More stories

  • in

    Biological manganese-dependent sulfide oxidation impacts elemental gradients in redox-stratified systems: indications from the Black Sea water column

    1.Dellwig O, Schnetger B, Brumsack H-J, Grossart H-P, Umlauf L. Dissolved reactive manganese at pelagic redoxclines (part II): hydrodynamic conditions for accumulation. J Mar Syst. 2012;90:31–41.
    Google Scholar 
    2.Taylor GT, Iabichella M, Ho T, Scranton MI, Thunell RC, Muller-Karger F, et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr. 2001;46:148–63.CAS 

    Google Scholar 
    3.Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar Chem. 2001;74:29–51.CAS 

    Google Scholar 
    4.Trefry JH, Presley BJ, Keeney-Kennicutt WL, Trocine RP. Distribution and chemistry of manganese, iron, and suspended particulates in Orca Basin. Geo-Mar Lett. 1984;4:125–30.
    Google Scholar 
    5.Dahl TW, Anbar AD, Gordon GW, Rosing MT, Frei R, Canfield DE. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochim Cosmochim Acta. 2010;74:144–63.CAS 

    Google Scholar 
    6.Özsoy E, Ünlüata Ü. Oceanography of the Black Sea: a review of some recent results. Earth-Sci Rev. 1997;42:231–72.
    Google Scholar 
    7.Wegwerth A, Eckert S, Dellwig O, Schnetger B, Severmann S, Weyer S, et al. Redox evolution during Eemian and Holocene sapropel formation in the Black Sea. Palaeogeogr Palaeoclimatol Palaeoecol. 2018;489:249–60.
    Google Scholar 
    8.Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z, et al. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature. 1989;338:411–3.CAS 

    Google Scholar 
    9.Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Bahlo R, Dellwig O, et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J. 2019;13:1198–208.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Dellwig O, Wegwerth A, Schnetger B, Schulz H, Arz HW. Dissimilar behaviors of the geochemical twins W and Mo in hypoxic-euxinic marine basins. Earth-Sci Rev. 2019;193:1–23.CAS 

    Google Scholar 
    11.Stanev EV, Poulain PM, Grayek S, Johnson KS, Claustre H, Murray JW. Understanding the dynamics of the oxic-anoxic interface in the Black Sea. Geophys Res Lett. 2018;45:864–71.CAS 

    Google Scholar 
    12.Trouwborst RE. Soluble Mn(III) in suboxic zones. Science. 2006;313:1955–7.CAS 
    PubMed 

    Google Scholar 
    13.Vliet DM, Meijenfeldt FAB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJM, et al. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol. 2021;23:2834–57.PubMed 

    Google Scholar 
    14.Konovalov SK, Luther GW, Friederich GE, Nuzzio DB, Tebo BM, Murray JW, et al. Lateral injection of oxygen with the Bosporus plume-fingers of oxidizing potential in the Black Sea. Limnol Oceanogr. 2003;48:2369–76.CAS 

    Google Scholar 
    15.Lewis BL, Landing WM. The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Res A Oceanogr Res Pap. 1991;38:S773–S803.
    Google Scholar 
    16.Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L. Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem. 2007;107:388–410.CAS 

    Google Scholar 
    17.Gregg MC, Yakushev E. Surface ventilation of the Black Sea’s cold intermediate layer in the middle of the western gyre. Geophys Res Lett. 2005;32:1–4.
    Google Scholar 
    18.Schnetger B, Dellwig O. Dissolved reactive manganese at pelagic redoxclines (part I): a method for determination based on field experiments. J Mar Syst. 2012;90:23–30.
    Google Scholar 
    19.Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, et al. Biogenic manganese oxides: Properties and mechanisms of formation. Annu Rev Earth Planet Sci. 2004;32:287–328.CAS 

    Google Scholar 
    20.Glockzin M, Pollehne F, Dellwig O. Stationary sinking velocity of authigenic manganese oxides at pelagic redoxclines. Mar Chem. 2014;160:67–74.CAS 

    Google Scholar 
    21.Dellwig O, Leipe T, März C, Glockzin M, Pollehne F, Schnetger B, et al. A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins. Geochim Cosmochim Acta. 2010;74:7100–15.CAS 

    Google Scholar 
    22.Burdige DJ, Nealson KH. Chemical and microbiological studies of sulfide-mediated manganese reduction. Geomicrobiol J. 1986;4:361–87.CAS 

    Google Scholar 
    23.Yao W, Millero FJ. The rate of sulfide oxidation by δMnO2 in seawater. Geochim Cosmochim Acta. 1993;57:3359–65.CAS 

    Google Scholar 
    24.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.CAS 
    PubMed 

    Google Scholar 
    25.Henkel JV, Dellwig O, Pollehne F, Herlemann DPR, Leipe T, Schulz-Vogt HN. A bacterial isolate from the Black Sea oxidizes sulfide with manganese(IV) oxide. Proc Natl Acad Sci USA. 2019;116:12153–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Henkel JV, Vogts A, Werner J, Neu TR, Spröer C, Bunk B, et al. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst Appl Microbiol. 2021;44:1–11.27.Grote J, Jost G, Labrenz M, Herndl GJ, Jürgens K. Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Appl Environ Microbiol. 2008;74:7546–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol. 2003;69:2928–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Grote J, Labrenz M, Pfeiffer B, Jost G, Jürgens K. Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic Sea. Appl Environ Microbiol. 2007;73:7155–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Daims H, Bruhl A, Amann R, Schleifer K, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.CAS 
    PubMed 

    Google Scholar 
    32.Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;11:136–43.
    Google Scholar 
    33.Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.PubMed 

    Google Scholar 
    34.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    35.Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 2019;20:1–14.
    Google Scholar 
    38.Schulz HD. Conceptual models and computer models. In: Schulz HD, Zabel M, editors. Marine geochemistry. Springer: Berlin, Heidelberg; 2006. p. 513–47.39.Diepenbroek M, Glöckner FO, Grobe P, Güntsch A, Huber R, König-Ries B, et al. Towards an integrated biodiversity and ecological research data management and archiving platform: the German federation for the curation of biological data (GFBio). In: Plödereder E, Grunske L, Schneider E, Ull D, editors. Informatik 2014. Bonn: Gesellschaft für Informatik e.V.; 2014.p. 1711–21.40.Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol. 2011;29:415–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Revsbech NP, Thamdrup B, Dalsgaard T, Canfield DE. Construction of STOX oxygen sensors and their application for determination of O2 concentrations in oxygen minimum zones. Methods Enzymol. 2011;486:325–41.CAS 
    PubMed 

    Google Scholar 
    42.Dahl C. A biochemical view on the biological sulfur cycle. In: Environmental technologies to treat sulphur pollution: principles and engineering. IWA Publishing: London; 2020;2:55–96.43.Murray JW, Yakushev EV. Past and present water column anoxia. Past and present water column anoxia. Dordrecht: Springer Netherlands; 2006.44.Schulz HD. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase. In: Schulz HD, Zabel M, editors. Marine geochemistry. Berlin/Heidelberg: Springer-Verlag; 2006. p. 73–124.45.Tebo BM. Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep Res A. 1991;38:883–905.
    Google Scholar 
    46.Konovalov S, Samodurov A, Oguz T, Ivanov L. Parameterization of iron and manganese cycling in the Black Sea suboxic and anoxic environment. Deep Res Part I Oceanogr Res Pap. 2004;51:2027–45.CAS 

    Google Scholar 
    47.Lahme S, Callbeck CM, Eland LE, Wipat A, Enning D, Head IM, et al. Comparison of sulfide-oxidizing Sulfurimonas strains reveals a new mode of thiosulfate formation in subsurface environments. Environ Microbiol. 2020;22:1784–1800.CAS 
    PubMed 

    Google Scholar 
    48.Grote J, Schott T, Bruckner CG, Glockner FO, Jost G, Teeling H, et al. Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proc Natl Acad Sci USA. 2012;109:506–10.CAS 
    PubMed 

    Google Scholar 
    49.Sievert SM, Scott KM, Klotz MG, Chain PSG, Hauser LJ, Hemp J, et al. Genome of the Epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl Environ Microbiol. 2008;74:1145–56.CAS 
    PubMed 

    Google Scholar 
    50.Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–9.CAS 
    PubMed 

    Google Scholar 
    51.Götz F, Pjevac P, Markert S, McNichol J, Becher D, Schweder T, et al. Transcriptomic and proteomic insight into the mechanism of cyclooctasulfur- versus thiosulfate-oxidation by the chemolithoautotroph Sulfurimonas denitrificans. Environ Microbiol. 2019;21:244–58.PubMed 

    Google Scholar 
    52.Pjevac P, Meier DV, Markert S, Hentschker C, Schweder T, Becher D, et al. Metaproteogenomic profiling of microbial communities colonizing actively venting hydrothermal chimneys. Front Microbiol. 2018;9:1–12.
    Google Scholar 
    53.Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 2017;11:1545–58.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Wang S, Jiang L, Hu Q, Liu X, Yang S, Shao Z. Elemental sulfur reduction by a deep‐sea hydrothermal vent Campylobacterium Sulfurimonas sp. NW10. Environ Microbiol. 2021;23:965–79.CAS 
    PubMed 

    Google Scholar 
    55.Yao W, Millero FH. Oxidation of hydrogen sulfide by Mn(IV) and Fe(III) (hydr)oxides in seawater. Mar Chem. 1996;52:1–16.CAS 

    Google Scholar 
    56.Herszage J, dos Santos Afonso M. Mechanism of hydrogen sulfide oxidation by manganese(IV) oxide in aqueous solutions. Langmuir. 2003;19:9684–92.CAS 

    Google Scholar 
    57.Glazer BT, Luther GW, Konovalov SK, Friederich GE, Nuzzio DB, Trouwborst RE, et al. Documenting the suboxic zone of the Black Sea via high-resolution real-time redox profiling. Deep Res II Top Stud Oceanogr. 2006;53:1740–55.
    Google Scholar 
    58.Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW. Sulfide oxidation in the anoxic Black Sea chemocline. Deep Sea Res A Oceanogr Res Pap. 1991;38:1083–103.
    Google Scholar 
    59.Yiǧiterhan O, Murray JW. Trace metal composition of particulate matter of the Danube River and Turkish rivers draining into the Black Sea. Mar Chem. 2008;111:63–76.
    Google Scholar 
    60.Brewer PG, Spencer DW. Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases: water. In: The Black Sea–Geology, Chemistry, and Biology. AAPG Special Volumes. AAPG; 1974;137–43.61.Fuchsman CA, Kirkpatrick JB, Brazelton WJ, Murray JW, Staley JT. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol Ecol. 2011;78:586–603.CAS 
    PubMed 

    Google Scholar 
    62.Kelly DP. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B Biol Sci. 1982;298:499–528.CAS 
    PubMed 

    Google Scholar 
    63.Kirkpatrick JB, Fuchsman CA, Yakushev EV, Egorov AV, Staley JT, Murray JW. Dark N2 fixation: nifH expression in the redoxcline of the Black Sea. Aquat Micro Ecol. 2018;82:43–58.
    Google Scholar 
    64.Glaubitz S, Kießlich K, Meeske C, Labrenz M, Jürgens K. SUP05 Dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central baltic and black seas. Appl Environ Microbiol. 2013;79:2767–76.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Shah V, Chang BX, Morris RM. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J. 2017;11:263–71.CAS 
    PubMed 

    Google Scholar 
    66.Rogge A, Vogts A, Voss M, Jürgens K, Jost G, Labrenz M. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r -strategists. Environ Microbiol. 2017;19:2495–506.CAS 
    PubMed 

    Google Scholar 
    67.Overmann J, Cypionka H, Pfennig N. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr. 1992;37:150–5.CAS 

    Google Scholar 
    68.Jensen MM, Kuypers MMM, Lavik G, Thamdrup B. Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr. 2008;53:23–36.CAS 

    Google Scholar 
    69.Hannig M, Lavik G, Kuypers MMM, Woebken D, Martens-Habbena W, Jürgens K. Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnol Oceanogr. 2007;52:1336–45.CAS 

    Google Scholar 
    70.Engström P, Dalsgaard T, Hulth S, Aller RC. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta. 2005;69:2057–65.
    Google Scholar 
    71.Dapena-Mora A, Fernández I, Campos JL, Mosquera-Corral A, Méndez R, Jetten MSM. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzym Micro Technol. 2007;40:859–65.CAS 

    Google Scholar 
    72.Havig JR, McCormick ML, Hamilton TL, Kump LR. The behavior of biologically important trace elements across the oxic/euxinic transition of meromictic Fayetteville Green Lake, New York, USA. Geochim Cosmochim Acta. 2015;165:389–406.CAS 

    Google Scholar 
    73.Jürgens K, Taylor GT. Microbial ecology and biogeochemistry of oxygen-deficient water columns. Microbial Ecology of the Ocean, 3rd ed. Hoboken: Wiley; 2018. p. 231–88.74.Jost G, Martens-Habbena W, Pollehne F, Schnetger B, Labrenz M. Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea. FEMS Microbiol Ecol. 2010;71:226–36.CAS 
    PubMed 

    Google Scholar 
    75.Aller RC, Rude PD. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim Cosmochim Acta. 1988;52:751–65.CAS 

    Google Scholar 
    76.King GM. Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments. FEMS Microbiol Ecol. 1990;73:131–8.CAS 

    Google Scholar  More

  • in

    Conservation agriculture based integrated crop management sustains productivity and economic profitability along with soil properties of the maize-wheat rotation

    Experimental site, location and climateFive years’ field experimentation on ICM was started in 2014–15 at the ICAR-Indian Agricultural Research Institute (28°35′ N latitude, 77°12′ E longitude, 229 m MSL), New Delhi, India. The study site comes under the ‘Trans IGPs’, being semi-arid with an average annual rainfall of 650 mm, of which ~ 80% occurs in July–September (south-west monsoon). The mean max. / min. air temperature ranges between 20-40ºC and 4-28ºC, respectively. The five years (2014–2019) weather data were recorded from the observatory adjoining to the experimental field, and presented in Supplementary Table 1. Before start of the experiment, a rainy season Sesbania was grown in 2014 to ensure the uniform fertility across the blocks. Initial soil samples (0.0–0.15 m depth) were collected in October 2014 after incorporating the Sesbania residues in soil. The soil samples were processed for the chemical analysis. The study site had a pH of 7.9 (1:2.5 soil and water ratio)68, 3.8 g kg−1 soil organic-C69, 94.1 kg ha−1 KMnO4 oxidizable N70, 97 µg g−1 soil microbial biomass carbon71, 51.3 μg PNP g−1 soil h−1 alkaline phosphatase72, 53.0 μg TPF g−1 soil d−1 dehydrogenase73, and 13.5 μg NH4-N g−1 soil h−1urease74.Description of different ICM modulesThe eight ICM modules were tested, comprising of four conventional tillage (CT)-based (ICM1-4) and four conservation agriculture (CA)-based (ICM5-8) modules, replicated thrice in a complete randomized block design with the plot size of 60 m2 (15 m × 4.5 m) (Table 4). The crop residues were completely removed in the CT-based modules (ICM1-4), while in the ICM5-8 modules, in-situ wheat (~ 3 Mg ha−1 on dry weight basis)) and maize (~ 5 Mg ha−1, on dry weight basis) residues were retained on the soil surface during all the seasons of crops cultivation (Footnote Table 4, Fig. 6a,b).Table 4 Description of integrated crop management (ICM) modules adopted in maize and wheat crops during the five yearsˈ fixed plot experimentation.Full size tableIn the ICM1-4 modules, the field preparation was carried out by sequential tillage operations, such as, deep ploughing using the disc harrow, cultivator/rotavator twice (0.15–0.20 m), followed by levelling in each season. In the ICM3-4, the raised beds of 0.70 m bed width (bed top 0.40 m and furrow 0.30 m) were formed during each cropping cycle using the tractor mounted bed planter, and simultaneously wheat sowing was done (Fig. 6c). In the case of maize, ridges (0.67 m length) were prepared using the ridge maker. In the CA-based ICM5-8 modules, the tillage operations, such as, seed and fertilizer placement were restricted to the crop row-zone in maize and wheat both. In the ICM7&8, the permanent raised beds (0.67 m mid-furrow to mid-furrow, 0.37 m wide flat tops, and 0.15 m furrow depth), were prepared (Fig. 6d). However, these beds were reshaped using the disc coulter at the end of each cropping cycle without disturbing the surface residues. The sowing was accomplished using the raised bed multi-crop planter.Cultural operations and the fertilizer applicationDuring every season, the maize (cv. PMH 1) was sown in the first week of July using 20 kg seed ha−1. The wheat (cv. HD 2967) crop was sown in the first fortnight of November using the seed-cum fertilizer drill (ICM1-2), bed planter (ICM3-4) and zero-till seed drill (ICM5-8) at 100 kg seed ha−1. The chemical fertilizers (N, P and K) were applied as per the modules described in the footnote of Table 4. At sowing, the full doses of phosphorous (P) and potassium (K) were applied using the di-ammonium phosphate (DAP) and muriate of potash (MOP), and the nitrogen (N) supplied through DAP. The remaining N was top-dressed through urea in two equal splits after the first irrigation and tasseling / silking stages in maize, and crown root initiation and tillering stages of wheat. In the modules receiving ¾ fertilizers (ICM2,4,6,8), the seeds were treated with the NPK liquid bio-fertilizer (LBFs) (diluted 250 ml formulation 2.5 L of water ha−1), and an arbuscular mycorrhiza (AMF) was broadcasted at 12 kg ha−1 as has been described by75. This LBFs had the microbial consortia of N-fixer (Azotobacter chroococcum), P (Pseudomonas) and K (Bacillus decolorationis) solubilizers, procured from the commercial biofertilizer production unit of the Microbiology Division, ICAR-Indian Agricultural Research Institute, New Delhi (Patentee: ICAR, Govt. of India). Weeds were managed by integrating the pre- and post-emergence herbicides, and their combinations along with the hand weeding-mulching, as mentioned in the concerned modules (Footnote Table 4). However, in the CA-based modules (ICM5-8), the non-selective herbicide glyphosate (1 kg ha−1) was used 10 days before the sowing. The need-based integrated insect-pests and disease management practices were followed uniformly across the modules.Soil sampling and analysisBefore start of the experiment, the soil sampling was done from 0.0–0.15 m depth. Afterwards, five random samples from each module from 0.0–0.30 m soil depth were collected at the flowering stage of 5th season wheat. These samples were taken from the three soil depths (0.0 to 0.05, 0.05–0.15 and 0.150–0.30 m) using the core sampler. The ground, air-dried soil samples, passed through a 0.2 mm sieve were used for the determination of the Walkley and Black organic carbon (SOC), as described by76. For the soil biological properties, the soil samples were processed, and stored at 5ºC for 18–24 h, then analyzed the soil microbial biomass carbon (SMBC), dehydrogenase (SDH), alkaline phosphate (SAP) and the urease (URE) activities.The soil microbial biomass carbon (SMBC)The SMBC was measured using the fumigation extraction method as proposed by71. The pre-weighed samples from the respective soil depths were fumigated with the ethanol-free chloroform for the 24 h. Separately, a non–fumigated set was also maintained. Further, 0.5 M K2SO4 (soil: extractant 1:4) was added, and kept on a reciprocal shaker for 30 min. and then filtered through a Whatman No. 42 filter paper. OC of the filtrate was measured through the dichromate digestion, followed by the back titration with 0.05 N ferrous ammonium sulphate. The SMBC was then calculated using the equation:$${text{S}}_{{{text{MBC}}}} = {text{EC }} times { 2}.{64}$$where, EC = (Corg in fumigated soil – Corg in non-fumigated soil), and expressed in µg C g−1 soil.The dehydrogenase activity (SDH)The SDH activity (μg TPF g−1 soil d−1) was assessed using the method of73. The soil sample (~ 6 g) was saturated with 1.0 ml freshly prepared 3% triphenyltetrazolium chloride (TTC), and then incubated for 24 h under the dark. Later on, the methanol was added to stop the enzyme activity, and the absorbance of the filtered aliquot was read at 485 nm.The alkaline phosphatase activity (SAP)The APA activity was estimated in 1.0 g soil saturated with 4 ml of the modified universal buffer (MUB) along with 1 ml of p-nitrophenol phosphate followed by incubation at 37 °C for 1 h. After incubation, 1 ml of 0.5 M CaCl2 and 4 mL of NaOH were added and the contents filtered through Whatman No. 1 filter paper. The amount of p-nitrophenol in the sample was determined at 400 nm72 and the enzyme activity was expressed as µg p-NP g−1 soil h−1.The urease activityUrease activity was measured using 10 g soil suspended in 2.5 ml of urea solution (0.5%). After incubating for a day at 37 °C, 50 ml of 1 M KCl solution was added. This was kept on a shaker for 30 min and the aliquot was filtered through Whatman No. 1 filter paper. To the filtrate (10 ml), 5 ml of sodium salicylate and 2 ml of 0.1% sodium dichloro-isocyanide solution were added and the green color developed was measured at 690 nm74. These values are reported as µg NH4-N g−1 soil h−1.Water application and productivityIn experimental modules, water was given through the controlled border irrigation method. The current meter was fixed in the main lined rectangular channel, and the water velocity was measured. To get the flow discharge, then multiplied with area of cross section of the channel. The following formulae were used to calculate the applied irrigation water quantity and depth3:$${text{Irrigation water applied }}left( {text{L}} right) , = {text{ F }} times {text{ t (i)}}$$$${text{Depth }}left( {{text{mm}}} right) , = {text{ L}} div {text{A}}/{ 1}000$$where, F is flow rate (m3 s−1), t is time (s) taken in each irrigation in each module and A is area (m2).The effective precipitation (EP, difference between total rainfall and the actual evapotranspiration) was calculated, and then EP was added to the irrigation water applied to calculate the total water applied in each module. Across the maize and wheat modules (ICM1-8), irrigations were given at the critical growth stages, such as, knee high and silking / tasseling (maize) and crown root formation, maximum tillering, flowering, heading / milking (wheat) stages, and after long dry spell (≥ 10-days).On the basis of the soil water depletion pattern (at the depth of 0.60 m), in each season, 3–6 irrigations were given to maize, while wheat received 5–8 irrigations per season or crop including the pre-sowing irrigation. The rainfall data were obtained from the meteorological observatory located in the adjoining field. The water productivity (kg grains ha−1 mm−1 of water) was measured as per the equation given below:$${text{Water productivity }} = {text{ economic yield }}left( {{text{kg ha}}^{{ – {1}}} } right)/{text{ total water applied }}left( {{text{mm}}} right)$$Additionally, the systems water productivity (SWP) was also estimated by adding the water productivity (WP) of both maize and wheat crops grown under the MWR.Yield measurementsIn each season, the maize and wheat crops were harvested during the months of October and April, respectively, leaving 0.75 m border rows from all the corners of each module. The crops were harvested from the net sampling area (6 m × 3 m, 18 m2) located at the center of each plot. Maize crop was harvested manually and the wheat by using the plot combine harvester. All the harvested produce was sun dried before threshing and the grain and straw / stover yields were weighed separately. The stover/straw yields were measured by subtracting the grain weight from the total biomass. To compare the total (system) productivity of the different ICM modules, the system yield was computed, taking maize as the base crop, i.e., the maize equivalent yield (MGEY) using the equation20:$${text{M}}_{{{text{GEY}}}} left( {{text{Mg ha}}^{{ – {1}}} } right) , = {text{ Ym }} + , left{ {left( {{text{Yw }} times {text{ Pw}}} right) , div {text{ Pm}}} right}$$where, Ym = maize grain yield (Mg ha−1), Yw = wheat grain yield (Mg ha−1), Pm = price of maize grain (US$ Mg−1) and Pw = price of wheat grain (US$ Mg−1).Farm economicsUnder different ICM modules, the variable production costs and economic returns were worked out based on the prevailing market prices for the respective years. The production costs included the cost of various inputs, such as, rental value of land, seeds, pesticides, LBFs / consortia, AMF, labor, and machinery; tillage / sowing operations, irrigation, mineral fertilizers, plant protection, harvesting, and threshing etc. The costs for the crops’ residues were also considered. The system total returns were computed by adding the economic worth of the individual crop, however, the net returns were the differences between the total returns to the variable production costs of the respective module. The Govt. of India’s minimum support prices (MSP) were considered for the conversion of grain yield to the economic returns (profits) during the respective years. Further, the system net returns (SNR) were worked out by summing the net income from both maize and the wheat in Indian rupees (INR), and then converted to the US$, based on the exchange rates for different years.Sustainable yield index (SYI)77,78described the SYI as a quantitative measure of the sustainability of agricultural rotation/practice. The sustainability could be interpreted using the standard deviation (σ) values, where the lower values of the σ indicate the greater sustainability and vice-versa. Total crop productivity of maize and wheat under the different ICM modules was computed based on the five years’ mean yield data. SYI was calculated using equation78.$${text{S}}_{{{text{YI}}}} = , left( {{-}{overline{text{Y}}}_{{{text{a }}{-}}} sigma_{{text{n}}} {-}_{{1}} } right) , /{text{ Y}}^{{{-}{1}}}_{{text{m}}}$$where, –ȳa is the average yield of the crops across the years under the specific management practice, σn–1 is the standard deviation and Y–1 m is the maximum yield obtained under the set of an ICM module.Statistical analysisThe GLM procedure of the SAS 9.4 (SAS Institute, 2003, Cary, NC) was used for the statistical analysis of all the data obtained from different ICM modules to analyze the variance (ANOVA) under the randomized block design79. Tukey’s honest significant difference test was employed to compare the mean effect of the treatments at p = 0.05.Authors have confirmed that all the plant studies were carried out in accordance with relevant national, international or institutional guidelines. More

  • in

    Genetic studies of fall armyworm indicate a new introduction into Africa and identify limits to its migratory behavior

    1.Andrews, K. L. Latin-American research on Spodoptera frugiperda (Lepidoptera, Noctuidae). Florida Entomol. 71, 630–653. https://doi.org/10.2307/3495022 (1988).Article 

    Google Scholar 
    2.Brevault, T. et al. First records of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), Senegal. Entomologia Generalis 37, 129–142. https://doi.org/10.1127/entomologia/2018/0553 (2018).Article 

    Google Scholar 
    3.Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafa, G. & Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. https://doi.org/10.1038/s41598-017-04238-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamo, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE https://doi.org/10.1371/journal.pone.0165632 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Jacobs, A., van Vuuren, A. & Rong, I. H. Characterisation of the fall armyworm (Spodoptera frugiperda JE Smith) (Lepidoptera: Noctuidae) from South Africa. Afr. Entomol. 26, 45–49. https://doi.org/10.4001/003.026.0045 (2018).Article 

    Google Scholar 
    6.Day, R. et al. Fall Armyworm: Impacts and Implications for Africa. Outlooks Pest Manag. 28, 196–201. https://doi.org/10.1564/v28_oct_02 (2017).Article 

    Google Scholar 
    7.Stokstad, E. New crop pest takes Africa at lightning speed. Science 356, 473–474. https://doi.org/10.1126/science.356.6337.473 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Luginbill, P. The fall armyworm. US Dept. Agric. Tech. Bull. 34, 1–91 (1928).
    Google Scholar 
    9.Nagoshi, R. N., Meagher, R. L. & Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2, 1458–1467. https://doi.org/10.1002/ece3.268 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Westbrook, J., Fleischer, S., Jairam, S., Meagher, R. & Nagoshi, R. Multigenerational migration of a pest insect. Ecosphere 10, e02919. https://doi.org/10.1002/ecs2.2919 (2019).Article 

    Google Scholar 
    11.Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267. https://doi.org/10.1007/s00484-015-1022-x (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Ge, S. S. et al. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 20, 707–714. https://doi.org/10.1016/S2095-3119(20)63166-5 (2021).Article 

    Google Scholar 
    13.Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE https://doi.org/10.1371/journal.pone.0217755 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Jr. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311. https://doi.org/10.1038/s41598-019-44744-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Nagoshi, R. N. et al. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. https://doi.org/10.1038/s41598-018-21954-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Levy, H. C., Garcia-Maruniak, A. & Maruniak, J. E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of Cytochrome Oxidase Subunit I gene. Florida Entomol. 85, 186–190 (2002).CAS 
    Article 

    Google Scholar 
    18.Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292. https://doi.org/10.1603/An09046 (2010).CAS 
    Article 

    Google Scholar 
    19.Prowell, D. P., McMichael, M. & Silvain, J. F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97, 1034–1044 (2004).CAS 
    Article 

    Google Scholar 
    20.Juárez, M. L. et al. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 105, 573–582. https://doi.org/10.1603/Ec11184 (2012).Article 
    PubMed 

    Google Scholar 
    21.Murúa, M. G. et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J. Econ. Entomol. 108, 2305–2315 (2015).Article 

    Google Scholar 
    22.Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Lepidoptera: Noctuidae) host strains in Argentina. J. Econ. Entomol. 105, 418–428. https://doi.org/10.1603/Ec11332 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Nagoshi, R. N., Silvie, P., Meagher, R. L., Lopez, J. & Machados, V. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Ann. Entomol. Soc. Am. 100, 394–402 (2007).CAS 
    Article 

    Google Scholar 
    24.Nagoshi, R. N. Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Ann. Entomol. Soc. Am. 105, 351–358. https://doi.org/10.1603/AN11138 (2012).CAS 
    Article 

    Google Scholar 
    25.Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Nagoshi, R. N., Goergen, G., Du Plessis, H., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. https://doi.org/10.1038/s41598-019-44744-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Nagoshi, R. N. et al. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS ONE 16, e0253528. https://doi.org/10.1371/journal.pone.0253528 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982. https://doi.org/10.1371/journal.pone.0181982 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Koffi, D. et al. Trapping Spodoptera frugiperda (Lepidoptera: Noctuidae) moths in different crop habitats in Togo and Ghana. J. Econ. Entomol. 114, 1138–1144. https://doi.org/10.1093/jee/toab048 (2021).Article 
    PubMed 

    Google Scholar 
    30.Thenkabail, P. S. et al. Assessing future risks to agricultural productivity, water Resources and food security: How can remote sensing help?. Photogramm. Eng. Remote. Sens. 78, 773–782 (2012).
    Google Scholar 
    31.Teluguntla, P. et al. (eds.). Global Cropland Area Database (GCAD) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities. Chapter 7 Vol. II. Land Resources: Monitoring, Modelling, and Mapping, Remote Sensing Handbook edited by Prasad S. Thenkabail.32.Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743. https://doi.org/10.1371/journal.pone.0171743 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Nagoshi, R. N., Fleischer, S. J. & Meagher, R. L. Texas is the overwintering source of fall armyworm in central Pennsylvania: Implications for migration into the northeastern United States. Environ. Entomol. 38, 1546–1554. https://doi.org/10.1603/022.038.0605 (2009).Article 
    PubMed 

    Google Scholar 
    34.Nagoshi, R. N. et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 108, 135–144 (2015).CAS 
    Article 

    Google Scholar 
    35.Assefa, Y., Mitchell, A. & Conlong, D. E. Phylogeography of Eldana saccharine Walker (Lepidoptera : Pyralidae). Annales de la Société Entomologique de France 42, 331–337. https://doi.org/10.1080/00379271.2006.10697465 (2006).Article 

    Google Scholar 
    36.Sezonlin, M. et al. Phylogeographic pattern and regional evolutionary history of the maize stalk borer Busseola fusca (Fuller) (Lepidoptera : Noctuidae) in sub-Saharan Africa. Annales de la Société Entomologique de France 42, 339–351. https://doi.org/10.1080/00379271.2006.10697466 (2006).Article 

    Google Scholar 
    37.Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15, 407–420. https://doi.org/10.1111/j.1365-294X.2005.02761.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera, Noctuidae)—A sibling species complex. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    39.Nagoshi, R. N. & Meagher, R. Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. Insect Mol. Biol. 12, 453–458 (2003).CAS 
    Article 

    Google Scholar 
    40.Nagoshi, R. N. & Meagher, R. L. Seasonal distribution of fall armyworm (Lepidoptera: Noctuidae) host strains in agricultural and turf grass habitats. Environ. Entomol. 33, 881–889 (2004).Article 

    Google Scholar 
    41.Juárez, M. L. et al. Population structure of Spodoptera frugiperda maize and rice host forms in South America: Are they host strains?. Entomol. Exp. Appl. 152, 182–199. https://doi.org/10.1111/eea.12215 (2014).CAS 
    Article 

    Google Scholar 
    42.Meagher, R. L. & Nagoshi, R. N. Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann. Entomol. Soc. Am. 105, 462–470. https://doi.org/10.1603/An11158 (2012).Article 

    Google Scholar 
    43.Pashley, D. P., Hardy, T. N. & Hammond, A. M. Host effects on developmental and reproductive traits in fall armyworm strains (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 88, 748–755 (1995).Article 

    Google Scholar 
    44.Groot, A. T., Marr, M., Heckel, D. G. & Schofl, G. The roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ecol. Entomol. 35, 105–118. https://doi.org/10.1111/J.1365-2311.2009.01138.X (2010).Article 

    Google Scholar 
    45.Kost, S., Heckel, D. G., Yoshido, A., Marec, F. & Groot, A. T. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution 70, 1418–1427. https://doi.org/10.1111/evo.12940 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Pashley, D. P., Hammond, A. M. & Hardy, T. N. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera, Noctuidae). Ann. Entomol. Soc. Am. 85, 400–405 (1992).Article 

    Google Scholar 
    47.Nagoshi, R. N., Fleischer, S. & Meagher, R. L. Demonstration and quantification of restricted mating between fall armyworm host strains in field collections by SNP comparisons. J. Econ. Entomol. 110, 2568–2575. https://doi.org/10.1093/jee/tox229 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816. https://doi.org/10.1038/s41598-017-10461-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Schlum, K. A. et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genom. 22, 179. https://doi.org/10.1186/s12864-021-07492-7 (2021).CAS 
    Article 

    Google Scholar 
    50.Sperling, F. A. H. Sex-linked genes and species-differences in lepidoptera. Can. Entomol. 126, 807–818 (1994).Article 

    Google Scholar 
    51.Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038. https://doi.org/10.1603/Ec10040 (2010).Article 
    PubMed 

    Google Scholar 
    52.Jeger, M. et al. Pest risk assessment of Spodoptera frugiperda for the European Union. Efsa J. https://doi.org/10.2903/j.efsa.2018.5351 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Rwomushana, I. et al. Fall armyworm: Impacts and implications for Africa. In CABI Evidnece Notes (CABI, Oxfordshire, 2018) http://www.invasive-species.org/wp-content/uploads/sites/2/2019/02/FAW-Evidence-Note-October-2018.pdf54.Stanaway, M. A., Zalucki, M. P., Gillespie, P. S., Rodriguez, C. M. & Maynard, G. V. Pest risk assessment of insects in sea cargo containers. Aust. J. Entomol. 40, 180–192. https://doi.org/10.1046/j.1440-6055.2001.00215.x (2001).Article 

    Google Scholar  More

  • in

    Climate drives long-term change in Antarctic Silverfish along the western Antarctic Peninsula

    1.DeWitt, H. H. The character of the midwater fish fauna of the Ross Sea, Antarctica. Antarctic Ecol. 1, 305–314 (1970).
    Google Scholar 
    2.Guglielmo, L., Granata, A. & Greco, S. Distribution and abundance of postlarval and juvenile Pleuragramma antarcticum (Pisces, Nototheniidae) off Terra Nova Bay (Ross Sea, Antarctica). Polar Biol. 19, 37–51 (1997).
    Google Scholar 
    3.La Mesa, M. & Eastman, J. T. Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fisheries 13, 241–266 (2012).
    Google Scholar 
    4.La Mesa, M., Eastman, J. T. & Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol. 27, 321–338 (2004).
    Google Scholar 
    5.Pinkerton, M. H., Bradford-Grieve, J. M. & Hanchet, S. M. A balanced model of the food web of the Ross Sea, Antarctica. CCAMLR Sci. 17, 1–31 (2010).
    Google Scholar 
    6.Caccavo, J. A. et al. Along-shelf connectivity and circumpolar gene flow in Antarctic silverfish (Pleuragramma antarctica). Sci. Rep. 8, 1–16 (2018).
    Google Scholar 
    7.Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures? J. Exp. Biol. 218, 1834–1845 (2015).PubMed 

    Google Scholar 
    8.Bilyk, K. T. & DeVries, A. L. Heat tolerance and its plasticity in Antarctic fishes. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 158, 382–390 (2011).
    Google Scholar 
    9.Sandersfeld, T., Davison, W., Lamare, M. D., Knust, R. & Richter, C. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J. Exp. Biol. 218, 2373–2381 (2015).PubMed 

    Google Scholar 
    10.Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).CAS 
    PubMed 

    Google Scholar 
    11.Stammerjohn, S. E. & Scambos, T. A. Warming reaches the South Pole. Nat. Clim. Change 10, 710–711 (2020).
    Google Scholar 
    12.Henley, S. F. et al. Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities. Prog. Oceanogr. 173, 208–237 (2019).
    Google Scholar 
    13.Mintenbeck, K. & Torres, J. J. in The Antarctic silverfish: a keystone species in a changing ecosystem, 253–286 (Springer, 2017).14.Vacchi, M. et al. A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biol. 35, 1573–1585 (2012).
    Google Scholar 
    15.Vacchi, M., La Mesa, M., Dalu, M. & Macdonald, J. Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antartic Sci. 16, 299–305 (2004).
    Google Scholar 
    16.Kellermann, A. K. Midwater fish ecology. Found. Ecol. Res. West Antarctic Peninsula 70, 231–256 (1996).
    Google Scholar 
    17.La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).
    Google Scholar 
    18.Parker, M. L. et al. Assemblages of micronektonic fishes and invertebrates in a gradient of regional warming along the Western Antarctic Peninsula. J. Mar. Syst. 152, 18–41 (2015).
    Google Scholar 
    19.Ross, R. M. et al. Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993–2008. Mar. Ecol. Prog. Ser. 515, 11–32 (2014).
    Google Scholar 
    20.Koubbi, P. et al. Spatial distribution and inter-annual variations in the size frequency distribution and abundances of Pleuragramma antarcticum larvae in the Dumont d’Urville Sea from 2004 to 2010. Polar Sci. 5, 225–238 (2011).
    Google Scholar 
    21.Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).CAS 

    Google Scholar 
    22.La Mesa, M. et al. Influence of environmental conditions on spatial distribution and abundance of early life stages of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), in the Ross Sea. Antarctic Sci. 22, 243 (2010).
    Google Scholar 
    23.Raphael, M. N. et al. The Amundsen Sea low: variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111–121 (2016).
    Google Scholar 
    24.Fogt, R. L., Wovrosh, A. J., Langen, R. A. & Simmonds, I. The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas Low. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017337 (2012).25.Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. & Phillips, T. The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26, 6633–6648 (2013).
    Google Scholar 
    26.Hosking, J. S., Orr, A., Bracegirdle, T. J. & Turner, J. Future circulation changes off West Antarctica: sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett. 43, 367–376 (2016).
    Google Scholar 
    27.Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Change 143, 228–250 (2016).
    Google Scholar 
    28.Stammerjohn, S. E. et al. Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014. Elementa Sci. Anthropocene 3, 000055 (2015).29.Holland, M. M., Landrum, L., Raphael, M. N. & Kwok, R. The regional, seasonal, and lagged influence of the Amundsen Sea Low on Antarctic sea ice. Geophys. Res. Lett. 45, 11–227 (2018).
    Google Scholar 
    30.Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2008GL034939 (2008).31.Dotto, T. S. et al. Control of the oceanic heat content of the Getz‐Dotson Trough, Antarctica, by the Amundsen Sea Low. J. Geophys. Res. Oceans 125, e2020JC016113 (2020).32.Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).CAS 

    Google Scholar 
    33.Dinniman, M. S., Klinck, J. M. & Hofmann, E. E. Sensitivity of circumpolar deep water transport and Ice Shelf Basal Melt along the West Antarctic Peninsula to changes in the winds. J. Clim. 25, 4799–4816 (2012).
    Google Scholar 
    34.Dinniman, M. S., Klinck, J. M. & Smith, W. O. A model study of circumpolar deep water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res. II Top. Stud. Oceanogr. 58, 1508–1523 (2011).CAS 

    Google Scholar 
    35.Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. & Rignot, E. Origin of circumpolar deep water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat. Commun. 9, 3403 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    36.Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).
    Google Scholar 
    37.Greaves, B. L. et al. The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean. Biogeosciences 17, 3815–3835 (2020).CAS 

    Google Scholar 
    38.Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I Oceanogr. Res. Papers 101, 54–70 (2015).
    Google Scholar 
    39.La, H. S. et al. Zooplankton and micronekton respond to climate fluctuations in the Amundsen Sea polynya, Antarctica. Sci. Rep. 9, 10087 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    40.Granata, A., Zagami, G., Vacchi, M. & Guglielmo, L. Summer and spring trophic niche of larval and juvenile Pleuragramma antarcticum in the Western Ross Sea, Antarctica. Polar Biol. 32, 369–382 (2009).
    Google Scholar 
    41.Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L. & Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 42, 1187–1195 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    42.Ghigliotti, L. et al. Reproductive features of the Antarctic silverfish (Pleuragramma antarctica) from the western Ross Sea. Polar Biol. 40, 199–211 (2017).
    Google Scholar 
    43.Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie ­penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).
    Google Scholar 
    44.Coggins, J. H. J. & McDonald, A. J. The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology. J. Geophys. Res. Atmos. 120, 2167–2189 (2015).
    Google Scholar 
    45.Assmann, K. M. et al. Variability of circumpolar deep water transport onto the Amundsen Sea Continental shelf through a shelf break trough. J. Geophys. Res. Oceans 118, 6603–6620 (2013).
    Google Scholar 
    46.Moffat, C., Owens, B. & Beardsley, R. C. On the characteristics of circumpolar deep water intrusions to the west Antarctic Peninsula Continental Shelf. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC004955 (2009).47.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    PubMed 

    Google Scholar 
    48.Regan, H. C., Holland, P. R., Meredith, M. P. & Pike, J. Sources, variability and fate of freshwater in the Bellingshausen Sea, Antarctica. Deep Sea Res I Oceanogr. Res. Pap. 133, 59–71 (2018).
    Google Scholar 
    49.Holland, P. R. et al. Modeled trends in Antarctic sea ice thickness. J. Clim. 27, 3784–3801 (2014).
    Google Scholar 
    50.Hoppmann, M. et al. Platelet ice, the Southern Ocean’s hidden ice: a review. Ann. Glaciol. 61, 341–368 (2020).
    Google Scholar 
    51.Arrigo, K. R. Sea ice ecosystems. Annu. Rev. Mar. Sci 6, 439–467 (2014).
    Google Scholar 
    52.Veazey, A. L., Jeffries, M. O. & Morris, K. Small-scale variability of physical properties and structural characteristics of Antarctic fast ice. Ann. Glaciol. 20, 61–66 (1994).
    Google Scholar 
    53.Garrison, D. L., Ackley, S. F. & Buck, K. R. A physical mechanism for establishing algal populations in frazil ice. Nature 306, 363–365 (1983).CAS 

    Google Scholar 
    54.Quetin, L. B. & Ross, R. M. in Smithsonian at the Poles: Contributions to International Polar Year Science (eds Krupnik, I., Lang, M. A. & Miller, S. E.) 285–298 (IPY, 2009).55.Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024042 (2005).56.Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).CAS 
    PubMed 

    Google Scholar 
    57.Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).CAS 
    PubMed 

    Google Scholar 
    58.Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea low. Int. J. Climatol. 33, 1818–1829 (2013).
    Google Scholar 
    59.Ding, Q., Steig, E. J., Battisti, D. S. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci. 4, 398–403 (2011).CAS 

    Google Scholar 
    60.Moline, M. A., Claustre, H., Frazer, T. K., Schofield, O. & Vernet, M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob. Change Biol. 10, 1973–1980 (2004).
    Google Scholar 
    61.Gleiber, M. Long-Term Change in Copepod Community Structure in the Western Antarctic Peninsula: Linkage to Climate and Implications for Carbon Cycling. Dissertations, Theses, and Masters Projects, College of William and Mary, Virginia Institute of Marine Science (2014).62.Wöhrmann, A. P., Hagen, W. & Kunzmann, A. Adaptations of the Antarctic silverfish Pleuragramma antarcticum(Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar. Ecol. Prog. Ser. 151, 205–218 (1997).
    Google Scholar 
    63.Venables, H. J., Clarke, A. & Meredith, M. P. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol. Oceanogr. 58, 1035–1047 (2013).
    Google Scholar 
    64.Meredith, M. P. et al. Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: results from δ18O. Deep Sea Res. II Top. Stud. Oceanogr. 55, 309–322 (2008).
    Google Scholar 
    65.Slosarczyk, W. Attempts at a quantitative estimate by trawl sampling of distribution of postlarval and juvenile notothenioids (Pisces, Perciformes) in relation to environmental conditions in the Antarctic Peninsula region during SIBEX 1983–84. Mem Natl Inst Polar Res Spec Issue. 40, 299–315 (1986).
    Google Scholar 
    66.Varsamos, S., Nebel, C. & Charmantier, G. Ontogeny of osmoregulation in postembryonic fish: a review. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 141, 401–429 (2005).
    Google Scholar 
    67.Gille, S. T., McKee, D. C. & Martinson, D. G. Temporal changes in the Antarctic circumpolar current: implications for the Antarctic Continental Shelves. Oceanography 29, 96–105 (2016).
    Google Scholar 
    68.Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).CAS 

    Google Scholar 
    69.Allen, M. et al. Technical summary: global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/SR15_TS_High_Res.pdf (2019).70.Screen, J. A., Bracegirdle, T. J. & Simmonds, I. Polar climate change as manifest in atmospheric circulation. Curr. Clim. Change Rep. 4, 383–395 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Gao, M. et al. Historical fidelity and future change of Amundsen Sea Low under 1.5 °C–4 °C global warming in CMIP6. Atmos. Res. 255, 105533 (2021).
    Google Scholar 
    72.Emslie, S. D. & McDaniel, J. D. Adélie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar Biol. 25, 222–229 (2002).
    Google Scholar 
    73.Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: winter-summer heterogeneity in the distribution of Adélie penguin populations. In Foundations for Ecological Research West of the Antarctic Peninsula 257–272 (American Geophysical Union, 1996).74.Cimino, M. A., Lynch, H. J., Saba, V. S. & Oliver, M. J. Projected asymmetric response of Adélie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).
    Google Scholar 
    76.Ruck, K. E., Steinberg, D. K. & Canuel, E. A. Regional differences in quality of krill and fish as prey along the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 509, 39–55 (2014).CAS 

    Google Scholar 
    77.Ainley, D. G. et al. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972–2011. Fish Fisheries 14, 343–363 (2013).
    Google Scholar 
    78.Eastman, J. T. Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol. 4, 155–160 (1985).
    Google Scholar 
    79.Hanchet, S. et al. The Antarctic toothfish (Dissostichus mawsoni): biology, ecology, and life history in the Ross Sea region. Hydrobiologia 761, 397–414 (2015).
    Google Scholar 
    80.Pinkerton, M., Hanchet, S. & Bradford-Grieve, J. Finding the role of Antarctic toothfish in the Ross Sea ecosystem. Water Atmos. 15, 20–21 (2007).
    Google Scholar 
    81.Hanchet, S. M. & Rickard, G. J. A hypothetical life cycle for Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea region. CCAMLR Sci. 15, 35–53 (2008).
    Google Scholar 
    82.Fuiman, L., Davis, R. & Williams, T. Behavior of midwater fishes under the Antarctic ice: observations by a predator. Mar. Biol. 140, 815–822 (2002).
    Google Scholar 
    83.Casaux, R., Baroni, A. & Ramón, A. The diet of the Weddell Seal Leptonychotes weddellii at the Danco Coast, Antarctic Peninsula. Polar Biol. 29, 257–262 (2006).
    Google Scholar 
    84.Ponganis, P. J. & Stockard, T. K. Short note: the Antarctic toothfish: how common a prey for Weddell seals? Antarctic Sci. 19, 441–442 (2007).
    Google Scholar 
    85.Rumolo, P. et al. The diet of Weddell seals (Leptonychotes weddellii) in Terra Nova Bay using stable isotope analysis. Eur. Zool. J. 87, 94–104 (2020).
    Google Scholar 
    86.Hubold, G. & Ekau, W. Feeding patterns of post-larval and juvenile notothenioids in the southern Weddell Sea (Antarctica). Polar Biol. 10, 255–260 (1990).87.Moreno, C., Rueda, T. & Asencio, G. The trophic niche of Pleuragramma antarcticum in the Bransfield Strait, Antarctica: quantitative comparison with other areas of the Southern Ocean. Ser. Cient. INACH 35, 101–117 (1986).88.Gleiber, M. R., Steinberg, D. K. & Schofield, O. M. E. Copepod summer grazing and fecal pellet production along the Western Antarctic Peninsula. J. Plankton Res. 38, 732–750 (2016).CAS 

    Google Scholar 
    89.Garzio, L., Steinberg, D., Erickson, M. & Ducklow, H. Microzooplankton grazing along the Western Antarctic Peninsula. Aquat. Microb. Ecol. 70, 215–232 (2013).
    Google Scholar 
    90.Hobbie, J. E. Scientific accomplishments of the Long Term Ecological Research Program: an introduction. Bioscience 53, 17–20 (2003).
    Google Scholar 
    91.Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271–281 (2017).
    Google Scholar 
    92.Hilton, E. J., Watkins-Colwell, G. J. & Huber, S. K. The expanding role of natural history collections. Ichthyol. Herpetol. 109, 379–391 (2021).
    Google Scholar 
    93.Hoey, J. A. et al. Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder. Mol. Ecol. 29, 1421–1435 (2020).CAS 
    PubMed 

    Google Scholar 
    94.Houde, E. D. Emerging from Hjort’s shadow. J. Northw. Atl. Fish. Sci 41, 53–70 (2008).
    Google Scholar 
    95.Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. B Biol. Sci. 362, 67–94 (2007).
    Google Scholar 
    96.Smith, R. C. et al. The Palmer LTER: a long-term ecological research program at Palmer Station, Antarctica. Oceanography 8, 77–86 (1995).
    Google Scholar 
    97.Kellermann, A. K. Identification key and catalogue of larval Antarctic fishes. Ber. Polarforsch 1–138 (1990).98.Stammerjohn, S. E., Martinson, D. G., Smith, R. C. & Iannuzzi, R. A. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 55, 2041–2058 (2008).
    Google Scholar 
    99.Hurrell, J. W. Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).CAS 
    PubMed 

    Google Scholar 
    100.Hosking, J. S. & National Center for Atmospheric Research Staff. (eds) The Climate Data Guide: Amundsen Sea Low indices. https://climatedataguide.ucar.edu/climate-data/amundsen-sea-low-indices (2020).101.O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).
    Google Scholar 
    102.Gareth, J., Daniela, W., Trevor, H. & Robert, T. An Introduction to Statistical Learning: With Applications in R (Spinger, 2013).103.Shono, H. Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fisheries Res. 93, 154–162 (2008).
    Google Scholar 
    104.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).105.Denes, F. V., Silveira, L. F. & Beissinger, S. R. Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods Ecol. Evol. 6, 543–556 (2015).
    Google Scholar 
    106.Zuur, A. F. & Ieno, E. N. Beginner´s Guide to Zero-inflated Models with R (Highland Statistics Ltd., 2016).107.Barnett, A. G., Koper, N., Dobson, A. J., Schmiegelow, F. & Manseau, M. Using information criteria to select the correct variance–covariance structure for longitudinal data in ecology. Methods Ecol. Evol. 1, 15–24 (2010).
    Google Scholar 
    108.Clark, I. Statistics or geostatistics? Sampling error or nugget effect? J. Southern African Inst. Mining Metall. 110, 307–312 (2010).
    Google Scholar 
    109.Gschlößl, S. & Czado, C. Modelling count data with overdispersion and spatial effects. Stat. Papers 49, 531–552 (2008).
    Google Scholar 
    110.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    111.Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).PubMed 

    Google Scholar 
    112.Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. JOSS 3, 772 (2018).
    Google Scholar 
    113.Francq, B. G., Lin, D. & Hoyer, W. Confidence, prediction, and tolerance in linear mixed models. Stat. Med. 38, 5603–5622 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    114.Spineli, L. M. & Pandis, N. Prediction interval in random-effects meta-analysis. Am. J. Orthod. Dentofacial Orthop. 157, 586–588 (2020).PubMed 

    Google Scholar 
    115.Comiso, J. C. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Clim. 13, 1674–1696 (2000).
    Google Scholar 
    116.Comiso, J. C. & Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Oceans https://doi.org/10.1029/2007JC004257 (2008).117.Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1979 to present. https://doi.org/10.24381/CDS.F17050D7 (2019).118.Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).
    Google Scholar  More

  • in

    Global and regional health and food security under strict conservation scenarios

    1.Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).CAS 
    Article 

    Google Scholar 
    2.Buchanan, G. M., Butchart, S. H. M., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    3.Butchart, S. H. M. et al. in Global Assessment Report of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T. M.) Ch. 3 (IPBES Secretariat, 2019); https://doi.org/10.5281/zenodo.38320534.Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).CAS 
    Article 

    Google Scholar 
    5.Locke, H. Nature needs half: a necessary and hopeful new agenda for protected areas. Nat. N. S. W. 58, 7–17 (2014).
    Google Scholar 
    6.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 

    Google Scholar 
    7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    Article 

    Google Scholar 
    8.Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).Article 

    Google Scholar 
    9.Kok, M. T. J. et al. Assessing ambitious nature conservation strategies within a 2 degree warmer and food-secure world. Preprint at bioRxiv https://doi.org/10.1101/2020.08.04.236489 (2020).10.Rosa, I. M. D. et al. Multiscale scenarios for nature futures. Nat. Ecol. Evol. 1, 1416–1419 (2017).Article 

    Google Scholar 
    11.Obermeister, N. Local knowledge, global ambitions: IPBES and the advent of multi-scale models and scenarios. Sustain. Sci. 14, 843–856 (2019).Article 

    Google Scholar 
    12.Pereira, L. M. et al. Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People Nat. 2, 1172–1195 (2020).Article 

    Google Scholar 
    13.Rabin, S. S. et al. Impacts of future agricultural change on ecosystem service indicators. Earth Syst. Dynam. 11, 357–376 (2019).Article 

    Google Scholar 
    14.Springmann, M. et al. Global and regional health effects of future food production under climate change: a modelling study. Lancet 387, 1937–1946 (2016).Article 

    Google Scholar 
    15.Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).Article 

    Google Scholar 
    16.Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    17.Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwz136 (2019).18.Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).19.Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    Article 

    Google Scholar 
    20.O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2015).21.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).22.Tauli-Corpuz, V., Alcorn, J., Molnar, A., Healy, C. & Barrow, E. Cornered by PAs: adopting rights-based approaches to enable cost-effective conservation and climate action. World Dev. 130, 104923 (2020).Article 

    Google Scholar 
    23.Kashwan, P. V., Duffy, R., Massé, F., Asiyanbi, A. P. & Marijnen, E. From racialized neocolonial global conservation to an inclusive and regenerative conservation. Environ. Sci. Policy Sustain. Dev. 63, 4–19 (2021).Article 

    Google Scholar 
    24.The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security (FAO, 2017).25.Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).Article 

    Google Scholar 
    26.Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2021).27.Brockington, D. & Wilkie, D. Protected areas and poverty. Phil. Trans. R. Soc. B 370, 20140271 (2015).28.Protected Planet Report 2020 (UNEP–WCMC and IUCN, 2021).29.Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).CAS 
    Article 

    Google Scholar 
    30.Dutta, A., Allan, J., Shimray, G., General, S. & Pact, A. I. P. RE: “A ‘Global Safety Net’ to reverse biodiversity loss and stabilize Earth’s climate”. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    31.Simmons, B. A., Nolte, C. & McGowan, J. Tough questions for the “30 × 30” conservation agenda. Front. Ecol. Environ. 19, 322–323 (2021).Article 

    Google Scholar 
    32.Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01528-7 (2021).33.The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019).34.The World Database of Key Biodiversity Areas (KBA Partnership, 2019); www.keybiodiversityareas.org35.Mogg, S., Fastre, C. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).36.Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019).37.Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3 https://CRAN.R-project.org/package=prioritizr (2020).38.Hurtt, G., Chini, L., Frolking, S. & Sahajpal, R. Land-Use Harmonization (LUH2) (Global Ecology Laboratory, Univ. Maryland, 2017).39.Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed April 2019); www.protectedplanet.net40.Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 200–214 (2017).41.Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 84003 (2016).42.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).Article 

    Google Scholar 
    43.Engström, K. et al. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth Syst. Dynam. 7, 893–915 (2016).44.Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob. Environ. Change 35, 138–147 (2015).Article 

    Google Scholar 
    45.Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change 123, 495–509 (2014).Article 

    Google Scholar 
    46.GBD Results Tool (IHME, 2020); http://ghdx.healthdata.org/gbd-results-tool47.KC, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017). More

  • in

    Low tropical diversity during the adaptive radiation of early land plants

    1.Gaston, K. J. Global patterns of biodiversity. Nature 405, 220–227 (2000).CAS 
    Article 

    Google Scholar 
    2.Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).3.Blomenkemper, P. et al. A hidden cradle of plant evolution in Permian tropical lowlands. Science 362, 1414–1416 (2018).CAS 
    Article 

    Google Scholar 
    4.Kenrick, P. & Crane, P. R. The Origin and Early Diversification of Land Plants: A Cladistic Study (Smithsonian Institution Scholarly Press, 1997).5.Puttick, M. N. et al. The interrelationships of land plants and the nature of the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).CAS 
    Article 

    Google Scholar 
    6.Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, 2274–2283 (2018).Article 

    Google Scholar 
    7.Wellman, C. H., Steemans, P. & Vecoli, M. in Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. & Servais, T.) Ch. 29 (Geological Society of London, 2014).8.Edwards, D. et al. Piecing together the eophytes—a new group of ancient plants containing cryptospores. New Phytol. 233, 1440–1455 (2021).Article 

    Google Scholar 
    9.Gray, J. The microfossil record of early land plants; advances in understanding of early terrestrialization, 1970–1984. Philos. Trans. R. Soc. Lond. B 309, 167–195 (1985).Article 

    Google Scholar 
    10.Wellman, C. H. Cryptospores from the type area for the Caradoc Series (Ordovician) in southern Britain. Palaeontology 55, 103–136 (1996).
    Google Scholar 
    11.Torsvik, T. H. & Cocks, L. R. M. Earth History and Palaeogeography (Cambridge Univ. Press, 2017).12.Harland, W. B. The Geology of Svalbard (Geological Society of London, 1997).13.Davies, N. S., Berry, C. M., Marshall, J. E. A., Wellman, C. H. & Lindemann, F.-J. The Devonian landscape factory: plant–sediment interactions in the Old Red Sandstone of Svalbard and the rise of vegetation as a biogeomorphic agent. J. Geol. Soc. Lond. https://doi.org/10.1144/jgs2020-225 (2021).14.Blieck, A., Goujet, D. & Janvier, P. The vertebrate stratigraphy of the Lower Devonian (Red Bay Group and Wood Bay Formation) of Spitsbergen. Mod. Geol. 11, 197–217 (1987).
    Google Scholar 
    15.Blom, H. & Goujet, D. Thelodont scales from the Lower Devonian Red Bay Group, Spitsbergen. Palaeontology 45, 795–820 (2002).Article 

    Google Scholar 
    16.Pernègre, V. N. & Blieck, A. A revised heterostrachan-cased ichthyostratigraphy of the Wood Bay Formation (Lower Devonian, Spitsbergen), and correlation with Russian Arctic archipelagos. Geodiversitas 38, 5–20 (2016).Article 

    Google Scholar 
    17.Wellman, C. H. & Richardson, J. B. Sporomorph assemblages from the ‘Lower Old Red Sandstone’ of Lorne Scotland. Spec. Pap. Palaeontol. 55, 41–101.18.Richardson J. B. Taxonomy and classification of some new Early Devonian cryptospores from England. Spec. Pap. Palaeontol. 55, 7–40 (1996).19.Steemans, P. Etude palynostratgraphique du Devonian Inferieur dans l’Ouest de l’Europe. Mém. Soc. Géol. Minér. Bretagne 27, 1–453 (1989).
    Google Scholar 
    20.Rodriguez, R. M. Palinologia de las Formaciones del Silurico Superior-Devonico Inferior de la Cordillera Cantabrica, Noroeste de España (Institución Fray Bernardino de Sahagún, de la Excelentísima Diputación provincial de León y del Servicio de Publicaciones de la Universidad de León, 1983).21.Richardson, J. B., Rodriguez, R. M. & Sutherland, S. J. E. Palynological zonation of Mid-Palaeozoic sequences from the Cantabrian Mountains, NW Spain: implications for inter-regional and interfacies correlation of the Ludfor/Pridoli and Silurian/Devonian boundaries, and plant dispersal patterns. Bull. Nat. Hist. Mus. Lond. 57, 115–162 (2001).
    Google Scholar 
    22.Rubinstein, C. & Steemans, P. Miospore assemblages from the Silurian–Devonian boundary, in borehole A1–61, Ghadames Basin, Libya. Rev. Palaeobot. Palynol. 118, 397–412 (2002).Article 

    Google Scholar 
    23.Spina, A. & Vecoli, M. Palynostratigraphy and vegetational change in the Siluro-Devonian of the Ghadamis basin, North Africa. Palaeogeog. Palaeoclimatol. Palaeoecol. 282, 1–18 (2009).Article 

    Google Scholar 
    24.Hao, S. G. & Gensel, P. G. in Plants Invade the Land (eds Gensel, P. G. & Edwards, D.) 103–119 (Columbia Univ. Press, 2001).25.Wellman, C. H. et al. Spore assemblages from the Lower Devonian Xujiachong Formation from Qujing, Yunnan, China. Palaeontology 55, 583–611 (2012).Article 

    Google Scholar 
    26.Hao, S. & Xue, J. The Early Devonian Posongchong Flora of Yunnan (Science Press, 2013).27.Edwards, D., & Li, C.-S. Further insights into the Lower Devonian terrestrial vegetation of Sichuan Province, China. Rev. Palaeobot. Palynol. 253, 37–48 (2018).Article 

    Google Scholar 
    28.Gao, L. Early Devonian spore and acritarchs from the Guijiatum Formation of Qujing, China. Bull. Inst. Geol. Chin. Acad. Sci. 9, 125–136 (1984).
    Google Scholar 
    29.Tian, J. et al. Late Silurian to early Devonian palynomorphs from Qujing, Yunnan, southwest China. Acta Geol. Sin. 85, 559–568 (2011).Article 

    Google Scholar 
    30.Høeg, O. A. The Downtonian and Dittonian flora of Spitsbergen. Skr. Svalbard Ishavet 83, 1–229 (1942).
    Google Scholar 
    31.Morris, J. L., Edwards, D. & Richardson, J. B. in Transformative Paleobotany (eds Krings, M. et al.) 49–67 (Academic Press, 2018).32.McSweeney, F. R., Shimeta, J. & Buckeridge, J. St. J. S. Two new genera of early Tracheophyta (Zosterophyllaceae) from the upper Silurian–Lower Devonian of Victoria, Australia. Alcheringa https://doi.org/10.1080/03115518.2020.1744725 (2020).33.Xue, J. H. et al. Silurian–Devonian terrestrial revolution in South China: taxonomy, diversity, and character evolution of vascular plants in a paleogeographically isolated low-latitude region. Earth Sci. Rev. 180, 92–125 (2018).Article 

    Google Scholar 
    34.Hao, S. G. et al. Zosterophyllum Penhallow around the Silurian–Devonian boundary of northeastern Yunnan, China. Int. J. Plant Sci. 168, 477–489 (2007).Article 

    Google Scholar 
    35.Hao, S. G. et al. Earliest rooting system and root: shoot ratio from a new Zosterophyllum plant. New Phytol. 185, 217–225 (2009).Article 

    Google Scholar 
    36.Xue, J.-Z. Two zosterophyll plants from the Lower Devonian (Lochkovian) Xitun Formation of northeastern Yunnan, China. Acta Geol. Sin. 83, 504–512 (2009).Article 

    Google Scholar 
    37.Xue, J.-Z. Lochkovian plants from the Xitun Formation of Yunnan, China and their palaeophytogeographical significance. Geol. Mag. 149, 333–344 (2012).Article 

    Google Scholar 
    38.Sun, Y. et al. Lethally high temperatures during the early Triassic greenhouse. Science 6105, 366–370 (2012).Article 

    Google Scholar 
    39.Meng, X. Y. & Gai, Z. K. Falxcornus, a new genus of Tridensaspidae (Galeaspida, stem-Gnathostomata) from the Lower Devonian in Qujing, Yunnan, China. Hist. Biol. https://doi.org/10.1080/08912963.2021.1952198 (2021).40.Traverse, A. Paleopalynology 2nd edn (Springer, 2007). More

  • in

    Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates

    1.Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).
    Google Scholar 
    2.Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).CAS 

    Google Scholar 
    3.Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).
    Google Scholar 
    4.Turley, C. & Gattuso, J.-P. Future biological and ecosystem impacts of ocean acidification and their socioeconomic-policy implications. Curr. Opin. Environ. Sustain. 4, 278–286 (2012).
    Google Scholar 
    5.San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 4719 (2019).
    Google Scholar 
    6.Falkenberg, L. et al. Ocean acidification and human health. Int. J. Environ. Res. Public Health 17, 4563 (2020).CAS 

    Google Scholar 
    7.Loewe, M. & Rippin, N. The Sustainable Development Goals of the Post-2015 Agenda. Comments on the OWG and SDSN Proposals (German Development Institute 2015).8.Doney, S. C. et al. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).
    Google Scholar 
    9.Ekstrom, J. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change 5, 207–214 (2015).
    Google Scholar 
    10.Ponce Oliva, R. D. et al. Ocean acidification, consumers’ preferences, and market adaptation strategies in the mussel aquaculture industry. Ecol. Econ. 158, 42–50 (2019).
    Google Scholar 
    11.Quatrinni, A. M. et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat. Ecol. Evol. 4, 1531–1538 (2020).
    Google Scholar 
    12.Thomsen, J. et al. Naturally acidified habitat selects for ocean acidification-tolerant mussels. Sci. Adv. 3, e1602411 (2017).
    Google Scholar 
    13.Rastrick, S. S. P. et al. Using natural analogues to investigate the effects of climate change and ocean acidification on Northern ecosystems. ICES J. Mar. Sci. 75, 2299–2311 (2018).
    Google Scholar 
    14.Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents reveal ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).CAS 

    Google Scholar 
    15.Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical–temperate transition zone. Sci. Rep. 8, 11354 (2018).
    Google Scholar 
    16.Riquelme-Bugueño, R. et al. Diel vertical migration into anoxic and high-pCO2 waters: acoustic and net-based krill observations in the Humboldt Current. Sci. Rep. 10, 17181 (2020).
    Google Scholar 
    17.Pérez et al. Riverine discharges impact physiological traits and carbon sources for shell carbonate in the marine intertidal mussel Perumytilus purpuratus. Limnol. Oceanogr. 61, 969–983 (2016).
    Google Scholar 
    18.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).
    Google Scholar 
    19.Saavedra et al. Local habitat influences on feeding and respiration of the intertidal mussels Perumytilus purpuratus exposed to increased pCO2 levels. Estuaries Coast. 41, 1118–1129 (2018).CAS 

    Google Scholar 
    20.Riebesell, U. & Gattuso, J.-P. Lessons learned from ocean acidification research. Nat. Clim. Change 5, 12–14 (2015).CAS 

    Google Scholar 
    21.Tilbrook, B. et al. An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. Front. Mar. Sci. 6, 337 (2019).
    Google Scholar 
    22.Barry, J. P., Hall-Spencer, J. M. and Tyrrell, T. in Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds Riebesell, U. et al.) Ch. 3 (Publications Office of the European Union, 2010).23.Vargas, C. A. et al. Influence of glacier melting and river discharges on the nutrient distribution and DIC recycling in the southern Chilean Patagonia. J. Geophys. Res. Biogeosci. 123, 256–270 (2018).
    Google Scholar 
    24.Feely, R. A. et al. Evidence for upwelling of corrosive ‘acidified’ water onto the Continental Shelf. Science 320, 1490–1492 (2008).CAS 

    Google Scholar 
    25.Vargas, C. A. et al. Riverine and corrosive upwelling waters influences on the carbonate system in the coastal upwelling area off Central Chile: implications for coastal acidification events. J. Geophys. Res. Biogeosci. 121, 1468–1483 (2016).
    Google Scholar 
    26.Cao, Z. et al. Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling. J. Geophys. Res. Oceans 116, G02010 (2010).
    Google Scholar 
    27.Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Est. Coast. Shelf Sci. 88, 442–449 (2010).CAS 

    Google Scholar 
    28.Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).CAS 

    Google Scholar 
    29.Kwiatkowski, L. et al. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification. Sci. Rep. 6, 22984 (2016).CAS 

    Google Scholar 
    30.Wolfe, K., Nguyen, H. D., Davey, M. & Byrne, M. Characterizing biogeochemical fluctuations in a world of extremes: a synthesis for temperate intertidal habitats in the face of global change. Glob. Change Biol. 26, 3858–3879 (2020).
    Google Scholar 
    31.Shaw, E. C., Phinn, S. R., Tilbrook, B. & Steven, A. Natural in situ relationships suggest coral reef calcium carbonate production will decline with ocean acidification. Limnol. Oceanogr. 60, 777–788 (2015).
    Google Scholar 
    32.Takeshita, Y. et al. Coral reef carbonate chemistry variability at different functional scales. Front. Mar. Sci. 5, 175 (2018).
    Google Scholar 
    33.Brodeur, J. R. et al. Chesapeake Bay inorganic carbon: spatial distribution and seasonal variability. Front. Mar. Sci. 6, 99 (2019).
    Google Scholar 
    34.Hoshijima, U. & Hofmann, G. E. Variability of seawater chemistry in a kelp forest environment is linked to in situ transgenerational effects in the purple sea urchin, Strongylocentrotus purpuratus. Front. Mar. Sci. 6, 62 (2019).
    Google Scholar 
    35.Koweek, D. A. et al. A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability. Biogeosciences 14, 31–44 (2017).CAS 

    Google Scholar 
    36.Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2016).
    Google Scholar 
    37.Kapsenberg, L. & Hofmann, G. E. Ocean pH time-series and drivers of variability along the northern Channel Islands, California, USA. Limnol. Oceanogr. 61, 953–968 (2016).
    Google Scholar 
    38.Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).CAS 

    Google Scholar 
    39.Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).
    Google Scholar 
    40.Cornwall, C. E. et al. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. R. Soc. B 280, 20132201 (2013).
    Google Scholar 
    41.Rivest, E. B., Comeau, S. & Cornwall, C. E. The role of natural variability in shaping the response of coral reef organisms to climate change. Curr. Clim. 3, 271–281 (2017).
    Google Scholar 
    42.Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).
    Google Scholar 
    43.Lewis, C. N. et al. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proc. Natl Acad. Sci. USA 110, E4960–E4967 (2013).CAS 

    Google Scholar 
    44.Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
    Google Scholar 
    45.Aguilera, V. M., Vargas, C. A. & Dewitte, B. Intraseasonal hydrographic variations and nearshore carbonates system off northern Chile during the 2015 El Niño event. J. Geophys. Res. Biogeosci. 125, e2020JG005704 (2020).CAS 

    Google Scholar 
    46.Fassbender, A. J. et al. Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest. Earth Syst. Sci. Data 10, 1367–1401 (2018).
    Google Scholar 
    47.Reum, J. C. P. et al. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments. PLoS ONE 9, e89619 (2014).
    Google Scholar 
    48.Wallace, R. B. et al. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13 (2014).CAS 

    Google Scholar 
    49.Rutgersson, A. et al. The annual cycle of carbon dioxide and parameters influencing the air–sea carbon exchange in the Baltic Proper. J. Mar. Syst. 74, 381–394 (2008).
    Google Scholar 
    50.Clargo, N. M., Salt, L. A., Thomas, H. & de Baar, H. J. W. Rapid increase of observed DIC and pCO2 in the surface waters of the North Sea in the 2001–2011 decade ascribed to climate change superimposed by biological processes. Mar. Chem. 177, 566–581 (2015).CAS 

    Google Scholar 
    51.Ericson, Y. et al. Temporal variability in surface water pCO2 in Adventfjorden (West Spitsbergen) with emphasis on physical and biogeochemical drivers. J. Geophys. Res. Oceans 123, 4888–4905 (2018).CAS 

    Google Scholar 
    52.Geilfus, N.-X. et al. Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011. Cont. Shelf Res. 156, 1–10 (2018).
    Google Scholar 
    53.Islam, F. et al. Sea surface pCO2 and O2 dynamics in the partially ice-covered Arctic Ocean. J. Geophys. Res. Oceans 122, 1425–1438 (2016).
    Google Scholar 
    54.Copin-Montégut, C., Bégovic, M. & Merlivat, L. Variability of the partial pressure of CO2 on diel to annual time scales in the Northwestern Mediterranean Sea. Mar. Chem. 85, 169–189 (2004).
    Google Scholar 
    55.Pardo, P. C. et al. Surface ocean carbon dioxide variability in South Pacific boundary currents and Subantarctic waters. Sci. Rep. 9, 7592 (2019).
    Google Scholar 
    56.Gagliano, M., McCormick, M. I., Moore, J. A. & Depczynski, M. The basics of acidification: baseline variability of pH on Australian coral reefs. Mar. Biol. 157, 1849–1856 (2010).CAS 

    Google Scholar 
    57.Takeshita, Y. et al. Including high-frequency variability in coastal acidification projections. Biogeosciences 12, 5853–5870 (2015).
    Google Scholar 
    58.Carter, H. A., Ceballos-Osuna, L., Miller, N. A. & Stillman, J. H. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1412–1422 (2013).CAS 

    Google Scholar 
    59.Ceballos-Osuna, L., Carter, H. A., Miller, N. A. & Stillman, J. H. Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1405–1411 (2013).CAS 

    Google Scholar 
    60.Miller, S. H. et al. Effect of elevated pCO2 on metabolic responses of porcelain crab (Petrolisthes cinctipes) larvae exposed to subsequent salinity stress. PLoS ONE 9, e109167 (2014).
    Google Scholar 
    61.Bayne, B. L. Metabolic expenditure. Dev. Aquacult. Fish. Sci. 41, 331–415 (2017).
    Google Scholar 
    62.Waldbusser, G. G. et al. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61, 1969–1983 (2016).
    Google Scholar 
    63.Dorey, N., Lancon, P., Thorndyke, M. & Dupont, S. Assessing physiological tipping point for sea urchin larvae exposed to a broad range of pH. Glob. Change Biol. 19, 3355–3367 (2013).
    Google Scholar 
    64.Kelly, M. W., Padilla-Gamiño, J. L. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. Change Biol. 19, 2536–2546 (2015).
    Google Scholar 
    65.Gaitán-Espitia, J. D. et al. Spatio–temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification. Biol. Lett. 13, 20160865 (2017).
    Google Scholar 
    66.Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull. 73, 470–484 (2013).CAS 

    Google Scholar 
    67.Foo, S. A., Dworjanyn, S. A., Poore, A. G. B. & Byrne, M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS ONE 7, e42497 (2012).CAS 

    Google Scholar 
    68.Chan, K. Y. K., Grünbaum, D., Arnberg, M. & Dupont, S. Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J. Mar. Sci. 73, 951–996 (2016).
    Google Scholar 
    69.Stumpp, M. et al. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc. Natl Acad. Sci. USA 109, 18192–18197 (2012).CAS 

    Google Scholar 
    70.Stumpp, M. et al. Digestion in sea urchin larvae impaired under ocean acidification. Nat. Clim. Change 3, 1044–1049 (2013).CAS 

    Google Scholar 
    71.Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21, 2261–2271 (2015).
    Google Scholar 
    72.Gibbin, E. M. et al. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).
    Google Scholar 
    73.Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).
    Google Scholar 
    74.Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).
    Google Scholar 
    75.Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. 49, 1–42 (2011).
    Google Scholar 
    76.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).
    Google Scholar 
    77.Kroeker et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
    Google Scholar 
    78.Takahashi, T., Sutherland, S. C. & Kozyr, A. LDEO Database (Version 2019): Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1957–2019 (NCEI Accession 0160492) Version 9.9 (National Oceanic and Atmospheric Administration National Centers for Environmental Information); https://doi.org/10.3334/CDIAC/OTG.NDP088(V2015)79.Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (CRC Press, 1997).80.Martinez, W. L. & Martinez, A. R. Computational Statistics Handbook with MATLAB (CRC Press, 2002). More

  • in

    Deciphering the multiple effects of climate warming on the temporal shift of leaf unfolding

    1.Arora, V. K. & Boer, G. J. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol. 11, 39–59 (2005).
    Google Scholar 
    2.Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).
    Google Scholar 
    3.Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).
    Google Scholar 
    4.Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3227–3246 (2010).
    Google Scholar 
    5.Diez, J. M. et al. Forecasting phenology: from species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).
    Google Scholar 
    6.Hegland, S. J., Nielsen, A., Lazaro, A., Bjerknes, A. L. & Totland, O. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184–195 (2009).
    Google Scholar 
    7.Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 

    Google Scholar 
    8.Zhang, H., Yuan, W., Liu, S. & Dong, W. Divergent responses of leaf phenology to changing temperature among plant species and geographical regions. Ecosphere 6, art250 (2015).
    Google Scholar 
    9.Zhang, G., Zhang, Y., Dong, J. & Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl Acad. Sci. USA 110, 4309–4314 (2013).CAS 

    Google Scholar 
    10.Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).
    Google Scholar 
    11.Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).
    Google Scholar 
    12.Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).
    Google Scholar 
    13.Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. https://doi.org/10.1029/2007gl031447 (2007).14.Fitter, A. H. & Fitter, R. S. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).CAS 

    Google Scholar 
    15.Primack, R. B. et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol. Conserv. 142, 2569–2577 (2009).
    Google Scholar 
    16.Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A. & Field, C. B. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl Acad. Sci. USA 103, 13740–13744 (2006).CAS 

    Google Scholar 
    17.Wang, H., Dai, J., Zheng, J. & Ge, Q. Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850 to 2009. Int. J. Climatol. 35, 913–922 (2015).
    Google Scholar 
    18.Chuine, I. M., Morin, X. & Bugmann, H. Warming, photoperiods, and tree phenology. Science 329, 277–278 (2010).
    Google Scholar 
    19.Chuine, I. A unified model for budburst of trees. J. Theor. Biol. 207, 337–347 (2000).CAS 

    Google Scholar 
    20.Murray, M., Cannell, M. G. R. & Smith, R. I. Date of budburst of fifteen tree species in Britain following climatic warming. J. Appl. Ecol. 26, 693–700 (1989).
    Google Scholar 
    21.Man, R., Lu, P. & Dang, Q. L. Insufficient chilling effects vary among boreal tree species and chilling duration. Front. Plant Sci. 8, 1354 (2017).
    Google Scholar 
    22.Cannell, M. G. R. & Smith, R. I. L. Thermal time, chill days and prediction of budburst in Picea sitchensis. J. Appl. Ecol. 20, 951–963 (1983).
    Google Scholar 
    23.Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).
    Google Scholar 
    24.Zhang, H., Liu, S., Regnier, P. & Yuan, W. New insights on plant phenological response to temperature revealed from long-term widespread observations in China. Glob. Change Biol. 24, 2066–2078 (2018).
    Google Scholar 
    25.Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).CAS 

    Google Scholar 
    26.Asse, D. et al. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agric. For. Meteorol. 252, 220–230 (2018).
    Google Scholar 
    27.Ettinger, A. K. et al. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Change 10, 1137–1142 (2020).
    Google Scholar 
    28.Chuine, I. & Régnière, J. Process-based models of phenology for plants and animals. Annu. Rev. Ecol. Evol. Syst. 48, 159–182 (2017).
    Google Scholar 
    29.Caffarra, A., Donnelly, A., Chuine, I. & Jones, M. B. Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model. Clim. Res. 46, 147–157 (2011).
    Google Scholar 
    30.Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).CAS 

    Google Scholar 
    31.Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).32.Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).
    Google Scholar 
    33.Wolkovich, E. M. et al. A simple explanation for declining temperature sensitivity with warming. Glob. Change Biol. 27, 4947–4949 (2021).CAS 

    Google Scholar 
    34.Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).
    Google Scholar 
    35.Kramer, K. Selecting a model to predict the onset of growth of Fagus sylvatica. J. Appl. Ecol. 31, 172–181 (1994).
    Google Scholar 
    36.Chuine, I., Cour, P. & Rousseau, D.-D. Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ. 22, 1–13 (1999).37.Savas, R. Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy https://eurekamag.com/research/000/414/000414639.php (1974).38.Hänninen, H. Modelling bud dormancy release in trees from cool and temperate regions. Acta. Fenn. 14, 499–454 (1990).
    Google Scholar 
    39.Harrington, C. A., Gould, P. J. & St. Clair, J. B. Modeling the effects of winter environment on dormancy release of Douglas-fir. Ecol. Manag. 259, 798–808 (2010).
    Google Scholar 
    40.Zhang, H., Yuan, W., Liu, S., Dong, W. & Fu, Y. Sensitivity of flowering phenology to changing temperature in China. J. Geophys. Res. Biogeosci. 120, 1658–1665 (2015).
    Google Scholar 
    41.Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–331 (2009).CAS 

    Google Scholar 
    42.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    43.Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).
    Google Scholar 
    44.Zohner, C. M. & Renner, S. S. Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change. Ecol. Lett. 17, 1016–1025 (2014).
    Google Scholar 
    45.Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8 (2012).
    Google Scholar 
    46.Lenz, A., Hoch, G., Körner, C. & Vitasse, Y. Convergence of leaf-out towards minimum risk of freezing damage in temperate trees. Funct. Ecol. 30, 1480–1490 (2016).
    Google Scholar 
    47.Wang, Y. et al. Forest controls spring phenology of juvenile Smith fir along elevational gradients on the southeastern Tibetan Plateau. Int. J. Biometeorol. 63, 963–972 (2019).
    Google Scholar 
    48.Marquis, B., Bergeron, Y., Simard, M. & Tremblay, F. Probability of sping frosts, not growing degree-days, drives onset of spruce bud burst in plantations at the boreal-temperate forest ecotone. Front. Plant Sci. 11, 1031 (2020).
    Google Scholar 
    49.Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tiberan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).
    Google Scholar 
    50.Liu et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Change Biol. 22, 644–655 (2016).CAS 

    Google Scholar 
    51.Minder, J. R., Mote, P. W. & Lundquist, J. D. Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains. J. Geophys. Res. 115, D14122 (2010).
    Google Scholar 
    52.Navarro-Serrano et al. Elevation effects on air temperature in a topographically complex mountain valley in the Spanish Pyrenees. Atmosphere 11, 656 (2020).
    Google Scholar 
    53.Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).CAS 

    Google Scholar 
    54.Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).
    Google Scholar 
    55.Beer, C. et al. Harmonized European long-term climate data for assessing the effect of changing temporal variability on land–atmosphere CO2 fluxes. J. Clim. 27, 4815–4834 (2014).
    Google Scholar 
    56.Olsson, C. & Jönsson, A. M. Process-based models not always better than empirical models for simulating budburst of Norway spruce and birch in Europe. Glob. Change Biol. 20, 3492–3507 (2014).
    Google Scholar 
    57.Duan, Q., Sorooshian, S. & Gupta, V. K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 158, 265–284 (1994).
    Google Scholar 
    58.Bluemel, K. & Chmielewski, F. Shortcomings of classical phenological forcing models and a way to overcome them. Agric. For. Meteorol. 164, 10–19 (2012).
    Google Scholar  More