1.DeWitt, H. H. The character of the midwater fish fauna of the Ross Sea, Antarctica. Antarctic Ecol. 1, 305â314 (1970).
Google ScholarÂ
2.Guglielmo, L., Granata, A. & Greco, S. Distribution and abundance of postlarval and juvenile Pleuragramma antarcticum (Pisces, Nototheniidae) off Terra Nova Bay (Ross Sea, Antarctica). Polar Biol. 19, 37â51 (1997).
Google ScholarÂ
3.La Mesa, M. & Eastman, J. T. Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fisheries 13, 241â266 (2012).
Google ScholarÂ
4.La Mesa, M., Eastman, J. T. & Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol. 27, 321â338 (2004).
Google ScholarÂ
5.Pinkerton, M. H., Bradford-Grieve, J. M. & Hanchet, S. M. A balanced model of the food web of the Ross Sea, Antarctica. CCAMLR Sci. 17, 1â31 (2010).
Google ScholarÂ
6.Caccavo, J. A. et al. Along-shelf connectivity and circumpolar gene flow in Antarctic silverfish (Pleuragramma antarctica). Sci. Rep. 8, 1â16 (2018).
Google ScholarÂ
7.Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of âlossesâ and âgainsâ acquired during long-term evolution at cold and stable temperatures? J. Exp. Biol. 218, 1834â1845 (2015).PubMedÂ
Google ScholarÂ
8.Bilyk, K. T. & DeVries, A. L. Heat tolerance and its plasticity in Antarctic fishes. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 158, 382â390 (2011).
Google ScholarÂ
9.Sandersfeld, T., Davison, W., Lamare, M. D., Knust, R. & Richter, C. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J. Exp. Biol. 218, 2373â2381 (2015).PubMedÂ
Google ScholarÂ
10.Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283â286 (2016).CASÂ
PubMedÂ
Google ScholarÂ
11.Stammerjohn, S. E. & Scambos, T. A. Warming reaches the South Pole. Nat. Clim. Change 10, 710â711 (2020).
Google ScholarÂ
12.Henley, S. F. et al. Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities. Prog. Oceanogr. 173, 208â237 (2019).
Google ScholarÂ
13.Mintenbeck, K. & Torres, J. J. in The Antarctic silverfish: a keystone species in a changing ecosystem, 253â286 (Springer, 2017).14.Vacchi, M. et al. A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biol. 35, 1573â1585 (2012).
Google ScholarÂ
15.Vacchi, M., La Mesa, M., Dalu, M. & Macdonald, J. Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antartic Sci. 16, 299â305 (2004).
Google ScholarÂ
16.Kellermann, A. K. Midwater fish ecology. Found. Ecol. Res. West Antarctic Peninsula 70, 231â256 (1996).
Google ScholarÂ
17.La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235â245 (2015).
Google ScholarÂ
18.Parker, M. L. et al. Assemblages of micronektonic fishes and invertebrates in a gradient of regional warming along the Western Antarctic Peninsula. J. Mar. Syst. 152, 18â41 (2015).
Google ScholarÂ
19.Ross, R. M. et al. Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993â2008. Mar. Ecol. Prog. Ser. 515, 11â32 (2014).
Google ScholarÂ
20.Koubbi, P. et al. Spatial distribution and inter-annual variations in the size frequency distribution and abundances of Pleuragramma antarcticum larvae in the Dumont dâUrville Sea from 2004 to 2010. Polar Sci. 5, 225â238 (2011).
Google ScholarÂ
21.Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 584, 45â65 (2017).CASÂ
Google ScholarÂ
22.La Mesa, M. et al. Influence of environmental conditions on spatial distribution and abundance of early life stages of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), in the Ross Sea. Antarctic Sci. 22, 243 (2010).
Google ScholarÂ
23.Raphael, M. N. et al. The Amundsen Sea low: variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111â121 (2016).
Google ScholarÂ
24.Fogt, R. L., Wovrosh, A. J., Langen, R. A. & Simmonds, I. The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas Low. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017337 (2012).25.Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. & Phillips, T. The influence of the AmundsenâBellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26, 6633â6648 (2013).
Google ScholarÂ
26.Hosking, J. S., Orr, A., Bracegirdle, T. J. & Turner, J. Future circulation changes off West Antarctica: sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett. 43, 367â376 (2016).
Google ScholarÂ
27.Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Change 143, 228â250 (2016).
Google ScholarÂ
28.Stammerjohn, S. E. et al. Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979â2014. Elementa Sci. Anthropocene 3, 000055 (2015).29.Holland, M. M., Landrum, L., Raphael, M. N. & Kwok, R. The regional, seasonal, and lagged influence of the Amundsen Sea Low on Antarctic sea ice. Geophys. Res. Lett. 45, 11â227 (2018).
Google ScholarÂ
30.Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2008GL034939 (2008).31.Dotto, T. S. et al. Control of the oceanic heat content of the GetzâDotson Trough, Antarctica, by the Amundsen Sea Low. J. Geophys. Res. Oceans 125, e2020JC016113 (2020).32.Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718â724 (2019).CASÂ
Google ScholarÂ
33.Dinniman, M. S., Klinck, J. M. & Hofmann, E. E. Sensitivity of circumpolar deep water transport and Ice Shelf Basal Melt along the West Antarctic Peninsula to changes in the winds. J. Clim. 25, 4799â4816 (2012).
Google ScholarÂ
34.Dinniman, M. S., Klinck, J. M. & Smith, W. O. A model study of circumpolar deep water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res. II Top. Stud. Oceanogr. 58, 1508â1523 (2011).CASÂ
Google ScholarÂ
35.Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. & Rignot, E. Origin of circumpolar deep water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat. Commun. 9, 3403 (2018).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
36.Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601â4610 (2014).
Google ScholarÂ
37.Greaves, B. L. et al. The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean. Biogeosciences 17, 3815â3835 (2020).CASÂ
Google ScholarÂ
38.Steinberg, D. K. et al. Long-term (1993â2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I Oceanogr. Res. Papers 101, 54â70 (2015).
Google ScholarÂ
39.La, H. S. et al. Zooplankton and micronekton respond to climate fluctuations in the Amundsen Sea polynya, Antarctica. Sci. Rep. 9, 10087 (2019).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
40.Granata, A., Zagami, G., Vacchi, M. & Guglielmo, L. Summer and spring trophic niche of larval and juvenile Pleuragramma antarcticum in the Western Ross Sea, Antarctica. Polar Biol. 32, 369â382 (2009).
Google ScholarÂ
41.Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L. & Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 42, 1187â1195 (2013).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
42.Ghigliotti, L. et al. Reproductive features of the Antarctic silverfish (Pleuragramma antarctica) from the western Ross Sea. Polar Biol. 40, 199â211 (2017).
Google ScholarÂ
43.Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting AdĂ©lie Âpenguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273â289 (2011).
Google ScholarÂ
44.Coggins, J. H. J. & McDonald, A. J. The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology. J. Geophys. Res. Atmos. 120, 2167â2189 (2015).
Google ScholarÂ
45.Assmann, K. M. et al. Variability of circumpolar deep water transport onto the Amundsen Sea Continental shelf through a shelf break trough. J. Geophys. Res. Oceans 118, 6603â6620 (2013).
Google ScholarÂ
46.Moffat, C., Owens, B. & Beardsley, R. C. On the characteristics of circumpolar deep water intrusions to the west Antarctic Peninsula Continental Shelf. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC004955 (2009).47.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65â70 (2020).CASÂ
PubMedÂ
Google ScholarÂ
48.Regan, H. C., Holland, P. R., Meredith, M. P. & Pike, J. Sources, variability and fate of freshwater in the Bellingshausen Sea, Antarctica. Deep Sea Res I Oceanogr. Res. Pap. 133, 59â71 (2018).
Google ScholarÂ
49.Holland, P. R. et al. Modeled trends in Antarctic sea ice thickness. J. Clim. 27, 3784â3801 (2014).
Google ScholarÂ
50.Hoppmann, M. et al. Platelet ice, the Southern Oceanâs hidden ice: a review. Ann. Glaciol. 61, 341â368 (2020).
Google ScholarÂ
51.Arrigo, K. R. Sea ice ecosystems. Annu. Rev. Mar. Sci 6, 439â467 (2014).
Google ScholarÂ
52.Veazey, A. L., Jeffries, M. O. & Morris, K. Small-scale variability of physical properties and structural characteristics of Antarctic fast ice. Ann. Glaciol. 20, 61â66 (1994).
Google ScholarÂ
53.Garrison, D. L., Ackley, S. F. & Buck, K. R. A physical mechanism for establishing algal populations in frazil ice. Nature 306, 363â365 (1983).CASÂ
Google ScholarÂ
54.Quetin, L. B. & Ross, R. M. in Smithsonian at the Poles: Contributions to International Polar Year Science (eds Krupnik, I., Lang, M. A. & Miller, S. E.) 285â298 (IPY, 2009).55.Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024042 (2005).56.Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411â415 (2016).CASÂ
PubMedÂ
Google ScholarÂ
57.Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233â241 (2018).CASÂ
PubMedÂ
Google ScholarÂ
58.Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea low. Int. J. Climatol. 33, 1818â1829 (2013).
Google ScholarÂ
59.Ding, Q., Steig, E. J., Battisti, D. S. & KĂŒttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci. 4, 398â403 (2011).CASÂ
Google ScholarÂ
60.Moline, M. A., Claustre, H., Frazer, T. K., Schofield, O. & Vernet, M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob. Change Biol. 10, 1973â1980 (2004).
Google ScholarÂ
61.Gleiber, M. Long-Term Change in Copepod Community Structure in the Western Antarctic Peninsula: Linkage to Climate and Implications for Carbon Cycling. Dissertations, Theses, and Masters Projects, College of William and Mary, Virginia Institute of Marine Science (2014).62.Wöhrmann, A. P., Hagen, W. & Kunzmann, A. Adaptations of the Antarctic silverfish Pleuragramma antarcticum(Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar. Ecol. Prog. Ser. 151, 205â218 (1997).
Google ScholarÂ
63.Venables, H. J., Clarke, A. & Meredith, M. P. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol. Oceanogr. 58, 1035â1047 (2013).
Google ScholarÂ
64.Meredith, M. P. et al. Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: results from ÎŽ18O. Deep Sea Res. II Top. Stud. Oceanogr. 55, 309â322 (2008).
Google ScholarÂ
65.Slosarczyk, W. Attempts at a quantitative estimate by trawl sampling of distribution of postlarval and juvenile notothenioids (Pisces, Perciformes) in relation to environmental conditions in the Antarctic Peninsula region during SIBEX 1983â84. Mem Natl Inst Polar Res Spec Issue. 40, 299â315 (1986).
Google ScholarÂ
66.Varsamos, S., Nebel, C. & Charmantier, G. Ontogeny of osmoregulation in postembryonic fish: a review. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 141, 401â429 (2005).
Google ScholarÂ
67.Gille, S. T., McKee, D. C. & Martinson, D. G. Temporal changes in the Antarctic circumpolar current: implications for the Antarctic Continental Shelves. Oceanography 29, 96â105 (2016).
Google ScholarÂ
68.Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741â749 (2011).CASÂ
Google ScholarÂ
69.Allen, M. et al. Technical summary: global warming of 1.5â°C. An IPCC Special Report on the impacts of global warming of 1.5â°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/SR15_TS_High_Res.pdf (2019).70.Screen, J. A., Bracegirdle, T. J. & Simmonds, I. Polar climate change as manifest in atmospheric circulation. Curr. Clim. Change Rep. 4, 383â395 (2018).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
71.Gao, M. et al. Historical fidelity and future change of Amundsen Sea Low under 1.5â°Câ4â°C global warming in CMIP6. Atmos. Res. 255, 105533 (2021).
Google ScholarÂ
72.Emslie, S. D. & McDaniel, J. D. AdĂ©lie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar Biol. 25, 222â229 (2002).
Google ScholarÂ
73.Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: winter-summer heterogeneity in the distribution of AdĂ©lie penguin populations. In Foundations for Ecological Research West of the Antarctic Peninsula 257â272 (American Geophysical Union, 1996).74.Cimino, M. A., Lynch, H. J., Saba, V. S. & Oliver, M. J. Projected asymmetric response of AdĂ©lie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
75.Ainley, D. G. et al. Post-fledging survival of AdĂ©lie penguins at multiple colonies: chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239â251 (2018).
Google ScholarÂ
76.Ruck, K. E., Steinberg, D. K. & Canuel, E. A. Regional differences in quality of krill and fish as prey along the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 509, 39â55 (2014).CASÂ
Google ScholarÂ
77.Ainley, D. G. et al. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972â2011. Fish Fisheries 14, 343â363 (2013).
Google ScholarÂ
78.Eastman, J. T. Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol. 4, 155â160 (1985).
Google ScholarÂ
79.Hanchet, S. et al. The Antarctic toothfish (Dissostichus mawsoni): biology, ecology, and life history in the Ross Sea region. Hydrobiologia 761, 397â414 (2015).
Google ScholarÂ
80.Pinkerton, M., Hanchet, S. & Bradford-Grieve, J. Finding the role of Antarctic toothfish in the Ross Sea ecosystem. Water Atmos. 15, 20â21 (2007).
Google ScholarÂ
81.Hanchet, S. M. & Rickard, G. J. A hypothetical life cycle for Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea region. CCAMLR Sci. 15, 35â53 (2008).
Google ScholarÂ
82.Fuiman, L., Davis, R. & Williams, T. Behavior of midwater fishes under the Antarctic ice: observations by a predator. Mar. Biol. 140, 815â822 (2002).
Google ScholarÂ
83.Casaux, R., Baroni, A. & RamĂłn, A. The diet of the Weddell Seal Leptonychotes weddellii at the Danco Coast, Antarctic Peninsula. Polar Biol. 29, 257â262 (2006).
Google ScholarÂ
84.Ponganis, P. J. & Stockard, T. K. Short note: the Antarctic toothfish: how common a prey for Weddell seals? Antarctic Sci. 19, 441â442 (2007).
Google ScholarÂ
85.Rumolo, P. et al. The diet of Weddell seals (Leptonychotes weddellii) in Terra Nova Bay using stable isotope analysis. Eur. Zool. J. 87, 94â104 (2020).
Google ScholarÂ
86.Hubold, G. & Ekau, W. Feeding patterns of post-larval and juvenile notothenioids in the southern Weddell Sea (Antarctica). Polar Biol. 10, 255â260 (1990).87.Moreno, C., Rueda, T. & Asencio, G. The trophic niche of Pleuragramma antarcticum in the Bransfield Strait, Antarctica: quantitative comparison with other areas of the Southern Ocean. Ser. Cient. INACH 35, 101â117 (1986).88.Gleiber, M. R., Steinberg, D. K. & Schofield, O. M. E. Copepod summer grazing and fecal pellet production along the Western Antarctic Peninsula. J. Plankton Res. 38, 732â750 (2016).CASÂ
Google ScholarÂ
89.Garzio, L., Steinberg, D., Erickson, M. & Ducklow, H. Microzooplankton grazing along the Western Antarctic Peninsula. Aquat. Microb. Ecol. 70, 215â232 (2013).
Google ScholarÂ
90.Hobbie, J. E. Scientific accomplishments of the Long Term Ecological Research Program: an introduction. Bioscience 53, 17â20 (2003).
Google ScholarÂ
91.Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271â281 (2017).
Google ScholarÂ
92.Hilton, E. J., Watkins-Colwell, G. J. & Huber, S. K. The expanding role of natural history collections. Ichthyol. Herpetol. 109, 379â391 (2021).
Google ScholarÂ
93.Hoey, J. A. et al. Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder. Mol. Ecol. 29, 1421â1435 (2020).CASÂ
PubMedÂ
Google ScholarÂ
94.Houde, E. D. Emerging from Hjortâs shadow. J. Northw. Atl. Fish. Sci 41, 53â70 (2008).
Google ScholarÂ
95.Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. B Biol. Sci. 362, 67â94 (2007).
Google ScholarÂ
96.Smith, R. C. et al. The Palmer LTER: a long-term ecological research program at Palmer Station, Antarctica. Oceanography 8, 77â86 (1995).
Google ScholarÂ
97.Kellermann, A. K. Identification key and catalogue of larval Antarctic fishes. Ber. Polarforsch 1â138 (1990).98.Stammerjohn, S. E., Martinson, D. G., Smith, R. C. & Iannuzzi, R. A. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 55, 2041â2058 (2008).
Google ScholarÂ
99.Hurrell, J. W. Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269, 676â679 (1995).CASÂ
PubMedÂ
Google ScholarÂ
100.Hosking, J. S. & National Center for Atmospheric Research Staff. (eds) The Climate Data Guide: Amundsen Sea Low indices. https://climatedataguide.ucar.edu/climate-data/amundsen-sea-low-indices (2020).101.OâBrien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673â690 (2007).
Google ScholarÂ
102.Gareth, J., Daniela, W., Trevor, H. & Robert, T. An Introduction to Statistical Learning: With Applications in R (Spinger, 2013).103.Shono, H. Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fisheries Res. 93, 154â162 (2008).
Google ScholarÂ
104.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).105.Denes, F. V., Silveira, L. F. & Beissinger, S. R. Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods Ecol. Evol. 6, 543â556 (2015).
Google ScholarÂ
106.Zuur, A. F. & Ieno, E. N. BeginnerÂŽs Guide to Zero-inflated Models with R (Highland Statistics Ltd., 2016).107.Barnett, A. G., Koper, N., Dobson, A. J., Schmiegelow, F. & Manseau, M. Using information criteria to select the correct varianceâcovariance structure for longitudinal data in ecology. Methods Ecol. Evol. 1, 15â24 (2010).
Google ScholarÂ
108.Clark, I. Statistics or geostatistics? Sampling error or nugget effect? J. Southern African Inst. Mining Metall. 110, 307â312 (2010).
Google ScholarÂ
109.GschlöĂl, S. & Czado, C. Modelling count data with overdispersion and spatial effects. Stat. Papers 49, 531â552 (2008).
Google ScholarÂ
110.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378â400 (2017).
Google ScholarÂ
111.Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631â636 (2014).PubMedÂ
Google ScholarÂ
112.LĂŒdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. JOSS 3, 772 (2018).
Google ScholarÂ
113.Francq, B. G., Lin, D. & Hoyer, W. Confidence, prediction, and tolerance in linear mixed models. Stat. Med. 38, 5603â5622 (2019).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
114.Spineli, L. M. & Pandis, N. Prediction interval in random-effects meta-analysis. Am. J. Orthod. Dentofacial Orthop. 157, 586â588 (2020).PubMedÂ
Google ScholarÂ
115.Comiso, J. C. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Clim. 13, 1674â1696 (2000).
Google ScholarÂ
116.Comiso, J. C. & Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Oceans https://doi.org/10.1029/2007JC004257 (2008).117.Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1979 to present. https://doi.org/10.24381/CDS.F17050D7 (2019).118.Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609â1625 (2002).
Google Scholar More