More stories

  • in

    Reliability of environmental DNA surveys to detect pond occupancy by newts at a national scale

    Various estimates for great crested newt pond occupancy rates have been published with most relating to site or regional scale assessments. A naïve occupancy rate of 0.13 has been identified for a data set from the northwest of England29, while estimates based on conventional occupancy16 modelling of 0.31 for southeast England and between 0.32 and 0.33 for mid Wales were presented by Sewell et al.13. The only other national data which the authors are aware of are within the Freshwater Habitat National PondNet Study, which estimates a naïve pond occupancy of between 13 and 18%30, and the Amphibian and Reptile Conservation Trust National Amphibian and Reptile Recording Scheme, which suggests a 12% occupancy rate for the UK31. Using data from nearly 5000 ponds sampled across England, here we provide a more extensive national-level analysis while accounting for imperfect detection in the eDNA sampling protocol. Assuming a threshold of just one positive qPCR replicate in a sample, the naïve occupancy estimate of 0.30 is similar to the localised regional estimates made by Sewell et al.13 using direct observation methods. The posterior mean estimates of 0.198 for occupancy are comparable to most other estimates for great crested newt pond occupancy in the UK, but lower than the naïve estimate. The lower modelled estimates of occupancy than the naïve estimate suggest that false positives should not be ignored and need to be accounted for statistically using methodologies such as the eDNAShinyApp package used here23,24,27.The goodness of fit analysis was based on the MCMC output for each site and observed covariate levels in the data set. Some lack of fit was observed, with a predicted peak in amplification at 10 qPCR replicates but an observed peak at 12 qPCR replicates. There are several potential causes for this. For example, variation between laboratories could not be accounted for as these metadata were not made available. The assumption that error rates are the same across all laboratories may therefore not apply and could contribute to poorer model fit. Secondly, we did not consider error rates as functions of covariates, and this may also have contributed to a poorer fit.Stage 1 error was found to be smaller than Stage 2 error for both false positive and false negative error. However, Stage 2 error operates on individual qPCR replicates and not at the site level. If there was no error at Stage 2, we would observe either zero qPCR replicates amplifying or all qPCR replicates amplifying (i.e. 12 in the case of the data presented here). The majority of samples showed zero qPCR amplification (3429 samples), and this was strongly linked to absence of newts. For sites with amplification, we observed a greater number of samples amplifying between 1 and 11 qPCR replicates (1074 samples) than we did amplifying with all 12 qPCR replicates (422 samples). The qPCR replicates that do not amplify in samples containing target DNA are erroneous, even if other replicates within that sample do amplify and contribute to this high Stage 2 false negative error in the model output. Data simulated from the fitted model show that the frequency of samples that contain DNA at Stage 2 amplifying in less than five of the 12 qPCR replicates is very low (Fig. 2b). Given that all replicates need to be erroneous to alter the naïve assignment of a sample containing DNA to negative, Stage 2 false negatives at this sampling level are unlikely. However, this does not rule out Stage 1 false negative error which we estimate to be 5.2% (with wide credible intervals between 0.1% and 25.1%).Higher levels of Stage 2 replication remove lab-based false negative error. If eDNA is present within a sample and a high number of replicates are used, it is highly unlikely that all qPCR replicates will be erroneously negative, even when the false negative rate at the replicate level is high. Conversely, high levels of Stage 2 replication increase the likelihood of false positive error occurring32. Stage 2 false positive results are of greater consequence than the 2% the model output would suggest. Unlike false negative error where all Stage 2 replicates need to be erroneous to change the naïve assignment of occupancy of a sample, when a threshold of one amplifying replicate is applied, only a single replicate needs to be an erroneous to generate a false positive. With 12 qPCR replicates at Stage 2 and a 2% false positive error per replicate, a sample with no DNA present has a 24% chance of producing at least one amplification. Assuming this error is randomly distributed through samples with no DNA present and qPCR replicates, it is more likely that samples with small numbers of replicates amplifying would be erroneous than where large numbers of replicates amplify. This was confirmed in the goodness of fit analysis with the distribution of Stage 2 false positive replicates making up all samples amplifying with one or two positive qPCR replicates, while negligible false positive amplification was seen with four amplifying replicates or above (Fig. 2a). With only a single sample at Stage 1, false positive error is limited to the 1.5% per sample, as per the ({theta }_{10}) value in the occupancy model output.We would recommend that, where possible, results from individual sites are interpreted as a probability of site occupancy, based on modelled outputs such as those produced by the eDNAShinyApp R package23,27. The precision of these models is dependent on sample size. Where sample size is large, a reduced bias and narrower credible interval range is observed24. However, using occupancy modelling, Buxton et al.24 demonstrated that studies that contain only a small number of sites are unlikely to produce accurate and precise estimates. As a result, such assessments will need to continue to rely on a threshold value of amplifying qPCR replicates to define site occupancy. A naïve amplification threshold for assigning occupancy of one positive qPCR replicate is unwise and should be increased to reduce Stage 2 false positive error. Indeed, a threshold of three positive qPCR replicates would reduce false positive error, without increasing false negative error. Alternatively, redistributing the replication between Stage 1 and Stage 224, would also reduce the credible interval width and generate a more precise posterior mean estimate at Stage 1, in turn reducing the uncertainty around the occupancy estimate. A redistribution of replication leading to two samples collected from each site, both analysed using up to six qPCR replicates, as opposed to one sample analysed using twelve qPCR replicates, has been suggested24.Equal weighting of the ten covariates used in the traditional great crested newt HSI assessment25 may be ecologically unrealistic29. This is supported by the observations here, with only some of the HSI covariates identified as important for occupancy. The model applied by the eDNAShinyApp package23,27 successfully identified several covariates known to influence great crested newt occupancy, that are included within the HSI assessment25. These included occurrence of fish, water quality, shade, pond density, macrophyte cover, frequency of drying and geographic area; although our analysis was based on Easting and Northing, rather than the broad-scale suitability map used in deriving the original HSI25. However, several traditionally used HSI variables emerged as unimportant, i.e., waterfowl, terrestrial habitat quality, and area of pond; while ground frost, rainfall, surface wind and land cover type, are not included within the HSI assessment but were important.The importance and influence of the HSI suitability indices of fish, shade, pond density, water quality, macrophyte cover, and frequency of drying on pond occupancy were all as expected with wide literature support25,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48. The negative pond occupancy response to climatic covariates of ground frost and high precipitation are supported in relation to annual survival47. ‘It is worth noting that the PIP value for wind speed was only just over the threshold for inclusion as important. Although ponds are shallow with limited stratification possible, wind speed has been shown to influence the distribution of eDNA in deeper waterbodies49,50. Estimating the presence of fish in a pond by direct observation for the traditional HSI may be problematical, and metabarcoding approaches to eDNA surveys which offer information on presence of other species would improve the accuracy of covariates, such as fish presence40. Indeed, assigning “Possible” fish presence within the HSI when scoring a pond accounted for the same percentage (33.1%) of both positive and negative eDNA samples. This suggests that when surveyors are not confident of fish presence, they are using this category in equal proportions for both occupied and unoccupied ponds. Landcover and bedrock were also important for pond level occupancy. This is expected given the importance of terrestrial habitat, and water retention to the species (Figs. S1, S3)35,51. However, with very unbalanced sample sizes between the categories (Figs. S2, S4), and influence of nearby land cover types uncaptured by the data, this variable is difficult to interpret, and we suggest further examination. Nevertheless, the positive associations with woodland and grassland reflect established knowledge of habitat preferences36. Equally, as freshwater predominantly relates to rivers and lakes rather than ponds in the landcover dataset used, negative relationships reflect the lower suitability of these habitats36.Several covariates, however, did not exhibit the expected response for pond occupancy. Terrestrial habitat was not found to be important despite the species being only semi-aquatic, and previous studies emphasising the importance of this variable36. This may be a result of the original Oldham et al.25 terrestrial habitat assessment being simplified into four subjective categories in the ARG UK26 protocol: this may not be nuanced enough to differentiate terrestrial habitat usage using statistical modelling. Waterfowl were not identified by the model as important predictors of great crested newt pond occupancy, where they have been elsewhere29,41, with one study suggesting a positive relationship between waterfowl species richness and great crested newt occupancy40. The lack of importance demonstrated in this data set may indicate that other covariates outweigh waterfowl in terms of occupancy importance, or they may only become important predictors of occupancy at very high waterfowl densities rarely observed in this data set. Similarly, pond area was not found to be an important predictor of pond occupancy. There was no difference in the mean area for occupied or unoccupied ponds; however, no occupied ponds were found above 10,000 m2. We would anticipate that both very small and very large ponds to be unsuitable for great crested newts25,52.Northing but not Easting was found to be an important predictor of pond occupancy. A distribution gradient with latitude is a common feature of biodiversity generally, and in the UK great crested newts are much more patchily distributed in Scotland than in England53,54. Pond occupancy estimates varied by year, with a greater occupancy in 2018 than the other years considered. This is likely linked to climatic conditions and may relate to the timings of ponds drying in relation to eDNA sample collection. This may therefore be an artefact of unoccupied ponds being more likely to dry early in the season and therefore being excluded from occupancy estimates for dry years, or local migration to less suitable habitat if core ponds start to dry, however long term analysis of individuals within a metapopulation shows little support for this47. As a result, in very dry years, we would expect an increase in pond occupancy to be observed in the data. Although average early spring rainfall for England in 2018 was higher than in either 2017 or 2019, rainfall during the main eDNA survey window of May and June was considerably less in 2018 than in the other two years (Fig. S5). Similar variation in year on year occupancy rate has been observed elsewhere30.As with all sampling methods, imperfect detection is a general feature of eDNA surveys. When high levels of qPCR replicates are used, false negative error is predominantly due to failure to collect DNA in a sample rather than failure to detect DNA within the lab. False positive error can occur at both stages and is exaggerated at Stage 2 by high levels of replication; Stage 2 false positive error is most likely in samples with a low proportion of replicates amplifying. We recommend using statistical models to estimate the occupancy of individual sites, taking into consideration sampling error. Failing that, a naïve occupancy threshold of two or three amplifying qPCR replicates, adjusting for total levels of replication, should be applied before assigning a site as occupied or not.With specific reference to great crested newts, we estimate approximately 20% of ponds through their natural range within England are occupied. We estimate that eDNA sampling failed to collect DNA from approximately 5% of sites where it was present. However, if eDNA is collected it is highly unlikely to be missed during the laboratory phase using the present protocol. We estimate that eDNA is erroneously collected in approximately 1.5% of water samples causing Stage 1 false positive results. However, false positives at the laboratory phase were found to be 2% per qPCR replicate; it is likely that this error would account for the majority of samples amplifying with one or two qPCR replicates, as a result these need to be treated with caution. To maximise accuracy, we recommend redistributing replication between the two stages, as is recommended elsewhere, and that thresholds to define a replicate as positive are further examined24,55. It is important to recognise that visual surveys also experience imperfect detection13, with observation errors likely to be similar to or greater than the error experienced using eDNA methods, particularly if the recommendations presented here are put in place to minimise laboratory stage false positive error. The benefits associated with eDNA over traditional methods allowing rapid collection of large scale distribution data are invaluable and should not be devalued in relation to traditional methods15. Although not identified within the models as important predictors, waterfowl, terrestrial habitat, and pond area may remain important habitat features for great crested newts. These covariates may be less important than the other HSI covariates, may not be measured in a sufficiently nuanced way to enable their importance to be identified, or may have influence on a local but not national scale29,40. However, equal weighing of the ten HSI variables is an oversimplification with the effect of some variables, for example pond area, overinflated within the HSI analysis, whereas others are undervalued, for example fish intensity. It is important to measure HSI covariates accurately and consistently to allow them to be utilised in statistical analysis such as this, and a review of the covariates and weighting is warranted now large occupancy data sets are becoming available. More

  • in

    Population transcriptomics reveals the effect of gene flow on the evolution of range limits

    1.Hoffmann, A. A. & Willi, Y. Detecting genetic responses to environmental change. Nat. Rev. Genet. 9, 421–432 (2008).CAS 
    PubMed 

    Google Scholar 
    2.Endler, J. A. Geographic Variation, Speciation and Clines (Princeton, 1977).
    Google Scholar 
    3.Huey, R. B. Rapid evolution of a geographic cline in size in an introduced fly. Science. 287, 308–309 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: when and why does adaptation fail?. Trends Ecol. Evol. 22, 140–147 (2007).PubMed 

    Google Scholar 
    5.Holt, R. D. & Gomulkiewik, R. How does immigration influence local adaptation? A reexamination of a familiar paradim. Am. Nat. 149, 563–572 (1997).
    Google Scholar 
    6.Ronce, O. & Kirkpatrick, M. When sources become sinks: Migrational meltdown in heterogeneous habitats. Evolution 55, 1520–1531 (2001).CAS 
    PubMed 

    Google Scholar 
    7.Bridle, J. R., Gavaz, S. & Kennington, W. J. Testing limits to adaptation along altitudinal gradients in rainforest Drosophila. Proc. R. Soc. B Biol. Sci. 276, 1507–1515 (2009).
    Google Scholar 
    8.Bridle, J. R., Polechová, J., Kawata, M. & Butlin, R. K. Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol. Lett. 13, 485–494 (2010).PubMed 

    Google Scholar 
    9.Holt, R. D. & Keitt, T. H. Alternative causes for range limits: A metapopulation perspective. Ecol. Lett. 3, 41–47 (2000).
    Google Scholar 
    10.Takahashi, Y. et al. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25, 4450–4460 (2016).PubMed 

    Google Scholar 
    11.Arnaud-Haond, S. et al. Genetic structure at range edge: Low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol. Ecol. 15, 3515–3525 (2006).CAS 
    PubMed 

    Google Scholar 
    12.Pujol, B. & Pannell, J. R. Reduced responses to selection after species range expansion. Science 321, 96 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Cahill, A. E. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).PubMed 

    Google Scholar 
    14.Bachmann, J. C., van Rensburg, A. J., Cortazar-Chinarro, M., Laurila, A. & Van Buskirk, J. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195, E67–E86 (2020).PubMed 

    Google Scholar 
    15.Polechová, J. & Barton, N. H. Limits to adaptation along environmental gradients. Proc. Natl Acad. Sci. U. S. A. 112, 6401–6406 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl. Acad. Sci. U. S. A. 108, 11704–11709 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Angert, A. L., Bontrager, M. G. & Aringgren, J. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51, 341–361 (2020).
    Google Scholar 
    18.Ciborowski, J. J. H. Downstream and lateral transport of nymphs of two mayfly species (Ephemeroptera). Can. J. Fish. Aquat. Sci. 40, 2025–2029 (1983).
    Google Scholar 
    19.Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
    Google Scholar 
    20.Markwith, S. H. & Scanlon, M. J. Multiscale analysis of Hymenocallis coronaria (Amaryllidaceae) genetic diversity, genetic structure, and gene movement under the influence of unidirectional stream flow. Am. J. Bot. 94, 151–160 (2007).PubMed 

    Google Scholar 
    21.Congdon, B. C. Unidirectional gene flow and maintenance of genetic diversity in mosquitofish Gambusia holbrooki (Teleostei: Poeciliidae). Copeia 1995, 162 (1995).
    Google Scholar 
    22.Schaefer, J. Riffles as barriers to interpool movement by three cyprinids (Notropis boops, Campostoma anomalum and Cyprinella venusta). Freshw. Biol. 46, 379–388 (2001).
    Google Scholar 
    23.Moore, J. S., Gow, J. L., Taylor, E. B. & Hendry, A. P. Quantifying the constraining influence of gene flow on adaptive divergence in the lake-stream threespine stickleback system. Evolution 61, 2015–2026 (2007).PubMed 

    Google Scholar 
    24.Urabe, M. Diel change of activity and movement on natural river beds in Semisuleospira reiniana. VENUS 57, 17–27 (1998).
    Google Scholar 
    25.Hastie, L. C., Boon, P. J., Young, M. R. & Way, S. The effects of a major flood on an endangered freshwater mussel population. Biol. Conserv. 98, 107–115 (2001).
    Google Scholar 
    26.Alp, M., Keller, I., Westram, A. M. & Robinson, C. T. How river structure and biological traits influence gene flow: A population genetic study of two stream invertebrates with differing dispersal abilities. Freshw. Biol. 57, 969–981 (2012).
    Google Scholar 
    27.Terui, A. et al. Asymmetric dispersal structures a riverine metapopulation of the freshwater pearl mussel Margaritifera laevis. Ecol. Evol. 4, 3004–3014 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    28.Holomuzki, J. R. & Biggs, B. J. F. Distributional responses to flow disturbance by a stream-dwelling snail. Oikos 87, 36 (1999).
    Google Scholar 
    29.Urabe, M. Phenotypic modulation by the substratum of shell sculpture in Semisulcospira reiniana (Prosobranchia: Pleuroceridae). J. Molluscan Stud. 66, 53–60 (2000).
    Google Scholar 
    30.Gu, Q. H., Husemann, M., Ding, B., Luo, Z. & Xiong, B. X. Population genetic structure of Bellamya aeruginosa (Mollusca: Gastropoda: Viviparidae) in China: Weak divergence across large geographic distances. Ecol. Evol. 5, 4906–4919 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    31.Davis, C. D., Epps, C. W., Flitcroft, R. L. & Banks, M. A. Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdiscip. Rev. Water 5(2), e1269 (2018).
    Google Scholar 
    32.De Wit, P. & Palumbi, S. R. Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol. Ecol. 22, 2884–2897 (2013).PubMed 

    Google Scholar 
    33.Sun, Y.-B. et al. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc. Natl. Acad. Sci. 115, 201813593 (2018).
    Google Scholar 
    34.Willoughby, J. R., Harder, A. M., Tennessen, J. A., Scribner, K. T. & Christie, M. R. Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity. Mol. Ecol. 27, 4041–4051 (2018).CAS 
    PubMed 

    Google Scholar 
    35.De Wit, P. et al. The simple fool’s guide to population genomics via RNA-Seq: An introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067 (2012).PubMed 

    Google Scholar 
    36.Yokomizo, T. & Takahashi, Y. Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail. Sci. Rep. 10, 1–9 (2020).
    Google Scholar 
    37.Kottler, E. J., Dickman, E. E., Sexton, J. P., Emery, N. C., & Franks, S. J. Draining the swamping hypothesis: Little evidence that gene flow reduces fitness at range edges. Trends Ecol. Evol. 1–12 (2021).38.Moore, J. S. & Hendry, A. P. Can gene flow have negative demographic consequences? Mixed evidence from stream threespine stickleback. Philos. Trans. R. Soc. B Biol. Sci. 364, 1533–1542 (2009).
    Google Scholar 
    39.Ingvarsson, P. K. Restoration of genetic variation lost – The genetic rescue hypothesis. Trends Ecol. Evol. 16, 62–63 (2001).PubMed 

    Google Scholar 
    40.Shimada, K. & Urabe, M. Drift and upstream movement of Semisulcospira libertina (Caenogastropoda: Pleuroceridae) in a natural stream. Vinus 63, 49–59 (2004).
    Google Scholar 
    41.Nyitray, L., Goodwin, E. B. & Szent-Gyorgyi, A. G. Complete primary structure of a scallop striated muscle myosin heavy chain: Sequence comparison with other heavy chains reveals regions that might be critical for regulation. J. Biol. Chem. 266, 18469–18476 (1991).CAS 
    PubMed 

    Google Scholar 
    42.Ponder, W. F., Lindberg, D. R. & Ponder, J. M. Shell, Body, and Muscles (CRC Press, Taylor and Francis Group, Boca Raton, 2019).
    Google Scholar 
    43.Lesoway, M. P., Abouheif, E. & Collin, R. Comparative transcriptomics of alternative developmental phenotypes in a marine gastropod. J. Exp. Zool. Part B Mol. Dev. Evol. 326, 151–167 (2016).CAS 

    Google Scholar 
    44.Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Ann. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
    Google Scholar 
    45.Berger, V. J. & Kharazova, A. D. Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355, 115–126 (1997).CAS 

    Google Scholar 
    46.Rivera-Ingraham, G. A. & Lignot, J. H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 220, 1749–1760 (2017).PubMed 

    Google Scholar 
    47.Jo, P. G., Choi, Y. K., An, K. W. & Choi, C. Y. Osmoregulation and mRNA expression of a heat shock protein 68 and glucose-regulated protein 78 in the Pacific oyster Crassostrea gigas in response to salinity changes. J. Aquac. 20, 205–211 (2007).CAS 

    Google Scholar 
    48.Eierman, L. E. & Hare, M. P. Transcriptomic analysis of candidate osmoregulatory genes in the eastern oyster Crassostrea virginica. BMC Genomics 15, 1–15 (2014).
    Google Scholar 
    49.X. Zhao, H. Yu, L. Kong, Q. Li, Transcriptomic responses to salinity stress in the pacific oyster Crassostrea gigas. PLoS ONE 7 (2012).50.Zhang, Y. et al. Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. J. Proteome Res. 14, 304–317 (2015).CAS 
    PubMed 

    Google Scholar 
    51.Veiga, M. P. T., Gutierre, S. M. M., Castellano, G. C. & Freire, C. A. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): Behaviour and maintenance of tissue water content. J. Molluscan Stud. 82, 154–160 (2016).
    Google Scholar 
    52.Muraeva, O. A., Maltseva, A. L., Mikhailova, N. A. & Granovitch, A. I. Mechanisms of adaption to salinity stress in marine gastropods Littorina saxatilis: a proteomic analysis. Cell Tissue Biol. 10, 160–169 (2016).
    Google Scholar 
    53.Muraeva, O., Maltseva, A., Varfolomeeva, M., Mikhailova, N. & Granovitch, A. Mild osmotic stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: Caenogastropoda): A proteomic analysis. Biol. Commun. 62, 202–213 (2017).
    Google Scholar 
    54.Maynard, A., Bible, J. M., Pespeni, M. H., Sanford, E. & Evans, T. G. Transcriptomic responses to extreme low salinity among locally adapted populations of Olympia oyster (Ostrea lurida). Mol. Ecol. 27, 4225–4240 (2018).CAS 
    PubMed 

    Google Scholar 
    55.Ma, E., Gu, X. Q., Wu, X., Xu, T. & Haddad, G. G. Mutation in pre-mRNA adenosine deaminase markedly attenuates neuronal tolerance to O2 deprivation in Drosophila melanogaster. J. Clin. Invest. 107, 685–693 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Jepson, J. E. C. et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: Regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J. Biol. Chem. 286, 8325–8337 (2011).CAS 
    PubMed 

    Google Scholar 
    57.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4), 1–13 (2013).
    Google Scholar 
    61.Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Dobin, A. et al. STAR: ULTRAFAST universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS 

    Google Scholar 
    63.McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Rsearch 20, 1297–1303 (2010).CAS 

    Google Scholar 
    64.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).CAS 

    Google Scholar 
    66.Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4, 1–16 (2015).
    Google Scholar 
    67.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    68.Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    69.Mussmann, S. M., Douglas, M. R., Chafin, T. K. & Douglas, M. E. BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol. Evol. 10, 1808–1813 (2019).
    Google Scholar 
    70.Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
    Google Scholar 
    71.Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    72.Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    73.Mi, H. et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403 (2021).CAS 
    PubMed 

    Google Scholar 
    74.Parrish, N., Hormozdiari, F., & Eskin, E. Assembly of non-unique insertion content using next-generation sequencing. BMC Bioinformatics. 12, S3 (2011).75.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    77.Sun, J., Nishiyama, T., Shimizu, K. & Kadota, K. TCC: An R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14(1), 1–14 (2013).CAS 

    Google Scholar  More

  • in

    Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline–alkali soil region

    1.Canadell, J. G. et al. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ. Sci. Policy 10, 370–384. https://doi.org/10.1016/j.envsci.2007.01.009 (2007).Article 

    Google Scholar 
    2.Bradford, M. A., Fierer, N. & Reynolds, J. F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct. Ecol. 22, 964–974. https://doi.org/10.1111/j.1365-2435.2008.01404.x (2008).Article 

    Google Scholar 
    3.He, S., Liang, Z., Han, R., Wang, Y. & Liu, G. Soil carbon dynamics during grass restoration on abandoned sloping cropland in the hilly area of the Loess Plateau China. Catena 137, 679–685. https://doi.org/10.1016/j.catena.2015.01.027 (2016).CAS 
    Article 

    Google Scholar 
    4.Schuman, G. E., Janzen, H. H. & Herrick, J. E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 116, 391–396. https://doi.org/10.1016/s0269-7491(01)00215-9 (2002).CAS 
    Article 

    Google Scholar 
    5.Duan, C. et al. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol. Environ. Saf. 156, 106–115. https://doi.org/10.1016/j.ecoenv.2018.03.015 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Yang, J. et al. A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ. Pollut. 213, 760–769. https://doi.org/10.1016/j.envpol.2016.03.030 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590. https://doi.org/10.1038/nrmicro.2017.87 (2017).CAS 
    Article 

    Google Scholar 
    8.Wan, Z. & Song, C. Advance on response of soil enzyme activity to ecological environment. Chin. J. Soil Sci. 40(4), 951–956 (2009).CAS 

    Google Scholar 
    9.Liu, G. et al. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric. Ecosyst. Environ. 237, 274–279 (2017).CAS 
    Article 

    Google Scholar 
    10.Li, Z., Chaonian, F., Mengjie, L. & Huanchao, Z. Nutrient and biological characteristics of different salinized soils in coastal areas of northern Jiangsu Province. J. Anhui Agric. Univ. 46, 86–92 (2019).
    Google Scholar 
    11.Bueis, T., Turrion, M. B., Bravo, F., Pando, V. & Muscolo, A. Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: A basis for establishing sustainable forest management strategies. Ann. For. Sci. https://doi.org/10.1007/s13595-018-0720-z (2018).Article 

    Google Scholar 
    12.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x (2008).Article 
    PubMed 

    Google Scholar 
    13.Marx, M. C., Kandeler, E., Wood, M., Wermbter, N. & Jarvis, S. C. Exploring the enzymatic landscape: Distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 37, 35–48. https://doi.org/10.1016/j.soilbio.2004.05.024 (2005).CAS 
    Article 

    Google Scholar 
    14.Bais, et al. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 2006(57), 233–266 (2006).Article 

    Google Scholar 
    15.Qu, Y. et al. Soil enzyme activity and microbial metabolic function diversity in soda saline–alkali rice paddy fields of northeast China. Sustainability 12, 15. https://doi.org/10.3390/su122310095 (2020).CAS 
    Article 

    Google Scholar 
    16.Salinas-Garcia, J. R. et al. Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Till. Res. 66, 143–152. https://doi.org/10.1016/s0167-1987(02)00022-3 (2002).Article 

    Google Scholar 
    17.Roldán, A., Salinas-García, J. R., Alguacil, M. M. & Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol. 30, 11–20. https://doi.org/10.1016/j.apsoil.2005.01.004 (2005).Article 

    Google Scholar 
    18.Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol. 9, 1333–1352. https://doi.org/10.1046/j.1365-2486.2003.00674.x (2003).ADS 
    Article 

    Google Scholar 
    19.Rey, A., Petsikos, C., Jarvis, P. G. & Grace, J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur. J. Soil Sci. 56(5), 589–599 (2005).CAS 
    Article 

    Google Scholar 
    20.Wang, X., Zhag, Y., Lv, J. & Fan, X. Effect of long term different fertilization on properties of soil organic matter and humic acids. Sci. Agric. Sinica 33, 78–84 (2000).
    Google Scholar 
    21.Wei, Y. et al. Updated information on soil salinity in a typical oasis agroecosystem and desert-oasis ecotone: Case study conducted along the Tarim River. China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135387 (2019).Article 

    Google Scholar 
    22.Huang, L. H. et al. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. J. Agric. Sci. 154, 632–646. https://doi.org/10.1017/s002185961500057x (2015).Article 

    Google Scholar 
    23.Liu, Q., Cui, B. & Yang, Z. Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain China. Environ. Earth Sci. 59, 837–845. https://doi.org/10.1007/s12665-009-0079-4 (2009).CAS 
    Article 

    Google Scholar 
    24.Lu, Y. & Xu, H. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China. Sci. World J. 2014, 487961. https://doi.org/10.1155/2014/487961 (2014).CAS 
    Article 

    Google Scholar 
    25.Nitsch, P., Kaupenjohann, M. & Wulf, M. Forest continuity, soil depth and tree species are important parameters for SOC stocks in an old forest (Templiner Buchheide, northeast Germany). Geoderma 310, 65–76. https://doi.org/10.1016/j.geoderma.2017.08.041 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Zhang, Z., Lu, X., Song, X., Guo, Y. & Xue, Z. Soil C, N and P stoichiometry of deyeuxia angustifolia and carex lasiocarpa wetlands in Sanjiang Plain, northeast China. J. Soil Sediment. 12, 1309–1315. https://doi.org/10.1007/s11368-012-0551-8 (2012).CAS 
    Article 

    Google Scholar 
    27.Bian, J., Tang, J., Zhang, L., Ma, H. & Zhao, J. Arsenic distribution and geological factors in the western Jilin province China. J. Geochem. Explor. 112, 347–356. https://doi.org/10.1016/j.gexplo.2011.10.003 (2012).CAS 
    Article 

    Google Scholar 
    28.Zheng, B. Technical Guide for Soil Analysis (China Agriculture Press, 2013).
    Google Scholar 
    29.Paul, E. A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109–126. https://doi.org/10.1016/j.soilbio.2016.04.001 (2016).CAS 
    Article 

    Google Scholar 
    30.Solly, E. F., Schoning, I., Herold, N., Trumbore, S. E. & Schrumpf, M. No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil 393, 273–282. https://doi.org/10.1007/s11104-015-2492-7 (2015).CAS 
    Article 

    Google Scholar 
    31.Steinweg, J. M., Kostka, J. E., Hanson, P. J. & Schadt, C. W. Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biol. Biochem. 125, 244–250. https://doi.org/10.1016/j.soilbio.2018.07.001 (2018).CAS 
    Article 

    Google Scholar 
    32.Hartman, W. H., Richardson, C. J., Vilgalys, R. & Bruland, G. L. Environmental and anthropogenic controls over bacterial communities in wetland soils. P. Natl. Acad. Sci. USA 105, 17842–17847. https://doi.org/10.1073/pnas.0808254105 (2008).ADS 
    Article 

    Google Scholar 
    33.Andersen, R., Chapman, S. J. & Artz, R. R. E. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 57, 979–994. https://doi.org/10.1016/j.soilbio.2012.10.003 (2013).CAS 
    Article 

    Google Scholar 
    34.Huang, B., Wang, J., Jin, H. & Xu, S. Effects of long- term application fertilizer on carbon storage in calcareous meadow soil. J. Agro-Environ. Sci. 25, 161–164 (2006).CAS 

    Google Scholar 
    35.Bacmaga, M., Wyszkowska, J. & Kucharski, J. Bioaugmentation of soil contaminated with azoxystrobin. Water Air Soil Poll. 228, 9. https://doi.org/10.1007/s11270-016-3200-9 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453–467 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Pathak, H. & Rao, D. L. N. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol. Biochem. 30, 695–702. https://doi.org/10.1016/S0038-0717(97)00208-3 (1998).CAS 
    Article 

    Google Scholar 
    38.Xiao, Y. et al. Response of soil labile organic carbon fractions to forest conversions in subtropical China. Trop. Ecol. 57, 691–699 (2016).CAS 

    Google Scholar 
    39.Broszat, M. et al. Wastewater irrigation increases the abundance of potentially harmful gammaproteobacteria in soils in Mezquital Valley. Mexico. Appl. Environ. Microbiol. 80, 5282–5291 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    40.Liu, Y. et al. Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Environ. Microbiol. 13, 991–1009 (2011).CAS 
    Article 

    Google Scholar 
    41.Baumann, K. et al. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry 114, 201–212 (2013).CAS 
    Article 

    Google Scholar 
    42.Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Chambers, L. G., Guevara, R., Boyer, J. N., Troxler, T. G. & Davis, S. E. Effects of salinity and inundation on microbial community structure and fFunction in a mangrove peat soil. Wetlands 36, 361–371 (2016).Article 

    Google Scholar 
    44.Wong, V. N. L., Greene, R. S. B., Dalal, R. C. & Murphy, B. W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manage. 26, 2–11 (2010).Article 

    Google Scholar  More

  • in

    Responses of birds and mammals to long-established wind farms in India

    1.Malthus, T. An Essay on the Principle of Population (Penguin Classics, 1798).
    Google Scholar 
    2.Northrup, J. M. & Wittemyer, G. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol. Lett. 16, 112–125 (2013).PubMed 

    Google Scholar 
    3.Hubbert, M. K. Nuclear energy and the fossil fuel. In Drilling and Production Practice. 1–57 (Shell Developmental Company, American Petroleum Institute, Houston, 1956).
    Google Scholar 
    4.Höök, M., Sivertsson, A. & Aleklett, K. Validity of the fossil fuel production outlooks in the IPCC Emission Scenarios. Nat. Resour. Res. 19, 63–81 (2010).
    Google Scholar 
    5.Höök, M. & Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 52, 797–809 (2013).
    Google Scholar 
    6.Abbasi, S. A. & Abbasi, N. The likely adverse environmental impacts of renewable energy sources. Appl. Energy. 65, 121–144 (2000).
    Google Scholar 
    7.Vöhringer, M. Renewable energy and sustainable development: An impact assessment of micro and mini hydel projects in Gilgit-Baltistan, Pakistan. https://doi.org/10.17169/refubium-22914 (2010).8.Höök, M., Li, J., Johansson, K. & Snowden, S. Growth rates of global energy systems and future outlooks. Nat. Resour. Res. 21, 23–41 (2012).
    Google Scholar 
    9.Rotty, R. M. Growth in global energy demand and contribution of alternative supply systems. Energy 4, 881–890 (1979).
    Google Scholar 
    10.Aung, T. S., Overland, I. & Vakulchuk, R. Environmental performance of foreign firms: Chinese and Japanese firms in Myanmar. J. Clean. Prod. 312, 127701 (2021).
    Google Scholar 
    11.Lu, M. S., Chang, C. L., Lee, W. J. & Wang, L. Combining the wind power generation system with energy storage equipment. IEEE Trans. Ind. Appl. 45, 2109–2115 (2009).
    Google Scholar 
    12.Morinha, F. et al. Differential mortality of birds killed at wind farms in Northern Portugal. Bird Study 61, 255–259 (2014).
    Google Scholar 
    13.Arnett, E. B. & May, R. F. Mitigating wind energy impacts on wildlife: Approaches for multiple taxa. Hum.–Wild. Interact. 10, 5 (2016).
    Google Scholar 
    14.Powlesland, R. G. Impacts of wind farms on birds: A review. Sci. Conserv. 289, 1–53 (2009).
    Google Scholar 
    15.Marques, A. T. et al. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).
    Google Scholar 
    16.Wellig, S. D. et al. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed. PLoS ONE 13, e0192493. https://doi.org/10.1371/journal.pone.0192493 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Everaert, J. & Eric, W. M. S. Impact of wind turbines on birds in Zeebrugge (Belgium). Biodivers. Conserv. 16, 3345–3359 (2007).
    Google Scholar 
    18.Barrios, L. & Rodriguez, A. Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J. Appl. Ecol. 41, 72–81 (2004).
    Google Scholar 
    19.Barrios, L. & Rodriguez, A. Spatiotemporal patterns of bird mortality at two wind farms of Southern Spain. in Birds and wind farms: Risk Assessment and Mitigation (eds De Lucas, M. et al.) 229–239 (2007).20.Meek, E. R., Ribbands, J. B., Christer, W. B., Davy, P. R. & Higginson, I. The effects of aero-generators onmoorland bird populations in the Orkney Islands, Scotland. Bird Study 40, 140–143 (1993).
    Google Scholar 
    21.Smallwood, K. S. & Thelander, C. Developing methods to reduce bird mortality in the Altamont Pass Wind Resource Area. Final report to the California Energy Commission. Public Interest Energy Research–Environmental Area, Contract (2004).22.Smallwood, K. S. & Thelander, C. Bird mortality in the Altamont Pass wind resource area, California. J. Wildl. Manag. 72, 215–223 (2008).
    Google Scholar 
    23.Drewitt, A. L. & Langston, R. H. Collision effects of wind-power generators and other obstacles on birds. Ann. N. Y. Acad. Sci. 1134, 233–266 (2008).ADS 
    PubMed 

    Google Scholar 
    24.IWTMA—Indian Wind Turbine Manufacturers Association: INDIA—WIND POWER State wise Month wise Wind Power Installed Capacity 2019–2020. Accessed 7 May 2021. http://www.indianwindpower.com/wind-energy-in-india.php#tab1 (2020). 25.Smith, K. T., Taylor, K. L., Albeke, S. E. & Beck, J. L. Pronghorn winter resource selection before and after wind energy development in South-Central Wyoming. Rangel. Ecol. Manag. 73(2), 227–233 (2020).
    Google Scholar 
    26.Klich, D., Łopucki, R., Ścibior, A., Gołębiowska, D. & Wojciechowska, M. Roe deer stress response to a wind farms: methodological and practical implications. Ecol. Indic. 117, 106658 (2020).
    Google Scholar 
    27.Flydal, K., Eftestøl, S., Reimers, E. & Colman, J. E. Effects of wind turbines on area use and behaviour of semi-domestic reindeer in enclosures. Rangifer. 24(2), 55–66 (2004).
    Google Scholar 
    28.Rabin, L. A., Coss, R. G. & Owings, D. H. The effects of wind turbines on antipredator behavior in California ground squirrels (Spermophilus beecheyi). Biol. Conserv. 131(3), 410–420 (2006).
    Google Scholar 
    29.Łopucki, R. & Perzanowski, K. Effects of wind turbines on spatial distribution of the European hamster. Ecol. Indic. 84, 433–436 (2018).
    Google Scholar 
    30.Kumar, S. R., Ali, A. & Arun, P. R. Impact of wind turbines on birds: A case study from Gujarat, India. Sci. J. Environ. Sci. 228, 1–12 (2012).
    Google Scholar 
    31.Kumar, S. R., Ali, A. M. S. & Arun, P. R. Bat mortality due to collision with wind turbines in Kutch District, Gujarat, India. J. Threat. Taxa. 5(13), 4822–4824 (2013).
    Google Scholar 
    32.Kumar, V., Kumar, P. & Singh, J. An introduction to contaminants in agriculture and environment. In Contaminants in Agriculture and Environment: Health Risks and Remediation (eds. Kumar, V. et al.) 1–8 (Afro Environment India, Haridwar, India, 2019).
    Google Scholar 
    33.Pande, S. et al. CEPF Western Ghats Special Series: Avian collision threat assessment at Bhambarwadi Wind farm Plateau in northern Western Ghats. India. J. Threat. Taxa. 5(1), 3504–3515 (2013).
    Google Scholar 
    34.Narwade, S. et al. Mass mortality of wildlife due to hailstorms in Maharashtra, India. Bird Populations. 13, 28–35 (2014).
    Google Scholar 
    35.Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    36.Erickson, W. P. et al. Avian collisions with wind turbines: a summary of existing studies and comparisons to other sources of avian collision mortality in the United States. Western EcoSystems Technology, Inc., Cheyenne, WY (United States); RESOLVE, Inc., Washington, DC (United States). Accessed 20 Feb 2021. https://www.osti.gov/servlets/purl/822418/ (2001).37.Shoenfeld, P. Suggestions regarding avian mortality extrapolation. Prepared for the Mountaineer Wind Energy Center Technical Review Committee (2004).38.Buckland, S. T. et al. Introduction to Distance Sampling (Oxford University Press, 2001).
    Google Scholar 
    39.Bibby, C. J., Burgess, N. D. & Hill, D. A. Bird Census Techniques (Academic Press, 1992).
    Google Scholar 
    40.Cottam, G. & Curtis, J. T. The use of distance measures in phytosociological sampling. Ecology 37, 451–460 (1956).
    Google Scholar 
    41.Erickson, W. P., Jeffrey, J., Kronner, K. & Bay, K. Stateline wind project wildlife monitoring annual report, results for the period July 2001–December 2002. Technical report submitted to FPL Energy, the Oregon Office of Energy, and the Stateline Technical Advisory Committee (2003).42.Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    43.McCune, B., Grace, J. B. & Urban, D. L. Analysis of Ecological Communities Vol. 28 (MjM Software Design, 2002).
    Google Scholar 
    44.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. Ecol. 18, 117–143 (1993).
    Google Scholar 
    45.Baskaran, N., Desai, A. A. & Udhayan, A. Population distribution and conservation of the four-horned antelope (Tetracerus quadricornis) in the tropical forest of Southern India. J. Sci. Trans. Environ. Technol. 2, 139–144 (2009).
    Google Scholar 
    46.Isvaran, K. Intraspecific variation in group size in the blackbuck antelope: The roles of habitat structure and forage at different spatial scales. Oecologia 154(2), 435–444 (2007).ADS 
    PubMed 

    Google Scholar 
    47.Šálek, M. et al. Population densities and habitat use of the golden jackal (Canis aureus) in farmlands across the Balkan Peninsula. Eur. J. Wildl. Res. 60(2), 193–200 (2014).
    Google Scholar 
    48.Mukherjee, S., Goyal, S. P., Johnsingh, A. J. T. & Pitman, M. L. The importance of rodents in the diet of jungle cat (Felis chaus), caracal (Caracal caracal) and golden jackal (Canis aureus) in Sariska Tiger Reserve, Rajasthan, India. J. Zool. 262(4), 405–411 (2004).
    Google Scholar 
    49.Majumder, A., Sankar, K., Qureshi, Q. & Basu, S. Food habits and temporal activity patterns of the Golden Jackal Canis aureus and the Jungle Cat Felis chaus in Pench Tiger Reserve, Madhya Pradesh. J. Threat. Taxa. 3(11), 2221–2225 (2011).
    Google Scholar 
    50.Gaikwad, M. C. & Narwade, S. S. The status of Chinkara Gazella bennettii (Mammalia: Cetartiodactyla: Bovidae) at Mayureshwar Wildlife Sanctuary, Supe, Baramati, Pune and a note on its current distribution in the southwestern region of the Deccan Plateau of Maharashtra, India. J. Threat. Taxa. 8(3), 8590–8595 (2016).
    Google Scholar 
    51.Kumar, D. et al. Ecological determinants of occupancy and abundance of chinkara (Gazella bennettii) in Yadahalli Wildlife Sanctuary, Karnataka, India. Curr. Sci. 118(2), 264–270 (2020).
    Google Scholar 
    52.Anoop, V., Arun, P. R. & Jayapal, R. Do black-naped hares Lepus nigricollis (Mammalia: Lagomorpha: Leporidae) have synanthropic association with wind farms?. J. Threat. Taxa. 10(7), 11925–11927 (2018).
    Google Scholar 
    53.MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).
    Google Scholar 
    54.MacKenzie, D. I. et al. Occupancy Modelling and Estimation (Academic Press, 2006).
    Google Scholar 
    55.Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255–265 (1973).MathSciNet 
    MATH 

    Google Scholar 
    56.Burnham, K. P. & Anderson, D. R. in Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer-Verlag, New York, 2002).MATH 

    Google Scholar 
    57.Kingsley, A. & Whittam, B. Potential Impacts of Wind Turbines on Birds at North Cape, Prince Edward Island (Bird Studies Canada, 2001).
    Google Scholar 
    58.Winkelman, J. E. Vogels en het Windpark nabij Urk (NOP): Aanvaringsslachtoffers en Verstoring van Pleisterende Eenden, Ganzen en Zwanen. RIN-report 89/15. Arnhem. (1989).59.Arun, P. R., Jayapal, R. & Anoop, V. Impact of Hara wind power project of CLP wind farms (India) ltd. On wildlife including migratory birds and raptors at Harpanahalli, Davangere, Karnataka. Final report Submitted to CLP Wind farms (India) Pvt. Ltd. SACON Report. 145 (2015).60.SGS Environment – Haverigg wind farm ornithological monitoring programme. Report to Windcluster Ltd. (1994).61.Tyler, S. J. Bird strike study at Bryn Titli wind farm, Rhayader. Report to National Wind Power Ltd (1995).62.Petterson, J. & Stalin, T. Influence of offshore windmill on migratory birds in southeast coast of Sweden. Report to GE Wind Energy. Piorkowski (2003).63.Grünkorn T., Diederichs A., Stahl B., Pöszig D. & Nehls G. Entwicklung einer Methode zur Abschätzung desKollisionsrisikos von Vögeln an Windenergie-anlagen. Bioconsult SH, Hockensbüll, Germany. Accessed 2 Feb 2021. http://www.umweltdaten.landsh.de/nuis/upool/gesamt/wea/voegel_wea.pdf (2005).64.Morrison, M. L. Avian Risk and Fatality Protocol (National Renewable Energy Lab., 1998).
    Google Scholar 
    65.Anderson, R. et al. Avian Monitoring and Risk Assessment at the San Gorgonio Wind Resource Area (National Renewable Energy Lab. (NREL), 2005).
    Google Scholar 
    66.Hunt, G. & Hunt, T. The trend of golden eagle territory occupancy in the vicinity of the Altamont Pass Wind Resource Area: 2005 survey. Unpublished report of the California Energy Commission. Accessed 2 Feb 2021. www.energy.ca.gov/2006publications/CEC-500-2006-056/CEC-500-2006-056.pdf (2006).67.Brown, M. J., Linton, E. & Rees, E. C. Causes of mortality among wild swans in Britain. Wildfowl. 43, 70–79 (1992).
    Google Scholar 
    68.Larsen, J. K. & Clausen, P. Potential wind park impacts on whooper swans in winter: The risk of collision. Waterbirds. 25, 327–330 (2002).
    Google Scholar 
    69.Drewitt, A. L. & Langston, R. H. Assessing the impacts of wind farms on birds. Ibis 148, 29–42 (2006).
    Google Scholar 
    70.Stewart, G. B., Pullin, A. S. & Coles, C. F. Poor evidence-base for assessment of wind farm impacts on birds. Environ. Conserv. 34, 1–11 (2007).
    Google Scholar 
    71.Kuvlesky, W. P. Jr. et al. Wind energy development and wildlife conservation: Challenges and opportunities. J. Wildl. Manag. 71, 2487–2498 (2007).
    Google Scholar 
    72.Behr, O. & Helversen. O. V. Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen. Wirkungskontrolle zum Windpark “Roßkopf” (Freiburg i. Br.). Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Zoologie II: 1–42 (2005).73.Behr, O. et al. Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen. Wirkungskontrolle zum Windpark ‘Ittenschwander Horn’ (Freiburg i Br.). Report to Windpark Fröhnd GmbH & Co. KG (2006).74.Brinkmann, R., Schauer-Weisshahn H., & Bontadina F. Untersuchungen zu möglichen betriebsbedingten Auswirkungen von Windkraftanlagen auf Fledermäuse im Regierungsbezirk Freiburg. Report to Regierungspräsidium Freiburg, Referat 56 Naturschutz und Landschaftspflege. Accessed 2 Feb 2021. http://www.rp-freiburg.de/servlet/PB/show/1158478/rpf-windkraft-fledermaeuse.pdf (2006).75.Grunwald, T. & Schäfer, F. Aktivität von Fledermäusen im Rotorbereich von Windenergieanlagen an bestehenden WEA in Südwestdeutschland – Teil 2: Ergebnisse. Nyctalus. 12, 182–198 (2007).
    Google Scholar 
    76.Bach, P., Niermann, I. & Bach, L. Impact of wind speed on the activity of bats-at the coast and inland. Accessed 2 Feb 2021. https://tethys.pnnl.gov/sites/default/files/publications/Bachetal2011.pdf (2011).77.Bach, P., Bach, L., Ekschmitt, K., Frey, K. & Gerhardt, U. Bat fatalities at different wind facilities in Northwest Germany. Accessed 2 Feb 2021. https://tethys.pnnl.gov/sites/default/files/publications/Bach-Bat-fatalities-Poster-2013.pdf (2013).78.Cryan, P. M. & Brown, A. C. Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol. Conserv. 139, 1–11 (2007).
    Google Scholar 
    79.Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. B 284, 20170829. https://doi.org/10.1098/rspb.2017.0829 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Kumar S. R. Impacts of wind farm on avifauna of Samakhiali region, Kutch, Gujarat, PhD thesis submitted to Bharathiyar University, Coimbatore (2017).81.De Lucas, M., Janss, G. F., Whitfield, D. P. & Ferrer, M. Collision fatality of raptors in wind farms does not depend on raptor abundance. J. Appl. Ecol. 45, 1695–1703 (2008).
    Google Scholar 
    82.Leddy, K. L., Higgins, K. F. & Naugle, D. E. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands. Wilson. Bull. 111, 100–104 (1999).
    Google Scholar 
    83.Pearce-Higgins, J. W., Stephen, L., Langston, R. H., Bainbridge, I. P. & Bullman, R. The distribution of breeding birds around upland wind farms. J. Appl. Ecol. 46, 1323–1331 (2009).
    Google Scholar 
    84.Zimmerling, J., Pomeroy, A., d’Entremont, M. & Francis, C. Canadian estimate of bird mortality due to collisions and direct habitat loss associated with wind turbine developments. Avian Conserv. Ecol. 8, 1–13 (2013).
    Google Scholar 
    85.Schaller, G. B. The Deer and the Tiger: A Study of Wildlife in India (University Chicago Press, 1967).
    Google Scholar 
    86.Prasad, N. Home range, dispersal, and movement of blackbuck (Antilope cervicapra) population in relation to seasonal change in Mudmal and environs. PhD thesis submitted to Saurashtra University, Rajkot, India (1981).87.Ranjitsinh, M. K. Indian Blackbuck (Natraj Publishers, 1989).
    Google Scholar 
    88.Kumara, H. N., Rathnakumar, S., Sasi, R. & Singh, M. Conservation status of wild mammals in Biligiri Rangaswamy Temple wildlife sanctuary, the Western Ghats, India. Curr. Sci. 103, 933–940 (2012).
    Google Scholar 
    89.Rathore, D. Blackbuck occupancy in Moyar valley, Tamil Nadu. MSc thesis submitted to TERI University, Delhi (2017).90.Arandhara, S., Sathishkumar, S., Gupta, S. & Baskaran, N. Influence of invasive Prosopis juliflora on the distribution and ecology of native blackbuck in protected areas of Tamil Nadu, India. Eur. J. Wildl. Res. 67, 1–16 (2021).
    Google Scholar 
    91.Prater, S. H. The Book of Indian Animals (Oxford University Press, 1971).
    Google Scholar 
    92.Roberts, T. J. The Mammals of Pakistan (Oxford University Press, 1997).
    Google Scholar 
    93.Rahmani, A. R. Distribution of the Indian gazelle or chinkara Gazella bennetti (Sykes) in India. Mammalia 54, 605–620 (1990).
    Google Scholar 
    94.Kumar, D. et al. Ecological determinants of occupancy and abundance of chinkara (Gazella bennettii) in Yadahalli Wildlife Sanctuary, Karnataka, India. Curr. Sci. 118, 264 (2020).
    Google Scholar 
    95.Gubbi, S., Seshadri, S. & Kumara, V. Counting the unmarked: Estimating animal population using count data. Electron. J. Appl. Stat. Anal. 12, 604–618 (2019).
    Google Scholar 
    96.Clutton-Brock, J., Corbet, G. B. & Hills, M. Review of the family Canidae, with a classification by numerical methods. Bull. Br. Mus. Nat. Hist. Zool. 29, 117–199 (1976).
    Google Scholar 
    97.Nowell, K. & Jackson, P. Wild Cats: Status Survey and Conservation Action Plan (IUCN, 1996).
    Google Scholar 
    98.Krishna, Y. C., Krishnaswamy, J. & Kumar, N. S. Habitat factors affecting site occupancy and relative abundance of four-horned antelope. J. Zool. 276, 63–70 (2008).
    Google Scholar  More

  • in

    Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer

    1.Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6–265sr6 (2014).2.Wilkinson, H. N. & Hardman, M. J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 10, 20023 (2020).
    Google Scholar 
    3.Dvorak, H. F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).CAS 
    PubMed 

    Google Scholar 
    4.Dvorak, H. F. Tumors: Wounds that do not heal–Redux. Cancer Immunol. Res. 3, 1–11 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Schäfer, M. & Werner, S. Cancer as an overhealing wound: An old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9, 628–638 (2008).PubMed 

    Google Scholar 
    6.MacCarthy-Morrogh, L. & Martin, P. The hallmarks of cancer are also the hallmarks of wound healing. Sci. Signal. 13, eaay8690 (2020).7.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. How the evolution of multicellularity set the stage for cancer. Br. J. Cancer 118, 145–152 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).PubMed 

    Google Scholar 
    9.Bosch, T. C. G. Why polyps regenerate and we don’t: Towards a cellular and molecular framework for Hydra regeneration. Dev. Biol. 303, 421–433 (2007).CAS 
    PubMed 

    Google Scholar 
    10.Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    11.Slack, J. M. Animal regeneration: Ancestral character or evolutionary novelty?. EMBO Rep. 18, 1497–1508 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Wenger, Y., Buzgariu, W., Reiter, S. & Galliot, B. Injury-induced immune responses in Hydra. Semin. Immunol. 26, 277–294 (2014).CAS 
    PubMed 

    Google Scholar 
    13.Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science (80-. ). 298, 2188–2190 (2002).14.Kao, D., Felix, D. & Aboobaker, A. The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios. BMC Genomics 14, 1–17 (2013).
    Google Scholar 
    15.Gehrke, A. R. et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science (80-. ). 363 (2019).16.DuBuc, T. Q., Traylor-Knowles, N. & Martindale, M. Q. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biol. 12, 24 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    17.Cary, G. A., Wolff, A., Zueva, O., Pattinato, J. & Hinman, V. F. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol. 17, 16 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    18.Owlarn, S. et al. Generic wound signals initiate regeneration in missing-tissue contexts. Nat. Commun. 8, 1–13 (2017).CAS 

    Google Scholar 
    19.Ramon-Mateu, J., Ellison, S. T., Angelini, T. E. & Martindale, M. Q. Regeneration in the ctenophore Mnemiopsis leidyi occurs in the absence of a blastema, requires cell division, and is temporally separable from wound healing. BMC Biol. 17, 80 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    20.Pawlik, J. R. & Deignan, L. K. Cowries graze Verongid sponges on Caribbean reefs. Coral Reefs 34, 663 (2015).ADS 

    Google Scholar 
    21.Rice, M. M., Ezzat, L. & Burkepile, D. E. Corallivory in the anthropocene: Interactive effects of anthropogenic stressors and corallivory on coral reefs. Front. Mar. Sci. 5, 1–14 (2019).
    Google Scholar 
    22.Pawlik, J. R., Loh, T.-L., McMurray, S. E. & Finelli, C. M. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLoS One 8, e62573 (2013).23.Mortimer, C., Dunn, M., Haris, A., Jompa, J. & Bell, J. Estimates of sponge consumption rates on an Indo-Pacific reef. Mar. Ecol. Prog. Ser. 672, 123–140 (2021).ADS 
    CAS 

    Google Scholar 
    24.de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science (80-. ). 342, 108–10 (2013).25.Rix, L. et al. Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct. Ecol. 31, 778–789 (2016).
    Google Scholar 
    26.Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles and conservation concerns. Mar. Animal Forests https://doi.org/10.1007/978-3-319-17001-5 (2015).Article 

    Google Scholar 
    27.Soubigou, A., Ross, E. G., Touhami, Y., Chrismas, N. & Modepalli, V. Regeneration in sponge Sycon ciliatum partly mimics postlarval development. Development https://doi.org/10.1242/dev.193714 (2020).Article 
    PubMed 

    Google Scholar 
    28.Telford, M. J., Moroz, L. L. & Halanych, K. M. A sisterly dispute. Nature 529, 286–287 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Feuda, R. et al. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.11.008 (2017).Article 
    PubMed 

    Google Scholar 
    30.Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30, 282–291 (2015).PubMed 

    Google Scholar 
    31.Borisenko, I. E., Adamska, M., Tokina, D. B. & Ereskovsky, A. V. Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera). PeerJ 3, e1211 (2015).32.Lavrov, A. I., Bolshakov, F. V., Tokina, D. B. & Ereskovsky, A. V. Sewing up the wounds: The epithelial morphogenesis as a central mechanism of calcaronean sponge regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 330, 351–371 (2018).33.Ereskovsky, A. V. et al. Transdifferentiation and mesenchymal‐to‐epithelial transition during regeneration in Demospongiae (Porifera). J. Exp. Zool. Part B Mol. Dev. Evol. 334, 37–58 (2020).34.Alexander, B. E. et al. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage? PeerJ 3, e820 (2015).35.Pozzolini, M. et al. Insights into the evolution of metazoan regenerative mechanisms: TGF superfamily member roles in tissue regeneration of the marine sponge Chondrosia reniformis Nardo, 1847. J. Exp. Biol. 222, jeb207894 (2019).36.Kenny, N. J. et al. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A transcriptomic case study in the demosponge Halisarca caerulea. Mar. Genomics 37, 135–147 (2018).PubMed 

    Google Scholar 
    37.Pawlik, J. R. Handbook of marine natural products. in Handbook of Marine Natural Products (eds. Fattorusso, E., Gerwick, W. H. & Taglialatela-Scafati, O.) 677–705 (Springer, New York, 2012). https://doi.org/10.1007/978-90-481-3834-038.Walters, K. D. & Pawlik, J. R. Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges?. Integr. Comp. Biol. 45, 352–358 (2005).PubMed 

    Google Scholar 
    39.Becerro, M. A., Turon, X., Uriz, M. J. & Templado, J. Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biol. J. Linn. Soc. 78, 429–438 (2003).
    Google Scholar 
    40.Wu, Y.-C. et al. Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Sci. Rep. 10, 21934 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Pita, L., Hoeppner, M. P., Ribes, M. & Hentschel, U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci. Rep. 8, 16081 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Stewart, F. J., Ottesen, E. A. & Delong, E. F. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 4, 896–907 (2010).CAS 
    PubMed 

    Google Scholar 
    43.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible read trimming tool for Illumina NGS data. Bioinformatics btu170 (2014).44.Menzel, P. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2015).ADS 

    Google Scholar 
    45.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494 (2013).CAS 
    PubMed 

    Google Scholar 
    46.Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: Reference free quality assessment of de-novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. Genome analysis BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).CAS 
    PubMed 

    Google Scholar 
    48.Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 
    PubMed 

    Google Scholar 
    51.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800 (2011).52.Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer, Berlin, 2016).53.Team, R. C. R: A language and environment for statistical computing. (2019).54.Team, Rs. RStudio: Integrated Development for R. (2015).55.Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).CAS 
    PubMed 

    Google Scholar 
    56.Pritchard, L., Jones, S. & Cock, P. IBioIC Introd. Bioinform. Train. Course https://doi.org/10.5281/zenodo.1184095 (2018).57.Forbes, S. A. et al. The catalogue of somatic mutations in cancer (COSMIC). Curr. Protoc. Hum. Genet. 57 (2008).58.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. Elife 8, 1–28 (2019).
    Google Scholar 
    59.Cerenius, L. & Söderhäll, K. Coagulation in invertebrates. J. Innate Immun. 3, 3–8 (2011).PubMed 

    Google Scholar 
    60.Davie, E. W., Fujikawa, K. & Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 30, 10363–10370 (1991).CAS 
    PubMed 

    Google Scholar 
    61.Richardson, V. R., Cordell, P., Standeven, K. F. & Carter, A. M. Substrates of factor XIII-A: Roles in thrombosis and wound healing. Clin. Sci. 124, 123–137 (2013).CAS 

    Google Scholar 
    62.Domazet-Lošo, T. & Tautz, D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 8, 1–10 (2010).
    Google Scholar 
    63.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc. Natl. Acad. Sci. USA 114, 6406–6411 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Rohani, M. G. & Parks, W. C. Matrix remodeling by MMPs during wound repair. Matrix Biol. 44–46, 113–121 (2015).PubMed 

    Google Scholar 
    65.Grose, R. et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315 (2002).CAS 
    PubMed 

    Google Scholar 
    66.Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    67.Paps, J. & Holland, P. W. H. Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat. Commun. 9, 1730 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Sharrocks, A. D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).CAS 
    PubMed 

    Google Scholar 
    69.Larroux, C. et al. Developmental expression of transcription factor genes in a demosponge: Insights into the origin of metazoan multicellularity. Evol. Dev. 8, 150–173 (2006).CAS 
    PubMed 

    Google Scholar 
    70.Petersen, H. O. et al. A comprehensive transcriptomic and proteomic analysis of Hydra head regeneration. Mol. Biol. Evol. 32, 1928–1947 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Cardozo, M. J., Mysiak, K. S., Becker, T. & Becker, C. G. Reduce, reuse, recycle—Developmental signals in spinal cord regeneration. Dev. Biol. 432, 53–62 (2017).CAS 
    PubMed 

    Google Scholar 
    72.Adamska, M. et al. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One 2, e1031 (2007).73.Stewart, Z. K. et al. Transcriptomic investigation of wound healing and regeneration in the cnidarian Calliactis polypus. Sci. Rep. 7, 41458 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Chablais, F. & Jazwinska, A. The regenerative capacity of the zebrafish heart is dependent on TGF signaling. Development 139, 1921–1930 (2012).CAS 
    PubMed 

    Google Scholar 
    75.Chen, H., Lin, F., Xing, K. & He, X. The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nat. Commun. 6, 1–10 (2015).ADS 

    Google Scholar 
    76.Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Ćetković, H., Halasz, M. & Herak Bosnar, M. Sponges: A reservoir of genes implicated in human cancer. Mar. Drugs 16, 20 (2018).PubMed Central 

    Google Scholar  More

  • in

    Road traffic and landscape characteristics predict the occurrence of native halophytes on roadside verges

    1.European Road Federation. European Road Statistics: Yearbook 2020. https://erf.be/statistics/road-network-2020/ (2020)2.Hungarian Public Road Nonprofit Pte Ltd Co. https://internet.kozut.hu/ (2020)3.Findlay, T., Scott, C. & Bourdages, J. Response time of wetland biodiversity to road construction on adjacent lands. Conserv. Biol. 14, 86–94. https://doi.org/10.1046/j.1523-1739.2000.99086.x (2000).Article 

    Google Scholar 
    4.Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231. https://doi.org/10.1046/j.1466-822x.1998.00308.x (1998).Article 

    Google Scholar 
    5.Dean, W. R. J., Seymour, C. L., Joseph, G. S. & Foord, S. H. A review of the impacts of roads on wildlife in semi-arid regions. Diversity 11, 81. https://doi.org/10.3390/d11050081 (2019).Article 

    Google Scholar 
    6.Auffret, A. G., Berg, J. & Cousins, S. A. The geography of human‐mediated dispersal. Divers. Distrib. 20, 1450–1456. https://doi.org/10.1111/ddi.12251 (2014)7.Niggemann, M., Jetzkowitz, J., Brunzel, S., Wichmann, M. C. & Bialozyt, R. Distribution patterns of plants explained by human movement behaviour. Ecol. Model. 220, 1339–1346. https://doi.org/10.1016/j.ecolmodel.2009.02.018 (2009).Article 

    Google Scholar 
    8.Clifford, H. T. Seed dispersal by motor vehicles. J. Ecol. 47, 311–315. https://doi.org/10.2307/2257368 (1959).Article 

    Google Scholar 
    9.Rew, L. J. et al. Hitching a ride: seed accrual rates on different types of vehicles. J. Environ. Manage. 206, 547–555. https://doi.org/10.1016/j.jenvman.2017.10.060 (2018).Article 
    PubMed 

    Google Scholar 
    10.Schmidt, W. Plant dispersal by motor cars. Vegetatio 80, 147–152 (1989).Article 

    Google Scholar 
    11.Ross, S. M. Vegetation change on main road verges in south-east Scotland. J. Biogeogr. 13, 109–117. https://doi.org/10.2307/2844986 (1986).Article 

    Google Scholar 
    12.Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: the contribution of traffic and mowing machines. Neobiota 8, 53–60 (2009).
    Google Scholar 
    13.Tikka, P. M., Högmander, H. & Koski, P. S. Road and railway verges serve as dispersal corridors for grassland plants. Landscape Ecol. 16, 659–666. https://doi.org/10.1023/A:101312052 (2001).Article 

    Google Scholar 
    14.Forman, R. T. Estimate of the area affected ecologically by the road system in the United States. Conserv. Biol. 14, 31–35. https://doi.org/10.1046/j.1523-1739.2000.99299.x (2000).Article 

    Google Scholar 
    15.Gelbard, J. L. & Belnap, J. Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv. Biol. 17, 420–432. https://doi.org/10.1046/j.1523-1739.2003.01408.x (2003).Article 

    Google Scholar 
    16.Kalwij, J. M., Milton, S. J. & Mcgeoch, M. A. Road verges as invasion corridors? A spatial hierarchical test in an arid ecosystem. Landscape Ecol. 23, 439–451. https://doi.org/10.1007/s10980-008-9201-3 (2008).Article 

    Google Scholar 
    17.Essl, F., Dullinger, S. & Kleinbauer, I. Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81, 119–133 (2009).
    Google Scholar 
    18.Follak, S., Dullinger, S., Kleinbauer, I., Moser, D. & Essl, F. Invasion dynamics of three allergenic invasive Asteraceae (Ambrosia trifida, Artemisia annua, Iva xanthiifolia) in central and eastern Europe. Preslia 85, 41–61 (2013).
    Google Scholar 
    19.Skálová, H., Guo, W. Y., Wild, J. & Pyšek, P. Ambrosia artemisiifolia in the Czech Republic: history of invasion, current distribution and prediction of future spread. Preslia 89, 1–16. https://doi.org/10.23855/preslia.2017.001 (2017).Article 

    Google Scholar 
    20.Clarke, A. Macroecology comes of age. Trends Ecol. Evol. 17, 352–353. https://doi.org/10.1016/s0169-5347(02)02552-1 (2002).Article 

    Google Scholar 
    21.Török, K. et al. Invasion gateways and corridors in the Carpathian Basin: Biological invasions in Hungary. Biol. Inv. 5, 349–356. https://doi.org/10.1023/B:BINV.0000005570.19429.73 (2003).Article 

    Google Scholar 
    22.Pyšek, P., Jarošík, V. & Kucera, T. Patterns of invasion in temperate nature reserves. – Biol. Conserv. 104, 13–24. https://doi.org/10.1016/S0006-3207(01)00150-1 (2002).23.Greenberg, C. H., Crownover, S. H. & Gordon, D. R. Roadside soils: a corridor for invasion of xeric shrub by nonindigenous plants. Nat. Area. J. 17, 99–109 (1997).
    Google Scholar 
    24.Köles, P. Útpályák szennyeződése és a vízlefolyás környezeti hatása. Hidrol. Táj. 1, 14–16 (1994).
    Google Scholar 
    25.Amrhein, C., Strong, J. E. & Mosher, P. A. Effect of deicing salts on metal and organic matter mobilization in roadside soils. Environ. Sci. Technol. 26, 703–709. https://doi.org/10.1021/es00028a006 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Davison, A. W. The effects of de-icing salt on roadside verges. I. Soil and plant analysis. J. Appl. Ecol. 8, 555–561. https://doi.org/10.2307/2402891 (1971).Article 

    Google Scholar 
    27.Bouraoui, D., Cekstere, G., Osvalde, A., Vollenweider, P. & Rasmann, S. Deicing salt pollution affects the foliar traits and arthropods’ biodiversity of lime trees in Riga’s street greeneries. Front. Ecol. Evol. 7, 282. https://doi.org/10.3389/fevo.2019.00282 (2019).Article 

    Google Scholar 
    28.Asensio, E. et al. Accumulation of de-icing salt and leaching in Spanish soils surrounding roadways. Int. J. Env. Res. Pub. He. 14, 1498. https://doi.org/10.3390/ijerph14121498 (2017).CAS 
    Article 

    Google Scholar 
    29.Hintz, W. D. & Relyea, R. A. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biol. 64, 1081–1097. https://doi.org/10.1111/fwb.13286 (2019).Article 

    Google Scholar 
    30.Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a main road-forest interface. Water Air Soil Poll. 198, 125–132. https://doi.org/10.1007/s11270-008-9831-8 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New Phytol. 179, 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Barbour, M. G. Is any angiosperm an obligate halophyte?. Am. Midl. Nat. 84, 105–120. https://doi.org/10.2307/2423730 (1970).Article 

    Google Scholar 
    33.Mitsch, W. J. & Gosselink, J. G. Wetlands 3rd edn. (Wiley, 2000).
    Google Scholar 
    34.Sabovljevic´, M., Sabovljevic´, A. Contribution to the coastal bryophytes of the Northern Mediterranean: Are there halophytes among bryophytes? Phytol. Balc. 13, 131–135 (2007).35.Krauss, K. W. & Ball, M. C. On the halophytic nature of mangroves. Trees 27, 7–11. https://doi.org/10.1007/s00468-012-0767-7 (2013).Article 

    Google Scholar 
    36.Gerstberger, P. Plantago coronopus subsp. commutata introduced as a roadside halophyte in central Europe. Tuexenia 21, 249–256 (2001).
    Google Scholar 
    37.Wrobel, M., Tomaszewicz, T. & Chudecka, J. Floristic diversity and spatial distribution of roadside halophytes along forest and field roads in Szczecin lowland (West Poland). Pol. J. Ecol. 54, 303–309 (2006).
    Google Scholar 
    38.Šerá, B. Road vegetation in Central Europe – an example from the Czech Republic. Biologia 63, 1085–1088. https://doi.org/10.2478/s11756-008-0152-6 (2008).Article 

    Google Scholar 
    39.Kaplan, Z. et al. Distributions of vascular plants in the Czech Republic. Part 2. Preslia 88, 229–322 (2016).
    Google Scholar 
    40.Schmidt, D., Dítětová, Z., Horváth, A. & Szűcs, P. Coastal newcomer on motorways: the invasion of Plantago coronopus in Hungary. Studia Bot. Hung. 47, 319–334 (2016).Article 

    Google Scholar 
    41.Fekete, R. et al. Rapid continental spread of a salt-tolerant plant along the European road network. Biol. Inv. 23, 2661–2674. https://doi.org/10.1007/s10530-021-02531-6 (2021).Article 

    Google Scholar 
    42.Schmidt, D., Bauer, N., Fekete, R., Haszonits, G. & Süveges, K. Continuing spread of Plantago coronopus along Hungarian roads. Kitaibelia 25, 19–26. https://doi.org/10.17542/kit.25.19 (2020).43.Schmidt, D. New data to spreading of Plantago coronopus in Hungary. Kitaibelia 26, 99–101. https://doi.org/10.17542/kit.26.99 (2021).44.Fekete, R., Mesterházy, A., Valkó, O. & Molnár, V. A. A hitchhiker from the beach: the spread of the maritime halophyte Cochlearia danica along salted continental roads. Preslia 90, 23–37. https://doi.org/10.23855/preslia.2018.023 (2018).45.Schmotzer, A. Ceratocephala testiculata (Crantz) Roth and further data to the flora of the foothills of Bükk Mts. (‘Bükkalja’, NE Hungary). Kitaibelia 20, 81–142. https://doi.org/10.17542/kit.20.81 (2015).Article 

    Google Scholar 
    46.Barbosa, N. P., Fernandes, G. W., Carneiro, M. A. & Júnior, L. A. Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil (rupestrian fields). Biol. Inv. 12, 3745–3755. https://doi.org/10.1007/s10530-010-9767-y (2010).Article 

    Google Scholar 
    47.Pollnac, F., Seipel, T., Repath, C. & Re, L. J. Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biol. Inv. 14, 1753–1763. https://doi.org/10.1007/s10530-012-0188-y (2012).Article 

    Google Scholar 
    48.McDougall, K. L. et al. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Inv. 20, 3461–3473. https://doi.org/10.1007/s10530-018-1787-z (2018).Article 

    Google Scholar 
    49.US Fish and Wildlife Service. Jesup’s milk-vetch (Astragalus robbinsii var. jesupii) 5-Year Review: Summary and Evaluation., USA: US Fish and Wildlife Service, 14 pp. (2008)50.US Fish and Wildlife Service. Showy Indian Clover (Trifolium amoenum) 5-Year Review: Summary and Evaluation., USA: US Fish and Wildlife Service, 12 pp. (2008)51.Zarzyczki, K. & Szeląg, Z. Red list of the vascular plants in Poland. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2006)52.Bartha D. et al. Magyarország edényes növényfajainak elterjedési atlasza. Distribution atlas of vascular plants of Hungary (ed. Bartha, D.) (Nyugat-magyarorszagi Egyetem Kiadó, Sopron, 2015).53.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2019)54.Király G. ed. Új magyar füvészkönyv. Magyarország hajtásos növényei. (Aggteleki Nemzeti Park Igazgatóság, 2009)55.Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. Salt-affected soils and their management (No. 39). Food & Agriculture Org, (1988).56.R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018)57.Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R package version 2, 74 (2007).
    Google Scholar 
    58.Knowles, J. E. & Frederick, C. Prediction intervals from merMod objects. https://www.cran.rproject.org/web/packages/merTools/vignettes/Using_predictInterval.html (2016).59.The Plant List. Version 1.1. Published on the Internet. http://www.theplantlist.org/ (2020)60.Schmidt, D., Haszonits, Gy. & Korda, M. Spreading of native Spergularia species along roadsides of Transdanubia (NW Hungary). Kitaibelia 23, 141–150. https://doi.org/10.17542/kit.23.141 (2018).Article 

    Google Scholar 
    61.Englmaier, P. & Wilhalm, T. Alien grasses (Poaceae) in the flora of the Eastern Alps: contribution to an excursion flora of Austria and the Eastern Alps. Neilreichia 9, 177–245 (2018).
    Google Scholar 
    62.Takács, A., & Zsólyomi, T. Adatok a Taktaköz flórájának ismeretéhez. Data to the knowledge of the vascular flora of the Taktaköz (N-Hungary). Kitaibelia 15, 25–34 (2010).63.Bauer, N. Casual occurrences of Limonium gmelinii (Willd.) Kuntze subsp. hungaricum (Klokov) Soó in roadside verges. Kitaibelia 20, 300 (2015).64.Kocián, P. et al. Limonka Gmelinova (Limonium gmelinii) na dálnicích České republiky. Acta Rer. Nat. 19, 1–6 (2016).
    Google Scholar 
    65.Hohla, M., Diewald, W. & Király, G. Limonium gmelini – eine Steppenpflanze an österreichischen Autobahnen sowie weitere Neuigkeiten zur Flora Österreichs. Stapfia 103, 127–150 (2015).
    Google Scholar 
    66.Hanselmann D. Neue Zierde für den Straßensaum–Erstnachweis von Limonium gmelini (Willd.) Kuntze in Deutschland (und weitere Anmerkungen zu aktuellen Entwicklungen der Straßenbegleitflora in Rheinland-Pfalz). Mainz. Nat. Wiss. Arch. 54, 155–156 (2017).67.Scheuer, C. Dupla Graecensia Fungorum (2012, 201–350. Sz.). Fritschiana 72, 9–60 (2012).
    Google Scholar 
    68.John, H. & Stolle, J. Aktuelle Nachweise von Farn-und Blütenpflanzen im südlichen Sachsen-Anhalt. Mitt Florist. Kart. Sachsen-Anhalt 16, 43–57 (2011).
    Google Scholar 
    69.Yannitsaros, A. Additions to the flora of Kithira (Greece) I. Willdenowia 28, 77–94 (1998).Article 

    Google Scholar 
    70.Dogan, Y., Baslar, S., Celik, A., Mert, H. H. & Ozturk, M. A study of the roadside plants of west Anatolia Turkey. Nat. Croat. 1, 63–80 (2004).
    Google Scholar 
    71.Arnold, N., Baydoun, S., Chalak, L. & Raus, T. A contribution to the flora and ethnobotanical knowledge of Mount Hermon Lebanon. Flora Mediterr. 25, 13–55. https://doi.org/10.7320/flmedit25.013 (2015).Article 

    Google Scholar 
    72.Kárpáti, Z. Kiegészítés Soó – Jávorka: A magyar növényvilág kézikönyve c. munkájához. Bot. Közl. 45, 71–76 (1954).
    Google Scholar 
    73.Scott, N. E. & Davison, A. W. De-icing salt and the invasion of road verges by maritime plants. Watsonia 14, 41–52 (1982).
    Google Scholar 
    74.Fukarek, F., Knapp, M. D., Rauschert, S., Weinert, E. Karten der Pflanzenverbreitung in der DDR. Hercynia NF Leipzig 1 Serie 15, 229–320 (1978).75.Bresinsky, A. & Schundfelder, P. Mitteilungen der Arbeitsgemeinschaft zur floristischen Kartierung Bayerns. In: A. Bresinsky et al. (eds.). 7: 25–34 (Anmerkungen zu einigen Musterkarten für einen Atlas der Flora Bayerns,1980).76.Mirek, Z. & Trzonska-Tacik, D. Spreading of Puccinellia distans (L.) Parl. along the roads in southern Poland. Ekol. Pol. 92: 345–352 (1981).77.Valei, F. G. Bromus carinatus Hook. et Arn. en Puccinellia distans (L.) Parl. in midden Nederland. Gorteria 9, 232–234 (1979).78.Badmin, J. S. Records of Puccinellia distans growing inland in Kent and northern France. Trans. Kent Field Club 8, 115 (1980).
    Google Scholar 
    79.Butler, J. D., Hughes, T. D., Sanks, G. D. & Craig, P. R. Salt causes problems along Illinois main roads. Illinois Res. 13, 3–4 (1971).
    Google Scholar 
    80.Catling, P. M. & McKay, S. M. A review of the occurrence of halophytes in the eastern Great Lakes region. Michigan Bot. 20, 167–179 (1981).
    Google Scholar 
    81.Hohla, M. & Melzer, H. Floristisches von den Autobahnen der Bundesländer Salzburg, Oberösterreich Niederösterreich und Burgenland. Linz. Biol. Beitr. 35, 1307–1326 (2003).
    Google Scholar 
    82.Kocián, P. Novelties in the roadside flora of Moravia and Silesia (Czech Republic) – 1. Spergularia media. Acta Mus. Siles. Sci. Nat. 64, 263–267. https://doi.org/10.1515/cszma-2015-0033 (2015).83.Randall, R. E. An annotated flora of Tory Island, Co Donegal (vc H35). Ir. Nat. J. 27, 373–381 (2004).
    Google Scholar 
    84.Rossbach, R. P. Spergularia in North and South America. Contrib. Gray Herb. Harvard Univ. 130, 57–217 (1940).
    Google Scholar 
    85.Truscott, A. M., Palmer, S. C. F., McGowan, G. M., Cape, J. N. & Smart, S. Vegetation composition of roadside verges in Scotland: the effects of nitrogen deposition, disturbance and management. Environment. Poll. 136, 109–118 https://doi.org/10.1016/j.envpol.2004.12.009 (2005).86.Lonsdale, W. M. & Lane, A. M. Tourist vehicles as vectors of weed seeds in Kakadu National Park Northern Australia. Biol. Conserv. 69, 277–283 (1994).Article 

    Google Scholar 
    87.Borhidi, A. & Sánta, A. Vörös könyv Magyarország növénytársulásairól. I-II. 711 pp (Természetbúvár Alapítvány Kiadó, 2007).88.Bekker, R. et al. Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct. Ecol. 12, 834–842. https://doi.org/10.1046/j.1365-2435.1998.00252.x (1998).Article 

    Google Scholar 
    89.Westoby, M., Leishman, M., Lord, J., Poorter, H. & Schoen, D. J. Comparative ecology of seed size and dispersal. Philos. T. R. Soc. B. 351, 1309–1318 (1996).Article 

    Google Scholar 
    90.Török, P. et al. New thousand-seed weight records of the Pannonian flora and their application in analysing Social Behaviour Types. Acta Bot. Hung. 55, 429–472. https://doi.org/10.1556/ABot.55.2013.3-4.17 (2013).Article 

    Google Scholar 
    91.Török, P. et al. New measurements of thousand-seed weights of species in the Pannonian flora. Acta Bot. Hung. 58, 187–198. https://doi.org/10.1556/034.58.2016.1-2.10 (2016).Article 

    Google Scholar 
    92.Dawson, W., Burslem, D. F. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665. https://doi.org/10.1111/j.1365-2745.2009.01519.x (2009).Article 

    Google Scholar 
    93.Ungar, I. A. & Binet, P. Factors influencing seed dormancy in Spergularia media (L.) C Presl. Aquat. Bot. 1, 45–55 (1975).CAS 
    Article 

    Google Scholar 
    94.Moravcova, L. & Frantik, T. Germination ecology of Puccinellia distans and P. limosa. Biologia, Sect. Bot. 57,441–448 (2002).95.Filep, Gy. Talajtani alapismeretek II. Egyetemi jegyzet. (Debreceni Agrártudományi Egyetem, Debrecen, 1999)96.Grigore, M. N., & Toma, C. Anatomical adaptations of halophytes. A review of classic literature and recent, Springer https://doi.org/10.1007/978-3-319-66480-4 (2017).97.Grigore, M. N., Ivanescu, L. & Toma, C. Halophytes: an integrative anatomical study. Springer https://doi.org/10.1007/978-3-319-05729-3 (2014).Article 

    Google Scholar 
    98.Vakhrusheva, D. V. Mesostructure of photosynthetic apparatus in C3 plants in the arid zone of Central Asia, Extended Abst. Cand. Sci. (Biol.) Dissertation, Leningrad (1989).99.Breckle, S. W. Salinity tolerance of different halophyte types. In Genetic aspects of plant mineral nutrition Springer, Dordrecht, pp. 167–175. https://doi.org/10.1007/978-94-009-2053-8_26 (1990).100.Glenn, E. P., Brown, J. J. & Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18, 227–255. https://doi.org/10.1080/07352689991309207 (1999).Article 

    Google Scholar 
    101.Flowers, T. J. & Yeo, A. R. Ion relations of plants under drought and salinity. Aust. J. Plant Physiol. 13, 75–91. https://doi.org/10.1071/PP9860075 (1986).CAS 
    Article 

    Google Scholar 
    102.Pătruţ, D. I., Pop, A., & Coste, I. Biodiversitatea halofitelor din Câmpia Banatului. Eurobit, (2005).103.Skultety, D. & Matthews, J. W. Urbanization and roads drive non-native plant invasion in the Chicago Metropolitan region. Biol. Inv. 19(2553–2566), 2553–2566. https://doi.org/10.1007/s10530-017-1464-7 (2017).Article 

    Google Scholar  More

  • in

    DNA metabarcoding suggests dietary niche partitioning in the Adriatic European hake

    1.Griffin, J. N. et al. Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118, 1335–1342 (2009).
    Google Scholar 
    2.Bulling, M. T. et al. Species effects on ecosystem processes are modified by faunal responses to habitat composition. Oecologia 158, 511–520 (2008).ADS 
    PubMed 

    Google Scholar 
    3.Godbold, J. A., Bulling, M. T. & Solan, M. Habitat structure mediates biodiversity effects on ecosystem properties. Proc. R. Soc. B Biol. Sci. 278, 2510–2518 (2011).CAS 

    Google Scholar 
    4.Carlucci, R. et al. Exploring spatio-temporal changes in the demersal and benthopelagic assemblages of the north-western Ionian Sea (central Mediterranean Sea). Mar. Ecol. Prog. Ser. 598, 1–19 (2018).ADS 

    Google Scholar 
    5.Garrison, L. P. & Link, J. S. Fishing effects on spatial distribution and trophic guild structure of the fish community in the Georges Bank region. ICES J. Mar. Sci. 57, 723–730 (2000).
    Google Scholar 
    6.Worm, B. & Myers, R. A. Meta-analysis of COD–shrimp interactions reveals top-down control in oceanic food webs. Ecology 84, 162–173 (2003).
    Google Scholar 
    7.Savenkoff, C. et al. Changes in the northern Gulf of St. Lawrence ecosystem estimated by inverse modelling: evidence of a fishery-induced regime shift?. Estuar. Coast. Shelf Sci. 73, 711–724 (2007).ADS 

    Google Scholar 
    8.Ellingsen, K. E. et al. The rise of a marine generalist predator and the fall of beta diversity. Glob. Chang. Biol. 6, 1–11. https://doi.org/10.1111/gcb.15027 (2020).Article 

    Google Scholar 
    9.Casellato, S. & Stefanon, A. Coralligenous habitat in the northern Adriatic Sea: an overview. Mar. Ecol. 29, 321–341 (2008).ADS 

    Google Scholar 
    10.Guidetti, P., Lorenti, M., Buia, M. C. & Mazzella, L. Temporal dynamics and biomass partitioning in three Adriatic seagrass species: Posidonia oceanica, Cymodocea nodosa, Zostera marina. Mar. Ecol. 23, 51–67 (2002).ADS 

    Google Scholar 
    11.Sanfilippo, R. et al. Serpula aggregates and their role in deep-sea coral communities in the southern Adriatic Sea. Facies 59, 663–677 (2013).
    Google Scholar 
    12.FAO. The state of the Mediterranean and Black Sea fisheries 2020. (2020).13.Mannini, P. & Massa, F. Brief overview of Adriatic fisheries landing trends (1972–1997). Support paper prepared for the first Adriamed Coordination Committee Meeting. General Fisheries Commission for the Mediterranean (FAO). Annex G. 3, 1–19 (2000).
    Google Scholar 
    14.Adriamed. Priority Topics Related to Small Pelagic Fishery Resources of the Adriatic Sea. Report of the First Meeting of the Adriamed Working Group on Shared Demersal Resources. FAO-MiPAF Scientific Cooperation to Support Responsible Fisheries in the Adriatic Sea. AdriaMed Tech. Doc. 1–21 (2000).15.Mannini, P., Massa, F. & Milone, N. Priority topics related to small pelagic fishery resources of the Adriatic Sea. Report of the first meeting of the adriamed working group on small pelagic resources. FAO-MiPAF scientific cooperation to support responsible fisheries in the Adriatic Sea. Adriamed Tech. Doc. 6, 1–92 (2001).
    Google Scholar 
    16.Vrgoč, N. et al. Review of current knowledge on shared demersal stocks of the Adriatic Sea. (Food and agriculture organization of the United nations (FAO), 2004).17.Cerrano, C. et al. Adriatic Sea: Description of the ecology and identification of the areas that may deserve to be protected. (2015).18.Arneri, E. & Morales-Nin, B. Aspects of the early life history of European hake from the central Adriatic. J. Fish Biol. 56, 1368–1380 (2000).
    Google Scholar 
    19.Zupanovic, S. & Jardas, I. A contribution to the study of biology and population dynamics of the Adriatic hake, M. merluccius (L). Acta Adriat. 27, 97–146 (1986).
    Google Scholar 
    20.Colloca, F. et al. Mapping of nursery and spawning grounds of demersal fish. Mediterr. Sensitive Habitats Final Report, DG MARE Specif. Contract SI2 600741, (2013).21.Sion, L. et al. Spatial distribution pattern of European hake, M. merluccius (Pisces: Merlucciidae), in the Mediterranean Sea. Sci. Mar. 83, 21–32 (2020).
    Google Scholar 
    22.GFCM. FAO: The state of the Mediterranean and Black Sea fisheries 2016. General Fisheries Commission for the Mediterranean (2016). https://doi.org/10.1163/156853010X510807.23.NGOs. Urgent call for a Fisheries Restricted Area in the Jabuka/Pomo Pit closed to demersal fisheries. (2017).24.Fisher, W., Bauchot, W. M. & Schneider, M. Fiches FAO d’identification pour les besoins de la pêche (rev. 1). Méditerranée et mer Noire. Zone de pêche 37 2, 761–1530 (1987).
    Google Scholar 
    25.Carpentieri, P., Colloca, F. & Ardizzone, G. Daily ration and feeding activity of juvenile hake in the central Mediterranean Sea. J. Mar. Biol. Assoc. UK 88, 1493–1501 (2008).
    Google Scholar 
    26.Cartes, J. E., Hidalgo, M., Papiol, V., Massutí, E. & Moranta, J. Changes in the diet and feeding of the hake M. merluccius at the shelf-break of the Balearic Islands: influence of the mesopelagic-boundary community. Deep Sea Res. Part I Oceanogr. Res. Pap. 56, 344–365 (2009).ADS 

    Google Scholar 
    27.Modica, L., Cartes, J. E., Velasco, F. & Bozzano, A. Juvenile hake predation on Myctophidae and Sternoptychidae: quantifying an energy transfer between mesopelagic and neritic communities. J. Sea Res. 95, 217–225 (2015).ADS 

    Google Scholar 
    28.Druon, J.-N. et al. Modelling of European hake nurseries in the Mediterranean Sea: an ecological niche approach. Prog. Oceanogr. 130, 188–204 (2015).ADS 

    Google Scholar 
    29.Mellon-Duval, C. et al. Trophic ecology of the European hake in the Gulf of Lions, northwestern Mediterranean Sea. Sci. Mar. 81, 7–18 (2017).
    Google Scholar 
    30.Stagioni, M., Montanini, S. & Vallisneri, M. Feeding habits of European hake, M. merluccius (Actinopterygii: Gadiformes: Merlucciidae), from the Northeastern Mediterranean Sea. Acta Ichthyol. Piscat. 41, 109 (2011).
    Google Scholar 
    31.Albaina, A., Aguirre, M., Abad, D., Santos, M. & Estonba, A. 18S rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species. Ecol. Evol. 6, 1809–1824 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    32.Berry, O. et al. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar. Ecol. Prog. Ser. 540, 167–181 (2015).ADS 
    CAS 

    Google Scholar 
    33.Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    34.Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220 (2019).CAS 
    PubMed 

    Google Scholar 
    35.Riccioni, G., Stagioni, M., Piccinetti, C. & Libralato, S. A metabarcoding approach for the feeding habits of European hake in the Adriatic Sea. Ecol. Evol. 8, 10435–10447 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    36.Carpentieri, P., Colloca, F., Cardinale, M., Belluscio, A. & Ardizzone, G. Feeding habits of European hake (M. merluccius) in the central Mediterranean Sea. Fish. Bull. 103, 411–416 (2005).
    Google Scholar 
    37.Carrozzi, V. et al. Prey preferences and ontogenetic diet shift of European hake M. merluccius (Linnaeus, 1758) in the central Mediterranean. Reg. Stud. Mar. Sci. 25, 100440 (2019).
    Google Scholar 
    38.Bozzano, A., Sardà, F. & Ríos, J. Vertical distribution and feeding patterns of the juvenile European hake, M. merluccius in the NW Mediterranean. Fish. Res. 73, 29–36 (2005).
    Google Scholar 
    39.Cartes, J. E., Rey, J., Lloris, D. & De Sola, L. G. Influence of environmental variables on the feeding and diet of European hake (M. merluccius) on the Mediterranean Iberian coasts. J. Mar. Biol. Assoc. UK 84, 831–835 (2004).
    Google Scholar 
    40.Papaconstantinou, C. & Caragitsou, E. The food of hake (M. merluccius) in Greek Seas. Vie milieu 37, 77–83 (1987).
    Google Scholar 
    41.Sartor, P., Carlini, F. & De Ranieri, S. Diet of young European hake (M. merluccius) in the Northern Tyrrhenian Sea. (Società italiana di biologia marina, 2003).42.Ungaro, N., Mannini, P. & Vrgoč, N. The biology and stock assessment of M. merluccius in the Adriatic Sea: an historical review by geographical subareas. Acta Adriat. 44, 9–20 (2003).
    Google Scholar 
    43.Froglia, C. & Gramitto, M. E. Summary of biological parameters on Micromesistius poutassou (Risso) in the Adriatic. FAO Fish. Report= FAO Rapp. sur les pêches (1981).44.Krstulovic, S. S. et al. Composition and distribution of the cephalopod fauna in the eastern Adriatic and eastern Ionian Sea. Isr. J. Zool. 51, 315–330 (2005).
    Google Scholar 
    45.Nožina, I. Biogenic deep scattering layers in the Adriatic mesopelagial. (1979).46.Sobrino, I., Silva, C., Sbrana, M. & Kapiris, K. A review of the biology and fisheries of the deep water rose shrimp, parapenaeus longirostris, in European atlantic and Mediterranean Waters (Decapoda, Dendrobranchiata, Penaeidae). Crustaceana 78, 1153–1184 (2005).
    Google Scholar 
    47.Ciavaglia, E. & Manfredi, C. Distribution and some biological aspects of cephalopods in the North and Central Adriatic. Boll. Malacol 45, 61–69 (2009).
    Google Scholar 
    48.Stagioni, M., Montanini, S. & Vallisneri, M. Feeding habits of European hake, M. merluccius (Actinopterygii: Gadiformes: Merlucciidae), from the Northeastern Mediterranean Sea. Acta Ichthyol. Piscat. 41, 277–284 (2011).
    Google Scholar 
    49.Cartes, J. E., Sorbe, J. C. & Sardà, F. Spatial distribution of deep-sea decapods and euphausiids near the bottom in the northwestern Mediterranean. J. Exp. Mar. Bio. Ecol. 179, 131–144 (1994).
    Google Scholar 
    50.Despalatovic, M., Grubelic, I. & Simunovic, A. Distribution and abundance of the Atlantic mud shrimp, Solenocera membranacea (Risso, 1816)(Decapoda, Solenoceridae) in the northern and central Adriatic Sea. Crustac. J. Crustac. Res. 79, 1025 (2006).
    Google Scholar 
    51.Koulouri, P., Dounas, C. & Eleftheriou, A. Hyperbenthic community structure over oligotrophic continental shelves and upper slopes: crete (South Aegean Sea, NE Mediterranean). Estuar. Coast. Shelf Sci. 117, 188–198 (2013).ADS 

    Google Scholar 
    52.Panzeri, D. et al. Developing spatial distribution models for demersal species by the integration of trawl surveys data and relevant ocean variables. Copernicus Mar. Serv. Ocean State Rep. J. Oper Oceanogr. 14, 114–124 (2021).
    Google Scholar 
    53.Albo-Puigserver, M. et al. Year-round energy dynamics of sardine and anchovy in the north-western Mediterranean Sea. Mar. Environ. Res. 159, 105021 (2020).CAS 
    PubMed 

    Google Scholar 
    54.Harmelin-Vivien, M., Bӑnaru, D., Dromard, C. R., Ourgaud, M. & Carlotti, F. Biochemical composition and energy content of size-fractionated zooplankton east of the Kerguelen Islands. Polar Biol. 42, 603–617 (2019).
    Google Scholar 
    55.McClatchie, S. et al. Food limitation of sea lion pups and the decline of forage off central and southern California. R. Soc. Open Sci. 3, 150628 (2020).
    Google Scholar 
    56.Schaafsma, F. L. et al. Review: the energetic value of zooplankton and nekton species of the Southern Ocean. Mar. Biol. 165, 129 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    57.Cai, L. et al. Interrelationships between feeding, food deprivation and swimming performance in juvenile grass carp. Aquat. Biol. 20, 69–76 (2014).
    Google Scholar 
    58.Nunn, A. D., Tewson, L. H. & Cowx, I. G. The foraging ecology of larval and juvenile fishes. Rev. Fish Biol. Fish. 22, 377–408 (2012).
    Google Scholar 
    59.Ferraton, F., Harmelin-Vivien, M. & Mellon-Duval, C. Spatio-temporal variation in diet may affect condition and abundance of juvenile European hake in the Gulf of Lions (NW Mediterranean). Mar. Ecol. Prog. Ser. 337, 197–208 (2007).ADS 

    Google Scholar 
    60.Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl. Acad. Sci. 100, 9383–9387 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R. Jr., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
    Google Scholar 
    62.Baumgartner, M. T. Connectance and nestedness as stabilizing factors in response to pulse disturbances in adaptive antagonistic networks. J. Theor. Biol. 486, 110073 (2020).PubMed 
    MATH 

    Google Scholar 
    63.Libralato, S. et al. Food-web traits of protected and exploited areas of the Adriatic Sea. Biol. Conserv. 143, 2182–2194 (2010).
    Google Scholar 
    64.van Denderen, P. D., van Kooten, T. & Rijnsdorp, A. D. When does fishing lead to more fish? Community consequences of bottom trawl fisheries in demersal food webs. Proc. R. Soc. B Biol. Sci. 280, 20131883 (2013).
    Google Scholar 
    65.Agnetta, D. et al. Benthic-pelagic coupling mediates interactions in Mediterranean mixed fisheries: an ecosystem modeling approach. PLoS One 14, e0210659 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Walters, C. J., Christensen, V., Martell, S. J. & Kitchell, J. F. Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES J. Mar. Sci. 62, 558–568 (2005).
    Google Scholar 
    67.GFCM. Report of the nineteenth session of the Scientific Advisory Committee on Fisheries. Working copy vol. 1209 (2017).68.NOAA. Essential fish habitat and consultation. NOAA Fish. Pacific Isl. Reg. Off. (2004) https://doi.org/10.17128/9781589483651_11.1.69.Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Boyer, F. et al. obitools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    PubMed 

    Google Scholar 
    71.Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).CAS 
    PubMed 

    Google Scholar 
    72.Oksanen, J. Vegan: an introduction to ordination. (2016).73.Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.R Core Team. R: A Language and Environment for Statistical Computing. (2015).75.Dormann, C. F. How to be a specialist? Quantifying specialisation in pollination networks. Netw. Biol. 1, 1–20 (2011).
    Google Scholar 
    76.Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).
    Google Scholar 
    77.Jacobs, J. Quantitative measurement of food selection. Oecologia 14, 413–417 (1974).ADS 
    PubMed 

    Google Scholar  More

  • in

    Rare and localized events stabilize microbial community composition and patterns of spatial self-organization in a fluctuating environment

    Effects of environmental fluctuations on co-culture composition and intermixingWe first tested the effects of fluctuations between anoxic (inducing a mutualistic interaction) and oxic (inducing a competitive interaction) conditions on co-culture composition (quantified as the ratio of consumer-to-producer at the expansion edge) and interspecific mixing (quantified as the number of interspecific boundaries divided by the colony circumference). We expected that, over a series of anoxic/oxic transitions, the ratio of consumer-to-producer at the expansion edge and the degree of intermixing would both decrease (Fig. 1d). To test this, we performed range expansions where we transitioned the environment between anoxic and oxic conditions. While we performed the experiments with defined anoxic and oxic incubation times, our main prediction (i.e., that repeated transitions between anoxic and oxic conditions can induce irreversible pattern transitions that alter co-culture composition and functioning) is independent of the time spent under either of those conditions as far as cells can adjust their metabolism to the new environment (Fig. 1d).As expected, the ratio of consumer-to-producer and the intermixing index both decreased over the series of anoxic/oxic transitions (Fig. 2a, b). The changes in these quantities appear to have two distinct dynamic phases; a first phase with a relatively steep decay and a second phase with a shallower decay. We therefore modeled their dynamics using a two-phase linear regression model [53,54,55]. During the first phase, the ratio of consumer-to-producer decreased significantly more rapidly at pH 7.5 (r2 = 0.90, p = 2 × 10−9, coeff = −0.0374, 95% CI = [−0.038, −0.0368]) than at 6.5 (r2 = 0.94, p = 1 × 10−7, coeff = −0.0103, 95% CI = [−0.0108, −0.0097]) (Fig. 2a). We observed consistent results for the intermixing index, where it also decreased significantly more rapidly at pH 7.5 (r2 = 0.90, p = 2 × 10−9, coeff = −0.0289, 95% CI = [−0.0295, −0.0284]) than at 6.5 (r2 = 0.93, p = 9 × 10−8, coeff = −0.01, 95% CI = [−0.0109, −0.0098]) (Fig. 2b). During the second phase, the change in the ratio of consumer-to-producer did not significantly differ between pH 7.5 (r2 = 0.90, p = 2 × 10−9, coeff = 0.0008, 95% CI = [0.0002, 0.0014]) and 6.5 (r2 = 0.94, p = 1 × 10−7, coeff = 0.0003, 95% CI = [−0.0002, 0.0008]) (Fig. 2a). However, we observed that the decrease in the intermixing index was significantly different between pH 7.5 (r2 = 0.94, p = 2 × 10−9, coeff = 0.0018, 95% CI = [0.0013, 0.0024]) and 6.5 (r2 = 0.94, p = 8 × 10−8, coeff = −0.0019, 95% CI = [−0.0025, −0.0013]). Overall, the final ratio of consumer-to-producer is lower at pH 7.5 (mean = 0.0163, SD = 0.01) than at 6.5 (mean = 0.052, SD = 0.02) (two-sample two-sided t-test; p = 0.03, n = 4) (Fig. 2). Consistently, the final intermixing index is also lower at pH 7.5 (mean = 0.0039, SD = 0.0032) than at 6.5 (mean = 0.0107, SD = 0.0049) (two-sample two-sided t-test; p = 0.05, n = 4) (Fig. 2b).Fig. 2: Dynamics of co-culture composition and intermixing during repeated anoxic/oxic transitions.a Co-culture composition measured as the ratio of consumer-to-producer. b Intermixing between the consumer and producer measured as the intermixing index, where N is the number of interspecific boundaries between the two strains. Experiments were performed at pH 6.5 (strong mutualistic interaction) (magenta data points) or pH 7.5 (weak mutualistic interaction) (cyan data points). Each data point is for an independent replicate (n = 4). The solid black lines are the two-phase linear regression models for pH 6.5, while the dashed black lines are the two-phase linear regression models for pH 7.5. Images of the final expansions after 350 h of incubation at c pH 6.5 and d pH 7.5. The scale bars are 1000 μm.Full size imageThe results described above yielded two important outcomes. First, the modeled two-phase linear regression of the ratio of consumer-to-producer and the intermixing index both depended on the strength of the mutualistic interaction, where the initial rate of decay was faster at pH 7.5 than at 6.5 (Fig. 2a, b). Thus, as the strength of the interdependency increases, the decay in the ratio and the intermixing index slows. Second, at pH 6.5 we never observed the complete loss of the consumer from the expansion edge (i.e., neither the ratio of consumer-to-producer nor the intermixing index reached zero) (Fig. 2a, b), which is counter to our initial expectation (Fig. 1d).We further performed controls under continuous oxic and continuous anoxic conditions (Supplementary Fig. S5). The ratio of consumer-to-producer and the intermixing indices both significantly differed between continuous oxic and continuous anoxic conditions regardless of the pH (two-sample two-sided t-tests; p  More