 (2020).
    Google Scholar 
    47.Breed, M. F. et al. Priority actions to improve provenance decision-making. Bioscience 68, 510–516 (2018).
    Google Scholar 
    48.Breed, M. F. et al. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 20, 615–628 (2019).CAS 
    PubMed 

    Google Scholar 
    49.Kandil, F. E., Grace, M. H., Seigler, D. S. & Cheeseman, J. M. Polyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescence. Trees 18, 518–528 (2004).CAS 

    Google Scholar 
    50.Sahu, S. K., Thangaraj, M. & Kathiresan, K. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Mol. Biol. 2012, 1–6 (2012).
    Google Scholar 
    51.Wang, S., Meyer, E., Mckay, J. K. & Matz, M. V. 2b-RAD: A simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810 (2012).CAS 
    PubMed 

    Google Scholar 
    52.Guo, Y. et al. An improved 2b-RAD approach (I2b-RAD) offering genotyping tested by a rice (Oryza sativa L.) F2 population. BMC Genomics 15, 1–13 (2014).CAS 

    Google Scholar 
    53.Eaton, D. A. R. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).CAS 
    PubMed 

    Google Scholar 
    54.Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).CAS 
    PubMed 

    Google Scholar 
    55.Marandel, F. et al. Estimating effective population size using RADseq: Effects of SNP selection and sample size. Ecol. Evol. 10, 1929–1937 (2019).
    Google Scholar 
    56.Team, R. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).57.Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).58.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr : An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    59.Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 

    Google Scholar 
    60.Garnier-Géré, P. & Chikhi, L. Population subdivision, Hardy-Weinberg equilibrium and the Wahlund effect. Els. https://doi.org/10.1002/9780470015902.a0005446.pub3 (2013).Article 

    Google Scholar 
    61.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    63.Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).64.Pritchard, J. K. & Wen, W. Documentation for Structure Software: Version 2.2. http://pritch.bsd.uchicago.edu (2002).65.Vähä, J. P., Erkinaro, J., Niemelä, E. & Primmer, C. R. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol. Ecol. 16, 2638–2654 (2007).PubMed 

    Google Scholar 
    66.Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).MathSciNet 
    MATH 

    Google Scholar 
    67.Meirmans, P. G. genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–An update. Bioinformatics 28, 2537–2539 (2012).69.Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561–573 (1999).PubMed 

    Google Scholar 
    70.Peakall, R., Ruibal, M. & Lindenmayer, D. B. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57, 1182–1195 (2003).PubMed 

    Google Scholar  More

  • in

    Arctic warming-induced cold damage to East Asian terrestrial ecosystems

    1.Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).CAS 

    Google Scholar 
    2.Arrhenius, S. On the influence of carbonic acid in the air upon the temperature of the ground. London, Edinburgh, Dublin Phil. Mag. J. Sci 41, 237–276 (1896).CAS 

    Google Scholar 
    3.Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).CAS 

    Google Scholar 
    4.Bhatt, U. S. et al. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Intract 14, 1–20 (2010).
    Google Scholar 
    5.Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, L06801 (2012).
    Google Scholar 
    6.Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).CAS 

    Google Scholar 
    7.Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).CAS 

    Google Scholar 
    8.Kug, J. S. et al. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 8, 759–762 (2015).CAS 

    Google Scholar 
    9.Jeong, S. J., Medvigy, D., Shevliakova, E. & Malyshev, S. Uncertainties in terrestrial carbon budgets related to spring phenology. J. Geophys. Res. 117, G01030 (2012).
    Google Scholar 
    10.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
    Google Scholar 
    11.Piao, S. L. et al. The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences 9, 3571–3586 (2012).CAS 

    Google Scholar 
    12.Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).CAS 

    Google Scholar 
    13.Takaya, K. & Nakamura, H. Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci 62, 4423–4440 (2005).
    Google Scholar 
    14.Honda, M., Inoue, J. & Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 36, L08707 (2009).
    Google Scholar 
    15.Piao, S. L. et al. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res. 108, D144401 (2003).
    Google Scholar 
    16.Hua, W. et al. Observational quantification of climatic and human influences on vegetation greening in China. Remote Sens 9, 425 (2017).
    Google Scholar 
    17.Zhou, B., Gu, L., Ding, Y. & Shao, L. The great 2008 Chinese ice storm: its socioeconomic–ecological impact and sustainability lessons learned. Bull. Am. Meteorol. Soc. 92, 47–60 (2011).
    Google Scholar 
    18.Shao, Q., Huang, L., Liu, J., Kuang, W. & Li, J. Analysis of forest damage caused by the snow and ice chaos along a transect across southern China in spring 2008. J. Geogr. Sci. 21, 219–234 (2011).
    Google Scholar 
    19.Wang, X., Huang, S., Li, J., Zhou, G. & Shi, L. Sprouting response of an evergreen broad‐leaved forest to a 2008 winter storm in Nanling Mountains, southern China. Ecosphere 7, e01395 (2016).
    Google Scholar 
    20.Woodward, F. I. & Williams, B. G. Climate and plant distribution at global and local scales. Vegetatio 69, 189–197 (1987).
    Google Scholar 
    21.Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol 12, 1969–1976 (2006).
    Google Scholar 
    22.Piao, S. L., Fang, J. Y., Zhou, L. M., Ciais, P. & Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Change Biol 12, 672–685 (2006).
    Google Scholar 
    23.Cook, B. I., Wolkovich, E. M. & Parmesan, C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Natl Acad. Sci. USA 109, 9000–9005 (2012).CAS 

    Google Scholar 
    24.Smith, B., Prentice, I. C. & Sykes, M. T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr 10, 621–637 (2001).
    Google Scholar 
    25.Zhu, D. et al. Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model. Geosci. Model Dev. 8, 2263–2283 (2015).
    Google Scholar 
    26.Peano, D. et al. Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season. Biogeosciences 18, 2405–2428 (2021).
    Google Scholar 
    27.Zeng, N., Mariotti, A. & Wetzel, P. Terrestrial mechanisms of interannual CO2 variability. Glob. Biogeochem. Cycles 19, GB1016 (2005).
    Google Scholar 
    28.Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst 11, 4245–4287 (2019).
    Google Scholar 
    29.White, M. A., Thornton, P. E. & Running, S. W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 11, 217–234 (1997).CAS 

    Google Scholar 
    30.Chen, X. Q., Wang, L. X. & Inouye, D. Delayed response of spring phenology to global warming in subtropics and tropics. Agric. For. Meteorol. 234–235, 222–235 (2017).
    Google Scholar 
    31.Aono, Y. & Kazui, K. Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int. J. Climatol. 914, 905–914 (2008).
    Google Scholar 
    32.Pearse, W. D., Davis, C. C., Inouye, D. W., Primack, R. B. & Davies, T. J. A statistical estimator for determining the limits of contemporary and historic phenology. Nat. Ecol. Evol 1, 1876–1882 (2017).
    Google Scholar 
    33.Jang, Y. S., Kug, J. S. & Kim, B. M. How well do current climate models simulate the linkage between Arctic warming and extratropical cold winters? Clim. Dyn. 53, 4005–4018 (2019).
    Google Scholar 
    34.Park, H. & Jeong, S. J. Leaf area index in Earth system models: how the key variable of vegetation seasonality works in climate projections. Environ. Res. Lett. 16, 034027 (2021).
    Google Scholar 
    35.Alexeev, V. A., Esau, I. N., Polyakov, I. V., Byam, S. J. & Sorokina, S. Vertical structure of recent Arctic warming from observed data and reanalysis products. Climatic Change 111, 215–239 (2011).
    Google Scholar 
    36.Hänninen, H. Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26, 889–898 (2006).
    Google Scholar 
    37.Augspurger, C. K. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct. Ecol. 23, 1031–1039 (2009).
    Google Scholar 
    38.Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).
    Google Scholar 
    39.Ichii, K. et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J. Geophys. Res. Biogeosci. 122, 767–795 (2017).CAS 

    Google Scholar 
    40.Li, X. & Xiao, J. A global, 0.05‐degree product of solar‐induced chlorophyll fluorescence derived from OCO‐2, MODIS, and reanalysis data. Remote Sens 11, 517 (2019).
    Google Scholar 
    41.Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).
    Google Scholar 
    42.Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
    Google Scholar 
    43.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    44.Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).
    Google Scholar 
    45.Bontemps, S. et al. Consistent global land cover maps for climate modeling communities: current achievements of the ESA’s land cover CCI. In ESA Living Planet Symp. 2013 CCI-4 (ESA, 2013).46.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
    Google Scholar 
    47.O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
    Google Scholar 
    48.Kim, H. Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions (Experiment 1) [Data set]. Data Integration and Analysis System (DIAS), https://doi.org/10.20783/DIAS.501 (2017).49.Zheng, F., Li, J., Ding, R. & Feng, J. Cross-Seasonal Influence of the SAM on Southern Hemisphere Extratropical SST and its Relationship with Meridional Circulation in CMIP5 models. Int. J. Climatol. 38, 1499–1519 (2018).
    Google Scholar 
    50.Livezey, R. E. & Chen, W. Y. Statistical field significance and its determination by Monte Carlo techniques. Month. Weath. Rev 111, 46–59 (1983).
    Google Scholar 
    51.Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).CAS 

    Google Scholar 
    52.Kim, J. S., Kug, J. S. & Jeong, S. J. Intensification of terrestrial carbon cycle related to El Nino-Southern Oscillation under greenhouse warming. Nat. Commun. 8, 1674 (2017).
    Google Scholar  More

  • in

    Selection constrains lottery assembly in the microbiomes of closely related diatom species

    1.Armbrust EV. The life of diatoms in the world’s oceans. Nature. 2009;459:185–92.CAS 
    PubMed 

    Google Scholar 
    2.Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeo- dactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.CAS 
    PubMed 

    Google Scholar 
    3.Amin SA, Parker MS, Armbrust EF. Interactions between Diatoms and Bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Cirri E, Pohnert G. Algae- bacteria interactions that balance the planktonic microbiome. New Phytologist. 2019;223:100–6.
    Google Scholar 
    5.Mühlenbruch M, Grossart H, Eigemann F, Voss M. Mini‐review: Phytoplankton‐ derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.PubMed 

    Google Scholar 
    6.Koedooder C, Stock W, Willems A, Mangelinckx S, de Troch M, Vyverman W, et al. Diatom-bacteria interactions modulate the composition and productivity of benthic diatom biofilms. Front Microbiol. 2019;10:1255.PubMed 
    PubMed Central 

    Google Scholar 
    7.Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife. 2016;5:e11888.PubMed 
    PubMed Central 

    Google Scholar 
    8.von Scheibner M, Sommer U, Jürgens K. Tight coupling of glaciecola spp. and diatoms during cold-water phytoplankton spring blooms. Front Microbiol. 2017;8:27.
    Google Scholar 
    9.Zhang H, Hou F, Xie W, Wang K, Zhou X, Zhang D, et al. Interaction and assembly processes of abundant and rare microbial communities during a diatom bloom process. Environ Microbiol. 2020;22:1707–19.CAS 
    PubMed 

    Google Scholar 
    10.Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.CAS 
    PubMed 

    Google Scholar 
    11.Bigalke A, Pohnert G. Algicidal bacteria trigger contrasting responses in model diatom communities of different composition. MicrobiologyOpen. 2019;8:e00818.PubMed 
    PubMed Central 

    Google Scholar 
    12.Meyer N, Pohnert G. Isolate-specific resistance to the algicidal bacterium Kordia algicida in the diatom Chaetoceros genus. Botanica Marina. 2019;62:527–35.CAS 

    Google Scholar 
    13.Sison-Mangus MP, Jiang S, Tran KN, Kudela RM. Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J. 2014;8:63–76. https://doi.org/10.1038/ismej.2013.138CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Stock W, Blommaert L, de Troch M, Mangelinckx S, Willems A, Vyverman W, et al. Host specificity in diatom–bacteria interactions alleviates antagonistic effects. FEMS Microbiol Ecol. 2019;95:fiz171.CAS 
    PubMed 

    Google Scholar 
    15.Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.PubMed 
    PubMed Central 

    Google Scholar 
    16.Ahern OM, Whittaker KA, Williams TC, Hunt DE, Rynearson TA. Host genotype structures the microbiome of a globally dispersed marine phytoplankton. Proc Natl Acad Sci. 2021;118:e2105207118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Vega NM, Gore J. Stochastic assembly produces heterogeneous communities in the Caenorhabditis elegans intestine. PLoS Biol. 2017;15:e2000633.PubMed 
    PubMed Central 

    Google Scholar 
    18.Lazzaro BP, Fox GM. Host–microbe interactions: winning the colonization lottery. Curr Biol. 2017;27:R642–R644.CAS 
    PubMed 

    Google Scholar 
    19.Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci. 2011;108:14288–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Foster KR, Schluter J, Coyte KZ, Rakoff-nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci. 2020;117:27445–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:e00002–17.PubMed 
    PubMed Central 

    Google Scholar 
    23.Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA, Amin SA. Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol. 2018;9:1–15.
    Google Scholar 
    24.Crenn K, Duffieux D, Jeanthon C. Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associa- tions. Front Microbiol. 2018;9:1–12.
    Google Scholar 
    25.Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environ Microbiol. 2005;7:860–73.CAS 
    PubMed 

    Google Scholar 
    26.Guannel ML, Horner-Devine MC, Rocap G. Bacterial community composition differs with species and toxigenicity of the diatom Pseudo-nitzschia. Aquatic Microbial Ecol. 2011;64:117–33.
    Google Scholar 
    27.Ajani PA, Kahlke T, Siboni N, Carney R, Murray SA, Seymour JR. The microbiome of the cosmopolitan diatom Leptocylindrus reveals significant spatial and temporal variability. Front Microbiol. 2018;9:1–12.
    Google Scholar 
    28.Kaczmarska I, Ehrman JM, Bates SS, Green DH, Léger C, Harris J. Diversity and distribution of epibiotic bacteria on Pseudo-nitzschia multiseries (Bacillar- iophyceae) in culture, and comparison with those on diatoms in native seawater. Harmful Algae. 2005;4:725–41.
    Google Scholar 
    29.Sapp M, Wichels A, Gerdts G. Impacts of cultivation of marine diatoms on the associated bacterial community. Appl Environ Microbiol. 2007;73:3117–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Mönnich J, Tebben J, Bergemann J, Case R, Wohlrab S, Harder T. Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible. ISME J. 2020;14:1614–25.PubMed 
    PubMed Central 

    Google Scholar 
    31.Baker LJ, Kemp PF. Exploring bacteria-diatom associations using single-cell whole genome amplification. Aquatic Microbial Ecol. 2014;72:73–88.
    Google Scholar 
    32.Candela M, Biagi E, Maccaferri S, Turroni S, Brigidi P. Intestinal microbiota is a plastic factor responding to environmental changes. Trends Microbiol. 2012;20:385–91.CAS 
    PubMed 

    Google Scholar 
    33.Goh C, Vallejos DFV, Nicotra AB, Mathesius U. The Impact of Beneficial Plant-Associated Microbes on Plant Phenotypic Plasticity. J Chem Ecol. 2013;826–39.34.Vanormelingen P, Vanelslander B, Sato S, Gillard J, Trobajo R, Sabbe K, et al. Heterothallic sexual reproduction in the model diatom Cylindrotheca. Eur J Phycol. 2013;48:93–105.
    Google Scholar 
    35.Li H, Yang G, Sun Y, Wu S, Zhang X. Cylindrotheca closterium is a species complex as was evidenced by the variations of rbcL gene and SSU rDNA. J Ocean Univer China. 2007;6:167–74.
    Google Scholar 
    36.Stock W, Vanelslander B, Rüdiger F, Sabbe K, Vyverman W, Karsten U. Thermal niche differentiation in the benthic diatom Cylindrotheca closterium (Bacillar- iophyceae) complex. Front Microbiol. 2019;10:1395.PubMed 
    PubMed Central 

    Google Scholar 
    37.de Brouwer JFC, Wolfstein K, Ruddy GK, Jones TER, Stal LJ. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Micro Ecol. 2005;49:501–12.CAS 

    Google Scholar 
    38.Najdek M, Blažina M, Djakovac T, Kraus R. The role of the diatom Cylindrotheca closterium in a mucilage event in the northern Adriatic Sea: Coupling with high salinity water intrusions. J Plankton Res. 2005;27:851–62.
    Google Scholar 
    39.Eaton Jw, Moss B. The estimation of numbers and pigment content in epipelic algal populations. Limnol Oceanogr. 1966;11:584–95.
    Google Scholar 
    40.Anderson RA. (editor). Algal Culturing Techniques. Elsevier Academic Press; 2005.41.Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial popula- tions by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Tytgat B, Verleyen E, Sweetlove M, D’hondt S, Clercx P, van Ranst E, et al. Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica. FEMS Microbiol Ecol. 2016;92.43.D’Hondt AS, Stock W, Blommaert L, Moens T, Sabbe K. Nematodes stimulate biomass accumulation in a multispecies diatom biofilm. Marine Environ Res. 2018;140:78–89.
    Google Scholar 
    44.Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.CAS 
    PubMed 

    Google Scholar 
    45.Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 

    Google Scholar 
    46.Murali A, Bhargava A, Wright ES. IDTAXA: a novel approach for accurate taxo- nomic classification of microbiome sequences. Microbiome. 2018;6:1–14.
    Google Scholar 
    47.Wright ES. Using DECIPHER v2. 0 to analyze big biological sequence data in R. R Journal. 2016;8.48.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.PubMed 
    PubMed Central 

    Google Scholar 
    49.Nawrocki EP. Structural RNA Homology Search and Alignment using Covariance Models. Washington University in St. Louis; 2009.50.Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.CAS 
    PubMed 

    Google Scholar 
    51.Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 

    Google Scholar 
    52.Vanelslander B, Créach V, Vanormelingen P, Ernst A, Chepurnov VA, Sahan E, et al. Ecological differentiation between sympatric pseudocryptic species in the estuarine benthic diatom Navicula phyllepta (Bacillariophyceae). J Phycol. 2009;45:1278–89.CAS 
    PubMed 

    Google Scholar 
    53.Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modelling. 2002;153:51–68.
    Google Scholar 
    54.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.CAS 
    PubMed 

    Google Scholar 
    55.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Green- genes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolu- tionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.CAS 
    PubMed 

    Google Scholar 
    58.Stone L, Roberts A. The checkerboard score and species distributions. Oecologia. 1990;85:74–9.PubMed 

    Google Scholar 
    59.Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40.PubMed 

    Google Scholar 
    60.Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Con- tribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.CAS 
    PubMed 

    Google Scholar 
    61.Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973;54:427–32.
    Google Scholar 
    62.Chiarello M, Auguet JC, Bettarel Y, Bouvier C, Claverie T, Graham NAJ, et al. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome. 2018;6:1–14.
    Google Scholar 
    63.Easson CG, Thacker RW. Phylogenetic signal in the community structure of host- specific microbiomes of tropical marine sponges. Front Microbiol. 2014;5:1–11.
    Google Scholar 
    64.Swierts T, Cleary DFR, de Voogd NJ. Prokaryotic communities of Indo-Pacific giant barrel sponges are more strongly influenced by geography than host phylogeny. FEMS Microbiol Ecol. 2018;94:1–12.
    Google Scholar 
    65.Mazel F, Davis KM, Loudon A, Kwong WK. Is Host Filtering the Main Driver of Phylosymbiosis across the Tree of Life. Msystems. 2018;3:1–15.
    Google Scholar 
    66.Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci. 2020;117.7:3656–62.
    Google Scholar 
    67.Taylor JD, Cunliffe M. Coastal bacterioplankton community response to diatom- derived polysaccharide microgels. Environ Microbiol Rep. 2017;9:151–7.CAS 
    PubMed 

    Google Scholar 
    68.Becker JW, Berube PM, Follett CL, Waterbury JB, Chisholm SW, Delong EF, et al. Closely related phytoplankton species produce similar suites of dissolved organic matter. Front Microbiol. 2014;5:1–14.CAS 

    Google Scholar 
    69.Jackrel SL, Yang JW, Schmidt KC, Denef VJ. Host specificity of microbiome assembly and its fitness effects in phytoplankton. ISME J. 2021;15:774–88.PubMed 

    Google Scholar 
    70.Eigemann F, Hilt S, Salka I, Grossart HP. Bacterial community composition asso- ciated with freshwater algae: Species specificity vs. dependency on environ- mental conditions and source community. FEMS Microbiol Ecol. 2013;83:650–63.CAS 
    PubMed 

    Google Scholar 
    71.Barreto Filho MM, Walker M, Ashworth MP, Morris JJ. Structure and Long-Term Stability of the Microbiome in Diverse Diatom Cultures. Microbiol Spectr. 2021;9:e00269–21.PubMed Central 

    Google Scholar 
    72.Horner-Devine MC, Bohannan BJM. Phylogenetic clustering and overdispersion in bacterial communities. Ecology. 2006;87:S100–8.PubMed 

    Google Scholar 
    73.Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci. 2015;112:6449–54.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Li Y, Shipley B, Price JN, Dantas V, de L, Tamme R, et al. Habitat filtering deter- mines the functional niche occupancy of plant communities worldwide. J Ecol. 2018;106:1001–9.
    Google Scholar 
    76.Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, et al. High taxonomic variability despite stable functional structure across microbial com- munities. Nat Ecol Evol. 2016;1:0015.
    Google Scholar 
    77.Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:1–12.
    Google Scholar 
    78.Geng H, Belas R. Molecular mechanisms underlying Roseobacter–phytoplankton symbioses. Curr Opinion Biotechnol. 2010;21:332–8.CAS 

    Google Scholar 
    79.Christie-Oleza JA, Sousoni D, Lloyd M, Armengaud J, Scanlan DJ. Nutrient recy- cling facilitates long-term stability of marine microbial phototroph-heterotroph interactions. Nat Microbiol. 2017;2:1–10.
    Google Scholar 
    80.Edmundson SJ, Huesemann MH. The dark side of algae cultivation: characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nanno- chloropsis salina and Picochlorum sp. Algal Res. 2015;12:470–6.
    Google Scholar 
    81.Grossart H-P. Interactions between marine bacteria and axenic various conditions in the lab. Aquatic Microbial Ecol. 1999;19:1–11.
    Google Scholar  More

  • in

    Viral tag and grow: a scalable approach to capture and characterize infectious virus–host pairs

    Improving our understanding of “viral tagging” flow cytometric signalsVT is a deceptively simple idea whereby a mixture of natural viruses are labeled with a DNA-binding fluorescent dye and ‘bait’ hosts infected by these stained viruses can be detected with flow cytometry via the fluorescent shift of “viral-tagged cells” [38, 39] (Fig. 1A, B). These viral-tagged cells can then be sorted, and the viral DNA separated using isotopic fractionation (the DNA of the cultured host is pre-labeled with “heavy” DNA) to access the metagenomes of the viruses that were experimentally determined to have infected these cell types. However, in practice, VT has been only minimally adopted by the community [43], presumably because it requires costly equipment (a high-performance flow sorter) and diverse technical expertise (flow cytometry, phage biology, and bioinformatics), while lacking sufficient benchmarking. To the latter, we sought to use a cultured phage-host model system (Pseudoalteromonas strain H71, hereafter H71, and its specific myophage PSA-HM1, hereafter HM1) to systematically assess the impact of various multiplicities of infection (MOIs; the ratio of the number of virus particles to the number of target cells, [48]) on the resultant VT signals. Further, we sought to augment VT to add an “and grow” capability whereby scalable single-virus cultivation, characterization, and sequencing could be enabled (Fig. 1C).Fig. 1: Overview of viral tagging, and the variant developed here—viral tag and grow.A Viruses are labeled with a green fluorescent dye and then mixed with potential host bacteria. B Fluorescence detection of individual cells with fluorescently-labeled viruses (FLVs) by flow cytometer. The flow cytometry plot (side scatter or forward scatter versus green fluorescence) shows the expected locations of FLV-tagged (VTs) and nontagged cells (NTs), which are flow-cytometrically green positive and negative, respectively. C Single-cell sorting of VTs is followed by subsequent amplification of infectious viruses. Single VTs are sorted into a 96-well plate that contains host culture. Culture growth is monitored by measuring optical density (OD) over time. A decrease in the OD curve from VT-containing wells (relative to the phage-negative control) indicates cell lysis by progeny viruses produced from a single isolated VT cell.Full size imageTo gain a better understanding of the biology behind VT signatures, we examined how H71 interacts with HM1, a phage specific for this host, and HS8, a phage that does not adsorb to this host – both assayed via flow cytometry and microscopy (for details, see Methods and online protocol, https://www.protocols.io/view/viral-tagging-and-grow-a-scalable-approach-to-captbwutpewn?form=MY01SV&OCID=MY01SV). Briefly, phages were stained with SybrGold (fluoresces green upon blue-light excitation) and for microscopy, H71 cells were stained with DAPI (fluoresces blue upon blue-light excitation, 4′,6-diamidino-2-phenylindole), as previously described [39, 49]. Replicate cultures of stained cells were then mixed with fluorescently-labeled phages (either HM1 or HS8 in each treatment) at infective MOIs = 1, 2, and 4, then these infections were incubated for 10 min, and processed (centrifuged and resuspended; see Methods for details) three times to remove free phages (see Methods for details). For microscopy, the relative fraction of virus-tagged (VTs) and nontagged cells (NTs) was measured from the available cells up to ~500 cells for each sample. For flow cytometry, cell detection was optimized to minimize background noise [50], and negative controls consisted of stained and washed sheath buffer and filtered Q water samples, as previously described [39].Overall, the resulting VT experiments were robust and informative. First, our cell-only optimizations resulted in controls that were impeccably clean (see representative cytograms and gating counts in Fig. 2A–C and  Supplementary Fig. S1). Second, in “virus addition” treatments, the resultant VT signal was distinct for specific (HM1) versus nonspecific (HS8) phages. Specifically, adding HM1 at MOIs = 1, 2, and 4 corresponded to VT population shifts of an average of 25%, 50%, and 80%, respectively, while NT populations proportionally decreased (Fig. 2D, E, linear regression r2 = 0.98). In contrast, for all tested MOIs of the nonspecific HS8 phage, the shifted populations were negligible (range: ~1.0–1.9%) and uncorrelated (Supplementary Fig. S2A, B; r2 = 0.14).Fig. 2: Flow cytometric and microscopic analyses of Pseudoalteromonas-phage associations.A Hierarchical gating for detection of Pseudoalteromonas strain H71 (hereafter, H71) and its subpopulations of viral tagged (VTs) and nontagged cells (NTs). A parent gate was drawn on H71 cells using FSC vs. SSC (Fig. S1) and represented in two types of contour and dot plots (left and right in the top of the gray box, respectively). From this gate, green-positive (VT) and -negative (NT) populations were sub-gated in the green fluorescence vs. SSC (right, dot plot) and quantified as percentage fractions of a parent population (bar charts in the gray box). B, C Flow cytometric plots of sheath buffer only (B) and stained/washed sheath buffer without phages (C) (see Methods and Fig. S1). D Flow cytometric detections for H71 cells (~106/ml) that were incubated with fluorescently-labeled specific phage HM1 at MOIs of 1, 2, and 4, respectively (from left to right). E Linear regression relationships between the MOIs (x-axis) and the percentages (Y-axis) of flow cytometric VT (green) and NT (black) populations for phage HM1 at MOIs of 1, 2, and 4, respectively. R-square values are represented. F DAPI (4′,6-diamidino-2-phenylindole, blue)-stained H71 cells were mixed with fluorescent phages HM1 (SybrGold, green) at MOIs of 1, 2, and 4, respectively (Methods for details). Above, the merged images of phage-host mixtures (Additional images are shown in Figs. S4–7). Below, an enlarged view of four regions selected from the above images. Interpretations of virus-tagged cells, nontagged cells, and “free” viruses are represented in the results and discussion and methods, respectively. Arrows point to phages found on the margin of bacterial cells. Scale bar, 2 µm. Microscopic observations for nonspecific phage HS8-H71 are shown in Fig. S8. G Correlation between the MOI (x-axis) and the microscopic fractions (y-axis) of VTs (green) and NTs (black) for phage HM1 at MOIs of 1, 2, and 4, respectively. R-square value is shown. H Impact of cell physiology on viral tagging signals. H71 cells (~106/ml) in the early log, late log, and stationary phase were infected by phage HM1 at MOIs of 1 (Left) and 4 (Right), respectively. Percentages of tagged populations were measured at the time point after fluorescently-labeled HM1 were inoculated for 20 min at various MOIs followed by centrifugation and resuspension to remove free viruses (see Methods for details). Each test was done in duplicate (error bars show standard deviations).Full size imageDespite observing a strong linear correlation between MOI and %VT for HM1, it was surprising that even at high MOIs = 1, 2, and 4, the resultant population shifts were 1.2- to 2.5-fold less than expected from theory alone based on Poisson distribution (see Supplementary Fig. S3). To investigate this, we used microscopy to inspect for virus clumping, positioning relative to cell surfaces, and background noise. These results revealed spot-like green signals of various sizes outside of host cells, which we interpreted as free viruses, and this was true even (a) at these higher MOIs, and (b) despite centrifugation to remove free viruses following incubation (see Methods; Fig. 2F and  Supplementary Figs. S4–7). We suspect these unincorporated SYBR-stained particles are viral aggregates, possibly due to host cell parts and/or debris in the lysate [51,52,53] or tangling of phage tails [54]. Prior work has shown that these and other mechanisms that decrease the accessibility of viral particles to host receptors could reduce observed infectious particles [48].Our third key observation in these experiments rested with an improved understanding of the ‘signal shift’ between VT and NT populations in the flow cytogram across varied MOIs. Again, comfortably, increasing the MOI pushed VT signals toward higher fluorescence, with NTs decreasing proportionally (Fig. 2F). We posited that such increased “VT” signal could result from multiple phages adsorbing per cell. Indeed, microscopy visualization of ~500 single cells per treatment revealed that the number of detectable phages per infected cell increased proportionally to the MOI (Fig. 2F, G and  Supplementary Figs. S4–6). For example, of the tagged cells, few (~14%) cells exhibited multiple phages adsorbed at an MOI = 1, whereas those numbers increased drastically at MOIs = 2 and 4, where most (~55% and 67%) tagged cells exhibited multiple adsorbed phages per cell. As a negative control, we examined VT signals for a nonspecific phage, and this revealed that virtually all of the 545 single cells that were examined were nontagged (99.3%) even at an MOI = 10 (Supplementary Fig. S7). Presumably, the remaining ~0.7% of cells that appeared to have a phage adsorbed represent promiscuous, reversible binding to nonhost cells as is known to occur in other phage model systems [39]. Mechanistically, multiple phages can bind to a single host cell. For example, under very high-titer infection conditions (e.g., MOI = 100) phages can distribute over an entire cell surface [55], presumably accessing broadly distributed receptors [56]. Prior VT work has demonstrated strong VT signals under very high MOI (e.g., MOI = 1000) conditions [43], though no optimization experiments were presented to understand these patterns and the false positives that would result from free phages coincidently sorted (see further discussion later).Finally, we re-evaluated the impact of cell physiology (e.g., early, middle, and late log phase host growth) and adsorption time (e.g., 20 min intervals from 0 to 120 min) on Pseudoalteromonas VT signals—and did so at two MOIs = 1 and 4, respectively (Fig. 2H). At both MOIs tested, growth phase was seen to impact the VT signals, with late log phase cells showing the highest fluorescent shift for VT cells in contrast to signals that were reduced in early log phase cells and nearly absent from stationary phase cells (Fig. 2H). This finding is consistent with our prior optimizations with Pseudoalteromonas phage-host model systems [39]. However, we observed that VT signals were optimal at 20 min after adsorption (see Methods) and, rather than stay high as we had previously observed, these experiments revealed that the VT signals were reduced by nearly half at subsequent time points. Though conflicting with our prior work [39], these current experiments employ hierarchical gating (Supplementary Fig. S1; see Methods), which we feel more appropriately quantify these patterns. This is because we interpret the signal reduction to be due to the lysis of first-adsorbed tagged cells and/or the injection of fluorescent DNA of the adsorbed virus(es) into cells as the latent period of phage HM1 for H71 cells under these conditions dictates [24]. Indeed, it has been reported that for phage lambda—E.coli system, the injection of fluorescent phage DNA followed by signal diffusion inside the cells decreased ~40% of the overall signal intensities of individual virus–host pairs [57].Together, though an extensive set of experiments, these findings are largely confirmatory with our prior work characterizing Pseudoalteromonas phages [39]. However, and critically, our prior work failed to rigorously investigate these phenomena with respect to their (i) flow cytogram population signatures, (ii) single-cell microscopy imaging, and (iii) hierarchically gated tagged-cell timing estimates. We hope that these additional clarifications here provide a better mechanistic understanding of VT signals, and encourage wider adoption of this promising high-throughput method to identify viruses that infect a particular host.Introducing VT and grow: VT coupled to plate-based cultivation assaysGiven this improved understanding of the VT signal, we next sought to expand VT to include an “and grow” capability to scalably capture and characterize viruses linked to hosts (conceptually presented in Fig. 1C). Pragmatically, this should also help resolve long-standing questions of (i) what fraction of VT cells lead to productive infections (i.e., does adsorption equal infection?, [45]), and (ii) whether sample processing (e.g., laser detection, sheath fluid growth inhibition [37, 58]) or cell density effects resulting from single-cell sorts [59, 60] would prohibit downstream growth assays.To this end, we used the Pseudoalteromonas-virus HM1 model system to optimize sorting and growth conditions. Specifically, we wondered how many cells from sorted populations would be required to observe lysis (both dynamically, and terminally) under various MOI conditions. To test this, viral-tagged cells (the “VT” treatment) or nontagged cells (the “NT” treatment) were sorted into individual wells of a 96-well plate containing growth medium; fresh host cells were added, and growth-lysis curves were established by measuring optical density (OD) over time (see Methods). Treatment variables included the number of cells sorted (n = 1, 3, or 9) and infection conditions (MOI = 1 or 4), while controls included (i) NT cells to control for false-positive culture lyses by free viruses coincidently sorted with target cells, and (ii) sorting process controls against host cell lysis and growth in plates consisting of wells containing cultures with and without phage HM1, respectively. For all experiments, cells were infected during late-exponential phase for 10 min, followed by dilution to halt further infection, and centrifugation to remove free viruses (see Methods, [41]).We first analyzed the reduced-titer MOI = 1 infection. When only single cells were sorted, the growth curves from those wells as compared to those of phage-free controls, showed that more than half (56%; 20/36) of the VT wells with detectably reduced OD, whereas only a single NT well (8%; 1/12) showed such a decrease (Fig. 3A). This low rate of false-positive culture lysis in NT wells suggests that in most of the VT wells, progeny phages produced from an isolated parent VT—not free viruses―infect and lyse the host culture (For more details, see the burst size distribution of sorted single VTs below). Presumably, the 16 VT wells that did not lyse were due to one of the following: (i) reduced viability of isolated VTs through multiple steps of sample preparation or sorting with high sheath pressure [37, 58], (ii) possible reversible virus adsorption from the VT cell prior to well capture, and/or (iii) mis-diagnoses due to the weak fluorescent shift of singly-VT cells as is a known challenge in fluorescence-based cell sorting [58, 61].Fig. 3: Evaluation of viral growth assay under various infection conditions.Two liquid cultures of Pseudoalteromonas strain H71 (105/ml) in the late-logarithmic growth phase were infected by specific phage HM1 at MOIs of 1 and 4, respectively. From each infected culture, varying numbers of tagged (VT) and nontagged (NT) cells were sorted into individual wells of a 96-well plate containing growth medium followed by the addition of fresh host cells (104 cells per well). Positive and negative controls (host culture with HM1 at an MOI of 0.1 and without HM1, respectively) were included in each plate (see Methods for details). From top to bottom, left to right in panels (A) MOI = 1 and (B) MOI = 4, respectively, pie charts depict the percentages of lysed (yellow) and nonlysed (gray) wells from the total wells containing the given numbers (n = 1, 3, and 9) of isolated VTs and NTs. Culture lysis for VT- and NT-containing wells was determined by comparing their growth curves (next to each pie chart, black lines) to those of negative (red) and positive controls (blue). The X-axis indicates the OD590nm and the Y-axis, the time in hours.Full size imageTo assess the MOI = 1 infections further, we evaluated the data for wells containing more than 1 cell sorted to each well. This revealed that sorting 3 or 9 cells improved the fraction of wells lysed in the VT treatments to 88 and 100%, respectively, but this came at the cost of increased false positives in the NT treatment (pie charts in Fig. 3A). The latter is likely due to the same challenges described above of differentiating the NT from VT populations when signal intensity was relatively low. Given the 96-well plate format, these experiments demonstrate the ability to follow growth kinetics for each well (time course OD figures in Fig. 3A). This revealed that single VT cell sorts had delayed lysis relative to the multiple-cell sorts and hints at the power such kinetics data could provide for scalably characterizing new en masse captured phage isolates from field samples. Stepping back, however, it is promising that the number of sorted cells per well, for both VT and NT wells, was linearly proportional to the percentages of lysed wells (r2 = 0.73 and 0.99), respectively (Supplementary Fig. S8). This suggests a robustness and repeatability for these experiments.Beyond the fraction of the VT and NT wells displaying clear lysis, the kinetics of lysis—particularly for single-cell sorts—can be a valuable first read-out for variability in virus infection dynamics. To assess this in our dataset, we examined the kinetics of OD readings through 20 h (growth-lysis curves in Fig. 3A). Focusing on the 36 wells containing a single VT cell, 20 lysed (reported above), but their lysis kinetics drastically differed—some wells showed stepwise decreases after early increases in OD and the others a very low or no increase followed by the curve recovery. Similar lysis patterns have been observed in other phage-host systems, where host culture growth depended on phage concentration, with suppression of host cells increasing with higher phage titers and vice versa [62, 63]. Our observation of the well-to-well variation in culture lysis is likely due to different progeny production from isolated VT per well, relating to the stochasticity of viral infection [37, 64,65,66,67]. However, the stochastic infection alone cannot explain such diverse lysis patterns, given the random nature of diffusion and contact of progeny particles from infected cells to neighboring susceptible cells in the fluid (i.e., the host culture) [68, 69]. Either biological or physical infection process, or both, could impact varied lysis pattern. Further experiments are required to test this hypothesis (e.g., single-cell burst size assay, [37]; see below).Finally, given that flow cytometric population separation was critical for optimizing lysis success and that simply sorting more cells comes at the cost of increased false-positive lysis, we next explored the impact of increasing the per-cell fluorescent VT signal with MOI = 4 infections. Indeed, sorting from these better-resolved populations improved our per-well lysis results as all of the VT wells lysed, and this was the case whether sorting 1, 3, or 9 cells per well (pie charts in Fig. 3B). For the NT wells, false positives were less problematic, but they did remain a minor problem as some wells (4–8%) lysed, and this increased in the multiple-cell sorted wells. Though VT and NT populations are likely better resolved, thereby reducing false-positive lysis in the NT wells from the MOI = 1 infections, presumably the higher MOI infections lead to free viruses being coincidently co-sorted in the sort droplets. Notably, the kinetic read-outs (growth-lysis curves in Fig. 3B) were relatively invariable, possibly suggesting that the much higher number of viruses-per-cell in these infections obscured virus-to-virus variability in life history traits [66, 67, 70].Together, these experiments provide strong baseline data for assessing the impact of VT signal quality, MOIs, and growth data and hint that the approach may also open up new windows into variation in trait space across virus isolates.New biology enabled by viral tag and grow: a window into “viral individuality”?A major challenge in viral ecology is scaling from the handful of viruses that might be well characterized to the millions of virus types in an average seawater or field sample. While diversity surveys have come a long way (e.g., hundreds of thousands of viruses in a single study [23]), the pragmatic challenges of taking physiological measurements across many viral isolates leaves modeling efforts with very little empirical data on virus life history traits, severely bottlenecking the viruses brought into predictive models [71]. Further, microbiologists have revealed that even among “clonal” isolates, there can be remarkable phenotypic heterogeneity, or “microbial individuality” [72,73,74]; does the same exist for viruses? Hints that there is such “virus individuality” among DNA viruses, including phages, are emerging with data demonstrating variability in single-cell burst size (progeny per infected cell), with up to ~100-fold differences and these differences attributed to stochastic events such as variation in starting points in cell size, growth stage, and resources [37, 64,65,66].Of particular interest in understanding ‘virus individuality’ are recent single-cell analyses developed for a Synechococcus phage-host model system that revealed a wide range of burst sizes (from 2 to 200 infective viruses/cell) within a laboratory clonal isolate [37]. Methodologically, this approach sorts cells—infected or not—into wells (e.g., of a 96-well plate) and follows their infection dynamics. This has the benefit of assessing a single cell’s growth-lysis curve in each well. However, a drawback is that experiments are more conveniently done at high MOI conditions (e.g., an MOI = 3 was used) to get larger numbers of wells lysing among the randomly sorted cells (see Methods). Increasing MOI will lead to more virus-containing and, therefore, lysing wells, subsequently greatly increasing the number of cells with multiple viruses attached such that it will confound measurements of lysis dynamics since they will be a function of both virus-to-virus ‘individuality’ and an unknown, but variable per-cell MOI [70, 75].Inspired by this latter work, we sought to improve such single-cell growth-lysis assays in ways that might leverage the scalability of VT + Grow. For these experiments, we wanted to reduce the MOI (to MOI = 0.5) since theory predicts that most (77%) of the infected cells would be singly infected (Poisson distribution), but keep it high enough to have a reasonably separated VT cell population (see Methods). After cells and viruses were mixed, individual VT cells were sorted into different wells containing growth medium, plates were incubated to allow lysis of the single sorted VT cell, and the number of plaques per well were determined by pour plate plaque assays (Fig. 4A; see Methods for details). This operationally single-cell burst size assay showed a wide range of infective viruses per cell (2 to 397, X-axis) from a total of 72 individual cells assessed (Y-axis) (on average = 100; Fig. 4B), with similar average population burst sizes of 110 ± 15 [24]. Though a clonal virus isolate, these findings suggest, just as seen for cyanophages [37], that stochastic events must dictate the specific burst size for any given interaction. However, unlike the prior work, it is unlikely that cells with multiple viruses adsorbed any of this signal since such events should be much rarer at an MOI = 0.5 instead of MOI = 3. This suggests that these stochastic events are of a biological nature, which we posit might mechanistically result from the timing of initial virus–host interactions and/or cell-to-cell or virus-to-virus variation in nonheritable traits such as per-cell nutrient stores. If we interpret such infected cell variability as ecologically relevant variation in “virocells” (sensu [13, 76, 77]), then these findings open a window into “virus individuality” via a more scalable and controllable characterization approach than previously available.Fig. 4: Distribution of virus burst sizes per single viral-tagged cell.A Schematic overview of single-cell assay for viral burst size determination by viral tagging and grow. In the latent period of infection, single viral-tagged cells (VTs) were sorted by flow cytometer from Pseudoalteromonas sp. H71 cells infected by phage HM1 at an MOI of 0.5 (see Methods for details). Following sorting single VTs into different wells of the 96-well plate containing growth medium (MSM), the plate was incubated to allow for viral progenies to release from infected cells. The number of viruses produced per VT was then determined by the number of plaques per poured plate using the traditional plaque assay. B Distribution of viral burst size from individual tagged cells. The number of progeny viruses (X-axis) per cell (Y-axis) are represented in bins of 20, with the exception of the first bin excluding single plaques. The number (n) of individual tagged cells assessed is represented at the top right corner.Full size imageLimitations and future development opportunities for VT and GrowThough these efforts provide a more robust foundation for broadening the use of VT related methods, there remain challenges. First, researchers must be aware that VT is not a simple method, and its success depends on instrument calibration and ultraclean sample processing to establish maximally separated VT and NT populations (see the link below for details on flow cytometric setup and optimization). Second, sorting purity, particularly in field applications, will be challenged by suboptimal VT flow cytometric signatures, e.g., mis-identification of NT cells. Though this can be overcome with very high MOI infections (e.g., 1000 viruses per cell, [43]), two issues remain: (i) the effective MOIs cannot be measured in field samples (and thus, unknown), and (ii) at such high MOIs, the experiments will suffer from coincident sorting of free viruses that will increase false positives. Another factor that could affect sorting purity is nonviral DNA in the environmental sample, whether it is associated with bacterial cells or not, which could be coincidently sorted. It is thus necessary to ensure that prior to any VT work, environmental samples are properly processed or treated for the removal of nonviral genes and other materials (e.g., filtration and/or centrifugation). Fortunately, the “and grow” approach added to VT provides an additional screening step whereby false-negatives and false positives can be discerned via growth-lysis monitoring. Further, the “and grow” component, a plate-based assay, enables faster and more scalable lysis screening (e.g., 96-well format) than the time- and labor-intensive traditional plaque assay [62, 63]. Third, viral aggregates that alter the effective MOI infection conditions could lead to confounding results when comparing results across laboratories. Here, we invite efforts to find and optimize approaches to reduce viral aggregates (e.g., detergents, sonication, syringe pumping), and until viral aggregates are eliminated, to microscopically examine the state of free viruses in new sample types, particularly for outlier results. Fourth, the methods remain dependent upon a cultivable host, and though VT has been applied to multiple heterotroph and cyanobacterial phage-host pairs [39], two big unknowns remain: (i) how will the “and grow” processing impact growth of these strains, and (ii) will non-marine model systems be amenable to these approaches. The in-depth optimizations presented here for a Pseudoalteromonas phage-host model system serve a foundation for understanding other target virus–host pairs. To this end, we suggest deep investigation for any new model systems being studied, and as information becomes more broadly available, invite a community-standards and benchmarking approach to determine ideal setups for infectious conditions (e.g., growth curve, MOIs) and instrumental parameters. To facilitate this, we have established a VT forum on the Viral Ecology VERVE Net living protocols at protocols.io (below) as a way to empower and broadly engage researchers interested in these new methods and the many variants that could blossom from this base. Specifically, the details for viral and bacterial sample processing can be found at https://www.protocols.io/view/viral-tagging-and-grow-a-scalable-approach-to-capt-bwutpewn?form=MY01SV&OCID=MY01SV and for flow cytometric optimization at https://www.protocols.io/view/bd-influx-cell-sorter-start-up-and-shut-427down-for-v-bv8cn9sw. Both protocols provide additional notes for critical steps to improve methodological reproducibility and/or sensitivity, and particularly for the latter, it will be updated regularly to better optimize, calibrate, and standardize a flow cytometer. More

  • in

    Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation

    1.Mendes R, Raaijmakers JM. Cross-kingdom similarities in microbiome functions. ISME J. 2015;9:1905–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8:103.PubMed 
    PubMed Central 

    Google Scholar 
    3.Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nat Rev Genet. 2017;18:690–9.CAS 
    PubMed 

    Google Scholar 
    4.Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 

    Google Scholar 
    5.Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, Bolaños LM, Rosenblueth M, Martínez J, et al. Gut and root microbiota commonalities. Appl Environ Microbiol. 2013;79:2–9.PubMed 
    PubMed Central 

    Google Scholar 
    6.Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome. 2018;6:231.PubMed 
    PubMed Central 

    Google Scholar 
    7.Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.CAS 
    PubMed 

    Google Scholar 
    8.Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018;36:1100–9.CAS 

    Google Scholar 
    9.Li H, La S, Zhang X, Gao L, Tian Y. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. ISME J. 2021;15:2865–82.CAS 
    PubMed 

    Google Scholar 
    10.Xu L, Dong Z, Chiniquy D, Pierroz G, Deng S, Gao C, et al. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics. Nat Commun. 2021;12:3209.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17:219–32.CAS 
    PubMed 

    Google Scholar 
    12.Lee SM, Kong HG, Song GC, Ryu CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J. 2021;15:330–47.CAS 
    PubMed 

    Google Scholar 
    13.Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell. 2021;184:615–.e17.CAS 
    PubMed 

    Google Scholar 
    14.Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16:605–16.PubMed 

    Google Scholar 
    15.Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327–50.CAS 
    PubMed 

    Google Scholar 
    16.Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil. 2014;378:1–33.CAS 

    Google Scholar 
    17.Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174:1388–.e21.CAS 

    Google Scholar 
    18.Kaakoush NO. Fecal transplants as a microbiome-based therapeutic. Curr Opin Microbiol. 2020;56:16–23.CAS 
    PubMed 

    Google Scholar 
    19.Kassam Z, Lee CH, Yuan Y, Hunt RH. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108:500–8.PubMed 

    Google Scholar 
    20.Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371:602–9.CAS 

    Google Scholar 
    21.Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol. 2002;40:309–48.CAS 
    PubMed 

    Google Scholar 
    22.Gopal M, Gupta A, Thomas GV. Bespoke microbiome therapy to manage plant diseases. Front Microbiol. 2013;4:355.PubMed 
    PubMed Central 

    Google Scholar 
    23.Raaijmakers JM, Bonsall RF, Weller DM. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology. 1999;89:470–5.CAS 
    PubMed 

    Google Scholar 
    24.Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J. 2009;3:977–91.CAS 
    PubMed 

    Google Scholar 
    25.Siddiqui ZA, Shakeel U. Screening of Bacillus isolates for potential biocontrol of the wilt disease complex of pigeon pea (Cajanus cajan) under greenhouse and small-scale field conditions. J Plant Pathol. 2007;89:179–83.
    Google Scholar 
    26.Yadav K, Damodaran T, Dutt K, Singh A, Muthukumar M, Rajan S, et al. Effective biocontrol of banana fusarium wilt tropical race 4 by a bacillus rhizobacteria strain with antagonistic secondary metabolites. Rhizosphere. 2021;18:100341.
    Google Scholar 
    27.Meng Q, Yin J, Rosenzweig N, Douches D, Hao JJ. Culture-based assessment of microbial communities in soil suppressive to potato common scab. Plant Dis. 2012;96:712–7.PubMed 

    Google Scholar 
    28.Carrión VJ, Cordovez V, Tyc O, Etalo DW, de Bruijn I, de Jager VCL, et al. Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME J. 2018;12:2307–21.PubMed 
    PubMed Central 

    Google Scholar 
    29.Gómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM. Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front Microbiol. 2017;8:2529.PubMed 
    PubMed Central 

    Google Scholar 
    30.Raaijmakers JM, Mazzola M. Soil immune responses. Science. 2016;352:1392–3.CAS 

    Google Scholar 
    31.Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL. The soil-borne legacy. Cell. 2018;172:1178–80.CAS 
    PubMed 

    Google Scholar 
    32.Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology. 2017;107:1284–97.PubMed 

    Google Scholar 
    33.Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marecková M, Grundmann GL, et al. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J. 2009;3:1127–38.PubMed 

    Google Scholar 
    34.Rosenzweig N, Tiedje JM, Quensen JF, Meng Q, Hao JJ. Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. Plant Dis. 2012;96:718–25.PubMed 

    Google Scholar 
    35.Cha JY, Han S, Hong H-J, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016;10:119–29.CAS 
    PubMed 

    Google Scholar 
    36.Liu X, Zhang S, Jiang Q, Bai Y, Shen G, Li S, et al. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci Rep. 2016;6:36773.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011;332:1097–100.CAS 

    Google Scholar 
    38.Wei Z, Gu Y, Friman VP, Kowalchuk GA, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Rillig MC, Antonovics J, Caruso T, Lehmann A, Powell JR, Veresoglou SD, et al. Interchange of entire communities: microbial community coalescence. Trends Ecol Evol. 2015;30:470–6.PubMed 

    Google Scholar 
    40.Deng S, Caddell DF, Xu G, Dahlen L, Washington L, Yang J, et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 2021;15:3181–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Mendes LW, Mendes R, Raaijmakers JM, Tsai SM. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. 2018;12:3038–42.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Hu J, Wei Z, Kowalchuk GA, Xu Y, Shen Q, Jousset A. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ Microbiol. 2020;22:5005–18.PubMed 

    Google Scholar 
    43.Schreiter S, Ding G-C, Heuer H, Neumann G, Sandmann M, Grosch R, et al. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol. 2014;5:144.PubMed 
    PubMed Central 

    Google Scholar 
    44.Wei Z, Hu J, Gu Y, Yin S, Xu Y, Jousset A, et al. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biol Biochem. 2018;118:8–17.CAS 

    Google Scholar 
    45.Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, et al. Bacterial wilt in China: History, current status, and future perspectives. Front Plant Sci. 2017;8:1549.PubMed 
    PubMed Central 

    Google Scholar 
    46.Manda RR, Addanki VA, Srivastava S. Bacterial wilt of solanaceous crops. Int J Chem Stud. 2020;8:1048–57.CAS 

    Google Scholar 
    47.Barik S, Reddy AC, Ponnam N, Kumari M, C AG, Reddy DCL, et al. Breeding for bacterial wilt resistance in eggplant (Solanum melongena L.): progress and prospects. Crop Prot. 2020;137:105270.CAS 

    Google Scholar 
    48.Wei Z, Yang X, Yin S, Shen Q, Ran W, Xu Y. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol. 2011;48:152–9.
    Google Scholar 
    49.Park E-J, Lee S-D, Chung E-J, Lee M-H, Um H-Y, Murugaiyan S, et al. MicroTom – A model plant system to study bacterial wilt by Ralstonia solanacearum. Plant Pathol J. 2007;23:239–44.
    Google Scholar 
    50.Schandry N. A practical guide to visualization and statistical analysis of R. solanacearum infection data using R. Front Plant Sci. 2017;8:623.PubMed 
    PubMed Central 

    Google Scholar 
    51.Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 2020;5:1002–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.CAS 
    PubMed 

    Google Scholar 
    53.Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–642.CAS 

    Google Scholar 
    54.Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    56.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 

    Google Scholar 
    58.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
    Google Scholar 
    59.Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, et al. FEAST: fast expectation-maximization for microbial source tracking. Nat Methods. 2019;16:627–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Mendiburu F de. agricolae: Statistical procedures for agricultural research. R package version 1.3–5. 2021.61.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 

    Google Scholar 
    62.Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 
    PubMed 

    Google Scholar 
    63.Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.PubMed 
    PubMed Central 

    Google Scholar 
    64.Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinformatics. 2012;13:113.PubMed 
    PubMed Central 

    Google Scholar 
    65.Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. Functional molecular ecological networks. mBio. 2010;1:e00169–10.PubMed 
    PubMed Central 

    Google Scholar 
    66.Ma B, Wang Y, Ye S, Liu S, Stirling E, Gilbert JA, et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome. 2020;8:82.PubMed 
    PubMed Central 

    Google Scholar 
    67.Kuntal BK, Chandrakar P, Sadhu S, Mande SS. ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME J. 2019;13:442–54.PubMed 

    Google Scholar 
    68.Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Choi K, Choi J, Lee PA, Roy N, Khan R, Lee HJ, et al. Alteration of bacterial wilt resistance in tomato plant by microbiota transplant. Front Plant Sci. 2020;11:1186.PubMed 
    PubMed Central 

    Google Scholar 
    70.Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin J-M, Morrison RM, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371:595–602.CAS 

    Google Scholar 
    71.D’Haens GR, Jobin C. Fecal microbial transplantation for diseases beyond recurrent Clostridium difficile infection. Gastroenterology. 2019;157:624–36.PubMed 

    Google Scholar 
    72.Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis. 2011;53:994–1002.PubMed 

    Google Scholar 
    73.Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019;216:20–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol. 2021;18:503–13.PubMed 

    Google Scholar 
    75.Jiang G, Wang N, Zhang Y, Zhang Y, Yu J, Zhang Y, et al. The relative importance of soil moisture in predicting bacterial wilt disease occurrence. Soil Ecol Lett. 2021;3:356–66.76.Wei Z, Friman VP, Pommier T, Geisen S, Jousset A, Shen Q. Rhizosphere immunity: targeting the underground for sustainable plant health management. Front Agric Sci Eng. 2020;7:317–28.
    Google Scholar 
    77.Hu J, Wei Z, Friman VP, Gu SH, Wang X-F, Eisenhauer N, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio. 2016;7:e01790–16.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Bakker PAHM, Doornbos RF, Zamioudis C, Berendsen RL, Pieterse CMJ. Induced systemic resistance and the rhizosphere microbiome. Plant Pathol J. 2013;29:136–43.PubMed 
    PubMed Central 

    Google Scholar 
    79.Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun. 2015;6:8413.CAS 
    PubMed 

    Google Scholar 
    80.Li M, Wei Z, Wang J, Jousset A, Friman V-P, Xu Y, et al. Facilitation promotes invasions in plant-associated microbial communities. Ecol Lett. 2019;22:149–58.PubMed 

    Google Scholar 
    81.Mendes LW, Raaijmakers JM, de Hollander M, Mendes R, Tsai SM. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J. 2018;12:212–24.PubMed 

    Google Scholar 
    82.Rosales PF, Bordin GS, Gower AE, Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia. 2020;143:104558.CAS 
    PubMed 

    Google Scholar 
    83.Sarbu LG, Bahrin LG, Babii C, Stefan M, Birsa ML. Synthetic flavonoids with antimicrobial activity: a review. J Appl Microbiol. 2019;127:1282–90.CAS 
    PubMed 

    Google Scholar 
    84.Madadi E, Mazloum-Ravasan S, Yu JS, Ha JW, Hamishehkar H, Kim KH. Therapeutic application of betalains: a review. Plants. 2020;9:E1219.PubMed 

    Google Scholar 
    85.Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol. 2009;7:514–25.CAS 
    PubMed 

    Google Scholar 
    86.Kolton M, Erlacher A, Berg G, Cytryn E. The Flavobacterium genus in the plant holobiont: ecological, physiological, and applicative insights. In: Castro-Sowinski S, editor. Microbial models: from environmental to industrial sustainability. Singapore: Springer; 2016. p. 189–207.87.Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3:307–19.CAS 
    PubMed 

    Google Scholar 
    88.Fira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. J Biotechnol. 2018;285:44–55.CAS 
    PubMed 

    Google Scholar  More

  • in

    Egg-laying increases body temperature to an annual maximum in a wild bird

    1.Perrins, C. M. Eggs, egg formation and the timing of breeding. Ibis (Lond. 1859). 138, 2–15. https://doi.org/10.1111/j.1474-919X.1996.tb04308.x (1996).Article 

    Google Scholar 
    2.Monaghan, P. & Nager, R. G. Why don’t birds lay more eggs? Trends Ecol. Evol. 12, 270–274. https://doi.org/10.1016/S0169-5347(97)01094-X (1997).CAS 
    Article 

    Google Scholar 
    3.Alisauskas, R., DeVink, J.-M. Breeding costs, nutrient reserves, and cross-seasonal effects: dealing with deficits in sea ducks. pp. 125–168 (2015).4.Ebeid, T., Tumova Prague (Czech Republic). Katedra Chovu Prasat a Drubeze) E (Ceska ZU. In press. Physiological aspects of oviposition and its role in egg quality. A review. Sci. Agric. Bohem. (Czech Republic). v. 35.5.Johnson, A. The avian ovary and follicle development: some comparative and practical insights. Turkish J. Vet. Anim. Sci. 38, 660–669 (2014).CAS 
    Article 

    Google Scholar 
    6.Bédécarrats, G. Y., Baxter, M. & Sparling, B. An updated model to describe the neuroendocrine control of reproduction in chickens. Gen. Comp. Endocrinol. 227, 58–63. https://doi.org/10.1016/j.ygcen.2015.09.023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Brommer, J. E., Rattiste, K. & Wilson, A. J. Exploring plasticity in the wild: laying date-temperature reaction norms in the common gull Larus canus. Proc. R. Soc. B Biol. Sci. 275, 687–693. https://doi.org/10.1098/rspb.2007.0951 (2008).Article 

    Google Scholar 
    8.Schaper, S. V. et al. Increasing Temperature, Not Mean Temperature, Is a Cue for Avian Timing of Reproduction. Am. Nat. 179, E55–E69. https://doi.org/10.1086/663675 (2012).Article 
    PubMed 

    Google Scholar 
    9.Shave, A., Garroway, C. J., Siegrist, J. & Fraser, K. C. Timing to temperature: Egg-laying dates respond to temperature and are under stronger selection at northern latitudes. Ecosphere 10, e02974. https://doi.org/10.1002/ecs2.2974 (2019).Article 

    Google Scholar 
    10.Verhagen, I., Tomotani, B. M., Gienapp, P. & Visser, M. E. Temperature has a causal and plastic effect on timing of breeding in a small songbird. J. Exp. Biol. https://doi.org/10.1242/jeb.218784 (2020).Article 
    PubMed 

    Google Scholar 
    11.Caro, S. P., Schaper, S. V., Hut, R. A., Ball, G. F. & Visser, M. E. The case of the missing mechanism: How does temperature influence seasonal timing in endotherms?. PLoS Biol. 11, e1001517–e1001517. https://doi.org/10.1371/journal.pbio.1001517 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Bobr, L. W. & Sheldon, B. L. Analysis of ovulation-oviposition patterns in the domestic fowl by telemetry measurement of deep body temperature. Aust. J. Biol. Sci. 30, 243–257. https://doi.org/10.1071/bi9770243 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Kadono, H., Besch, E. L. & Usami, E. Body temperature, oviposition, and food intake in the hen during continuous light. J. Appl. Physiol. 51, 1145–1149. https://doi.org/10.1152/jappl.1981.51.5.1145 (1981).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Yang, J., Morgan, J. L., Kirby, J. D., Long, D. W. & Bacon a W.,. Circadian rhythm of the preovulatory surge of luteinizing hormone and its relationships to rhythms of body temperature and locomotor activity in turkey hens. Biol. Reprod. 62, 1452–1458. https://doi.org/10.1095/biolreprod62.5.1452 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Zivkovic, B. D., Underwood, H. & Siopes, T. Circadian ovulatory rhythms in Japanese quail: role of ocular and extraocular pacemakers. J. Biol. Rhythms 15, 172–183. https://doi.org/10.1177/074873040001500211 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Ward, S. Energy expenditure of female barn swallows Hirundo rustica during egg formation. Physiol. Zool. 69, 930–951. https://doi.org/10.1086/physzool.69.4.30164236 (1996).Article 

    Google Scholar 
    17.Nilsson, J. -Å. & Råberg, L. The resting metabolic cost of egg laying and nestling feeding in great tits. Oecologia 128, 187–192. https://doi.org/10.1007/s004420100653 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    18.Vézina, F. & Williams, T. D. Metabolic costs of egg production in the European starling (Sturnus vulgaris). Physiol. Biochem. Zool. 75, 377–385. https://doi.org/10.1086/343137 (2002).Article 
    PubMed 

    Google Scholar 
    19.Götmark, F. The Effects of Investigator Disturbance on Nesting Birds BT – Current Ornithology. In ed. D.M. Power, pp. 63–104. Springer. https://doi.org/10.1007/978-1-4757-9921-7_3 (1992).20.Lyngs, P. Status of the Danish Breeding population of Eiders Somateria mollissima 1988–93. Dansk Ornitol. Foren. Tidsskr. 94, 12–18 (2000).
    Google Scholar 
    21.Bolduc, F. & Guillemette, M. Human disturbance and nesting success of Common Eiders: interaction between visitors and gulls. Biol. Conserv. 110, 77–83. https://doi.org/10.1016/S0006-3207(02)00178-7 (2003).Article 

    Google Scholar 
    22.Christensen, T. K. Female pre-nesting foraging and male vigilance in Common Eider Somateria mollissima. Bird Study 47, 311–319. https://doi.org/10.1080/00063650009461191 (2000).Article 

    Google Scholar 
    23.Guillemette, M. Foraging before spring migration and before breeding in common eiders: Does hyperphagia occur?. Condor 103, 633–638 (2001).Article 

    Google Scholar 
    24.Guillemette, M. & Ouellet, J. Temporary flightlessness as a potential cost of reproduction in pre-laying Common Eiders Somateria mollissima. Ibis (Lond. 1859). 147, 301–306. https://doi.org/10.1111/j.1474-919x.2005.00402.x (2005).Article 

    Google Scholar 
    25.Rigou, Y. & Guillemette, M. Foraging effort and pre-laying strategy in breeding common eiders. Waterbirds Int. J. Waterbird Biol. 33, 314–322 (2010).
    Google Scholar 
    26.Watson, M. D., Robertson, G. J. & Cooke, F. Egg-laying time and laying interval in the common eider. Condor 95, 869–878. https://doi.org/10.2307/1369424 (1993).Article 

    Google Scholar 
    27.Guillemette, M., Woakes, A. J., Flagstad, A. & Butler, P. J. Effects of data-loggers implanted for a full year in female common eiders. Condor 104, 448–452 (2002).Article 

    Google Scholar 
    28.Franzmann, N. E. Ederfuglens (Somateria m. mollissima) ynglebiologi of populationsdynamik pa° Christiansø 1973–1977. Ph.D. Diss. Copenhagen 1980.29.Pelletier, D., Guillemette, M., Grandbois, J.-M. & Butler, P. J. It is time to move: linking flight and foraging behaviour in a diving bird. Biol. Lett. 3, 357–359. https://doi.org/10.1098/rsbl.2007.0088 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Coulson, J. C. The population dynamics of the Eider Duck Somateria mollissima and evidence of extensive non-breeding by adult ducks. Ibis (Lond. 1859). 126, 525–543. https://doi.org/10.1111/j.1474-919X.1984.tb02078.x (2008).Article 

    Google Scholar 
    31.Sabourin, M. Comportement d’incubation de l’Eider à duvet (Somateria mollissima) et effet du dérangement humain dans deux colonies de l’Estuaire du Saint-Laurentle. Mémoire de maîtrise Université (2003).32.Waltho, C., Coulson, J. Egg laying, parasitism, ‘jumbo clutches’ and egg stealing. In The Common Eider, pp. 7–10. POYSER (2015).33.Guillemette, M., Ydenberg, R. C. & Himmelman, J. H. The role of energy intake rate in prey and habitat selection of common eiders Somateria mollissima in winter: a risk-sensitive interpretation. J. Anim. Ecol. 61, 599. https://doi.org/10.2307/5615 (1992).Article 

    Google Scholar 
    34.Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) functions. R Packag Vers 1, 3–20 (2017).
    Google Scholar 
    35.Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat. Med. 19, 1141–1164 2000. https://doi.org/10.1002/(SICI)1097-0258(20000515)19:93.0.CO;2-F36.Jenssen, B., Ekker, M. & Bech, C. Thermoregulation in winter-acclimatized Common Eiders (Somateria mollissima) in air and water. Can. J. Zool. 67, 669–673. https://doi.org/10.1139/z89-096 (1989).Article 

    Google Scholar 
    37.Winget, C. M., Averkin, E. G. & Fryer, T. B. Quantitative measurement by telemetry of ovulation and oviposition in the fowl. Am. J. Physiol. 209, 853–858. https://doi.org/10.1152/ajplegacy.1965.209.4.853 (1965).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Cain, J. R. & Wilson, W. O. Multichannel telemetry system for measuring body temperature: circadian rhythms of body temperature, locomotor activity and oviposition in chickens. Poult. Sci. 50, 1437–1443. https://doi.org/10.3382/ps.0501437 (1971).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Khalil, A., Matsui, K. & Takeda, K. Responses to abrupt changes in feeding and illumination in laying hens. Turkish J. Vet. Anim. Sci. https://doi.org/10.3906/vet-0901-25 (2010).Article 

    Google Scholar 
    40.Kadono, H. & Yamade, T. Changes of body temperature related to oviposition and ovulation induced by LH in the domestic hen. Nihon Juigaku Zasshi. 47, 55–61. https://doi.org/10.1292/jvms1939.47.55 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Piccione, G. & Refinetti, R. Thermal chronobiology of domestic animals. Front. Biosci. 8, s258–s264. https://doi.org/10.2741/1040 (2003).Article 
    PubMed 

    Google Scholar 
    42.Peters DG, Rose RW. The oestrous cycle and basal body temperature in the common wombat (Vombatus ursinus). Reproduction 57, 453–460 (in press). doi:https://doi.org/10.1530/jrf.0.057045343.Rose, R. W. & Jones, S. M. The association between basal body temperature, plasma progesterone and the oestrous cycle in a marsupial, the Tasmanian bettong (Bettongia gaimardi). J. Reprod. Fertil. 106, 67–71. https://doi.org/10.1530/jrf.0.1060067 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Graham, C. E., Warner, H., Misener, J., Collins, D. C. & Preedy, J. R. The association between basal body temperature, sexual swelling and urinary gonadal hormone levels in the menstrual cycle of the chimpanzee. J. Reprod. Fertil. 50, 23–28. https://doi.org/10.1530/jrf.0.0500023 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Nyakudya, T. T., Fuller, A., Meyer, L. C. R., Maloney, S. K. & Mitchell, D. Body temperature and physical activity correlates of the menstrual cycle in Chacma Baboons (Papio hamadryas ursinus). Am. J. Primatol. 74, 1143–1153. https://doi.org/10.1002/ajp.22073 (2012).Article 
    PubMed 

    Google Scholar 
    46.Suthar, V. S., Burfeind, O., Bonk, S., Dhami, A. J. & Heuwieser, W. Endogenous and exogenous progesterone influence body temperature in dairy cows. J. Dairy Sci. 95, 2381–2389. https://doi.org/10.3168/jds.2011-4450 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Giersch, G. E. W. et al. Menstrual cycle and thermoregulation during exercise in the heat: A systematic review and meta-analysis. J. Sci. Med. Sport 23, 1134–1140. https://doi.org/10.1016/j.jsams.2020.05.014 (2020).Article 
    PubMed 

    Google Scholar 
    48.Farmer, C. G. Parental care: The key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 155, 326–334. https://doi.org/10.1086/303323 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Koteja, P. Energy assimilation, parental care and the evolution of endothermy. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 479–484. https://doi.org/10.1098/rspb.2000.1025 (2000).CAS 
    Article 

    Google Scholar 
    50.Portugal, S. J. et al. Associations between resting, activity, and daily metabolic rate in free-living endotherms: No universal rule in birds and mammals. Physiol. Biochem. Zool. 89, 251–261. https://doi.org/10.1086/686322 (2016).Article 
    PubMed 

    Google Scholar 
    51.Guillemette, M., Pelletier, D., Grandbois, J.-M. & Butler, P. J. Flightlessnessand the energetic cost of wing molt in a large sea duck. Ecology 88, 2936–2945. https://doi.org/10.1890/06-1751.1 (2007).Article 
    PubMed 

    Google Scholar 
    52.Parker, H. & Holm, H. Patterns of nutrient and energy expenditure in female common eiders nesting in the high arctic. Auk 107, 660–668. https://doi.org/10.2307/4087996 (1990).Article 

    Google Scholar 
    53.Guillemette, M. & Ouellet, J.-F. Temporary flightlessness in pre-laying Common Eiders Somateria mollissima: Are females constrained by excessive wing-loading or by minimal flight muscle ratio?. Ibis (Lond. 1859). 147, 293–300. https://doi.org/10.1111/j.1474-919x.2005.00401.x (2005).Article 

    Google Scholar 
    54.Vézina, F., Speakman, J. R. & Williams, T. D. Individually variable energy management strategies in relation to energetic costs of egg production. Ecology 87, 2447–2458. https://doi.org/10.1890/0012-9658(2006)87[2447:ivemsi]2.0.co;2 (2006).Article 
    PubMed 

    Google Scholar 
    55.Bevan, R. M., Butler, P. J., Woakes, A. J. & Prince, P. A. The energy expenditure of free-ranging black-browed albatross. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 350, 119–131. https://doi.org/10.1098/rstb.1995.0146 (1995).ADS 
    Article 

    Google Scholar 
    56.Bevan, R. et al. Heart rates and abdominal temperatures of free-ranging South Georgian shags, Phalacrocorax georgianus. J. Exp. Biol. 200, 661–675 (1997).CAS 
    Article 

    Google Scholar 
    57.Woakes, A. J., Butler, P. J. & Bevan, R. M. Implantable data logging system for heart rate and body temperature: Its application to the estimation of field metabolic rates in Antarctic predators. Med. Biol. Eng. Comput. 33, 145–151. https://doi.org/10.1007/BF02523032 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Lewden, A. et al. Body surface rewarming in fully and partially hypothermic king penguins. J. Comp. Physiol. B 190, 597–609. https://doi.org/10.1007/s00360-020-01294-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Wilson, R. P. & Grémillet, D. Body temperatures of free-living African penguins (Spheniscus demersus) and bank cormorants (Phalacrocorax neglectus). J. Exp. Biol. 199, 2215–2223 (1996).CAS 
    Article 

    Google Scholar 
    60.Schmidt, A., Alard, F. & Handrich, Y. Changes in body temperature in king penguins at sea: The result of fine adjustments in peripheral heat loss?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R608–R618. https://doi.org/10.1152/ajpregu.00826.2005 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Sherer, J., Wunder, B. A. Thermoregulation of a semi-aquatic mammal, the muskrat, in air and water. 24, 249–256 (1979).62.Dyck, A. P. & MacArthur, R. A. Seasonal patterns of body temperature and activity in free-ranging beaver (Castor canadensis). Can. J. Zool. 70, 1668–1672. https://doi.org/10.1139/z92-232 (1992).Article 

    Google Scholar 
    63.Kolka, M. A. & Stephenson, L. A. Resetting the thermoregulatory set-point by endogenous estradiol or progesterone in women. Ann. N. Y. Acad. Sci. 813, 204–206. https://doi.org/10.1111/j.1749-6632.1997.tb51694.x (1997).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Ubuka, T. & Bentley, G. E. Neuroendocrine control of reproduction in birds. In Hormones and reproduction of Vertebrates (ed Norris DO & Lopez KH), pp. 1–25 (2011).65.van der Klein, S. A. S., Zuidhof, M. J. & Bédécarrats, G. Y. Diurnal and seasonal dynamics affecting egg production in meat chickens: A review of mechanisms associated with reproductive dysregulation. Anim. Reprod. Sci. 213, 106257. https://doi.org/10.1016/j.anireprosci.2019.106257 (2020).Article 
    PubMed 

    Google Scholar 
    66.Tanabe, Y. Production, evolution and reproductive endocrinology of ducks. Asian-Australas. J. Anim. Sci. 5, 173–181. https://doi.org/10.5713/ajas.1992.173 (1992).Article 

    Google Scholar 
    67.Johnson, A. L. Chapter 3 – Organization and Functional Dynamics of the Avian Ovary. In (eds DO Norris, KHBT-H and R of V Lopez), pp. 71–90. Academic Press (2011). https://doi.org/10.1016/B978-0-12-374929-1.10003-468.Bluhm, C. K., Phillips, R. E. & Burke, W. H. Serum levels of luteinizing hormone (LH), prolactin, estradiol, and progesterone in laying and nonlaying canvasback ducks (Aythya valisineria). Gen. Comp. Endocrinol. 52, 1–16. https://doi.org/10.1016/0016-6480(83)90152-1 (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Bluhm, C. K., Phillips, R. E. & Burke, W. H. Serum levels of luteinizing hormone, prolactin, estradiol and progesterone in laying and nonlaying mallards (Anas platyrhynchos). Biol. Reprod. 28, 295–305. https://doi.org/10.1095/biolreprod28.2.295 (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    70.Sockman, K. W. & Schwabl, H. Daily estradiol and progesterone levels relative to laying and onset of incubation in canaries. Gen. Comp. Endocrinol. 114, 257–268. https://doi.org/10.1006/gcen.1999.7252 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Proszkowiec, M. & Rzasa, J. Variation in the ovarian and plasma progesterone and estradiol levels of the domestic hen during a pause in laying. Folia Biol. (Praha) 49, 285–289 (2001).CAS 

    Google Scholar 
    72.Proszkowiec-Weglarz, M., Rzasa, J., Słomczyńska, M. & Paczoska-Eliasiewicz, H. Steroidogenic activity of chicken ovary during pause in egg laying. Reprod. Biol. 5, 205–225 (2005).PubMed 

    Google Scholar 
    73.Nakayma, T., Suzuki, M. & Ishizuka, N. Action of progesterone on preoptic thermosensitive neurones. Nature 258, 80. https://doi.org/10.1038/258080a0 (1975).ADS 
    Article 

    Google Scholar 
    74.Hampl, R., Stárka, L. & Janský, L. Steroids and thermogenesis. Physiol. Res. 55, 123–131 (2006).CAS 
    PubMed 

    Google Scholar 
    75.Splawinski, J. A., Górka, Z., Zacny, E. & Wojtaszek, B. Hyperthermic effects of arachidonic acid, prostaglandins E2 and F2α in rats. Pflügers Arch. 374, 15–21. https://doi.org/10.1007/BF00585692 (1978).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Gray, D. A., Marais, M. & Maloney, S. K. A review of the physiology of fever in birds. J. Comp. Physiol. B 183, 297–312. https://doi.org/10.1007/s00360-012-0718-z (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Hertelendy, F. & Biellier, H. V. Evidence for a physiological role of prostaglandins in oviposition by the hen. J. Reprod. Fertil. 53, 71–74. https://doi.org/10.1530/jrf.0.0530071 (1978).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.Etches, R. J., Kelly, J. D., Anderson-Langmuir, C. E. & Olson, D. M. Prostaglandin production by the largest preovulatory follicles in the domestic hen (Gallus domesticus). Biol. Reprod. 43, 378–384. https://doi.org/10.1095/biolreprod43.3.378 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Takahashi, T., Tajima, H., Nakagawa-Mizuyachi, K., Nakayama, H. & Kawashima, M. Changes in prostaglandin F2α receptor bindings in the hen oviduct uterus before and after oviposition. Poult. Sci. 90, 1767–1773. https://doi.org/10.3382/ps.2010-01329 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    80.McNabb, F. M. A. The hypothalamic-pituitary-thyroid (HPT) axis in birds and its role in bird development and reproduction. Crit. Rev. Toxicol. 37, 163–193. https://doi.org/10.1080/10408440601123552 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Nakao, N., Ono, H. & Yoshimura, T. Thyroid hormones and seasonal reproductive neuroendocrine interactions. Reproduction 136, 1–8. https://doi.org/10.1530/REP-08-0041 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    82.Sechman, A. The role of thyroid hormones in regulation of chicken ovarian steroidogenesis. Gen. Comp. Endocrinol. 190, 68–75. https://doi.org/10.1016/J.YGCEN.2013.04.012 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Gabrielsen, G., Mehlum, F., Karlsen, H., Andresen & Parker, H. Energy cost during incubation and thermoregulation in female Common Eider (Somateria mollissima). Nor. Polarinstitutt Skr. 195 (1991).84.Ardia, D. R., Pérez, J. H. & Clotfelter, E. D. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows. Proc. R. Soc. B Biol. Sci. 277, 1881–1888. https://doi.org/10.1098/rspb.2009.2138 (2010).Article 

    Google Scholar 
    85.Hepp, G. R. & Kennamer, R. A. Warm is better: Incubation temperature influences apparent survival and recruitment of wood ducks (Aix sponsa). PLoS ONE 7, e47777 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    86.Ipek, A., Sahan, U. & Sozcu, A. The effects of different eggshell temperatures between embryonic day 10 and 18 on broiler performance and susceptibility to ascites. Rev. Bras. Ciência Avícola 17, 387–394. https://doi.org/10.1590/1516-635X1703387-394 (2015).Article 

    Google Scholar 
    87.Haftorn, S. & Reinertsen, R. E. Regulation of body temperature and heat transfer to eggs during incubation. Ornis Scand. Scandinavian J. Ornithol. 13, 1–10. https://doi.org/10.2307/3675966 (1982).Article 

    Google Scholar 
    88.Vehrencamp, S. Body temperatures of incubating versus non-incubating roadrunners. Condor 84, 203 (1982).Article 

    Google Scholar 
    89.Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 15, 335–349. https://doi.org/10.1038/nri3843 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Hupton, G., Portocarrero, S., Newman, M. & Westneat, D. F. Bacteria in the reproductive tracts of red-wingedblackbirds. Condor 105, 453–464. https://doi.org/10.1650/7246 (2003).Article 

    Google Scholar 
    91.White, J. et al. Sexually transmitted bacteria affect female cloacal assemblages in a wild bird. Ecol. Lett. 13, 1515–1524. https://doi.org/10.1111/j.1461-0248.2010.01542.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Hansen, C. M., Meixell, B. W., Van Hemert, C., Hare, R. F. & Hueffer, K. Microbial infections are associated with embryo mortality in arctic-nesting geese. Appl. Environ. Microbiol. 81, 5583–5592. https://doi.org/10.1128/AEM.00706-15 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Barrow, P. A. & Lovell, M. A. Experimental infection of egg-laying hens with Salmonella enteritidis phage type 4. Avian Pathol. 20, 335–348. https://doi.org/10.1080/03079459108418769 (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    94.Mitchell, D. et al. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change. J. Anim. Ecol. 87, 956–973. https://doi.org/10.1111/1365-2656.12818 (2018).Article 
    PubMed 

    Google Scholar 
    95.van Heerwaarden, B. & Sgrò, C. M. Male fertility thermal limits predict vulnerability to climate warming. Nat. Commun. 12, 2214. https://doi.org/10.1038/s41467-021-22546-w (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Guillemette, M., Polymeropoulos, E. T., Portugal, S. J. & Pelletier, D. It takes time to be cool: On the relationship between hyperthermia and body cooling in a migrating seaduck. Front. Physiol. 8, 532. https://doi.org/10.3389/fphys.2017.00532 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100. https://doi.org/10.1152/physiol.00040.2018 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    98.Schou, M. F. et al. Extreme temperatures compromise male and female fertility in a large desert bird. Nat. Commun. 12, 666. https://doi.org/10.1038/s41467-021-20937-7 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Stevenson, I. R. & Bryant, D. M. Climate change and constraints on breeding. Nature 406, 366–367. https://doi.org/10.1038/35019151 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Competition between the tadpoles of Japanese toads versus frogs

    The average water temperature and pH in tanks was 19.29 ± 0.10 °C (SE, range: 17.0–22.5) and 8.59 ± 0.01 (SE, range 8.2–8.9) respectively. There was no significant difference among treatments (water temperature: F = 0.0086, df = 5, p = 1.0000, pH: F = 0.0063, df = 5, p = 1.0000).Intraspecific competition (density = 5, 15, 50 tadpoles per tank)The density of conspecifics did not have any significant effect on survival to metamorphosis of B. j. formosus (treatment: Wald chi-square = 3.468, df = 2, p = 0.1766; block: Wald chi-square = 7.770, df = 4, p = 0.1004; Fig. 1a). However, conspecific density had a significant effect on the combined responses of variables (larval period, metamorph SUL, metamorph mass) of B. j. formosus (MANOVA treatment: Wilks’ Lambda = 0.0181, F = 10.7224, df = 6, 10, p = 0.0007; block: Wilks’ Lambda = 0.2028, F = 0.9326, df = 12, 13.52, p = 0.5441). Higher densities of conspecifics increased the duration of the larval period (treatment: F = 6.678, df = 2, 9.30, p = 0.0159; block: F = 0.817, df = 4, 0.40, p = 0.7574; Fig. 1b), and decreased size at metamorphosis (SUL—treatment: F = 49.729, df = 2, 6.94, p  More

  • in

    Heterogeneity within and among co-occurring foundation species increases biodiversity

    1.Fernández, M. H. & Vrba, E. S. Rapoport effect and biomic specialization in African mammals: revisiting the climatic variability hypothesis. J. Biogeogr. 32, 903–918 (2005).
    Google Scholar 
    2.Tokeshi, M. & Arakaki, S. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685, 27–47 (2012).
    Google Scholar 
    3.Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. 96, 1463–1468 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Ann. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).
    Google Scholar 
    7.Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).PubMed 

    Google Scholar 
    8.Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol. 2, 634–639 (2018).PubMed 

    Google Scholar 
    9.Mac Arthur, R. H. & Wilson, E. O. The theory of island biogeography. Vol. 1 (Princeton university press, 2001).10.Guégan, J.-F., Lek, S. & Oberdorff, T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391, 382–384 (1998).ADS 

    Google Scholar 
    11.Heidrich, L. et al. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 4, 1204–1212 (2020).PubMed 

    Google Scholar 
    12.Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).ADS 
    CAS 

    Google Scholar 
    13.Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).
    Google Scholar 
    14.Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).PubMed 

    Google Scholar 
    15.Ben‐Hur, E. & Kadmon, R. Heterogeneity–diversity relationships in sessile organisms: a unified framework. Ecol. Lett. 23, 193–207 (2020).PubMed 

    Google Scholar 
    16.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
    Google Scholar 
    17.Tuanmu, M. N. & Jetz, W. A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 24, 1329–1339 (2015).
    Google Scholar 
    18.MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).
    Google Scholar 
    19.Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M. & Kadmon, R. Area–heterogeneity tradeoff and the diversity of ecological communities. Proc. Natl Acad. Sci. 109, 17495–17500 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).
    Google Scholar 
    21.Gómez, J., Valladares, F. & Puerta-Piñero, C. Differences between structural and functional environmental heterogeneity caused by seed dispersal. Funct. Ecol. 18, 787–792 (2004).
    Google Scholar 
    22.Azevedo, J. C., Jack, S. B., Coulson, R. N. & Wunneburger, D. F. Functional heterogeneity of forest landscapes and the distribution and abundance of the red-cockaded woodpecker. Forest Ecol. Manag. 127, 271–283 (2000).
    Google Scholar 
    23.Watson, D. M. & Herring, M. Mistletoe as a keystone resource: an experimental test. Proc. Royal Soc. B: Biol. Sci. 279, 3853–3860 (2012).
    Google Scholar 
    24.Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).
    Google Scholar 
    25.Altieri, A. H., Silliman, B. R. & Bertness, M. D. Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am. Natur. 169, 195–206 (2007).PubMed 

    Google Scholar 
    26.Angelini, C. et al. Foundation species’ overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern US salt marshes. Proc. Royal Soc. B: Biol. Sci. 282, 20150421 (2015).27.Angelini, C. & Silliman, B. R. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree-epiphyte system. Ecology 95, 185–196 (2014).PubMed 

    Google Scholar 
    28.Bishop, M. J., Byers, J. E., Marcek, B. J. & Gribben, P. E. Density-dependent facilitation cascades determine epifaunal community structure in temperate Australian mangroves. Ecology 93, 1388–1401 (2012).PubMed 

    Google Scholar 
    29.Bishop, M. J., Fraser, J. & Gribben, P. E. Morphological traits and density of foundation species modulate a facilitation cascade in Australian mangroves. Ecology 94, 1927–1936 (2013).PubMed 

    Google Scholar 
    30.Thomsen, M. S., Metcalfe, I., South, P. & Schiel, D. R. A host-specific habitat former controls biodiversity across ecological transitions in a rocky intertidal facilitation cascade. Marine Freshwater Res. 67, 144–152 (2016).
    Google Scholar 
    31.Gribben, P. E. et al. Positive and negative interactions control a facilitation cascade. Ecosphere 8, e02065 (2017).
    Google Scholar 
    32.Shurin, J. B. et al. A cross‐ecosystem comparison of the strength of trophic cascades. Ecol. Lett. 5, 785–791 (2002).
    Google Scholar 
    33.Thomsen, M. S. Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat. Invas. 5, 341–346 (2010).
    Google Scholar 
    34.Gribben, P. E. et al. Facilitation cascades in marine ecosystems: a synthesis and future directions. Oceanogr. Marine Biol. 57, 127–168 (2019).
    Google Scholar 
    35.Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
    Google Scholar 
    36.Thomsen, M. S. et al. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integrat. Comparat. Biol. 50, 158–175 (2010).
    Google Scholar 
    37.Thomsen, M. S. et al. Modified kelp seasonality and invertebrate diversity where an invasive kelp co-occurs with native mussels. Marine Biol. 165, 173 (2018).
    Google Scholar 
    38.Borst, A. C. et al. Food or furniture: separating trophic and non‐trophic effects of Spanish moss to explain its high invertebrate diversity. Ecosphere 10, e02846 (2019).
    Google Scholar 
    39.Bologna, P. A. & Heck, K. L. Jr. Macrofaunal associations with seagrass epiphytes: relative importance of trophic and structural characteristics. J. Exp. Marine Biol. Ecol. 242, 21–39 (1999).
    Google Scholar 
    40.Huston, M. A. & Huston, M. A. Biological diversity: the coexistence of species. (Cambridge University Press, 1994).41.Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).
    Google Scholar 
    42.Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).
    Google Scholar 
    43.Thompson, K., Askew, A., Grime, J., Dunnett, N. & Willis, A. Biodiversity, ecosystem function and plant traits in mature and immature plant communities. Funct. Ecol. 19, 355–358 (2005).
    Google Scholar 
    44.Duffy, J. E. et al. Biodiversity mediates top–down control in eelgrass ecosystems: a global comparative‐experimental approach. Ecol. Lett. 18, 696–705 (2015).PubMed 

    Google Scholar 
    45.Arft, A. et al. Responses of tundra plants to experimental warming: meta‐analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).
    Google Scholar 
    46.Thomas, M. A. & Klaper, R. Genomics for the ecological toolbox. Trends Ecol. Evol. 19, 439–445 (2004).PubMed 

    Google Scholar 
    47.Thomsen, M. S. et al. A sixth‐level habitat cascade increases biodiversity in an intertidal estuary. Ecol. Evol. 6, 8291–8303 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    48.Ricklefs, R. E. Environmental heterogeneity and plant species diversity: a hypothesis. Am. Natur. 111, 376–381 (1977).
    Google Scholar 
    49.Lundholm, J. T. Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. J. Vegetation Sci. 20, 377–391 (2009).
    Google Scholar 
    50.Tamme, R., Hiiesalu, I., Laanisto, L., Szava‐Kovats, R. & Pärtel, M. Environmental heterogeneity, species diversity and co‐existence at different spatial scales. J. Vegetation Sci. 21, 796–801 (2010).
    Google Scholar 
    51.Hughes, A. R., Gribben, P. E., Kimbro, D. L. & Bishop, M. J. Additive and site-specific effects of two foundation species on invertebrate community structure. Mar. Ecol. Prog. Series 508, 129–138 (2014).ADS 

    Google Scholar 
    52.Yakovis, E. & Artemieva, A. Cockles, barnacles and ascidians compose a subtidal facilitation cascade with multiple hierarchical levels of foundation species. Sci. Rep. 7, 1–11 (2017).CAS 

    Google Scholar 
    53.Thomsen, M. S., Stæhr, P. A., Nejrup, L. & Schiel, D. R. Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquat. Invas. 8, 133–145 (2013).
    Google Scholar 
    54.Littler, M. M. Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis. Botan. Marina 22, 161–165 (1980).
    Google Scholar 
    55.Padilla, D. K. & Allen, B. J. Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. J. Exp. Mar. Biol. Ecol. 250, 207–221 (2000).CAS 
    PubMed 

    Google Scholar 
    56.Wainwright, P. C. Functional morphology as a tool in ecological research. Ecol. Morphol.: Int. Organismal Biol. 42, 59 (1994).
    Google Scholar 
    57.Angelini, C. & Briggs, K. Spillover of secondary foundation species transforms community structure and accelerates decomposition in oak savannas. Ecosystems, 18, 780–791 (2015).
    Google Scholar 
    58.Gutiérrez, J. L., Bagur, M. & Palomo, M. G. Algal epibionts as co-engineers in mussel beds: effects on abiotic conditions and mobile interstitial invertebrates. Diversity 11, 17 (2019).
    Google Scholar 
    59.He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).PubMed 

    Google Scholar 
    60.Watson, D. M. Mistletoe—a keystone resource in forests and woodlands worldwide. Ann. Rev. Ecol. Syst. 32, 219–249 (2001).
    Google Scholar 
    61.Mújica, E., Raventós, J., González, E. & Bonet, A. Long-term hurricane effects on populations of two epiphytic orchid species from Guanahacabibes Peninsula. Cuba. Lankesteriana Int. J. Orchidol. 13, 47–55 (2013).
    Google Scholar 
    62.Lobelle, D., Kenyon, E. J., Cook, K. J. & Bull, J. C. Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics. PLoS ONE 8, e57072 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Svirski, E., Beer, S. & Friedlander, M. Gracilaria conferta and its epiphytes: Interrelationship between the red seaweed and Ulva cf. lactuca. Hydrobiologia 260, 391–396 (1993).
    Google Scholar 
    64.Cummins, S., Roberts, D. & Zimmerman, K. Effects of the green macroalga Enteromorpha intestinalis on macrobenthic and seagrass assemblages in a shallow coastal estuary. Marine Ecol. Prog. Series 266, 77–87 (2004).ADS 

    Google Scholar 
    65.Holmquist, J. G. Disturbance and gap formation in a marine benthic mosaic: influence of shifting macroalgal patches on seagrass structure and mobile invertebrates. Marine Ecol. Prog. Series 158, 121–130 (1997).ADS 

    Google Scholar 
    66.Siciliano, A., Schiel, D. R. & Thomsen, M. S. Effects of local anthropogenic stressors on a habitat cascade in an estuarine seagrass system. Marine Freshwater Res. 70, 1129–1142 (2019).
    Google Scholar 
    67.Field, R. et al. Spatial species‐richness gradients across scales: a meta‐analysis. J. Biogeogr. 36, 132–147 (2009).
    Google Scholar 
    68.Šímová, I., Li, Y. M. & Storch, D. Relationship between species richness and productivity in plants: the role of sampling effect, heterogeneity and species pool. J. Ecol. 101, 161–170 (2013).
    Google Scholar 
    69.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 

    Google Scholar 
    70.Berlow, E. L. Strong effects of weak interactions in ecological communities. Nature 398, 330–334 (1999).ADS 
    CAS 

    Google Scholar 
    71.Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).PubMed 

    Google Scholar 
    72.Paine, R. T., Tegner, M. J. & Johnson, E. A. Compounded perturbations yield ecological surprises. Ecosystems 1, 535–545 (1998).
    Google Scholar 
    73.Christensen, M. R. et al. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Glob. Change Biol. 12, 2316–2322 (2006).ADS 

    Google Scholar 
    74.Strain, E. M. et al. A global analysis of complexity–biodiversity relationships on marine artificial structures. Glob. Ecol. Biogeogr. 30, 140–153 (2021).
    Google Scholar 
    75.Richardson, J. T. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 6, 135–147 (2011).
    Google Scholar 
    76.Clarke, K. R., Gorley, R., Somerfield, P. J. & Warwick, R. Change in marine communities: an approach to statistical analysis and interpretation. (Primer-E Ltd, 2014).77.Gartner, A., Tuya, F., Lavery, P. S. & McMahon, K. Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. J. Exp. Marine Biol. Ecol. 439, 143–151 (2013).
    Google Scholar 
    78.Green, D. S. & Crowe, T. P. Context-and density-dependent effects of introduced oysters on biodiversity. Biol. Invasions 16, 1145–1163 (2014).
    Google Scholar 
    79.Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).
    Google Scholar 
    80.Borer, E. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).
    Google Scholar 
    81.Vellend, M. Conceptual synthesis in community ecology. Quart. Rev. Biol. 85, 183–206 (2010).PubMed 

    Google Scholar 
    82.Chase, J. M. & Leibold, M. A. Ecological niches: linking classical and contemporary approaches. (University of Chicago Press, 2003).83.Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).ADS 
    PubMed 

    Google Scholar 
    84.Anderson, M. J. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    85.Veech, J. A. & Crist, T. O. Habitat and climate heterogeneity maintain beta‐diversity of birds among landscapes within ecoregions. Glob. Ecol. Biogeogr. 16, 650–656 (2007).
    Google Scholar 
    86.Turner, M. G. Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Syst. 20, 171–197 (1989).
    Google Scholar 
    87.Wilson, M. V. & Shmida, A. Measuring beta diversity with presence-absence data. J. Ecol. 72, 1055–1064 (1984).
    Google Scholar 
    88.Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).PubMed 

    Google Scholar 
    89.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).PubMed 

    Google Scholar 
    90.McAfee, D., Cole, V. J. & Bishop, M. J. Latitudinal gradients in ecosystem engineering by oysters vary across habitats. Ecology 97, 929–939 (2016).PubMed 

    Google Scholar 
    91.Altieri, A. H. & Irving, A. D. Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat. PeerJ 5, e2848 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    92.Lindenmayer, D., Franklin, J. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conser. 131, 433–445 (2006).
    Google Scholar 
    93.Le Roux, D. S., Ikin, K., Lindenmayer, D. B., Manning, A. D. & Gibbons, P. Single large or several small? Applying biogeographic principles to tree-level conservation and biodiversity offsets. Biol. Conser. 191, 558–566 (2015).
    Google Scholar 
    94.Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep. 8, 1–8 (2018).
    Google Scholar 
    95.Macintosh, D. J. & Ashton, E. C. A review of mangrove biodiversity conservation and management. Centre for tropical ecosystems research. (University of Aarhus, 2002).96.Grabowski, J. H. et al. Economic valuation of ecosystem services provided by oyster reefs. Bioscience 62, 900–909 (2012).
    Google Scholar 
    97.Renzi, J. J., He, Q. & Silliman, B. R. Harnessing positive species interactions to enhance coastal wetland restoration. Front. Ecol. Evol. 7, 131 (2019).
    Google Scholar 
    98.Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. 112, 14295–14300 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Bulleri, F. et al. Harnessing positive species interactions as a tool against climate-driven loss of coastal biodiversity. PLoS Biol. 16, e2006852 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    100.Brancalion, P. H. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Burns, K. Meta-community structure of vascular epiphytes in a temperate rainforest. Botany 86, 1252–1259 (2008).
    Google Scholar 
    102.Chapman, M. & Blockley, D. Engineering novel habitats on urban infrastructure to increase intertidal biodiversity. Oecologia 161, 625–635 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    103.Schneider-Mayerson, M. Some islands will rise: Singapore in the Anthropocene. Resilience: J. Environ. Human. 4, 166–184 (2017).
    Google Scholar 
    104.Wangpraseurt, D. et al. Bionic 3D printed corals. Nat. Commun. 11, 1–8 (2020).
    Google Scholar 
    105.de Alvarenga, R. A. F., Galindro, B. M., de Fátima Helpa, C. & Soares, S. R. The recycling of oyster shells: an environmental analysis using Life Cycle Assessment. J. Environ. Manag. 106, 102–109 (2012).CAS 

    Google Scholar 
    106.Morris, J. P., Backeljau, T. & Chapelle, G. Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Rev. Aqua. 11, 42–57 (2019).
    Google Scholar 
    107.Hylander, K. & Nemomissa, S. Home garden coffee as a repository of epiphyte biodiversity in Ethiopia. Front. Ecol. Environ. 6, 524–528 (2008).
    Google Scholar 
    108.Franken, R. J. et al. Effects of interstitial refugia and current velocity on growth of the amphipod Gammarus pulex Linnaeus. J. North Am. Bentholog. Soc. 25, 656–663 (2006).
    Google Scholar 
    109.Bishop, M. et al. Facilitation of molluscan assemblages in mangroves by the fucalean alga Hormosira banksii. Marine Ecol. Prog. Series 392, 111–122 (2009).ADS 

    Google Scholar 
    110.Macreadie, P. I., Kimbro, D. L., Fourgerit, V., Leto, J. & Hughes, A. R. Effects of Pinna clams on benthic macrofauna and the possible implications of their removal from seagrass ecosystems. J. Molluscan Studies 80, 102–106 (2014).
    Google Scholar 
    111.Thomsen, M. S. et al. Earthquake-driven destruction of an intertidal habitat cascade. Aquat. Botany 164, 103217 (2020).
    Google Scholar 
    112.Enochs, I. C., Toth, L. T., Brandtneris, V. W., Afflerbach, J. C. & Manzello, D. P. Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Marine Ecol. Prog. Series 438, 105–118 (2011).ADS 

    Google Scholar  More