More stories

  • in

    Richard Leakey (1944–2022)

    OBITUARY
    28 January 2022

    Richard Leakey (1944–2022)

    Palaeontologist of human origins, conservationist and politician.

    Marta Mirazón Lahr

    0

    Marta Mirazón Lahr

    Marta Mirazón Lahr is professor of human evolutionary biology and prehistory at the University of Cambridge, UK. Leakey was a friend, colleague and supporter of her work in Turkana, where she directs research in human origins.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Download PDF

    Credit: William Campbell/Sygma/Getty

    Richard Leakey made palaeontological discoveries of lasting significance, and brought animal poaching to the world’s attention. His fossil finds at Koobi Fora on the shores of Lake Turkana, Kenya, transformed our understanding of the diversity of human ancestors. He directed Kenya’s national museum, reorganized the country’s wildlife services and headed Kenya’s civil service. He died aged 77, at home in the Ngong Hills, Kenya.In science, he liked exploration, big-picture problems and building institutions. He made huge strides in conservation, empowering organizations and deploying shock tactics. He entered politics, creating an opposition party, then worked in government, finally becoming its corruption watchdog. He mentored young Kenyan scholars, conservationists and artists who are now leaders in their field.Born in Nairobi, Richard was the middle child of pioneers in African palaeontology and archaeology Louis and Mary Leakey. He abandoned school at 16 to open an animal-trapping and safari business, earning enough to pay for flying lessons and his own small plane. In 1963, a mix of interest in his parents’ world and a wish to prove himself to them lured him into the study of the past, and he found his first important hominin fossil — a 1.5 million-year-old mandible of Paranthropus boisei — in 1964.
    Fifty years after Homo habilis
    In 1967, Leakey’s father asked him to direct an expedition to the Omo Valley of southern Ethiopia. There, Leakey found two Homo sapiens fossils now known to be 230,000 years old (C. M. Vidal et al. Nature https://doi.org/gn3794; 2022), key evidence of our species’ African origins. Flying over the eastern shore of Lake Turkana, he recognized the potential of sediments at Koobi Fora, which proved to be a trove of hominin fossils. The discovery of different hominin species living at the same time between 2 million and 1.5 million years ago (P. boisei, Homo habilis, Homo rudolfensis and Homo erectus) changed views of how humans evolved.In 1968, Leakey became director of the National Museums of Kenya, which became a hub of thriving research. Soon afterwards, he met the young British zoologist Meave Epps. They married after his first marriage ended, and became life-long personal and scientific partners. Their work with researchers dubbed the Hominid Gang, led by Kamoya Kimeu, resulted in the discovery of dozens of hominin fossils, including a new genus and four new species (Paranthropus aethiopicus, Australopithecus anamensis and Kenyanthropus platyops, as well as H. rudolfensis). A 1.6-million-year-old skeleton of a juvenile H. erectus proved to have grown more slowly than apes and faster than humans, giving insights into the evolution of human life-history.Leakey became involved in acrimonious scientific arguments — sometimes he was right, sometimes not — which, during the 1970s, gave an antagonistic tone to human-origins research. His health deteriorated, and he had his first kidney transplant (donated by his brother Philip) in 1980. In 1989, Kenya’s president, Daniel arap Moi, asked him to run the Kenya Wildlife Service (KWS). Leakey declared war on poachers, burnt the stockpile of Kenyan ivory and massively reduced elephant deaths. His controversial tactics had an impact on a web of corrupt practices and created serious enemies. In 1993, the plane he was piloting crashed; both his legs had to be amputated below the knee. Sabotage was rumoured.
    Human evolution’s ties to tectonics
    The relationship with Moi became increasingly hostile. In 1995, Leakey left KWS to create an opposition party, Safina, becoming a member of the Kenyan parliament in 1998. His time in opposition was tense. Leakey was beaten and received death threats. But Kenya needed large investments, and funders demanded assurances. Capitalizing on Leakey’s reputation for integrity, in 1998 Moi asked him to direct KWS again, and in 1999 to head the civil service. Over three years, Leakey raised hundreds of millions of dollars for Kenya and fought corruption.In 2002, he accepted a position at Stony Brook University, New York, that allowed him to live in Kenya and create the Turkana Basin Institute (TBI), which he chaired from 2005 until his death. TBI fostered a burst of discoveries: Miocene primates, hominins, the oldest stone tools in the world at 3.3 million years, evidence of prehistoric warfare, and the earliest monumental architecture in sub-Saharan Africa. In 2004, Leakey founded WildlifeDirect, a non-governmental conservation body, serving on its board for 10 years. In 2007, he became chair of Transparency International Kenya, continuing his battle against corruption.By this time, Leakey had skin cancer and progressively worse health. He underwent a second kidney transplant in 2006, with Meave as the donor, and a liver transplant in 2013. Yet, in 2015, he accepted President Uhuru Kenyatta’s request to return to KWS as chair until 2018. For the past six years, he worked to create a new Kenyan museum, called Ngaren — of which I am a board member — to celebrate science, evolution and humanity’s African origins.Richard was special — fun, insightful, generous, with a sharp sense of humour, and a fabulous cook and sommelier. He embraced life, good and bad, and imbued those around him with the sheer excitement of what could be done, discovered, resolved and enjoyed.

    Nature 602, 29 (2022)
    doi: https://doi.org/10.1038/d41586-022-00211-6

    Competing Interests
    M.M.L. is a member of the board of directors of Ngaren, a non-governmental organization founded by Richard Leakey to support the creation of a museum of evolution in Kenya.

    Related Articles

    Human evolution’s ties to tectonics

    The past, present and future of human evolution

    Fifty years after Homo habilis

    Obituary: Louis Leakey

    Collection: Human evolution

    Subjects

    History

    Evolution

    Conservation biology

    Politics

    Latest on:

    History

    From the archive
    News & Views 25 JAN 22

    Nobel nominators — which women will you suggest?
    Correspondence 18 JAN 22

    From the archive
    News & Views 18 JAN 22

    Evolution

    Where did Omicron come from? Three key theories
    News Feature 28 JAN 22

    The foreign trees that now reign over Asia’s jungles
    Research Highlight 27 JAN 22

    Evolution of inner ear neuroanatomy of bats and implications for echolocation
    Article 26 JAN 22

    Jobs

    Post-doc in Mathematics (Geometry and Mathematical Quantization)

    University of Luxembourg
    Luxembourg, Luxembourg

    Post-Doctoral Fellow in Mathematics (Statistics)

    University of Luxembourg
    Luxembourg, Luxembourg

    Doctoral (PhD) student position in autism and ADHD

    Karolinska Institutet, doctoral positions
    Stockholm, Sweden

    Proteomics Platform Scientist (m/f/d)

    Research Center for Molecular Medicine (CeMM), ÖAW
    Vienna, Austria More

  • in

    No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata

    1.GESAMP. Global pollution trends: coastal ecosystem assessment for the past century. 101 (2018).2.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS 
    PubMed 

    Google Scholar 
    3.Hartmann, N. B. et al. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integr. Environ. Assess. Manag. 13, 488–493 (2017).PubMed 

    Google Scholar 
    4.Bour, A., Avio, C. G., Gorbi, S., Regoli, F. & Hylland, K. Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level. Environ. Pollut. 243, 1217–1225 (2018).CAS 
    PubMed 

    Google Scholar 
    5.Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science (80-) 47, 768–770 (2015).ADS 

    Google Scholar 
    6.PlasticsEurope. Plastics—The Facts 2020. PlasticsEurope (2020).7.Sweet, M., Steifox, M. & Lamb, J. Plastics and Shallow Water Coral Reefs. Synthesis of the Science for Policy-Makers (2019).8.Stafford, R. & Jones, P. J. S. Viewpoint—Ocean plastic pollution: A convenient but distracting truth? Mar. Policy 19, 0–1 (2019).9.Backhaus, T. & Wagner, M. Microplastics in the environment: Much ado about nothing? A debate. Glob. Challenges 1900022, 1900022 (2019).
    Google Scholar 
    10.Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 2388–2392 (2013).CAS 
    PubMed 

    Google Scholar 
    11.Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    12.Donovan, M. K. et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl. Acad. Sci. USA. 117, 5351–5357 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Lamb, J. B. et al. Plastic waste associated with disease on coral reefs. Science (80-) 359, 460–462 (2018).CAS 
    ADS 

    Google Scholar 
    14.Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (2011).15.Tan, F. et al. Microplastic pollution around remote uninhabited coral reefs of Nansha Islands, South China Sea. Sci. Total Environ. 725, 138383 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    16.Bucol, L. A. et al. Microplastics in marine sediments and rabbitfish (Siganus fuscescens) from selected coastal areas of Negros Oriental, Philippines. Mar. Pollut. Bull. 150, 110685 (2020).CAS 
    PubMed 

    Google Scholar 
    17.Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 1–8 (2017).
    Google Scholar 
    18.Lagarde, F. et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 215, 331–339 (2016).CAS 
    PubMed 

    Google Scholar 
    19.Cordova, M. R., Hadi, T. A. & Prayudha, B. Occurrence and abundance of microplastics in coral reef sediment: A case study in Sekotong, Lombok-Indonesia. AES Bioflux 10, 23–29 (2018).
    Google Scholar 
    20.Ogston, A. S., Storlazzi, C. D., Field, M. E. & Presto, M. K. Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii. Coral Reefs 23, 559–569 (2004).
    Google Scholar 
    21.Bellwood, D. R. Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus on the Great Barrier Reef, Australia. Mar. Biol. 121, 419–429 (1995).
    Google Scholar 
    22.Rosenfeld, M., Bresler, V. & Abelson, A. Sediment as a possible food source for corals. Ecol. Lett. 2, 345–348 (1999).
    Google Scholar 
    23.Rogers, C. S. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62, 185–202 (1990).ADS 

    Google Scholar 
    24.Bastidas, C., Bone, D. & Garcia, E. M. Sedimentation rates and metal content of sediments in a Venezuelan coral reef. Mar. Pollut. Bull. 38, 16–24 (1999).CAS 

    Google Scholar 
    25.Smith, L. D., Negri, A. P., Philipp, E., Webster, N. S. & Heyward, A. J. The effects of antifoulant-paint-contaminated sediments on coral recruits and branchlets. Mar. Biol. 143, 651–657 (2003).CAS 

    Google Scholar 
    26.Stafford-Smith, M. Sediment rejection efficiency of 22 species of Australian scleractinian corals. Mar. Biol. 115, 229–243 (1993).
    Google Scholar 
    27.Junjie, R. K., Browne, N. K., Erftemeijer, P. L. A. & Todd, P. A. Impacts of sediments on coral energetics: Partitioning the effects of turbidity and settling particles. PLoS ONE 9, e107195 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    28.Hall, N. M., Berry, K. L. E., Rintoul, L. & Hoogenboom, M. O. Microplastic ingestion by scleractinian corals. Mar. Biol. 162, 725–732 (2015).CAS 

    Google Scholar 
    29.Allen, A. S., Seymour, A. C. & Rittschof, D. Chemoreception drives plastic consumption in a hard coral. Mar. Pollut. Bull. 124, 198–205 (2017).CAS 
    PubMed 

    Google Scholar 
    30.Mouchi, V. et al. Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure. Environ. Pollut. 253, 322–329 (2019).CAS 
    PubMed 

    Google Scholar 
    31.Tang, J., Ni, X., Zhou, Z., Wang, L. & Lin, S. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. Environ. Pollut. 243, 66–74 (2018).CAS 
    PubMed 

    Google Scholar 
    32.Chapron, L. et al. Macro- and microplastics affect cold-water corals growth, feeding and behaviour. Sci. Rep. 8, 1–8 (2018).CAS 

    Google Scholar 
    33.Hankins, C., Moso, E. & Lasseigne, D. Microplastics impair growth in two atlantic scleractinian coral species, Pseudodiploria clivosa and Acropora cervicornis. Environ. Pollut. 275, 116649 (2021).CAS 
    PubMed 

    Google Scholar 
    34.Rocha, R. J. M. et al. Do microplastics affect the zoanthid Zoanthus sociatus?. Sci. Total Environ. 713, 136659 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    35.Reichert, J. et al. Interactive effects of microplastic pollution and heat stress on reef-building corals. Environ. Pollut. 290, 118010 (2021).CAS 
    PubMed 

    Google Scholar 
    36.Rotjan, R. D. et al. Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata. Proc. R. Soc. B Biol. Sci. 286, 20190726 (2019).CAS 

    Google Scholar 
    37.Reichert, J., Schellenberg, J., Schubert, P. & Wilke, T. Responses of reef building corals to microplastic exposure. Environ. Pollut. 237, 955–960 (2018).CAS 
    PubMed 

    Google Scholar 
    38.Hankins, C., Duffy, A. & Drisco, K. Scleractinian coral microplastic ingestion: Potential calcification effects, size limits, and retention. Mar. Pollut. Bull. 135, 587–593 (2018).CAS 
    PubMed 

    Google Scholar 
    39.Reichert, J., Arnold, A. L., Hoogenboom, M. O., Schubert, P. & Wilke, T. Impacts of microplastics on growth and health of hermatypic corals are species-specific. Environ. Pollut. 254, 113074 (2019).CAS 
    PubMed 

    Google Scholar 
    40.Mendrik, F. M. et al. Species-specific impact of microplastics on coral physiology. Environ. Pollut. 269, 116238 (2021).CAS 
    PubMed 

    Google Scholar 
    41.Corona, E., Martin, C., Marasco, R. & Duarte, C. M. Passive and active removal of marine microplastics by a mushroom Coral (Danafungia scruposa). Front. Mar. Sci. 7, 1–9 (2020).ADS 

    Google Scholar 
    42.Martin, C., Corona, E., Mahadik, G. A. & Duarte, C. M. Adhesion to coral surface as a potential sink for marine microplastics. Environ. Pollut. 255, 113281 (2019).CAS 
    PubMed 

    Google Scholar 
    43.Oldenburg, K. S., Urban-Rich, J., Castillo, K. D. & Baumann, J. H. Microfiber abundance associated with coral tissue varies geographically on the Belize Mesoamerican Barrier Reef System. Mar. Pollut. Bull. 163, 111938 (2021).CAS 
    PubMed 

    Google Scholar 
    44.Axworthy, J. B. & Padilla-Gamiño, J. L. Microplastics ingestion and heterotrophy in thermally stressed corals. Sci. Rep. 9, 1–8 (2019).
    Google Scholar 
    45.Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed 

    Google Scholar 
    46.Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. 7, 362 (2020).
    Google Scholar 
    47.Rochman, C. M., Hentschel, B. T. & The, S. J. Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments. PLoS ONE 9, e85433 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    48.Niu, Y., Ying, D., Li, K., Wang, Y. & Jia, J. Adsorption of heavy-metal ions from aqueous solution onto chitosan-modified polyethylene terephthalate (PET). Res. Chem. Intermed. 43, 4213–4245 (2017).CAS 

    Google Scholar 
    49.Frias, J., Sobral, P. & Ferreira, A. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar. Pollut. Bull. 60, 1988–1992 (2010).CAS 
    PubMed 

    Google Scholar 
    50.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).CAS 
    PubMed 

    Google Scholar 
    51.Botterell, Z. L. R. et al. Bioavailability of microplastics to marine zooplankton: Effect of shape and infochemicals. Environ. Sci. Technol. 54, 12024–12033 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    52.Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the ecosystem. Nature 428, 66–70 (2004).CAS 
    PubMed 
    ADS 

    Google Scholar 
    53.Benson, A. & Muscatine, L. Wax in coral mucus: Energy transfer from corals to reef fishes. Limnol. Oceanogr. 19, 810–814 (1974).ADS 

    Google Scholar 
    54.Verla, A. W., Enyoh, C. E., Verla, E. N. & Nwarnorh, K. O. Microplastic–toxic chemical interaction: A review study on quantified levels, mechanism and implication. SN Appl. Sci. 1, 1–30 (2019).CAS 

    Google Scholar 
    55.Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296, 291–309 (2005).CAS 
    ADS 

    Google Scholar 
    56.Weber, M., Lott, C. & Fabricius, K. E. Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. J. Exp. Mar. Bio. Ecol. 336, 18–32 (2006).CAS 

    Google Scholar 
    57.Riegl, B. & Branch, G. Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamoroux 1816) corals. J. Exp. Mar. Bio. Ecol. 186, 259–275 (1995).
    Google Scholar 
    58.Felsing, S. et al. A new approach in separating microplastics from environmental samples based on their electrostatic behavior. Environ. Pollut. 234, 20–28 (2018).CAS 
    PubMed 

    Google Scholar 
    59.Bessell-Browne, P., Negri, A. P., Fisher, R., Clode, P. L. & Jones, R. Cumulative impacts: Thermally bleached corals have reduced capacity to clear deposited sediment. Sci. Rep. 7, 1–14 (2017).
    Google Scholar 
    60.Fitt, W. K. et al. Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J. Exp. Mar. Bio. Ecol. 373, 102–110 (2009).
    Google Scholar 
    61.Weber, M. et al. Mechanisms of damage to corals exposed to sedimentation. Proc. Natl. Acad. Sci. USA. 109, E1558 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Lear, G. et al. Plastics and the microbiome: Impacts and solutions. Environ. Microbiomes 16, 1–19 (2021).
    Google Scholar 
    63.Palardy, J., Rodrigues, L. & Grottolli, A. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J. Exp. Mar. Bio. Ecol. 367, 180–188 (2008).CAS 

    Google Scholar 
    64.Jennings, H. Modifiability in behaviour, 1: Behavior of sea anemones. J. Exp. Zool. 4, 447–632 (1905).
    Google Scholar 
    65.Boschma, H. On the feeding reactions and digestion in the coral polyp Astrangia danae, with notes on its symbiosis with zooxanthellae. Biol. Bull. 49, 407–439 (1925).CAS 

    Google Scholar 
    66.Anthony, K. R. N. Coral suspension feeding on fine particulate matter. J. Exp. Mar. Bio. Ecol. 232, 85–106 (1999).
    Google Scholar 
    67.Schlekat, C., McGee, B. & Reinharz, E. Testing sediment toxicity in chesapeake bay with the amphipod Leptocheirus plumulosus: An evaluation. Environ. Toxicol. Chem. 11, 225–236 (1992).CAS 

    Google Scholar 
    68.Nie, H., Wang, J., Xu, K., Huang, Y. & Yan, M. Microplastic pollution in water and fish samples around Nanxun Reef in Nansha Islands, South China Sea. Sci. Total Environ. 696, 134022 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    69.Cai, M. et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 633, 1206–1216 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    70.Zhu, L. et al. Microplastic pollution in North Yellow Sea, China: Observations on occurrence, distribution and identification. Sci. Total Environ. 636, 20–29 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    71.Saliu, F. et al. Microplastic and charred microplastic in the Faafu Atoll, Maldives. Mar. Pollut. Bull. 136, 464–471 (2018).CAS 
    PubMed 

    Google Scholar 
    72.Saliu, F., Montano, S., Leoni, B., Lasagni, M. & Galli, P. Microplastics as a threat to coral reef environments: Detection of phthalate esters in neuston and scleractinian corals from the Faafu Atoll, Maldives. Mar. Pollut. Bull. 142, 234–241 (2019).CAS 
    PubMed 

    Google Scholar 
    73.Bessa, F. et al. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 128, 575–584 (2018).CAS 
    PubMed 

    Google Scholar 
    74.Ivar Do Sul, J. A. & Costa, M. F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 185, 352–364 (2014).CAS 
    PubMed 

    Google Scholar 
    75.Chubarenko, I., Bagaev, A., Zobkov, M. & Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 108, 105–112 (2016).CAS 
    PubMed 

    Google Scholar 
    76.Tang, J. et al. Differential enrichment and physiological impacts of ingested microplastics in scleractinian corals in situ. J. Hazard. Mater. 404, 124205 (2021).CAS 
    PubMed 

    Google Scholar 
    77.Harrison, J. P., Schratzberger, M., Sapp, M. & Osborn, A. M. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 14, 1–15 (2014).
    Google Scholar 
    78.Veron, J. Corals of the World (2000).79.Benavides, M. et al. Diazotrophs: A non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J. Exp. Biol. 219, 2608–2612 (2016).PubMed 

    Google Scholar 
    80.Einbinder, S. et al. Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar. Ecol. Prog. Ser. 381, 167–174 (2009).ADS 

    Google Scholar 
    81.Erni-Cassola, G., Gibson, M. I., Thompson, R. C. & Christie-Oleza, J. A. Lost, but found with Nile red: A novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environ. Sci. Technol. 51, 13641–13648 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    82.Swain, T. D., Schellinger, J. L., Strimaitis, A. M. & Reuter, K. E. Evolution of anthozoan polyp retraction mechanisms: Convergent functional morphology and evolutionary allometry of the marginal musculature in order Zoanthidea (Cnidaria: Anthozoa: Hexacorallia). BMC Evol. Biol. 15, 1–19 (2015).
    Google Scholar 
    83.Laissue, P. P., Gu, Y., Qian, C. & Smith, D. J. Light-induced polyp retraction and tissue rupture in the photosensitive, reef-building coral Acropora muricata. bioRxiv https://doi.org/10.1101/862045 (2019).Article 

    Google Scholar 
    84.Renegar, D. A. & Turner, N. R. Species sensitivity assessment of five Atlantic scleractinian coral species to 1-methylnaphthalene. Sci. Rep. 11, 1–17 (2021).
    Google Scholar 
    85.Armoza-Zvuloni, R., Schneider, A., Sher, D. & Shaked, Y. Rapid Hydrogen Peroxide release from the coral Stylophora pistillata during feeding and in response to chemical and physical stimuli. Sci. Rep. 6, 1–10 (2016).
    Google Scholar 
    86.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Meijering, E., Dzyubachyck, O. & Smal, I. Methods for cell and particle tracking. In Methods in Enzymology (Elsevier, 2012).88.Sorgeloos, P., Dhert, P. & Candrevab, P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147–159 (2001).
    Google Scholar 
    89.R Core Team. R: A language and environment for statistical computing (2019).90.Wood, A. S., Scheipl, F. & Wood, M. S. Package ‘gamm4’. (2020).91.Zuur, A., Saveliev, A. & Ieno, E. A Beginner’s Guide to Generalized Additive Mixed Models with R. (Highland Statistics Ltd, 2014).92.Zuur, A. F., Hilbe, J. M. & Ieno, E. N. A Beginner’s Guide to GLM and GLMM with R (Highland Statistics Ltd, 2013).93.Pyke, A. & Thompson, J. Statistical analysis of survival and removal rate experiments. Ecology 67, 240–245 (1986).
    Google Scholar 
    94.Therneau, T. M. Mixed effects cox models. R-Package Description. https://doi.org/10.1111/oik.01149 (2015).Article 

    Google Scholar 
    95.Katki, H. A. & Mark, S. D. Survival analysis of studies nested within cohorts using the NestedCohort Package. 1–16 (2013).96.Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package BRMS. R J. 10, 395–411 (2018).
    Google Scholar 
    97.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer, 2009).98.Manly, B. F. J. Measuring selectivity from multiple choice feeding-preference experiments. Biometrics 51, 709 (1995).
    Google Scholar 
    99.Richardson, J. Package ‘ selectapref ’. Anal. F. Lab. Foraging 8–11 (2020). More

  • in

    Uniparental genetic markers to investigate hybridization in wild-born marmosets with a mixed phenotype among Callithrix aurita and invasive species

    1.Mittermeier, R. A., Coimbra-Filho, A. F., Constable, I. D., Rylands, A. B. & Valle, C. Conservation of primates in the Atlantic forest region of eastern Brazil. Int. Zoo Yearb. 22, 2–17 (1982).
    Google Scholar 
    2.Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. W. Handbook of the Mammals of the World, vol. 3, Primates. Lynx, Barcelona (2013).3.Rylands, A. B., Kierulff, M. C. M., Mendes, S. L. & Oliveira, M. M. Callithrix aurita. The IUCN Red List of Threatened Species 2008. IUCN Red List Threat. Species 8235, 1–7 (2008).
    Google Scholar 
    4.IUCN. The IUCN Red List of Threatened Species. Version 2020–2, Vol. 8235 (2020).5.Coimbra-Filho, A., Pissinatti, A. & Rylands, A. B. Experimental mutiple hybridism and natural hybrids among Callithrix species from easterna Brazil. In Marmosets and Tamarins Systematics Behaviour and Ecology (ed. Rylands, A. B.) 93–120 (Oxford University Press, 1993).
    Google Scholar 
    6.Mittermeier, R. A., Coimbra-Filho, A. F., Rylands, A. B. & Constable, I. D. Atlantic Forest region of eastern Brazil a top primate of conservation priority. IUCN / SSC Primate Spec. Gr. Newsl. 1, 9–11 (1981).
    Google Scholar 
    7.Carvalho, R. S. et al. Buffy-tufted-year marmoset Callithrix aurita É. Geoffroy Saint-Hilaire, 1812 Brazil. In Primates in Peril: The World’s 25 Most Endangered Primates 2018–2020 (eds. Schwitzer, C. et al.) 136 (IUCN SSC Primate Specialist Group, International Primatological Society, Global Wildlife Conservation, Bristol Zoological Society, 2019).8.ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. (2018).9.SMA-SP. Decreto no63.853, de 27 de novembro de 2018. (2018).10.Rylands, A. B. et al. An assessment of the diversity of New World Primates. Neotrop. Primates 8, 61–93 (2000).
    Google Scholar 
    11.Brandão, L. D. & Develey, P. F. Distribution and conservation of the buffy-tufted-ear marmoset, Callithrix aurita, in lowland coastal, Atlantic Forest, Southeast Brazil. Neotrop. Primates 6, 86–88 (1998).
    Google Scholar 
    12.Carvalho, R. S. et al. Callithrix aurita: a marmoset species on its way to extinctionin the Brazilian Atlantic Forest. Neotrop. Primates 24, 1–8 (2018).
    Google Scholar 
    13.Malukiewicz, J. et al. Natural and anthropogenic hybridization in two species of eastern Brazilian marmosets (Callithrix jacchus and C. penicillata). PLoS ONE 10, 1–22 (2015).
    Google Scholar 
    14.Ruiz-Miranda, C. R., Affonso, A. G., Martins, A. & Beck, B. Distribuição do sagui (Callithrix jacchus) nas áreas de ocorrência do mico-leão-dourado (Leontopithecus rosalia) no Estado do Rio de Janeiro. Neotrop. Primates 8, 98–101 (2000).
    Google Scholar 
    15.Mendes, S. L. Hybridization in free-ranging Callithrix flaviceps and the taxonomy of the Atlantic forest marmosets. Neotrop. Primates 5, 6–8 (1997).
    Google Scholar 
    16.Santos, C. V. et al. Ecologia, comportamento e manejo de primatas invasores e populações-problema. A Primatologia no Brasil 10, 101–118 (2007).
    Google Scholar 
    17.Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecolology Evol. Syst. 27, 83–109 (1996).
    Google Scholar 
    18.Zinner, D., Arnold, M. L. & Roos, C. The strange blood: Natural hybridization in primates. Evol. Anthropol. 20, 96–103 (2011).PubMed 

    Google Scholar 
    19.Brumfield, R. T. Speciation genetics of biological invasions with hybridization. Mol. Ecol. 19, 5079–5083 (2010).PubMed 

    Google Scholar 
    20.Steeves, T. E., Maloney, R. F., Hale, M. L., Tylianakis, J. M. & Gemmell, N. J. Genetic analyses reveal hybridization but no hybrid swarm in one of the world’s rarest birds. Mol. Ecol. 19, 5090–5100 (2010).PubMed 

    Google Scholar 
    21.Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 16, 613–622 (2001).
    Google Scholar 
    22.Bechara, I. M. Abordagens metodológicas em Biogeografia da Conservação para avaliar risco de extinção de espécies: um estudo de caso com Callithrix aurita (Primates: Callitrichidae). (UFRJ, 2012).23.Braz, A. G., Lorini, M. L. & Vale, M. M. Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (Callithrix spp.). Divers. Distrib. 25, 536–550 (2019).
    Google Scholar 
    24.Malukiewicz, J. A review of experimental, natural, and anthropogenic hybridization in Callithrix marmosets. Int. J. Primatol. 40, 72–98 (2019).
    Google Scholar 
    25.Pinto, L. F. G. & Voivodic, M. Reverse the tipping point of the Atlantic Forest for mitigation. Nat. Clim. Chang. 11, 364–365 (2021).ADS 

    Google Scholar 
    26.Seehausen, O., Takimoto, G., Roy, D. & Jokela, J. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol. Ecol. 17, 30–44 (2008).PubMed 

    Google Scholar 
    27.Pereira, D. G., De Oliveira, M. E. A. & Ruiz-Miranda, C. R. Interações entre calitriquídeos exóticos e nativos no Parque Nacional da Serra dos Órgãos – RJ. Espaço e Geogr. 11, 87–114 (2008).
    Google Scholar 
    28.Aximoff, I., Soares, H. M., Pissinatti, A. & Bueno, C. Registros de Callithrix aurita (Primates, Callitrichidae) e seus híbridos no Parque Nacional do Itatiaia. Oecologia Aust. 20, 520–525 (2016).
    Google Scholar 
    29.Detogne, N. et al. Spatial distribution of buffy-tufted-ear (Callithrix aurita) and invasive marmosets (Callithrix spp.) in a tropical rainforest reserve in southeastern Brazil. Am. J. Primatol. 79, 1–11 (2017).
    Google Scholar 
    30.Carvalho, R. S. et al. Molecular identification of a buffy-tufted-ear marmoset (Callithrix aurita) incorporated in a group of invasive marmosets in the Serra dos Órgãos National Park, Rio de Janeiro – Brazil. Forensic Sci. Int. Genet. Suppl. Ser. 4, e230–e231 (2013).
    Google Scholar 
    31.Novaes, C. M. et al. Karyotypic characteristics of hybrid marmosets of the genus Callithrix (Erxeleben, 1777) suggest the participation of three parental species. Bol. do Mus. Biol. Mello Leitão 39, 11–21 (2017).
    Google Scholar 
    32.Pereira, D. G. Densidade, genética e saúde populacional como ferramentas para propor um plano de controle e erradicação de invasão biológica: o caso de Callithrix aurita (Primates) no Parque Nacional da Serra dos Órgãos, RJ, Brasil (Universidade do Estado do Rio de Janeiro, 2010).
    Google Scholar 
    33.Veracini, C., Galeni, L. & Forti, M. The concept of species and the foundations of biology, a case study: The Callithrix jacchus group (Primates-Platyrrhini). Riv. Biol. 95, 75–100 (2002).PubMed 

    Google Scholar 
    34.Campton, D. E. Natural hybridization and introgression in fishes: methods of detection and genetic interpretations. In Population Genetics and Fishery Management (eds Ryman, N. & Utter, F.) 16–192 (University of Washington Press, 1987).
    Google Scholar 
    35.Nagamachi, C. Y., Pieczarka, J. C., Schwarz, M., Barros, R. M. S. & Mattevi, M. S. Comparative chromosomal study of five taxa of genus Callithrix, group jacchus (Platyrrhini, Primates). Am. J. Primatol. 41, 53–60 (1997).CAS 
    PubMed 

    Google Scholar 
    36.Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).PubMed 

    Google Scholar 
    37.Ardito, G., Lamberti, L., Bigatti, P., Stanyon, R. & Govone, D. NOR distribution and satellite associations in Callithrix jacchus. Caryologia 40, 185–194 (1987).
    Google Scholar 
    38.Nagamashi, C. & Ferrari, I. Cytogenetic studies of Callithrix jacchus (Callitrichidae, Platyrrhini) from two different sites in Brazil. I. Morphological variability of Y chromosome. Rev. Bras. Genética 7, 497–507 (1984).
    Google Scholar 
    39.Nogueira, D. M. et al. Cytogenetic study in natural hybrids of Callithrix (Callitrichidae: Primates) in the Atlantic forest of the state of Rio de Janeiro, Brazil. Iheringia, Série Zool. 101, 156–160 (2011).
    Google Scholar 
    40.Moreira, M. A. M. SRY evolution in Cebidae (Platyrrhini: Primates). J. Mol. Evol. 55, 92–103 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    41.de Morais, M. M. OS SAGUIS (Callithrix spp., ERXLEBEN, 1777) Exóticos Invasores na bacia do Rio São João, Rio de Janeiro: Biologia populacional e padrão de distribuição em uma paisagem fragmentada. Uenf.Br (2010).42.Sweeney, C. G., Curran, E., Westmoreland, S. V., Mansfield, K. G. & Vallender, E. J. Quantitative molecular assessment of chimerism across tissues in marmosets and tamarins. BMC Genomics 13, 98. https://doi.org/10.1186/1471-2164-13-98 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Buckner, J. C., Lynch Alfaro, J. W., Rylands, A. B. & Alfaro, M. E. Biogeography of the marmosets and tamarins (Callitrichidae). Mol. Phylogenet. Evol. 82, 413–425 (2015).PubMed 

    Google Scholar 
    44.Schneider, H. et al. A molecular analysis of the evolutionary relationships in the Callitrichinae, with emphasis on the position of the dwarf marmoset. Zool. Scr. 41, 1–10 (2012).
    Google Scholar 
    45.Perelman, P. et al. A molecular phylogeny of living primates. PLoS Genet. 7, 1–17 (2011).
    Google Scholar 
    46.Price, T. D. & Bouvier, M. M. The evolution of F1 postzygotic incompatibilities in birds. Evolution (N. Y). 56, 2083–2089 (2002).
    Google Scholar 
    47.Nievergelt, C. M., Mundy, N. I. & Woodruff, D. S. Microsatellite primers for genotyping common marmosets (Callithrix jacchus) and other callitrichids. Mol. Ecol. 7, 1432–1434 (1998).CAS 
    PubMed 

    Google Scholar 
    48.Raveendran, M. et al. Polymorphic microsatellite loci for the common marmoset (Callithrix jacchus) designed using a cost- and time-efficient method. Am. J. Primatol. 70, 906–910 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Takabayashi, S. & Katoh, H. Noninvasive genotyping of common marmoset (Callithrix jacchus) by fingernail PCR. Primates 56, 235–240 (2015).PubMed 

    Google Scholar 
    50.Malukiewicz, J. et al. Mitogenomic phylogeny of Callithrix with special focus on human transferred taxa. BMC Genomics 22, 1–14 (2021).
    Google Scholar 
    51.Rozhnov, V. V. Extinction of the European mink: ecological catastrophe or a natural process?. Lutreola 1, 10–16 (1993).
    Google Scholar 
    52.Rosenthal, G. G. Individual mating decisions and hybridization. J. Evol. Biol. 26, 252–255 (2013).CAS 
    PubMed 

    Google Scholar 
    53.Fundação SOS Mata Atlântica. Notícias. www.sosma.org.br/noticias/desmatamento-da-mata-atlantica-cresce-em-dez-estados/ (2021).54.Banks-Leite, C. et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    55.Oliveira, A. B. L. Presença ou Ausência do Callithrix aurita em Fragmentos de Mata Atlântica (Instituto Superior de Agronomia – Universidade Técnica de Lisboa, 2012).
    Google Scholar 
    56.Allendorf, F. W. et al. Intercrosses and the U.S. endangered species act: Should hybridized populations be included as westslope cutthroat trout?. Conserv. Biol. 18, 1203–1213 (2004).
    Google Scholar 
    57.Wayne, R. K. & Shaffer, H. B. Hybridization and endangered species protection in the molecular era. Mol. Ecol. 25, 2680–2689 (2016).PubMed 

    Google Scholar 
    58.U.S. Fish and Wildlife Service and National Oceanic and Atmospheric Administration. Endangered and threatened wildlife and plants: Proposed policy and proposed rule on the treatment of intercrosses and intercross progeny (the issue of “hybridization”). Fed. Regist. 67, 4710–4713 (1996).
    Google Scholar 
    59.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Malukiewicz, J., Hepp, C. M., Guschanski, K. & Stone, A. C. Phylogeny of the jacchus group of Callithrix marmosets based on complete mitochondrial genomes. Am. J. Phys. Anthropol. 162, 157–169 (2016).PubMed 

    Google Scholar 
    61.Sambrook, J., Maniatis, T. & Fritsch, E. F. Molecular Cloning. A Laboratory Manual. Vol. 1 (Cold Spring Harbor Laboratory Press, 2001).
    Google Scholar 
    62.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Rozas, J. et al. DnaSP6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 

    Google Scholar 
    64.Ronquist, F., van der Mark, P. & Huelsenbeck, J. P. Bayesian phylogenetic analysis using MRBAYES. Phylogenetic Handb. https://doi.org/10.1017/cbo9780511819049.009 (2012).Article 

    Google Scholar  More

  • in

    Oriental freshwater mussels arose in East Gondwana and arrived to Asia on the Indian Plate and Burma Terrane

    1.Graf, D. L. & Cummings, K. S. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). J. Molluscan Stud. 73, 291–314. https://doi.org/10.1093/mollus/eym029 (2007).Article 

    Google Scholar 
    2.Graf, D. L. & Cummings, K. S. A “big data” approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species. J. Molluscan Stud. 87, 034. https://doi.org/10.1093/mollus/eyaa034 (2021).Article 

    Google Scholar 
    3.Vaughn, C. C. Ecosystem services provided by freshwater mussels. Hydrobiologia 810, 15–27. https://doi.org/10.1007/s10750-017-3139-x (2018).Article 

    Google Scholar 
    4.Ożgo, M. et al. Lake-stream transition zones support hotspots of freshwater ecosystem services: Evidence from a 35-year study on unionid mussels. Sci. Total Environ. 774, 145114. https://doi.org/10.1016/j.scitotenv.2021.145114 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Lopes-Lima, M. et al. Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia 810, 1–14. https://doi.org/10.1007/s10750-017-3486-7 (2018).Article 

    Google Scholar 
    6.Bolotov, I. N. et al. Climate warming as a possible trigger of keystone mussel population decline in oligotrophic rivers at the continental scale. Sci. Rep. 8, 35. https://doi.org/10.1038/s41598-017-18873-y (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Ferreira-Rodríguez, N. et al. Research priorities for freshwater mussel conservation assessment. Biol. Conserv. 231, 77–87. https://doi.org/10.1016/j.biocon.2019.01.002 (2019).Article 

    Google Scholar 
    8.Lundquist, S. P., Worthington, T. A. & Aldridge, D. C. Freshwater mussels as a tool for reconstructing climate history. Ecol. Ind. 101, 11–21. https://doi.org/10.1016/j.ecolind.2018.12.048 (2019).Article 

    Google Scholar 
    9.Sousa, R. et al. The role of anthropogenic habitats in freshwater mussel conservation. Glob. Change Biol. 27, 2298–2314. https://doi.org/10.1111/gcb.15549 (2021).ADS 
    Article 

    Google Scholar 
    10.Bogan, A. E. Freshwater bivalve extinctions (Mollusca: Unionoida): A search for causes. Integr. Comp. Biol. 33, 599–609. https://doi.org/10.1093/icb/33.6.599 (1993).Article 

    Google Scholar 
    11.Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330. https://doi.org/10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 (2004).Article 

    Google Scholar 
    12.Hughes, J. et al. Past and present patterns of connectivity among populations of four cryptic species of freshwater mussels Velesunio spp (Hyriidae) in central Australia. Mol. Ecol. 13, 3197–3212. https://doi.org/10.1111/j.1365-294X.2004.02305.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Martel, A. L. et al. Freshwater mussels (Bivalvia: Margaritiferidae, Unionidae) of the Atlantic Maritime Ecozone. In Assessment of Species Diversity in the Atlantic Maritime Ecozone (eds McAlpine, D. F. & Smith, I. M.) 551–598 (NRC Research Press, 2010).
    Google Scholar 
    14.Haag, W. R. North American Freshwater Mussels: Natural History, Ecology, and Conservation (Cambridge University Press, 2012).
    Google Scholar 
    15.Smith, C. H., Pfeiffer, J. M. & Johnson, N. A. Comparative phylogenomics reveal complex evolution of life history strategies in a clade of bivalves with parasitic larvae (Bivalvia: Unionoida: Ambleminae). Cladistics 36, 505–520. https://doi.org/10.1111/cla.12423 (2020).Article 
    PubMed 

    Google Scholar 
    16.Sepkoski, J. J. Jr. & Rex, M. A. Distribution of freshwater mussels: Coastal rivers as biogeographic islands. Syst. Biol. 23, 165–188. https://doi.org/10.1093/sysbio/23.2.165 (1974).Article 

    Google Scholar 
    17.Haag, W. R. A hierarchical classification of freshwater mussel diversity in North America. J. Biogeogr. 37, 12–26. https://doi.org/10.1111/j.1365-2699.2009.02191.x (2010).Article 

    Google Scholar 
    18.Graf, D. L., Jones, H., Geneva, A. J., Pfeiffer, J. M. III. & Klunzinger, M. W. Molecular phylogenetic analysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia: Unionida) and the paraphyly of Australasian taxa. Mol. Phylogenet. Evol. 85, 1–9. https://doi.org/10.1016/j.ympev.2015.01.012 (2015).Article 
    PubMed 

    Google Scholar 
    19.Bolotov, I. N. et al. Ancient river inference explains exceptional Oriental freshwater mussel radiations. Sci. Rep. 7, 2135. https://doi.org/10.1038/s41598-017-02312-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Bolotov, I. N. et al. Integrative taxonomy, biogeography and conservation of freshwater mussels (Unionidae) in Russia. Sci. Rep. 10, 3072. https://doi.org/10.1038/s41598-020-59867-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Lopes-Lima, M. et al. Diversity, biogeography, evolutionary relationships, and conservation of Eastern Mediterranean freshwater mussels (Bivalvia: Unionidae). Mol. Phylogenet. Evol. 163, 107261. https://doi.org/10.1016/j.ympev.2021.107261 (2021).Article 
    PubMed 

    Google Scholar 
    22.Bolotov, I. N. et al. Eight new freshwater mussels (Unionidae) from tropical Asia. Sci. Rep. 9, 12053. https://doi.org/10.1038/s41598-019-48528-z (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bolotov, I. N. et al. New freshwater mussel taxa discoveries clarify biogeographic division of Southeast Asia. Sci. Rep. 10, 6616. https://doi.org/10.1038/s41598-020-63612-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Jeratthitikul, E., Paphatmethin, S., Zieritz, A., Lopes-Lima, M. & Bun, P. Hyriopsis panhai, a new species of freshwater mussel from Thailand (Bivalvia: Unionidae). Raffles Bull. Zool. 69, 124–136. https://doi.org/10.26107/RBZ-2021-0011 (2021).Article 

    Google Scholar 
    25.Jeratthitikul, E., Sucharit, C. & Prasankok, P. Molecular phylogeny of the Indochinese freshwater mussel genus Scabies Haas, 1911 (Bivalvia: Unionidae). Trop. Nat. Hist. 19, 21–36 (2019).
    Google Scholar 
    26.Jeratthitikul, E., Sutcharit, C., Ngor, P. B. & Prasankok, P. Molecular phylogeny reveals a new genus of freshwater mussels from the Mekong River Basin (Bivalvia: Unionidae). Eur. J. Taxon. 775, 119–142. https://doi.org/10.5852/ejt.2021.775.1553 (2021).Article 

    Google Scholar 
    27.Pfeiffer, J. M., Graf, D. L., Cummings, K. S. & Page, L. M. Taxonomic revision of a radiation of South-East Asian freshwater mussels (Unionidae: Gonideinae: Contradentini+ Rectidentini). Invertebr. Syst. 35, 394–470. https://doi.org/10.1071/IS20044 (2021).Article 

    Google Scholar 
    28.Zieritz, A. et al. A new genus and two new, rare freshwater mussel (Bivalvia: Unionidae) species endemic to Borneo are threatened by ongoing habitat destruction. Aquat. Conserv. https://doi.org/10.1002/aqc.3695 (2021).Article 

    Google Scholar 
    29.Smith, C. H., Johnson, N. A., Pfeiffer, J. M. & Gangloff, M. M. Molecular and morphological data reveal non-monophyly and speciation in imperiled freshwater mussels (Anodontoides and Strophitus). Mol. Phylogenet. Evol. 119, 50–62. https://doi.org/10.1016/j.ympev.2017.10.018 (2018).Article 
    PubMed 

    Google Scholar 
    30.Inoue, K. et al. A new species of freshwater mussel in the genus Popenaias Frierson, 1927, from Gulf coastal rivers of central Mexico (Bivalvia: Unionida: Unionidae) with comments on the genus. Zootaxa 4816, 457–490. https://doi.org/10.11646/zootaxa.4816.4.3 (2020).Article 

    Google Scholar 
    31.Ortiz-Sepulveda, C. M. et al. Diversification dynamics of freshwater bivalves (Unionidae: Parreysiinae: Coelaturini) indicate historic hydrographic connections throughout the East African Rift System. Mol. Phylogenet. Evol. 148, 106816. https://doi.org/10.1016/j.ympev.2020.106816 (2020).Article 
    PubMed 

    Google Scholar 
    32.Tomilova, A. A. et al. An endemic freshwater mussel species from the Orontes River basin in Turkey and Syria represents duck mussel’s intraspecific lineage: Implications for conservation. Limnologica 84, 125811. https://doi.org/10.1016/j.limno.2020.125811 (2020).CAS 
    Article 

    Google Scholar 
    33.Tomilova, A. A. et al. Evidence for plio-pleistocene duck mussel refugia in the Azov Sea river basins. Diversity 12, 118. https://doi.org/10.3390/d12030118 (2020).Article 

    Google Scholar 
    34.Pfeiffer, J. M., Sharpe, A. E., Johnson, N. A., Emery, K. F. & Page, L. M. Molecular phylogeny of the Nearctic and Mesoamerican freshwater mussel genus Megalonaias. Hydrobiologia 811, 139–151. https://doi.org/10.1007/s10750-017-3441-7 (2018).CAS 
    Article 

    Google Scholar 
    35.Bolotov, I. N. et al. A new genus and tribe of freshwater mussel (Unionidae) from Southeast Asia. Sci. Rep. 8, 10030. https://doi.org/10.1038/s41598-018-28385-y (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Konopleva, E. S. et al. New freshwater mussels from two Southeast Asian genera Bineurus and Thaiconcha (Pseudodontini, Gonideinae, Unionidae). Sci. Rep. 11, 8244. https://doi.org/10.1038/s41598-021-87633-w (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Lopes-Lima, M. et al. Freshwater mussels (Bivalvia: Unionidae) from the Rising Sun (Far East Asia): Phylogeny, systematics, and distribution. Mol. Phylogenet. Evol. 146, 106755. https://doi.org/10.1016/j.ympev.2020.106755 (2020).Article 
    PubMed 

    Google Scholar 
    38.Rangin, C. Active and recent tectonics of the Burma Platelet in Myanmar. Geol. Soc. Lond. Mem. 48, 53–64. https://doi.org/10.1144/M48.3 (2017).Article 

    Google Scholar 
    39.Licht, A. et al. Magmatic history of central Myanmar and implications for the evolution of the Burma Terrane. Gondwana Res. 87, 303–319. https://doi.org/10.1016/j.gr.2020.06.016 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 863–868. https://doi.org/10.1038/s41561-019-0443-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Morley, C. K., Chantraprasert, S., Kongchum, J. & Chenoll, K. The West Burma Terrane, a review of recent paleo-latitude data, its geological implications and constraints. Earth Sci. Rev. 220, 103722. https://doi.org/10.1016/j.earscirev.2021.103722 (2021).Article 

    Google Scholar 
    42.Martin, C. R. et al. Paleocene latitude of the Kohistan-Ladakh arc indicates multistage India-Eurasia collision. Proc. Natl. Acad. Sci. USA 117, 29487–29494. https://doi.org/10.1073/pnas.2009039117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Frisch, W., Meschede, M. & Blakey, R. C. Plate Tectonics: Continental Drift and Mountain Building (Springer Science & Business Media, 2010).
    Google Scholar 
    44.Ali, J. R. & Aitchison, J. C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth Sci. Rev. 88, 145–166. https://doi.org/10.1016/j.earscirev.2008.01.007 (2008).ADS 
    Article 

    Google Scholar 
    45.Chatterjee, S., Goswami, A. & Scotese, C. R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 23, 238–267. https://doi.org/10.1016/j.gr.2012.07.001 (2013).ADS 
    Article 

    Google Scholar 
    46.van Hinsbergen, D. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl. Acad. Sci. USA 109, 7659–7664. https://doi.org/10.1073/pnas.1117262109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.van Hinsbergen, D. J. et al. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 760, 69–94. https://doi.org/10.1016/j.tecto.2018.04.006 (2019).ADS 
    Article 

    Google Scholar 
    48.Morley, C. K., Naing, T. T., Searle, M. & Robinson, S. A. Structural and tectonic development of the Indo-Burma ranges. Earth Sci. Rev. 200, 102992. https://doi.org/10.1016/j.earscirev.2019.102992 (2020).Article 

    Google Scholar 
    49.Poinar, G. Jr. Burmese amber: Evidence of Gondwanan origin and Cretaceous dispersion. Hist. Biol. 31, 1304–1309. https://doi.org/10.1080/08912963.2018.1446531 (2019).Article 

    Google Scholar 
    50.Zhang, X. et al. Tracing Argoland in eastern Tethys and implications for India-Asia convergence. GSA Bull. 133, 1712–1722. https://doi.org/10.1130/B35772.1 (2021).CAS 
    Article 

    Google Scholar 
    51.Pfeiffer, J. M., Graf, D. L., Cummings, K. S. & Page, L. M. Molecular phylogeny and taxonomic revision of two enigmatic freshwater mussel genera (Bivalvia: Unionidae incertae sedis: Harmandia and Unionetta) reveals a diverse clade of Southeast Asian Parreysiinae. J. Molluscan Stud. 84, 404–416. https://doi.org/10.1093/mollus/eyy028 (2018).Article 

    Google Scholar 
    52.Whelan, N. V., Geneva, A. J. & Graf, D. L. Molecular phylogenetic analysis of tropical freshwater mussels (Mollusca: Bivalvia: Unionoida) resolves the position of Coelatura and supports a monophyletic Unionidae. Mol. Phylogenet. Evol. 61, 504–514. https://doi.org/10.1016/j.ympev.2011.07.016 (2011).Article 
    PubMed 

    Google Scholar 
    53.Konopleva, E. S. et al. A new genus and two new species of freshwater mussels (Unionidae) from Western Indochina. Sci. Rep. 9, 4106. https://doi.org/10.1038/s41598-019-39365-1 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Muanta, S., Jeratthitikul, E., Panha, S. & Prasankok, P. Phylogeography of the freshwater bivalve genus Ensidens (Unionidae) in Thailand. J. Molluscan Stud. 85, 224–231. https://doi.org/10.1093/mollus/eyz013 (2019).Article 

    Google Scholar 
    55.Zieritz, A. et al. Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia. Sci. Total Environ. 571, 1069–1078. https://doi.org/10.1016/j.scitotenv.2016.07.098 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Bolotov, I. N. et al. New taxa of freshwater mussels (Unionidae) from a species-rich but overlooked evolutionary hotspot in Southeast Asia. Sci. Rep. 7, 11573. https://doi.org/10.1038/s41598-017-11957-9 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Subba Rao, N. V. Handbook. Freshwater Molluscs of India (Zoological Survey of India, 1989).58.Ramakrishna & Dey, A. Handbook on Indian Freshwater Molluscs (Zoological Survey of India, 2007).59.Prashad, B. The marsupium and glochidium of some Unionidae and on the Indian species hitherto assigned to the genus Nodularia. Rec. Indian Mus. 15, 143–148 (1918).
    Google Scholar 
    60.Burdi, G. H., Baloch, W. A., Begum, F., Soomro, A. N. & Khuhawar, M. Y. Ecological studies on freshwater bivalve mussels (Pelecypoda) of Indus River and its canals at Kotri Barrage Sindh, Pakistan. Sindh Univ. Res. J. 41, 31–36 (2009).
    Google Scholar 
    61.Nesemann, H. et al. Aquatic Invertebrates of the Ganga River System: Volume 1—Mollusca, Annelida, Crustacea (in part) (Hasko Nesemann and Chandi Press, 2007).62.Budha, P. B. A Field Guide to Freshwater Molluscs of Kailali, Far Western Nepal (Central Department of Zoology, Tribhuvan University, 2016).
    Google Scholar 
    63.Gittenberger, E., Leda, P., Gyeltshen, C. & Sherub, S. Distributional patterns of molluscan taxa in Bhutan (Mollusca). Biodiversität Naturausstattung Himalaya 4, 143–151 (2018).
    Google Scholar 
    64.Nanda, A. C., Sehgal, R. K. & Chauhan, P. R. Siwalik-age faunas from the Himalayan foreland Basin of South Asia. J. Asian Earth Sci. 162, 54–68. https://doi.org/10.1016/j.jseaes.2017.10.035 (2018).ADS 
    Article 

    Google Scholar 
    65.Vredenburg, E. & Prashad, B. Unionidae from the Miocene of Burma. Rec. Geol. Surv. India 51, 371–374 (1921).
    Google Scholar 
    66.Prashad, B. On some Fossil Indian Unionidae. Rec. Geol. Surv. India 60, 308–312 (1928).
    Google Scholar 
    67.Modell, H. Paläontologische und geologische Untersuchungen im Tertiär von Pakistan. 4. Die tertiären Najaden des Punjab und Vorderindiens. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, neue Folge 135, 1–49 (1969).68.Takayasu, K., Gurung, D. D. & Matsuoka, K. Some new species of freshwater bivalves from the Mio-Pliocene Churia Group, west-central Nepal. Trans. Proc. Paleontol. Soc. Jpn. New Ser. 179, 157–168. https://doi.org/10.14825/prpsj1951.1995.179_157 (1995).Article 

    Google Scholar 
    69.Gurung, D. Freshwater molluscs from the Late Neogene Siwalik Group, Surai Khola, western Nepal. J. Nepal Geol. Soc. 17, 7–28. https://doi.org/10.3126/jngs.v17i0.32095 (1998).Article 

    Google Scholar 
    70.Simpson, C. T. Synopsis of the naiades, or pearly fresh-water mussels. Proc. U.S. Natl. Mus. 22, 501–1044 (1900).
    Google Scholar 
    71.Madhyastha, N. A. & Mumbrekar, K. D. Two endemic genera of bivalves in the Tunga River of the Western Ghats, Karnataka, India. Tentacle 14, 23–24 (2006).
    Google Scholar 
    72.Prashad, B. Notes on lamellibranchs in the Indian Museum. Rec. Indian Mus. 19, 165–173 (1920).
    Google Scholar 
    73.Haas, F. Eine neude indische Najade, Trapezoideus prashadi. Senckenbergiana 4, 101–102 (1922).
    Google Scholar 
    74.Sowerby, G. B. Genus Unio. Conchologica Iconica 16, pls. 1, 61–96 (1868).75.Haas, F. Die Unioniden. H.C. Küster, Systematisches Conchylien-Cabinet von Martini und Chemnitz 9, 257–288 (1919).76.Hadl, G. Results of the Austrian-Ceylonese Hydrobiological Mission 1970 of the 1st Zoological Institute of the University of Vienna (Austria) and the Department of Zoology of the Vidyalankara University of Ceylon, Kelaniya. Part XVIII: Freshwater Mussels Bivalvia. Bull. Fish. Res. Stn. Sri Lanka (Ceylon) 25, 183–188 (1974).
    Google Scholar 
    77.Gittenberger et al. A Field Guide to the Common Molluscs of Bhutan (National Biodiversity Centre (NBC), Ministry of Agriculture and Forests, 2017).78.Annandale, N. & Prashad, B. The Mollusca of the inland waters of Baluchistan and of Seistan. Rec. Indian Mus. 18, 17–62 (1919).
    Google Scholar 
    79.Simpson, C. T. A Descriptive Catalogue of the Naiades, or Pearly Fresh-Water Mussels. Parts I-III (Bryant Walker, 1914).
    Google Scholar 
    80.Mörch, O. A. L. On the land and fresh-water Mollusca of Greenland. Am. J. Conchol. 4, 25–40 (1868).
    Google Scholar 
    81.Schröter, J. S. Die Geschichte der Flussconchylien: Mit vorzüglicher Rücksicht auf Diejenigen Welche in den Thüringischen Wassern Leben (Halle, bey Johann Jacob Gebauer, 1779).82.Spengler, L. Om Slaegterne Chaena Mya og Unio. Skrivter Naturhistorie-Selskabet 3, 16–69 (1993).
    Google Scholar 
    83.Haas, F. Bemerkungen über Spenglers Unionen. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhav 65, 51–66 (1913).
    Google Scholar 
    84.Haas, F. Superfamilia Unionacea. Das Tierreich 88, 1–663 (1969).
    Google Scholar 
    85.Prashad, B. On some undescribed freshwater Molluscs from various parts of India and Burma. Rec. Geol. Surv. India 62, 428–433 (1930).
    Google Scholar 
    86.Conrad, T. A. A synopsis of the family of Naïades of North America, with notes, and a table of some of the genera and sub-genera of the family, according to their geographical distribution, and descriptions of genera and sub-genera. Proc. Acad. Natl. Sci. Phila. 6, 243–269 (1853).
    Google Scholar 
    87.Sowerby, G. B. Genus Unio. Conchol. Iconica 16, 31–54 (1866).
    Google Scholar 
    88.Frierson, L. S. A Classified and Annotated Check List of the North American Naiades (Baylor University Press, 1927).
    Google Scholar 
    89.Prashad, B. Studies on the anatomy of Indian Mollusca. The soft parts of some Indian Unionidae. Rec. Indian Mus. 16, 289–296 (1919).
    Google Scholar 
    90.Annandale, N. Further note on the burrows of Solenaia soleniformis. Rec. Indian Mus. 16, 205–206 (1919).
    Google Scholar 
    91.Godwin-Austen, H. H. Description of a new species of Margaritanopsis (Unionidae) from the Southern Shan States, with notes on Solenaia soleniformis. Rec. Indian Mus. 16, 203–205 (1919).
    Google Scholar 
    92.Pfeiffer, J. M., Breinholt, J. W. & Page, L. M. Unioverse: A phylogenetic resource for reconstructing the evolution of freshwater mussels (Bivalvia, Unionoida). Mol. Phylogenet. Evol. 137, 114–126. https://doi.org/10.1016/j.ympev.2019.02.016 (2019).Article 
    PubMed 

    Google Scholar 
    93.Huang, X.-C. et al. Towards a global phylogeny of freshwater mussels (Bivalivia: Unionida): Species delimitation of Chinese taxa, mitochondrial phylogenomics, and diversification patterns. Mol. Phylogenet. Evol. 130, 45–59. https://doi.org/10.1016/j.ympev.2018.09.019 (2019).Article 
    PubMed 

    Google Scholar 
    94.Bolotov, I. N., Kondakov, A. V., Konopleva, E. S. & Vikhrev, I. V. A new genus of ultra-elongate freshwater mussels from Vietnam and eastern China (Bivalvia: Unionidae). Ecol. Montenegrina 39, 1–6. https://doi.org/10.37828/em.2021.39.1 (2021).Article 

    Google Scholar 
    95.Pfeiffer, J. M. & Graf, D. L. Evolution of bilaterally asymmetrical larvae in freshwater mussels (Bivalvia: Unionoida: Unionidae). Zool. J. Linn. Soc. 175, 307–318. https://doi.org/10.1111/zoj.12282 (2015).Article 

    Google Scholar 
    96.Rafinesque, C. S. Continuation of a Monograph of the Bivalve Shells of the River Ohio and Other Rivers of the Western States. By Prof. C.S. Rafinesque. (Published at Brussels, September, 1820). Containing 46 species, from No. 76 to no. 121. Including an Appendix on Some Bivalve Shells of the Rivers of Hindostan, with a Supplement on the Fossil Bivalves of the Western States, and the Tulosites, A New Genus of Fossils (1831).97.Blanford, W. T. Contributions to Indian Malacology no VII. List of species of Unio and Anodonta described as occurring in India, Ceylon and Burma. J. Asiat. Soc. Bengal 35, 134–155 (1866).
    Google Scholar 
    98.Frierson, L. S. Remarks on classification of the Unionidae. Nautilus 28, 6–8 (1914).
    Google Scholar 
    99.Johnson, R. I. The types of Unionidae (Mollusca: Bivalvia) described by C. S. Rafinesque in the Museum national d’Histoire naturelle, Paris. J. Conchyliol. 110, 35–37 (1973).
    Google Scholar 
    100.Vanatta, E. G. Rafinesque’s types of Unio. Proc. Acad. Natl. Sci. Phila. 67, 549–559 (1915).
    Google Scholar 
    101.Baker, H. B. Some of Rafinesque’s unionid names. The Nautilus 77, 140–142 (1964).
    Google Scholar 
    102.Williams, J. D., Bogan, A. E. & Garner, J. T. Freshwater mussels of Alabama and the Mobile Basin in Georgia, Mississippi and Tennessee (University of Alabama Press, 2008).
    Google Scholar 
    103.Bogan, A. E. A resolution of the nomenclatural confusion surrounding Plagiola Rafinesque, Epioblasma Rafinesque, and Dysnomia Agassiz (Mollusca: Bivalvia: Unionidae). Malacol. Rev. 30, 77–86 (1997).
    Google Scholar 
    104.Graf, D. L. & Cummings, K. S. Palaeoheterodont diversity (Mollusca: Trigonioida+ Unionoida): What we know and what we wish we knew about freshwater mussel evolution. Zool. J. Linn. Soc. 148, 343–394. https://doi.org/10.1111/j.1096-3642.2006.00259.x (2006).Article 

    Google Scholar 
    105.Modell, H. Das natlirliche System der Najaden. Arch. Molluskenkunde 74, 161–191 (1942).
    Google Scholar 
    106.Starobogatov, Y. I. Fauna of Molluscs and Zoogeographic Division of Continental Waterbodies of the Globe (Nauka, 1970).
    Google Scholar 
    107.Bolotov, I. N. et al. Discovery of Novaculina myanmarensis sp. nov. (Bivalvia: Pharidae: Pharellinae) closes the freshwater razor clams range disjunction in Southeast Asia. Sci. Rep. 8, 16325. https://doi.org/10.1038/s41598-018-34491-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Than, W. et al. Phylogeography and distribution of the freshwater razor clams Novaculina myanmarensis and N. gangetica in Myanmar, with notes on two doubtful nominal taxa described as Novaculina members (Bivalvia: Pharidae). Ecol. Montenegrina 40, 59–67. https://doi.org/10.37828/em.2021.40.4 (2021).Article 

    Google Scholar 
    109.Haas, F. Beiträge zu einer Monographie der asiatischen Unioniden. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 38, 129–203 (1924).
    Google Scholar 
    110.Preston, H. B. Mollusca (Freshwater Gastropoda & Pelecypoda). Fauna of British India, including Ceylon and Burma (Taylor and Francis, 1915).
    Google Scholar 
    111.Prashad, B. A revision of the Burmese Unionidae. Rec. Indian Mus. 24, 91–111 (1922).
    Google Scholar 
    112.Theobald, W. Catalogue of the Recent Shells in the Museum of the Asiatic Society (Bengal Military Orphan Press, 1860).
    Google Scholar 
    113.Zieritz, A. et al. Diversity, biogeography and conservation of freshwater mussels (Bivalvia: Unionida) in East and Southeast Asia. Hydrobiologia 810, 29–44. https://doi.org/10.1007/s10750-017-3104-8 (2018).Article 

    Google Scholar 
    114.Konopleva, E. S. et al. A taxonomic review of Trapezidens (Bivalvia: Unionidae: Lamellidentini), a freshwater mussel genus endemic to Myanmar, with a description of a new species. Ecol. Montenegrina 27, 45–57. https://doi.org/10.37828/em.2020.27.6 (2020).Article 

    Google Scholar 
    115.Brandt, R. A. M. The non-marine aquatic mollusca of Thailand. Arch. Mollusckenkunde 105, 1–423 (1974).
    Google Scholar 
    116.Neumayr, M. Süsswasser-Mollusken. Die wissenschaftlichen ergebnisse der reise des grafen Béla Széchenyi in Ostasien 1877–1880(2), 637–662 (1899).
    Google Scholar 
    117.Tripathy, B. & Mukhopadhayay, A. Freshwater molluscs of India: An insight of into their diversity, distribution and conservation. In Aquatic Ecosystem: Biodiversity, Ecology and Conservation (eds Rawat, M. et al.) 163–195 (Springer, 2015).
    Google Scholar 
    118.Prashad, B. VIII—Some Noteworthy Examples of Parallel Evolution in the Molluscan Faunas of South-eastern Asia and South America. Proc. R. Soc. Edinb. 51, 42–53. https://doi.org/10.1017/s0370164600022987 (1932).Article 

    Google Scholar 
    119.Smith, E. A. Description of Mulleria dalyi, n. sp., from India. Proc. Malacol. Soc. Lond. 3, 14–16 (1898).
    Google Scholar 
    120.Bogan, A. E. & Hoeh, W. R. On becoming cemented: Evolutionary relationships among the genera in the freshwater bivalve family Etheriidae (Bivalvia: Unionoida). Geol. Soc. Lond. Spec. Publ. 177, 159–168. https://doi.org/10.1144/GSL.SP.2000.177.01.09 (2000).ADS 
    Article 

    Google Scholar 
    121.Bogan, A. E. & Roe, K. J. Freshwater bivalve (Unioniformes) diversity, systematics, and evolution: Status and future directions. J. N. Am. Benthol. Soc. 27, 349–369. https://doi.org/10.1899/07-069.1 (2008).Article 

    Google Scholar 
    122.Hoeh, W. R., Bogan, A. E., Heard, W. H. & Chapman, E. G. Palaeoheterodont phylogeny, character evolution, diversity and phylogenetic classification: A reflection on methods of analysis. Malacologia 51, 307–317. https://doi.org/10.4002/040.051.0206 (2009).Article 

    Google Scholar 
    123.Woodward, M. F. On the anatomy of Mulleria dalyi, Smth. J. Molluscan Stud. 3, 87–91. https://doi.org/10.1093/oxfordjournals.mollus.a065152 (1898).Article 

    Google Scholar 
    124.Aravind, N. A. et al. The status and distribution of freshwater molluscs of the Western Ghats. In The Status and Distribution of Freshwater Biodiversity in the Western Ghats, India (eds Molur, S. et al.) 21–42 (IUCN and Zoo Outreach Organisation, 2011).
    Google Scholar 
    125.Madhyastha, N. A. Pseudomulleria dalyi (Acostea dalyi): A rare cemented bivalve of Western Ghats. Zoos’ Print J. 16, 573 (2001).
    Google Scholar 
    126.Loria, S. F. & Prendini, L. Out of India, thrice: Diversification of Asian forest scorpions reveals three colonizations of Southeast Asia. Sci. Rep. 10, 22301. https://doi.org/10.1038/s41598-020-78183-8 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    127.Köhler, F. & Glaubrecht, M. Out of Asia and into India: On the molecular phylogeny and biogeography of the endemic freshwater gastropod Paracrostoma Cossmann, 1900 (Caenogastropoda: Pachychilidae). Biol. J. Lin. Soc. 91, 627–651. https://doi.org/10.1111/j.1095-8312.2007.00866.x (2007).Article 

    Google Scholar 
    128.Dahanukar, N., Raut, R. & Bhat, A. Distribution, endemism and threat status of freshwater fishes in the Western Ghats of India. J. Biogeogr. 31, 123–136. https://doi.org/10.1046/j.0305-0270.2003.01016.x (2004).Article 

    Google Scholar 
    129.Britz, R. et al. Aenigmachannidae, a new family of snakehead fishes (Teleostei: Channoidei) from subterranean waters of South India. Sci. Rep. 10, 16081. https://doi.org/10.1038/s41598-020-73129-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    130.Hedges, S. B. The coelacanth of frogs. Nature 425, 669–670. https://doi.org/10.1038/425669a (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    131.Dutta, S. K., Vasudevan, K., Chaitra, M. S., Shanker, K. & Aggarwal, R. K. Jurassic frogs and the evolution of amphibian endemism in the Western Ghats. Curr. Sci. 86, 211–216 (2004).CAS 

    Google Scholar 
    132.Roelants, K., Jiang, J. & Bossuyt, F. Endemic ranid (Amphibia: Anura) genera in southern mountain ranges of the Indian subcontinent represent ancient frog lineages: Evidence from molecular data. Mol. Phylogenet. Evol. 31, 730–740. https://doi.org/10.1016/j.ympev.2003.09.011 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    133.Van Bocxlaer, I. et al. Mountain-associated clade endemism in an ancient frog family (Nyctibatrachidae) on the Indian subcontinent. Mol. Phylogenet. Evol. 62, 839–847. https://doi.org/10.1016/j.ympev.2011.11.027 (2012).Article 
    PubMed 

    Google Scholar 
    134.Krishnan, R. M. & Ramesh, B. R. Endemism and sexual systems in the evergreen tree flora of the Western Ghats, India. Divers. Distrib. 11, 559–565. https://doi.org/10.1111/j.1366-9516.2005.00190.x (2005).Article 

    Google Scholar 
    135.Mörch, O. A. L. Catalogue des Mollusques terrestres et fluviatiles des anciennes colonies du golfe du Bengale. J. Conchyliol. 20, 303–345 (1872).
    Google Scholar 
    136.Graf, D. L. & Cummings, K. S. Freshwater mussel (Mollusca: Bivalvia: Unionoida) richness and endemism in the ecoregions of Africa and Madagascar based on comprehensive museum sampling. Hydrobiologia 678, 17–36. https://doi.org/10.1007/s10750-011-0810-5 (2011).Article 

    Google Scholar 
    137.Li, Z. et al. Kinematic evolution of the West Burma block during and after India-Asia collision revealed by paleomagnetism. J. Geodyn. 134, 101690. https://doi.org/10.1016/j.jog.2019.101690 (2020).Article 

    Google Scholar 
    138.Van Damme, D., Bogan, A. E. & Dierick, M. A revision of the Mesozoic naiads (Unionoida) of Africa and the biogeographic implications. Earth Sci. Rev. 147, 141–200. https://doi.org/10.1016/j.earscirev.2015.04.011 (2015).ADS 
    Article 

    Google Scholar 
    139.Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021 (2012).ADS 
    Article 

    Google Scholar 
    140.Bosworth, W. Mesozoic and early Tertiary rift tectonics in East Africa. Tectonophysics 209, 115–137. https://doi.org/10.1016/0040-1951(92)90014-W (1992).ADS 
    Article 

    Google Scholar 
    141.Guiraud, R., Bosworth, W., Thierry, J. & Delplanque, A. Phanerozoic geological evolution of Northern and Central Africa: An overview. J. Afr. Earth Sci. 43, 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017 (2005).ADS 
    Article 

    Google Scholar 
    142.Wilson, M. & Guiraud, R. Magmatism and rifting in Western and Central Africa, from Late Jurassic to Recent times. Tectonophysics 213, 203–225 (1992).ADS 

    Google Scholar 
    143.Chatterjee, S., Scotese, C. R. & Bajpai, S. Indian Plate and Its Epic Voyage from Gondwana to Asia: Its Tectonic, Paleoclimatic, and Paleobiogeographic Evolution (Special Paper 529, The Geological Society of America, 2017).144.Briggs, J. C. The biogeographic and tectonic history of India. J. Biogeogr. 30, 381–388. https://doi.org/10.1046/j.1365-2699.2003.00809.x (2003).Article 

    Google Scholar 
    145.Hartman, J. H., Erickson, D. N. & Bakken, A. Stephen Hislop and his 1860 Cretaceous continental molluscan new species descriptions in Latin from the Deccan Plateau, India. Palaeontology 51, 1225–1252. https://doi.org/10.1111/j.1475-4983.2008.00807.x (2008).Article 

    Google Scholar 
    146.Vandamme, D., Courtillot, V., Besse, J. & Montigny, R. Paleomagnetism and age determinations of the Deccan Traps (India): Results of a Nagpur-Bombay Traverse and review of earlier work. Rev. Geophys. 29, 159–190. https://doi.org/10.1029/91RG00218 (1991).ADS 
    Article 

    Google Scholar 
    147.Bolotov, I. N. et al. Multi-locus fossil-calibrated phylogeny, biogeography and a subgeneric revision of the Margaritiferidae (Mollusca: Bivalvia: Unionoida). Mol. Phylogenet. Evol. 103, 104–121. https://doi.org/10.1016/j.ympev.2016.07.020 (2016).Article 
    PubMed 

    Google Scholar 
    148.Lyubas, A. A. et al. A taxonomic revision of fossil freshwater pearl mussels (Bivalvia: Unionoida: Margaritiferidae) from Pliocene and Pleistocene deposits of Southeastern Europe. Ecol. Montenegrina 21, 1–16. https://doi.org/10.37828/em.2019.21.1 (2019).Article 

    Google Scholar 
    149.Campbell, D. C. et al. Phylogeny of North American amblemines (Bivalvia, Unionoida): Prodigious polyphyly proves pervasive across genera. Invertebr. Biol. 124, 131–164 (2005).
    Google Scholar 
    150.Lopes-Lima, M. et al. Revisiting the North American freshwater mussel genus Quadrula sensu lato (Bivalvia: Unionidae): Phylogeny, taxonomy and species delineation. Zool. Scr. 48, 313–336. https://doi.org/10.1111/zsc.12344 (2019).Article 

    Google Scholar 
    151.Aksenova, O. V. et al. Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World. Sci. Rep. 8, 11199. https://doi.org/10.1038/s41598-018-29451-1 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    152.Kosuch, J., Vences, M., Dubois, A., Ohler, A. & Böhme, W. Out of Asia: Mitochondrial DNA evidence for an oriental origin of tiger frogs, genus Hoplobatrachus. Mol. Phylogenet. Evol. 21, 398–407. https://doi.org/10.1006/mpev.2001.1034 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    153.Sil, M., Aravind, N. A. & Karanth, K. P. Into-India or out-of-India? Historical biogeography of the freshwater gastropod genus Pila (Caenogastropoda: Ampullariidae). Biol. J. Lin. Soc. 129, 752–764. https://doi.org/10.1093/biolinnean/blz171 (2020).Article 

    Google Scholar 
    154.Sil, M., Aravind, N. A. & Karanth, K. P. Role of geography and climatic oscillations in governing into-India dispersal of freshwater snails of the family: Viviparidae. Mol. Phylogenet. Evol. 138, 174–181. https://doi.org/10.1016/j.ympev.2019.05.027 (2019).Article 
    PubMed 

    Google Scholar 
    155.Garg, S. & Biju, S. D. New microhylid frog genus from Peninsular India with Southeast Asian affinity suggests multiple Cenozoic biotic exchanges between India and Eurasia. Sci. Rep. 9, 1906. https://doi.org/10.1038/s41598-018-38133-x (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    156.Gorin, V. A. et al. A little frog leaps a long way: Compounded colonizations of the Indian Subcontinent discovered in the tiny Oriental frog genus Microhyla (Amphibia: Microhylidae). PeerJ 8, e9411. https://doi.org/10.7717/peerj.9411 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Karanth, K. P. An island called India: Phylogenetic patterns across multiple taxonomic groups reveal endemic radiations. Curr. Sci. 108, 1847–1851 (2015).
    Google Scholar 
    158.Karanth, K. P. Out-of-India Gondwanan origin of some tropical Asian biota. Curr. Sci. 90, 789–792 (2006).
    Google Scholar 
    159.Datta-Roy, A. & Karanth, K. P. The Out-of-India hypothesis: What do molecules suggest?. J. Biosci. 34, 687–697. https://doi.org/10.1007/s12038-009-0057-8 (2009).Article 
    PubMed 

    Google Scholar 
    160.Gower, D. J. et al. A molecular phylogeny of ichthyophiid caecilians (Amphibia: Gymnophiona: Ichthyophiidae): Out of India or out of South East Asia?. Proc. R. Soc. Lond. B 269, 1563–1569. https://doi.org/10.1098/rspb.2002.2050 (2002).CAS 
    Article 

    Google Scholar 
    161.Kamei, R. G. et al. Discovery of a new family of amphibians from northeast India with ancient links to Africa. Proc. R. Soc. B 279, 2396–2401. https://doi.org/10.1098/rspb.2012.0150 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    162.Yamahira, K. et al. Mesozoic origin and ‘out-of-India’radiation of ricefishes (Adrianichthyidae). Biol. Let. 17, 20210212. https://doi.org/10.1098/rsbl.2021.0212 (2021).Article 

    Google Scholar 
    163.Klaus, S., Schubart, C. D., Streit, B. & Pfenninger, M. When Indian crabs were not yet Asian-biogeographic evidence for Eocene proximity of India and Southeast Asia. BMC Evol. Biol. 10, 287. https://doi.org/10.1186/1471-2148-10-287 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    164.Joshi, J., Karanth, P. K. & Edgecombe, G. D. The out-of-India hypothesis: Evidence from an ancient centipede genus, Rhysida (Chilopoda: Scolopendromorpha) from the Oriental Region, and systematics of Indian species. Zool. J. Linn. Soc. 189, 828–861. https://doi.org/10.1093/zoolinnean/zlz138 (2020).Article 

    Google Scholar 
    165.Foley, S., Krehenwinkel, H., Cheng, D. Q. & Piel, W. H. Phylogenomic analyses reveal a Gondwanan origin and repeated out of India colonizations into Asia by tarantulas (Araneae: Theraphosidae). PeerJ 9, e11162. https://doi.org/10.7717/peerj.11162 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    166.Dayanandan, S., Ashton, P. S., Williams, S. M. & Primack, R. B. Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene. Am. J. Bot. 86, 1182–1190 (1999).CAS 
    PubMed 

    Google Scholar 
    167.Conti, E., Eriksson, T., Schönenberger, J., Sytsma, K. J. & Baum, D. A. Early Tertiary out-of-India dispersal of Crypteroniaceae: Evidence from phylogeny and molecular dating. Evolution 56, 1931–1942. https://doi.org/10.1111/j.0014-3820.2002.tb00119.x (2002).Article 
    PubMed 

    Google Scholar 
    168.Chen, J. et al. Eurypterogerron kachinensis gen et sp nov, a remarkable minlagerrontid (Hemiptera, Cicadomorpha) in mid-Cretaceous Burmese amber. Cretaceous Res. 110, 104418. https://doi.org/10.1016/j.cretres.2020.104418 (2020).Article 

    Google Scholar 
    169.Rasnitsyn, A. P. & Öhm-Kühnle, C. Three new female Aptenoperissus from mid-Cretaceous Burmese amber (Hymenoptera, Stephanoidea, Aptenoperissidae): Unexpected diversity of paradoxical wasps suggests insular features of source biome. Cretac. Res. 91, 168–175. https://doi.org/10.1016/j.cretres.2018.06.004 (2018).Article 

    Google Scholar 
    170.Zhang, Q., Rasnitsyn, A. P., Wang, B. & Zhang, H. Hymenoptera (wasps, bees and ants) in mid-Cretaceous Burmese amber: A review of the fauna. Proc. Geol. Assoc. 129, 736–747. https://doi.org/10.1016/j.pgeola.2018.06.004 (2018).Article 

    Google Scholar 
    171.Bolotov, I. N. et al. A new fossil piddock (Bivalvia: Pholadidae) may indicate estuarine to freshwater environments near Cretaceous amber-producing forests in Myanmar. Sci. Rep. 11, 6646. https://doi.org/10.1038/s41598-021-86241-y (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    172.Balashov, I. A., Perkovsky, E. E. & Vasilenko, D. V. A mid-Cretaceous land snail Burminella artiukhini gen. et. sp. nov. from Burmese amber: A “missing link” between Pupinidae and other Cyclophoroidea? (Caenogastropoda). Cretaceous Res. 118, 104941. https://doi.org/10.1016/j.cretres.2021.104941 (2021).Article 

    Google Scholar 
    173.Balashov, I. An inventory of molluscs recorded from mid-Cretaceous Burmese amber, with the description of a land snail, Euthema annae sp. nov. (Caenogastropoda, Cyclophoroidea, Diplommatinidae). Cretaceous Res. 118, 104676. https://doi.org/10.1016/j.cretres.2020.104676 (2021).Article 

    Google Scholar 
    174.Yu, T., Neubauer, T. A. & Jochum, A. First freshwater gastropod preserved in amber suggests long-distance dispersal during the Cretaceous Period. Geol. Mag. 58, 1327–1334. https://doi.org/10.1017/S0016756821000285 (2021).ADS 
    Article 

    Google Scholar 
    175.Bingle-Davis, M. J. Systematics, diversity, and origins of Upper Cretaceous continental molluscan fauna in the infra- and intertrappean strata of the Deccan Plateau, central India (PhD Dissertation) (University of North Dakota, 2012).176.Huang, H. et al. At a crossroads: The late Eocene flora of central Myanmar owes its composition to plate collision and tropical climate. Rev. Palaeobot. Palynol. 291, 104441. https://doi.org/10.1016/j.revpalbo.2021.104441 (2021).Article 

    Google Scholar 
    177.Westerweel, J. et al. Burma Terrane collision and northward indentation in the Eastern Himalayas recorded in the Eocene-Miocene Chindwin Basin (Myanmar). Tectonics 39, e2020TC006413. https://doi.org/10.1029/2020TC006413 (2020).ADS 
    Article 

    Google Scholar 
    178.Soe, T. T. & Watkinson, I. M. The Sagaing Fault Myanmar. Geol. Soc. 48, 413–441. https://doi.org/10.1144/M48.19 (2017).Article 

    Google Scholar 
    179.de Sena Oliveira, I. et al. Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol. 26, 2594–2601. https://doi.org/10.1016/j.cub.2016.07.023 (2016).CAS 
    Article 

    Google Scholar 
    180.Gustafson, L. L. et al. Evaluation of a nonlethal technique for hemolymph collection in Elliptio complanata, a freshwater bivalve (Mollusca: Unionidae). Dis. Aquat. Org. 65, 159–165. https://doi.org/10.3354/dao065159 (2005).Article 

    Google Scholar 
    181.Jaksch, K., Eschner, A., Rintelen, T. V. & Haring, E. DNA analysis of molluscs from a museum wet collection: A comparison of different extraction methods. BMC. Res. Notes 9, 348. https://doi.org/10.1186/s13104-016-2147-7 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    182.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    183.Graf, D. L. Patterns of freshwater bivalve global diversity and the state of phylogenetic studies on the Unionoida, Sphaeriidae, and Cyrenidae. Am. Malacol. Bull. 31, 135–153. https://doi.org/10.4003/006.031.0106 (2013).Article 

    Google Scholar 
    184.Nguyen, L.-T., Schmidt, H. A., Haeseler, V. A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    185.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    186.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. https://doi.org/10.1038/nmeth.4285 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    187.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. https://doi.org/10.1093/molbev/msx281 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    188.Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235. https://doi.org/10.1093/nar/gkw256 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    189.Miller, M., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010).190.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    191.Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    192.Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 
    PubMed 

    Google Scholar 
    193.Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes 7, 965–968. https://doi.org/10.1111/j.1471-8286.2007.01821.x (2007).CAS 
    Article 

    Google Scholar 
    194.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, 1–28. https://doi.org/10.1371/journal.pcbi.1006650 (2019).CAS 
    Article 

    Google Scholar 
    195.Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    196.Zieritz, A. et al. Mitogenomic phylogeny and fossil-calibrated mutation rates for all F-and M-type mtDNA genes of the largest freshwater mussel family, the Unionidae (Bivalvia). Zool. J. Linn. Soc. 193, 1088–1107. https://doi.org/10.1093/zoolinnean/zlaa153 (2020).Article 

    Google Scholar 
    197.Froufe, E. et al. Who lives where? Molecular and morphometric analyses clarify which Unio species (Unionida, Mollusca) inhabit the southwestern Palearctic. Org. Divers. Evol. 16, 597–611. https://doi.org/10.1007/s13127-016-0262-x (2016).Article 

    Google Scholar 
    198.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    199.Rambaut, A. et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    200.Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970. https://doi.org/10.1093/sysbio/syu056 (2014).Article 
    PubMed 

    Google Scholar 
    201.Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248. https://doi.org/10.21425/F5FBG19694 (2013).Article 

    Google Scholar 
    202.Yu, Y., Blair, C. & He, X. J. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606. https://doi.org/10.1093/molbev/msz257 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    203.Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+ J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749. https://doi.org/10.1111/jbi.13173 (2018).Article 

    Google Scholar 
    204.Yu, Y., Harris, A. J. & He, X. S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. Mol. Phylogenet. Evol. 56, 848–850. https://doi.org/10.1016/j.ympev.2010.04.011 (2010).Article 
    PubMed 

    Google Scholar 
    205.Müller, R. D. et al. GPlates: Building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261. https://doi.org/10.1029/2018GC007584 (2018).ADS 
    Article 

    Google Scholar 
    206.Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907. https://doi.org/10.1029/2018TC005462 (2019).ADS 
    Article 

    Google Scholar 
    207.Cao, X. et al. A deforming plate tectonic model of the South China Block since the Jurassic. Gondwana Res. https://doi.org/10.1016/j.gr.2020.11.010 (2020).Article 

    Google Scholar 
    208.Young, A. et al. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosci. Front. 10, 989–1013. https://doi.org/10.1016/j.gsf.2018.05.011 (2019).ADS 
    Article 

    Google Scholar 
    209.Torsvik, T. H. et al. Pacific-Panthalassic reconstructions: Overview, errata and the way forward. Geochem. Geophys. Geosyst. 20, 3659–3689. https://doi.org/10.1029/2019GC008402 (2019).ADS 
    Article 

    Google Scholar 
    210.Nevill, G. List of the Mollusca brought back by Dr. J. Anderson from Yunnan and Upper Burma, with descriptions of new species. J. Asiatic Soc. Bengal 46, 14–41 (1877).
    Google Scholar 
    211.Bolotov, I. N. et al. Indonaia rectangularis (Tapparone-Canefri, 1889), comb. nov., a forgotten freshwater mussel species from Myanmar. ZooKeys 852, 23–30. https://doi.org/10.3897/zookeys.852.33898 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    212.Eydoux, F. Mollusques. Magasin Zool. 8, 181–192 (1838).
    Google Scholar 
    213.Lea, I. Observations on the Naïades, and descriptions of new species of that and other families. Trans. Am. Philos. Soc. 4, 63–121 (1831).
    Google Scholar 
    214.Nesemann, H. A., Sharma, S. U., Sharma, G. O. & Sinha, R. K. Illustrated checklist of large freshwater bivalves of the Ganga River system (Mollusca: Bivalvia: Solecurtidae, Unionidae, Amblemidae). Nachrichchtenblatt Ersten Vorarlberger Malakologischen Gesellschaft 13, 1–51 (2005).
    Google Scholar 
    215.Gmelin, J. F. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, locis. Curt 1(6), 3021–3909 (1791).
    Google Scholar 
    216.Lea, I. Description of twenty-five new species of exotic uniones. Proc. Acad. Natl. Sci. Phila. 8, 92–95 (1856).
    Google Scholar 
    217.Martens, E. V. Binnen-Conchylien aus Ober-Birma. Arch. Nat. 65, 30–48 (1899).
    Google Scholar 
    218.Preston, H. B. A catalogue of the Asiatic naiades in the collection of the Indian Museum, Calcutta, with descriptions of new species. Rec. Indian Mus. 7, 279–308 (1912).
    Google Scholar 
    219.Annandale, N. & Prashad, B. XXVIII. The aquatic and amphibious Mollusca of Manipur. Rec. Indian Mus. 22, 529–631 (1921).
    Google Scholar 
    220.Annandale, N. & Prashad, B. Some freshwater molluscs from the Bombay Presidency. Rec. Indian Mus. 16, 139–152 (1919).
    Google Scholar 
    221.Philippi, R. A. Unio. Tab. I. Abbildungen und Beschreibungen neuer oder wenig gekannter Conchylien 1, 19–20 (1843).222.Hanley, S. Appendix, containing descriptions of the shells delineated in the plates, yet not described in the text; with a systematic list of the engravings, etc. In An Illustrated and Descriptive Catalogue of Recent Bivalve Shells 335–389 (Williams and Norgate, 1856).
    Google Scholar 
    223.Theobald, W. Descriptions of some new land and freshwater shells from India and Burmah. J. Asiatic Soc. Bengal 45, 184–189 (1876).
    Google Scholar 
    224.Lea, I. Observations on the Naïades; and descriptions of new species of that and other families. Trans. Am. Philos. Soc. 5, 23–119 (1834).
    Google Scholar 
    225.Hutton, T. Notices of some land and fresh water shells occurring in Afghanistan. J. Asiatic Soc. Bengal 18, 649–661 (1849).
    Google Scholar 
    226.Annandale, N. Aquatic molluscs of the Inlé Lake and connected waters. Rec. Indian Mus. 14, 103–182 (1918).
    Google Scholar 
    227.Gould, A. A. D. Gould described new shells, received from Rev Mr Mason, of Burmah. Proc. Boston Soc. Nat. Hist. 2, 218–221 (1847).
    Google Scholar 
    228.Benson, W. H. Descriptions of Indian and Burmese species of the genus Unio, Retz. Ann. Mag. Nat. Hist. 10, 184–195 (1862).
    Google Scholar 
    229.Lea, I. Description of new freshwater and land shells. Trans. Am. Philos. Soc. 6, 1–154 (1838).
    Google Scholar 
    230.Lamarck, J.-B. Histoire naturelle des animaux sans vertèbres. Vol. 6 (Chez l’Auteur, 1819).231.Müller, O. F. Vermivm Terrestrium et Fluviatilium, Seu Animalium Infusoriorum, Helminthicorum et Testaceorum, non Marinorum, Succincta Historia. Havniae Lisiae 2, 1–214 (1774).
    Google Scholar 
    232.Lea, I. Descriptions of three new species of exotic uniones. Proc. Acad. Natl. Sci. Phila. 11, 331 (1860).
    Google Scholar 
    233.Lea, I. Continuation of paper on fresh water and land shells. Proc. Am. Philos. Soc. 2, 30–34 (1841).
    Google Scholar 
    234.Benson, W. H. Descriptive catalogue of a collection of land and fresh-water shells, chiefly contained in the museum of the Asiatic Society. J. Asiatic Soc. Bengal 5, 741–750 (1836).
    Google Scholar 
    235.Hislop, S. Description of fossil shells, from the above-described deposits. Q. J. Geol. Soc. Lond. 16, 166–181 (1860).
    Google Scholar 
    236.Malcolmson, J. G. XXXVIII: On the Fossils of the Eastern portion of the Great Basaltic District of India. Trans. Geol. Soc. Lond. 5, 537–575 (1840).
    Google Scholar 
    237.Newbold, C. Summary of the Geology of Southern India. Part V. Fresh-water Limestones and Cherts. J. R. Asiatic Soc. Great Br. Irel. 8, 219–227 (1846).
    Google Scholar 
    238.Prashad, B. On a new fossil unionid from the intertrappean beds of Peninsular India. Rec. Geol. Surv. India 51, 368–370 (1921).
    Google Scholar 
    239.Lopes-Lima, M. et al. Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): Defining modern subfamilies and tribes. Mol. Phylogenet. Evol. 106, 174–191. https://doi.org/10.1016/j.ympev.2016.08.021 (2017).Article 
    PubMed 

    Google Scholar 
    240.Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1–52. https://doi.org/10.1029/2001GC000252 (2003).Article 

    Google Scholar 
    241.Preece, R. C. et al. William Benson and the Golden Age of Malacology in British India. Trop. Nat. Hist. 22, 1–612 (2022).MathSciNet 

    Google Scholar  More

  • in

    The neglected role of relative humidity in the interannual variability of urban malaria in Indian cities

    Data descriptionIn Indian cities, cases of falciparum malaria rise after the monsoon rains and peak in October–November. To address the question of whether humidity influences the seasonality and inter-annual variability of urban malaria we focus on 2 cities, Ahmedabad and Surat, with over 3 million people in the semi-arid state of Gujarat, India. These cities exhibit a rising population where sustained, extensive, and consistent surveillance programs have been conducted for over two decades. Despite their close proximity, these cities also exhibit distinct environments. While Ahmedabad is semi-arid, Surat is coastal with a maritime influence on its climate and is prone to flooding from the Tapi river.The malaria data consists of monthly cases collected from 1997 to 2014 by the respective Municipal Corporations of the cities of Ahmedabad and Surat (Fig. 1A, B). The epidemiological data result from two kinds of surveillance: (a) the collection of blood slides from fever patients by house-to-house visits by a health worker and examination of these slides for positive malaria parasites at the Primary/Community Health Center (active surveillance); (b) examination of blood slides from fever patients reporting directly to the Primary/Community Health Center (passive surveillance). Both types of data are pooled into a temporal record for each city. We used climate data of monthly RH, rainfall, and temperature for the same 18 years recorded at a local weather station within each city, supplied by the Indian Meteorological Department in Pune (India) and verified in the GHCN network of climate data (https://www.ncdc.noaa.gov/ghcn-daily-description). Since station data sometimes exhibit biases and can fail to represent the climate of the whole area of interest, here the whole city, we used gridded climate products (https://www.chc.ucsb.edu/data/chirps for precipitation and https://modis.gsfc.nasa.gov/data/dataprod/mod11.php for temperature) and constructed an average of grid cells to verify if climate covariates from the station data coincide with the satellite-based products (Supplementary Fig. 14). Time series for total population size were obtained through estimates by the respective municipal corporation.Data analysesThe temporal lagged correlation between monthly malaria cases and monthly meteorological factors from 1997 to 2014 was explored first for the two cities, by defining an interannual association based on maximum lagged correlations between the mean of the cases in the peak months (Aug–Nov) and the climate covariates. For humidity, we defined a three months window preceding the case epidemic season. This period was determined to fall between April and July for Surat and from May to July for Ahmedabad (Supplementary Table 2). The windows defined for the other covariates are shown in Supplementary Fig. 2.In addition, the temporal and possibly transient association of variability at different periods between the times series for malaria and humidity was also examined using wavelet coherence analysis3,42. In contrast to the Fourier spectral approaches, wavelet analyses are well suited for the study of signals whose frequency composition changes in time. The wavelet spectrum specifically provides a time-frequency decomposition of the total variance that is local in time42. The wavelet coherence analysis indicates the co-occurrence of a particular frequency at a given time in the number of cases and in the climate covariate.The wavelet cross-spectrum is given by ({W}_{x,y}(f,tau )={W}_{x,y}(f,tau ){W}_{x,y}^{* }(f,tau )) where x and y represent the two-time series, f is the scale parameter and (tau), the time parameter, with * denoting the complex conjugate. As in the Fourier spectral approaches, the wavelet coherence is defined as the cross-spectrum normalized by the spectrum of each signal$${R}_{x,y}(f,tau )=frac{|langle {W}_{x,y}(f,tau )rangle |}{{|langle {W}_{x,x}(f,tau )rangle |}^{1/2}{|langle {W}_{y,y}(f,tau )rangle |}^{1/2}}$$
    (1)
    where (langle rangle) denotes a smoothing operator in both time and scale. Using this definition, ({R}_{x,y}(f,tau )) is bounded by (0 , < , {R}_{x,y}(f,tau ), < , 1). The smoothing is performed, as in Fourier spectral approaches, by a convolution with a constant length window function both in the time and frequency directions42. We have chosen to use a procedure based on resampling the observed data with a Markov process scheme that preserves only the short temporal correlations. Our aim is to test whether the wavelet-based quantities (the coherence) observed at a particular position on the time-scale plane are not due to a random process with the same Markov transitions (time order) as the original time series42. In our wavelet coherence spectrum, the white lines indicate the α = 5% significant level computed on the basis of 1000 bootstrapped series, and the shaded area, known as the cone of influence, indicates the influence of edge effects.Transmission modelWith a stochastic transmission model (Supplementary Fig. 5), we test the hypothesis that humidity is important in driving the temporal dynamics of malaria. The model subdivides the total population P into two classes of infectious and susceptible individuals respectively, to allow for heterogeneity in the degree of clinical symptoms and protection conferred by the previous infection. Specifically, the number of individuals in those classes is denoted by S1 for those susceptible to infection, E, for those exposed to infection, I1, for those infected, symptomatic and infectious, I2, for those that are infected but are asymptomatic and still infectious, and S2, for those recovering from initial infection with partial protection. In the equation for S1, the flow of newborns combined with the death rate of each class results in population numbers equal to those observed for the overall demographic growth of the city. The system of stochastic differential equations is given by the following equations:$$d{S}_{1}/{dt}=left(delta P+{dP}/{dt}right)+{mu }_{{S}_{2}{S}_{1}}{S}_{2}-{mu }_{{SE}}(t){S}_{1}-delta {S}_{1,}$$ (2) $${dE}/{dt}={mu }_{{SE}}(t){S}_{1}-{mu }_{E{I}_{1}}E-delta E,$$ (3) $$d{I}_{1}/{dt}={mu }_{E{I}_{1}}E+{mu }_{{I}_{1}{S}_{2}}{I}_{1}-delta {I}_{1},$$ (4) $$d{S}_{2}/{dt}={mu }_{{I}_{1}{S}_{2}}{I}_{1}+{mu }_{{I}_{1}{S}_{2}}{I}_{2}-{mu }_{{S}_{2}{S}_{1}}{S}_{2}-{mu }_{{SE}}(t){S}_{2}-delta {S}_{2},$$ (5) $$d{I}_{2}/{dt}={mu }_{{SE}}(t){S}_{2}+{mu }_{{I}_{2}{S}_{2}}{I}_{2}-delta {I}_{2},$$ (6) We rely on a model that represents vector dynamics implicitly by implementing a Gamma-distributed time delay with mean in the force of infection (the rate of transmission per susceptible individual)9,16,43. This distributed lag is meant to account for the developmental delay of P. falciparum parasites within surviving mosquitoes. For this purpose, we follow the phenomenological representation of transmission via a mosquito vector introduced in refs. 16,43,44, which includes a distributed delay in the transmission from infected to susceptible humans. That is, the force of infection generated by the number of infections at any given time is not experienced at that same time by susceptible individuals, as would be the case in a directly transmitted disease. Under vector transmission, susceptible individuals experience it with a delay, which we consider Gamma distributed, to avoid the unrealistic assumption of a perfectly fixed delay, and to use a positive distribution with a flexible shape and a well-defined mode.Specifically, the development of the parasite within the mosquito introduces a distributed delay in the “latent” force of infection λ (s) resulting in the realized rate of infection of susceptible individuals$${mu }_{{SE}}left(tright)={int }_{{{{{{rm{infty }}}}}}}^{t}gamma (t-s)lambda (s){ds},$$ (7) where the delay probability function follows a gamma distribution. In this expression, λ(s) corresponds to the “latent” force of infection$$lambda (t)=left(frac{{I}_{1}+{I}_{2}}{Pleft(tright)}right)beta (t)$$ (8) where parameter β denotes the transmission rate. The transmission rate is specified to include the effects of seasonality, (interannual) climate variability, and environmental noise with the following expression$$beta left(tright)={{exp }}left[{sum }_{k=1}^{6}{b}_{k}{S}_{k}+{b}_{{RH}}{S}_{4}Cright]left[frac{dGamma }{{dt}}right]$$ (9) where seasonality is represented nonparametrically as the sum of six terms with a basis of periodic b-splines (t) (k = 1…, 6), and the coefficients (({b}_{k})) are parameters to be fitted determining the temporal (seasonal) shape. The b-splines are shown in Supplementary Fig. 6. The first term in Eq. (9) (the exponential of the weighted sum of these six splines) provides the basic, seasonal shape of the transmission rate (Supplementary Fig. 12). We superimpose this seasonality variability in the transmission rate across years through explicit consideration of a specific covariate (temperature, rainfall or humidity, depending on the model). We explain first how the covariate C is defined and second, how its effect is introduced in Eq. (9). C represents respectively in the different models, the mean of monthly humidity, the mean of monthly temperature, and the accumulated monthly rainfall, for a defined temporal window. That is, the covariate is defined here to represent yearly effects in a given window of time that is critical for the way a specific climate factor affects transmission. This window was chosen as the one with the highest correlation to the total cases aggregated for the epidemic season. We examined windows of all possible sizes within the previous six months which precede the epidemic season, as climate factors influence the abundance of the vector and the fraction of vectors infected, and these effects on the vector are manifested in the human cases with a delay. The resulting windows chosen to calculate C are shown in Supplementary Fig. 4. The effect of the covariate on the transmission rate was then localized in time in Eq. (9), by multiplying C to spline S4, which corresponds to the time of the year preceding the epidemic season (and including the window during which C was obtained) (Supplementary Fig. 6). Parameter ({b}_{{{{{rm{RH}}}}}}) then quantifies the strength of the climate effect by modulating the seasonal component of the transmission rate corresponding to this time of the year. Finally, environmental noise is introduced in the transmission rate with a Gamma distribution Γ to represent additional fluctuations absent in the climate covariate (details are provided in ref. 46).In practice and for ease of implementation (including parameter inference), we transform the integral in Eq. (7) into a Markovian chain of differential equations going from the equation for ({lambda }_{1}) to that for ({lambda }_{j}) (Eqs. 10–11) following16,44:$${dlambda }_{1}/{dt}=(lambda -{k}_{1})k{tau }^{-1}$$ (10) $${dlambda }_{j}/{dt}=left({k}_{j-1}-{k}_{j}right)k{tau }^{-1},{for; j}=2$$ (11) Parameter estimationWe estimated parameters with an iterated filtering approach to maximize the likelihood for partially observed, nonlinear and stochastic dynamical models. Specifically, the estimation of parameters and initial conditions for all state variables was carried out with the iterated filtering algorithm known as MIF, for maximum likelihood iterated filtering, implemented in the R package “pomp” (partially observed Markov processes44,45,46. This “plug-and-play” method45,47 is simulation-based, meaning that parameter search relies on a large number of stochastic simulations from initial conditions to the end of the time series.For details on the method, see46 and for other applications to malaria and climate forcing, see refs. 9,16,43,48. This algorithm allows for consideration of both measurement and process noise, in addition to hidden variables, which are a typical limitation of surveillance records providing a single observed variable for the incidence. It consists of two loops, with the external loop essentially iterating an internal, “filtering” loop, and in so doing generating a new, improved estimate of the parameter values at each iteration. The filtering loop implements a selection process for a large number of “particles” over time. For each time step, a particle can be seen as a simulation characterized by its own set of parameter values. Particles can survive or die as the result of a resampling process, with probabilities determined by their likelihood given the data. From this selection process over the whole extent of the data, a new estimate of the parameters is generated, and from this estimate, a cloud of new particles is reinitialized using a given noise intensity adjusted by a cooling factor. The initial search in parameter space was performed with a grid of 10,000 random parameter combinations, and the output of this search was used as the initial conditions of a more local search46,49.The fitting algorithm provides an estimate of the likelihood itself. On the basis of the likelihood, we can then implement model comparisons (i.e., model selection) on the basis of the likelihood ratio test and DIC (Table 1). We further compared the ability of the different models to explain the temporal patterns of the data with different comparisons of the observed cases and the predicted ones via model simulation. Namely, we simulated 1000 runs from the respective stochastic MLE models from the estimated initial conditions. We obtained the median of monthly cases from these simulations as well as the uncertainty as to the 10–90% quantiles of the monthly cases. We considered visually whether this interval includes the observation and how close the median simulated cases are to the observed cases. We also considered whether the interannual cycles (in particular, their highs and lows) in the data and the simulations are in phase. We further compared the simulated predictions and observations by aggregating cases for the epidemic season. In a scatter plot of predictions against observations, we can assess how close the points fall to the diagonal, and whether the uncertainty of predictions contains the diagonal (where predictions equal observations). We more formally implemented this comparison with a criterion for evaluating stochastic predictions known as the CRPS, which is a commonly used measure of performance for probabilistic prediction of a scalar observation. It is a quadratic measure of the difference between the prediction cumulative distribution function (CDF) and the empirical CDF of the observation.Permutation testWe used a permutation procedure to test whether the association between humidity and malaria transmission might be confounded by season. In this procedure, we selected the humidity data for each of the 12-months and randomized these humidity data across years, rerunning the analysis with the randomized explanatory variables. Then, we correlated the predicted cases in a year with the humidity in the random window selected. We conducted 10,000 permutations, and sampling was done with replacement. For each permutation, we then calculated how well the humidity correlated with the time series of malaria. If the correlation between humidity and malaria incidence in the actual time series was significantly stronger than the correlations we observed in the randomized samples, we concluded that confounding by season was an unlikely explanation for this correlation.Out-of-fit predictionTo examine the ability of the process-based model to predict malaria incidence, we compared the total number of malaria cases observed for each city to those predicted by model simulations in a window of time not used to estimate the parameters. That is, monthly cases from January 1997 to only December 2008 were used as a training set for parameter estimation. We chose this length of the data set, to place ourselves in the position of having about two characteristic multiannual cycles (of 4–5 years) of the reported cases inform inference, while still leaving a sufficient number of seasons to test prediction on at least one such full cycle. The resulting MLE model relies on estimated state variables at the end of the training period as the initial conditions for predicting the first “out-of-fit” year. The estimated initial states are then obtained for January of each predicted year (between 2009 and 2014) by extending sequential filtering and assimilating the new data for the past 12 months. That is, because the inference method provides filtered values of the hidden variables, we can use these estimates and their distribution at a given time as initial conditions from which to simulate the following year. Parameter estimates are also continuously updated with the addition of one more year of data. Predictions are obtained by simulating the model forward over the next 12 months. To consider the uncertainty arising from both dynamic and measurement noise, the distribution of predicted observed cases is obtained for each month from 1000 simulations with initial conditions resampled from their estimated values. Departures between the yearly projections and the out-of-fit data can be used to evaluate the impact of humidity variability on the predictability of the upcoming season.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Hunting alters viral transmission and evolution in a large carnivore

    1.Packer, C. et al. Sport hunting, predator control and conservation of large carnivores. PLoS ONE 4, e5941 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    2.Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).CAS 
    PubMed 

    Google Scholar 
    3.Treves, A. Hunting for large carnivore conservation. J. Appl. Ecol. 46, 1350–1356 (2009).
    Google Scholar 
    4.Milner-Gulland, E. J. et al. Reproductive collapse in saiga antelope harems. Nature 422, 135 (2003).CAS 
    PubMed 

    Google Scholar 
    5.Bischof, R. et al. Implementation uncertainty when using recreational hunting to manage carnivores. J. Appl. Ecol. 49, 824–832 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    6.Booth, V. R., Masonde, J., Simukonda, C. & Cumming, D. H. M. Managing hunting quotas of African lions (Panthera leo): a case study from Zambia. J. Nat. Conserv. 55, 125817 (2020).
    Google Scholar 
    7.Potapov, A., Merrill, E. & Lewis, M. A. Wildlife disease elimination and density dependence. Proc. R. Soc. B 279, 3139–3145 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    8.Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20, 511–519 (2005).
    Google Scholar 
    9.Beeton, N. & McCallum, H. Models predict that culling is not a feasible strategy to prevent extinction of Tasmanian devils from facial tumour disease. J. Appl. Ecol. 48, 1315–1323 (2011).
    Google Scholar 
    10.Choisy, M. & Rohani, P. Harvesting can increase severity of wildlife disease epidemics. Proc. R. Soc. B 273, 2025–2034 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    11.Allendorf, F. W. & Hard, J. J. Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc. Natl Acad. Sci. USA 106, 9987–9994 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).PubMed 

    Google Scholar 
    13.Woodroffe, R. et al. Culling and cattle controls influence tuberculosis risk for badgers. Proc. Natl Acad. Sci. USA 103, 14713–14717 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Carr, A. N. et al. Wildlife Management Practices Associated with Pathogen Exposure in Non-native Wild Pigs in Florida, U.S. (USDA National Wildlife Research Center, 2019).15.Woodroffe, R., Cleaveland, S., Courtenay, O., Laurenson, M. K. & Artois, M. in The Biology and Conservation of Wild Canids 123–142 (Oxford Univ. Press, 2004).16.Carter, S. P. et al. Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proc. R. Soc. B 274, 2769–2777 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    17.Silk, M. J. et al. Contact networks structured by sex underpin sex-specific epidemiology of infection. Ecol. Lett. 21, 309–318 (2018).PubMed 

    Google Scholar 
    18.Silk, M. J. et al. The application of statistical network models in disease research. Methods Ecol. Evol. 8, 1026–1041 (2017).
    Google Scholar 
    19.Morters, M. K. et al. Evidence-based control of canine rabies: a critical review of population density reduction. J. Anim. Ecol. 82, 6–14 (2013).PubMed 

    Google Scholar 
    20.Lachish, S., McCallum, H., Mann, D., Pukk, C. E. & Jones, M. E. Evaluation of selective culling of infected individuals to control Tasmanian Devil facial tumor disease. Conserv. Biol. 24, 841–851 (2010).PubMed 

    Google Scholar 
    21.Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).CAS 
    PubMed 

    Google Scholar 
    22.Didelot, X., Fraser, C., Gardy, J. & Colijn, C. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 34, msw075 (2017).
    Google Scholar 
    23.Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Logan, K. A. & Runge, J. P. et al. Effects of hunting on a puma population in Colorado. Wildl. Monogr. 209, 1–35 (2020).
    Google Scholar 
    25.Biek, R., Pybus, O. G., Lloyd-Smith, J. O. & Didelot, X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30, 306–313 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    26.Pybus, O. G., Tatem, A. J. & Lemey, P. Virus evolution and transmission in an ever more connected world. Proc. R. Soc. B 282, 20142878 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Woolhouse, M. E. J., Adair, K. & Brierley, L. RNA viruses: a case study of the biology of emerging infectious diseases. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.oh-0001-2012 (2021).28.Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Fountain-Jones, N. M. et al. Towards an eco-phylogenetic framework for infectious disease ecology. Biol. Rev. 93, 950–970 (2018).PubMed 

    Google Scholar 
    30.Webb, C. O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145–155 (2000).PubMed 

    Google Scholar 
    31.Biek, R. et al. Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J. Virol. 77, 9578–9589 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Pedersen, N. C., Yamamoto, J. K., Ishida, T. & Hansen, H. Feline immunodeficiency virus infection. Vet. Immunol. Immunopathol. 21, 111–129 (1989).CAS 
    PubMed 

    Google Scholar 
    33.Malmberg, J. L. et al. Altered lentiviral infection dynamics follow genetic rescue of the Florida panther. Proc. R. Soc. B 286, 20191689 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    34.Elbroch, L. M., Levy, M., Lubell, M., Quigley, H. & Caragiulo, A. Adaptive social strategies in a solitary carnivore. Sci. Adv. 3, e1701218 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    35.Sweanor, L. L., Logan, K. A. & Hornocker, M. G. Cougar dispersal patterns, metapopulation dynamics, and conservation. Conserv. Biol. 14, 798–808 (2000).
    Google Scholar 
    36.Fountain-Jones, N. M. et al. Linking social and spatial networks to viral community phylogenetics reveals subtype-specific transmission dynamics in African lions. J. Anim. Ecol. 86, 1469–1482 (2017).PubMed 

    Google Scholar 
    37.Gilbertson, M. L. J. et al. Transmission of one predicts another: apathogenic proxies for transmission dynamics of a fatal virus. Preprint at bioRxiv https://doi.org/10.1101/2021.01.09.426055 (2021).38.Fountain-Jones, N. M. et al. Host relatedness and landscape connectivity shape pathogen spread in a large secretive carnivore. Commun. Biol. 4, 12 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    39.Hornocker, M. G. & Negri, S. Cougar: Ecology and Conservation (Univ. Chicago Press, 2010).40.Moss, W. E., Alldredge, M. W. & Pauli, J. N. Quantifying risk and resource use for a large carnivore in an expanding urban-wildland interface. J. Appl. Ecol. 53, 371–378 (2016).
    Google Scholar 
    41.Trumbo, D. et al. Urbanization impacts apex predator gene flow but not genetic diversity across an urban-rural divide. Mol. Ecol. 28, 4926–4940 (2019).CAS 
    PubMed 

    Google Scholar 
    42.VandeWoude, S. & Apetrei, C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin. Microbiol. Rev. 19, 728–762 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Logan, K. A. & Sweanor, L. L. Desert Puma: Evolutionary Ecology and Conservation of an Enduring Carnivore (Island Press, 2001).44.Krakoff, E., Gagne, R. B., VandeWoude, S. & Carver, S. Variation in intra-individual lentiviral evolution rates: a systematic review of human, nonhuman primate, and felid species. J. Virol. https://doi.org/10.1128/JVI.00538-19 (2019).45.Volz, E. M. & Didelot, X. Modeling the growth and decline of pathogen effective population size provides insight into epidemic dynamics and drivers of antimicrobial resistance. Syst. Biol. 67, 719–728 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    46.Murrell, B. et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Kenyon, J. C. & Lever, A. M. L. The molecular biology of feline immunodeficiency virus (FIV). Viruses 3, 2192–2213 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Tamuri, A. U., dos Reis, M., Hay, A. J. & Goldstein, R. A. Identifying changes in selective constraints: host shifts in influenza. PLoS Comput. Biol. 5, e1000564 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Forni, D., Cagliani, R., Clerici, M. & Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25, 35–48 (2017).CAS 
    PubMed 

    Google Scholar 
    50.Fountain-Jones, N. M. et al. Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore. Mol. Ecol. 26, 6487–6498 (2017).PubMed 

    Google Scholar 
    51.Kozakiewicz, C. P. et al. Pathogens in space: advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol. Appl. 11, 1763–1778 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    52.McDonald, J. L., Smith, G. C., McDonald, R. A., Delahay, R. J. & Hodgson, D. Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife–disease interactions. Proc. R. Soc. B 281, 20140526 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    53.Gilbertson, M. L. J., Fountain-Jones, N. M. & Craft, M. E. Incorporating genomic methods into contact networks to reveal new insights into animal behaviour and infectious disease dynamics. Behaviour 155, 759–791 (2018).PubMed 

    Google Scholar 
    54.Alldredge, M. W., Blecha, T. & Lewis, J. H. Less invasive monitoring of cougars in Colorado’s front range. Wildl. Soc. Bull. 43, 222–230 (2019).
    Google Scholar 
    55.Lewis, J. S. et al. The effects of urbanization on population density, occupancy, and detection probability of wild felids. Ecol. Appl. 25, 1880–1895 (2015).PubMed 

    Google Scholar 
    56.Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).57.Didelot, X., Kendall, M., Xu, Y., White, P. J. & McCarthy, N. Genomic epidemiology analysis of infectious disease outbreaks using TransPhylo. Curr. Protoc. 1, e60 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    58.Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. statnet: software tools for the representation, visualization, analysis and simulation of network data. J. Stat. Softw. 24, 1548 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    59.Wertheim, J. O., Murrell, B., Smith, M. D., Pond, S. L. K. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2015).CAS 
    PubMed 

    Google Scholar 
    60.Kosakovsky Pond, S. L. et al. A random effects branch-site model for detecting episodic diversifying selection. Mol. Biol. Evol. 28, 3033–3043 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Weaver, S. et al. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Gill, M. S., Lemey, P., Bennett, S. N., Biek, R. & Suchard, M. A. Understanding past population dynamics: Bayesian coalescent-based modeling with covariates. Syst. Biol. 65, 1041–1056 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    63.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Google Scholar 
    64.Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).
    Google Scholar 
    65.Fountain-Jones, N. nfj1380/Transmission-dynamics_huntingPumaFIV: (Puma-FIV_transmissionDynamics) (Zenodo, 2021); https://doi.org/10.5281/zenodo.560216266.Fountain-Jones, N. et al. Emerging phylogenetic structure of the SARS-CoV-2 pandemic. Virus Evol. 6, veaa082 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    67.Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789 (2016).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Hunting shapes wildlife disease transmission

    1.Wobeser, G. Rev. Sci. Tech. 21, 159–178 (2002).CAS 
    Article 

    Google Scholar 
    2.Fountain-Jones, N. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/10.1038/s41559-021-01635-5 (2021).Article 

    Google Scholar 
    3.Lloyd-Smith, J. O. et al. Trends Ecol. Evol. 20, 511–519 (2005).Article 

    Google Scholar 
    4.Woodroffe, R. et al. Proc. Natl Acad. Sci. USA 103, 14713–14717 (2006).CAS 
    Article 

    Google Scholar 
    5.Ham, C., Donnelly, C. A., Astley, K. L., Jackson, S. Y. B. & Woodroffe, R. J. Appl. Ecol. 56, 2390–2399 (2019).Article 

    Google Scholar 
    6.Logan, K. A. & Runge, J. P. Wildl. Monogr. 209, 1–35 (2021).Article 

    Google Scholar 
    7.Fountain-Jones, N. M. et al. Commun. Biol. 4, 12 (2021).Article 

    Google Scholar  More

  • in

    Reply to: Shifting baselines and biodiversity success stories

    Cite this articleLeung, B., Hargreaves, A.L., Greenberg, D.A. et al. Reply to: Shifting baselines and biodiversity success stories.
    Nature 601, E19 (2022). https://doi.org/10.1038/s41586-021-03749-zDownload citationPublished: 26 January 2022Issue Date: 27 January 2022DOI: https://doi.org/10.1038/s41586-021-03749-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More