Livestock grazing impact differently on the functional diversity of dung beetles depending on the regional context in subtropical forests
1.Herrero, M. et al. Livestock and the environment: What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202 (2015).
Google Scholar
2.Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).ADS
PubMed
PubMed Central
Google Scholar
3.Firbank, L. G., Petit, S., Smart, S., Blain, A. & Fuller, R. J. Assessing the impacts of agricultural intensification on biodiversity: A British perspective. Philos. Trans. R. Soc. B: Biol. Sci. 363, 777–787 (2007).
Google Scholar
4.Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).PubMed
Google Scholar
5.Steinfeld, H., de Haan, C. & Blackburn, H. Livestock—Environment Interactions 88 (WRENmedia, 1997).
Google Scholar
6.Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26, 1273–1283 (2016).PubMed
Google Scholar
7.Schieltz, J. M. & Rubenstein, D. I. Evidence based review: Positive versus negative effects of livestock grazing on wildlife. What do we really know?. Environ. Res. Lett. 11, 113003 (2016).ADS
Google Scholar
8.Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).
Google Scholar
9.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
Google Scholar
10.Keddy, P. A. Assembly and response rules: Two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).
Google Scholar
11.Pärtel, M., Zobel, M., Zobel, K., van der Maarel, E. & Partel, M. The species pool and its relation to species richness: Evidence from Estonian plant communities. Oikos 75, 111–117 (1996).
Google Scholar
12.Temperton, V., Hobbs, R. J., Nuttle, T. & Halle, S. Assembly Rules and Restoration Ecology. Bridging the Gap Between Theory and Practice (Island Press, 2004).
Google Scholar
13.Leibold, M. A. Similarity and local co-existence of species in regional biotas. Evol. Ecol. 12, 95–110 (1998).
Google Scholar
14.Hortal, J. et al. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles: Ice age determines European scarab diversity. Ecol. Lett. 14, 741–748 (2011).PubMed
Google Scholar
15.de Bello, F., Lepš, J. & Sebastià, M.-T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29, 801–810 (2006).
Google Scholar
16.Reymond, A., Purcell, J., Cherix, D., Guisan, A. & Pellissier, L. Functional diversity decreases with temperature in high elevation ant fauna: Functional diversity in high elevation ant. Ecol. Entomol. 38, 364–373 (2013).
Google Scholar
17.Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B 366, 2536–2544 (2011).
Google Scholar
18.Mason-Romo, E. D., Farías, A. A. & Ceballos, G. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico. PLoS ONE 12, e0189104 (2017).PubMed
PubMed Central
Google Scholar
19.Wen, Z. et al. Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Sci. Total Environ. 682, 583–590 (2019).ADS
CAS
PubMed
Google Scholar
20Corbelli, J. M. et al. Integrating taxonomic, functional and phylogenetic beta diversities: Interactive effects with the biome and land use across taxa. PLoS ONE 10, e0126854 (2015).PubMed
PubMed Central
Google Scholar
21.Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed
Google Scholar
22.Spector, S. Scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae): An invertebrate focal taxon for biodiversity research and conservation. Coleopt. Bull. 60, 71–83 (2006).
Google Scholar
23.Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests: Cost-effectiveness of biodiversity surveys. Ecol. Lett. 11, 139–150 (2008).PubMed
Google Scholar
24.Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 111, 112–118 (2005).
Google Scholar
25.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed
Google Scholar
26.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed
Google Scholar
27.Audino, L. D., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity?. Biol. Cons. 169, 248–257 (2014).
Google Scholar
28.Barragán, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6, e17976 (2011).ADS
PubMed
PubMed Central
Google Scholar
29.Correa, C. M. A., Braga, R. F., Puker, A. & Korasaki, V. Patterns of taxonomic and functional diversity of dung beetles in a human-modified variegated landscape in Brazilian Cerrado. J. Insect Conserv. 23, 89–99 (2019).
Google Scholar
30.Gómez-Cifuentes, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv. 21, 147–156 (2017).
Google Scholar
31.Guerra Alonso, C. B., Zurita, G. A. & Bellocq, M. I. Dung beetles response to livestock management in three different regional contexts. Sci. Rep. 10, 3702 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
32de Siqueira Neves, F. et al. Successional and seasonal changes in a community of dung beetles (Coleoptera: Scarabaeinae) in a Brazilian tropical dry forest. Nat. Conserv. 08, 160–164 (2010).
Google Scholar
33Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).
Google Scholar
34.Brown, A. La situación ambiental Argentina 2005 (Fundación Vida Silvestre Argentina, 2006).
Google Scholar
35.Larsen, T. H., Lopera, A. & Forsyth, A. Extreme trophic and habitat specialization by Peruvian dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopt. Bull. 60, 315–324 (2006).
Google Scholar
36Vaz-de-Mello, F. Z. A Multilingual Key to the Genera and Subgenera of the Subfamily Scarabaeinae of the New World (Coleoptera: Scarabaeidae) (Magnolia Press, 2011).
Google Scholar
37.Braun-Blanquet, J. Fitosociología [Phytosociology]. Bases para el estudio de las comunidades vegetales [Basis for the study of plant communities] 820 (Editorial H. Blume, 1979).
Google Scholar
38.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
39Scholtz, C. H., Davis, A. L. V. & Kryger, U. Evolutionary Biology and Conservation of Dung Beetles (Pensoft, 2009).
Google Scholar
40.Simmons, L. W. & Ridsdill-Smith, J. Reproductive competition and its impact on the evolution and ecology of dung beetles. In Ecology and Evolution of Dung Beetles (eds Simmons, L. W. & Ridsdill-Smith, T. J.) 1–20 (Wiley, 2011). https://doi.org/10.1002/9781444342000.ch1.Chapter
Google Scholar
41.Vaz-de-Mello, F. Scarabaeidae in Catálogo Taxonômico da Fauna do Brasil. Catálogo Taxonômico da Fauna do Brasil. http://fauna.jbrj.gov.br/fauna/faunadobrasil/128171 (2018).42.Zunino, M. Food relocation behaviour: A multivalent strategy of Coleoptera. In Advances in Coleopterology (eds Zunino, M. et al.) 297–314 (AEC, 1991).
Google Scholar
43.LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Ann. Rev. Ecol. Syst. 20, 97–117 (1989).
Google Scholar
44Soto, C. S., Giombini, M. I., Giménez Gómez, V. C. & Zurita, G. A. Phenotypic differentiation in a resilient dung beetle species induced by forest conversion into cattle pastures. Evol. Ecol. 33, 385–402 (2019).
Google Scholar
45.Laliberté, E., Legendre, P. & Shipley, B. Package ‘FD’. Measuring Functional Diversity (FD) from Multiple Traits, and Other Tools for Functional Ecology (2014).46.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857 (1971).
Google Scholar
47.Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).
Google Scholar
48.Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).MathSciNet
CAS
PubMed
MATH
Google Scholar
49.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems: Data exploration. Methods Ecol. Evol. 1, 3–14 (2010).
Google Scholar
50.Lavorel, S. et al. Assessing functional diversity in the field—Methodology matters!. Funct. Ecol. 22, 134–147 (2008).
Google Scholar
51.Oksanen, J. et al. vegan: Community Ecology Package (2017).52.Clarke, K. R. & Green, R. H. Statistical design and analysis for a ‘biological effects’ study. Mar. Ecol. Prog. Ser. 46, 213–226 (1988).ADS
Google Scholar
53.da Silva, P. G. & Cassenote, S. Environmental drivers of species composition and functional diversity of dung beetles along the Atlantic Forest-Pampa transition zone. Austral. Ecol. 44, 786–799 (2019).
Google Scholar
54.Giraldo, C., Escobar, F., Chará, J. D. & Calle, Z. The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes: Ecological processes regulated by dung beetles. Insect Conserv. Divers. 4, 115–122 (2011).
Google Scholar
55.Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94, 180–189 (2013).PubMed
Google Scholar
56Gómez-Cifuentes, A., Giménez Gómez, V. C., Moreno, C. E. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: The role of microclimate and soil conditions. Basic Appl. Ecol. 34, 64–74 (2019).
Google Scholar
57.Cerullo, G. R., Edwards, F. A., Mills, S. C. & Edwards, D. P. Tropical forest subjected to intensive post-logging silviculture maintains functionally diverse dung beetle communities. For. Ecol. Manage. 444, 318–326 (2019).
Google Scholar
58.Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: Testing the influence of distance and land use. Acta Oecol. 36, 333–338 (2010).ADS
Google Scholar
59.Chown, S. L., Sørensen, J. G. & Terblanche, J. S. Water loss in insects: An environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).CAS
PubMed
Google Scholar
60.Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in dung beetles: Patterns and ecological implications. Oecologia 122, 452–458 (2000).ADS
CAS
PubMed
Google Scholar
61.Lobo, J. M., Lumaret, J.-P. & Jay-Robert, P. Sampling dung beetles in the French Mediterranean area: Effects of abiotic factors and farm practices. Pedobiología 42(3), 252–266 (1998).
Google Scholar
62.Navarrete, D. & Halffter, G. Dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in continuous forest, forest fragments and cattle pastures in a landscape of Chiapas, Mexico: The effects of anthropogenic changes. Biodivers. Conserv. 17, 2869–2898 (2008).
Google Scholar
63.Verdú, J. R., Arellano, L. & Numa, C. Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): Effect of body size and ecophysiological constraints in flight. J. Insect Physiol. 52, 854–860 (2006).PubMed
Google Scholar
64.Davis, A. J., Huijbregts, H. & Krikken, J. The role of local and regional processes in shaping dung beetle communities in tropical forest plantations in Borneo. Glob. Ecol. 9, 281–292 (2000).
Google Scholar
65.Tuff, K. T., Tuff, T. & Davies, K. F. A framework for integrating thermal biology into fragmentation research. Ecol. Lett. 19, 361–374 (2016).CAS
PubMed
PubMed Central
Google Scholar
66.Davis, A. L. V. Habitat fragmentation in southern Africa and distributional response patterns in five specialist or generalist dung beetle families (Coleoptera). Afr. J. Ecol. 32, 192–207 (1994).
Google Scholar
67.Halffter, G. & Arellano, L. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica 34, 144–154 (2002).
Google Scholar
68.Hill, C. Habitat specificity and food preferences of an assemblage of tropical Australian dung beetles. J. Trop. Ecol. 12, 449–460 (1996).
Google Scholar
69.Supp, S. R. & Ernest, S. K. M. Species-level and community-level responses to disturbance: A cross-community analysis. Ecology 95, 1717–1723 (2014).PubMed
Google Scholar
70.Davis, A. L. V., Scholtz, C. H. & Deschodt, C. Multi-scale determinants of dung beetle assemblage structure across abiotic gradients of the Kalahari-Nama Karoo ecotone, South Africa. J. Biogeogr. 35, 1465–1480 (2008).
Google Scholar
71.Nervo, B., Tocco, C., Caprio, E., Palestrini, C. & Rolando, A. The effects of body mass on dung removal efficiency in dung beetles. PLoS ONE 9, e107699 (2014).ADS
PubMed
PubMed Central
Google Scholar
72.Bui, V. B., Ziegler, T. & Bonkowski, M. Morphological traits reflect dung beetle response to land use changes in tropical karst ecosystems of Vietnam. Ecol. Ind. 108, 105697 (2020).
Google Scholar
73.Giménez Gómez, V. C., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 13364 (2020).ADS
PubMed
PubMed Central
Google Scholar
74.Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and micro-computer tomography. PLoS ONE 7, e33914 (2012).ADS
PubMed
PubMed Central
Google Scholar
75.Gómez-Cifuentes, A., Vespa, N., Semmartín, M. & Zurita, G. Canopy cover is a key factor to preserve the ecological functions of dung beetles in the southern Atlantic Forest. Appl. Soil. Ecol. 154, 103652 (2020).
Google Scholar
76.Fernández, P. D. et al. Understanding the distribution of cattle production systems in the South American Chaco. J. Land Use Sci. 15, 52–68 (2020).
Google Scholar
77Grau, H. R. & Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. 13, 16 (2008).
Google Scholar
78.Mastrangelo, M. E. & Gavin, M. C. Trade-offs between cattle production and bird conservation in an agricultural frontier of the Gran Chaco of Argentina. Conserv. Biol. 26, 1040–1051 (2012).PubMed
Google Scholar
79.Macchi, L. et al. Thresholds in forest bird communities along woody vegetation gradients in the South American Dry Chaco. J. Appl. Ecol. 56, 629–639 (2019).
Google Scholar
80.Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
Google Scholar
81.Slade, E. M., Mann, D. J., Villanueva, J. F. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).PubMed
Google Scholar
82.Ortega-Martínez, I. J., Moreno, C. E. & Escobar, F. A dirty job: manure removal by dung beetles in both a cattle ranch and laboratory setting. Entomol. Exp. Appl. 161, 70–78 (2016).
Google Scholar More