More stories

  • in

    Reply to: Emphasizing declining populations in the Living Planet Report

    Department of Biology, McGill University, Montreal, Quebec, CanadaBrian Leung & Anna L. HargreavesBieler School of Environment, McGill University, Montreal, Quebec, CanadaBrian LeungDepartment of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaDan A. GreenbergSchool of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USABrian McGillCentre for Biological Diversity, University of St Andrews, St Andrews, UKMaria DornelasIndicators and Assessments Unit, Institute of Zoology, Zoological Society of London, London, UKRobin FreemanB.L. wrote the response. A.C.H. and D.A.G. helped with writing, editing and discussing ideas. B.M. and M.D. discussed ideas with some editing. R.F. contributed discussions to the original manuscript2. More

  • in

    Reply to: The Living Planet Index does not measure abundance

    Department of Biology, McGill University, Montreal, Quebec, CanadaBrian Leung & Anna L. HargreavesBieler School of Environment, McGill University, Montreal, Quebec, CanadaBrian LeungDepartment of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaDan A. GreenbergSchool of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USABrian McGillCentre for Biological Diversity, University of St Andrews, St Andrews, UKMaria DornelasIndicators and Assessments Unit, Institute of Zoology, Zoological Society of London, London, UKRobin FreemanB.L. wrote the response. A.L.H. and D.A.G. helped with writing, editing and discussing ideas. B.M., M.D. and R.F. discussed ideas and did some editing. More

  • in

    Reply to: Shifting baselines and biodiversity success stories

    Cite this articleLeung, B., Hargreaves, A.L., Greenberg, D.A. et al. Reply to: Shifting baselines and biodiversity success stories.
    Nature 601, E19 (2022). https://doi.org/10.1038/s41586-021-03749-zDownload citationPublished: 26 January 2022Issue Date: 27 January 2022DOI: https://doi.org/10.1038/s41586-021-03749-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Do not downplay biodiversity loss

    1.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    2.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).Article 

    Google Scholar 
    3.Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    4.Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity in decline or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    5.Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).Article 

    Google Scholar 
    6.Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 

    Google Scholar 
    8.Scholes, R. J. et al. Toward a global biodiversity observing system. Science 321, 1044–1045 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    The Living Planet Index does not measure abundance

    1.Almond, R. E. A., Grooten, M. & Petersen, T. (eds) Living Planet Report 2020 – Bending the Curve of Biodiversity Loss (WWF, 2020).2.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    3.Buckland, S. T., Studeny, A. C., Magurran, A. E., Illian, J. B. & Newson, S. E. The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere 2, 1–15 (2011).Article 

    Google Scholar 
    4.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).Article 

    Google Scholar 
    5.Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Divers. Distrib. 23, 1372–1380 (2017).Article 

    Google Scholar 
    6.Marconi, V., McRae, L., Deinet, S., Ledger, S. & Freeman, F. in Living Planet Report 2020 – Bending the Curve of Biodiversity Loss (eds Almond, R. E. A., Grooten, M. & Petersen, T.) (WWF, 2020).7.Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    8.Daskalova, G. N. et al. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368, 1341–1347 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    9.IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).10.van Strien, A. J., Soldaat, L. L. & Gregory, R. D. Desirable mathematical properties of indicators for biodiversity change. Ecol. Indic. 14, 202–208 (2012).Article 

    Google Scholar  More

  • in

    Shifting baselines and biodiversity success stories

    1.Almond, R. E. A., Grooten, M. & Petersen, T. (eds) Living Planet Report 2020 – Bending the Curve of Biodiversity Loss (WWF, 2020).2.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Deinet, S. et al. Wildlife Comeback in Europe: The Recovery of Selected Mammal and Bird Species (final report to Rewilding Europe by ZSL, BirdLife International and the European Bird Census Council) (2013).4.Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).CAS 
    Article 

    Google Scholar 
    5.Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    Article 

    Google Scholar 
    6.Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Setiawan, R. et al. Preventing global extinction of the Javan rhino: tsunami risk and future conservation direction. Conserv. Lett. 11, e12366 (2018).Article 

    Google Scholar 
    8.Mondol, S., Bruford, M. W. & Ramakrishnan, U. Demographic loss, genetic structure and the conservation implications for Indian tigers. Proc. R. Soc. Lond. B 280, 20130496 (2013).
    Google Scholar 
    9.Milner-Gulland, E. J. & Beddington, J. R. The exploitation of elephants for the ivory trade: An historical perspective. Proc. R. Soc. Lond. B 252, 29–37 (1993).ADS 
    Article 

    Google Scholar 
    10.Casas-Marce, M. et al. Spatiotemporal dynamics of genetic variation in the iberian lynx along its path to extinction reconstructed with ancient DNA. Mol. Biol. Evol. 34, 2893–2907 (2017).CAS 
    Article 

    Google Scholar 
    11.Chase, M. J. et al. Continent-wide survey reveals massive decline in African savannah elephants. PeerJ 4, e2354 (2016).Article 

    Google Scholar 
    12.Jhala, Y. V, Qureshi, Q. & Nayak, A. K. (eds) Status of Tigers, Co-Predators and Prey in India 2018. Summary Report (National Tiger Conservation Authority, Government of India, New Delhi & Wildlife Institute of India, 2019).13.Sanderson, E. W. et al. The ecological future of the North American bison: conceiving long-term, large-scale conservation of wildlife. Conserv. Biol. 22, 252–266 (2008).Article 

    Google Scholar  More

  • in

    Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer

    1.Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6–265sr6 (2014).2.Wilkinson, H. N. & Hardman, M. J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 10, 20023 (2020).
    Google Scholar 
    3.Dvorak, H. F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).CAS 
    PubMed 

    Google Scholar 
    4.Dvorak, H. F. Tumors: Wounds that do not heal–Redux. Cancer Immunol. Res. 3, 1–11 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Schäfer, M. & Werner, S. Cancer as an overhealing wound: An old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9, 628–638 (2008).PubMed 

    Google Scholar 
    6.MacCarthy-Morrogh, L. & Martin, P. The hallmarks of cancer are also the hallmarks of wound healing. Sci. Signal. 13, eaay8690 (2020).7.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. How the evolution of multicellularity set the stage for cancer. Br. J. Cancer 118, 145–152 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).PubMed 

    Google Scholar 
    9.Bosch, T. C. G. Why polyps regenerate and we don’t: Towards a cellular and molecular framework for Hydra regeneration. Dev. Biol. 303, 421–433 (2007).CAS 
    PubMed 

    Google Scholar 
    10.Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    11.Slack, J. M. Animal regeneration: Ancestral character or evolutionary novelty?. EMBO Rep. 18, 1497–1508 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Wenger, Y., Buzgariu, W., Reiter, S. & Galliot, B. Injury-induced immune responses in Hydra. Semin. Immunol. 26, 277–294 (2014).CAS 
    PubMed 

    Google Scholar 
    13.Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science (80-. ). 298, 2188–2190 (2002).14.Kao, D., Felix, D. & Aboobaker, A. The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios. BMC Genomics 14, 1–17 (2013).
    Google Scholar 
    15.Gehrke, A. R. et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science (80-. ). 363 (2019).16.DuBuc, T. Q., Traylor-Knowles, N. & Martindale, M. Q. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biol. 12, 24 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    17.Cary, G. A., Wolff, A., Zueva, O., Pattinato, J. & Hinman, V. F. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol. 17, 16 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    18.Owlarn, S. et al. Generic wound signals initiate regeneration in missing-tissue contexts. Nat. Commun. 8, 1–13 (2017).CAS 

    Google Scholar 
    19.Ramon-Mateu, J., Ellison, S. T., Angelini, T. E. & Martindale, M. Q. Regeneration in the ctenophore Mnemiopsis leidyi occurs in the absence of a blastema, requires cell division, and is temporally separable from wound healing. BMC Biol. 17, 80 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    20.Pawlik, J. R. & Deignan, L. K. Cowries graze Verongid sponges on Caribbean reefs. Coral Reefs 34, 663 (2015).ADS 

    Google Scholar 
    21.Rice, M. M., Ezzat, L. & Burkepile, D. E. Corallivory in the anthropocene: Interactive effects of anthropogenic stressors and corallivory on coral reefs. Front. Mar. Sci. 5, 1–14 (2019).
    Google Scholar 
    22.Pawlik, J. R., Loh, T.-L., McMurray, S. E. & Finelli, C. M. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLoS One 8, e62573 (2013).23.Mortimer, C., Dunn, M., Haris, A., Jompa, J. & Bell, J. Estimates of sponge consumption rates on an Indo-Pacific reef. Mar. Ecol. Prog. Ser. 672, 123–140 (2021).ADS 
    CAS 

    Google Scholar 
    24.de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science (80-. ). 342, 108–10 (2013).25.Rix, L. et al. Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct. Ecol. 31, 778–789 (2016).
    Google Scholar 
    26.Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles and conservation concerns. Mar. Animal Forests https://doi.org/10.1007/978-3-319-17001-5 (2015).Article 

    Google Scholar 
    27.Soubigou, A., Ross, E. G., Touhami, Y., Chrismas, N. & Modepalli, V. Regeneration in sponge Sycon ciliatum partly mimics postlarval development. Development https://doi.org/10.1242/dev.193714 (2020).Article 
    PubMed 

    Google Scholar 
    28.Telford, M. J., Moroz, L. L. & Halanych, K. M. A sisterly dispute. Nature 529, 286–287 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Feuda, R. et al. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.11.008 (2017).Article 
    PubMed 

    Google Scholar 
    30.Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30, 282–291 (2015).PubMed 

    Google Scholar 
    31.Borisenko, I. E., Adamska, M., Tokina, D. B. & Ereskovsky, A. V. Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera). PeerJ 3, e1211 (2015).32.Lavrov, A. I., Bolshakov, F. V., Tokina, D. B. & Ereskovsky, A. V. Sewing up the wounds: The epithelial morphogenesis as a central mechanism of calcaronean sponge regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 330, 351–371 (2018).33.Ereskovsky, A. V. et al. Transdifferentiation and mesenchymal‐to‐epithelial transition during regeneration in Demospongiae (Porifera). J. Exp. Zool. Part B Mol. Dev. Evol. 334, 37–58 (2020).34.Alexander, B. E. et al. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage? PeerJ 3, e820 (2015).35.Pozzolini, M. et al. Insights into the evolution of metazoan regenerative mechanisms: TGF superfamily member roles in tissue regeneration of the marine sponge Chondrosia reniformis Nardo, 1847. J. Exp. Biol. 222, jeb207894 (2019).36.Kenny, N. J. et al. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A transcriptomic case study in the demosponge Halisarca caerulea. Mar. Genomics 37, 135–147 (2018).PubMed 

    Google Scholar 
    37.Pawlik, J. R. Handbook of marine natural products. in Handbook of Marine Natural Products (eds. Fattorusso, E., Gerwick, W. H. & Taglialatela-Scafati, O.) 677–705 (Springer, New York, 2012). https://doi.org/10.1007/978-90-481-3834-038.Walters, K. D. & Pawlik, J. R. Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges?. Integr. Comp. Biol. 45, 352–358 (2005).PubMed 

    Google Scholar 
    39.Becerro, M. A., Turon, X., Uriz, M. J. & Templado, J. Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biol. J. Linn. Soc. 78, 429–438 (2003).
    Google Scholar 
    40.Wu, Y.-C. et al. Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Sci. Rep. 10, 21934 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Pita, L., Hoeppner, M. P., Ribes, M. & Hentschel, U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci. Rep. 8, 16081 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Stewart, F. J., Ottesen, E. A. & Delong, E. F. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 4, 896–907 (2010).CAS 
    PubMed 

    Google Scholar 
    43.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible read trimming tool for Illumina NGS data. Bioinformatics btu170 (2014).44.Menzel, P. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2015).ADS 

    Google Scholar 
    45.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494 (2013).CAS 
    PubMed 

    Google Scholar 
    46.Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: Reference free quality assessment of de-novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. Genome analysis BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).CAS 
    PubMed 

    Google Scholar 
    48.Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 
    PubMed 

    Google Scholar 
    51.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800 (2011).52.Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer, Berlin, 2016).53.Team, R. C. R: A language and environment for statistical computing. (2019).54.Team, Rs. RStudio: Integrated Development for R. (2015).55.Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).CAS 
    PubMed 

    Google Scholar 
    56.Pritchard, L., Jones, S. & Cock, P. IBioIC Introd. Bioinform. Train. Course https://doi.org/10.5281/zenodo.1184095 (2018).57.Forbes, S. A. et al. The catalogue of somatic mutations in cancer (COSMIC). Curr. Protoc. Hum. Genet. 57 (2008).58.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. Elife 8, 1–28 (2019).
    Google Scholar 
    59.Cerenius, L. & Söderhäll, K. Coagulation in invertebrates. J. Innate Immun. 3, 3–8 (2011).PubMed 

    Google Scholar 
    60.Davie, E. W., Fujikawa, K. & Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 30, 10363–10370 (1991).CAS 
    PubMed 

    Google Scholar 
    61.Richardson, V. R., Cordell, P., Standeven, K. F. & Carter, A. M. Substrates of factor XIII-A: Roles in thrombosis and wound healing. Clin. Sci. 124, 123–137 (2013).CAS 

    Google Scholar 
    62.Domazet-Lošo, T. & Tautz, D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 8, 1–10 (2010).
    Google Scholar 
    63.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc. Natl. Acad. Sci. USA 114, 6406–6411 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Rohani, M. G. & Parks, W. C. Matrix remodeling by MMPs during wound repair. Matrix Biol. 44–46, 113–121 (2015).PubMed 

    Google Scholar 
    65.Grose, R. et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315 (2002).CAS 
    PubMed 

    Google Scholar 
    66.Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    67.Paps, J. & Holland, P. W. H. Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat. Commun. 9, 1730 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Sharrocks, A. D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).CAS 
    PubMed 

    Google Scholar 
    69.Larroux, C. et al. Developmental expression of transcription factor genes in a demosponge: Insights into the origin of metazoan multicellularity. Evol. Dev. 8, 150–173 (2006).CAS 
    PubMed 

    Google Scholar 
    70.Petersen, H. O. et al. A comprehensive transcriptomic and proteomic analysis of Hydra head regeneration. Mol. Biol. Evol. 32, 1928–1947 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Cardozo, M. J., Mysiak, K. S., Becker, T. & Becker, C. G. Reduce, reuse, recycle—Developmental signals in spinal cord regeneration. Dev. Biol. 432, 53–62 (2017).CAS 
    PubMed 

    Google Scholar 
    72.Adamska, M. et al. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One 2, e1031 (2007).73.Stewart, Z. K. et al. Transcriptomic investigation of wound healing and regeneration in the cnidarian Calliactis polypus. Sci. Rep. 7, 41458 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Chablais, F. & Jazwinska, A. The regenerative capacity of the zebrafish heart is dependent on TGF signaling. Development 139, 1921–1930 (2012).CAS 
    PubMed 

    Google Scholar 
    75.Chen, H., Lin, F., Xing, K. & He, X. The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nat. Commun. 6, 1–10 (2015).ADS 

    Google Scholar 
    76.Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Ćetković, H., Halasz, M. & Herak Bosnar, M. Sponges: A reservoir of genes implicated in human cancer. Mar. Drugs 16, 20 (2018).PubMed Central 

    Google Scholar  More

  • in

    Road traffic and landscape characteristics predict the occurrence of native halophytes on roadside verges

    1.European Road Federation. European Road Statistics: Yearbook 2020. https://erf.be/statistics/road-network-2020/ (2020)2.Hungarian Public Road Nonprofit Pte Ltd Co. https://internet.kozut.hu/ (2020)3.Findlay, T., Scott, C. & Bourdages, J. Response time of wetland biodiversity to road construction on adjacent lands. Conserv. Biol. 14, 86–94. https://doi.org/10.1046/j.1523-1739.2000.99086.x (2000).Article 

    Google Scholar 
    4.Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231. https://doi.org/10.1046/j.1466-822x.1998.00308.x (1998).Article 

    Google Scholar 
    5.Dean, W. R. J., Seymour, C. L., Joseph, G. S. & Foord, S. H. A review of the impacts of roads on wildlife in semi-arid regions. Diversity 11, 81. https://doi.org/10.3390/d11050081 (2019).Article 

    Google Scholar 
    6.Auffret, A. G., Berg, J. & Cousins, S. A. The geography of human‐mediated dispersal. Divers. Distrib. 20, 1450–1456. https://doi.org/10.1111/ddi.12251 (2014)7.Niggemann, M., Jetzkowitz, J., Brunzel, S., Wichmann, M. C. & Bialozyt, R. Distribution patterns of plants explained by human movement behaviour. Ecol. Model. 220, 1339–1346. https://doi.org/10.1016/j.ecolmodel.2009.02.018 (2009).Article 

    Google Scholar 
    8.Clifford, H. T. Seed dispersal by motor vehicles. J. Ecol. 47, 311–315. https://doi.org/10.2307/2257368 (1959).Article 

    Google Scholar 
    9.Rew, L. J. et al. Hitching a ride: seed accrual rates on different types of vehicles. J. Environ. Manage. 206, 547–555. https://doi.org/10.1016/j.jenvman.2017.10.060 (2018).Article 
    PubMed 

    Google Scholar 
    10.Schmidt, W. Plant dispersal by motor cars. Vegetatio 80, 147–152 (1989).Article 

    Google Scholar 
    11.Ross, S. M. Vegetation change on main road verges in south-east Scotland. J. Biogeogr. 13, 109–117. https://doi.org/10.2307/2844986 (1986).Article 

    Google Scholar 
    12.Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: the contribution of traffic and mowing machines. Neobiota 8, 53–60 (2009).
    Google Scholar 
    13.Tikka, P. M., Högmander, H. & Koski, P. S. Road and railway verges serve as dispersal corridors for grassland plants. Landscape Ecol. 16, 659–666. https://doi.org/10.1023/A:101312052 (2001).Article 

    Google Scholar 
    14.Forman, R. T. Estimate of the area affected ecologically by the road system in the United States. Conserv. Biol. 14, 31–35. https://doi.org/10.1046/j.1523-1739.2000.99299.x (2000).Article 

    Google Scholar 
    15.Gelbard, J. L. & Belnap, J. Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv. Biol. 17, 420–432. https://doi.org/10.1046/j.1523-1739.2003.01408.x (2003).Article 

    Google Scholar 
    16.Kalwij, J. M., Milton, S. J. & Mcgeoch, M. A. Road verges as invasion corridors? A spatial hierarchical test in an arid ecosystem. Landscape Ecol. 23, 439–451. https://doi.org/10.1007/s10980-008-9201-3 (2008).Article 

    Google Scholar 
    17.Essl, F., Dullinger, S. & Kleinbauer, I. Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81, 119–133 (2009).
    Google Scholar 
    18.Follak, S., Dullinger, S., Kleinbauer, I., Moser, D. & Essl, F. Invasion dynamics of three allergenic invasive Asteraceae (Ambrosia trifida, Artemisia annua, Iva xanthiifolia) in central and eastern Europe. Preslia 85, 41–61 (2013).
    Google Scholar 
    19.Skálová, H., Guo, W. Y., Wild, J. & Pyšek, P. Ambrosia artemisiifolia in the Czech Republic: history of invasion, current distribution and prediction of future spread. Preslia 89, 1–16. https://doi.org/10.23855/preslia.2017.001 (2017).Article 

    Google Scholar 
    20.Clarke, A. Macroecology comes of age. Trends Ecol. Evol. 17, 352–353. https://doi.org/10.1016/s0169-5347(02)02552-1 (2002).Article 

    Google Scholar 
    21.Török, K. et al. Invasion gateways and corridors in the Carpathian Basin: Biological invasions in Hungary. Biol. Inv. 5, 349–356. https://doi.org/10.1023/B:BINV.0000005570.19429.73 (2003).Article 

    Google Scholar 
    22.Pyšek, P., Jarošík, V. & Kucera, T. Patterns of invasion in temperate nature reserves. – Biol. Conserv. 104, 13–24. https://doi.org/10.1016/S0006-3207(01)00150-1 (2002).23.Greenberg, C. H., Crownover, S. H. & Gordon, D. R. Roadside soils: a corridor for invasion of xeric shrub by nonindigenous plants. Nat. Area. J. 17, 99–109 (1997).
    Google Scholar 
    24.Köles, P. Útpályák szennyeződése és a vízlefolyás környezeti hatása. Hidrol. Táj. 1, 14–16 (1994).
    Google Scholar 
    25.Amrhein, C., Strong, J. E. & Mosher, P. A. Effect of deicing salts on metal and organic matter mobilization in roadside soils. Environ. Sci. Technol. 26, 703–709. https://doi.org/10.1021/es00028a006 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Davison, A. W. The effects of de-icing salt on roadside verges. I. Soil and plant analysis. J. Appl. Ecol. 8, 555–561. https://doi.org/10.2307/2402891 (1971).Article 

    Google Scholar 
    27.Bouraoui, D., Cekstere, G., Osvalde, A., Vollenweider, P. & Rasmann, S. Deicing salt pollution affects the foliar traits and arthropods’ biodiversity of lime trees in Riga’s street greeneries. Front. Ecol. Evol. 7, 282. https://doi.org/10.3389/fevo.2019.00282 (2019).Article 

    Google Scholar 
    28.Asensio, E. et al. Accumulation of de-icing salt and leaching in Spanish soils surrounding roadways. Int. J. Env. Res. Pub. He. 14, 1498. https://doi.org/10.3390/ijerph14121498 (2017).CAS 
    Article 

    Google Scholar 
    29.Hintz, W. D. & Relyea, R. A. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biol. 64, 1081–1097. https://doi.org/10.1111/fwb.13286 (2019).Article 

    Google Scholar 
    30.Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a main road-forest interface. Water Air Soil Poll. 198, 125–132. https://doi.org/10.1007/s11270-008-9831-8 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New Phytol. 179, 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Barbour, M. G. Is any angiosperm an obligate halophyte?. Am. Midl. Nat. 84, 105–120. https://doi.org/10.2307/2423730 (1970).Article 

    Google Scholar 
    33.Mitsch, W. J. & Gosselink, J. G. Wetlands 3rd edn. (Wiley, 2000).
    Google Scholar 
    34.Sabovljevic´, M., Sabovljevic´, A. Contribution to the coastal bryophytes of the Northern Mediterranean: Are there halophytes among bryophytes? Phytol. Balc. 13, 131–135 (2007).35.Krauss, K. W. & Ball, M. C. On the halophytic nature of mangroves. Trees 27, 7–11. https://doi.org/10.1007/s00468-012-0767-7 (2013).Article 

    Google Scholar 
    36.Gerstberger, P. Plantago coronopus subsp. commutata introduced as a roadside halophyte in central Europe. Tuexenia 21, 249–256 (2001).
    Google Scholar 
    37.Wrobel, M., Tomaszewicz, T. & Chudecka, J. Floristic diversity and spatial distribution of roadside halophytes along forest and field roads in Szczecin lowland (West Poland). Pol. J. Ecol. 54, 303–309 (2006).
    Google Scholar 
    38.Šerá, B. Road vegetation in Central Europe – an example from the Czech Republic. Biologia 63, 1085–1088. https://doi.org/10.2478/s11756-008-0152-6 (2008).Article 

    Google Scholar 
    39.Kaplan, Z. et al. Distributions of vascular plants in the Czech Republic. Part 2. Preslia 88, 229–322 (2016).
    Google Scholar 
    40.Schmidt, D., Dítětová, Z., Horváth, A. & Szűcs, P. Coastal newcomer on motorways: the invasion of Plantago coronopus in Hungary. Studia Bot. Hung. 47, 319–334 (2016).Article 

    Google Scholar 
    41.Fekete, R. et al. Rapid continental spread of a salt-tolerant plant along the European road network. Biol. Inv. 23, 2661–2674. https://doi.org/10.1007/s10530-021-02531-6 (2021).Article 

    Google Scholar 
    42.Schmidt, D., Bauer, N., Fekete, R., Haszonits, G. & Süveges, K. Continuing spread of Plantago coronopus along Hungarian roads. Kitaibelia 25, 19–26. https://doi.org/10.17542/kit.25.19 (2020).43.Schmidt, D. New data to spreading of Plantago coronopus in Hungary. Kitaibelia 26, 99–101. https://doi.org/10.17542/kit.26.99 (2021).44.Fekete, R., Mesterházy, A., Valkó, O. & Molnár, V. A. A hitchhiker from the beach: the spread of the maritime halophyte Cochlearia danica along salted continental roads. Preslia 90, 23–37. https://doi.org/10.23855/preslia.2018.023 (2018).45.Schmotzer, A. Ceratocephala testiculata (Crantz) Roth and further data to the flora of the foothills of Bükk Mts. (‘Bükkalja’, NE Hungary). Kitaibelia 20, 81–142. https://doi.org/10.17542/kit.20.81 (2015).Article 

    Google Scholar 
    46.Barbosa, N. P., Fernandes, G. W., Carneiro, M. A. & Júnior, L. A. Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil (rupestrian fields). Biol. Inv. 12, 3745–3755. https://doi.org/10.1007/s10530-010-9767-y (2010).Article 

    Google Scholar 
    47.Pollnac, F., Seipel, T., Repath, C. & Re, L. J. Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biol. Inv. 14, 1753–1763. https://doi.org/10.1007/s10530-012-0188-y (2012).Article 

    Google Scholar 
    48.McDougall, K. L. et al. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Inv. 20, 3461–3473. https://doi.org/10.1007/s10530-018-1787-z (2018).Article 

    Google Scholar 
    49.US Fish and Wildlife Service. Jesup’s milk-vetch (Astragalus robbinsii var. jesupii) 5-Year Review: Summary and Evaluation., USA: US Fish and Wildlife Service, 14 pp. (2008)50.US Fish and Wildlife Service. Showy Indian Clover (Trifolium amoenum) 5-Year Review: Summary and Evaluation., USA: US Fish and Wildlife Service, 12 pp. (2008)51.Zarzyczki, K. & Szeląg, Z. Red list of the vascular plants in Poland. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2006)52.Bartha D. et al. Magyarország edényes növényfajainak elterjedési atlasza. Distribution atlas of vascular plants of Hungary (ed. Bartha, D.) (Nyugat-magyarorszagi Egyetem Kiadó, Sopron, 2015).53.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2019)54.Király G. ed. Új magyar füvészkönyv. Magyarország hajtásos növényei. (Aggteleki Nemzeti Park Igazgatóság, 2009)55.Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. Salt-affected soils and their management (No. 39). Food & Agriculture Org, (1988).56.R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018)57.Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R package version 2, 74 (2007).
    Google Scholar 
    58.Knowles, J. E. & Frederick, C. Prediction intervals from merMod objects. https://www.cran.rproject.org/web/packages/merTools/vignettes/Using_predictInterval.html (2016).59.The Plant List. Version 1.1. Published on the Internet. http://www.theplantlist.org/ (2020)60.Schmidt, D., Haszonits, Gy. & Korda, M. Spreading of native Spergularia species along roadsides of Transdanubia (NW Hungary). Kitaibelia 23, 141–150. https://doi.org/10.17542/kit.23.141 (2018).Article 

    Google Scholar 
    61.Englmaier, P. & Wilhalm, T. Alien grasses (Poaceae) in the flora of the Eastern Alps: contribution to an excursion flora of Austria and the Eastern Alps. Neilreichia 9, 177–245 (2018).
    Google Scholar 
    62.Takács, A., & Zsólyomi, T. Adatok a Taktaköz flórájának ismeretéhez. Data to the knowledge of the vascular flora of the Taktaköz (N-Hungary). Kitaibelia 15, 25–34 (2010).63.Bauer, N. Casual occurrences of Limonium gmelinii (Willd.) Kuntze subsp. hungaricum (Klokov) Soó in roadside verges. Kitaibelia 20, 300 (2015).64.Kocián, P. et al. Limonka Gmelinova (Limonium gmelinii) na dálnicích České republiky. Acta Rer. Nat. 19, 1–6 (2016).
    Google Scholar 
    65.Hohla, M., Diewald, W. & Király, G. Limonium gmelini – eine Steppenpflanze an österreichischen Autobahnen sowie weitere Neuigkeiten zur Flora Österreichs. Stapfia 103, 127–150 (2015).
    Google Scholar 
    66.Hanselmann D. Neue Zierde für den Straßensaum–Erstnachweis von Limonium gmelini (Willd.) Kuntze in Deutschland (und weitere Anmerkungen zu aktuellen Entwicklungen der Straßenbegleitflora in Rheinland-Pfalz). Mainz. Nat. Wiss. Arch. 54, 155–156 (2017).67.Scheuer, C. Dupla Graecensia Fungorum (2012, 201–350. Sz.). Fritschiana 72, 9–60 (2012).
    Google Scholar 
    68.John, H. & Stolle, J. Aktuelle Nachweise von Farn-und Blütenpflanzen im südlichen Sachsen-Anhalt. Mitt Florist. Kart. Sachsen-Anhalt 16, 43–57 (2011).
    Google Scholar 
    69.Yannitsaros, A. Additions to the flora of Kithira (Greece) I. Willdenowia 28, 77–94 (1998).Article 

    Google Scholar 
    70.Dogan, Y., Baslar, S., Celik, A., Mert, H. H. & Ozturk, M. A study of the roadside plants of west Anatolia Turkey. Nat. Croat. 1, 63–80 (2004).
    Google Scholar 
    71.Arnold, N., Baydoun, S., Chalak, L. & Raus, T. A contribution to the flora and ethnobotanical knowledge of Mount Hermon Lebanon. Flora Mediterr. 25, 13–55. https://doi.org/10.7320/flmedit25.013 (2015).Article 

    Google Scholar 
    72.Kárpáti, Z. Kiegészítés Soó – Jávorka: A magyar növényvilág kézikönyve c. munkájához. Bot. Közl. 45, 71–76 (1954).
    Google Scholar 
    73.Scott, N. E. & Davison, A. W. De-icing salt and the invasion of road verges by maritime plants. Watsonia 14, 41–52 (1982).
    Google Scholar 
    74.Fukarek, F., Knapp, M. D., Rauschert, S., Weinert, E. Karten der Pflanzenverbreitung in der DDR. Hercynia NF Leipzig 1 Serie 15, 229–320 (1978).75.Bresinsky, A. & Schundfelder, P. Mitteilungen der Arbeitsgemeinschaft zur floristischen Kartierung Bayerns. In: A. Bresinsky et al. (eds.). 7: 25–34 (Anmerkungen zu einigen Musterkarten für einen Atlas der Flora Bayerns,1980).76.Mirek, Z. & Trzonska-Tacik, D. Spreading of Puccinellia distans (L.) Parl. along the roads in southern Poland. Ekol. Pol. 92: 345–352 (1981).77.Valei, F. G. Bromus carinatus Hook. et Arn. en Puccinellia distans (L.) Parl. in midden Nederland. Gorteria 9, 232–234 (1979).78.Badmin, J. S. Records of Puccinellia distans growing inland in Kent and northern France. Trans. Kent Field Club 8, 115 (1980).
    Google Scholar 
    79.Butler, J. D., Hughes, T. D., Sanks, G. D. & Craig, P. R. Salt causes problems along Illinois main roads. Illinois Res. 13, 3–4 (1971).
    Google Scholar 
    80.Catling, P. M. & McKay, S. M. A review of the occurrence of halophytes in the eastern Great Lakes region. Michigan Bot. 20, 167–179 (1981).
    Google Scholar 
    81.Hohla, M. & Melzer, H. Floristisches von den Autobahnen der Bundesländer Salzburg, Oberösterreich Niederösterreich und Burgenland. Linz. Biol. Beitr. 35, 1307–1326 (2003).
    Google Scholar 
    82.Kocián, P. Novelties in the roadside flora of Moravia and Silesia (Czech Republic) – 1. Spergularia media. Acta Mus. Siles. Sci. Nat. 64, 263–267. https://doi.org/10.1515/cszma-2015-0033 (2015).83.Randall, R. E. An annotated flora of Tory Island, Co Donegal (vc H35). Ir. Nat. J. 27, 373–381 (2004).
    Google Scholar 
    84.Rossbach, R. P. Spergularia in North and South America. Contrib. Gray Herb. Harvard Univ. 130, 57–217 (1940).
    Google Scholar 
    85.Truscott, A. M., Palmer, S. C. F., McGowan, G. M., Cape, J. N. & Smart, S. Vegetation composition of roadside verges in Scotland: the effects of nitrogen deposition, disturbance and management. Environment. Poll. 136, 109–118 https://doi.org/10.1016/j.envpol.2004.12.009 (2005).86.Lonsdale, W. M. & Lane, A. M. Tourist vehicles as vectors of weed seeds in Kakadu National Park Northern Australia. Biol. Conserv. 69, 277–283 (1994).Article 

    Google Scholar 
    87.Borhidi, A. & Sánta, A. Vörös könyv Magyarország növénytársulásairól. I-II. 711 pp (Természetbúvár Alapítvány Kiadó, 2007).88.Bekker, R. et al. Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct. Ecol. 12, 834–842. https://doi.org/10.1046/j.1365-2435.1998.00252.x (1998).Article 

    Google Scholar 
    89.Westoby, M., Leishman, M., Lord, J., Poorter, H. & Schoen, D. J. Comparative ecology of seed size and dispersal. Philos. T. R. Soc. B. 351, 1309–1318 (1996).Article 

    Google Scholar 
    90.Török, P. et al. New thousand-seed weight records of the Pannonian flora and their application in analysing Social Behaviour Types. Acta Bot. Hung. 55, 429–472. https://doi.org/10.1556/ABot.55.2013.3-4.17 (2013).Article 

    Google Scholar 
    91.Török, P. et al. New measurements of thousand-seed weights of species in the Pannonian flora. Acta Bot. Hung. 58, 187–198. https://doi.org/10.1556/034.58.2016.1-2.10 (2016).Article 

    Google Scholar 
    92.Dawson, W., Burslem, D. F. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665. https://doi.org/10.1111/j.1365-2745.2009.01519.x (2009).Article 

    Google Scholar 
    93.Ungar, I. A. & Binet, P. Factors influencing seed dormancy in Spergularia media (L.) C Presl. Aquat. Bot. 1, 45–55 (1975).CAS 
    Article 

    Google Scholar 
    94.Moravcova, L. & Frantik, T. Germination ecology of Puccinellia distans and P. limosa. Biologia, Sect. Bot. 57,441–448 (2002).95.Filep, Gy. Talajtani alapismeretek II. Egyetemi jegyzet. (Debreceni Agrártudományi Egyetem, Debrecen, 1999)96.Grigore, M. N., & Toma, C. Anatomical adaptations of halophytes. A review of classic literature and recent, Springer https://doi.org/10.1007/978-3-319-66480-4 (2017).97.Grigore, M. N., Ivanescu, L. & Toma, C. Halophytes: an integrative anatomical study. Springer https://doi.org/10.1007/978-3-319-05729-3 (2014).Article 

    Google Scholar 
    98.Vakhrusheva, D. V. Mesostructure of photosynthetic apparatus in C3 plants in the arid zone of Central Asia, Extended Abst. Cand. Sci. (Biol.) Dissertation, Leningrad (1989).99.Breckle, S. W. Salinity tolerance of different halophyte types. In Genetic aspects of plant mineral nutrition Springer, Dordrecht, pp. 167–175. https://doi.org/10.1007/978-94-009-2053-8_26 (1990).100.Glenn, E. P., Brown, J. J. & Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18, 227–255. https://doi.org/10.1080/07352689991309207 (1999).Article 

    Google Scholar 
    101.Flowers, T. J. & Yeo, A. R. Ion relations of plants under drought and salinity. Aust. J. Plant Physiol. 13, 75–91. https://doi.org/10.1071/PP9860075 (1986).CAS 
    Article 

    Google Scholar 
    102.Pătruţ, D. I., Pop, A., & Coste, I. Biodiversitatea halofitelor din Câmpia Banatului. Eurobit, (2005).103.Skultety, D. & Matthews, J. W. Urbanization and roads drive non-native plant invasion in the Chicago Metropolitan region. Biol. Inv. 19(2553–2566), 2553–2566. https://doi.org/10.1007/s10530-017-1464-7 (2017).Article 

    Google Scholar  More