Unique high Arctic methane metabolizing community revealed through in situ 13CH4-DNA-SIP enrichment in concert with genome binning
1.Ferrari, B. C., Winsley, T., Gillings, M. & Binnerup, S. Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat. Protoc. 3, 1261–1269 (2008).CAS
PubMed
Google Scholar
2.Nichols, D. et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).ADS
CAS
PubMed
PubMed Central
Google Scholar
3.Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).ADS
CAS
PubMed
Google Scholar
4.Gies, E. A., Konwar, K. M., Beatty, J. T. & Hallam, S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. AEM. 80, 6807–6818 (2014).ADS
Google Scholar
5.Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533 (2013).CAS
PubMed
Google Scholar
6.Lazar, C. S., Baker, B. J., Seitz, K. W. & Teske, A. P. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J. 11, 1118–1129 (2017).CAS
PubMed
PubMed Central
Google Scholar
7.Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68, 5367–5373 (2002).ADS
CAS
PubMed
PubMed Central
Google Scholar
8.Dumont, M. G. & Murrell, J. C. Stable isotope probing—Linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005).CAS
PubMed
Google Scholar
9.Gadkari, P. S., McGuinness, L. R., Männistö, M. K., Kerkhof, L. J. & Häggblom, M. M. Arctic tundra soil bacterial communities active at subzero temperatures detected by stable isotope probing. FEMS Microbiol. Ecol. 96, fiz192 (2020).CAS
PubMed
Google Scholar
10.Achouak, W. & el Zahar Haichar, F. Stable isotope probing of microbiota structure and function in the plant rhizosphere. Methods Mol. Biol. 2046, 233–243 (2019).CAS
PubMed
Google Scholar
11.Graef, C., Hestnes, A. G., Svenning, M. M. & Frenzel, P. The active methanotrophic community in a wetland from the High Arctic. Environ. Microbiol. Rep. 3, 466–472 (2011).CAS
PubMed
Google Scholar
12.He, R. et al. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ. Microbiol. 14, 1403–1419 (2012).CAS
PubMed
Google Scholar
13.Martineau, C., Whyte, L. G. & Greer, C. W. Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian High Arctic. Appl. Environ. Microbiol. 76, 5773–5784 (2010).ADS
CAS
PubMed
PubMed Central
Google Scholar
14.Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).CAS
PubMed
PubMed Central
Google Scholar
15.Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96, 1–63. https://doi.org/10.1016/s0065-2113(07)96005-8 (2007).CAS
Article
Google Scholar
16.Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).ADS
CAS
PubMed
Google Scholar
17.Ricke, P. et al. First genome data from uncultured upland soil cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to Methylocapsa acidiphila B2 and for high-affinity methanotrophy involving particulate methane monooxygenase. Appl. Environ. Microbiol. 71, 7472–7482 (2005).ADS
CAS
PubMed
PubMed Central
Google Scholar
18.Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).PubMed
PubMed Central
Google Scholar
19.Jørgensen, C. J., Johansen, K. M. L., Westergaard-Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 8, 20–23 (2015).ADS
Google Scholar
20.Emmerton, C. A. et al. The net exchange of methane with high Arctic landscapes during the summer growing season. Biogeosciences 11, 3095–3106 (2014).ADS
Google Scholar
21.Martineau, C. et al. Atmospheric methane oxidizers are present and active in Canadian high Arctic soils. FEMS Microbiol. Ecol. 89, 257–269 (2014).CAS
PubMed
Google Scholar
22.Christiansen, J. R. et al. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry 122, 15–33 (2015).CAS
Google Scholar
23.Lau, M. et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891 (2015).CAS
PubMed
PubMed Central
Google Scholar
24.Altshuler, I. et al. Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH4 and CO2 gas fluxes. Environ. Microbiol. 21, 3711–3727 (2019).CAS
PubMed
Google Scholar
25.Holmes, A. J. et al. Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol. 65, 3312–3318 (1999).ADS
CAS
PubMed
PubMed Central
Google Scholar
26.Kolb, S., Knief, C., Dunfield, P. F. & Conrad, R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7, 1150–1161 (2005).CAS
PubMed
Google Scholar
27.Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A. K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20, 1016–1029 (2018).CAS
PubMed
PubMed Central
Google Scholar
28.Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl. Acad. Sci. 116, 8515–8524 (2019).CAS
PubMed
PubMed Central
Google Scholar
29.Cai, Y., Zheng, Y., Bodelier, P. L., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 7, 11728 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
30.Curry, C. The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences 6, 2355–2367 (2009).ADS
CAS
Google Scholar
31.Stackhouse, B. T. et al. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosci. 120, 1764–1784 (2015).CAS
Google Scholar
32.Collier, S. M., Ruark, M. D., Oates, L. G., Jokela, W. E. & Dell, C. J. Measurement of greenhouse gas flux from agricultural soils using static chambers. J. Vis. Exp. JoVE 90, 52110 (2014).
Google Scholar
33.Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266 (2002).CAS
PubMed
Google Scholar
34.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).CAS
PubMed
Google Scholar
35.Martineau, C., Whyte, L. G. & Greer, C. W. Development of a SYBR safe™ technique for the sensitive detection of DNA in cesium chloride density gradients for stable isotope probing assays. J. Microbiol. Methods 73, 199–202 (2008).CAS
PubMed
Google Scholar
36.McDonald, I. R., Bodrossy, L., Chen, Y. & Murrell, J. C. Molecular ecology techniques for the study of aerobic methanotrophs. Appl. Environ. Microbiol. 74, 1305–1315 (2008).ADS
CAS
PubMed
Google Scholar
37.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS
PubMed
Google Scholar
38.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Google Scholar
39.Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner (Lawrence Berkeley National Lab. (LBNL), Berkeley, 2014).
Google Scholar
40.Li, F., Zhu, R., Bao, T., Wang, Q. & Xu, H. Sunlight stimulates methane uptake and nitrous oxide emission from the High Arctic tundra. Sci. Total Environ. 572, 1150–1160 (2016).ADS
CAS
PubMed
Google Scholar
41.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed
PubMed Central
Google Scholar
42.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS
PubMed
PubMed Central
Google Scholar
43.Rodriguez-R, L. M. et al. The Microbial Genomes Atlas (MiGA) webserver: Taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46, W282–W288 (2018).CAS
PubMed
PubMed Central
Google Scholar
44.Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).CAS
Google Scholar
45.Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132–e132 (2010).PubMed
PubMed Central
Google Scholar
46.Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).
Google Scholar
47.Huntemann, M. et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v. 4). Stand. Genom. Sci. 10, 86 (2015).
Google Scholar
48.Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v. 4). Stand. Genom. Sci. 11, 17 (2016).
Google Scholar
49.Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).CAS
PubMed
PubMed Central
Google Scholar
50.Holm, L. Using Dali for Protein Structure Comparison. In Structural Bioinformatics. Methods in Molecular Biology. (ed. Gáspári Z.) vol 2112 (Humana, New York, 2020) https://doi.org/10.1007/978-1-0716-0270-6_3.51.Yang, J. et al. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 12, 7 (2015).CAS
PubMed
PubMed Central
Google Scholar
52.Wen, X., Yang, S. & Liebner, S. Evaluation and update of cutoff values for methanotrophic pmoA gene sequences. Arch. Microbiol. 198, 629–636 (2016).CAS
PubMed
Google Scholar
53.Shrestha, P. M., Kammann, C., Lenhart, K., Dam, B. & Liesack, W. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil. ISME J. 6, 1115–1126 (2012).CAS
PubMed
Google Scholar
54.Tremblay, J. & Yergeau, E. Systematic processing of ribosomal RNA gene amplicon sequencing data. GigaScience 8, giz146 (2019).PubMed
PubMed Central
Google Scholar
55.Fish, J. A. et al. FunGene: The functional gene pipeline and repository. Front. Microbiol. 4, 291 (2013).PubMed
PubMed Central
Google Scholar
56.Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).CAS
PubMed
PubMed Central
Google Scholar
57.Doxey, A. C., Mansfield, M. J. & Montecucco, C. Discovery of novel bacterial toxins by genomics and computational biology. Toxicon 147, 2–12 (2018).CAS
PubMed
Google Scholar
58.Pearson, W. R. An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinform. 42, 1–8 (2013).
Google Scholar
59.Sachs, T., Giebels, M., Boike, J. & Kutzbach, L. Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia. Glob. Change Biol. 16, 3096–3110 (2010).
Google Scholar
60.Brummell, M. E., Farrell, R. E., Hardy, S. P. & Siciliano, S. D. Greenhouse gas production and consumption in High Arctic deserts. Soil Biol. Biochem. 68, 158–165 (2014).CAS
Google Scholar
61.Allan, J. et al. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils. Environ. Microbiol. Rep. 6, 136–144 (2014).CAS
PubMed
Google Scholar
62.Natali, S. M. et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 120, 525–537 (2015).CAS
Google Scholar
63.Qiu, Q., Noll, M., Abraham, W.-R., Lu, Y. & Conrad, R. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J. 2, 602–614 (2008).CAS
PubMed
Google Scholar
64.Esson, K. C. et al. Alpha-and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl. Environ. Microbiol. 82, 2363–2371 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
65.Kolb, S., Knief, C., Stubner, S. & Conrad, R. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69, 2423–2429 (2003).ADS
CAS
PubMed
PubMed Central
Google Scholar
66.Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714 (2003).ADS
CAS
PubMed
PubMed Central
Google Scholar
67.Belova, S. E., Danilova, O. V., Ivanova, A. A., Merkel, A. Y. & Dedysh, S. N. Methane-oxidizing communities in lichen-dominated forested tundra are composed exclusively of high-affinity USCα methanotrophs. Microorganisms 8, 2047 (2020).CAS
PubMed Central
Google Scholar
68.Hirayama, H. et al. Methylomarinovum caldicuralii gen. nov., sp. Nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int. J. Syst. Evol. Microbiol. 64, 989–999 (2014).CAS
PubMed
Google Scholar
69.Graham, D. W., Chaudhary, J. A., Hanson, R. S. & Arnold, R. G. Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb. Ecol. 25, 1–17 (1993).CAS
PubMed
Google Scholar
70.Macalady, J. L., McMillan, A. M., Dickens, A. F., Tyler, S. C. & Scow, K. M. Population dynamics of type I and II methanotrophic bacteria in rice soils. Environ. Microbiol. 4, 148–157 (2002).PubMed
Google Scholar
71.Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS
PubMed
Google Scholar
72.Zarzycki, J. & Fuchs, G. Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus. Appl. Environ. Microbiol. 77, 6181–6188 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
73.Ward, L. M. et al. Genomic evidence for phototrophic oxidation of small alkanes in a member of the chloroflexi phylum. bioRxiv 531582 (2019) https://doi.org/10.1101/531582.74.Khadem, A. F. et al. Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J. Bacteriol. 193, 4438–4446 (2011).CAS
PubMed
PubMed Central
Google Scholar
75.Rasigraf, O., Kool, D. M., Jetten, M. S., Damsté, J. S. S. & Ettwig, K. F. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl. Environ. Microbiol. 80, 2451–2460 (2014).ADS
PubMed
PubMed Central
Google Scholar
76.Kalyuzhnaya, M. G., Gomez, O. A., Murrell J. C. The Methane-Oxidizing Bacteria (Methanotrophs). In: McGenity T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-030-14796-9_10 (2019).77.Contin, M., Rizzardini, C. B., Catalano, L. & De Nobili, M. Contamination by mercury affects methane oxidation capacity of aerobic arable soils. Geoderma 189, 250–256 (2012).ADS
Google Scholar
78.Boden, R. & Murrell, J. C. Response to mercury (II) ions in Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 324, 106–110 (2011).CAS
PubMed
Google Scholar
79.Yan, X., Chu, F., Puri, A. W., Fu, Y. & Lidstrom, M. E. Electroporation-based genetic manipulation in type I methanotrophs. Appl. Environ. Microbiol. AEM 82, 2062–2069 (2016).ADS
CAS
Google Scholar
80.Strong, P. J. et al. The opportunity for high-performance biomaterials from methane. Microorganisms 4, 11 (2016).PubMed Central
Google Scholar
81.Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction. ISME J. 12, 1929–1939 (2018).CAS
PubMed
PubMed Central
Google Scholar
82.Iguchi, H., Yurimoto, H. & Sakai, Y. Soluble and particulate methane monooxygenase gene clusters of the type I methanotroph Methylovulum miyakonense HT12. FEMS Microbiol. Lett. 312, 71–76 (2010).CAS
PubMed
Google Scholar
83.Semrau, J. D. et al. Methanobactin and MmoD work in concert to act as the ‘copper-switch’in methanotrophs. Environ. Microbiol. 15, 3077–3086 (2013).CAS
PubMed
Google Scholar
84.Csaki, R., Bodrossy, L., Klem, J., Murrell, J. C. & Kovacs, K. L. Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): Cloning, sequencing and mutational analysis. Microbiology 149, 1785–1795 (2003).CAS
PubMed
Google Scholar
85.Lund, J., Woodland, M. P. & Dalton, H. Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147, 297–305 (1985).CAS
PubMed
Google Scholar
86.Lund, J. & Howard, D. Further characterisation of the FAD and Fe2S2 redox centres of component C, the NADH: Acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147, 291–296 (1985).CAS
PubMed
Google Scholar
87.Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl. Acad. Sci. 107, 14390–14395 (2010).ADS
CAS
PubMed
PubMed Central
Google Scholar
88.Katayama, T. et al. Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl. Environ. Microbiol. 73, 2360–2363 (2007).ADS
CAS
PubMed
PubMed Central
Google Scholar
89.Scanlan, J., Dumont, M. G. & Murrell, J. C. Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. FEMS Microbiol. Lett. 301, 181–187 (2009).CAS
PubMed
Google Scholar
90.Ali, H. & Murrell, J. C. Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Microbiology 155, 761–771 (2009).CAS
PubMed
Google Scholar
91.Yu, Z., Groom, J., Zheng, Y., Chistoserdova, L. & Huang, J. Synthetic methane-consuming communities from a natural lake sediment. MBio 10, e01072-01019 (2019).
Google Scholar
92.Tarlera, S. & Denner, E. B. Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β-Proteobacteria. Int. J. Syst. Evol. Microbiol. 53, 1085–1091 (2003).CAS
PubMed
Google Scholar
93.Beller, H. R. et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J. Bacteriol. 188, 1473–1488 (2006).CAS
PubMed
PubMed Central
Google Scholar
94.Kojima, H. & Fukui, M. Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. 60, 2862–2866 (2010).CAS
PubMed
Google Scholar
95.Boden, R., Hutt, L. P. & Rae, A. W. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov. Transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and 4 new families within the orders Nitrosomonadales and Rhodocyclales. Int. J. Syst. Evol. Microbiol. 67, 1191–1205 (2017).CAS
PubMed
Google Scholar
96.Yoon, S., Cruz-García, C., Sanford, R., Ritalahti, K. M. & Löffler, F. E. Denitrification versus respiratory ammonification: Environmental controls of two competing dissimilatory NO3−/NO2− reduction pathways in Shewanella loihica strain PV-4. ISME J. 9, 1093 (2015).CAS
PubMed
Google Scholar
97.Bonin, P. Anaerobic nitrate reduction to ammonium in two strains isolated from coastal marine sediment: A dissimilatory pathway. FEMS Microbiol. Ecol. 19, 27–38 (1996).CAS
Google Scholar
98.Tiedje, J. M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol. Anaerob. Microorg. 717, 179–244 (1988).
Google Scholar
99.Stein, L. Y. & Klotz, M. G. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem. Soc. Trans. 39, 1826–1831 (2011).CAS
PubMed
Google Scholar
100.Tays, C., Guarnieri, M. T., Sauvageau, D. & Stein, L. Y. Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Front. Microbiol. 9, 2239 (2018).PubMed
PubMed Central
Google Scholar
101.van den Berg, E. M., Boleij, M., Kuenen, J. G., Kleerebezem, R. & van Loosdrecht, M. DNRA and denitrification coexist over a broad range of acetate/N-NO3− ratios, in a chemostat enrichment culture. Front. Microbiol. 7, 1842 (2016).PubMed
PubMed Central
Google Scholar
102.Edwards, C. R. et al. Draft genome sequence of uncultured upland soil cluster Gammaproteobacteria gives molecular insights into high-affinity methanotrophy. Genome Announc. 5, e00047-e117 (2017).PubMed
PubMed Central
Google Scholar
103.Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544 (2018).CAS
PubMed
PubMed Central
Google Scholar
104.Gupta, V., Smemo, K. A., Yavitt, J. B. & Basiliko, N. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. Microb. Ecol. 63, 438–445 (2012).CAS
PubMed
Google Scholar More