More stories

  • in

    Heterogeneity within and among co-occurring foundation species increases biodiversity

    1.Fernández, M. H. & Vrba, E. S. Rapoport effect and biomic specialization in African mammals: revisiting the climatic variability hypothesis. J. Biogeogr. 32, 903–918 (2005).
    Google Scholar 
    2.Tokeshi, M. & Arakaki, S. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685, 27–47 (2012).
    Google Scholar 
    3.Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. 96, 1463–1468 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Ann. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).
    Google Scholar 
    7.Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).PubMed 

    Google Scholar 
    8.Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol. 2, 634–639 (2018).PubMed 

    Google Scholar 
    9.Mac Arthur, R. H. & Wilson, E. O. The theory of island biogeography. Vol. 1 (Princeton university press, 2001).10.Guégan, J.-F., Lek, S. & Oberdorff, T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391, 382–384 (1998).ADS 

    Google Scholar 
    11.Heidrich, L. et al. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 4, 1204–1212 (2020).PubMed 

    Google Scholar 
    12.Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).ADS 
    CAS 

    Google Scholar 
    13.Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).
    Google Scholar 
    14.Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).PubMed 

    Google Scholar 
    15.Ben‐Hur, E. & Kadmon, R. Heterogeneity–diversity relationships in sessile organisms: a unified framework. Ecol. Lett. 23, 193–207 (2020).PubMed 

    Google Scholar 
    16.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
    Google Scholar 
    17.Tuanmu, M. N. & Jetz, W. A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 24, 1329–1339 (2015).
    Google Scholar 
    18.MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).
    Google Scholar 
    19.Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M. & Kadmon, R. Area–heterogeneity tradeoff and the diversity of ecological communities. Proc. Natl Acad. Sci. 109, 17495–17500 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).
    Google Scholar 
    21.Gómez, J., Valladares, F. & Puerta-Piñero, C. Differences between structural and functional environmental heterogeneity caused by seed dispersal. Funct. Ecol. 18, 787–792 (2004).
    Google Scholar 
    22.Azevedo, J. C., Jack, S. B., Coulson, R. N. & Wunneburger, D. F. Functional heterogeneity of forest landscapes and the distribution and abundance of the red-cockaded woodpecker. Forest Ecol. Manag. 127, 271–283 (2000).
    Google Scholar 
    23.Watson, D. M. & Herring, M. Mistletoe as a keystone resource: an experimental test. Proc. Royal Soc. B: Biol. Sci. 279, 3853–3860 (2012).
    Google Scholar 
    24.Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).
    Google Scholar 
    25.Altieri, A. H., Silliman, B. R. & Bertness, M. D. Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am. Natur. 169, 195–206 (2007).PubMed 

    Google Scholar 
    26.Angelini, C. et al. Foundation species’ overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern US salt marshes. Proc. Royal Soc. B: Biol. Sci. 282, 20150421 (2015).27.Angelini, C. & Silliman, B. R. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree-epiphyte system. Ecology 95, 185–196 (2014).PubMed 

    Google Scholar 
    28.Bishop, M. J., Byers, J. E., Marcek, B. J. & Gribben, P. E. Density-dependent facilitation cascades determine epifaunal community structure in temperate Australian mangroves. Ecology 93, 1388–1401 (2012).PubMed 

    Google Scholar 
    29.Bishop, M. J., Fraser, J. & Gribben, P. E. Morphological traits and density of foundation species modulate a facilitation cascade in Australian mangroves. Ecology 94, 1927–1936 (2013).PubMed 

    Google Scholar 
    30.Thomsen, M. S., Metcalfe, I., South, P. & Schiel, D. R. A host-specific habitat former controls biodiversity across ecological transitions in a rocky intertidal facilitation cascade. Marine Freshwater Res. 67, 144–152 (2016).
    Google Scholar 
    31.Gribben, P. E. et al. Positive and negative interactions control a facilitation cascade. Ecosphere 8, e02065 (2017).
    Google Scholar 
    32.Shurin, J. B. et al. A cross‐ecosystem comparison of the strength of trophic cascades. Ecol. Lett. 5, 785–791 (2002).
    Google Scholar 
    33.Thomsen, M. S. Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat. Invas. 5, 341–346 (2010).
    Google Scholar 
    34.Gribben, P. E. et al. Facilitation cascades in marine ecosystems: a synthesis and future directions. Oceanogr. Marine Biol. 57, 127–168 (2019).
    Google Scholar 
    35.Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
    Google Scholar 
    36.Thomsen, M. S. et al. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integrat. Comparat. Biol. 50, 158–175 (2010).
    Google Scholar 
    37.Thomsen, M. S. et al. Modified kelp seasonality and invertebrate diversity where an invasive kelp co-occurs with native mussels. Marine Biol. 165, 173 (2018).
    Google Scholar 
    38.Borst, A. C. et al. Food or furniture: separating trophic and non‐trophic effects of Spanish moss to explain its high invertebrate diversity. Ecosphere 10, e02846 (2019).
    Google Scholar 
    39.Bologna, P. A. & Heck, K. L. Jr. Macrofaunal associations with seagrass epiphytes: relative importance of trophic and structural characteristics. J. Exp. Marine Biol. Ecol. 242, 21–39 (1999).
    Google Scholar 
    40.Huston, M. A. & Huston, M. A. Biological diversity: the coexistence of species. (Cambridge University Press, 1994).41.Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).
    Google Scholar 
    42.Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).
    Google Scholar 
    43.Thompson, K., Askew, A., Grime, J., Dunnett, N. & Willis, A. Biodiversity, ecosystem function and plant traits in mature and immature plant communities. Funct. Ecol. 19, 355–358 (2005).
    Google Scholar 
    44.Duffy, J. E. et al. Biodiversity mediates top–down control in eelgrass ecosystems: a global comparative‐experimental approach. Ecol. Lett. 18, 696–705 (2015).PubMed 

    Google Scholar 
    45.Arft, A. et al. Responses of tundra plants to experimental warming: meta‐analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).
    Google Scholar 
    46.Thomas, M. A. & Klaper, R. Genomics for the ecological toolbox. Trends Ecol. Evol. 19, 439–445 (2004).PubMed 

    Google Scholar 
    47.Thomsen, M. S. et al. A sixth‐level habitat cascade increases biodiversity in an intertidal estuary. Ecol. Evol. 6, 8291–8303 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    48.Ricklefs, R. E. Environmental heterogeneity and plant species diversity: a hypothesis. Am. Natur. 111, 376–381 (1977).
    Google Scholar 
    49.Lundholm, J. T. Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. J. Vegetation Sci. 20, 377–391 (2009).
    Google Scholar 
    50.Tamme, R., Hiiesalu, I., Laanisto, L., Szava‐Kovats, R. & Pärtel, M. Environmental heterogeneity, species diversity and co‐existence at different spatial scales. J. Vegetation Sci. 21, 796–801 (2010).
    Google Scholar 
    51.Hughes, A. R., Gribben, P. E., Kimbro, D. L. & Bishop, M. J. Additive and site-specific effects of two foundation species on invertebrate community structure. Mar. Ecol. Prog. Series 508, 129–138 (2014).ADS 

    Google Scholar 
    52.Yakovis, E. & Artemieva, A. Cockles, barnacles and ascidians compose a subtidal facilitation cascade with multiple hierarchical levels of foundation species. Sci. Rep. 7, 1–11 (2017).CAS 

    Google Scholar 
    53.Thomsen, M. S., Stæhr, P. A., Nejrup, L. & Schiel, D. R. Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquat. Invas. 8, 133–145 (2013).
    Google Scholar 
    54.Littler, M. M. Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis. Botan. Marina 22, 161–165 (1980).
    Google Scholar 
    55.Padilla, D. K. & Allen, B. J. Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. J. Exp. Mar. Biol. Ecol. 250, 207–221 (2000).CAS 
    PubMed 

    Google Scholar 
    56.Wainwright, P. C. Functional morphology as a tool in ecological research. Ecol. Morphol.: Int. Organismal Biol. 42, 59 (1994).
    Google Scholar 
    57.Angelini, C. & Briggs, K. Spillover of secondary foundation species transforms community structure and accelerates decomposition in oak savannas. Ecosystems, 18, 780–791 (2015).
    Google Scholar 
    58.Gutiérrez, J. L., Bagur, M. & Palomo, M. G. Algal epibionts as co-engineers in mussel beds: effects on abiotic conditions and mobile interstitial invertebrates. Diversity 11, 17 (2019).
    Google Scholar 
    59.He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).PubMed 

    Google Scholar 
    60.Watson, D. M. Mistletoe—a keystone resource in forests and woodlands worldwide. Ann. Rev. Ecol. Syst. 32, 219–249 (2001).
    Google Scholar 
    61.Mújica, E., Raventós, J., González, E. & Bonet, A. Long-term hurricane effects on populations of two epiphytic orchid species from Guanahacabibes Peninsula. Cuba. Lankesteriana Int. J. Orchidol. 13, 47–55 (2013).
    Google Scholar 
    62.Lobelle, D., Kenyon, E. J., Cook, K. J. & Bull, J. C. Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics. PLoS ONE 8, e57072 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Svirski, E., Beer, S. & Friedlander, M. Gracilaria conferta and its epiphytes: Interrelationship between the red seaweed and Ulva cf. lactuca. Hydrobiologia 260, 391–396 (1993).
    Google Scholar 
    64.Cummins, S., Roberts, D. & Zimmerman, K. Effects of the green macroalga Enteromorpha intestinalis on macrobenthic and seagrass assemblages in a shallow coastal estuary. Marine Ecol. Prog. Series 266, 77–87 (2004).ADS 

    Google Scholar 
    65.Holmquist, J. G. Disturbance and gap formation in a marine benthic mosaic: influence of shifting macroalgal patches on seagrass structure and mobile invertebrates. Marine Ecol. Prog. Series 158, 121–130 (1997).ADS 

    Google Scholar 
    66.Siciliano, A., Schiel, D. R. & Thomsen, M. S. Effects of local anthropogenic stressors on a habitat cascade in an estuarine seagrass system. Marine Freshwater Res. 70, 1129–1142 (2019).
    Google Scholar 
    67.Field, R. et al. Spatial species‐richness gradients across scales: a meta‐analysis. J. Biogeogr. 36, 132–147 (2009).
    Google Scholar 
    68.Šímová, I., Li, Y. M. & Storch, D. Relationship between species richness and productivity in plants: the role of sampling effect, heterogeneity and species pool. J. Ecol. 101, 161–170 (2013).
    Google Scholar 
    69.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 

    Google Scholar 
    70.Berlow, E. L. Strong effects of weak interactions in ecological communities. Nature 398, 330–334 (1999).ADS 
    CAS 

    Google Scholar 
    71.Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).PubMed 

    Google Scholar 
    72.Paine, R. T., Tegner, M. J. & Johnson, E. A. Compounded perturbations yield ecological surprises. Ecosystems 1, 535–545 (1998).
    Google Scholar 
    73.Christensen, M. R. et al. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Glob. Change Biol. 12, 2316–2322 (2006).ADS 

    Google Scholar 
    74.Strain, E. M. et al. A global analysis of complexity–biodiversity relationships on marine artificial structures. Glob. Ecol. Biogeogr. 30, 140–153 (2021).
    Google Scholar 
    75.Richardson, J. T. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 6, 135–147 (2011).
    Google Scholar 
    76.Clarke, K. R., Gorley, R., Somerfield, P. J. & Warwick, R. Change in marine communities: an approach to statistical analysis and interpretation. (Primer-E Ltd, 2014).77.Gartner, A., Tuya, F., Lavery, P. S. & McMahon, K. Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. J. Exp. Marine Biol. Ecol. 439, 143–151 (2013).
    Google Scholar 
    78.Green, D. S. & Crowe, T. P. Context-and density-dependent effects of introduced oysters on biodiversity. Biol. Invasions 16, 1145–1163 (2014).
    Google Scholar 
    79.Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).
    Google Scholar 
    80.Borer, E. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).
    Google Scholar 
    81.Vellend, M. Conceptual synthesis in community ecology. Quart. Rev. Biol. 85, 183–206 (2010).PubMed 

    Google Scholar 
    82.Chase, J. M. & Leibold, M. A. Ecological niches: linking classical and contemporary approaches. (University of Chicago Press, 2003).83.Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).ADS 
    PubMed 

    Google Scholar 
    84.Anderson, M. J. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    85.Veech, J. A. & Crist, T. O. Habitat and climate heterogeneity maintain beta‐diversity of birds among landscapes within ecoregions. Glob. Ecol. Biogeogr. 16, 650–656 (2007).
    Google Scholar 
    86.Turner, M. G. Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Syst. 20, 171–197 (1989).
    Google Scholar 
    87.Wilson, M. V. & Shmida, A. Measuring beta diversity with presence-absence data. J. Ecol. 72, 1055–1064 (1984).
    Google Scholar 
    88.Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).PubMed 

    Google Scholar 
    89.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).PubMed 

    Google Scholar 
    90.McAfee, D., Cole, V. J. & Bishop, M. J. Latitudinal gradients in ecosystem engineering by oysters vary across habitats. Ecology 97, 929–939 (2016).PubMed 

    Google Scholar 
    91.Altieri, A. H. & Irving, A. D. Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat. PeerJ 5, e2848 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    92.Lindenmayer, D., Franklin, J. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conser. 131, 433–445 (2006).
    Google Scholar 
    93.Le Roux, D. S., Ikin, K., Lindenmayer, D. B., Manning, A. D. & Gibbons, P. Single large or several small? Applying biogeographic principles to tree-level conservation and biodiversity offsets. Biol. Conser. 191, 558–566 (2015).
    Google Scholar 
    94.Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep. 8, 1–8 (2018).
    Google Scholar 
    95.Macintosh, D. J. & Ashton, E. C. A review of mangrove biodiversity conservation and management. Centre for tropical ecosystems research. (University of Aarhus, 2002).96.Grabowski, J. H. et al. Economic valuation of ecosystem services provided by oyster reefs. Bioscience 62, 900–909 (2012).
    Google Scholar 
    97.Renzi, J. J., He, Q. & Silliman, B. R. Harnessing positive species interactions to enhance coastal wetland restoration. Front. Ecol. Evol. 7, 131 (2019).
    Google Scholar 
    98.Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. 112, 14295–14300 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Bulleri, F. et al. Harnessing positive species interactions as a tool against climate-driven loss of coastal biodiversity. PLoS Biol. 16, e2006852 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    100.Brancalion, P. H. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Burns, K. Meta-community structure of vascular epiphytes in a temperate rainforest. Botany 86, 1252–1259 (2008).
    Google Scholar 
    102.Chapman, M. & Blockley, D. Engineering novel habitats on urban infrastructure to increase intertidal biodiversity. Oecologia 161, 625–635 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    103.Schneider-Mayerson, M. Some islands will rise: Singapore in the Anthropocene. Resilience: J. Environ. Human. 4, 166–184 (2017).
    Google Scholar 
    104.Wangpraseurt, D. et al. Bionic 3D printed corals. Nat. Commun. 11, 1–8 (2020).
    Google Scholar 
    105.de Alvarenga, R. A. F., Galindro, B. M., de Fátima Helpa, C. & Soares, S. R. The recycling of oyster shells: an environmental analysis using Life Cycle Assessment. J. Environ. Manag. 106, 102–109 (2012).CAS 

    Google Scholar 
    106.Morris, J. P., Backeljau, T. & Chapelle, G. Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Rev. Aqua. 11, 42–57 (2019).
    Google Scholar 
    107.Hylander, K. & Nemomissa, S. Home garden coffee as a repository of epiphyte biodiversity in Ethiopia. Front. Ecol. Environ. 6, 524–528 (2008).
    Google Scholar 
    108.Franken, R. J. et al. Effects of interstitial refugia and current velocity on growth of the amphipod Gammarus pulex Linnaeus. J. North Am. Bentholog. Soc. 25, 656–663 (2006).
    Google Scholar 
    109.Bishop, M. et al. Facilitation of molluscan assemblages in mangroves by the fucalean alga Hormosira banksii. Marine Ecol. Prog. Series 392, 111–122 (2009).ADS 

    Google Scholar 
    110.Macreadie, P. I., Kimbro, D. L., Fourgerit, V., Leto, J. & Hughes, A. R. Effects of Pinna clams on benthic macrofauna and the possible implications of their removal from seagrass ecosystems. J. Molluscan Studies 80, 102–106 (2014).
    Google Scholar 
    111.Thomsen, M. S. et al. Earthquake-driven destruction of an intertidal habitat cascade. Aquat. Botany 164, 103217 (2020).
    Google Scholar 
    112.Enochs, I. C., Toth, L. T., Brandtneris, V. W., Afflerbach, J. C. & Manzello, D. P. Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Marine Ecol. Prog. Series 438, 105–118 (2011).ADS 

    Google Scholar  More

  • in

    Fungal fruit body assemblages are tougher in harsh microclimates

    1.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 

    Google Scholar 
    2.Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, 6304 (2016).
    Google Scholar 
    3.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Chang. 1, 401–406 (2011).ADS 

    Google Scholar 
    4.Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 1–10 (2014).
    Google Scholar 
    5.Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).
    Google Scholar 
    6.Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    7.Scharenbroch, B. C. & Bockheim, J. G. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil 294, 219–233 (2007).CAS 

    Google Scholar 
    8.de Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).PubMed 

    Google Scholar 
    9.Kermavnar, J. et al. Effects of various cutting treatments and topographic factors on microclimatic conditions in Dinaric fir-beech forests. Agric. For. Meteorol. 295, 108186 (2020).ADS 

    Google Scholar 
    10.Brown, M. J., Parker, G. G. & Posner, N. E. A survey of ultraviolet-B radiation in forests. J. Ecol. 82, 843 (1994).
    Google Scholar 
    11.Thom, D. et al. Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agric. For. Meteorol. 291, 108066 (2020).ADS 

    Google Scholar 
    12.Frank, A. et al. Risk of genetic maladaptation due to climate change in three major European tree species. Glob. Change Biol. 23, 5358–5371 (2017).ADS 

    Google Scholar 
    13.Maxime, C. & Hendrik, D. Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 25, 265–276 (2011).
    Google Scholar 
    14.Vitasse, Y. et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Change Biol. 25, 3781–3792 (2019).ADS 

    Google Scholar 
    15.Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Penone, C. et al. Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol. Lett. 22, 170–180 (2019).PubMed 

    Google Scholar 
    17.Müller, J. et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos 129, 1579–1588 (2020).
    Google Scholar 
    18.Krah, F.-S. et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol. 106, 1428–1442 (2018).
    Google Scholar 
    19.Nagy, L. G. et al. Six key traits of fungi: Their evolutionary origins and genetic bases. Microbiol. Spect. 5, 4 (2017).
    Google Scholar 
    20.Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017).CAS 
    PubMed 

    Google Scholar 
    21.Raudaskoski, M. & Salonen, M. Interrelationships between vegetative development and basidiocarp initiation. in The Ecology and Physiology of the Fungal Mycelium: Symposium of the British Mycological Society, vol. 8, p. 291 (Cambridge University Press, 1984).22.Kües, U. & Liu, Y. Fruiting body production in Basidiomycetes. Appl. Microbiol. Biotechnol. 54, 141–152 (2000).PubMed 

    Google Scholar 
    23.Sakamoto, Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol. Rev. 32, 236–248 (2018).
    Google Scholar 
    24.Luo, L., Zhang, S., Wu, J., Sun, X. & Ma, A. Heat stress in macrofungi: Effects and response mechanisms. Appl. Microbiol. Biotechnol. 1, 1–10 (2021).
    Google Scholar 
    25.Krah, F., Hess, J., Hennicke, F., Kar, R. & Bässler, C. Transcriptional response of mushrooms to artificial sun exposure. Ecol. Evol. 11, 10538–10546 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    26.Krah, F.-S. et al. European mushroom assemblages are darker in cold climates. Nat. Commun. 10, 2890 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Bässler, C. et al. Global analysis reveals an environmentally driven latitudinal pattern in mushroom size across fungal species. Ecol. Lett. https://doi.org/10.1111/ele.13678 (2021).Article 
    PubMed 

    Google Scholar 
    28.Bässler, C. et al. Mean reproductive traits of fungal assemblages are correlated with resource availability. Ecol. Evol. 6, 582–592 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    29.Abrego, N., Norberg, A. & Ovaskainen, O. Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. Ecol. 105, 1070–1081 (2016).
    Google Scholar 
    30.Sánchez-García, M. et al. Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. Proc. Natl. Acad. Sci. 117, 32528–32534 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    31.Hibbett, D. S. & Binder, M. Evolution of complex fruiting–body morphologies in homobasidiomycetes. Proc. R. Soc. Lond. B 269, 1963–1969 (2002).CAS 

    Google Scholar 
    32.Hibbett, D. S., Pine, E. M., Langer, E., Langer, G. & Donoghue, M. J. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc. Natl. Acad. Sci. 94, 12002–12006 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Halbwachs, H., Simmel, J. & Bässler, C. Tales and mysteries of fungal fruiting: How morphological and physiological traits affect a pileate lifestyle. Fungal Biol. Rev. 30, 36–61 (2016).
    Google Scholar 
    34.Wilson, A. W., Binder, M. & Hibbett, D. S. Effects of gasteroid fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis. Evol. Int. J. Org. Evol. 65, 1305–1322 (2011).
    Google Scholar 
    35.Cordero, R. J. B. & Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 31, 99–112 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    36.Zamora-Camacho, F. J., Reguera, S. & Moreno-Rueda, G. Bergmann’s Rule rules body size in an ectotherm: Heat conservation in a lizard along a 2200-metre elevational gradient. J. Evol. Biol. 27, 2820–2828 (2014).CAS 
    PubMed 

    Google Scholar 
    37.Kalmus, H. Physiology and ecology of cuticle colour in insects. Nature 148, 693 (1941).ADS 

    Google Scholar 
    38.Law, S. J. et al. Darker ants dominate the canopy: Testing macroecological hypotheses for patterns in colour along a microclimatic gradient. J. Anim. Ecol. 89, 347–359 (2020).PubMed 

    Google Scholar 
    39.Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).CAS 
    PubMed 

    Google Scholar 
    40.R Core Team. R: A Language and Environment for Statistical Computing. (R Core Team, 2015).41.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    42.Olou, B. A., Yorou, N. S., Striegel, M., Bässler, C. & Krah, F.-S. Effects of macroclimate and resource on the diversity of tropical wood-inhabiting fungi. For. Ecol. Manage. 436, 79–87 (2019).
    Google Scholar 
    43.Moser, M. Fungal growth and fructification under stress conditions. Ukrainian Bot. J. 50, 5–11 (1993).
    Google Scholar 
    44.Walter, H. et al. Vegetation of the Earth in Relation to Climate and the Eco-Physiological Conditions (English Universities Press, 1973).
    Google Scholar 
    45.Botti, D. A phytoclimatic map of Europe. Cybergeo Eur. J. Geogr. https://doi.org/10.4000/cybergeo.29495 (2018).Article 

    Google Scholar 
    46.Sofo, A., Manfreda, S., Fiorentino, M., Dichio, B. & Xiloyannis, C. The olive tree: A paradigm for drought tolerance in Mediterranean climates. Hydrol. Earth Syst. Sci. 12, 293–301 (2008).ADS 

    Google Scholar 
    47.Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 182, 565–588 (2009).PubMed 

    Google Scholar 
    48.Ellenberg, H. H. Spring areas and adjacent swamps. in Vegetation ecology of central Europe 313–313 (Cambridge University Press, 1988).49.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming?. New Phytol. 26, 285–291 (2011).
    Google Scholar 
    50.Stamets, P. Growing Gourmet and Medicinal Mushrooms (Ten Speed Press, 2011).
    Google Scholar 
    51.Cordero, R. J. B. et al. Impact of yeast pigmentation on heat capture and latitudinal distribution. Curr. Biol. 28, 2657-2664.e3 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Graham, J. H. et al. Species richness, equitability, and abundance of ants in disturbed landscapes. Ecol. Ind. 9, 866–877 (2009).
    Google Scholar 
    53.Palladini, J. D., Jones, M. G., Sanders, N. J. & Jules, E. S. The recovery of ant communities in regenerating temperate conifer forests. For. Ecol. Manage. 242, 619–624 (2007).
    Google Scholar 
    54.Punttila, P., Haila, Y., Niemelä, J. & Pajunen, T. Ant communities in fragments of old-growth taiga and managed surroundings. Ann. Zool. Fenn. 31, 131–144 (1994).
    Google Scholar 
    55.Entling, W., Schmidt-Entling, M. H., Bacher, S., Brandl, R. & Nentwig, W. Body size–climate relationships of European spiders. J. Biogeogr. 37, 477–485 (2010).
    Google Scholar 
    56.Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).
    Google Scholar 
    57.Tucker, C. M., Shoemaker, L. G., Davies, K. F., Nemergut, D. R. & Melbourne, B. A. Differentiating between niche and neutral assembly in metacommunities using null models of beta-diversity. Oikos 125, 778–789 (2015).
    Google Scholar 
    58.Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).ADS 
    PubMed 

    Google Scholar 
    59.Krah, F.-S. & Bässler, C. What can intraspecific trait variability tell us about fungal communities and adaptations?. Mycol. Prog. 20, 905–910 (2021).
    Google Scholar 
    60.Norros, V. & Halme, P. Growth sites of polypores from quantitative expert evaluation: Late-stage decayers and saprotrophs fruit closer to ground. Fungal Ecol. 28, 53–65 (2017).
    Google Scholar 
    61.Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Bässler, C., Seifert, L. & Müller, J. The BIOKLIM project in the National Park Bavarian Forest: Lessons from a biodiversity survey. Silva Gabreta 21, 81–93 (2015).
    Google Scholar 
    63.Halme, P. & Kotiaho, J. S. The importance of timing and number of surveys in fungal biodiversity research. Biodivers. Conserv. 21, 205–219 (2012).
    Google Scholar 
    64.Crous, P. W. et al. MycoBank: An online initiative to launch mycology into the 21st century. Stud. Mycol. 50, 19–22 (2004).
    Google Scholar 
    65.van den Broek, E. L. & van Rikxoort, E. M. Evaluation of color representation for texture analysis. in Paper presented at 16th Belgium-Dutch Conference on Artificial Intelligence, BNAIC 2004, Groningen, Netherlands 35–42 (2004).66.Bernicchia, A. Fungi Europaei, Volume 10. Polyporaceae sl. (Alassio, Italia: Edizioni Candusso, 2005).67.Kembel, S. Community Phylogenetic Analysis with Picante Installing Picante 1–18 (Springer, 2009).
    Google Scholar 
    68.Gotelli, N. J. & Graves, G. R. Null Models in Ecology (Springer, 1996).
    Google Scholar 
    69.Hochberg, Y. & Tamhane, A. C. Multiple Comparison Procedures (Wiley, 1987).MATH 

    Google Scholar 
    70.Dormann, C. G., Elith, J., Bacher, S., Buchmann, C. & Lautenback, S. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 35, 001–020 (2012).
    Google Scholar 
    71.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    72.Purhonen, J. et al. Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. Fungal Ecol. 46, 100863 (2020).
    Google Scholar 
    73.Heilmann-Clausen, J. & Christensen, M. Does size matter?: On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For. Ecol. Manage. 201, 105–117 (2004).
    Google Scholar 
    74.Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Google Scholar  More

  • in

    Effects of reduced salinity caused by reclamation on population and physiological characteristics of the sesarmid crab Chiromantes dehaani

    1.Chen, L. et al. Spatiotemporal dynamics of coastal wetlands and reclamation in the Yangtze estuary during past 50 years (1960s–2015). Chin. Geogr. Sci. 28(3), 386–399 (2018).
    Google Scholar 
    2.Lv, W. et al. Effect of freshwater inflow on self-restoration of macrobenthic diversity in seaward intertidal wetlands influenced by reclamation projects in the Yangtze estuary, China. Mar. Pollut. Bull. 138, 177–186 (2019).CAS 
    PubMed 

    Google Scholar 
    3.Lv, W. et al. Loss and selfrestoration of macrobenthic diversity in reclamation habitats of estuarine islands in Yangtze Estuary, China. Mar. Pollut. Bull. 103, 128–136 (2016).CAS 
    PubMed 

    Google Scholar 
    4.Matsuda, O. & Kokubu, H. Recent coastal environmental management based on new concept of Satoumi which promotes land-ocean interaction: A case study in Japan. Estuar. Coast. Shelf S 183, 179–186 (2016).ADS 

    Google Scholar 
    5.Wang, J. et al. Exotic Spartina alterniflora provides compatible habitats for native estuarine crab Sesarma dehaani in the Yangtze River estuary. Ecol. Eng. 34, 57–64 (2008).CAS 

    Google Scholar 
    6.Lee, S. Y. & Khim, J. S. Hard science is essential to restoring soft-sediment intertidal habitats in burgeoning East Asia. Chemosphere 168, 765–776 (1998).ADS 

    Google Scholar 
    7.Wang, L. The complete larval development of Sesarma dehaani. J. Shanghai Fisheries Univ. 10(3), 199–206 (2001).CAS 

    Google Scholar 
    8.Liu, Z. et al. Different effects of reclamation methods on macrobenthos community structure in the Yangtze Estuary, China. Mar. Pollut. Bull. 127, 429–436 (2018).CAS 
    PubMed 

    Google Scholar 
    9.Henry, R. P., Lucu, C., Onken, H. & Weihrauch, D. Multiple functions of the crustacean gill: Osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front. Physiol. 3, 431 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.McNamara, J. C. & Faria, S. C. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: A review. J. Comp. Physiol. B. 182(8), 997–1014 (2012).CAS 
    PubMed 

    Google Scholar 
    11.Thabet, R., Ayadi, H., Koken, M. & Leignel, V. Homeostatic responses of crustaceans to salinity changes. Hydrobiologia 799(1), 1–20 (2017).CAS 

    Google Scholar 
    12.Boonsanit, P. & Pairohakul, S. Effects of salinity on haemolymph osmolality, gill Na+/K+ ATPase and antioxidant enzyme activities in the male mud crab Scylla olivacea (Herbst, 1796). Mar. Biol. Res. 17(1), 86–97 (2021).
    Google Scholar 
    13.Wang, R. et al. Osmotic and ionic regulation and Na+/K+-ATPase, carbonic anhydrase activities in mature Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853 (Decapoda, Brachyura) exposed to different salinities. Crustaceana 85(12–13), 1431–1447 (2012).
    Google Scholar 
    14.Garçon, D. P. et al. Na+, K+-ATPase activity in the posterior gills of the blue crab, Callinectes ornatus (Decapoda, Brachyura): Modulation of ATP hydrolysis by the biogenic amines spermidine and spermine. J. Membr. Biol. 244, 9–20 (2011).PubMed 

    Google Scholar 
    15.Jiang, S. & Xu, Q. Influence of salinity stress on the activity of gill Na+/K+-ATPase in swimming crab(Portunus trituberculatus). J. Fish. China 35(10), 1475–1480 (2011).CAS 

    Google Scholar 
    16.Mo, J. L., Devos, P. & Trausch, G. Active absorption of Cl– and Na+ in posterior gills of Chinese crab, Eriocheir sinensis: modulation by dopamine and cAMP. J. Crust. Biol. 23, 505–512 (2003).
    Google Scholar 
    17.Charmantier, G. Ontogeny of osmoregulation in crustaceans: A review. Invertebr. Reprod. Dev. 33(2–3), 177–190 (1998).CAS 

    Google Scholar 
    18.Vargas-Chacoff, L. et al. Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities. Fish Physiol. Biochem. 41, 1369–1381 (2015).CAS 
    PubMed 

    Google Scholar 
    19.Wang, R. et al. The response of digestive enzyme activity in the mature Chinese mitten crab, Eriocheir sinensis (Decapoda: Brachyura), to gradual increase of salinity. Sci. Mar. 77(2), 323–329 (2013).
    Google Scholar 
    20.Li, E. et al. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture 274, 80–86 (2008).CAS 

    Google Scholar 
    21.Asaro, A., del Valle, J. C. & López Mañanes, A. A. Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda: Brachyura: Varunidae): Partial characterization and response to low environmental salinity. Sci. Mar. 75, 517–524 (2011).CAS 

    Google Scholar 
    22.Sǒderhǎll, I. et al. Hemocyte production andmaturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus. Dev. Comp. Immunol. 97(8), 661–672 (2004).
    Google Scholar 
    23.Liu, S., Jiang, X., Mou, H., Wang, H. & Guan, H. Effects of immunopoiysaccharide on LSZ, ALP, ACP and POD activities of Penaeus chinensis serum. Oceanol. Limnol. Sin. 30(3), 278–283 (1999).CAS 

    Google Scholar 
    24.Ma, Z., Zhang, F. & Jing, A. Overview and graph theory of the immune system of crustacean. Aquacul. Sci. Technol. 11(8), 19–23 (2010).CAS 

    Google Scholar 
    25.Gu, Q. & He, L. Analysis of hemolymph osmotic pressure in crab (Eriocheir sinensis H. Milne Edwards) during oogenesis. Acta Zool. Sin. 36(2), 165–171 (1990).
    Google Scholar 
    26.Esser, L. J. & Cumberlidge, N. Evidence that salt water may not be a barrier to the dispersal of Asian freshwater crabs (Decapoda: Brachyura: Gecarcinucidae and potamidae). Raffles B. Zool. 59(2), 259–268 (2011).
    Google Scholar 
    27.Novo, M. S., Miranda, R. B. & Bianchini, A. Sexual and seasonal variations in osmoregulation and ionoregulation in the estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda). J. Exp. Mar. Biol. Ecol. 323(2), 118–137 (2005).CAS 

    Google Scholar 
    28.Huong, D. T. T., Yang, W., Okuno, A. & Wilder, M. N. Changes in free amino acids in the hemolymph of giant freshwater prawn Macrobrachium rosenbergii exposed to varying salinities: Relationship to osmoregulatory ability. Comp. Biochem. Phys. A 128(2), 317–326 (2001).CAS 

    Google Scholar 
    29.Malmsten, M. & Larsson, A. Immobilization of trypsin on porous glycidyl methacrylate beads: Effects of polymer hydrophilization. Colloid. Surf. B 18, 277–284 (2000).CAS 

    Google Scholar 
    30.Hosoi, M. et al. Effect of salinity change on free amino acid content in Pacific oyster. Fish. Sci. 69(2), 395–400 (2003).CAS 

    Google Scholar 
    31.Wang, G. D., Xu, K. F., Tian, X. L., Dong, S. L. & Fang, Z. H. Changes in plasma osmolality, cortisol and amino acid levels of tongue sole (Cynoglossus semilaevis) at different salinities. J. Ocean Univ. China 14(5), 881–887 (2015).ADS 
    CAS 

    Google Scholar 
    32.Johnston, D. & Freeman, J. Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab. Biol. Bull. 208, 36–46 (2005).CAS 
    PubMed 

    Google Scholar 
    33.Zhang, Y. & Tong, C. Stomach content characteristics and feeding preference of Chiromantes dehaani in the salt marsh of Yangtze estuary. Chinese J. Ecol. 37(7), 2059–2066 (2018).
    Google Scholar 
    34.Ye, Y. et al. Comparative study on some traits of male and female Eriocheir sinensis raised in pond. Contemp. Aquacult. 38(4), 7–8 (2000).
    Google Scholar 
    35.Han, S. & Guan, W. Growth and maturity of Chiromantes dehaani in Dazhi River Estuary. Trans. Oceanol. Limnol. 15(1), 51–65 (2012).
    Google Scholar 
    36.Li, W., Guan, Y. & Yu, Z. Effects of salinity variation on outbreak of white spot syndrome and immunocompetence in Penaeus japonicas. Mar. Environ. Sci. 21(4), 6–9 (2002).
    Google Scholar 
    37.Pan, L. & Jiang, L. The effect of sudden changes in salinity and pH on immune activity of two species of shrimps. J. Ocean Univ. Qingdao 32(6), 903–910 (2002).CAS 

    Google Scholar 
    38.Gamperl, A. K., Vijayan, M. M. & Boutilier, R. G. Experimental control of stress hormone levels in fishes: Techniques and applications. Rev. Fish Biol. Fish. 4(2), 215–255 (1994).
    Google Scholar 
    39.Weerd, J. H. V. & Komen, J. The effects of chronic stress on growth in fish: A critical appraisal. Comp. Biochem. Phys. A 120(1), 107–112 (1998).
    Google Scholar 
    40.Barton, B. A., Schreck, C. B. & Barton, L. D. Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Dis. Aquat. Organ. 2(3), 173–185 (1987).CAS 

    Google Scholar 
    41.Zhao, Q., Qin, F., Li, C. & Jin, S. Preliminary study on the activities of enzymes in haemolymph of three species of marine crabs. J. Ningbo Univ. 22(1), 33–38 (2009).CAS 

    Google Scholar 
    42.Lv, W. et al. Macrobenthic diversity in protected, disturbed, and newly formed intertidal wetlands of a subtropical estuary in China. Mar. Pollut. Bull. 89, 259–266 (2014).CAS 
    PubMed 

    Google Scholar 
    43.Ma, Z., Jing, K., Tang, S. & Chen, J. Shorebirds in the eastern intertidal areas of Chongming island during the 2001 northern migration. Stilt 41, 6–10 (2002).
    Google Scholar 
    44.Sui, L., Wille, M., Cheng, Y., Wu, X. & Sorgeloos, P. Larviculture techniques of Chinese mitten crab Eriocheir sinensis. Aquaculture 315(1–2), 16–19 (2011).
    Google Scholar 
    45.Luo, M. et al. Community characteristics of macrobenthos in waters around the nature reserve of the Chinese sturgeon Acipenser sinensis and the adjacent waters in Yangtze River estuary. J. Appl. Ichthyol. 27, 425–432 (2011).
    Google Scholar 
    46.Yang, Z., Zhu, L., Zhao, X. & Cheng, Y. Effects of salinity stress on osmotic pressure, free amino acids, and immune-associated parameters of the juvenile Chinese mitten crab, Eriocheir sinensis. Aquaculture 549, 737776 (2022).
    Google Scholar 
    47.Tian, L., Tan, P., Yang, L., Zhu, W. & Xu, D. Effects of salinity on the growth, plasma ion concentrations, osmoregulation, non-specific immunity, and intestinal microbiota of the yellow drum (Nibea albiflora). Aquaculture 528, 735470 (2020).CAS 

    Google Scholar  More

  • in

    Fire-prone Rhamnaceae with South African affinities in Cretaceous Myanmar amber

    1.Lloyd, G. T. et al. Dinosaurs and the Cretaceous terrestrial revolution. Proc. R. Soc. B 275, 2483–2490 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    2.Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).CAS 
    PubMed 

    Google Scholar 
    3.Herrera-Flores, J. A., Stubbs, T. L. & Benton, M. J. Ecomorphological diversification of squamates in the Cretaceous. R. Soc. Open Sci. 8, 201961 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    4.Benton, M. J. The origins of modern biodiversity on land. Phil. Trans. R. Soc. B 365, 3667–3679 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    5.Roelants, K. et al. Global patterns of diversifcation in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Grosberg, R. K., Vermeij, G. J. & Wainwright, P. C. Biodiversity in water and on land. Curr. Biol. 22, 900–903 (2012).
    Google Scholar 
    7.Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Buggs, R. J. The deepening of Darwin’s abominable mystery. Nat. Ecol. Evol. 1, 0169 (2017).
    Google Scholar 
    9.Friis, E. M., Crane, P. R., Pedersen, K. R., Stampanoni, M. & Marone, F. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms. Nature 528, 551–554 (2015).PubMed 

    Google Scholar 
    10.Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).11.Friis, E. M., Pedersen, K. R. & Crane, P. R. Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 251–293 (2006).
    Google Scholar 
    12.Soltis, P. S., Folk, R. A. & Soltis, D. E. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B 286, 20190099 (2019).PubMed Central 

    Google Scholar 
    13.Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188, 1137–1150 (2010).PubMed 

    Google Scholar 
    14.Bond, W. J. & Midgley, J. J. Fire and the angiosperm revolutions. Int. J. Plant Sci. 173, 569–583 (2012).
    Google Scholar 
    15.Belcher, C. M. & Hudspith, V. A. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytol. 213, 1521–1532 (2017).CAS 
    PubMed 

    Google Scholar 
    16.He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).PubMed 

    Google Scholar 
    17.Cruickshank, R. D. & Ko, K. Geology of an amber locality in the Hukawng Valley, Northern Myanmar. J. Asian Earth Sci. 21, 441–455 (2003).
    Google Scholar 
    18.Shi, G. H. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).
    Google Scholar 
    19.Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 166, 11345–11350 (2019).
    Google Scholar 
    20.Xing, L. D. & Qiu, L. Zircon U–Pb age constraints on the Hkamti amber biota in northern Myanmar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 558, 109960 (2020).
    Google Scholar 
    21.Xia, F. Y., Yang, G., Zhang, Q. & Shi, G. L. Amber Lives Through Time and Space (Beijing Science Press, 2015).22.Poinar, G. O. & Brown, A. E. A green algae (Chaetophorales: Chaetophoraceae) in Burmese amber. Hist. Biol. 33, 323–327 (2019).
    Google Scholar 
    23.Liu, Z. J., Huang, D., Cai, C. Y. & Wang, X. The core eudicot boom registered in Myanmar amber. Sci. Rep. 8, 16765 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    24.Poinar, G. O. & Chambers, K. L. Tropidogyne pentaptera sp. nov., a new mid-Cretaceous fossil angiosperm flower in Burmese amber. Palaeodiversity 10, 135–140 (2017).
    Google Scholar 
    25.Poinar, G. O. & Chambers, K. L. Palaeoanthella huangii gen. and sp. nov., an Early Cretaceous flower (Angiospermae) in Burmese amber. SIDA 21, 2087–2092 (2005).
    Google Scholar 
    26.Goldblatt, P. An analysis of the flora of Southern Africa: its characteristics, relationships, and orgins. Ann. Mo. Bot. Gard. 65, 369–436 (1978).
    Google Scholar 
    27.Verboom, G. A. et al. in Fynbos: Ecology, Evolution and Conservation of a Megadiverse Region (eds Allsopp, N. et al.) 93–118 (Oxford Univ. Press, 2014).28.Hauenschild, F., Favre, A., Michalak, I. & Muellner-Riehl, A. N. The influence of the Gondwanan breakup on the biogeographic history of the ziziphoids (Rhamnaceae). J. Biogeogr. 45, 2669–2677 (2018).
    Google Scholar 
    29.Onstein, R. E. & Linder, H. P. Beyond climate: convergence in fast evolving sclerophylls in Cape and Australian Rhamnaceae predates the mediterranean climate. J. Ecol. 104, 665–677 (2016).
    Google Scholar 
    30.Brown, S., Scott, A. C., Glasspool, I. J. & Collinson, M. E. Cretaceous wildfires and their impact on the Earth system. Cretac. Res. 36, 162–190 (2012).
    Google Scholar 
    31.Richardson, J. E. et al. Rapid and recent origin of species richness in the Cape flora of South Africa. Nature 412, 181–183 (2001).CAS 
    PubMed 

    Google Scholar 
    32.Pillans, N. S. The genus Phylica. J. S. Afr. Bot. 8, 1–164 (1942).
    Google Scholar 
    33.Rebelo, T. et al. in The vegetation of South Africa, Lesotho and Swaziland (eds Mucina, L. & Rutherford, M. C.) 52–219 (South African National Biodiversity Institute, 2006).34.Gimingham, C. H. & Cowling, R. The ecology of fynbos: nutrients, fire and diversity. J. Ecol. 81, 195–196 (1993).
    Google Scholar 
    35.Richardson, J. E., Fay, M. F., Cronk, Q. C. B. & Cronk, M. W. Species delimitation and the origin of populations in island representatives of Phylica (Rhamnaceae). Evolution 57, 816–827 (2003).PubMed 

    Google Scholar 
    36.Richardson, J. E. Molecular Systematics of the Genus Phylica L. With an Emphasis on the Island Species (Edinburgh Univ. Press, 1999).37.Schirarend, C. & Köhler, E. World Pollen and Spore Flora: Rhamnaceae Juss (Scandinavian Univ. Press, 1993).38.Medan, D. & Schirarend, C. in Flowering plants · Dicotyledons (ed. Kubitzki, K.) 320–338 (Springer, 2004).39.Gotelli, M. M., Galati, B. G. & Medan, D. Morphological and ultrastructural studies of floral nectaries in Rhamnaceae. J. Torrey Bot. Soc. 144, 63–73 (2017).
    Google Scholar 
    40.Friedrich, O., Norris, R. D. & Erbacher, J. Evolution of middle to Late Cretaceous oceans–a 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40, 107–110 (2012).CAS 

    Google Scholar 
    41.Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).CAS 

    Google Scholar 
    42.Huber, B. T., Hodell, D. A. & Hamilton, C. P. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. Am. Bull. 107, 1164–1191 (1995).
    Google Scholar 
    43.Belcher, C. M., Yearsley, J. M., Hadden, R. M., Mcelwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M. & Wildman, R. A. Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 31, 105–134 (2003).CAS 

    Google Scholar 
    45.Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).CAS 

    Google Scholar 
    46.Poulsen, C. J., Tabor, C. & White, J. D. Long-term climate forcing by atmospheric oxygen concentrations. Science 348, 1238–1241 (2015).CAS 
    PubMed 

    Google Scholar 
    47.Hudspith, V. A. & Belcher, C. M. Fire biases the production of charred flowers: implications for the Cretaceous fossil record. Geology 45, 727–730 (2017).
    Google Scholar 
    48.Scott, A. C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 11–39 (2010).
    Google Scholar 
    49.Scott, A. C. The use of charcoal to interpret Cretaceous wildfires and volcanic activity. Glob. Geol. 22, 217–241 (2019).
    Google Scholar 
    50.Scott, A. C., Cripps, J. A., Nichols, G. J. & Collinson, M. E. The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 1–31 (2000).
    Google Scholar 
    51.Whtilock, C., Higuera, P. E., McWethy, D. B. & Briles, C. E. Paleoecological perspectives on fire ecology: revisiting the fire-regime concept. Open Ecol. J. 3, 6–23 (2010).
    Google Scholar 
    52.Bond, W. J. & Keeley, J. E. Fire as global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).PubMed 

    Google Scholar 
    53.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).CAS 
    PubMed 

    Google Scholar 
    54.Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous–Paleogene boundary. Nat. Commun. 2, 193 (2011).PubMed 

    Google Scholar 
    55.Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. Bioscience 59, 593–601 (2009).
    Google Scholar 
    56.Scott, A. C. Burning Planet. The Story of Fire Through Time (Oxford Univ. Press, 2018).57.Scott, A. C. Fire: A Very Short Introduction (Oxford Univ. Press, 2020).58.Scott, A. C., Bowman, D. J. M. S., Bond, W. J., Pyne, S. J. & Alexander M. Fire on Earth: An Introduction (J. Wiley & Sons Press, 2014).59.Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).CAS 
    PubMed 

    Google Scholar 
    60.Lenton,T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 289–308 (J. Wiley & Sons Press, 2013).61.Herendeen, P. S., Magallon-Puebla, S., Lupia, R., Crane, P. R. & Kobylinska, J. A preliminary conspectus of the Allon flora from the Late Cretaceous (Late Santonian) of the central Georgia, USA. Ann. Mo. Bot. Gard. 86, 407–471 (1999).
    Google Scholar 
    62.He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).PubMed 

    Google Scholar 
    63.Cornwell, W. K. et al. Flammability across the gymnosperm phylogeny: the importance of litter particle size. New Phytol. 206, 672–681 (2015).PubMed 

    Google Scholar 
    64.Lamont, B. B. & He, T. Fire-adapted Gondwanan angiosperm floras evolved in the Cretaceous. BMC Evol. Biol. 12, 223 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    65.He, T., Lamont, B. B. & Manning, J. A. Cretaceous origin for fire adaptations in the Cape flora. Sci. Rep. 6, 34880 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.He, T., Lamont, B. B. & Downes, K. S. Banksia born to burn. New Phytol. 191, 184–196 (2011).PubMed 

    Google Scholar 
    67.Midgley, J. & Bond, W. Pushing back in time, the role of fire in plant evolution. New Phytol. 191, 5–7 (2011).PubMed 

    Google Scholar 
    68.Scott, A. C. The Pre-Quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329 (2000).
    Google Scholar 
    69.Midgley, J. J., Kruger, L. M. & Skelton, R. How do fires kill plants? The hydraulic death hypothesis and Cape Proteaceae “fire-resisters”. S. Afr. J. Bot. 77, 381–386 (2011).
    Google Scholar 
    70.Lamont, B. B., Groom, P. K., Williams, M. & He, T. LMA, density and thickness: recognizing different leaf shapes and correcting for their non-laminarity. New Phytol. 207, 942–947 (2015).PubMed 

    Google Scholar 
    71.Lamont, B. B., He, T. & Yan, Z. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biol. Rev. 94, 903–928 (2019).PubMed 

    Google Scholar 
    72.Schwilk, D. W. & Kerr, B. Genetic niche-hiking: an alternative explanation for the evolution of flammability. Oikos 99, 431–442 (2002).
    Google Scholar 
    73.Kilian, D. & Cowling, R. M. Comparative seed biology and co-existence of two fynbos shrub species. J. Veg. Sci. 3, 637–646 (1992).
    Google Scholar 
    74.Hall, S. A., Newton, R. J., Holmes, P. M., Gaertner, M. & Esler, K. J. Heat and smoke pre‐treatment of seeds to improve restoration of an endangered Mediterranean climate vegetation type. Austral Ecol. 42, 354–366 (2017).
    Google Scholar 
    75.Ruprecht, E., Fenesi, A., Fodor, E. I., Kuhn, T. & Tklyi, J. Shape determines fire tolerance of seeds in temperate grasslands that are not prone to fire. Perspect. Plant Ecol. 17, 397–404 (2015).
    Google Scholar 
    76.Mohr, B. A. R. & Friis, E. M. Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. Int. J. Plant Sci. 161, 155–167 (2000).
    Google Scholar 
    77.Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).CAS 
    PubMed 

    Google Scholar 
    78.Linder, H. P. Evolution of diversity: the Cape flora. Trends Plant Sci. 10, 536–541 (2005).CAS 
    PubMed 

    Google Scholar 
    79.Linder, H. P. The radiation of the Cape flora, southern Africa. Biol. Rev. 78, 597–638 (2003).CAS 
    PubMed 

    Google Scholar 
    80.Poinar, G. O. Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion. Hist. Biol. 31, 1304–1309 (2019).
    Google Scholar 
    81.Oliveira, I. D. S. et al. Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol. 26, 2594–2601 (2016).CAS 
    PubMed 

    Google Scholar 
    82.Poinar, G. O., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex. 1, 449–455 (2007).
    Google Scholar 
    83.Cai, C. Y. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 2175 (2019).
    Google Scholar 
    84.Zhang, W., Li, H., Shih, C., Zhang, A. & Ren, D. Phylogenetic analyses with four new Cretaceous bristletails reveal inter-relationships of Archaeognatha and Gondwana origin of Meinertellidae. Cladistics 34, 384–406 (2018).PubMed 

    Google Scholar 
    85.Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 5–6 (2019).
    Google Scholar 
    86.Metcalfe, I. in Biogeography and Geological Evolution of SE Asia (eds Hall, R. & Holloway, J. D.) 25–41 (Backhuys Publishers Press,1998).87.Li, J., Wu, Y., Peng, J. & Batten, D. J. Palynofloral evolution on the northern margin of the Indian Plate, southern Xizang, China during the Cretaceous period and its phytogeographic significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 515, 107–122 (2019).
    Google Scholar 
    88.Smith, A. G., Smith, D. G. & Funnell B. M. Atlas of Mesozoic and Cenozoic Coastlines (Cambridge Univ. Press, 2004).89.Klages, J. P. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).CAS 
    PubMed 

    Google Scholar 
    90.Coetzee, J. A. & Muller, J. The phytogeographic significance of some extinct Gondwana pollen types from the Tertiary of the southwestern Cape (South Africa). Ann. Mo. Bot. Gard. 71, 1088–1099 (1984).
    Google Scholar 
    91.De Villiers, S. E. & Cadman, A. The palynology of Tertiary sediments from a palaeochannel in Namaqualand, South Africa. Palaeontol. Afr. 34, 69–99 (1997).
    Google Scholar 
    92.De Villiers, S. E. & Cadman, A. An analysis of the palynomorphs obtained from Tertiary sediments at Koingnaas, Namaqualand, South Africa. J. Afr. Earth Sci. 33, 17–47 (2001).
    Google Scholar 
    93.Sandersen, A., Scott, L., McLachlan, I. R. & Hancox, P. J. Cretaceous biozonation based on terrestrial palynomorphs from two wells in the offshore Orange Basin of South Africa. Palaeontol. Afr. 46, 21–41 (2011).
    Google Scholar 
    94.Hooghiemstra, H., Lézine, A. M., Leroy, S. A. G., Dupont, L. & Marret, F. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat. Int. 148, 29–44 (1988).
    Google Scholar 
    95.Scholtz, A. The palynology of the upper lacustrine sediments of the Arnot Pipe, Banke, Namaqualand. Ann. S. Afr. Mus. 95, 1–109 (1985).
    Google Scholar 
    96.Sciscio, L. et al. Fluctuations in Miocene climate and sea levels along the south-western South African coast: inferences from biogeochemistry, palynology and sedimentology. Palaeontol. Afr. 48, 2–18 (2013).
    Google Scholar 
    97.Roberts, D. L. et al. Miocene fluvial systems and palynofloras at the southwestern tip of Africa: implications for regional and global fluctuations in climate and ecosystems. Earth Sci. Rev. 124, 184–201 (2013).
    Google Scholar 
    98.Roberts, D. L. et al. Palaeoenvironments during a terminal Oligocene or early Miocene transgression in a fluvial system at the southwestern tip of Africa. Glob. Planet. Change 150, 1–23 (2017).
    Google Scholar 
    99.Grimaldi, D., Engel, M. S. & Nascimbene, P. Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novit. 3361, 1–72 (2002).
    Google Scholar 
    100.Mao, Y. et al. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103 (2018).
    Google Scholar 
    101.Smith, R. D. & Ross, A. J. Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber. Earth Env. Sci. Trans. R. Soc. Edinb. 107, 239–247 (2018).
    Google Scholar 
    102.Schmidt, A. R. & Dilcher, D. L. Aquatic organisms as amber inclusions and examples from a modern swamp forest. Proc. Natl Acad. Sci. USA 104, 16581–16585 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Cole, L. E., Bhagwat, S. A. & Willis, K. J. Fire in the swamp forest: palaeoecological insights into natural and human-induced burning in intact tropical peatlands. Front. For. Glob. Change 2, 48 (2019).
    Google Scholar 
    104.Labandeira, C. C. in Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers (eds Laflamme, M. et al.) 163–216 (Cambridge Univ. Press, 2014).105.Seyfullah, L. J. et al. Production and preservation of resins–past and present. Biol. Rev. 93, 1684–1714 (2018).PubMed 

    Google Scholar 
    106.Putz, M. K. & Taylor, E. L. Wound response in fossil trees assemblages from Antarctica and its potential as a palaeoenvironmental indicator. IAWA J. 17, 77–88 (1996).
    Google Scholar 
    107.McKellar, R. C. et al. Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers. Proc. R. Soc. B 278, 3219–3224 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Pausas, J. G. Generalized fire response strategies in plants and animals. Oikos 128, 147–153 (2019).
    Google Scholar 
    109.Schmidt, A. R. et al. Arthropods in amber from the Triassic Period. Proc. Natl Acad. Sci. USA 109, 14796–14801 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    110.Silvestro, D. et al. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449–457 (2021).PubMed 

    Google Scholar 
    111.Donoghue, P. Evolution: the flowering of land plant evolution. Curr. Biol. 29, 753–756 (2019).
    Google Scholar 
    112.Thulin, M. et al. Family relationships of the enigmatic rosid genera Barbeya and Dirachma from the Horn of Africa region. Plant Syst. Evol. 213, 103–119 (1998).
    Google Scholar 
    113.Wilf, P., Carvalho, M. R., Gandolfo, M. A. & Cúneo, N. R. Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355, 71–75 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Old and ancient trees are life history lottery winners and vital evolutionary resources for long-term adaptive capacity

    1.Blicharska, M. & Mikusiński, G. Incorporating social and cultural significance of large old trees in conservation policy. Conserv. Biol. 28, 1558–1567 (2014).PubMed 

    Google Scholar 
    2.Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. Camb. Phil. Soc. 92, 1434–1458 (2017).
    Google Scholar 
    3.Munné-Bosch, S. Limits to tree growth and longevity. Trends Plant Sci. 23, 985–993 (2018).PubMed 

    Google Scholar 
    4.Lindenmayer, D. B. Conserving large old trees as small natural features. Biol. Conserv. 211, 51–59 (2017).
    Google Scholar 
    5.Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864 (2018).
    Google Scholar 
    6.Slik, J. W. F. et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics: large trees and tropical forest biomass. Glob. Ecol. Biogeogr. 22, 1261–1271 (2013).
    Google Scholar 
    7.McMahon, S. M., Arellano, G. & Davies, S. J. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10, e02615 (2019).
    Google Scholar 
    8.Vieira, S. et al. Slow growth rates of Amazonian trees: consequences for carbon cycling. Proc. Natl Acad. Sci. USA 102, 18502–18507 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Martınez-Ramos, M. & Alvarez-Buylla, E. R. How old are tropical rain forest trees? Trends Plant Sci. 3, 400–405 (1998).
    Google Scholar 
    10.Schöngart, J., Bräuning, A., Barbosa, A. C. M. C., Lisi, C. S. & de Oliveira, J. M. in Dendroecology: Tree-Ring Analyses Applied to Ecological Studies (eds Amoroso, M. M. et al.) 35–73 (Springer, 2017).11.Brienen, R. J. W. & Zuidema, P. A. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J. Ecol. 94, 481–493 (2006).
    Google Scholar 
    12.Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).PubMed 

    Google Scholar 
    13.Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Condit, R., Hubbell, S. P. & Foster, R. B. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 65, 419–439 (1995).
    Google Scholar 
    15.Acker, S. A. et al. Recent tree mortality and recruitment in mature and old-growth forests in western Washington. Ecol. Manage. 336, 109–118 (2015).
    Google Scholar 
    16.Thomas, R. Q., Kellner, J. R., Clark, D. B. & Peart, D. R. Low mortality in tall tropical trees. Ecology 94, 920–929 (2013).
    Google Scholar 
    17.Stephenson, N. L. & Mantgem, P. J. Forest turnover rates follow global and regional patterns of productivity. Ecol. Lett. 8, 524–531 (2005).PubMed 

    Google Scholar 
    18.Drobyshev, I. et al. Lifespan and mortality of old oaks—combining empirical and modelling approaches to support their management in Southern Sweden. Ann. Sci. 65, 401–401 (2008).
    Google Scholar 
    19.Richardson, S. J. et al. Large-tree growth and mortality rates in forests of the central North Island, New Zealand. N. Z. J. Ecol. 33, 208–215 (2009).
    Google Scholar 
    20.Chambers, J. Q., Higuchi, N. & Schimel, J. P. Ancient trees in Amazonia. Nature 391, 135–136 (1998).CAS 

    Google Scholar 
    21.Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Condit, R., D’Angelo, S. & Andrade, A. Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. Ecol. Manage. 190, 131–143 (2004).
    Google Scholar 
    22.Fichtler, E., Clark, D. A. & Worbes, M. Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and C-14. Biotropica 35, 306–317 (2003).
    Google Scholar 
    23.Foster, D. R. Land-use history (1730–1990) and vegetation dynamics in central New England, USA. J. Ecol. 80, 753–771 (1992).
    Google Scholar 
    24.Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).PubMed 

    Google Scholar 
    26.Qiu, T. et al. Is there tree senescence? The fecundity evidence. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2106130118 (2021).27.Barrett, S. C. H. Influences of clonality on plant sexual reproduction. Proc. Natl Acad. Sci. USA 112, 8859–8866 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Thomas, H. Senescence, ageing and death of the whole plant. New Phytol. 197, 696–711 (2013).PubMed 

    Google Scholar 
    29.Munné-Bosch, S. Long-lived trees are not immortal. Trends Plant Sci. 25, 846–849 (2020).PubMed 

    Google Scholar 
    30.Sillett, S. C. et al. Comparative development of the four tallest conifer species. Ecol. Manage. 480, 118688 (2021).
    Google Scholar 
    31.Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428, 851–854 (2004).CAS 
    PubMed 

    Google Scholar 
    32.Thomas, H. Ageing in plants. Mech. Ageing Dev. 123, 747–753 (2002).PubMed 

    Google Scholar 
    33.Dahlgren, J. P., García, M. B. & Ehrlén, J. Nonlinear relationships between vital rates and state variables in demographic models. Ecology 92, 1181–1187 (2011).PubMed 

    Google Scholar 
    34.Klimešová, J., Malíková, L., Rosenthal, J. & Šmilauer, P. Potential bud bank responses to apical meristem damage and environmental variables: matching or complementing axillary meristems? PLoS ONE 9, e88093 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    35.Plomion, C. et al. Oak genome reveals facets of long lifespan. Nat. Plants 4, 440–452 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Hanlon, V. C. T., Otto, S. P. & Aitken, S. N. Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evol. Lett. 1, 95 (2019).
    Google Scholar 
    37.Amaral, J. et al. Advances and promises of epigenetics for forest trees. Trees Livelihoods 11, 976 (2020).
    Google Scholar 
    38.Carbó, M. et al. in Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications: Transcriptional Regulation and Chromatin Remodelling in Plants (eds Alvarez-Venegas, R. et al.) 381–403 (Springer, 2019).39.Sow, M. D. et al. in Advances in Botanical Research (eds Mirouze, M. et al.) Vol. 88, 387–453 (Academic Press, 2018).40.Das, A., Battles, J., Stephenson, N. L. & van Mantgem, P. J. The contribution of competition to tree mortality in old-growth coniferous forests. Ecol. Manage. 261, 1203–1213 (2011).
    Google Scholar 
    41.Etzold, S. et al. One century of forest monitoring data in Switzerland reveals species-and site-specific trends of climate-induced tree mortality. Front. Plant Sci. 10, https://doi.org/10.3389/fpls.2019.00307 (2019).42.McNellis, B. E., Smith, A. M. S., Hudak, A. T. & Strand, E. K. Tree mortality in western U.S. forests forecasted using forest inventory and Random Forest classification. Ecosphere 12, https://doi.org/10.1002/ecs2.3419 (2021).43.Piovesan, G. et al. Lessons from the wild: slow but increasing long-term growth allows for maximum longevity in European beech. Ecology 100, e02737 (2019).PubMed 

    Google Scholar 
    44.Piovesan, G. et al. Radiocarbon dating of Aspromonte sessile oaks reveals the oldest dated temperate flowering tree in the world. Ecology 101, e03179 (2020).PubMed 

    Google Scholar 
    45.Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).PubMed 

    Google Scholar 
    46.Poulter, B. et al. The global forest age dataset and its uncertainties (GFADv1.1). PANGAEA https://doi.org/10.1594/PANGAEA.889943 (2019).47.Di Filippo, A., Biondi, F., Piovesan, G. & Ziaco, E. Tree ring-based metrics for assessing old-growth forest naturalness. J. Appl. Ecol. 54, 737–749 (2017).
    Google Scholar 
    48.Caetano-Andrade, V. L. et al. Tropical trees as time capsules of anthropogenic activity. Trends Plant Sci. 25, 369–380 (2020).CAS 
    PubMed 

    Google Scholar 
    49.Roskilly, B., Keeling, E., Hood, S., Giuggiola, A. & Sala, A. Conflicting functional effects of xylem pit structure relate to the growth–longevity trade-off in a conifer species. Proc. Natl Acad. Sci. USA 116, 15282–15287 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248 (1982).
    Google Scholar 
    51.Joly, S., McLenachan, P. A. & Lockhart, P. J. A statistical approach for distinguishing hybridization and incomplete lineage sorting. Am. Nat. 174, E54–E70 (2009).PubMed 

    Google Scholar 
    52.Leaché, A. D., Harris, R. B., Rannala, B. & Yang, Z. The influence of gene flow on species tree estimation: a simulation study. Syst. Biol. 63, 17–30 (2014).PubMed 

    Google Scholar 
    53.Yu, Y., Dong, J., Liu, K. J. & Nakhleh, L. Maximum likelihood inference of reticulate evolutionary histories. Proc. Natl Acad. Sci. USA 111, 16448–16453 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Zhou, Y. et al. Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity 118, 211–220 (2017).CAS 
    PubMed 

    Google Scholar 
    55.Petit, R. J. & Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol. Evol. Syst. 37, 187–214 (2006).
    Google Scholar 
    56.Tejo, C. F. & Fontúrbel, F. E. A vertical forest within the forest: millenary trees from the Valdivian rainforest as biodiversity hubs. Ecology 100, e02584 (2019).PubMed 

    Google Scholar 
    57.Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).CAS 
    PubMed 

    Google Scholar  More

  • in

    Mapping native and non-native vegetation in the Brazilian Cerrado using freely available satellite products

    1.Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, R541–R545 (2018).CAS 
    PubMed 

    Google Scholar 
    2.Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Change Biol. 26, 300–318 (2019).ADS 

    Google Scholar 
    3.Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants. 5, 944–951 (2019).CAS 
    PubMed 

    Google Scholar 
    4.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Moro, M. F., Nic Lughadha, E., de Araújo, F. S. & Martins, F. R. A phytogeographical metaanalysis of the semiarid caatinga domain in Brazil. Bot. Rev. 82, 91–148 (2016).6.Terra, M., et al. Water availability drives gradients of tree diversity, structure and functional traits in the Atlantic–Cerrado–Caatinga transition, Brazil. J. Plant Ecol. 11, 803–814 (2018).7.Leite, M. B., Xavier, R. O., Oliveira, P. T. S., Silva, F. K. G. & Silva Matos, D. M. Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant Soil. 426, 1–15 (2018).8.Silvertown, J., Araya, Y. & Gowing, D. Hydrological niches in terrestrial plant communities: a review. J. Ecol. 103, 93–108 (2014).
    Google Scholar 
    9.Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).ADS 

    Google Scholar 
    10.Congalton, R. G., Gu, J., Yadav, K., Thenkabail, P. & Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 6(12), 12070–12093 (2014).ADS 

    Google Scholar 
    11.Phiri, D. & Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 9(9), 967 (2017).
    Google Scholar 
    12.Joshi, N. et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 8(1), 70 (2016).ADS 

    Google Scholar 
    13.Xiao, J. et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233, 111383 (2019).ADS 

    Google Scholar 
    14.Françoso, R. D. et al. Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodivers. Conserv. 29, 1477–1500 (2019).
    Google Scholar 
    15.Eiten, G. Delimitation of the cerrado concept. Plant Ecol. 36, 169–178 (1978).
    Google Scholar 
    16.Ribeiro, J.F. & Walter, B.M.T. As principais fitofisionomias do bioma Cerrado in Cerrado: ecologia e flora (ed. Sano, S.M., Almeida, S.P. & Ribeiro, J.F.) 151–212 (EMBRAPA, 2008).17.Oliveria, P.S. & Marquis, R.J. The Cerrados of Brazil: ecology and natural history of a neotropical savanna. (Columbia University Press, 2002).18.Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).ADS 

    Google Scholar 
    19.European Space Agency. Data. https://climate.esa.int/en/projects/land-cover/data/ (2021).20.Pellegrini, A. F. A. Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313–324 (2016).PubMed 

    Google Scholar 
    21.Vourlitis, G. L. et al. Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in Southern Mato Grosso. Soil Sci. Soc. Am. J. 77, 1370–1379 (2013).ADS 
    CAS 

    Google Scholar 
    22.Abrahão, A. et al. Soil types select for plants with matching nutrient-acquisition and use traits in hyperdiverse and severely nutrient-impoverished campos rupestres and cerrado in Central Brazil. J. Ecol. 107, 1302–1316 (2018).
    Google Scholar 
    23.de Assis, A. C. C., Coelho, R. M., da Silva Pinheiro, E. & Durigan, G. Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecol. 212, 1135–1147 (2011).24.Oliveira, P. T. S. et al. Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrology. 10, e1759 (2016).25.de Oliveira Xavier, R., Leite, M. B., Dexter, K. & da Silva Matos, D. M. Differential effects of soil waterlogging on herbaceous and woody plant communities in a Neotropical savanna. Oecologia. 190, 471–483 (2019).26.Zappi, D. C., Moro, M. F., Meagher, T. R. & Nic Lughadha, E. Plant biodiversity drivers in Brazilian campos rupestres: insights from phylogenetic structure. Front. Plant Sci. 8, (2017).27.Neri, A. V., Schaefer, C. E. G. R., Souza, A. L., Ferreira-Junior, W. G. & Meira-Neto, J. A. A. Pedology and plant physiognomies in the cerrado, Brazil. An. Acad. Bras. Ciênc. 85, 87–102 (2013).CAS 
    PubMed 

    Google Scholar 
    28.Simon, M. F. & Pennington, T. Evidence for Adaptation to Fire Regimes in the Tropical Savannas of the Brazilian Cerrado. Int. J. Plant Sci. 173, 711–723 (2012).
    Google Scholar 
    29.de Castro, E. A. & Kauffman, J. B. Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263–283 (1998).
    Google Scholar 
    30.da Silva, D. M. & Batalha, M. A. Soil–vegetation relationships in cerrados under different fire frequencies. Plant Soil 311, 87–96 (2008).CAS 

    Google Scholar 
    31.Durigan, G. Zero-fire: Not possible nor desirable in the Cerrado of Brazil. Flora. 268, 151612 (2020).32.Lloyd, J. & Veenendaal, E. M. Are fire mediated feedbacks burning out of control? (2016)33.Bueno, M. L. et al. The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. J. Ecol. 106, 2109–2120 (2018).
    Google Scholar 
    34.Alencar, A. et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 12, 924 (2020).ADS 

    Google Scholar 
    35.INPE. Projeto TerraClass Cerrado Mapeamento do Uso e Cobertura Vegetal do Cerrado. http://www.inpe.br/cra/projetos_pesquisas/dados_terraclass.php (2019)36.Sano, E. E., Rosa, R., Brito, J. L. S. & Ferreira, L. G. Land cover mapping of the tropical savanna region in Brazil. Environ. Monit. Assess. 166, 113–124 (2009).PubMed 

    Google Scholar 
    37.Sano, E. E. et al. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manag. 232, 818–828 (2019).
    Google Scholar 
    38.Monteiro, L. M. et al. Evaluating the impact of future actions in minimizing vegetation loss from land conversion in the Brazilian Cerrado under climate change. Biodivers. Conserv. 29, 1701–1722 (2018).
    Google Scholar 
    39.Silva, J. F., Farinas, M. R., Felfili, J. M. & Klink, C. A. Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J. Biogeogr. 33, 536–548 (2006).
    Google Scholar 
    40.Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).
    Google Scholar 
    41.Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    42.Gomes, L., Miranda, H. S. & Bustamante, M. M. C. How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome? For. Ecol. Manag. 417, 281–290 (2018).43.Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 203, 71–89 (2017).ADS 

    Google Scholar 
    44.Cava, M. G. B., Pilon, N. A. L., Ribeiro, M. C. & Durigan, G. Abandoned pastures cannot spontaneously recover the attributes of old-growth savannas. J. Appl. Ecol. 55, 1164–1172 (2017).
    Google Scholar 
    45.Brancalion, P. H. S. et al. Governance innovations from a multi-stakeholder coalition to implement large-scale Forest Restoration in Brazil. World Dev. Perspect. 3, 15–17 (2016).
    Google Scholar 
    46.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B. 375, 20190120 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    47.MMA. Plano de Manejo Parque Nacional Chapada dos Veadeiros. Ministro de Estado do Meio Ambiente. Brasília. (2009).48.Hunke, P., Roller, R., Zeilhofer, P., Schröder, B. & Mueller, E. N. Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Reg. 4, 31–43 (2015).
    Google Scholar 
    49.Sampaio, A.B. et. al. Guia de restauração do Cerrado: volume 1: semeadura direta. Embrapa Cerrados-Livro técnico (INFOTECA-E, 2015).50.Schmidt, I. B. et al. Tailoring restoration interventions to the grassland-savanna-forest complex in central Brazil. Restor. Ecol. 27, 942–948 (2019).
    Google Scholar 
    51.Schmidt, I. B. et al. Community-based native seed production for restoration in Brazil: the role of science and policy. Plant Biol. J. 21, 389–397 (2018).
    Google Scholar 
    52.Strassburg, B. B. N. et al. Author Correction: Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 4, 765–765 (2020).PubMed 

    Google Scholar 
    53.Assis, G. B., Pilon, N. A. L., Siqueira, M. F. & Durigan, G. Effectiveness and costs of invasive species control using different techniques to restore cerrado grasslands. Restor. Ecol. 29, (2020).54.Torello-Raventos, M. et al. On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecol. Divers. 6, 101–137 (2013).
    Google Scholar 
    55.da Silva, D. P., Amaral, A. G., Bijos, N. R. & Munhoz, C. B. R. Is the herb-shrub composition of veredas (Brazilian palm swamps) distinguishable?. Acta Bot. Bras. 32, 47–54 (2017).
    Google Scholar 
    56.Munhoz, C. B. R. & Felfili, J. M. Florística do estrato herbáceo-subarbustivo de um campo limpo úmido em Brasília, Brasil. Biota. Neotrop. 7, 205–215 (2007).
    Google Scholar 
    57.Franco, A. C. et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 19, 326–335 (2004).
    Google Scholar 
    58.Oliveras, I. & Malhi, Y. Many shades of green: the dynamic tropical forest–savannah transition zones. Phil. Trans. R. Soc. B. 371, 20150308 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    59.Cianciaruso, MV. & Batalha, MA. A year in a Cerrado wet grassland: a non-seasonal island in a seasonal savanna environment. Braz. J. Biol. 68, 495–501 (2008).60.MapBiomas. MapBiomas v5.0. https://mapbiomas.org (2021).61.Souza, C. M. Jr. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with landsat archive and earth engine. Remote Sens. 12, 2735 (2020).ADS 

    Google Scholar 
    62.Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 

    Google Scholar 
    63.Crouzeilles, R. et al. There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspect. Ecol. Conserv. 17, 80–83 (2019).
    Google Scholar 
    64.Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Change Biol. 26, 7006–7020 (2020).ADS 

    Google Scholar 
    65.Rosan, T. M. et al. Extensive 21st-Century Woody Encroachment in South America’s Savanna. Geophys. Res. Lett. 46, 6594–6603 (2019).ADS 

    Google Scholar 
    66.Schwieder, M. et al. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 52, 361–370 (2016).ADS 

    Google Scholar 
    67.Ribeiro, F. F. et al. Geographic Object-Based Image Analysis Framework for Mapping Vegetation Physiognomic Types at Fine Scales in Neotropical Savannas. Remote Sens. 12, 1721 (2020).ADS 

    Google Scholar 
    68.Jacon, A. D., Galvão, L. S., dos Santos, J. R. & Sano, E. E. Seasonal characterization and discrimination of savannah physiognomies in Brazil using hyperspectral metrics from Hyperion/EO-1. Int. J. Remote Sens. 38, 4494–4516 (2017).
    Google Scholar 
    69.Neves, A. K. et al. Hierarchical mapping of Brazilian Savanna (Cerrado) physiognomies based on deep learning. J. App. Remote Sens. 15, 044504–1–044504–23 (2021).70.de Souza Mendes, F., Baron, D., Gerold, G., Liesenberg, V. & Erasmi, S. Optical and SAR remote sensing synergism for mapping vegetation types in the endangered cerrado/amazon ecotone of nova mutum—mato grosso. Remote Sens. 11, 1161 (2019).ADS 

    Google Scholar 
    71.Sano, E. E., Ferreira, L. G., Asner, G. P. & Steinke, E. T. Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. Int. J. Remote Sens. 28, 2739–2752 (2007).
    Google Scholar 
    72.Flores-Anderson, A.I., Herndon, K.E., Thapa, R.B. & Cherrington, E. The SAR handbook: comprehensive methodologies for forest monitoring and biomass estimation. (SERVIR, 2019).73.Bendini, H. N. et al. Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series. Int. J. Appl. Earth. Obs. Geoinf. 82, 101872 (2019).74.Bendini, H. N. et al. Combining environmental and Landsat analysis ready data for vegetation mapping: a case study in the Brazilian savanna biome. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B3–2020, 953–960 (2020).75.ECMWF. Climate reanalysis. https://climate.copernicus.eu/climate-reanalysis (2021).76.UNESCO. MINOR MODIFICATIONS PROPOSAL TO THE BOUNDARIES of Cerrado Protected Areas World Heritage: Chapada dos Veadeiros and Emas National Parks. (UNESCO Brasília, 2019)77.ICUN. Advisory mission to Cerrado Protected Areas World Heritage Property (Chapada Dos Veadeiros component) (Brazil). (International Union for Conservation of Nature, 2016)78.EMBRAPA. Sistema brasileiro de classificação dos solos. (EMBRAPA, 2006)79.IBGE. Mapa de Solos do Brasil do IBGE escala 1:250.000 https://www.ibge.gov.br/geociencias/downloads-geociencias.html (IBGE, 2020).80.Rodrigues, J. A. et al. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth. Obs. Geoinf. 78, 318–331 (2019).ADS 

    Google Scholar 
    81.NASA, MCD64A1 v6. https://lpdaac.usgs.gov/products/mcd64a1v006/ (2021)82.GEE. Earth Engine Data Catalog. https://developers.google.com/earth-engine/datasets (2021)83.Vreugdenhil, M. et al. Sensitivity of sentinel-1 backscatter to vegetation dynamics: an Austrian case study. Remote Sens. 10, 1396 (2018).ADS 

    Google Scholar 
    84.Harfenmeister, K., Spengler, D. & Weltzien, C. Analyzing temporal and spatial characteristics of crop parameters using sentinel-1 backscatter data. Remote Sens. 11, 1569 (2019).ADS 

    Google Scholar 
    85.European Space Agency. Level-2A Algorithm Overview https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (2021)86.GEE. Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR (2021).87.GEE. USGS Landsat 8 Level 2, Collection 2, Tier 1. https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 (2021)88.Xue, J. & Su, B. Significant remote sensing vegetation indices: a review of developments and applications. J. Sens. 2017, 1353691 (2017).
    Google Scholar 
    89.Parente, L. & Ferreira, L. Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016. Remote Sens. 10, 606 (2018).ADS 

    Google Scholar 
    90.Hill, M. J., Zhou, Q., Sun, Q., Schaaf, C. B. & Palace, M. Relationships between vegetation indices, fractional cover retrievals and the structure and composition of Brazilian Cerrado natural vegetation. Int. J. Remote Sens. 38, 874–905 (2017).
    Google Scholar 
    91.Nomura, K. & Mitchard, E. More than meets the eye: using sentinel-2 to map small plantations in complex forest landscapes. Remote Sens. 10, 1693 (2018).ADS 

    Google Scholar 
    92.Hagen-Zanker, A. A computational framework for generalized moving windows and its application to landscape pattern analysis. Int. J. Appl. Earth. Obs. Geoinf. 44, 205–216 (2016).ADS 

    Google Scholar 
    93.Wantzen, K. M. et al. Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Agric. Ecosyst. Environ. 151, 70–79 (2012).CAS 

    Google Scholar 
    94.ESA. Copernicus DEM: Global and European Digital Elevation Model (COP-DEM). https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198 (2021)95.Breiman, L. Mach. Learn. 45, 5–32 (2001).96.Chen, D. & Wei, H. The effect of spatial autocorrelation and class proportion on the accuracy measures from different sampling designs. ISPRS J. Photogramm. Remote Sens. 64, 140–150 (2009).ADS 

    Google Scholar 
    97.Olofsson, P., Foody, G. M., Stehman, S. V. & Woodcock, C. E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 129, 122–131 (2013).ADS 

    Google Scholar 
    98.Foody, G. M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201 (2002).ADS 

    Google Scholar 
    99.Jank, L., Barrios, S. C., do Valle, C. B., Simeão, R. M. & Alves, G. F. The value of improved pastures to Brazilian beef production. Crop Pasture Sci. 65, 1132 (2014).100.Oliveira, J. et al. Choosing pasture maps: An assessment of pasture land classification definitions and a case study of Brazil. Int. J. Appl. Earth. Obs. Geoinf. 93, 102205 (2020).101.Pereira, O., Ferreira, L., Pinto, F. & Baumgarten, L. Assessing pasture degradation in the Brazilian cerrado based on the analysis of MODIS NDVI time-series. Remote Sens. 10, 1761 (2018).ADS 

    Google Scholar 
    102.Meirelles, M.L., Ferreira, E.A.B. and Franco, A.C. Dinâmica sazonal do carbono em campo úmido do cerrado. Embrapa Cerrados-Documentos (INFOTECA-E, 2006).103.França, A. M. S., Paiva, R. J. O., Sano, E. E. & Carvalho, A. M. Estimates for carbon stocks in soil under humid grassland areas in the federal district of Brazil. OJE 04, 777–787 (2014).
    Google Scholar 
    104.Silveira, F. A. O. et al. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil. 403, 129–152 (2015).
    Google Scholar 
    105.Pereira, E. G., Siqueira-Silva, A. I., de Souza, A. E., Melo, N. M. J. & Souza, J. P. Distinct ecophysiological strategies of widespread and endemic species from the megadiverse campo rupestre. Flora 238, 79–86 (2018).
    Google Scholar 
    106.Moreira, S. N., Pott, V. J., Pott, A., da Silva, R. H. & Júnior, G. A. D. Flora and vegetation structure of Vereda in southwestern Cerrado. Oecol. Aust. 23, 776–798 (2019).
    Google Scholar 
    107.Pinto, J. R. R., Lenza, E. & Pinto, A. de S. Composição florística e estrutura da vegetação arbustivo-arbórea em um cerrado rupestre, Cocalzinho de Goiás, Goiás. Rev. Bras. Bot. 32, (2009).108.Gomes, L., Lenza, E., Maracahipes, L., Marimon, B. S. & Oliveira, E. A. de. Comparações florísticas e estruturais entre duas comunidades lenhosas de cerrado típico e cerrado rupestre, Mato Grosso, Brasil. Acta Bot. Bras. 25, 865–875 (2011).109.Gomes, D.L. Classificação fitofisionômica do cerrado no Parque Nacional da Chapada dos Veadeiros, GO, com a aplicação de uma análise combinatória com filtros adaptativos em imagens TM Landsat. (Dissertação de Mestrado, Brasília, 2008).110.Neyret, M. et al. Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. Ecol. Evol. 6, 5674–5689 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    111.Abreu, R. C. R. et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).112.Morais, V. A. et al. Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil. Cerne 19, 237–245 (2013).
    Google Scholar 
    113.Bispo, P. da C. et al. Woody aboveground biomass mapping of the Brazilian savanna with a multi-sensor and machine learning approach. Remote Sens. 12, 2685 (2020).114.Taberelli, M. & Gascon, C. Lessons from fragmentation research: improving management and policy guidelines for biodiversity conservation. Conserv. Biol. 19, 734–739 (2005).
    Google Scholar 
    115.Holder, D. N. H., Dockary, M. & Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 4, 273–288 (1983).
    Google Scholar 
    116.Li, J. & Roy, D. A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 9, 902 (2017).ADS 

    Google Scholar 
    117.Hunter, F. D. L., Mitchard, E. T. A., Tyrrell, P. & Russell, S. Inter-seasonal time series imagery enhances classification accuracy of grazing resource and land degradation maps in a savanna ecosystem. Remote Sens. 12, 198 (2020).ADS 

    Google Scholar 
    118.Ramos, D. M., Diniz, P., Ooi, M. K. J., Borghetti, F. & Valls, J. F. M. Avoiding the dry season: dispersal time and syndrome mediate seed dormancy in grasses in Neotropical savanna and wet grasslands. J. Veg. Sci. 28, 798–807 (2017).
    Google Scholar 
    119.de Camargo, M. G. G., de Carvalho, G. H., Alberton, B. de C., Reys, P. & Morellato, L. P. C. Leafing patterns and leaf exchange strategies of a cerrado woody community. Biotropica. 50, 442–454 (2018).120.Rüetschi, M., Schaepman, M. & Small, D. Using multitemporal sentinel-1 C-band backscatter to monitor phenology and classify deciduous and coniferous forests in Northern Switzerland. Remote Sens. 10, 55 (2017).ADS 

    Google Scholar 
    121.Sano, E. E., Ferreira, L. G. & Huete, A. R. Synthetic aperture radar (L band) and optical vegetation indices for discriminating the Brazilian savanna physiognomies: a comparative analysis. Earth Interact. 9, 1–15 (2005).
    Google Scholar 
    122.Joshi, N. et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 8, 70 (2016).ADS 

    Google Scholar 
    123.Nicolau, A. P., Flores-Anderson, A., Griffin, R., Herndon, K. & Meyer, F. J. Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest. Int. J. Appl. Earth. Obs. Geoinf. 94, 102214 (2021).124.Notarnicola, C. & Posa, F. Inferring vegetation water content from C- and L-band SAR images. IEEE Trans. Geosci. Remote Sens. 45, 3165–3171 (2007).ADS 

    Google Scholar 
    125.El Hajj, M., Baghdadi, N., Bazzi, H. & Zribi, M. Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands. Remote Sens. 11, 31 (2018).ADS 

    Google Scholar 
    126.JAXA. Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-Forest map. https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm (JAXA, 2021).127.Zimbres, B. et al. Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. For. Ecol. Manag. 499, 119615 (2021).128.Ryan, C. M. et al. Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery. Glob. Change Biol. 18, 243–257 (2011).ADS 

    Google Scholar 
    129.Yu, Y. & Saatchi, S. Sensitivity of L-Band SAR backscatter to aboveground biomass of global forests. Remote Sens. 8, 522 (2016).ADS 

    Google Scholar 
    130.Pilon, N. A. L. et al. The diversity of post-fire regeneration strategies in the cerrado ground layer. J. Ecol. 109, 154–166 (2020).
    Google Scholar 
    131.Schmidt, I. B. & Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora. 268, 151613 (2020).132.Boschetti, L. et al. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 235, 111490 (2019).133.Humber, M. L., Boschetti, L., Giglio, L. & Justice, C. O. Spatial and temporal intercomparison of four global burned area products. Int. J. Digit. Earth. 12, 460–484 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    134.Arruda, V. L. S., Piontekowski, V. J., Alencar, A., Pereira, R. S. & Matricardi, E. A. T. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sens. Appl. Soc. Environ. 22, 100472 (2021).135.Santos, F. L. M. et al. Assessing VIIRS capabilities to improve burned area mapping over the Brazilian Cerrado. Int. J. Remote Sens. 41, 8300–8327 (2020).
    Google Scholar 
    136.Marques, E. Q. et al. Redefining the Cerrado-Amazonia transition: implications for conservation. Biodivers. Conserv. 29, 1501–1517 (2019).
    Google Scholar 
    137.Marimon, B. S. et al. Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecol. Divers. 7, 281–292 (2013).
    Google Scholar 
    138.Mellor, A., Boukir, S., Haywood, A. & Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 105, 155–168 (2015).ADS 

    Google Scholar 
    139.DRYFLOR. Plant diversity patterns in neotropical dry forests and their conservation implications. Science. 353, 1383–1387 (2016). More

  • in

    Species characteristics and cultural value of stone wall trees in the urban area of Macao

    Species composition of stone wall treesFamilies and genera of stone wall treesThere were 96 stone wall trees belonging to 6 genera and 5 families in Macao. Among them, Moraceae and Ficus appeared the most frequently, both reaching 85 times, accounting for 88.5% (Table 1). It showed that Moraceae, a kind of tropical distribution family, was dominant in the stone wall trees communities, which meant that stone wall trees species in Macao appeared distinctly tropical nature18.Table 1 Frequency of occurrence of stone wall Trees in different families and genera.Full size tableSpecies of stone wall treesThere were 16 species of the stone wall trees in Macao including Bridelia tomentosa, Celtis sinensis, Eriobotrya japonica, Ficus altissima, F. benjamina, F. elastica, F. hispida, F. microcarpa, F. pandurata, F. subpisocarpa, F. tinctoria subsp. gibbosa, F. rumphii, F. variegata, F. virens, Leucaena leucocephala, and Trema cannabina (Fig. 2).Figure 216 species of stone wall trees in Macao (photo was taken by Professor Qin Xingsheng).Full size imageBased on the frequency of occurrence of various tree species, the frequency was concentrated in the range of 1–5%. Among them, Ficus microcarpa had the highest frequency, reaching 58 times, with a frequency of 60.4% (Fig. 3). This tree species is robust, adaptable and fast growing, which is the main population of Ficus19.Figure 3Frequency distribution of stone wall tree species in Macao.Full size imageStone wall trees in the historic center of MacaoThe historic center of Macao, covering an area of about 2.8 km2, is the heartland of Macao’s historical and cultural heritage, which plays a significant role in the cultural heritage around the world18. The historic center of Macao provides valuable historical and cultural resources that enable Macao to transform into a world tourism center20.A total of 14 plots were located in the historic Center of Macao (Fig. 4), with 45 stone wall trees, accounting for 47.9% of the total number of trees in the survey. Among them, Jardim Luís de Camões has the largest number of 9 stone wall trees. The park, built in the mid-eighteenth century, is one of the oldest gardens in Macao and has the largest number of old trees in Macao. The park had provided good time and environmental conditions for the growth of stone wall trees.Figure 4(a) Schematic diagram of distribution and number of stone wall trees in the historic Center of Macao. (b) Schematic diagram of historic center of Macao. (URL of the Macao map: https://www.d-maps.com/m/asia/china/macau/macau02.gif).Full size imageAccording to Decree No. 56/84/M of the Macao Special Administrative Region Government Printing Department, immovable property that represents the creation of man, or the development of nature or technology and has cultural significance is considered tangible cultural property. The occurrence of the stone wall tree was inextricably linked to ancient wall-building techniques of that time, which was of great significance for the study of the technological development and ecological landscape of the historic center of Macao. The concept of “historic urban landscape” was proposed by Zhang Song20, who argued that cities were organisms in continuous evolution, emphasizing respect for the interrelationship between natural and man-made environments. The stone wall trees in the historic center of Macao have been associated with the local culture and ecology tightly and should be preserved as important urban landscape.Symbiotic relationship between tree and stone wallsAs shown in the table below (Table 2), it was found that most of the stone wall trees had root systems that were not only superficially attached to the wall but also extended to the top or bottom of the wall. In particular, Ficus spp. whose strong root system could closely mosaic with the wall, thus forming a strong symbiosis.Table 2 The relationship between the root system of the stone wall tree and the wall.Full size tableStone walls can imitate the traditional nature-accommodating features to permit spontaneous establishment of a diverse plant assemblage. Besides vegetative diversities in terms of species composition, growth form and biomass structure, stone walls can support a mass collection of urban wildlife and provide various ecosystem service. It is highly recommended that modern urban design be created to embrace stone wall landscape as an integral part of naturalistic or ecological design.Vision for the establishment of the stone wall tree trail system in the historic of MacaoThe traditional street environment in the Macao Peninsula is a kind of distinctive urban landscape, which can highlight the specificity and value of the urban context. The combination of the stone wall trees and walls, together with the traditional streets, form a spatial urban landscape. Starting from the location of the stone wall tree landscape, the dots and lines are prospective to promote the establishment of a comprehensive stone wall tree landscape trail system (Fig. 5), so that the public can make use of the existing biological resources to have a better understanding of the land on which they live.Figure 5Schematic diagram of the stone wall trees trail system on the Macao Peninsula (URL of the Macao map: https://www.d-maps.com/m/asia/china/macau/macau02.gif and the finished map is created by Meisi Chen through the Photoshop CS6 and Arc GIS 10.2).Full size imageSince 2012, the Macao Government has been implementing the “Strolling along Macao Street” project, which aims at studying and exploring the history and culture of the streets of Macao through an in-depth cultural tourism route and promoting it to different levels of society. The establishment of the stone wall tree trail system can rely on this project to raise the public’s awareness of the protection and cultural identity of the stone wall tree landscape through a variety of ways. For example, route design competition, photography competition and exhibition, recruitment of “Stonewall Tree Protection Ambassadors” and other forms of participation, so that the public could complete the “role change” in the high degree of such participation—from “onlookers” to “bystanders”.Survey results of associated plant speciesSpecies composition and occurrence of frequencyThe survey showed that there were 101 species of stone wall tree associated plants in Macao, under 88 genera and 51 families. Most associated plants belonged to Euphorbiaceae, Compositae, and Araceae.There were 85 species with a frequency of 1–5 times, accounting for 84.2% of total species. A total of 11 species appeared 11–15 times, accounting for 4.0% (Fig. 6). There were a total of 4 species that appeared more than 15 times. They were Cocculus orbiculatus, Pteris cretica, Paederia scandens, and Pyrrosia adnascens. Most of the associated species appeared only 1–5 times, indicating that most plants were selective and accidental for the growth conditions of stone wall sites.Figure 6Occurrence frequency in various species of associated plants.Full size imageLife form compositionHerbaceous plants with 37 species, accounting the percentage of 52.3% (Fig. 7), were dominant in the associated plant species because the seeds of herbaceous plants are lighter and can be propagated to the wall surface by wind force.Figure 7Life form of associated plants with stone wall trees in Macao.Full size imageSimilarity analysis of the associated plants in MacaoIn order to compare the similarity of associated plant species in different environment, the surveyed sample sites for this study were divided into three categories: motorized lanes, non-motorized lanes, and park habitats (Table 3). According to Jaccard’s similarity principle, Sj is extremely dissimilar when it is 0.00–0.25, and the analysis showed that the similarity of companion plant species in all three habitats was extremely dissimilar. Therefore, it indicated that the companion plants in different habitats had obvious diversity and uniqueness.Table 3 Jaccard similarity index for companion plant species composition among three habitats.Full size table More

  • in

    Integrated molecular and behavioural data reveal deep circadian disruption in response to artificial light at night in male Great tits (Parus major)

    ALAN advances timing of activity and BMAL1 expressionDaily cycles of activity were strongly affected by the ALAN treatment (GAMM, p = 0.001, Fig. 2A and Fig. S2; Table S4). In the 5 lux group birds were generally active 6–7 h before lights-on, whereas birds in the other two light treatments (0.5 and 1.5 lux) advanced morning activity to a much lesser extent. Because of the advanced onset of activity, 40% of the overall diel activity in the 5 lux group occurred during the night, compared to 11 and 14% in the 0.5 and 1.5 lux groups, and less than 1% in the control dark group. Thus, with increasing ALAN, nocturnal activity also increased (LMM, treatment p  0.1 for pairwise comparison), and thereafter their timing remained stable. The group exposed to 5 lux showed a much larger instantaneous phase advance of almost five hours (mean ± SEM = 289 ± 21 min), and thereafter continued to gradually phase-advance until reaching a stable phase after 10 days (interaction treatment × day, p  More