More stories

  • in

    Ecological niche modeling predicting the potential distribution of African horse sickness virus from 2020 to 2060

    1.MacLachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. 41, 35 (2010).Article 

    Google Scholar 
    2.Zientara, S., Weyer, C. T. & Lecollinet, S. African horse sickness. OIE Revue Sci. Tech. 34, 315–327 (2015).CAS 
    Article 

    Google Scholar 
    3.Ayelet, G. et al. Outbreak investigation and molecular characterization of African horse sickness virus circulating in selected areas of Ethiopia. Acta Trop. 127, 91–96 (2013).Article 

    Google Scholar 
    4.Diarra, M. et al. Spatial distribution modelling of Culicoides (Diptera: Ceratopogonidae) biting midges, potential vectors of African horse sickness and bluetongue viruses in Senegal. Parasit. Vectors 11, 1–15 (2018).Article 

    Google Scholar 
    5.Karamalla, S. T. et al. Sero-epidemioloical survey on African horse sickness virus among horses in Khartoum State, Central Sudan. BMC Vet. Res. 14, 1–6 (2018).Article 

    Google Scholar 
    6.Escobar, L. E. Ecological Niche modeling: An introduction for veterinarians and epidemiologists. Front. Vet. Sci. 7, 519059. https://doi.org/10.3389/fvets.2020.519059 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Okely, M., Anan, R., Gad-Allah, S. & Samy, A. M. Mapping the environmental suitability of etiological agent and tick vectors of Crimean-Congo hemorrhagic fever. Acta Trop. 203, 105319 (2020).CAS 
    Article 

    Google Scholar 
    8.Chavy, A. et al. Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome. PLoS Negl. Trop. Diseases 13, e0007629 (2019).Article 

    Google Scholar 
    9.Sloyer, K. E. et al. Ecological niche modeling the potential geographic distribution of four Culicoides species of veterinary significance in Florida, USA. PLoS ONE 14, e0206648 (2019).CAS 
    Article 

    Google Scholar 
    10.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    11.Cao, Z., Jin, Y., Shen, T., Xu, F. & Li, Y. Risk factors and distribution for peste des petits ruminants (PPR) in Mainland China. Small Rumin. Res. 162, 12–16 (2018).Article 

    Google Scholar 
    12.Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).Article 

    Google Scholar 
    13.Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling. undefined 37, 191–203 (2014).
    Google Scholar 
    14.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, (2020).15.Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    16.Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).Article 

    Google Scholar 
    17.Uusitalo, R. et al. Predicting spatial patterns of sindbis virus (Sinv) infection risk in finland using vector, host and environmental data. Int. J. Environ. Res. Public Health 18, 7064 (2021).Article 

    Google Scholar 
    18.Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability (Switzerland) 12, 4508 (2020).CAS 
    Article 

    Google Scholar 
    19.Phillips, S. B., Aneja, V. P., Kang, D. & Arya, S. P. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    20.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    21.Hernández-Urcera, J., Murillo, F. J., Regueira, M., Cabanellas-Reboredo, M. & Planas, M. Preferential habitats prediction in syngnathids using species distribution models. Marine Environ. Res. 172, 105488 (2021).Article 

    Google Scholar 
    22.Smeraldo, S. et al. Generalists yet different: distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mammal Rev. 51, 571–584 (2021).Article 

    Google Scholar 
    23.Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    24.QGIS Development Team. QGIS Geographic Information System. Open-Source Geospatial Foundation Project. (2020).25.Ramirez-Reyes, C. et al. Embracing ensemble species distribution models to inform at-risk species status assessments. J. Fish Wildl. Manag. 12, 98–111 (2021).Article 

    Google Scholar 
    26.Stephenson, F. et al. Presence-only habitat suitability models for vulnerable marine ecosystem indicator taxa in the South Pacific have reached their predictive limit. ICES J. Mar. Sci. 78, 2830–2843 (2021).Article 

    Google Scholar 
    27.Zhu, G., Fan, J. & Peterson, A. T. Cautions in weighting individual ecological niche models in ensemble forecasting. Ecol. Modelling 448, 109502 (2021).Article 

    Google Scholar 
    28.Leta, S. et al. Modeling the global distribution of Culicoides imicola: an Ensemble approach. Sci. Rep. 9, 1–9 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Onyango, M. G. et al. Delineation of the population genetic structure of Culicoides imicola in East and South Africa. Parasit. Vectors 8, 660 (2015).Article 

    Google Scholar 
    30.Carpenter, S., Mellor, P. S., Fall, A. G., Garros, C. & Venter, G. J. African horse sickness virus: history. Transm. Curr. Status. 62, 343–358. https://doi.org/10.1146/annurev-ento-031616-035010 (2017).CAS 
    Article 

    Google Scholar 
    31.Carpenter, S., Mellor, P. S., Fall, A. G., Garros, C. & Venter, G. J. African Horse Sickness Virus: History, Transmission, and Current Status. Annu. Rev. Entomol. 62, 343–358 (2017).CAS 
    Article 

    Google Scholar 
    32.Fall, M. et al. Culicoides (Diptera: Ceratopogonidae) midges, the vectors of African horse sickness virus—a host/vector contact study in the Niayes area of Senegal. Parasit. Vectors 8, 1–13 (2015).Article 

    Google Scholar 
    33.Mellor, P. S. Epizootiology and vectors of African horse sickness virus. Comp. Immunol. Microbiol. Infect. Dis. 17, 287–296 (1994).CAS 
    Article 

    Google Scholar 
    34.Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 86, 14–23 (2016).Article 

    Google Scholar 
    35.Nosrat, C. et al. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLOS Negl. Trop. Diseases 15, e0009182 (2021).CAS 
    Article 

    Google Scholar 
    36.Abiodun, G. J., Maharaj, R., Witbooi, P. & Okosun, K. O. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar. J. 15, 1–15 (2016).Article 

    Google Scholar  More

  • in

    Behavioural traits of rainbow trout and brown trout may help explain their differing invasion success and impacts

    1.Holway, D. A. & Suarez, A. V. Animal behavior: An essential component of invasion biology. TREE 14, 328–330 (1999).CAS 
    PubMed 

    Google Scholar 
    2.Chapple, D. G., Simmonds, S. M. & Wong, B. B. M. Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol. Evol. 27, 57–64 (2012).PubMed 

    Google Scholar 
    3.Weis, J. & Sol, D. Behaviour and the Invasion Process. in Biological Invasions and Animal Behaviour 5–116 (Cambridge University Press, 2016).4.Cote, J., Fogarty, S., Weinersmith, K., Brodin, T. & Sih, A. Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc. R. Soc. B Biol. Sci. 277, 1571–1579 (2010).
    Google Scholar 
    5.Myles-Gonzalez, E., Burness, G., Yavno, S., Rooke, A. & Fox, M. G. To boldly go where no goby has gone before: Boldness, dispersal tendency, and metabolism at the invasion front. Behav. Ecol. 26, 1083–1090 (2015).
    Google Scholar 
    6.Mutascio, H. E., Pittman, S. E. & Zollner, P. A. Investigating movement behavior of invasive Burmese pythons on a shy–bold continuum using individual-based modeling. Perspect. Ecol. Conserv. 15, 25–31 (2017).
    Google Scholar 
    7.Chuang, A. Living Life on the Edge: The Role of Invasion Processes in Shaping Personalities in a Non-Native Spider Species (The University of Tennessee, Knoxville, 2019). https://doi.org/10.1017/CBO9781107415324.004.Book 

    Google Scholar 
    8.Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 

    Google Scholar 
    9.Pintor, L. M., Sih, A. & Kerby, J. L. Behavioral correlations provide a mechanism for explaining high invader densities and increased impacts on native prey. Ecology 90, 581–587 (2009).PubMed 

    Google Scholar 
    10.Petren, K. & Case, T. J. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–132 (1996).
    Google Scholar 
    11.Wright, T. F., Eberhard, J. R., Hobson, E. A., Avery, M. L. & Russello, M. A. Behavioral flexibility and species invasions: The adaptive flexibility hypothesis. Ethol. Ecol. Evol. 22, 393–404 (2010).
    Google Scholar 
    12.Dick, J. T. A. Role of behaviour in biological invasions and species distributions; lessons from interactions between the invasive Gammarus pulex and the native G. duebeni (Crustacea: Amphipoda). Contrib. Zool. 77, 91–98 (2008).
    Google Scholar 
    13.Dick, J. T. A. et al. Invader Relative Impact Potential: A new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).
    Google Scholar 
    14.Dick, J. T. A., Elwood, R. W. & Montgomery, W. I. The behavioural basis of a species replacement: differential aggresssion and predation between the introduced Gammarus pulex and the native G. duebeni celticus (Amphipoda). Behav. Ecol. Sociobiol. 37, 393–398 (1995).
    Google Scholar 
    15.Dick, J. T. A. et al. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions 15, 837–846 (2013).
    Google Scholar 
    16.Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).
    Google Scholar 
    17.Iacarella, J. C., Dick, J. T. A. & Ricciardi, A. A spatio-temporal contrast of the predatory impact of an invasive freshwater crustacean. Divers. Distrib. 21, 803–812 (2015).
    Google Scholar 
    18.Toscano, B. J. & Griffen, B. D. Trait-mediated functional responses: Predator behavioural type mediates prey consumption. J. Anim. Ecol. 83, 1469–1477 (2014).PubMed 

    Google Scholar 
    19.MacCrimmon, H. R. World distribution of rainbow trout (Salmo gairdneri): further observations. J. Fish. Res. Board Canada 28, 663–704 (1971).
    Google Scholar 
    20.MacCrimmon, H. R., Marshall, T. L. & Gots, B. L. World distribution of brown trout, Salmo trutta: further observations. J. Fish. Res. Board Canada 27, 811–818 (1970).
    Google Scholar 
    21.Crawford, S. S. & Muir, A. M. Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Rev. Fish Biol. Fish. 18, 313–344 (2008).
    Google Scholar 
    22.Crowl, T. A., Townsend, C. R. & Mcintosh, A. R. The impact of introduced brown and rainbow trout on native fish: The case of Australasia. Rev. Fish Biol. Fish. 241, 217–241 (1992).
    Google Scholar 
    23.Hasegawa, K. Invasions of rainbow trout and brown trout in Japan: A comparison of invasiveness and impact on native species. Ecol. Freshw. Fish 29, 419–428 (2020).
    Google Scholar 
    24.Cambray, J. A. The global impact of alien trout species—A review; with reference to their impact in South Africa. African J. Aquat. Sci. 28, 61–67 (2003).
    Google Scholar 
    25.Dunham, J. B., Wheeler, A. & Rosenberger, A. Assessing the consequences of nonnative trout in headwater ecosystems in western North America. Fisheries 29, 37–41 (2004).
    Google Scholar 
    26.Fausch, K. D., Taniguchi, Y., Nakano, S., Grossman, G. D. & Townsend, C. R. Flood disturbance regimes influence rainbow trout invasion success among five holarctic regions. Ecol. Appl. 11, 1438–1455 (2001).
    Google Scholar 
    27.Anderson, R. M. & Nehring, R. B. Effects of a catch-and-release regulation on a wild trout population in Colorado and its acceptance by Anglers. North Am. J. Fish. Manag. 4, 257–265 (1984).
    Google Scholar 
    28.Young, K. A. et al. A trial of two trouts: Comparing the impacts of rainbow and brown trout on a native galaxiid. Anim. Conserv. 13, 399–410 (2010).
    Google Scholar 
    29.Conrad, J. L., Weinersmith, K. L., Brodin, T., Saltz, J. B. & Sih, A. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).CAS 
    PubMed 

    Google Scholar 
    30.Mowles, S. L., Cotton, P. A. & Briffa, M. Consistent crustaceans: The identification of stable behavioural syndromes in hermit crabs. Behav. Ecol. Sociobiol. 66, 1087–1094 (2012).
    Google Scholar 
    31.Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 

    Google Scholar 
    32.Bell, A. M. Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus). J. Evol. Biol. 18, 464–473 (2005).CAS 
    PubMed 

    Google Scholar 
    33.Bourne, G. R. & Sammons, A. J. Boldness, aggression and exploration: evidence for a behavioural syndrome in male pentamorphic livebearing fish, Poecilia parae. AACL Bioflux 1, 39–50 (2008).
    Google Scholar 
    34.Lukas, J. et al. Consistent behavioral syndrome across seasons in an invasive freshwater fish. Front. Ecol. Evol. 8, 466 (2021).ADS 

    Google Scholar 
    35.Gjedrem, T., Gjøen, H. M. & Gjerde, B. Genetic origin of Norwegian farmed Atlantic salmon. Aquaculture 98, 41–50 (1991).
    Google Scholar 
    36.Huntingford, F. & Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour 142, 1207–1221 (2005).
    Google Scholar 
    37.Alvarez, D. & Nicieza, A. G. Predator avoidance behaviour in wild and hatchery-reared brown trout : The role of experience and domestication. J. Fish Biol. 63, 1565–1577. https://doi.org/10.1046/j.1095-8649.2003.00267.x (2003).Article 

    Google Scholar 
    38.Geffroy, B. et al. Evolutionary dynamics in the anthropocene: Life history and intensity of human contact shape antipredator responses. PLoS Biol. 18, 1–17 (2020).
    Google Scholar 
    39.Lincoln, R. F. & Scott, A. P. Production of all-female triploid rainbow trout. Aquaculture 30, 375–380 (1983).
    Google Scholar 
    40.Maxime, V. The physiology of triploid fish: Current knowledge and comparisons with diploid fish. Fish Fish. 9, 67–78 (2008).
    Google Scholar 
    41.Chatterji, R., Longley, D., Sandford, D., Roberts, D. & Stubbing, D. Performance of stocked triploid and diploid brown trout and their effects on wild brown trout in UK rivers. (2008).42.Benfey, T. J. The physiology and behavior of triploid fishes. Rev. Fish. Sci. 7, 39–67 (1999).
    Google Scholar 
    43.Carter, C. G. et al. Food consumption, feeding behaviour, and growth of triploid and diploid Atlantic salmon, Salmo salar L., parr.. Can. J. Zool. 72, 609–617 (1994).
    Google Scholar 
    44.Weber, G. M., Hostuttler, M. A., Cleveland, B. M. & Leeds, T. D. Growth performance comparison of intercross-triploid, induced triploid, and diploid rainbow trout. Aquaculture 433, 85–93 (2014).
    Google Scholar 
    45.Øverli, Ø., Pottinger, T. G., Carrick, T. R., Øverli, E. & Winberg, S. Differences in behaviour between rainbow trout selected for high- and low-stress responsiveness. J. Exp. Biol. 205, 391–395 (2002).PubMed 

    Google Scholar 
    46.Sadoul, B., Leguen, I., Colson, V., Friggens, N. C. & Prunet, P. A multivariate analysis using physiology and behavior to characterize robustness in two isogenic lines of rainbow trout exposed to a confinement stress. Physiol. Behav. 140, 139–147 (2015).CAS 
    PubMed 

    Google Scholar 
    47.Adriaenssens, B. & Johnsson, J. I. Learning and context-specific exploration behaviour in hatchery and wild brown trout. Appl. Anim. Behav. Sci. 132, 90–99 (2011).
    Google Scholar 
    48.Näslund, J. & Johnsson, J. I. State-dependent behavior and alternative behavioral strategies in brown trout (Salmo trutta L.) fry. Behav. Ecol. Sociobiol. 70, 2111–2125 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    49.Mortensen, E. Density-dependent mortality of trout fry (Salmo trutta L.) and its relationship to the management of small streams. J. Fish Biol. 11, 613–617 (1977).
    Google Scholar 
    50.Armstrong, J. D. & Nislow, K. H. Critical habitat during the transition from maternal provisioning in freshwater fish, with emphasis on Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). J. Zool. 269, 403–413 (2006).
    Google Scholar 
    51.Walsh, R. N. & Cummins, R. A. The open-field test: A critical review. Psychol. Bull. 83, 482–504 (1976).CAS 
    PubMed 

    Google Scholar 
    52.Adriaenssens, B. & Johnsson, J. I. Shy trout grow faster: Exploring links between personality and fitness-related traits in the wild. Behav. Ecol. 22, 135–143 (2010).
    Google Scholar 
    53.Sneddon, L. U. The bold and the shy: Individual differences in rainbow trout. J. Fish Biol. 62, 971–975 (2003).
    Google Scholar 
    54.Adriaenssens, B. Individual variation in behaviour: personality and performance of brown trout in the wild (University of Gothenburg, 2010).55.Elias, A., Thrower, F. & Nichols, K. M. Rainbow trout personality: Individual behavioural variation in juvenile Oncorhynchus mykiss. Behaviour 155, 205–230 (2018).
    Google Scholar 
    56.Dick, J. T. A. et al. Functional responses can unify invasion ecology. Biol. Invasions 19, 1667–1672 (2017).
    Google Scholar 
    57.Sloman, K. A., Metcalfe, N. B., Taylor, A. C. & Gilmour, K. M. Plasma cortisol concentrations before and after social stress in rainbow trout and brown trout. Physiol. Biochem. Zool. 74, 383–389 (2001).CAS 
    PubMed 

    Google Scholar 
    58.Sadoul, B., Blumstein, D. T., Alfonso, S. & Geffroy, B. Human protection drives the emergence of a new coping style in animals. PLoS Biol. 19, 1–11 (2021).
    Google Scholar 
    59.Campbell, J. M., Carter, P. A., Wheeler, P. A. & Thorgaard, G. H. Aggressive behavior, brain size and domestication in clonal rainbow trout lines. Behav. Genet. 45, 245–254 (2015).PubMed 

    Google Scholar 
    60.Berejikian, B. A., Mathews, S. B. & Quinn, T. P. Effects of hatchery and wild ancestry and rearing environments on the development of agonistic behavior in steelhead trout (Oncorhynchus mykiss) fry. Can. J. Fish. Aquat. Sci. 53, 2004–2014 (1996).
    Google Scholar 
    61.Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).
    Google Scholar 
    62.Alexander, M. E., Dick, J. T. A., Weyl, O. L. F., Robinson, T. B. & Richardson, D. M. Existing and emerging high impact invasive species are characterized by higher functional responses than natives. Biol. Lett. 10, 20130946 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    63.Dickey, J. W. E., Cuthbert, R. N., Steffen, G. T., Dick, J. T. A. & Briski, E. Sea freshening may drive the ecological impacts of emerging and existing invasive non-native species. Divers. Distrib. 27, 144–156 (2021).
    Google Scholar 
    64.Sadler, J., Pankhurst, P. M. & King, H. R. High prevalence of skeletal deformity and reduced gill surface area in triploid Atlantic salmon (Salmo salar L.). Aquaculture 198, 369–386 (2001).
    Google Scholar 
    65.Benfey, T. J. & Biron, M. Acute stress response in triploid rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Aquaculture 184, 167–176 (2000).CAS 

    Google Scholar 
    66.Sadler, J., Pankhurst, N. W., Pankhurst, P. M. & King, H. Physiological stress responses to confinement in diploid and triploid Atlantic salmon. J. Fish Biol. 56, 506–518 (2000).
    Google Scholar 
    67.Berrebi, P., Splendiani, A., Palm, S. & Berna, R. Genetic diversity of domestic brown trout stocks in Europe. Aquaculture 544, 737043 (2021).CAS 

    Google Scholar 
    68.Gross, R., Lulla, P. & Paaver, T. Genetic variability and differentiation of rainbow trout (Oncorhynchus mykiss) strains in northern and Eastern Europe. Aquaculture 272, 139–146 (2007).
    Google Scholar 
    69.Whelan, K. Assessing and mitigating the impact of a major rainbow trout escape on the wild salmon and trout populations of the Mourne river system, Northern Ireland. (2017).70.Shelton, J. et al. Temperature mediates the impact of non-native rainbow trout on native freshwater fishes in South Africa’s Cape Fold Ecoregion. Biol. Invasions 20, 2927–2944 (2018).
    Google Scholar 
    71.Michelangeli, M. et al. Sex-dependent personality in two invasive species of mosquitofish. Biol. Invasions 22, 1353–1364 (2020).
    Google Scholar 
    72.Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).
    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. (2018).74.RStudio Team. RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/. 2019 (2020).75.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Springer https://doi.org/10.1086/648138 (2008).Article 
    MATH 

    Google Scholar 
    76.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 18637 (2015).
    Google Scholar 
    77.Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version. Media https://doi.org/10.1007/978-0-387-98141-3 (2019).Article 

    Google Scholar 
    78.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 

    Google Scholar 
    79.Barton, K. MuMIn: Multi-Model Inference. 2020 (2020).80.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: estimated marginal means, aka least-squares means. R package version 1.5.2-1 (2020).81.Pritchard, D. frair: tools for functional response analysis. R package version 0.0.100 (2017).82.Juliano, S. A. Predation and functional response curves. in Design and Analysis of Ecological Experiments (eds. Scheiner, S. & Gurevitch, J.) Chapter 10 (2001).83.Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369–383 (1972).
    Google Scholar 
    84.Bolker, B. M. Rogers random predator equation: extensions and estimation by numerical integration. 1–20 (2012). More

  • in

    Parallel evolution of urban–rural clines in melanism in a widespread mammal

    1.Angel, S. et al. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 75, 53–107 (2011).
    Google Scholar 
    2.Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    3.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
    Google Scholar 
    4.Groffman, P. M. et al. Ecological homogenization of urban USA. Front. Ecol. Environ. 12, 74–81 (2014).
    Google Scholar 
    5.Bolnick, D. I. et al. (Non)Parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).
    Google Scholar 
    6.Donihue, C. M. & Lambert, M. R. Adaptive evolution in urban ecosystems. Ambio 44, 194–203 (2015).PubMed 

    Google Scholar 
    7.Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).
    Google Scholar 
    8.Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).PubMed 

    Google Scholar 
    9.Santangelo, J. S. et al. Urban environments as a framework to study parallel evolution. In Urban Evolutionary Biology (eds Szulkin, M. et al.) (Oxford University Press, 2020).
    Google Scholar 
    10.Cosentino, B. J., Moore, J.-D., Karraker, N. E., Ouellet, M. & Gibbs, J. P. Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander. Ecol. Evol. 7, 5426–5434 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    11.Koprowski, J. L., Munroe, K. E. & Edelman, A. J. Gray not grey: Ecology of Sciurus carolinensis in their native range in North America. In Grey Squirrels: Ecology and Management of an Invasive Species in Europe (eds Shuttleworth, C. M. et al.) (European Squirrel Initiative, 2016).
    Google Scholar 
    12.McRobie, H., Thomas, A. & Kelly, J. The genetic basis of melanism in the gray squirrel (Sciurus carolinensis). J. Hered. 100, 709–714 (2009).CAS 
    PubMed 

    Google Scholar 
    13.Gibbs, J. P., Buff, M. F. & Cosentino, B. J. The biological system: Urban wildlife, adaptation and evolution: Urbanization as a driver of contemporary evolution in gray squirrels (Sciurus carolinensis). In Understanding Urban Ecology (eds Hall, M. A. & Balogh, S.) (Springer, 2019).
    Google Scholar 
    14.Lehtinen, R. M. et al. Dispatches form the neighborhood watch: Using citizen science and field survey data to document color morph frequency in space and time. Ecol. Evol. 10, 1526–1538 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    15.Perlut, N. G. Long-distance dispersal by eastern gray squirrels in suburban habitats. Northeast. Nat. 27, 195–200 (2020).
    Google Scholar 
    16.Goheen, J. R., Swihart, R. K., Gehring, T. M. & Miller, M. S. Forces structuring tree squirrel communities in landscapes fragmented by agriculture: Species differences in perceptions of forest connectivity and carrying capacity. Oikos 102, 95–103 (2003).
    Google Scholar 
    17.Ducharme, M. B., Larochelle, J. & Richard, D. Thermogenic capacity in gray and black morphs of the gray squirrel, Sciurus carolinensis. Physiol. Zool. 62, 1273–1292 (1989).
    Google Scholar 
    18.Linnen, C. R. & Hoekstra, H. E. Measuring natural selection on genotypes and phenotypes in the wild. Cold Spring Harb. Symp. Quant. Biol. 74, 155–168 (2010).PubMed Central 

    Google Scholar 
    19.Campbell-Staton, S. C. et al. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4, 652–658 (2020).PubMed 

    Google Scholar 
    20.Reid, N. M. et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354, 1305–1308 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Bowers, M. A. & Breland, B. Foraging of gray squirrels on an urban-rural gradient: Use of the GUD to assess anthropogenic impact. Ecol. Appl. 6, 1135–1142 (1996).
    Google Scholar 
    22.McCleery, R. A., Lopez, R. R., Silvy, N. J. & Gallant, D. L. Fox squirrel survival in urban and rural environments. J. Wildl. Manage. 72, 133–137 (2008).
    Google Scholar 
    23.Benson, E. The urbanization of the eastern gray squirrel in the United States. J. Am. Hist. 100, 691–710 (2013).
    Google Scholar 
    24.Leveau, L. United colours of the city: A review about urbanization impact on animal colours. Austral Ecol. 46, 670–679 (2021).
    Google Scholar 
    25.Ducrest, A.-L., Keller, L. & Roulin, A. Pleiotropy in the melanocortin system, coloration, and behavioural syndromes. Trends Ecol. Evol. 23, 502–510 (2008).PubMed 

    Google Scholar 
    26.Stothart, M. R. & Newman, A. E. M. Shades of grey: Host phenotype dependent effect of urbanization on the bacterial microbiome of a wild mammal. Anim. Microbiome. 3, 46 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    27.Vasemägi, A. The adaptive hypothesis of clinal variation revisited: Single-locus clines as a result of spatially restricted gene flow. Genetics 173, 2411–2414 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    28.Merrick, M. J., Evans, K. L. & Bertolino, S. Urban grey squirrel ecology, associated impacts, and management challenges. In Grey Squirrels: Ecology and Management of an Invasive Species in Europe (eds Shuttleworth, C. M. et al.) (European Squirrel Initiative, 2016).
    Google Scholar 
    29.Chipman, R., Slate, D., Rupprecht, C. & Mendoza, M. Downside risk of wildlife translocation. In Towards the Elimination of Rabies in Eurasia (eds Dodet, B. et al.) (Dev. Biol Basel, Karger, 2008).
    Google Scholar 
    30.Allen, D. L. Michigan Fox Squirrel Management (Michigan Department of Conservation, 1943).
    Google Scholar 
    31.Schorger, A. W. Squirrels in early Wisconsin. Trans. Wis. Acad. Sci. Arts Lett. 39, 195–247 (1949).
    Google Scholar 
    32.Robertson, G. I. Distribution of Color Morphs of Sciurus carolinensis in Eastern North America (University of Western Ontario, 1973).
    Google Scholar 
    33.MacCleery, D. W. American Forests: A History of Resiliency and Recovery (Forest History Society, 2011).
    Google Scholar 
    34.Foster, D. R. et al. Wildlands and Woodlands: A Vision for the New England Landscape (Harvard University Press, 2010).
    Google Scholar 
    35.Thompson, R. T., Carpenter, D. N., Cogbill, C. V. & Foster, D. R. Four centuries of change in northeastern United States forests. PLoS ONE 8(9), e72540 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Lambert, M. R. et al. Adaptive evolution in cities: Progress and misconceptions. Trends Ecol. Evol. 36, 239–257 (2021).PubMed 

    Google Scholar 
    37.Farquhar, D. N. Some Aspects of Thermoregulation as Related to the Geographic Distribution of the Northern Melanic Phase of the Grey Squirrel (York University, 1974).
    Google Scholar 
    38.Innes, S. & Lavigne, D. M. Comparative energetics of coat colour polymorphs in the eastern gray squirrel Sciurus carolinensis. Can. J. Zool. 57, 585–592 (1979).
    Google Scholar 
    39.Santangelo, J. S. et al. Predicting the strength of urban-rural clines in a Mendelian polymorphism along a latitudinal gradient. Evol. Lett. 4, 212–225 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    40.Fidino, M. et al. Landscape-scale differences among cities alter common species’ responses to urbanization. Ecol. Appl. 31, e02253 (2021).PubMed 

    Google Scholar 
    41.Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
    Google Scholar 
    42.Alberti, M. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. U.S.A. 114, 8951–8956 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.United States Census Bureau. 2019 TIGER/Line Shapefiles (machine-readable data files) https://www2.census.gov/geo/tiger/TIGER2019/UAC/ (2019).44.XX. Statistics Canada. Population Centre Boundary File, Census year 2016 https://www150.statcan.gc.ca/n1/en/catalogue/92-166-X (2017).45.Aiello-Lammens, M. E. et al. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
    Google Scholar 
    46.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020).47.Brown de Colstoun, E. C. et al. Documentation for the Global Man-made Impervious Surface (GMIS) Dataset from Landsat (NASA Socioeconomic Data and Applications Center, 2017).
    Google Scholar 
    48.Steele, M. A. & Koprowski, J. L. North American Tree Squirrels (Smithsonian Books, 2001).
    Google Scholar 
    49.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    51.Hijmans, R. L. raster: Geographic data analysis and modeling. R package version 3.3–13. https://CRAN.R-project.org/package=raster (2020).52.Baston, D. exactextractr: Fast extraction from raster datasets using polygons. R package version 0.5.1. https://CRAN.R-project.org/package=exactextractr (2020).53.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    54.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    55.Gelman, A. & Su, Y. arm: Data analysis using regression and multilevel/hierarchical models. R package version 1.11–2. https://CRAN.R-project.org/package=arm (2020).56.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).
    Google Scholar 
    57.Crase, B., Liedloff, A. C. & Wintle, B. A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35, 879–888 (2012).
    Google Scholar 
    58.Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).MathSciNet 
    MATH 

    Google Scholar 
    59.Bardos, D. C., Guillera-Arroita, G. & Wintle, B. A. Valid auto-models for spatially autocorrelated occupancy and abundance data. Methods Ecol. Evol. 6, 1137–1149 (2015).
    Google Scholar  More

  • in

    Poaching of protected wolves fluctuated seasonally and with non-wolf hunting

    Time-to-event models for wild animals generally model exposure of individuals to natural conditions that may affect the risk of mortality and disappearance. Most models neglect to consider seasons of high human activity that may affect such risks, or interactions between endpoint hazards (reflected in incidences) that may illuminate ecology. For many large carnivores, which suffer from low natural mortality yet are also subject to high risk of anthropogenic mortality and poaching, seasons of anthropogenic activity may be as important as natural ones in mediating cause-specific mortality and disappearance.Importantly, such anthropogenic seasons of higher mortality need not be specific to the animals being studied, especially if the species is controversial and much mortality illegal: our anthropogenic seasons consist of state hunting and hounding seasons for species other than wolves (i.e., deer or bear hunting, and hounding; not wolf hunting), but that mediate human activity on the landscape during those seasons. Our results support the hypothesis that increases in poaching risk during hunting seasons may be attributable to the surge of individuals with inclination to poach on the landscape14,18,29. Alternatively, it could also suggest enhanced criminal activity of a few poachers during the same periods. We temper this increase in poaching risk by establishing snow cover as a major environmental factor strongly associated with poaching. Moreover, our time-to-event analyses illuminate how to evaluate the effects that such anthropogenic seasons may have on risk of mortality and disappearance of monitored animals throughout their lifetime, and how considering such seasons may elucidate the mechanisms behind anthropogenic mortality and disappearance.Additionally, our analysis period precedes and completely excludes any established public wolf hunting seasons. Hence, our modeled anthropogenic seasons represent the periods of most relevant anthropogenic activity for wolves, as hypothesized by other studies14,29,33 and suggested by social science studies on inclinations to poach self-reported by both deer hunters and bear hunters, as well as acceptance of poaching by hunters and farmers30,31,32.Our analyses show increases in the hazard of disappearances of collared wolves (LTF) relative to the baseline period (which excludes environmental and anthropogenic risks) for all seasons. The highest hazard of LTF occurs during the snow season, whereas increases in hazard are lower (and similar) for the two seasons that included hounding and hunting. LTF may experience changes in hazard due to changes in the hazard of any/all of its components: migration, collar failure, or cryptic poaching.Constant and steep increases in LTF hazard throughout a wolf’s lifetime suggests mechanisms other than migration regulating LTF hazard, given migration for adults is most frequent by yearlings and younger adults, around 1.5 to 2.2 years34,35,36. Moreover, only migration out of state would end monitoring, not routine extraterritorial movements of radio-collared wolves. That our seasonal LTF curves depict the cumulative hazards more than doubling beyond those t generally associated with dispersal (~ t  More

  • in

    Vertical stratification of insect abundance and species richness in an Amazonian tropical forest

    1.Nakamura, A. et al. Forests and their canopies: Achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438–451 (2017).PubMed 

    Google Scholar 
    2.Scheffers, B. R. et al. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).ADS 

    Google Scholar 
    3.Lefsky, M. A. et al. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 32, L22S02 (2005).
    Google Scholar 
    4.Ellwood, M. D. F. & Foster, W. A. Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429, 549–551 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Dial, R. et al. Arthropod abundance, canopy structure, and microclimate in a Bornean lowland tropical rain forest. Biotropica 38, 643–652 (2006).
    Google Scholar 
    6.Valencia, R. et al. High tree alpha-diversity in Amazonian Ecuador. Biodivers. Conserv. 3, 21–28 (1994).
    Google Scholar 
    7.Stone, M. J. et al. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest. PLoS ONE 13, e0193369 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    8.Nadkarni, N. M. Diversity of species and interactions in the upper tree canopy of forest ecosystems. Am. Zool. 34, 70–78 (1994).
    Google Scholar 
    9.Stanton, D. E. et al. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum. Ecology 100(9), e02795 (2019).PubMed 

    Google Scholar 
    10.Basset, Y. et al. (eds) Arthropods of Tropical Forests. Spatio-Temporal Dynamics and Resource Use in the Canopy (Cambridge University Press, 2003).
    Google Scholar 
    11.Schowalter, T. D. et al. Post-hurricane successional dynamics in abundance and diversity of canopy arthropods in a tropical rainforest. Environ. Entomol. 46, 11–20 (2017).CAS 
    PubMed 

    Google Scholar 
    12.Silva, R. R. & Brandão, C. R. F. Morphological patterns and community organization in leaf-litter ant assemblages. Ecol. Monogr. 80, 107–124 (2010).
    Google Scholar 
    13.McCaig, T., Sam, L., Nakamura, L. & Stork, N. E. Is insect vertical distribution in rainforests better explained by distance from the canopy top or distance from the ground?. Biodivers. Conserv. 29, 1081–1103 (2020).
    Google Scholar 
    14.Floren, A. & Linsenmair, K. E. The influence of anthropogenic disturbances on the structure of arboreal arthropod communities. Plant Ecol. 153, 153–167 (2001).
    Google Scholar 
    15.Adis, J. et al. Canopy fogging of an overstory tree—Recommendations for standardization. Ecotropica 4, 93–97 (1998).
    Google Scholar 
    16.Bar-Ness, Y. D. et al. Sampling forest canopy arthropod biodiversity with three novel minimal-cost trap designs. Aust. J. Entomol. 51, 12–21. https://doi.org/10.1111/j.1440-6055.2011.00836.x (2012).Article 

    Google Scholar 
    17.Erwin, T. L. Canopy arthropod biodiversity: A chronology of sampling techniques and results. Rev. Peru. Entomol. 2, 71–77 (1990).
    Google Scholar 
    18.Floren, A. Sampling arthropods from the canopy by insecticidal knockdown. In Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories, Part 1 Vol. 8 (eds Eymann, J., Degref, J., Häuser, C. et al.) 158–172 (ABC Taxa, 2010).
    Google Scholar 
    19.Leather, S. R. (ed.) Insect Sampling in Forest Ecosystems (Blackwell Science, 2005).
    Google Scholar 
    20.Lowman, M., Moffett, M. & Rinker, H. B. A new technique for taxonomic and ecological sampling in rain forest canopies. Selbyana 14, 75–79 (1993).
    Google Scholar 
    21.Lowman, M. D., Kitching, R. L. & Carruthers, G. Arthropod sampling in Australian subtropical rain forest: How accurate are some of the more common techniques?. Selbyana 17, 36–42 (1996).
    Google Scholar 
    22.Lowman, M. D., Schowalter, T. D. & Franklin, J. F. Methods in Forest Canopy Research (University of California Press, 2012).
    Google Scholar 
    23.Majer, J. D. & Recher, H. F. Invertebrate communities on Western Australian eucalypts—A comparison of branch clipping and chemical knockdown procedures. Aust. J. Ecol. 13, 269–278. https://doi.org/10.1111/j.1442-9993.1988.tb00974.x (1988).Article 

    Google Scholar 
    24.Ozanne, C. M. P. Techniques and methods for sampling canopy insects. In Insect Sampling in forest ecosystems (ed. Leather, S. R.) 146–165 (Blackwell, 2005).
    Google Scholar 
    25.Paarmann, W. & Stork, N. E. Canopy fogging, a method of collecting living insects for investigation of life history strategies. J. Nat. Hist. 21, 563–566. https://doi.org/10.1080/00222938700770341 (1987).Article 

    Google Scholar 
    26.Parker, G. G., Smith, A. P. & Hogan, K. P. Access to the upper forest canopy with a large tower crane. Bioscience 42, 664–670. https://doi.org/10.2307/1312172 (1992).Article 

    Google Scholar 
    27.Skvarla, M. J., Larson, J. L., Fisher, J. R. & Dowling, A. P. G. A review of terrestrial and canopy malaise traps. Ann. Entomol. Soc. Am. 114(1), 27–47. https://doi.org/10.1093/aesa/saaa044 (2021).Article 

    Google Scholar 
    28.Stork, N. E. Australian tropical forest canopy crane: New tools for new frontiers. Aust. Ecol. 32, 4–9. https://doi.org/10.1111/j.1442-9993.2007.01740.x (2007).Article 

    Google Scholar 
    29.Basset, Y. et al. IBISCA-Panama, a large-scale study of arthropod beta-diversity and vertical stratification in a lowland rainforest: Rationale, study sites and field protocols. Bull. Inst. R. Sci. Nat. Belg. Entomol. 77, 39–69 (2007).
    Google Scholar 
    30.Basset, Y., Cizek, L. & Cuénoud, P. Arthropod diversity in a tropical forest. Science 338, 1481–1484. https://doi.org/10.1126/science.1226727 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Kitching, R. L. et al. The biodiversity of arthropods from Australian rainforest canopies: General introduction, methods, sites and ordinal results. Aust. J. Ecol. 18, 181–191. https://doi.org/10.1111/j.1442-9993.1993.tb00442.x (1993).Article 

    Google Scholar 
    32.Lindo, Z. & Winchester, N. N. Oribatid mite communities and foliar litter decomposition in canopy suspended soils and forest floor habitats of western red cedar forests, Vancouver Island, Canada. Soil Biol. Biochem. 39, 2957–2966. https://doi.org/10.1016/j.soilbio.2007.06.009 (2007).CAS 
    Article 

    Google Scholar 
    33.Schowalter, T. D. Canopy arthropod communities in relation to forest age and alternative harvest practices in western Oregon. For. Ecol. Manage 78, 115–125 (1995).
    Google Scholar 
    34.Southwood, T. R. E., Moran, V. C. & Kennedy, C. E. J. The assessment of arboreal insect fauna: Comparisons of knockdown sampling and faunal lists. Ecol. Entomol. 7, 331–340. https://doi.org/10.1111/j.1365-2311.1982.tb00674.x (1982).Article 

    Google Scholar 
    35.Stork, N. E. Guild structure of arthropods from Bornean rain forest trees. Ecol. Entomol. 12, 69–80. https://doi.org/10.1111/j.1365-2311.1987.tb00986.x (1987).Article 

    Google Scholar 
    36.Stork, N. E. et al. (eds) Canopy Arthropods (Chapman & Hall, 1997).
    Google Scholar 
    37.DeVries, P. J. Stratification of fruit-feeding nymphalid butterflies in a Costa Rican rain forest. J. Res. Lepid. 26, 98–108 (1988).ADS 

    Google Scholar 
    38.Hill, C. J., Gillison, A. N. & Jones, R. E. The spatial distribution of rain forest butterflies at three sites in North Queensland, Australia. J. Trop. Ecol. 8, 37–46 (1992).
    Google Scholar 
    39.Medina, M. C., Robbins, R. K. & Lamas, G. Vertical stratification of flight by Ithomiinae butterflies (Lepidoptera: Nymphalidae) at Pakitza, Manu National Park, Peru. In Manu—The Biodiversity of Southeastern Peru (eds Wilson, D. E. & Sandoval, A.) 211–216 (Smithsonian Institution, 1996).
    Google Scholar 
    40.DeVries, P. J., Murray, D. & Lande, R. Species diversity in vertical, horizontal, and temporal dimensions of a fruitfeeding butterfly community in an Ecuadorian rainforest. Biol. J. Linn. Soc. 62, 343–364. https://doi.org/10.1111/j.1095-8312.1997.tb01630.x (1997).Article 

    Google Scholar 
    41.DeVries, P. J., Murray, D. & Lande, R. Species diversity in vertical, horizontal, and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rain forest. Biol. J. Linn. Soc. 62, 343–364 (1997).
    Google Scholar 
    42.Beccaloni, G. W. Vertical stratification of ithomiine butterfly (Nymphalidae: Ithomiinae) mimicry complexes: The relationship between adult flight height and larval host-plant height. Biol. J. Linn. Soc. 62, 313–341 (1997).
    Google Scholar 
    43.Schulze, C. H., Linsenmair, K. E. & Fiedler, K. Understorey versus canopy: Patterns of vertical stratification and diversity among Lepidoptera in a Bornean Rain Forest. Plant Ecol. 153, 133–152. https://doi.org/10.1023/A:1017589711553 (2001).Article 

    Google Scholar 
    44.Fordyce, J. A. & DeVries, P. J. A tale of two communities: Eotropical butterfly assemblages show higher beta diversity in the canopy compared to the understory. Oecologia 181, 235–243. https://doi.org/10.1007/s00442-016-3562-0 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    45.Santos, J. P., Iserhard, C. A., Carreira, J. Y. O. & Freitas, A. V. L. Monitoring fruit-feeding butterfly assemblages in two vertical strata in seasonal Atlantic Forest: Temporal species turnover is lower in the canopy. J. Trop. Ecol. 33(5), 345–355 (2017).
    Google Scholar 
    46.Lourido, G. M., Motta, C. S., Graça, M. B. & Rafael, J. A. Diversity patterns of hawkmoths (Lepidoptera: Sphingidae) in the canopy of an ombrophilous forest in Central Amazon, Brazil. Acta Amazon. 48, 117–125 (2018).
    Google Scholar 
    47.Araujo, P. F., Freitas, A. V. L., Gonçalves, G. A. S. & Ribeiro, D. B. Vertical stratification on a small scale: The distribution of fruit-feeding butterflies in a semi-deciduous Atlantic forest in Brazil. Stud. Neotrop. Fauna Environ. 56, 10–39 (2021).
    Google Scholar 
    48.Charles, E. & Basset, Y. Vertical stratification of leaf-beetle assemblages (Coleoptera: Chrysomelidae) in two forest types in Panama. J. Trop. Ecol. 21, 329–336. https://doi.org/10.1017/S0266467405002300 (2005).Article 

    Google Scholar 
    49.Grimbacher, P. S. & Stork, N. E. Vertical stratification of feeding guilds and body size in beetle assemblages from an Australian tropical rainforest. Aust. Ecol. 32, 77–85. https://doi.org/10.1111/j.1442-9993.2007.01735.x (2007).Article 

    Google Scholar 
    50.Floren, A. & Schmidl, J. (eds) Canopy Arthropod Research in Europe: Basic and Applied Studies from the High Frontier (Bioform Entomology & Equipment, 2008).
    Google Scholar 
    51.Stork, N. E. et al. Vertical stratification of beetles in tropical rainforests as sampled by light traps in North Queensland, Australia. Austral Ecol. 41(2), 168–178 (2015).
    Google Scholar 
    52.Tregidgo, D. J., Qie, L., Barlow, J., Sodhi, N. S. & Lee-Hong, L. S. Vertical stratification responses of an arboreal dung beetle species to tropical forest fragmentation in Malaysia. Biotropica 42, 521–552 (2010).
    Google Scholar 
    53.Davis, A. J., Sutton, S. L. & Brendell, M. J. D. Vertical distribution of beetles in a tropical rainforest in Sulawesi: The role of the canopy in contributing to Biodiversity. Sepilok Bull. 13 & 14, 59–83 (2011).
    Google Scholar 
    54.Heatwole, H. Changes in ant assemblages across an arctic treeline. Rev d’Entomol du Quebec 34, 10–22 (1989).
    Google Scholar 
    55.Roubik, D. W. Tropical pollinators in the canopy and understory: Field data and theory for stratum “preferences”. J. Ins. Behav. 6, 659–673. https://doi.org/10.1007/BF01201668 (1993).Article 

    Google Scholar 
    56.Longino, J. T. & Colwell, R. K. Biodiversity assessment using structured inventory: Capturing the ant fauna of a tropical rain forest. Ecol. Appl. 7, 1263–1277. https://doi.org/10.1890/1051-0761(1997)007[1263:BAUSIC]2.0.CO;2 (1997).Article 

    Google Scholar 
    57.Vance, A. C. C., Smith, S. M., Malcolm, J. R., Huber, J. & Bellocq, M. I. Differences between forest type and vertical strata in the diversity and composition of hymenopteran families and mymarid genera in Northeastern Temperate Forests. Environ. Entomol. 36, 1073–1083. https://doi.org/10.1603/0046-225X(2007)36[1073:DBFTAV]2.0.CO;2 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Hernández-Flores, J. et al. Effect of forest disturbance on ant (Hymenoptera: Formicidae) diversity in a Mexican tropical dry forest canopy. Insect Conserv. Diver. 14(3), 393–402. https://doi.org/10.1111/icad.12466 (2020).Article 

    Google Scholar 
    59.Roberts, H. R. Arboreal Orthoptera in the rain forest of Costa Rica collected with insecticide: A report on the grasshoppers (Acrididae) including new species. Proc. Acad. Nat. Sci. Phila. 125, 46–66 (1973).
    Google Scholar 
    60.Rodgers, D. J. & Kitching, R. L. Vertical stratification of rainforest collembolan (Collembola: Insecta) assemblages: Description of ecological patterns and hypotheses concerning their generation. Ecography 21, 392–400. https://doi.org/10.1111/j.1600-0587.1998.tb00404.x (1998).Article 

    Google Scholar 
    61.Krab, E. J., Oorsprong, H., Berg, M. P. & Cornelissen, J. H. C. Turning northern peatlands upside down: Disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Funct. Ecol. 24, 1362–1369. https://doi.org/10.1111/j.1365-2435.2010.01754.x (2010).Article 

    Google Scholar 
    62.Coots, C., Lambdin, P., Grant, J., Rhea, R. & Mockford, E. Vertical stratification and co-occurrence patterns of the psocoptera community associated with Eastern Hemlock, Tsuga canadensis (L.) Carrière, in the Southern Appalachians. Forests 3, 127–136. https://doi.org/10.3390/f3010127 (2012).Article 

    Google Scholar 
    63.Wardhaugh, C. W. et al. Vertical stratification in the spatial distribution of the beech scale insect (Ultracoelostoma assimile) in Nothofagus tree canopies in New Zealand. Ecol. Entomol. 31, 185–195 (2006).
    Google Scholar 
    64.Brown, B. V. et al. Comprehensive inventory of true flies (Diptera) at a tropical site. Commun. Biol. 1, 1–8 (2018).ADS 

    Google Scholar 
    65.Borkent, A. et al. Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science. Zootaxa 4402, 53–90 (2018).PubMed 

    Google Scholar 
    66.Hebert, P. D. N. et al. Counting animal species with DNA barcodes: Canadian insects. Philos. Trans. R. Soc. Lond. Ser. B. 371, 20150333 (2016).
    Google Scholar 
    67.Basset, Y. et al. Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLoS ONE 10, e0144110 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    68.MacArthur, R. H. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958).
    Google Scholar 
    69.Higuchi, N. et al. Governos locais amazônicos e as questões climáticas globais 103 (INPA/edição dos autores, 2009).
    Google Scholar 
    70.Brown, B. V. Malaise trap catches and the crisis in Neotropical dipterology. Am. Entomol. 51, 180–183 (2005).
    Google Scholar 
    71.Gressitt, J. L. & Gressitt, M. K. An improved Malaise trap. Pacific Insects 4, 87–90 (1962).
    Google Scholar 
    72.van Achterberg, K. Can Townes type Malaise traps be improved? Some recent developments. Entomologische Berichten 69, 129–135 (2009).
    Google Scholar 
    73.R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (Accessed 20 October 2021); https://www.R-project.org/.
    74.Konietschke, F. (2011). nparcomp: nparcomp-package. R package version 1.0-1. (Accessed 20 October 2021); http://CRAN.R-project.org/package=nparcomp75.Alboukadel Kassambara (2020). ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.3.0. (Accessed 20 October 2021); https://CRAN.R-project.org/package=ggpubr76.Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).PubMed 

    Google Scholar 
    77.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    78.Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).
    Google Scholar 
    79.Gardner, T. A. et al. Predicting the uncertain future of tropical forest species in a data vacuum. Biotropica 39, 25–30 (2007).
    Google Scholar  More

  • in

    Species delimitation and mitonuclear discordance within a species complex of biting midges

    1.De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56, 879–886. https://doi.org/10.1080/10635150701701083 (2007).Article 
    PubMed 

    Google Scholar 
    2.Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates Inc, 2004).
    Google Scholar 
    3.Endler, J. A. Gene flow and population differentiation: studies of clines suggest that differentiation along environmental gradients may be independent of gene flow. Science 179, 243–250 (1973).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Mayr, E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist (Harvard University Press, 1999).
    Google Scholar 
    5.Richardson, J. L., Urban, M. C., Bolnick, D. I. & Skelly, D. K. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29, 165–176 (2014).PubMed 

    Google Scholar 
    6.Nosil, P. Ernst Mayr and the integration of geographic and ecological factors in speciation. Biol. J. Lin. Soc. 95, 26–46 (2008).
    Google Scholar 
    7.Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).PubMed 

    Google Scholar 
    8.Leliaert, F. et al. DNA-based species delimitation in algae. Eur. J. Phycol. 49, 179–196 (2014).
    Google Scholar 
    9.Carstens, B. C., Pelletier, T. A., Reid, N. M. & Satler, J. D. How to fail at species delimitation. Mol. Ecol. 22, 4369–4383 (2013).PubMed 

    Google Scholar 
    10.Schlick-Steiner, B. C. et al. Integrative taxonomy: a multisource approach to exploring biodiversity. Annu. Rev. Entomol. 55, 421–438 (2010).CAS 
    PubMed 

    Google Scholar 
    11.Capblancq, T., Mavárez, J., Rioux, D. & Després, L. Speciation with gene flow: evidence from a complex of alpine butterflies (Coenonympha, Satyridae). Ecol. Evol. 9, 6444–6457 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    12.Pedraza-Marrón, C. d. R. et al. Genomics overrules mitochondrial DNA, siding with morphology on a controversial case of species delimitation. Proc. R. Soc. B 286, 20182924 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    13.Hinojosa, J. C. et al. A mirage of cryptic species: genomics uncover striking mitonuclear discordance in the butterfly Thymelicus sylvestris. Mol. Ecol. 28, 3857–3868 (2019).PubMed 

    Google Scholar 
    14.Nygren, A. et al. A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic. PLoS ONE 13, e0198356 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    15.Thielsch, A., Knell, A., Mohammadyari, A., Petrusek, A. & Schwenk, K. Divergent clades or cryptic species? Mito-nuclear discordance in a Daphnia species complex. BMC Evol. Biol. 17, 1–9 (2017).
    Google Scholar 
    16.Eyer, P. A. & Hefetz, A. Cytonuclear incongruences hamper species delimitation in the socially polymorphic desert ants of the Cataglyphis albicans group in Israel. J. Evol. Biol. 31, 1828–1842 (2018).CAS 
    PubMed 

    Google Scholar 
    17.Borkent, A. Biology of Disease Vectors. 2nd edn, i–xxiii + 1–785 (Elsevier Academic Press, 2004).18.Mellor, P., Boorman, J. & Baylis, M. Culicoides biting midges: their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    PubMed 

    Google Scholar 
    19.Rushton, J. & Lyons, N. Economic impact of Bluetongue: a review of the effects on production. Veterinaria italiana 51, 401–406 (2015).PubMed 

    Google Scholar 
    20.Tabachnick, W. J. Culicoides vriipennis and Bluetongue-Virus eidemiology in the United States. Annu. Rev. Entomol. 41, 23–43. https://doi.org/10.1146/annurev.en.41.010196.000323 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Wirth, W. W. & Jones, R. H. The North American Subspecies of Culicoides variipennis (Diptera, Heleidae). U. S. Dep. Agric. Tech. Bull 1170, 1–35 (1957).
    Google Scholar 
    22.Holbrook, F. R. et al. Sympatry in the Culicoides variipennis Complex (Diptera: Ceratopogonidae): a Taxonomic Reassessment. J. Med. Entomol. 37, 65–76. https://doi.org/10.1603/0022-2585-37.1.65 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Hopken, M. W. Pathogen Vectors at the Wildlife-Livestock Interface: Molecular Approaches to Elucidating Culicoides (Diptera: Ceratopogonidae) Biology (University of Colorado, 2016).
    Google Scholar 
    24.Shults, P. A Study of the Taxonomy, Ecology, and Systematics of Culicoides Species (Diptera: Ceratopogonidae) Including those Associated with Deer Breeding Facilities in Southeast Texas (Texas A&M University, 2015).
    Google Scholar 
    25.Velten, R. K. & Mullens, B. A. Field morphological variation and laboratory hybridization of Culicoides variipennis sonorensis and C. v. occidentalis (Diptera:Ceratopogonidae) in southern California. J. Med. Entomol. 34, 277–284 (1997).CAS 
    PubMed 

    Google Scholar 
    26.Fontaine, M. C. et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258522 (2015).PubMed 

    Google Scholar 
    27.Bolnick, D. I. & Otto, S. P. The magnitude of local adaptation under genotype-dependent dispersal. Ecol. Evol. 3, 4722–4735 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    28.Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279 (1993).PubMed 

    Google Scholar 
    29.Pante, E. et al. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol. Ecol. 24, 525–544 (2015).PubMed 

    Google Scholar 
    30.Jacquet, S. et al. Colonization of the Mediterranean basin by the vector biting midge species Culicoides imicola: an old story. Mol. Ecol. 24, 5707–5725. https://doi.org/10.1111/mec.13422 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Onyango, M. G. et al. Genotyping of whole genome amplified reduced representation libraries reveals a cryptic population of Culicoides brevitarsis in the Northern Territory, Australia. BMC Genomics 17, 769. https://doi.org/10.1186/s12864-016-3124-1 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Onyango, M. G. et al. Delineation of the population genetic structure of Culicoides imicola in East and South Africa. Parasit. Vectors 8, 660. https://doi.org/10.1186/s13071-015-1277-4 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Mignotte, A. et al. High dispersal capacity of Culicoides obsoletus (Diptera: Ceratopogonidae), vector of bluetongue and Schmallenberg viruses, revealed by landscape genetic analyses. Parasit. Vectors 14, 1–14 (2021).
    Google Scholar 
    34.Sanders, C. J. & Carpenter, S. Assessment of an immunomarking technique for the study of dispersal of Culicoides biting midges. Infect. Genet. Evol. 28, 583–587 (2014).PubMed 

    Google Scholar 
    35.Kluiters, G., Swales, H. & Baylis, M. Local dispersal of palaearctic Culicoides biting midges estimated by mark-release-recapture. Parasit. Vectors 8, 86 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    36.Ducheyne, E. et al. Quantifying the wind dispersal of Culicoides species in Greece and Bulgaria. Geospat. Health 10, 177–189 (2007).
    Google Scholar 
    37.Purse, B. V. et al. Climate change and the recent emergence of bluetongue in Europe. Nat. Rev. Microbiol. 3, 171–181 (2005).CAS 
    PubMed 

    Google Scholar 
    38.Jacquet, S. et al. Range expansion of the Bluetongue vector, Culicoides imicola, in continental France likely due to rare wind-transport events. Sci. Rep. https://doi.org/10.1038/srep27247 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).
    Google Scholar 
    40.Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).PubMed 

    Google Scholar 
    41.Shults, P. A Study of Culicoides Biting Midges in the Subgenus Monoculicoides: Population Genetics, Taxonomy, Systematics, and Control. Ph.D. thesis, Texas A&M University (2021).42.Jewiss-Gaines, A., Barelli, L. & Hunter, F. F. First records of Culicoides sonorensis (Diptera: Ceratopogonidae), a known vector of bluetongue virus, Southern Ontario. J. Med. Entomol. 54, 757–762. https://doi.org/10.1093/jme/tjw215 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Chan, K. M. & Levin, S. A. Leaky prezygotic isolation and porous genomes: rapid introgression of maternally inherited DNA. Evolution 59, 720–729 (2005).CAS 
    PubMed 

    Google Scholar 
    44.Harrison, R. G. Hybrid zones: windows on evolutionary process. Oxf. Surv. Evol. Biol. 7, 69–128 (1990).
    Google Scholar 
    45.Harrison, R. G. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol. Evol. 4, 6–11 (1989).CAS 
    PubMed 

    Google Scholar 
    46.Després, L. One, Two or More Species? Mitonuclear Discordance and Species Delimitation. Molecular ecology 28(17), 3845–3847 (2019).PubMed 

    Google Scholar 
    47.Janes, J. K. et al. The K= 2 conundrum. Mol. Ecol. 26, 3594–3602 (2017).PubMed 

    Google Scholar 
    48.De Meester, L., Vanoverbeke, J., Kilsdonk, L. J. & Urban, M. C. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 31, 136–146 (2016).PubMed 

    Google Scholar 
    49.Ballard, J. W. O., Chernoff, B. & James, A. C. Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behavior in Drosophila simulans. Evolution 56, 527–545 (2002).PubMed 

    Google Scholar 
    50.Behura, S., Sahu, S., Mohan, M. & Nair, S. Wolbachia in the Asian rice gall midge, Orseolia oryzae (Wood-Mason): Correlation between host mitotypes and infection status. Insect Mol. Biol. 10, 163–171 (2001).CAS 
    PubMed 

    Google Scholar 
    51.Covey, H. et al. Cryptic Wolbachia (Rickettsiales: Rickettsiaceae) detection and prevalence in Culicoides (Diptera: Ceratopogonidae) midge populations in the United States. J. Med. Entomol. 57, 1262–1269. https://doi.org/10.1093/jme/tjaa003 (2020).Article 
    PubMed 

    Google Scholar 
    52.Pagès, N., Muñoz-Muñoz, F., Verdún, M., Pujol, N. & Talavera, S. First detection of Wolbachia-infected Culicoides (Diptera: Ceratopogonidae) in Europe: Wolbachia and Cardinium infection across Culicoides communities revealed in Spain. Parasit. Vectors 10, 582. https://doi.org/10.1186/s13071-017-2486-9 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Pilgrim, J. et al. Cardinium symbiosis as a potential confounder of mtDNA based phylogeographic inference in Culicoides imicola (Diptera: Ceratopogonidae), a vector of veterinary viruses. Parasit. Vectors 14, 100. https://doi.org/10.1186/s13071-020-04568-3 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Hare, M. P. Prospects for nuclear gene phylogeography. Trends Ecol. Evol. 16, 700–706 (2001).
    Google Scholar 
    55.Onyango, M. G. et al. Assessment of population genetic structure in the arbovirus vector midge, Culicoides brevitarsis (Diptera: Ceratopogonidae), using multi-locus DNA microsatellites. Vet. Res. 46, 108. https://doi.org/10.1186/s13567-015-0250-8 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Fonseca, D. M., Smith, J. L., Kim, H.-C. & Mogi, M. Population genetics of the mosquito Culex pipiens pallens reveals sex-linked asymmetric introgression by Culex quinquefasciatus. Infect. Genet. Evol. 9, 1197–1203 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Goubert, C., Minard, G., Vieira, C. & Boulesteix, M. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity 117, 125–134 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Lehmann, T. et al. Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci. Mol. Ecol. 6, 243–253 (1997).CAS 
    PubMed 

    Google Scholar 
    59.Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631. https://doi.org/10.1093/molbev/msl191 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Manni, M. et al. Molecular markers for analyses of intraspecific genetic diversity in the Asian Tiger mosquito, Aedes albopictus. Parasit. Vectors 8, 1–11 (2015).
    Google Scholar 
    61.Arntzen, J. W., Jehle, R., Bardakci, F., Burke, T. & Wallis, G. P. Asymmetric viability of reciprocal-cross hybrids between Crested and Marbled Newts (Triturus cristatus and T. marmoratus). Evolution 63, 1191–1202. https://doi.org/10.1111/j.1558-5646.2009.00611.x (2009).Article 
    PubMed 

    Google Scholar 
    62.Gibeaux, R. et al. Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature 553, 337. https://doi.org/10.1038/nature25188 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    63.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741 (2008).CAS 
    PubMed 

    Google Scholar 
    64.Servedio, M. R. & Kirkpatrick, M. The effects of gene flow on reinforcement. Evolution 51, 1764–1772. https://doi.org/10.1111/j.1558-5646.1997.tb05100.x (1997).Article 
    PubMed 

    Google Scholar 
    65.Howard, D. J. Reinforcement: origin, dynamics, and fate of an evolutionary hypothesis. Hybrid zones and the evolutionary process, 46–69 (1993).66.Yukilevich, R. Asymmetrical patterns of speciation uniquely support reinforcement in Drosophila. Evolution 66, 1430–1446. https://doi.org/10.1111/j.1558-5646.2011.01534.x (2012).Article 
    PubMed 

    Google Scholar 
    67.Downes, J. A. The Culicoides variipennis complex: a necessary re-alignment of nomenclature (Diptera: Ceratopogonidae). Can. Entomol. 110, 63–69 (1978).
    Google Scholar 
    68.Toews, D. P. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).CAS 
    PubMed 

    Google Scholar 
    69.Smith, H. & Mullens, B. A. Seasonal activity, size, and parity of Culicoides occidentalis (Diptera: Ceratopogonidae) in a coastal southern California salt marsh. J. Med. Entomol. 40, 352–355. https://doi.org/10.1603/0022-2585-40.3.352 (2003).Article 
    PubMed 

    Google Scholar 
    70.Linley, J. The effect of salinity on oviposition and egg hatching in Culicoides variipennis sonorensis (Diptera: Ceratopogonidae). J. Am. Mosq. Control Assoc. 2, 79–82 (1986).CAS 
    PubMed 

    Google Scholar 
    71.Gerry, A. C. & Mullens, B. A. Response of Male Culicoides variipennis sonorensis (Diptera: Ceratopogonidae) to carbon dioxide and observations of mating behavior on and near cattle. J. Med. Entomol. 35, 239–244. https://doi.org/10.1093/jmedent/35.3.239 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Nolan, D. V. et al. Rapid diagnostic PCR assays for members of the Culicoides obsoletus and Culicoides pulicaris species complexes, implicated vectors of bluetongue virus in Europe. Vet. Microbiol. 124, 82–94 (2007).CAS 
    PubMed 

    Google Scholar 
    73.Sebastiani, F. et al. Molecular differentiation of the Old World Culicoides imicola species complex (Diptera, Ceratopogonidae), inferred using random amplified polymorphic DNA markers. Mol. Ecol. 10, 1773–1786 (2001).CAS 
    PubMed 

    Google Scholar 
    74.Carlson, D. Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science 207, 1089–1091 (1980).CAS 
    PubMed 
    ADS 

    Google Scholar 
    75.Palacios, G. et al. Characterization of the Sandfly fever Naples species complex and description of a new Karimabad species complex (genus Phlebovirus, family Bunyaviridae). J. Gen. Virol. 95, 292 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Rivas, G., Souza, N. & Peixoto, A. A. Analysis of the activity patterns of two sympatric sandfly siblings of the Lutzomyia longipalpis species complex from Brazil. Med. Vet. Entomol. 22, 288–290 (2008).CAS 
    PubMed 

    Google Scholar 
    77.Wilson, W. C. et al. Current status of bluetongue virus in the Americas. Bluetongue 10, 197–220 (2009).
    Google Scholar 
    78.Allen, S. E. et al. Epizootic Hemorrhagic Disease in White-Tailed Deer, Canada. Emerg. Infect. Dis. 25, 832–834. https://doi.org/10.3201/eid2504.180743 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.McGregor, B. L. et al. Field data implicating Culicoides stellifer and Culicoides venustus (Diptera: Ceratopogonidae) as vectors of epizootic hemorrhagic disease virus. Parasit. Vectors 12, 258. https://doi.org/10.1186/s13071-019-3514-8 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Shults, P., Ho, A., Martin, E. M., McGregor, B. L. & Vargo, E. L. Genetic diversity of Culicoides stellifer (Diptera: Ceratopogonidae) in the Southeastern United States compared with sequences from Ontario, Canada. J. Med. Entomol. 57, 1324–1327. https://doi.org/10.1093/jme/tjaa025 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).PubMed 

    Google Scholar 
    82.Ciota, A. T., Chin, P. A. & Kramer, L. D. The effect of hybridization of Culex pipiens complex mosquitoes on transmission of West Nile virus. Parasit. Vectors 6, 1–4 (2013).
    Google Scholar 
    83.Meiswinkel, R., Gomulski, L., Delécolle, J., Goffredo, M. & Gasperi, G. The taxonomy of Culicoides vector complexes-unfinished business. Vet. Ital. 40, 151–159 (2004).CAS 
    PubMed 

    Google Scholar 
    84.Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics (Oxford, England) 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 (2016).CAS 
    Article 

    Google Scholar 
    85.Andrews, S. Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).86.Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).CAS 
    PubMed 

    Google Scholar 
    87.Morales-Hojas, R. et al. The genome of the biting midge Culicoides sonorensis and gene expression analyses of vector competence for bluetongue virus. BMC Genomics 19, 624. https://doi.org/10.1186/s12864-018-5014-1 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25, 1754–1760 (2009).CAS 

    Google Scholar 
    89.Pante, E. et al. Use of RAD sequencing for delimiting species. Heredity 114, 450–459 (2015).CAS 
    PubMed 

    Google Scholar 
    90.Benestan, L. M. et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol. Ecol. 25, 2967–2977 (2016).PubMed 

    Google Scholar 
    91.Lischer, H. E. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics (Oxford, England) 28, 298–299 (2012).CAS 

    Google Scholar 
    92.Pina-Martins, F., Silva, D. N., Fino, J. & Paulo, O. S. Structure_threader: An improved method for automation and parallelization of programs structure, fastStructure and MavericK on multicore CPU systems. Mol. Ecol. Resour. 17, e268–e274 (2017).CAS 
    PubMed 

    Google Scholar 
    93.Raj, A., Stephens, M. & Pritchard, J. K. Variational Inference of Population Structure in Large SNP Datasets. bioRxiv 10, 001073 (2013).
    Google Scholar 
    94.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.http://www.R-project.org/ (2013).95.Jombart, Thibaut, and Caitlin Collins. A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.0. 0. London: Imperial College London, MRC Centre for Outbreak Analysis and Modelling (2015).96.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30, 1312–1313 (2014).CAS 

    Google Scholar 
    97.Leaché, A. D., Banbury, B. L., Felsenstein, J., De Oca, A.N.-M. & Stamatakis, A. Short tree, long tree, right tree, wrong tree: New acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    98.Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R., Moret, B. M. & Stamatakis, A. How many bootstrap replicates are necessary?. J. Comput. Biol. 17, 337–354 (2010).MathSciNet 
    CAS 
    PubMed 

    Google Scholar 
    99.Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 

    Google Scholar 
    102.Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS 
    PubMed 

    Google Scholar 
    103.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 30. Syst. Biol. 59, 307–321. https://doi.org/10.1093/sysbio/syq010 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    104.Rousset, F. genepop’007: a complete re‐implementation of the genepop software for Windows and Linux. Molecular ecology resources 8(1), 103–106 (2008).
    Google Scholar 
    105.Rousset, F. Genetic differentiation between individuals. J Evol Biol 13, 58–62 (2000).
    Google Scholar 
    106.Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82, 1420–1425 (1995).
    Google Scholar 
    107.Hardy, O. & Vekemans, X. SPAGeDi 1.5. A program for Spatial Pattern Analysis of Genetic Diversity. User’s manual http://ebe.ulb.ac.be/ebe/SPAGeDi_files/SPAGeDi_1.5_Manual.pdf. Université Libre de Bruxelles, Brussells, Belgium.[Google Scholar] (2015).108.Jay, F., Sjödin, P., Jakobsson, M. & Blum, M. G. Anisotropic isolation by distance: the main orientations of human genetic differentiation. Mol. Biol. Evol. 30, 513–525 (2013).CAS 
    PubMed 

    Google Scholar 
    109.Piry, S. et al. Mapping Averaged Pairwise Information (MAPI): a new exploratory tool to uncover spatial structure. Methods Ecol. Evol. 7, 1463–1475 (2016).
    Google Scholar 
    110.Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article 

    Google Scholar 
    111.Hopken, M. W. Pathogen Vectors at The Wildlife-Livestock Interface: Molecular Approaches to Elucidating Culicoides (Diptera: Ceratopogonidae) Ph.D. thesis, Colorado State University (2016).112.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 (1999).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Completely predatory development is described in a braconid wasp

    The presents study indicates that Bracon predatorius generally oviposits during early stages of gall development (Fig. 1d) on galls induced by Aceria doctersi mostly on tender leaves (Fig 1a–c) and rarely on petioles and stems13. The number of B. predatorius larvae in parasitized galls ranged from 1–27 (n=93). Eighty-five percent of the examined galls (n=109) were parasitized by B. predatorius. Different development stages of larvae (Fig. 1f,g) and pupae (Fig. 1i) of B. predatorius were found together in some large galls (n=31) (Fig. 1i), which suggests multiple oviposition at different stages of gall development. Dissection of leaf galls two hours after oviposition by B. predatorius always revealed only a single egg (n=8). No live A. doctersi individuals were found close to the parasitoid wasp pupae (Fig. 1h). Aceria doctersi galls parasitised by B. predatorius have also been found in Kodakara (Thrissur district, Kerala) about 100 km away from the type locality in Kozhikode.The larval stages of B. predatorius feed on both juvenile and adults of A. doctersi (Fig 2d–f, Supplementary Video 1) which usually remain close to the erineal hairs on which they feed16; no egg predation occurs. Young larvae of B. predatorius wriggle through in between erineal hairs (Supplementary Video 1). They use their sickle-shaped mandibles (Fig 3b–e) to hunt mites (Supplementary Video 1). Continuous outward and inward movement of mandibles of B. predatorius larvae occurs along with the wriggling movement (Supplementary Video 1). The final instar larvae of B. predatorius are the most active and they feed voraciously at the rate of 5–7 A. doctersi individuals/min (n=8) (Supplementary Video 1).Figure 2Predatory behaviour of Bracon predatorius Ranjith & Quicke sp. nov. (a–c) Relationships between presence/absence and number of B. predatorius, gall size and numbers of mites (median, upper and lower quartiles, 1.5 × interquartile range and outliers): (a) galls without Bracon predatorius (n = 16) are significantly smaller than those with one or more Bracon predatorius (n = 93) (t = 3.7592, DF = 97.265, p-value = 0.000291), (b) galls without Bracon predatorius contain significantly more mites than those with (t = 6.308, DF = 15.877, p-value = 0.0001), (c) mite number as a function of number of Bracon predatorius larvae (only in parasitised galls) with gall volume as co-variate (n = 93, adjusted R2 = 0.4657,F = 21.13 on 3 and 89DF, p-value = 0.0001), gall volume and interaction were non-significant. (d–f) Sequential images of predatory behaviour of Bracon predatorius.Full size imageFigure 3Final instar larval cephalic structure of Bracon predatorius Ranjith & Quicke sp. nov. (a–d) Slide microphotographs of larval head capsule and mandible (a) macerated head capsule in anterior view, (b) head capsule, in dorsal view, (c) head capsule (in part), ventral view, (d) right mandible, in dorsal view, (e) anterior view of living final instar larva of B. predatorius consuming mite.Full size imageUnattacked galls were significantly smaller than those containing B. predatorius (means 217 and 595 respectively; p More

  • in

    Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity

    cSAR modelWe used the numerical cSAR model16 to calculate native species loss of four taxonomic groups (mammals, amphibians, reptiles, birds) caused by 45 LU types that were mapped onto a reference 5 × 5 arcmin grid (we also call individual grid cells landscapes in the following) of the global land area excluding Greenland and Antarctica. Calculations were based on (a) gridded LU-intensity and LU-type information (see below), (b) effects of LU-intensity on species richness derived from recently published meta-analyses5,21, and (c) information on species distributions and habitat affiliations from IUCN and Birdlife International databases41,42. For presentation of results, we aggregated the calculated effects of the 45 LU-types into those of six broad LU-types (cropland (30 annual crop types); pastures (non-grassland converted to grassland); grazing land (natural/ near-natural areas with livestock grazing); builtup (sealed areas); plantations (11 permanent crop types plus timber plantations), and forests (natural/ near-natural forest under forestry); see Supplementary Data 2 for details).In the below formulae, we use the following indices: g = taxonomic group, n = grid cell, b = broad LU-type. We calculated the total number of native species losses for each taxonomic group g and grid cell n as$${{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{loss}}}}}}}={{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}times left(1-{left(frac{{{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}}}^{{{{{{rm{cur}}}}}}}+{sum }_{{{{{{rm{b}}}}}}=1}^{{{{{{{rm{b}}}}}}}_{{{{{{rm{n}}}}}}}}{{{{{{rm{h}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}times {{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}}{{{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}}right)}^{{{{{{{rm{z}}}}}}}_{{{{{{rm{n}}}}}}}}right)$$
    (1)
    Here, ({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}) is the potential species richness in pristine ecosystems, ({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}}}^{{{{{{rm{cur}}}}}}}) is the pristine ecosystem area where no LU occurs (in m2), ({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}) is the grid cell’s terrestrial area (in m2), ({{{{{{rm{h}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) is the affinity parameter, ({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) is the area of the LU-type, and ({{{{{{rm{z}}}}}}}_{{{{{{rm{n}}}}}}}) is the grid cell’s SAR exponent taken from ref. 43. The model’s components are described below.Potential species richness ({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}})
    We defined potential species richness of a landscape as the number of species for which the area-of-habitat (AOH) under pre-human or pristine conditions overlap the landscape (here referred to as native species and native AOH). Following ref. 44, we used range maps of all mammal, reptile and amphibia species provided by the IUCN45 and bird species by Birdlife International46 databases to calculate gridded species richness via, first, overlapping each species’ range polygons with a 5 × 5 arcmin reference raster, second, constraining the resulting list of species per raster cell to those adapted to the pristine ecosystem(s) of these raster cell as defined in ref. 25, and, third, constraining the resulting list of species by each species’ elevational range, also provided by the IUCN42. Here, we are interested in the total historical range of extant species46 and hence included all parts of the range where the species were indicated as (i) Extant, Probably Extant, Possibly Extinct, Extinct and Presence Uncertain, (ii) Native and Reintroduced, and (iii) Resident or present during the Breeding Season or the Non-breeding Season, in the cited data sources.We first rasterized each species’ range polygons using the raster and fasterize packages in R47. Second, for each terrestrial grid cell in our reference raster, we created a species list by extracting each species’ gridded range using the velox package in R. Third, we ascertained that each cell’s species list contained only terrestrial species by excluding species which exclusively have aquatic habitat affiliations. The species’ habitat affiliations were directly taken from the IUCN and Birdlife databases42,46. Fourth, we removed species from this cell’s species list which, according to the IUCN, are not affiliated with that cell’s pristine ecosystem. We therefore manually assigned the habitats distinguished in the ICUN habitat affiliation scheme to one or several of the 14 broad ecosystem types distinguished and mapped in ref. 25 (Supplementary Data 4). The maps in the referenced study “approximate the original extent of natural communities prior to major land-use change”48 and, hence, represent pristine ecosystems or potential vegetation types. Fifth, we excluded species whose elevational range did not overlap the elevational range of the grid cell using the GMTED2010 dataset (www.usgs.gov). These refinement steps were taken because species’ range maps usually deliver coarse-scale extent of occurrence rather than AOH information44. Finally, we counted the species identities in each grid cell as ({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}). The species lists created in this step were also used for later steps, referred to in the appropriate sections.Areas of pristine ecosystems (({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}}}^{{{{{{rm{cur}}}}}}}),({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}})) and LU-types (({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}))The potential pristine ecosystem area ({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}) is defined as the cell’s entire terrestrial area (excluding water bodies as defined by the land mask of the HYDE 3.2.1 database49). As the area of pristine ecosystems currently found in each grid cell (({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}}}^{{{{{{rm{cur}}}}}}})), we used the proportion of ({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}) marked as wilderness and non-productive/ snow areas as described below. The area of each of the 45 LU-types within each grid cell (({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}})) was extracted from respective land cover and LU maps applying the approach outlined in ref. 50 – with 2010 as year of reference wherever possible (Supplementary Data 2).Following ref. 50, builtup land, total cropland (including annual and permanent crops/ plantations), permanent pastures (areas used as pastures for more than five years) and rangeland (available in the two sub-categories natural and converted) extents were taken from the LU database HYDE 3.2.149 which was adapted to include rural infrastructure areas by assigning 5% of each grid cell’s cropland area to builtup land. We then split the total cropland cover into areas used for 41 different annual and permanent crops by integrating data from the Spatial Production Allocation Model (SPAM) for 201051,52 and adjusting them to cropland extent in the data from ref. 50. To comply with the IUCN habitats classification scheme42, some of these crops were grouped into the plantation category (permanent crops), while the remainder was grouped into the cropland category (annual crops; see Supplementary Data 2 for details).Wilderness areas were derived from the combination of human footprint data, i.e., a spatially explicit inventory of human artefact density available for 1993 and 200953,54 and intact forest landscape data for 2000 and 201355. Core wilderness areas without human use were defined as having a value of zero human footprint and, in forests, being part of an intact forest landscape55. Within forests, the additional category of peripheral wilderness was introduced for areas where either only zero human footprint is recorded, or only an intact forest landscape exists.The area remaining in each grid cell after allocating the above land cover types represents area covered by used forests and other land with mixed land uses56. Hence, in addition to the approach in ref. 50, forests were split into deciduous and coniferous forests based on the description of the ESA CCI land cover categories57. This distinction was necessary for the differentiated allocation of wood harvest (see below). A further refinement was applied by identifying plantation forests, defined as areas in non-forest biomes converted to forests for forestry and areas in forest biomes converted to non-native forest types58, which were linked to the IUCN habitat class plantations (Supplementary Data 2).As in ref. 50, the remaining area not allocated to any of the land cover or LU types above is denoted as “other land, maybe grazed”56. These lands, typically treeless or bearing scattered tress, were allocated to converted grasslands on areas that potentially carry forests or to natural grassland on areas where the potential vegetation would not consist of forests25.To arrive at the six broad LU-type aggregates compatible with the IUCN and Birdlife habitat affiliation schemes42,46 and PREDICTS categories21 (needed for quantifying LU-intensity effects, see below in section “Affinity parameter” for details), we rearranged and aggregated the described LU layers as needed (see Supplementary Data 2 for an overview). (a) Builtup remained as described above. (b) Cropland was defined as annual crops, covering the respective 29 SPAM categories plus fodder. (c) Pastures were defined as areas where pristine ecosystems were converted to grasslands and includes permanent pastures and converted rangelands from HYDE 3.2.149, plus those parts of “other land maybe grazed” located in forest25. (d) Grazing land was defined as natural or near-natural areas where grazing occurs and includes natural rangelands from HYDE 3.2.149, plus 50% of each grid cell’s open forest area and 25% of each grid cell’s peripheral wilderness area, the latter two assumed to be only occasionally grazed and hence given low grazing intensity (see below), plus those parts of “other land maybe grazed” located in non-forest25. (e) Forests were defined as forests where forestry occurs and includes 100% of each grid cell’s closed forest area, 50% of each grid cell’s open forest area, and 25% of each grid cell’s peripheral wilderness area, the latter two assumed to be only occasionally used for forestry and given low intensity (see below). (f) Plantations were defined as areas where pristine ecosystems were converted into plantation-like LU and include the 11 SPAM categories representing permanent / plantation crops, plus used forests identified by ref. 58 as plantations (see above). As stated above, these aggregated broad LU-types were needed to align the different LU categorizations used in the different data sources with each other. The effects on biodiversity were then calculated on each of the 45 LU-types and afterwards aggregated to the six broad LU-types to give a better overview.Continuous LU-intensity indices (({{{{{{rm{LUI}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}))We constructed continuous LU-intensity indices ({{{{{{rm{LUI}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) for each of the 45 LU-types based on gridded management descriptors15. For this purpose, we used two different sets of intensity indicators (called Set 1 and Set 2) to compare and combine their impact on predicted species loss. We used two indicator sets to account for the multidimensional nature of LU-intensity9,12 and to include a wide range of available data products. For an overview of which data products and assumptions went into the individual sets, please refer to Supplementary Data 2.Set 1Set 1 is taken from the human appropriation of net primary production (HANPP) framework, a socioecological indicator basically describing the LU mediated extraction of biotic resources in the context of global biogeochemical cycles23. We used the ratio of HANPPharv to NPPpot as a systemic metric to assess LU-intensity12,22, with HANPPharv being harvested or extracted biomass and NPPpot being NPP of potential natural vegetation, i.e. the vegetation existing under current climate conditions in the hypothetical absence of LU23. The ratio HANPPharv/NPPpot relates harvest to the productivity potential of the land where the harvest takes place and is, thus, robust against geographic differences in natural productivity. As it is related to energy availability in ecosystem food chains, it may be linked to the species-energy relationship, the strongest correlate of spatial biodiversity patterns at larger scales59.For calculating NPPpot, LPJ-GUESS60 version 4.0.1 was used in its standard configuration but with nitrogen limitation disabled and forced by the CRU-NCEP climate data61,62 aggregated from 6-hourly to monthly fields.HANPPharv of all LU-types except builtup was calculated based on the FAOSTAT database by principally accounting total biomass flows via conversion and expansion factors as outlined in ref. 63. As a special case, HANPPharv of built-up was assumed to be half of the actual NPP, which was defined as 1/3 of the potential vegetation in ref. 64. This results in a constant intensity on built-up land of ~17% of NPPpot.HANPPharv of permanent and non-permanent crops was spatially downscaled following 40 permanent and non-permanent crop-specific production patterns from the Spatially-Disaggregated Crop Production Statistics Database (SPAM52), merging minor SPAM categories such as “robusta coffee” and “arabica coffee” to ensure consistency with FAOSTAT reporting. Additionally, we added the LU-type fodder, which was downscaled following NPPpot patterns.Harvest of natural and plantation forest is reported by FAOSTAT in the four categories industrial roundwood, wood fuel, and coniferous and deciduous. We allocated industrial roundwood harvest to closed forests, while we split wood fuel harvest in proportion to productivity between closed and open forests, independently for deciduous and coniferous forests, respectively. For Set 1, we assumed forestry harvest to follow the patterns of forest NPPpot65. These intensity definitions were used for both natural and plantation forest.Reported harvest on grazing land and pastures was allocated following patterns of aboveground NPP accessible for grazing as reported in ref. 63. Following the assumption that systems with low natural productivity allow for a lower maximum harvest than systems with high productivity, we assigned a maximum harvest intensity of 40% at a level of accessible NPP of 20 gC/m² and increased this linearly to a maximum grazing intensity of 80% at 250 gC/m². Such, harvest was concentrated on grazing land and pastures with high productivity. In cases where the calculated national grazing land and pasture harvest demand surpassed NPP availability on grassland, we used information on fertilization rates on grassland66 to either adjust NPP or harvest data: NPP was boosted in countries where more than 5% of overall fertilizer consumption was applied to grasslands, while countries where no relevant fertilization of grasslands occurred, the reported harvest demand was reduced accordingly, assuming it will be met from other sources. This intensity definition was applied to both (natural) gazing land and (converted) pastures.Set 2For the LU-intensity indicator Set 2, we used published data from different sources. For cropland we used the input metric nitrogen application rates (in kg N/ha of cropland)12,22, available for 17 major non-permanent crops67,68. For crops from the SPAM categories (see above) not covered by these data, we used the within-grid-cell area-weighted average of other crops in the same cell. For areas designated as cropland in our data (see above) but not in the available N application data, we assumed national average values of the respective crop.For pastures and grazing land, we used gridded livestock information69. We used information on the typical weight per animal to calculate livestock units70 and aggregated the data for all ruminant species (buffalo, horses, cattle, sheep, goats). This data on livestock numbers per grid cell was then divided by land area per grid cell to arrive at livestock densities, which were applied to the extent of grazing land and pastures. Please note that this dataset contains information on the number of livestock (per species group) per area in a grid cell and thereby differs from the grazing intensity metric applied in Set 171, as grazing animals may be fed from other sources than grassland72.For builtup, we aggregated a 1 km built-up area density map for 201473 to the target resolution of 5 arc min and used it as is as intensity indicator.For natural and plantation forest, we used the same data as described above for Set 1, but we assumed forestry harvest to follow another pattern. We calculated the difference between potential and actual biomass stocks74 and allocated forestry harvest within each country according to these patterns, i.e., the share of national forest harvest allocated to a forest cell corresponds to its share in the national difference between potential and actual biomass stocks.Scaling of LU-intensity indicesFor the purpose of applying linear functions on species richness loss caused by LU-intensity (see below, affinity parameter), we scaled each LU-intensity indicator to values between 0 and 1, with 0 being no intensity (hypothetical) and 1 being the intensity threshold above which an increase of intensity causes no further increase of species loss. This threshold is not necessarily the highest recorded value of an intensity indicator, as effects may be regionally variable. We therefore winsorized some LUI indicators to that intensity threshold before scaling them (dividing by this threshold). These thresholds were defined as follows.In Set 1, maximum intensity was assumed to be reached at harvesting 100% of NPPpot on cropland.In forests (natural and plantation), maximum intensity was derived from ref. 75, which limits sustainably harvestable aboveground biomass in forests to 30% of NPPpot. In concordance with the HANPP framework, we included the belowground biomass destroyed by forestry using biome-specific factors76.On grazing land and pastures, maximum intensity was defined as removal of all NPP accessible for grazing. This considers only the aboveground and non-woody parts of NPPpot. The maximum removable aboveground share was estimated as 50% of NPPpot, and the proportion of non-woody vegetation was estimated as 30% (in closed-canopy land cover types) or 100% (on open land cover types)71. HANPPharv/NPPpot was assumed to be at its maximum intensity level when the maximum level of grazing intensity, as described above, was reached. The resulting thresholds are in line with literature77,78, and assume that maximum intensities will be reached faster in systems with low natural productivity.In Set 2, for all crop types (permanent and non-permanent) except legumes, N application rates were capped at 150 kg N/ha, i.e., we assumed that 150 kg N/ha was the maximum LU-intensity on cropland, beyond which no further species richness loss occurs, i.e., after which an increase of N application rates causes no further increase in species loss based on ref. 79. For legumes, under the assumption that they need less N fertilizer due to their N-fixing capabilities, we assumed the following cap values, based on information provided in ref. 80: beans and lentils at 110 kg N/ha, chickpeas at 100 kg N/ha, soybean at 70 kg N/ha and cowpeas, pigeon peas and other pulses at kg N/ha 90.For pastures and grazing land, maximum intensity was defined as the per biome 80th percentile of livestock-density.The intensity of builtup area was not winsorized.Affinity parameter (({{{{{{rm{h}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}))The affinity parameter ({{{{{{rm{h}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) can be regarded as a LU-intensity dependent weighting factor for the area of each of the 45 LU-types used here. For low affinity, i.e., a small fraction of native species is left due to LU, the area of this LU-type (({{{{{{rm{A}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) in formula 1) is down-weighted, resulting in higher species loss ({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{loss}}}}}}}) (and vice versa). The affinity parameter consists of two terms, (a) ({{{{{{rm{r}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}), the fraction of species affiliated with a given LU-type, and (b) ({{{{{{rm{f}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}), the fraction of ({{{{{{rm{r}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) that remains when LU-intensity (({{{{{{rm{LUI}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}})) rises to a particular level.The fraction of species affiliated with a certain LU-type under minimal ({{{{{{rm{LUI}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) (({{{{{{rm{r}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}})) is based on the habitat affiliation information taken from the IUCN Red List API45 and BirdLife data46 cross-tabulated with our mapped LU-types (Supplementary Data 2). We calculated ({{{{{{rm{r}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) by dividing the number of species affiliated with a certain LU-type (({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}^{{{{{{{rm{pot}}}}}}; {{{{{rm{LU}}}}}}}})) by the number of native species expected in this cell under pristine ecosystem conditions (({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}})) as$${{{{{{rm{r}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}=frac{{{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}^{{{{{{{rm{pot}}}}}}; {{{{{rm{LU}}}}}}}}}{{{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}}$$
    (2)
    Please note that for the two unconverted broad LU-types grazing land and forests, respectively (see above), we assumed no land conversion prior to its use, leading to ({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}^{{{{{{{rm{pot}}}}}}; {{{{{rm{LU}}}}}}}}={{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}). We further assumed that the whole fraction of LU-type affiliated species ({{{{{{rm{r}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) are present in a given LU-type as long as ({{{{{{rm{LUI}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) is minimal (here 0.83, we argue that extrapolation outside the measured intensity range is uncertain, and that an increase in LUI above 0.83 (i.e., Intense) might not necessarily result in even stronger effects on SR. See Supplementary Fig. 5, which illustrates the results of these considerations and shows the continuous effect of ({{{{{{rm{LUI}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) on SR used in this study.The affinity parameter ({{{{{{rm{h}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) was then calculated as follows and inserted into formula 1 (cSAR model).$${{{{{{rm{h}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}={left({{{{{{rm{r}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}right)}^{1/{{{{{{rm{z}}}}}}}_{{{{{{rm{n}}}}}}}}times {left({{{{{{rm{f}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}right)}^{1/{{{{{{rm{z}}}}}}}_{{{{{{rm{n}}}}}}}}$$
    (5)
    Species loss caused by LU-intensity (({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{loss}}}}}}{{{{{rm{int}}}}}}}))In order to calculate the relative impact of LU-intensity on species richness, we re-ran the model with ({{{{{{rm{LUI}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) = 0 in all grid cells and LU types, thereby effectively setting ({{{{{{rm{f}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) = 1 and ({{{{{{rm{h}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}={{{{{{rm{r}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}). The results of this model can be considered as delivering the land conversion effect without any possible enhancement by intensification. In addition, we designed a hypothetical, back-of-the-envelope intensification scenario where ({{{{{{rm{LUI}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) = 1 in all grid cells and LU-types.The contribution of intensity to the species richness loss was then calculated as$${{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{loss}}}}}}{{{{{rm{int}}}}}}}=left({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{loss}}}}}}}-{{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{{rm{loss}}}}}}; {{{{{rm{conv}}}}}}}}right)/{{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}$$
    (6)
    With ({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{{rm{loss}}}}}}; {{{{{rm{conv}}}}}}}}) being the results of the ({{{{{{rm{LUI}}}}}}}_{{{{{{rm{n}}}}}},{{{{{rm{b}}}}}}}) = 0 model and ({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{loss}}}}}}}) from Eq. (1).Native area-of-habitat loss of individual speciesThe cSAR model calculates by how many species the native species pool is reduced in response to LU in each 5 arcmin grid cell. However, it does not identify the individual species lost. To estimate each species’ native AOH loss, we randomly drew the predicted number of species lost from the native species pool of each cell.First, we rounded the number of species lost as calculated by the cSAR model to the next integer for losses from both conversion (({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{{rm{loss}}}}}}; {{{{{rm{conv}}}}}}}})) and intensification (here taken as ({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{loss}}}}}}}-{{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{{rm{loss}}}}}}; {{{{{rm{conv}}}}}}}}), see section above: “Species loss caused by LU-intensity”). To avoid rounding all values below 0.5 to 0, and, hence, to underestimate low levels of species loss, particularly in species-poor regions, we used a two-step rounding routine. First, prior to actual rounding, we randomly decided whether a number is rounded to the next higher or lower integer, with the likelihood of either decision depending on the decimal number’s (positive or negative) distance to 0.5 (i.e., the decimal number gave the likelihood of rounding up). Second, we took the species list used to generate ({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}) (see above under potential species richness) and modified it to either contain only species affiliated or unaffiliated with each LU-type, yielding two species lists for each grid cell and LU-type, respectively. The list of species affiliated with a particular LU-type was then used to select species predicted to get lost due to intensification, while the list of species not affiliated with it was used to select species lost due to conversion.From each grid cell, we then randomly drew as many species from these lists as determined by the rounding routine above, considering each LU-type and whether the number of lost species was caused by intensification or conversion. However, in each cell, each species could only be drawn once, independently of whether it was affiliated with several LU-types. As a consequence, the order in which LU-types are considered when drawing species is relevant for the outcome of the calculation. For instance, species simultaneously unaffiliated with cropland and affiliated with natural forest may never be drawn in response to intensification of natural forest if losses due to conversion into cropland are always handled first. Therefore, we randomly iterated the sequence by which LU-types were considered, i.e., the order of LU-types, in the random draw routine in each of 100 repeated runs.We repeated the random-draws 100 times to yield a representative sample and processed the resulting 100 lists of species-per-cell losses in the following way. For each of the 100 runs, we summed the areas of all cells each species was drawn from, i.e., predicted to be lost, across all LU-types and within individual LU-types, yielding 100 area sums per species (one per run). From these 100 areas, we calculated the mean and the 0.025th and 0.975th quantiles as 95% confidence intervals (CIs). The means and CIs were then divided by the species’ global AOH (sums of cell areas in native range), thereby yielding the proportional global AOH loss attributable to current LU in general, and to different LU-types or land conversion vs. LU-intensity in particular.Description/ presentation of resultsAll cSAR model calculations were based on global land use maps that distinguish 45 LU-types as described above. For the sake of simplicity, we present results aggregated to the six broad LU-types cropland, pastures, natural grazing land, built-up, plantations, and forests (natural/ near-natural forest under forestry; see Supplementary Data 2). All calculated SR decreases are expressed in percentage losses relative to ({{{{{{rm{S}}}}}}}_{{{{{{rm{g}}}}}},{{{{{rm{n}}}}}}}^{{{{{{rm{pot}}}}}}}).Summary statistics mentioned in the text and Supplementary Data 1, 5 and 6 were calculated as follows. Global, biome-wide and nation-wide average species losses due to conversion, LU-intensity or both were calculated as cell-area weighted means across all cells with native terrestrial vertebrate species either excluding or including wilderness areas (which, for this purpose, are defined as cells where the sum of all LU area equals 0). The percentual land area exceeding a certain threshold of calculated SR decline were calculated by dividing the area sum of all cells exceeding that threshold by the area sum of all cells with native species excluding wilderness.Differences among average AOH losses (across all taxonomic groups) mentioned in the text and Supplementary Data 3 were modelled using generalized linear models assuming a binomial distribution (proportional AOH loss between 0 and 1), each species’ mean AOH loss (mean of 100 random draw runs) as response, and either (a) IUCN categories, (b) land use types, or (c) taxonomic group as predictor variables. Differences between predictor variable levels were then alculated by multiple comparisons via p-values adjusted with the Tukey method. A p-value of  More