More stories

  • in

    New outcomes on how silicon enables the cultivation of Panicum maximum in soil with water restriction

    Biological damage from water deficit in foragesReports on the tolerance to water deficit damage in the forage cultivars under study are scarce, especially in relation to N and C accumulation, Si effects, and physiological attributes.Pastures grown under water restriction with and without silicon showed a decreased cumulative amount of the beneficial element. However, pastures grown with or without water restriction that had received silicon had an increase in the cumulative amount of silicon (Fig. 2a,d). Carbon content decreased in pastures that had received silicon, regardless of water availability (Fig. 2b,e). Water restriction increased N content in both treatments with and without Si for both forages. Silicon fertigation only in plants with water restriction increased N content in cultivar Massai but decreased it in cultivar BRS Zuri (Fig. 2c,f).Figure 2Silicon (Si) content (a, d), carbon (C) content (b, e) and nitrogen (N) content (c, f) in the aerial part of forage plants cultivated in soil with different soil water retention capacity (WRC) (70 and 40%) absence (− Si) and in the presence of silicon fertigation (+ Si). *Significant to 5% probability by the F test. Lowercase letters show differences in relation to Si and uppercase in relation to WRC. The bars represent the standard error of the mean, n = 6.Full size imageThe present study evidenced, especially with Si addition to the crop, that water deficit in the P. maximum pasture, regardless of cultivar, significantly impairs plant growth by changing homeostasis, i.e., decreasing the C:N ratio by reducing plant C content. This induces instability in the metabolism of the crop, especially in terms of physiological processes31,53. Thus, it was clear that water deficit aggravated physiological stress in the pastures due to an increase in electrolyte leakage, followed by a decrease in Fv/Fm. In other words, photosynthetic efficiency decreased in association with lower relative water content in the plant, which reduced the growth of both P. maximum cultivars.Water deficit in both pastures with and without silicon supply decreased the C:N ratio, except in cultivar Massai, in which the omission of silicon increased this ratio. In an adequate condition of water availability, there was no difference between the absence and presence of Si in the pastures (Fig. 3a,d). Other authors report the same results for different forages, such as sugarcane53. Water deficit in the pastures did not change the C:Si ratio, regardless of Si. In pastures with or without water deficit, silicon fertigation decreased the C:Si ratio (Fig. 3b,e).Figure 3Ratio C:N (a, d), ratio C:Si (b, e) and carbon use efficiency (c, f) in the aerial part of forage plants cultivated in soil with different soil water retention capacities (WRC) (70 and 40%) %) absence (− Si) and in the presence of silicon fertigation (+ Si). *Significant at 5% probability. ns: not significant by the test F. Lowercase letters show differences in relation to Si and capitalization in relation to WRC. The bars represent the standard error of the mean, n = 6.Full size imageAlthough this species has a high capacity for dry matter accumulation because it has a high protein content54, it is sensitive to drought55. Drought damage to plant growth, is due to the loss of stoichiometric stability of nutrients56, which balances the mass of various elements between plants and their environments57.A promising alternative to mitigate water deficit damage in the pasture is the use of Si. This element plays a vital role in the physiological, metabolic, and/or functional processes of plants58 when properly absorbed by the crop. The present study evidences the high capacity of the pastures under study to absorb Si when under water restriction. This is because P. maximum is a Si-accumulating species (leaf Si content > 10 g kg−1), which means that these plants might have specific efficient carriers in the process of Si absorption (monosilicic acid)37,59.Biological benefits of silicon in mitigating water deficit in forageThe high Si absorption by the pastures was important because it was enough to change C and N contents in the pastures under water deficit, and consequently the C:N ratio. However, Si absorption varied depending on the cultivar. In cultivar Massai, the absorption of this element decreased due to an increase in N content, while the opposite occurred in cultivar BRS Zuri. This may have occurred because cultivar Massai has higher N absorption efficiency than BRS Zuri. One cultivar or species may have greater absorption efficiency than another because it has a more efficient nitrogen transporter. In other words, it has better kinetic indexes, such as low KM and minimum concentration, which is governed by genetics31.The decrease in the C:Si ratio in plants grown under water restriction is a result of Si supply, which increased the absorption of this element and decreased C content in both pastures. Long et al.28 also reported the importance of silicon in elementary stoichiometry in a study with banana trees under water deficit.The benefit of stoichiometric homeostasis reflected the high metabolic efficiency of C, that is, Si significantly increased C use efficiency in P. maximum pastures under water restriction (Fig. 3b,e). Other authors report this effect in Brachiaria spp. pastures under drought25 and in sugarcane plants without water stress60.Carbon use efficiency (CUE) decreased in pastures with water restriction without silicon application. However, this variable increased in pastures where this element had been applied. In pastures under adequate water availability, silicon fertigation also increased CUE (Fig. 3c,f). Sugarcane plants under water deficit also showed decreased carbon use efficiency53. This increase in C use efficiency (Fig. 3c,f) by Si may have occurred in both pastures because there was a clear decrease in C content in plants grown under water restriction (Fig. 2b,e).Hao et al.29 reported similar results in native grass species, in which high Si content correlated with low levels of C. This decrease in C content may have occurred because when absorbing the beneficial element, the plant applies an “exchange strategy” to C, particularly in cell wall components such as cellulose. This is because the energy cost of including Si in the carbon chain is lower than that of including C itself61. This strategy thus improves the homeostasis of resistance to water deficiency in pastures. Reports indicate that the increase in Si in plant tissues may decrease lignin synthesis in the cell wall, which has a high energy cost62; The plant uses a “low cost strategy” when occupying binding sites between cell wall components, providing similar structural resistance to that of lignin63.These findings may support the promising role of Si in pasture management. This was evidenced from the effect of Si on elemental stoichiometry homeostasis in both forages grown under water restriction, which favored vital physiological processes by increasing the relative water content of the plant by approximately 14% (Fig. 4a,d). However, the effect of Si on the stoichiometric homeostasis of C might have induced energy savings in the plant, which is critical under water deficit conditions. Plants under water deficit have a limitation in the CO2 assimilation rate accompanied by an increase in the activity of another sink of absorbed energy, for example, photorespiration30. Studies on other crops confirm this finding, indicating a benefit of Si on stoichiometric homeostasis in plants under water deficit. Some examples are the studies of Rocha et al.25 on pasture, and Oliveira Filho et al.26 and Teixeira et al.64 on sugarcane.Figure 4Relative water content (a, d), electrolyte leakage index (b, e) and Total phenolic content (c, f) of forage plants cultivated in soil with different soil water retention capacities (WRC) (70 and 40%) absence (− Si) and in the presence of silicon fertigation (+ Si). *Significant at 5% probability. ns: not significant by the test F. Lowercase letters show differences with respect to Si and uppercase in relation to WRC. The bars represent the standard error of the mean, n = 6.Full size imagePastures under water deficit without silicon fertigation showed decreased relative water content in the plants. On the other hand, silicon fertigation increased the relative water content of forages under water deficit (Fig. 4a,d). Wang et al.65 performed a review to elucidate the effect of silicon on plant water transport processes. The authors indicated that silica deposition on leaf cuticle and stomata decreases water loss from transpiration under water deficit stress. However, accumulating evidence suggest that silicon maintains leaf water content not by reducing water loss, but rather through osmotic adjustments, enhancing water transport and uptake. According to the same authors, enhancement of stem water transport efficiency by silicon is due to silica depositing in the cell wall of vessel tubes, avoiding collapse and embolism.The physiological improvement promoted by Si in attenuating water deficit in pastures probably correlates with the reduction of oxidative stress. In this sense, cell electrolyte leakage decreased (Fig. 4b,e), from the increase of the non-enzymatic antioxidant compound in both forages (Fig. 4c,f) or from the activity of antioxidant enzymes66. This reduces reactive oxygen species, which are common in plants under water deficit67.Water deficiency affected the production of phenolic compounds depending on the cultivar. In Massai, this variable only increased with Si supply; in BRS Zuri, however, it decreased regardless of Si. Plants with silicon fertigation had increased phenolic compound content in pastures under both water availability conditions (Fig. 4c,f). Other authors have reported this effect of Si in increasing phenolic compounds in crops such as faba bean68 and sugar beet69. This supports the hypothesis that Si can attenuate the oxidative stress caused by water deficit by increasing the non-enzymatic antioxidant compound.Exogenous application of Si protects the photosynthetic pigments from oxidative damage by reducing membrane lipid peroxidation. In peanut, this type of application either maintained or reduced H2O268. Another effect of Si that demonstrates the attenuation of oxidative stress in pastures under water deficit was the increase in Fv/Fm; in other words, it favored photosynthetic efficiency. In both pastures, the condition of water restriction without silicon supply decreased the quantum efficiency of PSII (Fv/Fm). However, the supply of silicon in pastures, regardless of water condition, increased the photochemical efficiency of PSII (Fig. 5a,c).Figure 5Quantum efficiency of photosystem II (Fv/Fm) (a, c) and total chlorophyll index (Chl a + b) (b, d) of forage plants grown in soil with different soil water retention capacities (WRC) (70 and 40%) absence (− Si) and in the presence of silicon fertigation (+ Si). *Significant at 5% probability. ns: not significant by the test F. Lowercase letters show differences in relation to Si and capitalization in relation to WRC. The bars represent the standard error of the mean, n = 6.Full size imageThe protection of photosynthetic pigments by Si is also indicative of decreased oxidative stress58. The present study evidenced this situation, as the beneficial element increased the total chlorophyll index in both forages under water deficit (Fig. 5b,d). Wang et al.69 reported that Si delays the degradation of chlorophyll–protein complexes, as the element alters the protein components of the thylakoid, thus optimizing the light collection and stability of PSI. Another benefit of Si would be an increase in osmoprotection as a result of the greater accumulation of metabolites, mainly sugars and sugar alcohols (talose, mannose, fructose, sucrose, cellobiose, trehalose, pinitol, and myo-inositol) and amino acids (glutamic acid, serine, histidine, threonine, tyrosine, valine, isoleucine, and leucine), as seen in peanut plants68.Si benefit on forage productivity under water deficitWater restriction with or without silicon supply decreased the height of both pastures, and silicon application in both water regimes increased plant height (Fig. 6a,d). Water restriction with or without silicon supply decreased the number of tillers in both pastures, except for the cultivar BRS Zuri that had received Si. Silicon application increased the number of tillers in both pastures in both water regimes, except for the cultivar Massai without water restriction (Fig. 6b,e). The dry weight of both pastures decreased under water deficit, regardless of silicon. However, the dry matter of the pastures increased after Si application, with or without water restriction (Fig. 6c,f).Figure 6Plant height (a, d), number of tillers (b, e) and dry matter mass (c, f) of forage plants grown in soil with different soil water retention capacity (WRC) (70 and 40%) absence (− Si) and in the presence of silicon fertigation (+ Si). ns: not significant by the test F. Lowercase letters show differences in relation to Si and capitalization in relation to WRC. The bars represent the standard error of the mean, n = 6.Full size imageThus, the mitigating effects of Si on the physiological processes of both pastures grown under water deficit were responsible for increasing forage growth by promoting an increase of 12% in plant height and 31% in the number of tillers, which is one of the main components of pasture production. This resulted in a 25% increase in dry matter accumulation in relation to the pasture without Si (Fig. 7). Other authors have also reported the mitigating effect of Si on water deficit with a view to increasing plant growth in forage crops70 and other crops like wheat71 and rice72.Figure 7Figure of a forage plant in the condition of water deficit in the absence (− Si) and in the presence of silicon fertigation (+ Si) and a summary of its beneficial in the effects of the plant growth.Full size imageThe present study showed that the effect of Si on the attenuation of drought is not restricted only to physiological aspects involving increased plant water content and photosynthetic or biochemical efficiency. It also regulates elemental stoichiometric homeostasis as discussed above, confirming the biological strategy reported by Hao et al.29 in other forage grasses. Our study indicates that the line of research on the relationship between water deficit and Si in elementary stoichiometry is promising and should advance towards a better understanding of the multiple effects of this beneficial element on the plant.Animal production depends on the amount of biomass produced for grazing. The report of Habermann et al.73 has indicated that climate changes, such as droughts, are threatening pasture production and have a negative impact on animal and protein production. To solve this, the present research serves as a reference for Si fertigation management during the growth of P. maximum. This management consists of a sustainable alternative to improve production with greater nutritional balance even under soil water restriction, favoring water use efficiency in cultivation (Fig. 8). Moreover, Si has long-term potential to reduce the occurrence of droughts, favoring the sustainability of ecosystems. This is because the use of the beneficial element in the soil does not produce greenhouse gases, without negative impacts on the production environment74,75.Figure 8Benefits of Si in elementary stoichiometry and its relationship with physiological and biochemical aspects.Full size imageFuture perspectivesPeatlands and other terrestrial ecosystems represent large reservoirs and filters for Si, controlling Si transfer to the oceans. Land use change during the last 250 years has decreased soil Si availability by increasing export and decreasing Si storage due to higher erosion and a decrease in potentially Si-accumulating plants. Moreover, it has led to a twofold to threefold decrease of the base flow delivery of Si76. This raises concern over forage crops, reinforcing the need for silicate fertilization to explain the response of these species to the application of this element. Future perspectives would focuse on the benefits of Si in elementary stoichiometry and its relationship with physiological and biochemical aspects.Studies should use, other forage species, especially dicotyledons sensitive to water deficit, which have different mechanisms for Si absorption. This will allow a better understanding of whether the Si mechanisms that attenuate drought in monocotyledons also occur in dicotyledons. More

  • in

    Environmental structure impacts microbial composition and secondary metabolism

    1.Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 

    Google Scholar 
    2.Caswell H, Cohen JE. Disturbance, interspecific interaction and diversity in metapopulations. Biol J Linn Soc. 1991;42:193–218.
    Google Scholar 
    3.Tolker-Nielsen T, Molin S. Spatial organization of microbial biofilm communities. Microb Ecol. 2000;40:75–84.CAS 
    PubMed 

    Google Scholar 
    4.Yanni D, Márquez-Zacarías P, Yunker PJ, Ratcliff WC. Drivers of spatial structure in social microbial communities. Curr Biol. 2019;29:R545–50.CAS 
    PubMed 

    Google Scholar 
    5.Ho A, Angel R, Veraart AJ, Daebeler A, Jia Z, Kim SY, et al. Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front Microbiol. 2016;7:1–11.
    Google Scholar 
    6.Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive earth’s biogeochemical cycles. Science. 2008;320:1034–9.CAS 
    PubMed 

    Google Scholar 
    7.Overmann J, van Gemerden H. Microbial interactions involving sulfur bacteria: Implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev. 2000;24:591–9.CAS 
    PubMed 

    Google Scholar 
    8.García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science. 2018;361:1–11.
    Google Scholar 
    9.Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science. 2015;350:663–6.CAS 
    PubMed 

    Google Scholar 
    10.Wang X, Li X, Ling J. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans. J Basic Microbiol. 2017;57:605–16.CAS 
    PubMed 

    Google Scholar 
    11.Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and In vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol. 2017;7:1–13.
    Google Scholar 
    12.Dal Co A, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M. Short-range interactions govern the dynamics and functions of microbial communities. Nat Ecol Evol. 2020;4:366–75. https://doi.org/10.1038/s41559-019-1080-2.Article 
    PubMed 

    Google Scholar 
    13.Justice NB, Sczesnak A, Hazen TC, Arkin AP. Environmental selection, dispersal, and organism interactions shape community assembly in high-throughput enrichment culturing. Appl Environ Microbiol. 2017;83:1–16.
    Google Scholar 
    14.Hilker M. New synthesis: parallels between biodiversity and chemodiversity. J Chem Ecol. 2014;40:225–6.CAS 
    PubMed 

    Google Scholar 
    15.Raguso R, Agrawal A, Douglas A, Jander G, Kessler A, Poveda K, et al. The raison d’être of chemical ecology. Ecology. 2015;96:617–30.PubMed 

    Google Scholar 
    16.Tilman D. Competition and biodiversity in spatially structured habitats. Ecology. 1994;75:2–16.
    Google Scholar 
    17.Geyrhofer L, Brenner N. Coexistence and cooperation in structured habitats. BMC Ecol. 2020;20:1–15. https://doi.org/10.1186/s12898-020-00281-y.Article 

    Google Scholar 
    18.Wakano JY, Nowak MA, Hauert C. Spatial dynamics of ecological public goods. Proc Natl Acad Sci USA. 2009;106:7910–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.PubMed 
    PubMed Central 

    Google Scholar 
    20.Lowery NV, Ursell T. Structured environments fundamentally alter dynamics and stability of ecological communities. Proc Natl Acad Sci USA. 2019;116:379–88.CAS 

    Google Scholar 
    21.Lee JZ, Craig Everroad R, Karaoz U, Detweiler AM, Pett-Ridge J, Weber PK, et al. Metagenomics reveals niche partitioning within the phototrophic zone of a microbial mat. PLoS ONE. 2018;13:1–19.
    Google Scholar 
    22.Quinn RA, Comstock W, Zhang T, Morton JT, da Silva R, Tran A, et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci Adv. 2018;4:1–12.
    Google Scholar 
    23.Fenchel T, Finlay B. Oxygen and the spatial structure of microbial communities. Biol Rev. 2008;83:553–69.PubMed 

    Google Scholar 
    24.Esteban DJ, Hysa B, Bartow-McKenney C. Temporal and spatial distribution of the microbial community of winogradsky columns. PLoS ONE. 2015;10:1–21.
    Google Scholar 
    25.Azam F. Microbial control of oceanic carbon flux: The plot thickens. Science. 1998;280:694–6.CAS 

    Google Scholar 
    26.McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc B Biol Sci. 2015;370:1–8.
    Google Scholar 
    27.Schreiber F, Ackermann M. Environmental drivers of metabolic heterogeneity in clonal microbial populations. Curr Opin Biotechnol. 2020;62:202–11. https://doi.org/10.1016/j.copbio.2019.11.018.CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Lopez D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harbor Perspectives in Biology. 2010;2:1–11.
    Google Scholar 
    29.Picketts STA, Cadenasso ML. Landscape ecology: spatial heterogeneity in ecological systems. NCASI Techn Bull. 1999;2:420.
    Google Scholar 
    30.Chao L, Levin BR. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA. 1981;78:6324–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998;394:69–72.CAS 
    PubMed 

    Google Scholar 
    32.Cardinale BJ. Biodiversity improves water quality through niche partitioning. Nature. 2011;472:86–91.CAS 
    PubMed 

    Google Scholar 
    33.Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, et al. Ecology: biodiversity and ecosystem functioning: current knowledge and future challenges. Science. 2001;294:804–8.CAS 
    PubMed 

    Google Scholar 
    34.Wellborn GA, Langerhans RB. Ecological opportunity and the adaptive diversification of lineages. Ecol Evol. 2015;5:176–95.PubMed 

    Google Scholar 
    35.Czárán TL, Hoekstra RF. Killer-sensitive coexistence in metapopulations of micro-organisms. Proc R Soc B Biol Sci. 2003;270:1373–8.
    Google Scholar 
    36.West SA, Griffin AS, Gardner A, Diggle SP. Social evolution theory for microorganisms. Nat Rev Microbiol. 2006;4:597–607.CAS 
    PubMed 

    Google Scholar 
    37.Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H. Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek. 2002;81:665–80.CAS 
    PubMed 

    Google Scholar 
    38.Johnson DR, Lee TK, Park J, Fenner K, Helbling DE. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. Environ Microbiol. 2015;17:4851–60.CAS 
    PubMed 

    Google Scholar 
    39.Liébana R, Arregui L, Santos A, Murciano A, Marquina D, Serrano S. Unravelling the interactions among microbial populations found in activated sludge during biofilm formation. FEMS Microbiol Ecol. 2016;92:1–13.
    Google Scholar 
    40.Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985;49:1–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2015;18:1403–14.PubMed 

    Google Scholar 
    42.Junkins EN, Stevenson BS. Using plate-wash PCR and high-throughput sequencing to measure cultivated diversity for natural product discovery efforts. Front Microbiol. 2021;12:1–14.
    Google Scholar 
    43.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.
    Google Scholar 
    44.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    46.Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:643–8.
    Google Scholar 
    47.Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:1–14.
    Google Scholar 
    48.Wright ES. DECIPHER: Harnessing local sequence context to improve protein multiple sequence alignment. BMC Bioinformatics. 2015;16:1–14. https://doi.org/10.1186/s12859-015-0749-z.CAS 
    Article 

    Google Scholar 
    49.Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–9.
    Google Scholar 
    50.Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.CAS 
    PubMed 

    Google Scholar 
    51.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:1–11.
    Google Scholar 
    52.Willis A, Bunge J. Estimating diversity via frequency ratios. Biometrics. 2015;71:1042–9.PubMed 

    Google Scholar 
    53.Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13:131–44.
    Google Scholar 
    54.Levene H. Robust tests for equality of variances. In: Olkin I, editor. Contributions to probability and statistics: essays in honor of Harold Hotelling. Stanford University Press, Palo Alto, California, USA; 1960. p. 278–92.55.Fox J, Weisberg S. An R companion to applied regression. 3rd ed. Thousand Oaks, CA: Sage; 2019.56.Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R Package; 2019.58.Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.PubMed 
    PubMed Central 

    Google Scholar 
    59.Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:1–11.61.Myers OD, Sumner SJ, Li S, Barne S, Du X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal Chem. 2017;89:8696–703.CAS 
    PubMed 

    Google Scholar 
    62.Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N;, Peng Y, et al. Sharing and community curation of mass spectrometry data with GNPS. Nat Biotechnol. 2017;34:828–37.
    Google Scholar 
    63.Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17:905–8. https://doi.org/10.1038/s41592-020-0933-6.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models. Genome Res. 2003;13:2498–504. http://ci.nii.ac.jp/naid/110001910481/.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.R Core Team. R: a language and environment for R Foundation for Statistical Computing. 2018. https://www.r-project.org/.66.Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
    Google Scholar 
    67.Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. 2016;8:1–20.
    Google Scholar 
    68.O’Brien J, Wright GD. An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol. 2011;22:552–8. https://doi.org/10.1016/j.copbio.2011.03.010.CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Thierbach S, Wienhold M, Fetzner S, Hennecke U. Synthesis and biological activity of methylated derivatives of the Pseudomonas metabolites HHQ, HQNO and PQS. Beilstein J Org Chem. 2019;15:187–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Morales-Soto N, Dunham SJB, Baig NF, Ellis JF, Madukoma CS, Bohn PW, et al. Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms. J Biol Chem. 2018;293:9544–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev. 2011;35:247–74.CAS 
    PubMed 

    Google Scholar 
    72.Grollman AP. Inhibitors of protein biosynthesis. II. Mode of action of anisomycin. J Biolog Chem. 1967;242:3226–33. https://doi.org/10.1016/S0021-9258(18)95953-3.CAS 
    Article 

    Google Scholar 
    73.Sobin BA, Tanner FW Jr. Anisomycin, a new anti-protozoan antibiotic. J Am Chem Soc. 1954;76:4053–4053.CAS 

    Google Scholar 
    74.Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol. 2007;14:53–63.CAS 
    PubMed 

    Google Scholar 
    75.Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, et al. Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem. 2013;61:6786–91.CAS 
    PubMed 

    Google Scholar 
    76.Ma Z, Geudens N, Kieu NP, Sinnaeve D, Ongena M, Martins JC, et al. Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front Microbiol. 2016;7:1–16.
    Google Scholar 
    77.Figueira V, Vaz-Moreira I, Silva M, Manaia CM. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water Res. 2011;45:5599–611.CAS 
    PubMed 

    Google Scholar 
    78.Skwor T, Stringer S, Haggerty J, Johnson J, Duhr S, Johnson M, et al. Prevalence of potentially pathogenic antibiotic-resistant Aeromonas spp. in treated urban wastewater effluents versus recipient riverine populations: a 3-year comparative study. Appl Environ Microbiol. 2020;86:1–16.
    Google Scholar 
    79.Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23:35–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Rema T, Lawrence JR, Dynes JJ, Hitchcock AP, Korber DR. Microscopic and spectroscopic analyses of chlorhexidine tolerance in Delftia acidovorans biofilms. Antimicrob Agents Chemother. 2014;58:5673–86.PubMed 
    PubMed Central 

    Google Scholar 
    81.Assanta MA, Roy D, Lemay MJ, Montpetit D. Attachment of Arcobacter butzleri, a new waterborne pathogen, to water distribution pipe surfaces. J Food Protect. 2002;65:1240–7.
    Google Scholar 
    82.Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.CAS 
    PubMed 

    Google Scholar 
    83.Harrison F, Paul J, Massey RC, Buckling A. Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J. 2008;2:49–55.PubMed 

    Google Scholar 
    84.Inglis RF, Roberts PG, Gardner A, Buckling A. Spite and the scale of competition in Pseudomonas aeruginosa. Am Nat. 2011;178:276–85.PubMed 

    Google Scholar 
    85.van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by Actinomycetes. FEMS Microbiol Rev. 2017;41:392–416.PubMed 

    Google Scholar 
    86.Traxler MF, Kolter R. Natural products in soil microbe interactions and evolution. Nat Prod Rep. 2015;32:956–70.CAS 
    PubMed 

    Google Scholar 
    87.Kinkel LL, Schlatter DC, Xiao K, Baines AD. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J. 2014;8:249–56. https://doi.org/10.1038/ismej.2013.175. [Internet]Available fromCAS 
    Article 
    PubMed 

    Google Scholar 
    88.Pacala SW, Levin SA. Biologically generated spatial pattern and the coexistence of competing species. In: Tilman D, Kareiva P, editors. Spatial ecology: the role of space in population dynamics and interspecific interactions; Princeton University Press, Princeton, New Jersey, USA; 1997.89.Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:1–32.
    Google Scholar 
    90.Haig SJ, Quince C, Davies RL, Dorea CC, Collinsa G. The relationship between microbial community evenness and function in slow sand filters. mBio. 2015;6:1–12.
    Google Scholar 
    91.Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, et al. Initial community evenness favours functionality under selective stress. Nature. 2009;458:623–6.CAS 
    PubMed 

    Google Scholar 
    92.Davies J, Ryan KS. Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol. 2012;7:252–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Bassler BL, Losick R. Bacterially speaking. Cell. 2006;125:237–46.CAS 
    PubMed 

    Google Scholar 
    94.Venturi V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev. 2006;30:274–91.CAS 
    PubMed 

    Google Scholar 
    95.Granato ET, Meiller-Legrand TA, Foster KR. The evolution and ecology of bacterial warfare. Curr Biol. 2019;29:R521–37. https://doi.org/10.1016/j.cub.2019.04.024.CAS 
    Article 
    PubMed 

    Google Scholar 
    96.Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput Biol. 2018;14:1–21.CAS 

    Google Scholar 
    97.Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Garcia-Garcera M, Rocha EPC. Community diversity and habitat structure shape the repertoire of extracellular proteins in bacteria. Nat Commun. 2020;11:1–11. https://doi.org/10.1038/s41467-020-14572-x.CAS 
    Article 

    Google Scholar  More

  • in

    Global and regional health and food security under strict conservation scenarios

    1.Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).CAS 
    Article 

    Google Scholar 
    2.Buchanan, G. M., Butchart, S. H. M., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    3.Butchart, S. H. M. et al. in Global Assessment Report of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T. M.) Ch. 3 (IPBES Secretariat, 2019); https://doi.org/10.5281/zenodo.38320534.Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).CAS 
    Article 

    Google Scholar 
    5.Locke, H. Nature needs half: a necessary and hopeful new agenda for protected areas. Nat. N. S. W. 58, 7–17 (2014).
    Google Scholar 
    6.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 

    Google Scholar 
    7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    Article 

    Google Scholar 
    8.Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).Article 

    Google Scholar 
    9.Kok, M. T. J. et al. Assessing ambitious nature conservation strategies within a 2 degree warmer and food-secure world. Preprint at bioRxiv https://doi.org/10.1101/2020.08.04.236489 (2020).10.Rosa, I. M. D. et al. Multiscale scenarios for nature futures. Nat. Ecol. Evol. 1, 1416–1419 (2017).Article 

    Google Scholar 
    11.Obermeister, N. Local knowledge, global ambitions: IPBES and the advent of multi-scale models and scenarios. Sustain. Sci. 14, 843–856 (2019).Article 

    Google Scholar 
    12.Pereira, L. M. et al. Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People Nat. 2, 1172–1195 (2020).Article 

    Google Scholar 
    13.Rabin, S. S. et al. Impacts of future agricultural change on ecosystem service indicators. Earth Syst. Dynam. 11, 357–376 (2019).Article 

    Google Scholar 
    14.Springmann, M. et al. Global and regional health effects of future food production under climate change: a modelling study. Lancet 387, 1937–1946 (2016).Article 

    Google Scholar 
    15.Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).Article 

    Google Scholar 
    16.Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    17.Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwz136 (2019).18.Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).19.Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    Article 

    Google Scholar 
    20.O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2015).21.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).22.Tauli-Corpuz, V., Alcorn, J., Molnar, A., Healy, C. & Barrow, E. Cornered by PAs: adopting rights-based approaches to enable cost-effective conservation and climate action. World Dev. 130, 104923 (2020).Article 

    Google Scholar 
    23.Kashwan, P. V., Duffy, R., Massé, F., Asiyanbi, A. P. & Marijnen, E. From racialized neocolonial global conservation to an inclusive and regenerative conservation. Environ. Sci. Policy Sustain. Dev. 63, 4–19 (2021).Article 

    Google Scholar 
    24.The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security (FAO, 2017).25.Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).Article 

    Google Scholar 
    26.Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2021).27.Brockington, D. & Wilkie, D. Protected areas and poverty. Phil. Trans. R. Soc. B 370, 20140271 (2015).28.Protected Planet Report 2020 (UNEP–WCMC and IUCN, 2021).29.Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).CAS 
    Article 

    Google Scholar 
    30.Dutta, A., Allan, J., Shimray, G., General, S. & Pact, A. I. P. RE: “A ‘Global Safety Net’ to reverse biodiversity loss and stabilize Earth’s climate”. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    31.Simmons, B. A., Nolte, C. & McGowan, J. Tough questions for the “30 × 30” conservation agenda. Front. Ecol. Environ. 19, 322–323 (2021).Article 

    Google Scholar 
    32.Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01528-7 (2021).33.The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019).34.The World Database of Key Biodiversity Areas (KBA Partnership, 2019); www.keybiodiversityareas.org35.Mogg, S., Fastre, C. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).36.Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019).37.Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3 https://CRAN.R-project.org/package=prioritizr (2020).38.Hurtt, G., Chini, L., Frolking, S. & Sahajpal, R. Land-Use Harmonization (LUH2) (Global Ecology Laboratory, Univ. Maryland, 2017).39.Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed April 2019); www.protectedplanet.net40.Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 200–214 (2017).41.Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 84003 (2016).42.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).Article 

    Google Scholar 
    43.Engström, K. et al. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth Syst. Dynam. 7, 893–915 (2016).44.Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob. Environ. Change 35, 138–147 (2015).Article 

    Google Scholar 
    45.Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change 123, 495–509 (2014).Article 

    Google Scholar 
    46.GBD Results Tool (IHME, 2020); http://ghdx.healthdata.org/gbd-results-tool47.KC, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017). More

  • in

    Low tropical diversity during the adaptive radiation of early land plants

    1.Gaston, K. J. Global patterns of biodiversity. Nature 405, 220–227 (2000).CAS 
    Article 

    Google Scholar 
    2.Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).3.Blomenkemper, P. et al. A hidden cradle of plant evolution in Permian tropical lowlands. Science 362, 1414–1416 (2018).CAS 
    Article 

    Google Scholar 
    4.Kenrick, P. & Crane, P. R. The Origin and Early Diversification of Land Plants: A Cladistic Study (Smithsonian Institution Scholarly Press, 1997).5.Puttick, M. N. et al. The interrelationships of land plants and the nature of the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).CAS 
    Article 

    Google Scholar 
    6.Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, 2274–2283 (2018).Article 

    Google Scholar 
    7.Wellman, C. H., Steemans, P. & Vecoli, M. in Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. & Servais, T.) Ch. 29 (Geological Society of London, 2014).8.Edwards, D. et al. Piecing together the eophytes—a new group of ancient plants containing cryptospores. New Phytol. 233, 1440–1455 (2021).Article 

    Google Scholar 
    9.Gray, J. The microfossil record of early land plants; advances in understanding of early terrestrialization, 1970–1984. Philos. Trans. R. Soc. Lond. B 309, 167–195 (1985).Article 

    Google Scholar 
    10.Wellman, C. H. Cryptospores from the type area for the Caradoc Series (Ordovician) in southern Britain. Palaeontology 55, 103–136 (1996).
    Google Scholar 
    11.Torsvik, T. H. & Cocks, L. R. M. Earth History and Palaeogeography (Cambridge Univ. Press, 2017).12.Harland, W. B. The Geology of Svalbard (Geological Society of London, 1997).13.Davies, N. S., Berry, C. M., Marshall, J. E. A., Wellman, C. H. & Lindemann, F.-J. The Devonian landscape factory: plant–sediment interactions in the Old Red Sandstone of Svalbard and the rise of vegetation as a biogeomorphic agent. J. Geol. Soc. Lond. https://doi.org/10.1144/jgs2020-225 (2021).14.Blieck, A., Goujet, D. & Janvier, P. The vertebrate stratigraphy of the Lower Devonian (Red Bay Group and Wood Bay Formation) of Spitsbergen. Mod. Geol. 11, 197–217 (1987).
    Google Scholar 
    15.Blom, H. & Goujet, D. Thelodont scales from the Lower Devonian Red Bay Group, Spitsbergen. Palaeontology 45, 795–820 (2002).Article 

    Google Scholar 
    16.Pernègre, V. N. & Blieck, A. A revised heterostrachan-cased ichthyostratigraphy of the Wood Bay Formation (Lower Devonian, Spitsbergen), and correlation with Russian Arctic archipelagos. Geodiversitas 38, 5–20 (2016).Article 

    Google Scholar 
    17.Wellman, C. H. & Richardson, J. B. Sporomorph assemblages from the ‘Lower Old Red Sandstone’ of Lorne Scotland. Spec. Pap. Palaeontol. 55, 41–101.18.Richardson J. B. Taxonomy and classification of some new Early Devonian cryptospores from England. Spec. Pap. Palaeontol. 55, 7–40 (1996).19.Steemans, P. Etude palynostratgraphique du Devonian Inferieur dans l’Ouest de l’Europe. Mém. Soc. Géol. Minér. Bretagne 27, 1–453 (1989).
    Google Scholar 
    20.Rodriguez, R. M. Palinologia de las Formaciones del Silurico Superior-Devonico Inferior de la Cordillera Cantabrica, Noroeste de España (Institución Fray Bernardino de Sahagún, de la Excelentísima Diputación provincial de León y del Servicio de Publicaciones de la Universidad de León, 1983).21.Richardson, J. B., Rodriguez, R. M. & Sutherland, S. J. E. Palynological zonation of Mid-Palaeozoic sequences from the Cantabrian Mountains, NW Spain: implications for inter-regional and interfacies correlation of the Ludfor/Pridoli and Silurian/Devonian boundaries, and plant dispersal patterns. Bull. Nat. Hist. Mus. Lond. 57, 115–162 (2001).
    Google Scholar 
    22.Rubinstein, C. & Steemans, P. Miospore assemblages from the Silurian–Devonian boundary, in borehole A1–61, Ghadames Basin, Libya. Rev. Palaeobot. Palynol. 118, 397–412 (2002).Article 

    Google Scholar 
    23.Spina, A. & Vecoli, M. Palynostratigraphy and vegetational change in the Siluro-Devonian of the Ghadamis basin, North Africa. Palaeogeog. Palaeoclimatol. Palaeoecol. 282, 1–18 (2009).Article 

    Google Scholar 
    24.Hao, S. G. & Gensel, P. G. in Plants Invade the Land (eds Gensel, P. G. & Edwards, D.) 103–119 (Columbia Univ. Press, 2001).25.Wellman, C. H. et al. Spore assemblages from the Lower Devonian Xujiachong Formation from Qujing, Yunnan, China. Palaeontology 55, 583–611 (2012).Article 

    Google Scholar 
    26.Hao, S. & Xue, J. The Early Devonian Posongchong Flora of Yunnan (Science Press, 2013).27.Edwards, D., & Li, C.-S. Further insights into the Lower Devonian terrestrial vegetation of Sichuan Province, China. Rev. Palaeobot. Palynol. 253, 37–48 (2018).Article 

    Google Scholar 
    28.Gao, L. Early Devonian spore and acritarchs from the Guijiatum Formation of Qujing, China. Bull. Inst. Geol. Chin. Acad. Sci. 9, 125–136 (1984).
    Google Scholar 
    29.Tian, J. et al. Late Silurian to early Devonian palynomorphs from Qujing, Yunnan, southwest China. Acta Geol. Sin. 85, 559–568 (2011).Article 

    Google Scholar 
    30.Høeg, O. A. The Downtonian and Dittonian flora of Spitsbergen. Skr. Svalbard Ishavet 83, 1–229 (1942).
    Google Scholar 
    31.Morris, J. L., Edwards, D. & Richardson, J. B. in Transformative Paleobotany (eds Krings, M. et al.) 49–67 (Academic Press, 2018).32.McSweeney, F. R., Shimeta, J. & Buckeridge, J. St. J. S. Two new genera of early Tracheophyta (Zosterophyllaceae) from the upper Silurian–Lower Devonian of Victoria, Australia. Alcheringa https://doi.org/10.1080/03115518.2020.1744725 (2020).33.Xue, J. H. et al. Silurian–Devonian terrestrial revolution in South China: taxonomy, diversity, and character evolution of vascular plants in a paleogeographically isolated low-latitude region. Earth Sci. Rev. 180, 92–125 (2018).Article 

    Google Scholar 
    34.Hao, S. G. et al. Zosterophyllum Penhallow around the Silurian–Devonian boundary of northeastern Yunnan, China. Int. J. Plant Sci. 168, 477–489 (2007).Article 

    Google Scholar 
    35.Hao, S. G. et al. Earliest rooting system and root: shoot ratio from a new Zosterophyllum plant. New Phytol. 185, 217–225 (2009).Article 

    Google Scholar 
    36.Xue, J.-Z. Two zosterophyll plants from the Lower Devonian (Lochkovian) Xitun Formation of northeastern Yunnan, China. Acta Geol. Sin. 83, 504–512 (2009).Article 

    Google Scholar 
    37.Xue, J.-Z. Lochkovian plants from the Xitun Formation of Yunnan, China and their palaeophytogeographical significance. Geol. Mag. 149, 333–344 (2012).Article 

    Google Scholar 
    38.Sun, Y. et al. Lethally high temperatures during the early Triassic greenhouse. Science 6105, 366–370 (2012).Article 

    Google Scholar 
    39.Meng, X. Y. & Gai, Z. K. Falxcornus, a new genus of Tridensaspidae (Galeaspida, stem-Gnathostomata) from the Lower Devonian in Qujing, Yunnan, China. Hist. Biol. https://doi.org/10.1080/08912963.2021.1952198 (2021).40.Traverse, A. Paleopalynology 2nd edn (Springer, 2007). More

  • in

    Temperature sensitivity of woody nitrogen fixation across species and growing temperatures

    1.Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y. & Field, C. B. Nitrogen and climate change. Science 302, 1512–1513 (2003).CAS 
    Article 

    Google Scholar 
    2.Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).CAS 
    Article 

    Google Scholar 
    3.Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).CAS 
    Article 

    Google Scholar 
    4.Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ. Res. Lett. 10, 044016 (2015).5.Shi, M., Fisher, J. B., Brzostek, E. R. & Phillips, R. P. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Glob. Change Biol. 22, 1299–1314 (2016).Article 

    Google Scholar 
    6.Meyerholt, J., Zaehle, S. & Smith, M. J. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation. Biogeosciences 13, 1491–1518 (2016).CAS 
    Article 

    Google Scholar 
    7.Fisher, J. B. et al. Carbon cost of plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Glob. Biogeochem. Cycles 24, GB1014 (2010).8.Wang, Y. P. & Houlton, B. Z. Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. Geophys. Res. Lett. 36, L24403 (2009).9.Houlton, B. Z., Wang, Y.-P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).CAS 
    Article 

    Google Scholar 
    10.Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    Article 

    Google Scholar 
    11.van Velzen, R., Doyle, J. J. & Geurts, R. A resurrected scenario: single gain and massive loss of nitrogen-fixing nodulation. Trends Plant Sci. 24, 49–57 (2018).Article 

    Google Scholar 
    12.Mills, B. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2018).Article 

    Google Scholar 
    13.Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368, 20130164 (2013).14.Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 213, 22–42 (2017).Article 

    Google Scholar 
    15.Prévost, D., Antoun, H. & Bordeleau, L. M. Effects of low temperatures on nitrogenase activity in sainfoin (Onobrychis viciifolia) nodulated by Arctic rhizobia. FEMS Microbiol. Lett. 45, 205–210 (1987).Article 

    Google Scholar 
    16.Rainbird, R. M., Atkins, C. A. & Pate, J. S. Effect of temperature on nitrogenase functioning in cowpea nodules. Plant Physiol. 73, 392–394 (1983).CAS 
    Article 

    Google Scholar 
    17.Dalton, D. A. & Zobel, D. B. Ecological aspects of nitrogen fixation by Purshia tridentata. Plant Soil 48, 57–80 (1977).CAS 
    Article 

    Google Scholar 
    18.Waughman, G. J. The effect of temperature on nitrogenase activity. J. Exp. Bot. 28, 949–960 (1977).CAS 
    Article 

    Google Scholar 
    19.Wheeler, C. T. The causation of the diurnal changes in nitrogen fixation in the nodules of Alnus glutinosa. New Phytol. 70, 487–495 (1971).Article 

    Google Scholar 
    20.Schomberg, H. H. & Weaver, R. W. Nodulation, nitrogen fixation, and early growth of arrowleaf clover in response to root temperature and starter nitrogen. Agron. J. 84, 1046 (1992).CAS 
    Article 

    Google Scholar 
    21.Kou-Giesbrecht, S. & Menge, D. N. L. Nitrogen-fixing trees increase soil nitrous oxide emissions: a meta-analysis. Ecology 102, e03415 (2021).22.Bytnerowicz, T. A., Min, E., Griffin, K. L. & Menge, D. N. L. Repeatable, continuous and real‐time estimates of coupled nitrogenase activity and carbon exchange at the whole‐plant scale. Methods Ecol. Evol. 10, 960–970 (2019).Article 

    Google Scholar 
    23.Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. Ecology 95, 2236–2245 (2014).Article 

    Google Scholar 
    24.Staccone, A. et al. A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States. Glob. Biogeochem. Cycles 32, e2019GB006241 (2020).25.Cierjacks, A. et al. Biological flora of the British Isles: Robinia pseudoacacia. J. Ecol. 101, 1623–1640 (2013).Article 

    Google Scholar 
    26.Benson, D. R. & Dawson, J. O. Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol. Plant. 130, 318–330 (2007).CAS 
    Article 

    Google Scholar 
    27.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    28.Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 222, 768–784 (2019).CAS 
    Article 

    Google Scholar 
    29.Heskel, M. A. et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl Acad. Sci. USA 113, 3832–3837 (2016).CAS 
    Article 

    Google Scholar 
    30.Kou-Giesbrecht, S. et al. A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF). Biogeosciences 18, 4143–4183 (2021).CAS 
    Article 

    Google Scholar 
    31.Hardy, R. W. F., Holsten, R. D., Jackson, E. K. & Burns, R. C. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43, 1185–1207 (1968).CAS 
    Article 

    Google Scholar 
    32.Cassar, N., Bellenger, J. P., Jackson, R. B., Karr, J. & Barnett, B. A. N2 fixation estimates in real-time by cavity ring-down laser absorption spectroscopy. Oecologia 168, 335–342 (2012).Article 

    Google Scholar 
    33.Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, e02637 (2019).34.Kok, B. A Critical Consideration of the Quantum Yield of Chlorella-Photosynthesis (W. Junk, 1948).35.Liang, L. L. et al. Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Glob. Change Biol. 24, 1538–1547 (2018).Article 

    Google Scholar 
    36.Gunderson, C. A., O’hara, K. H., Campion, C. M., Walker, A. V. & Edwards, N. T. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Glob. Change Biol. 16, 2272–2286 (2010).Article 

    Google Scholar 
    37.Medlyn, B. E. et al. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 25, 1167–1179 (2002).CAS 
    Article 

    Google Scholar 
    38.Slot, M. & Winter, K. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. Plant Cell Environ. 40, 3055–3068 (2017).CAS 
    Article 

    Google Scholar 
    39.Murphy, B. K. & Stinziano, J. R. A derivation error that affects carbon balance models exists in the current implementation of the modified Arrhenius function. New Phytol. 6, 2371–2381 (2021).40.Yan, W. & Hunt, L. A. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607–614 (1999).Article 

    Google Scholar 
    41.Farquhar, G. D. & Busch, F. A. Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model. New Phytol. 214, 570–584 (2017).CAS 
    Article 

    Google Scholar 
    42.Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    Article 

    Google Scholar 
    43.Duursma, R. A. Plantecophys – an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10, e0143346 (2015).44.Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. Jr & Long, S. P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24, 253–260 (2001).CAS 
    Article 

    Google Scholar 
    45.De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2016).Article 

    Google Scholar 
    46.Bolker, B. M. & R. Core Team. bbmle: Tools for General Maximum Likelihood Estimation (R Foundation for Statistical Computing, 2014).47.Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).Article 

    Google Scholar 
    48.Bolker, B. M. Ecological Models and Data in R (Princeton Univ. Press, 2008).49.Venables, W. & Ripley, B. Modern Applied Statistics with S (Springer, 2002).50.Bytnerowicz, T. A. tbytnero/Bytnerowicz-Akana-Griffin-Menge-N-fix-Temp: Bytnerowicz_Akana_Griffin_Menge_2022_Nature_Plants https://doi.org/10.5281/zenodo.5764790 (2021). More

  • in

    Impact of test chamber design on spontaneous behavioral responses of model crustacean zooplankton Artemia franciscana

    1.Bai, Y., Henry, J. & Wlodkowic, D. Chemosensory avoidance behaviors of marine amphipods Allorchestes compressa revealed using a millifluidic perfusion technology. Biomicrofluidics 14, 014110 (2020).CAS 
    Article 

    Google Scholar 
    2.Bownik, A. Daphnia swimming behaviour as a biomarker in toxicity assessment: a review. Sci. Total Environ. 601–602, 194–205 (2017).Article 

    Google Scholar 
    3.Libralato, G., Prato, E., Migliore, L., Cicero, A. M. & Manfra, L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecol. Indic. 69, 35–49 (2016).CAS 
    Article 

    Google Scholar 
    4.Henry, J. & Wlodkowic, D. Towards high-throughput chemobehavioural phenomics in neuropsychiatric drug discovery. Mar. Drugs 17, 340 (2019).CAS 
    Article 

    Google Scholar 
    5.Morgana, S., Estévez-Calvar, N., Gambardella, C., Faimali, M. & Garaventa, F. A short-term swimming speed alteration test with nauplii of Artemia franciscana. Ecotoxicol. Environ. Saf. 147, 558–564 (2018).CAS 
    Article 

    Google Scholar 
    6.Bartolomé, M. C. & Sánchez-Fortún, S. Acute toxicity and inhibition of phototaxis induced by benzalkonium chloride in Artemia franciscana larvae. Bull. Environ. Contam. Toxicol. 75, 1208–1213 (2005).Article 

    Google Scholar 
    7.Hellou, J. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environ. Sci. Pollut. Res. Int. 18, 1–11 (2011).CAS 
    Article 

    Google Scholar 
    8.Campana, O. & Wlodkowic, D. Ecotoxicology goes on a chip: embracing miniaturized bioanalysis in aquatic risk assessment. Environ. Sci. Technol. 52, 932–946 (2018).CAS 
    Article 

    Google Scholar 
    9.De Esch, C., Slieker, R., Wolterbeek, A., Woutersen, R. & de Groot, D. Zebrafish as potential model for developmental neurotoxicity testing. A mini review. Neurotoxicol. Teratol. 34, 545–553 (2012).Article 

    Google Scholar 
    10.Blackiston, D., Shomrat, T., Nicolas, C. L., Granata, C. & Levin, M. A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS ONE 5, e14370 (2010).Article 

    Google Scholar 
    11.Franco-Restrepo, J. E., Forero, D. A. & Vargas, R. A. A review of freely available, open-source software for the automated analysis of the behavior of adult. zebrafish. Zebrafish 16, 223–232 (2019).PubMed 

    Google Scholar 
    12.Henry, J., Rodriguez, A. & Wlodkowic, D. Impact of digital video analytics on accuracy of chemobehavioural phenotyping in aquatic toxicology. PeerJ 7, e7367 (2019).Article 

    Google Scholar 
    13.Henry, J. & Wlodkowic, D. High-throughput animal tracking in chemobehavioral phenotyping: current limitations and future perspectives. Behav. Processes 180, 104226 (2020).Article 

    Google Scholar 
    14.Garcia, G. R., Noyes, P. D. & Tanguay, R. L. Advancements in zebrafish applications for 21st century toxicology. Pharmacol. Ther. 161, 11–21 (2016).CAS 
    Article 

    Google Scholar 
    15.Rennekamp, A. J. & Peterson, R. T. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 24, 58–70 (2015).CAS 
    Article 

    Google Scholar 
    16.Cartlidge, R. & Wlodkowic, D. Caging of planktonic rotifers in microfluidic environment for sub-lethal aquatic toxicity tests. Biomicrofluidics 12, 044111 (2018).Article 

    Google Scholar 
    17.Kohler, S. A., Parker, M. O. & Ford, A. T. Shape and size of the arenas affect amphipod behaviours: implications for ecotoxicology. PeerJ 6, e5271 (2018).Article 

    Google Scholar 
    18.Kohler, S. A., Parker, M. O. & Ford, A. T. Species-specific behaviours in amphipods highlight the need for understanding baseline behaviours in ecotoxicology. Aquat. Toxicol. 202, 173–180 (2018).CAS 
    Article 

    Google Scholar 
    19.Kohler, S. A., Parker, M. O. & Ford, A. T. High-throughput screening of psychotropic compounds: impacts on swimming behaviours in Artemia franciscana. Toxics 9, 64 (2021).Article 

    Google Scholar 
    20.Inoue, T., Hoshino, H., Yamashita, T., Shimoyama, S. & Agata, K. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. Zoolog. Lett. 1, 7 (2015).Article 

    Google Scholar 
    21.Truong, L. et al. Multidimensional in vivo hazard assessment using zebrafish. Toxicol. Sci. 137, 212–233 (2014).CAS 
    Article 

    Google Scholar 
    22.Zhang, S., Hagstrom, D., Hayes, P., Graham, A. & Collins, E.-M. S. Multi-behavioral endpoint testing of an 87-chemical compound library in freshwater planarians. Toxicol. Sci. 167, 26–44 (2019).CAS 
    Article 

    Google Scholar 
    23.Akiyama, Y., Agata, K. & Inoue, T. Spontaneous behaviors and wall-curvature lead to apparent wall preference in planarian. PLoS ONE 10, e0142214 (2015).Article 

    Google Scholar 
    24.Blaser, R. E. & Rosemberg, D. B. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS ONE 7, e36931 (2012).CAS 
    Article 

    Google Scholar 
    25.Harro, J. Animals, anxiety, and anxiety disorders: how to measure anxiety in rodents and why. Behav. Brain Res. 352, 81–93 (2018).Article 

    Google Scholar 
    26.Faimali, M. et al. Old model organisms and new behavioral end-points: swimming alteration as an ecotoxicological response. Mar. Environ. Res. 128, 36–45 (2017).CAS 
    Article 

    Google Scholar 
    27.Rashid, M. T. et al. Artemia swarm dynamics and path tracking. Nonlinear Dyn. 68, 555–563 (2012).Article 

    Google Scholar 
    28.Forward, R. B. & Rittschof, D. Brine shrimp larval photoresponses involved in diel vertical migration: activation by fish mucus and modified amino sugars. Limnol. Oceanogr. 44, 1904–1916 (1999).CAS 
    Article 

    Google Scholar 
    29.Gerhardt, A. Aquatic behavioral ecotoxicology—prospects and limitations. Hum. Ecol. Risk Assess. 13, 481–491 (2007).Article 

    Google Scholar 
    30.Ford, A. T. et al. The role of behavioral ecotoxicology in environmental protection. Environ. Sci. Technol. 55, 5620–5628 (2021).CAS 
    Article 

    Google Scholar 
    31.Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).Article 

    Google Scholar  More

  • in

    Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates

    1.Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).
    Google Scholar 
    2.Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).CAS 

    Google Scholar 
    3.Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).
    Google Scholar 
    4.Turley, C. & Gattuso, J.-P. Future biological and ecosystem impacts of ocean acidification and their socioeconomic-policy implications. Curr. Opin. Environ. Sustain. 4, 278–286 (2012).
    Google Scholar 
    5.San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 4719 (2019).
    Google Scholar 
    6.Falkenberg, L. et al. Ocean acidification and human health. Int. J. Environ. Res. Public Health 17, 4563 (2020).CAS 

    Google Scholar 
    7.Loewe, M. & Rippin, N. The Sustainable Development Goals of the Post-2015 Agenda. Comments on the OWG and SDSN Proposals (German Development Institute 2015).8.Doney, S. C. et al. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).
    Google Scholar 
    9.Ekstrom, J. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change 5, 207–214 (2015).
    Google Scholar 
    10.Ponce Oliva, R. D. et al. Ocean acidification, consumers’ preferences, and market adaptation strategies in the mussel aquaculture industry. Ecol. Econ. 158, 42–50 (2019).
    Google Scholar 
    11.Quatrinni, A. M. et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat. Ecol. Evol. 4, 1531–1538 (2020).
    Google Scholar 
    12.Thomsen, J. et al. Naturally acidified habitat selects for ocean acidification-tolerant mussels. Sci. Adv. 3, e1602411 (2017).
    Google Scholar 
    13.Rastrick, S. S. P. et al. Using natural analogues to investigate the effects of climate change and ocean acidification on Northern ecosystems. ICES J. Mar. Sci. 75, 2299–2311 (2018).
    Google Scholar 
    14.Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents reveal ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).CAS 

    Google Scholar 
    15.Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical–temperate transition zone. Sci. Rep. 8, 11354 (2018).
    Google Scholar 
    16.Riquelme-Bugueño, R. et al. Diel vertical migration into anoxic and high-pCO2 waters: acoustic and net-based krill observations in the Humboldt Current. Sci. Rep. 10, 17181 (2020).
    Google Scholar 
    17.Pérez et al. Riverine discharges impact physiological traits and carbon sources for shell carbonate in the marine intertidal mussel Perumytilus purpuratus. Limnol. Oceanogr. 61, 969–983 (2016).
    Google Scholar 
    18.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).
    Google Scholar 
    19.Saavedra et al. Local habitat influences on feeding and respiration of the intertidal mussels Perumytilus purpuratus exposed to increased pCO2 levels. Estuaries Coast. 41, 1118–1129 (2018).CAS 

    Google Scholar 
    20.Riebesell, U. & Gattuso, J.-P. Lessons learned from ocean acidification research. Nat. Clim. Change 5, 12–14 (2015).CAS 

    Google Scholar 
    21.Tilbrook, B. et al. An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. Front. Mar. Sci. 6, 337 (2019).
    Google Scholar 
    22.Barry, J. P., Hall-Spencer, J. M. and Tyrrell, T. in Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds Riebesell, U. et al.) Ch. 3 (Publications Office of the European Union, 2010).23.Vargas, C. A. et al. Influence of glacier melting and river discharges on the nutrient distribution and DIC recycling in the southern Chilean Patagonia. J. Geophys. Res. Biogeosci. 123, 256–270 (2018).
    Google Scholar 
    24.Feely, R. A. et al. Evidence for upwelling of corrosive ‘acidified’ water onto the Continental Shelf. Science 320, 1490–1492 (2008).CAS 

    Google Scholar 
    25.Vargas, C. A. et al. Riverine and corrosive upwelling waters influences on the carbonate system in the coastal upwelling area off Central Chile: implications for coastal acidification events. J. Geophys. Res. Biogeosci. 121, 1468–1483 (2016).
    Google Scholar 
    26.Cao, Z. et al. Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling. J. Geophys. Res. Oceans 116, G02010 (2010).
    Google Scholar 
    27.Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Est. Coast. Shelf Sci. 88, 442–449 (2010).CAS 

    Google Scholar 
    28.Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).CAS 

    Google Scholar 
    29.Kwiatkowski, L. et al. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification. Sci. Rep. 6, 22984 (2016).CAS 

    Google Scholar 
    30.Wolfe, K., Nguyen, H. D., Davey, M. & Byrne, M. Characterizing biogeochemical fluctuations in a world of extremes: a synthesis for temperate intertidal habitats in the face of global change. Glob. Change Biol. 26, 3858–3879 (2020).
    Google Scholar 
    31.Shaw, E. C., Phinn, S. R., Tilbrook, B. & Steven, A. Natural in situ relationships suggest coral reef calcium carbonate production will decline with ocean acidification. Limnol. Oceanogr. 60, 777–788 (2015).
    Google Scholar 
    32.Takeshita, Y. et al. Coral reef carbonate chemistry variability at different functional scales. Front. Mar. Sci. 5, 175 (2018).
    Google Scholar 
    33.Brodeur, J. R. et al. Chesapeake Bay inorganic carbon: spatial distribution and seasonal variability. Front. Mar. Sci. 6, 99 (2019).
    Google Scholar 
    34.Hoshijima, U. & Hofmann, G. E. Variability of seawater chemistry in a kelp forest environment is linked to in situ transgenerational effects in the purple sea urchin, Strongylocentrotus purpuratus. Front. Mar. Sci. 6, 62 (2019).
    Google Scholar 
    35.Koweek, D. A. et al. A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability. Biogeosciences 14, 31–44 (2017).CAS 

    Google Scholar 
    36.Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2016).
    Google Scholar 
    37.Kapsenberg, L. & Hofmann, G. E. Ocean pH time-series and drivers of variability along the northern Channel Islands, California, USA. Limnol. Oceanogr. 61, 953–968 (2016).
    Google Scholar 
    38.Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).CAS 

    Google Scholar 
    39.Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).
    Google Scholar 
    40.Cornwall, C. E. et al. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. R. Soc. B 280, 20132201 (2013).
    Google Scholar 
    41.Rivest, E. B., Comeau, S. & Cornwall, C. E. The role of natural variability in shaping the response of coral reef organisms to climate change. Curr. Clim. 3, 271–281 (2017).
    Google Scholar 
    42.Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).
    Google Scholar 
    43.Lewis, C. N. et al. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proc. Natl Acad. Sci. USA 110, E4960–E4967 (2013).CAS 

    Google Scholar 
    44.Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
    Google Scholar 
    45.Aguilera, V. M., Vargas, C. A. & Dewitte, B. Intraseasonal hydrographic variations and nearshore carbonates system off northern Chile during the 2015 El Niño event. J. Geophys. Res. Biogeosci. 125, e2020JG005704 (2020).CAS 

    Google Scholar 
    46.Fassbender, A. J. et al. Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest. Earth Syst. Sci. Data 10, 1367–1401 (2018).
    Google Scholar 
    47.Reum, J. C. P. et al. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments. PLoS ONE 9, e89619 (2014).
    Google Scholar 
    48.Wallace, R. B. et al. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13 (2014).CAS 

    Google Scholar 
    49.Rutgersson, A. et al. The annual cycle of carbon dioxide and parameters influencing the air–sea carbon exchange in the Baltic Proper. J. Mar. Syst. 74, 381–394 (2008).
    Google Scholar 
    50.Clargo, N. M., Salt, L. A., Thomas, H. & de Baar, H. J. W. Rapid increase of observed DIC and pCO2 in the surface waters of the North Sea in the 2001–2011 decade ascribed to climate change superimposed by biological processes. Mar. Chem. 177, 566–581 (2015).CAS 

    Google Scholar 
    51.Ericson, Y. et al. Temporal variability in surface water pCO2 in Adventfjorden (West Spitsbergen) with emphasis on physical and biogeochemical drivers. J. Geophys. Res. Oceans 123, 4888–4905 (2018).CAS 

    Google Scholar 
    52.Geilfus, N.-X. et al. Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011. Cont. Shelf Res. 156, 1–10 (2018).
    Google Scholar 
    53.Islam, F. et al. Sea surface pCO2 and O2 dynamics in the partially ice-covered Arctic Ocean. J. Geophys. Res. Oceans 122, 1425–1438 (2016).
    Google Scholar 
    54.Copin-Montégut, C., Bégovic, M. & Merlivat, L. Variability of the partial pressure of CO2 on diel to annual time scales in the Northwestern Mediterranean Sea. Mar. Chem. 85, 169–189 (2004).
    Google Scholar 
    55.Pardo, P. C. et al. Surface ocean carbon dioxide variability in South Pacific boundary currents and Subantarctic waters. Sci. Rep. 9, 7592 (2019).
    Google Scholar 
    56.Gagliano, M., McCormick, M. I., Moore, J. A. & Depczynski, M. The basics of acidification: baseline variability of pH on Australian coral reefs. Mar. Biol. 157, 1849–1856 (2010).CAS 

    Google Scholar 
    57.Takeshita, Y. et al. Including high-frequency variability in coastal acidification projections. Biogeosciences 12, 5853–5870 (2015).
    Google Scholar 
    58.Carter, H. A., Ceballos-Osuna, L., Miller, N. A. & Stillman, J. H. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1412–1422 (2013).CAS 

    Google Scholar 
    59.Ceballos-Osuna, L., Carter, H. A., Miller, N. A. & Stillman, J. H. Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1405–1411 (2013).CAS 

    Google Scholar 
    60.Miller, S. H. et al. Effect of elevated pCO2 on metabolic responses of porcelain crab (Petrolisthes cinctipes) larvae exposed to subsequent salinity stress. PLoS ONE 9, e109167 (2014).
    Google Scholar 
    61.Bayne, B. L. Metabolic expenditure. Dev. Aquacult. Fish. Sci. 41, 331–415 (2017).
    Google Scholar 
    62.Waldbusser, G. G. et al. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61, 1969–1983 (2016).
    Google Scholar 
    63.Dorey, N., Lancon, P., Thorndyke, M. & Dupont, S. Assessing physiological tipping point for sea urchin larvae exposed to a broad range of pH. Glob. Change Biol. 19, 3355–3367 (2013).
    Google Scholar 
    64.Kelly, M. W., Padilla-Gamiño, J. L. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. Change Biol. 19, 2536–2546 (2015).
    Google Scholar 
    65.Gaitán-Espitia, J. D. et al. Spatio–temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification. Biol. Lett. 13, 20160865 (2017).
    Google Scholar 
    66.Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull. 73, 470–484 (2013).CAS 

    Google Scholar 
    67.Foo, S. A., Dworjanyn, S. A., Poore, A. G. B. & Byrne, M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS ONE 7, e42497 (2012).CAS 

    Google Scholar 
    68.Chan, K. Y. K., Grünbaum, D., Arnberg, M. & Dupont, S. Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J. Mar. Sci. 73, 951–996 (2016).
    Google Scholar 
    69.Stumpp, M. et al. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc. Natl Acad. Sci. USA 109, 18192–18197 (2012).CAS 

    Google Scholar 
    70.Stumpp, M. et al. Digestion in sea urchin larvae impaired under ocean acidification. Nat. Clim. Change 3, 1044–1049 (2013).CAS 

    Google Scholar 
    71.Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21, 2261–2271 (2015).
    Google Scholar 
    72.Gibbin, E. M. et al. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).
    Google Scholar 
    73.Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).
    Google Scholar 
    74.Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).
    Google Scholar 
    75.Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. 49, 1–42 (2011).
    Google Scholar 
    76.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).
    Google Scholar 
    77.Kroeker et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
    Google Scholar 
    78.Takahashi, T., Sutherland, S. C. & Kozyr, A. LDEO Database (Version 2019): Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1957–2019 (NCEI Accession 0160492) Version 9.9 (National Oceanic and Atmospheric Administration National Centers for Environmental Information); https://doi.org/10.3334/CDIAC/OTG.NDP088(V2015)79.Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (CRC Press, 1997).80.Martinez, W. L. & Martinez, A. R. Computational Statistics Handbook with MATLAB (CRC Press, 2002). More

  • in

    Deciphering the multiple effects of climate warming on the temporal shift of leaf unfolding

    1.Arora, V. K. & Boer, G. J. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol. 11, 39–59 (2005).
    Google Scholar 
    2.Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).
    Google Scholar 
    3.Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).
    Google Scholar 
    4.Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3227–3246 (2010).
    Google Scholar 
    5.Diez, J. M. et al. Forecasting phenology: from species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).
    Google Scholar 
    6.Hegland, S. J., Nielsen, A., Lazaro, A., Bjerknes, A. L. & Totland, O. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184–195 (2009).
    Google Scholar 
    7.Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 

    Google Scholar 
    8.Zhang, H., Yuan, W., Liu, S. & Dong, W. Divergent responses of leaf phenology to changing temperature among plant species and geographical regions. Ecosphere 6, art250 (2015).
    Google Scholar 
    9.Zhang, G., Zhang, Y., Dong, J. & Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl Acad. Sci. USA 110, 4309–4314 (2013).CAS 

    Google Scholar 
    10.Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).
    Google Scholar 
    11.Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).
    Google Scholar 
    12.Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).
    Google Scholar 
    13.Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. https://doi.org/10.1029/2007gl031447 (2007).14.Fitter, A. H. & Fitter, R. S. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).CAS 

    Google Scholar 
    15.Primack, R. B. et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol. Conserv. 142, 2569–2577 (2009).
    Google Scholar 
    16.Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A. & Field, C. B. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl Acad. Sci. USA 103, 13740–13744 (2006).CAS 

    Google Scholar 
    17.Wang, H., Dai, J., Zheng, J. & Ge, Q. Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850 to 2009. Int. J. Climatol. 35, 913–922 (2015).
    Google Scholar 
    18.Chuine, I. M., Morin, X. & Bugmann, H. Warming, photoperiods, and tree phenology. Science 329, 277–278 (2010).
    Google Scholar 
    19.Chuine, I. A unified model for budburst of trees. J. Theor. Biol. 207, 337–347 (2000).CAS 

    Google Scholar 
    20.Murray, M., Cannell, M. G. R. & Smith, R. I. Date of budburst of fifteen tree species in Britain following climatic warming. J. Appl. Ecol. 26, 693–700 (1989).
    Google Scholar 
    21.Man, R., Lu, P. & Dang, Q. L. Insufficient chilling effects vary among boreal tree species and chilling duration. Front. Plant Sci. 8, 1354 (2017).
    Google Scholar 
    22.Cannell, M. G. R. & Smith, R. I. L. Thermal time, chill days and prediction of budburst in Picea sitchensis. J. Appl. Ecol. 20, 951–963 (1983).
    Google Scholar 
    23.Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).
    Google Scholar 
    24.Zhang, H., Liu, S., Regnier, P. & Yuan, W. New insights on plant phenological response to temperature revealed from long-term widespread observations in China. Glob. Change Biol. 24, 2066–2078 (2018).
    Google Scholar 
    25.Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).CAS 

    Google Scholar 
    26.Asse, D. et al. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agric. For. Meteorol. 252, 220–230 (2018).
    Google Scholar 
    27.Ettinger, A. K. et al. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Change 10, 1137–1142 (2020).
    Google Scholar 
    28.Chuine, I. & Régnière, J. Process-based models of phenology for plants and animals. Annu. Rev. Ecol. Evol. Syst. 48, 159–182 (2017).
    Google Scholar 
    29.Caffarra, A., Donnelly, A., Chuine, I. & Jones, M. B. Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model. Clim. Res. 46, 147–157 (2011).
    Google Scholar 
    30.Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).CAS 

    Google Scholar 
    31.Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).32.Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).
    Google Scholar 
    33.Wolkovich, E. M. et al. A simple explanation for declining temperature sensitivity with warming. Glob. Change Biol. 27, 4947–4949 (2021).CAS 

    Google Scholar 
    34.Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).
    Google Scholar 
    35.Kramer, K. Selecting a model to predict the onset of growth of Fagus sylvatica. J. Appl. Ecol. 31, 172–181 (1994).
    Google Scholar 
    36.Chuine, I., Cour, P. & Rousseau, D.-D. Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ. 22, 1–13 (1999).37.Savas, R. Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy https://eurekamag.com/research/000/414/000414639.php (1974).38.Hänninen, H. Modelling bud dormancy release in trees from cool and temperate regions. Acta. Fenn. 14, 499–454 (1990).
    Google Scholar 
    39.Harrington, C. A., Gould, P. J. & St. Clair, J. B. Modeling the effects of winter environment on dormancy release of Douglas-fir. Ecol. Manag. 259, 798–808 (2010).
    Google Scholar 
    40.Zhang, H., Yuan, W., Liu, S., Dong, W. & Fu, Y. Sensitivity of flowering phenology to changing temperature in China. J. Geophys. Res. Biogeosci. 120, 1658–1665 (2015).
    Google Scholar 
    41.Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–331 (2009).CAS 

    Google Scholar 
    42.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    43.Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).
    Google Scholar 
    44.Zohner, C. M. & Renner, S. S. Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change. Ecol. Lett. 17, 1016–1025 (2014).
    Google Scholar 
    45.Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8 (2012).
    Google Scholar 
    46.Lenz, A., Hoch, G., Körner, C. & Vitasse, Y. Convergence of leaf-out towards minimum risk of freezing damage in temperate trees. Funct. Ecol. 30, 1480–1490 (2016).
    Google Scholar 
    47.Wang, Y. et al. Forest controls spring phenology of juvenile Smith fir along elevational gradients on the southeastern Tibetan Plateau. Int. J. Biometeorol. 63, 963–972 (2019).
    Google Scholar 
    48.Marquis, B., Bergeron, Y., Simard, M. & Tremblay, F. Probability of sping frosts, not growing degree-days, drives onset of spruce bud burst in plantations at the boreal-temperate forest ecotone. Front. Plant Sci. 11, 1031 (2020).
    Google Scholar 
    49.Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tiberan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).
    Google Scholar 
    50.Liu et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Change Biol. 22, 644–655 (2016).CAS 

    Google Scholar 
    51.Minder, J. R., Mote, P. W. & Lundquist, J. D. Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains. J. Geophys. Res. 115, D14122 (2010).
    Google Scholar 
    52.Navarro-Serrano et al. Elevation effects on air temperature in a topographically complex mountain valley in the Spanish Pyrenees. Atmosphere 11, 656 (2020).
    Google Scholar 
    53.Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).CAS 

    Google Scholar 
    54.Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).
    Google Scholar 
    55.Beer, C. et al. Harmonized European long-term climate data for assessing the effect of changing temporal variability on land–atmosphere CO2 fluxes. J. Clim. 27, 4815–4834 (2014).
    Google Scholar 
    56.Olsson, C. & Jönsson, A. M. Process-based models not always better than empirical models for simulating budburst of Norway spruce and birch in Europe. Glob. Change Biol. 20, 3492–3507 (2014).
    Google Scholar 
    57.Duan, Q., Sorooshian, S. & Gupta, V. K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 158, 265–284 (1994).
    Google Scholar 
    58.Bluemel, K. & Chmielewski, F. Shortcomings of classical phenological forcing models and a way to overcome them. Agric. For. Meteorol. 164, 10–19 (2012).
    Google Scholar  More