Olfactory responses of Trissolcus mitsukurii to plants attacked by target and non-target stink bugs suggest low risk for biological control
1.Kenis, M., Hurley, B. P., Hajek, A. E. & Cock, M. J. W. Classical biological control of insect pests of trees: Facts and figures. Biol. Invasions 19, 3401–3417 (2017).
Google Scholar
2.Hoddle, M. S. Restoring balance: Using exotic species to control invasive exotic species. Conserv. Biol. 18, 38–49 (2004).
Google Scholar
3.van Lenteren, J. C. & Loomans, A. J. M. Environmental risk assessment: Methods for comprehensive evaluation and quick scan. In Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment Vol. 10 (eds Bigler, F. et al.) 254–272 (CABI Publishing, 2006).
Google Scholar
4.Loomans, A. J. M. Every generalist biological control agent requires a special risk assessment. Biocontrol 66, 23–35 (2021).
Google Scholar
5.Mason, P. G., Everatt, M. J., Loomans, A. J. M. & Collatz, J. Harmonizing the regulation of invertebrate biological control agents in the EPPO region: Using the NAPPO region as a model. EPPO Bull. 47, 79–90 (2017).
Google Scholar
6.Sabbatini-Peverieri, G. et al. Combining physiological host range, behavior and host characteristics for predictive risk analysis of Trissolcus japonicus. J. Pest Sci. 94, 1003–1016 (2021).
Google Scholar
7.Abram, P. K., Labbe, R. M. & Mason, P. G. Ranking the host range of biological control agents with quantitative metrics of taxonomic specificity. Biol. Control 152, 104427 (2021).CAS
Google Scholar
8.Haye, T. et al. Fundamental host range of Trissolcus japonicus in Europe. J. Pest Sci. 93, 171–182 (2020).
Google Scholar
9.Hilker, M. & Meiners, T. Chemoecology of Insect Eggs and Egg Deposition (Blackwell, 2008).
Google Scholar
10.Meiners, T. & Peri, E. Chemical ecology of insect parasitoids: Essential elements for developing effective biological control programmes. In Chemical Ecology of Insect Parasitoids (eds Wajnberg, E. & Colazza, S.) 191–224 (Wiley-Blackwell, 2013).
Google Scholar
11.Conti, E. & Colazza, S. Chemical ecology of egg parasitoids associated with true bugs. Psyche 2012, 651015 (2012).
Google Scholar
12.Desurmont, G. A. et al. Alien interference: Disruption of infochemical networks by invasive insect herbivores. Plant Cell Environ. 37, 1854–1865 (2014).PubMed
Google Scholar
13.Martorana, L. et al. An invasive insect herbivore disrupts plant volatile-mediated tritrophic signalling. J. Pest Sci. 90, 1079–1085 (2017).
Google Scholar
14.van Driesche, R. G. & Murray, T. J. Parameters used in laboratory host range tests. In Assessing Host Ranges of Parasitoids and Predators Used for Classical Biological Control: A Guide to Best Practice (eds van Driesche, R. & Reardon, R.) 55–67 (US Department Agriculture Forest Health Technology Enterprise Team, 2004).
Google Scholar
15.Conti, E., Salerno, G., Bin, F. & Vinson, S. B. The role of host semiochemicals in parasitoid specificity: A case study with Trissolcus brochymenae and Trissolcus simoni on pentatomid bugs. Biol. Control 29, 435–444 (2004).CAS
Google Scholar
16.Ferracini, C. et al. Non-target host risk assessment for the parasitoid Torymus sinensis. Biocontrol 60, 583–594 (2015).
Google Scholar
17.Avila, G. A., Withers, T. M. & Holwell, G. I. Laboratory odour-specificity testing of Cotesia urabae to assess potential risks to non-target species. Biocontrol 61, 365–377 (2016).
Google Scholar
18.Wyckhuys, K. A. G. & Heimpel, G. E. Response of the soybean aphid parasitoid Binodoxys communis to olfactory cues from target and non-target host-plant complexes. Entomol. Exp. Appl. 123, 149–158 (2007).
Google Scholar
19.Gohole, L. S., Overholt, W. A., Khan, Z. R. & Vet, L. E. M. Role of volatiles emitted by host and non-host plants in the foraging behaviour of Dentichasmias busseolae, a pupal parasitoid of the spotted stemborer Chilo partellus. Entomol. Exp. Appl. 107, 1–9 (2003).CAS
Google Scholar
20.Leskey, T. C. & Nielsen, A. L. Impact of the invasive Brown Marmorated Stink Bug in North America and Europe: History, biology, ecology, and management. Annu. Rev. Entomol. 63, 599–618 (2018).CAS
PubMed
Google Scholar
21.Nixon, L. J. et al. Volatile release, mobility, and mortality of diapausing Halyomorpha halys during simulated shipping movements and temperature changes. J. Pest Sci. 92, 633–641 (2019).
Google Scholar
22.Hoebeke, E. R. & Carter, M. E. Halyomorpha halys (Stål) (Heteroptera: Pentatomidae): A polyphagous plant pest from Asia newly detected in North America. Proc. Entomol. Soc. Washingt. 105, 225–237 (2003).
Google Scholar
23.Haye, T., Abdallah, S., Gariepy, T. & Wyniger, D. Phenology, life table analysis and temperature requirements of the invasive brown marmorated stink bug, Halyomorpha halys, Europe. J. Pest Sci. 87, 407–418 (2014).
Google Scholar
24.Maistrello, L. et al. Tracking the spread of sneaking aliens by integrating crowdsourcing and spatial modeling: The Italian invasion of Halyomorpha halys. Bioscience 68, 979–989 (2018).
Google Scholar
25.Bariselli, M., Bugiani, R. & Maistrello, L. Distribution and damage caused by Halyomorpha halys in Italy. EPPO Bull. 46, 332–334 (2016).
Google Scholar
26.Rot, M. et al. Native and non-native egg parasitoids associated with brown marmorated stink bug (Halyomorpha halys [stål, 1855]; Hemiptera: Pentatomidae) in western Slovenia. Insects 12, 505 (2021).PubMed
PubMed Central
Google Scholar
27.Conti, E. et al. Biological control of invasive stink bugs: Review of global state and future prospects. Entomol. Exp. Appl. 169, 28–51 (2021).
Google Scholar
28.Zapponi, L. et al. Assessing the distribution of exotic egg parasitoids of Halyomorpha halys in Europe with a large-scale monitoring program. Insects 12, 316 (2021).PubMed
PubMed Central
Google Scholar
29.Zhang, J. et al. Seasonal parasitism and host specificity of Trissolcus japonicus in northern China. J. Pest Sci. 90, 1127–1141 (2017).ADS
Google Scholar
30.Yang, Z. Q., Yao, Y. X., Qiu, L. F. & Li, Z. X. A new species of Trissolcus (Hymenoptera: Scelionidae) parasitizing eggs of Halyomorpha halys (Heteroptera: Pentatomidae) in China with comments on its biology. Ann. Entomol. Soc. Am. 102, 39–47 (2009).
Google Scholar
31.Abram, P. K., Talamas, E. J., Acheampong, S., Mason, P. G. & Gariepy, T. D. First detection of the samurai wasp, Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae), Canada. J. Hymenopt. Res. 68, 29–36 (2019).
Google Scholar
32.Kaser, J. M., Akotsen-Mensah, C., Talamas, E. J. & Nielsen, A. L. First Report of Trissolcus japonicus parasitizing Halyomorpha halys in North American agriculture. Florida Entomol. 101, 680–683 (2018).
Google Scholar
33.Moraglio, S. T. et al. A 3-year survey on parasitism of Halyomorpha halys by egg parasitoids in northern Italy. J. Pest Sci. 93, 183–194 (2020).
Google Scholar
34.Sabbatini-Peverieri, G. et al. Two Asian egg parasitoids of Halyomorpha halys (Stål) (Hemiptera, Pentatomidae) emerge in northern Italy: Trissolcus mitsukurii (Ashmead) and Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae). J. Hymenopt. Res. 67, 37–53 (2018).
Google Scholar
35.Scaccini, D. et al. An insight into the role of Trissolcus mitsukurii as biological control agent of Halyomorpha halys in Northeastern Italy. Insects 11, 306 (2020).PubMed Central
Google Scholar
36.Hokyo, N. & Kiritani, K. Two species of egg parasites as contemporaneous mortality factors in the egg population of the southern green stink bug, Nezara viridula. Jpn. J. Appl. Entomol. Zool. 7, 214–227 (1963).
Google Scholar
37.Arakawa, R., Miura, M. & Fujita, M. Effects of host species on the body size, fecundity, and longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a solitary egg parasitoid of stink bugs. Appl. Entomol. Zool. 39, 177–181 (2004).
Google Scholar
38.Arakawa, R. & Namura, Y. Effects of temperature on development of three Trissolcus spp. (Hymenoptera: Scelionidae), egg parasitoids of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). Entomol. Sci. 5, 215–218 (2002).
Google Scholar
39.Chen, H., Talamas, E. J. & Pang, H. Notes on the hosts of Trissolcus ashmead (Hymenoptera: Scelionidae) from China. Biodivers. Data J. 8, e53786 (2020).PubMed
PubMed Central
Google Scholar
40.Ryu, J. & Hirashima, Y. Taxonomic studies on the genus Trissolcus Ashmead of Japan and Korea (Hymenoptera, Scelionidae). J. Fac. Agric. Kyushu Univ. 29, 35–58 (1984).
Google Scholar
41.Bout, A. et al. First detection of the adventive egg parasitoid of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) Trissolcus mitsukurii (Ashmead) (Hymenoptera: Scelionidae) in France. Insects 12, 761 (2021).PubMed
PubMed Central
Google Scholar
42.Caron, V. et al. Preempting the arrival of the brown marmorated stink bug, Halyomorpha halys: Biological control options for Australia. Insects 12, 581 (2021).PubMed
PubMed Central
Google Scholar
43.Giovannini, L. et al. Physiological host range of Trissolcus mitsukurii, a candidate biological control agent of Halyomorpha halys in Europe. J. Pest Sci. https://doi.org/10.1007/s10340-021-01415-x (2021).Article
Google Scholar
44.Bertoldi, V., Rondoni, G., Brodeur, J. & Conti, E. An egg parasitoid efficiently exploits cues from a coevolved host but not those from a novel host. Front. Physiol. 10, 746 (2019).PubMed
PubMed Central
Google Scholar
45.Colazza, S. et al. Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids. J. Exp. Biol. 207, 47–53 (2004).PubMed
Google Scholar
46.Tognon, R. et al. Volatiles mediating parasitism of Euschistus conspersus and Halyomorpha halys eggs by Telenomus podisi and Trissolcus erugatus. J. Chem. Ecol. 42, 1016–1027 (2016).CAS
PubMed
Google Scholar
47.Borges, M. & Blassioli-Moraes, M. C. The semiochemistry of Pentatomidae. In Stink Bugs: Biorational Control Based on Communication Processes 95–124 (CRC Press, 2017).48.Conti, E., Salerno, G., Leombruni, B., Frati, F. & Bin, F. Short-range allelochemicals from a plant-herbivore association: A singular case of oviposition-induced synomone for an egg parasitoid. J. Exp. Biol. 213, 3911–3919 (2010).CAS
PubMed
Google Scholar
49.De Clercq, P. Predaceous Stinkbugs (Pentatomidae: Asopinae). In Heteroptera of Economic Importance (eds Schaefer, C. W. & Panizzi, A. R.) 737–789 (CRC Press, 2000).
Google Scholar
50.Hamilton, G. C. et al. Halyomorpha halys (Stål). In Invasive Stink Bugs and Related Species (Pentatomoidea) (ed. McPherson, J. E.) 243–292 (CRC Press, 2018).
Google Scholar
51.Panizzi, A., McPherson, J., James, D., Javahery, M. & McPherson, R. Stink bugs (Pentatomidae). In Heteroptera of Economic Importance (eds Schaefer, C. & Panizzi, A.) 421–474 (CRC Press, 2000).
Google Scholar
52.Rider, D. A. Family Pentatomidae. In Catalogue of the Heteroptera of the Palaearctic Region Vol. 5 (eds Aukema, B. & Rieger, C.) 233–402 (The Netherlands Entomological Society, 2006).
Google Scholar
53.Milnes, J. M. & Beers, E. H. Trissolcus japonicus (Hymenoptera: Scelionidae) causes low levels of parasitism in three North American pentatomids under field conditions. J. Insect Sci. 19, 15 (2019).PubMed
PubMed Central
Google Scholar
54.Peiffer, M. & Felton, G. W. Insights into the saliva of the brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae). PLoS ONE 9, e88483 (2014).ADS
PubMed
PubMed Central
Google Scholar
55.Rondoni, G. et al. Vicia faba plants respond to oviposition by invasive Halyomorpha halys activating direct defences against offspring. J. Pest Sci. 91, 671–679 (2018).
Google Scholar
56.Giacometti, R. et al. Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack. Pest Manag. Sci. 72, 1585–1594 (2016).CAS
PubMed
Google Scholar
57.Timbó, R. V. et al. Biochemical aspects of the soybean response to herbivory injury by the brown stink bug Euschistus heros (Hemiptera: Pentatomidae). PLoS ONE 9, e109735 (2014).ADS
PubMed
PubMed Central
Google Scholar
58.Vet, L. E. M. & Dicke, M. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37, 141–172 (1992).
Google Scholar
59.Zapponi, L. et al. Assemblage of the egg parasitoids of the invasive stink bug Halyomorpha halys: Insights on plant host associations. Insects 11, 588 (2020).PubMed Central
Google Scholar
60.Scala, M. et al. Risposte di Trissolcus mitsukurii alle tracce chimiche volatili rilasciate da Halyomorpha halys. in XXVI Italian Congress of Entomology, 7–11 June 2021, 318 (2021).61.Kiritani, K. & Hôkyo, N. Studies on the life table of the southern green stink bug, Nezara viridula. Jpn. J. Appl. Entomol. Zool. 6, 124–140 (1962).
Google Scholar
62.Hokyo, N., Kiritani, K., Nakasuji, F. & Shiga, M. Comparative biology of the two Scelionid egg parasites of Nezara viridula L. (Hemiptera : Pentatomidae). Appl. Entomol. Zool. 1, 94–102 (1966).
Google Scholar
63.Esquivel, J. F. et al. Nezara viridula (L.). In Invasive Stink Bugs and Related Species (Pentatomoidea) (ed. McPherson, J. E.) 351–424 (CRC Press, 2018).
Google Scholar
64.Kobayashi, T. Insect pests of soybeans in Japan. Misc. Publ. Tohoku Natl. Agric. Exp. Stn. 2, 1–39 (1981).ADS
Google Scholar
65.Nakamura, K. & Numata, H. Effects of photoperiod and temperature on the induction of adult diapause in Dolycoris baccarum (L.) (Heteroptera: Pentatomidae) from Osaka and Hokkaido, Japan. Appl. Entomol. Zool. 41, 105–109 (2006).
Google Scholar
66.Mahmoud, A. M. A. & Lim, U. T. Host discrimination and interspecific competition of Trissolcus nigripedius and Telenomus gifuensis (Hymenoptera: Scelionidae), sympatric parasitoids of Dolycoris baccarum (Heteroptera: Pentatomidae). Biol. Control 45, 337–343 (2008).
Google Scholar
67.Lim, U.-T., Park, K.-S., Mahmoud, A. M. A. & Jung, C.-E. Areal distribution and parasitism on other soybean bugs of Trissolcus nigripedius (Hymenoptera: Scelionidae), an egg parasitoid of Dolycoris baccarum (Heteroptera: Pentatomidae). Korean J. Appl. Entomol. 46, 79–85 (2007).
Google Scholar
68.Wäckers, F. L. Assessing the suitability of flowering herbs as parasitoid food sources: Flower attractiveness and nectar accessibility. Biol. Control 29, 307–314 (2004).
Google Scholar
69.Gillespie, D. R. & Mcgregor, R. R. The functions of plant feeding in the omnivorous predator Dicyphus hesperus: Water places limits on predation. Ecol. Entomol. 25, 380–386 (2000).
Google Scholar
70.Bouagga, S. et al. Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag. Sci. 74, 1286–1296 (2018).CAS
PubMed
Google Scholar
71.Martorana, L. et al. Egg parasitoid exploitation of plant volatiles induced by single or concurrent attack of a zoophytophagous predator and an invasive phytophagous pest. Sci. Rep. 9, 18956 (2019).ADS
CAS
PubMed
PubMed Central
Google Scholar
72.Lara, J. R. et al. Physiological host range of Trissolcus japonicus in relation to Halyomorpha halys and other pentatomids from California. Biocontrol 64, 513–528 (2019).
Google Scholar
73.Zhao, Q., Jiufeng, W., Wenjun, B., Guoqing, L. & Zhang, H. Synonymize Arma chinensis as Arma custos based on morphological, molecular and geographical data. Zootaxa 4455, 161–176 (2018).PubMed
Google Scholar
74.Zou, D. et al. Taxonomic and bionomic notes on Arma chinensis (Fallou) (Hemiptera: Pentatomidae: Asopinae). Zootaxa, 3382, 41–52 (2012).
Google Scholar
75.Zou, D. Y. et al. A meridic diet for continuous rearing of Arma chinensis (Hemiptera: Pentatomidae: Asopinae). Biol. Control 67, 491–497 (2013).
Google Scholar
76.Wu, S. et al. Egg cannibalism varies with sex, reproductive status, and egg and nymph ages in Arma custos (Hemiptera: Asopinae). Front. Ecol. Evol. 9, 3389 (2021).
Google Scholar
77.Endo, J. & Numata, H. Synchronized hatching as a possible strategy to avoid sibling cannibalism in stink bugs. Behav. Ecol. Sociobiol. 74, 16 (2020).
Google Scholar
78.Afsheen, S., Xia, W., Ran, L., Zhu, C. S. & Lou, Y. G. Differential attraction of parasitoids in relation to specificity of kairomones from herbivores and their by-products. Insect Sci. 15, 381–397 (2008).
Google Scholar
79.Rondoni, G. et al. Native egg parasitoids recorded from the invasive Halyomorpha halys successfully exploit volatiles emitted by the plant–herbivore complex. J. Pest Sci. 90, 1087–1095 (2017).
Google Scholar
80.Bertoldi, V., Rondoni, G., Peri, E., Conti, E. & Brodeur, J. Learning can be detrimental for a parasitic wasp. PLoS ONE 16, e0238336 (2021).CAS
PubMed
PubMed Central
Google Scholar
81.Conti, E., Salerno, G., Bin, F., Williams, H. J. & Vinson, S. B. Chemical cues from Murgantia histrionica eliciting host location and recognition in the egg parasitoid Trissolcus brochymenae. J. Chem. Ecol. 29, 115–130 (2003).CAS
PubMed
Google Scholar
82.Fatouros, N. E., Dicke, M., Mumm, R., Meiners, T. & Hilker, M. Foraging behavior of egg parasitoids exploiting chemical information. Behav. Ecol. 19, 677–689 (2008).
Google Scholar
83.Vinson, S. B. The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol. Control 11, 79–96 (1998).
Google Scholar
84.Michereff, M. F. F. et al. The influence of volatile semiochemicals from stink bug eggs and oviposition-damaged plants on the foraging behaviour of the egg parasitoid Telenomus podisi. Bull. Entomol. Res. 106, 663–671 (2016).CAS
PubMed
Google Scholar
85.Bonnemaison, L. Insect pests of crucifers and their control. Annu. Rev. Entomol. 10, 233–256 (1965).
Google Scholar
86.Rondoni, G., Chierici, E., Agnelli, A. & Conti, E. Microplastics alter behavioural responses of an insect herbivore to a plant-soil system. Sci. Total Environ. 787, 147716 (2021).ADS
CAS
Google Scholar
87.Blumstein, D. T., Evans, C. S. & Daniels, J. C. JWatcher (Version 3, 1.0). (2006). http://www.jwatcher.ucla.edu. Accessed April 2021.88.Peri, E., Cusumano, A., Agrò, A. & Colazza, S. Behavioral response of the egg parasitoid Ooencyrtus telenomicida to host-related chemical cues in a tritrophic perspective. Biocontrol 56, 163–171 (2011).
Google Scholar
89.Rondoni, G., Ielo, F., Ricci, C. & Conti, E. Behavioural and physiological responses to prey-related cues reflect higher competitiveness of invasive vs. native ladybirds. Sci. Rep. 7, 3716 (2017).ADS
PubMed
PubMed Central
Google Scholar
90.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org (2020). More