Assessing assemblage-wide mammal responses to different types of habitat modification in Amazonian forests
1.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478(7369), 378–381. https://doi.org/10.1038/nature10425 (2011).CAS 
 Article 
 ADS 
 Google Scholar 
 2.Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B. 281, 20141371. https://doi.org/10.1098/rspb.2014.1371 (2014).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 3.Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6(11), eaax8574. https://doi.org/10.1126/sciadv.aax8574 (2020).Article 
 PubMed 
 PubMed Central 
 ADS 
 Google Scholar 
 4.Peres, C. A. et al. Biodiversity conservation in human-modified Amazonian Forest landscapes. Biol. Conserv. 143, 2314–2327. https://doi.org/10.1016/j.biocon.2010.01.021 (2010).Article 
 Google Scholar 
 5.PRODES INPE. Monitoring Deforestation of the Brazilian Amazon Forest by Satellite. TerraBrasilis (inpe.br) (accessed in october 2020, 2020).6.Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. 104, 18555–18560. https://doi.org/10.1073/pnas.0703333104 (2007).Article 
 PubMed 
 PubMed Central 
 ADS 
 Google Scholar 
 7.Peres, C. A., Barlow, J. & Laurance, W. F. Detecting anthropogenic disturbance in tropical forests. Trends Ecol. Evol. 21, 227–229. https://doi.org/10.1016/j.tree.2006.03.007 (2006).Article 
 PubMed 
 Google Scholar 
 8.Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420. https://doi.org/10.1111/ele.13535 (2020).Article 
 PubMed 
 Google Scholar 
 9.Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 1–21. https://doi.org/10.1111/j.1461-0248.2009.01294.x (2009).Article 
 Google Scholar 
 10.Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195. https://doi.org/10.1016/j.agrformet.2014.11.010 (2015).Article 
 PubMed 
 PubMed Central 
 ADS 
 Google Scholar 
 11.Sambuichi, R. H. et al. Cabruca agroforests in southern Bahia, Brazil: Tree component, management practices and tree species conservation. Biodivers. Conserv. 21, 1055–1077. https://doi.org/10.1007/s10531-012-0240-3 (2012).Article 
 Google Scholar 
 12.Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514. https://doi.org/10.1111/j.0030-1299.2008.16215.x (2008).Article 
 Google Scholar 
 13.Banks-Leite, C. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045. https://doi.org/10.1126/science.1255768 (2014).CAS 
 Article 
 PubMed 
 ADS 
 Google Scholar 
 14.Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163. https://doi.org/10.1111/ecog.01932 (2016).Article 
 Google Scholar 
 15.Paglia, A. P. et al. Annotated checklist of Brazilian mammals. Occas. Pap. Conserv. Int. 6, 1–82 (2012).
 Google Scholar 
 16.Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).CAS 
 Article 
 PubMed 
 ADS 
 Google Scholar 
 17.Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3, e1600946. https://doi.org/10.1126/sciadv.1600946 (2017).Article 
 PubMed 
 PubMed Central 
 ADS 
 Google Scholar 
 18.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324 (2015).CAS 
 Article 
 PubMed 
 ADS 
 Google Scholar 
 19.Phillips, H. R., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodivers. Conserv. 26, 2251–2270. https://doi.org/10.1007/s10531-017-1356-2 (2017).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 20.Teixeira, D. F., Guillera-Arroita, G., Hilário, R. R., Fonseca, C. & Rosalino, L. M. Influence of life-history traits on the occurrence of carnivores within exotic Eucalyptus plantations. Divers. Distrib. 26, 1071–1082. https://doi.org/10.1111/ddi.13114 (2020).Article 
 Google Scholar 
 21.Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480–482. https://doi.org/10.1126/science.1118051 (2005).CAS 
 Article 
 PubMed 
 ADS 
 Google Scholar 
 22.Robinson, J. G. & Redford, K. H. Body size, diet, and population density of neotropical forest mammals. Am. Nat. 128, 665–680. https://doi.org/10.1086/284596 (1986).Article 
 Google Scholar 
 23.Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241. https://doi.org/10.1890/05-0112 (2005).CAS 
 Article 
 PubMed 
 ADS 
 Google Scholar 
 24.Almeida-Maués, P.C.R. Efeitos antropogênicos sobre a diversidade de mamíferos de médio e grande porte na Amazônia Oriental. PhD. Thesis, Graduate Program in Ecology, Federal University of Pará, Belém, Pará, Brazil (2019).25.Parry, L., Barlow, J. & Peres, C. A. Large-vertebrate assemblages of primary and secondary forests in the Brazilian Amazon. J. Trop. Ecol. 23, 653–662. https://doi.org/10.1017/S0266467407004506 (2007).Article 
 Google Scholar 
 26.Mendes-Oliveira, A. C. et al. Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna. PLoS ONE 12, e0187650. https://doi.org/10.1371/journal.pone.0187650 (2017).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 27.Coelho, M., Juen, L. & Mendes-Oliveira, A. C. The role of remnants of Amazon savanna for the conservation of Neotropical mammal communities in eucalyptus plantations. Biodivers. Conserv. 23, 3171–3184. https://doi.org/10.1007/s10531-014-0772-9 (2014).Article 
 Google Scholar 
 28.Bicknell, J. E., Struebig, M. J. & Davies, Z. G. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced-impact logging. J. Appl. Ecol. 52, 379–388. https://doi.org/10.1111/1365-2664.12391 (2015).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 29.Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x (2009).Article 
 PubMed 
 Google Scholar 
 30.Koh, L. P. & Wilcove, D. S. Is oil palm agriculture really destroying tropical biodiversity?. Conserv. Lett. 1, 60–64. https://doi.org/10.1111/j.1755-263X.2008.00011.x (2008).Article 
 Google Scholar 
 31.Putz, F. E. & Pinard, M. A. Reduced-impact logging as a carbon-offset method. Conserv. Biol. 7, 755–757. https://doi.org/10.1046/j.1523-1739.1993.7407551.x (1993).Article 
 Google Scholar 
 32.Pinard, M. A. & Putz, F. E. Retaining forest biomass by reducing logging damage. Biotropica 28, 278–295. https://doi.org/10.2307/2389193 (1996).Article 
 Google Scholar 
 33.Prudente, B. S., Pompeu, P. S., Juen, L. & Montag, L. F. A. Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshw. Biol. 62, 303–316. https://doi.org/10.1111/fwb.12868 (2017).Article 
 Google Scholar 
 34.Kanowski, J., Catterall, C. P. & Wardell-Johnson, G. W. Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes of tropical and subtropical Australia. For. Ecol. Manage. 208, 359–372. https://doi.org/10.1016/j.foreco.2005.01.018 (2005).Article 
 Google Scholar 
 35.Correa, F. S., Juen, L., Rodrigues, L. C., Silva-Filho, H. F. & Santos-Costa, M. C. Effects of oil palm plantations on anuran diversity in the eastern Amazon. Anim. Biol. 65, 321–335. https://doi.org/10.1163/15707563-00002481 (2015).Article 
 Google Scholar 
 36.Peres, C. A. & Cunha, A. A. Line-Transect Censuses of Large-Bodied Tropical Forest Vertebrates: A Handbook (Wildlife Conservation Society, 2011).
 Google Scholar 
 37.Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93, 2533–2547. https://doi.org/10.1890/11-1952.1 (2012).Article 
 PubMed 
 Google Scholar 
 38.Oksanen, J. F. et al. vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).39.Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, 6089–6096. https://doi.org/10.1073/pnas.1704949114 (2017).CAS 
 Article 
 Google Scholar 
 40.Kricher, J. Tropical Ecology 632 (Princeton University Press, 2011).
 Google Scholar 
 41.Edwards, D. P. et al. Reduced-impact logging and biodiversity conservation: A case study from Borneo. Ecol. Appl. 22, 561–571. https://doi.org/10.1890/11-1362.1 (2012).Article 
 PubMed 
 Google Scholar 
 42.Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. & Tabarelli, M. On the hope for biodiversity friendly tropical landscapes. Trends Ecol. Evol. 28, 462–468. https://doi.org/10.1016/j.tree.2013.01.001 (2013).Article 
 PubMed 
 Google Scholar 
 43.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188. https://doi.org/10.1016/S0169-5347(03)00011-9 (2003).Article 
 Google Scholar 
 44.Almeida-Rocha, J. M., Peres, C. A. & Oliveira, L. C. Primate responses to anthropogenic habitat disturbance: A pantropical meta-analysis. Biol. Conserv. 215, 30–38. https://doi.org/10.1016/j.biocon.2017.08.018 (2017).Article 
 Google Scholar 
 45.Palmeirim, A. F., Vieira, M. V. & Peres, C. A. Herpetofaunal responses to anthropogenic forest habitat modification across the neotropics: Insights from partitioning β-diversity. Biodivers. Conserv. 26, 2877–2891. https://doi.org/10.1007/s10531-017-1394-9 (2017).Article 
 Google Scholar 
 46.Christie, A. P. et al. Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences. Nat. Commun. 11, 6377. https://doi.org/10.1038/s41467-020-20142-y (2020).CAS 
 Article 
 PubMed 
 PubMed Central 
 ADS 
 Google Scholar 
 47.Whitworth, A. et al. Human disturbance impacts on rainforest mammals are most notable in the canopy, especially for larger-bodied species. Divers. Distrib. 25, 1166–1178. https://doi.org/10.1111/ddi.12930 (2019).Article 
 Google Scholar 
 48.Johns, A. D. & Skorupa, J. P. Responses of rain-forest primates to habitat disturbance: A review. Int. J. Primatol. 8, 157–191. https://doi.org/10.1007/BF02735162 (1987).Article 
 Google Scholar 
 49.Wearn, O. R. et al. Mammalian species abundance across a gradient of tropical land-use intensity: A hierarchical multi-species modelling approach. Biol. Conserv. 212, 162–171. https://doi.org/10.1016/j.biocon.2017.05.007 (2017).Article 
 Google Scholar 
 50.Benchimol, M. & Peres, C. A. Determinants of population persistence and abundance of terrestrial and arboreal vertebrates stranded in tropical forest land-bridge islands. Conserv. Biol. 35(3), 870–883. https://doi.org/10.1111/cobi.13619 (2020).Article 
 PubMed 
 Google Scholar 
 51.Gittleman, J. L. & Harvey, P. H. Carnivore home-range size, metabolic needs and Ecology. Behav. Ecol. Sociobiol. 10(1), 57–63. https://doi.org/10.1007/BF00296396 (1982).Article 
 Google Scholar 
 52.Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520. https://doi.org/10.1016/j.tree.2014.07.003 (2014).Article 
 PubMed 
 Google Scholar 
 53.Mollinari, M. M., Peres, C. A. & Edwards, D. P. Rapid recovery of thermal environment after selective logging in the Amazon. Agric. For. Meteorol. 278, 107637. https://doi.org/10.1016/j.agrformet.2019.107637 (2019).Article 
 ADS 
 Google Scholar 
 54.Azevedo-Ramos, C., de Carvalho, O. & de Amaral, B. D. Short-term effects of reduced-impact logging on eastern Amazon fauna. For. Ecol. Manag. 232, 26–35. https://doi.org/10.1016/j.foreco.2006.05.025 (2006).Article 
 Google Scholar 
 55.Bicknell, J. E. & Peres, C. A. Vertebrate population responses to reduced-impact logging in a neotropical forest. For. Ecol. Manage. 259, 2267–2275. https://doi.org/10.1016/j.foreco.2010.02.027 (2010).Article 
 Google Scholar 
 56.Laufer, J., Michalski, F. & Peres, C. A. Effects of reduced-impact logging on medium and large-bodied forest vertebrates in eastern Amazonia. Biota Neotrop. 15, e20140131. https://doi.org/10.1590/1676-06032015013114 (2015).Article 
 Google Scholar 
 57.Carvalho Jr, E. A. R., Mendonça, E. N., Martins, A. & Haugaasen, T. Effects of illegal logging on Amazonian medium and large-sized terrestrial vertebrates. For. Ecol. Manage. 466, 118105. https://doi.org/10.1016/j.foreco.2020.118105 (2020).Article 
 Google Scholar 
 58.Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571. https://doi.org/10.1016/j.tree.2009.04.011 (2009).Article 
 PubMed 
 Google Scholar 
 59.Richardson, V. A. & Peres, C. A. Temporal decay in timber species composition and value in Amazonian logging concessions. PLoS ONE 11, e0159035. https://doi.org/10.1371/journal.pone.0159035 (2016).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 60.Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (University of Chicago Press, 2014).Book 
 Google Scholar 
 61.Acevedo-Charry, O. & Aide, T. M. Recovery of amphibian, reptile, bird and mammal diversity during secondary forest succession in the tropics. Oikos 128, 1065–1078. https://doi.org/10.1111/oik.06252 (2019).Article 
 Google Scholar 
 62.Sodhi, N. S. et al. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol. Conserv. 143, 2375–2384. https://doi.org/10.1016/j.biocon.2009.12.029 (2010).Article 
 Google Scholar 
 63.Dunn, R. R. Recovery of faunal communities during tropical forest regeneration. Conserv. Biol. 18, 302–309. https://doi.org/10.1111/J.1523-1739.2004.00151.X (2004).Article 
 Google Scholar 
 64.Luskin, M. S. & Potts, M. D. Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic Appl. Ecol. 12, 540–551. https://doi.org/10.1016/j.baae.2011.06.004 (2011).Article 
 Google Scholar 
 65.Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity?. Trends Ecol. Evol. 23(10), 538–545. https://doi.org/10.1016/j.tree.2008.06.012 (2008).Article 
 PubMed 
 Google Scholar 
 66.Martello, F. et al. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci. Rep. 8, 3266. https://doi.org/10.1038/s41598-018-20823-1 (2018).CAS 
 Article 
 PubMed 
 PubMed Central 
 ADS 
 Google Scholar 
 67.da Rocha, P. L. B. What is the value of eucalyptus monocultures for the biodiversity of the Atlantic Forest? A multitaxa study in southern Bahia, Brazil. J. For. Res. 24, 263–272. https://doi.org/10.1007/s11676-012-0311-z (2013).Article 
 Google Scholar 
 68.Martin, P. S., Gheler-Costa, C., Lopes, P. C., Rosalino, L. M. & Verdade, L. M. Terrestrial non-volant small mammals in agro-silvicultural landscapes of Southeastern Brazil. For. Ecol. Manag. 282, 185–195. https://doi.org/10.1016/j.foreco.2012.07.002 (2012).Article 
 Google Scholar 
 69.Fayle, T. M. et al. Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl. Ecol. 11, 337–345. https://doi.org/10.1016/j.baae.2009.12.009 (2010).Article 
 Google Scholar 
 70.Koh, L. P. Can oil palm plantations be made more hospitable for forest butterflies and birds?. J. Appl. Ecol. 45, 1002–1009. https://doi.org/10.1007/s10531-009-9760-x (2008).Article 
 Google Scholar 
 71.Martins, C. A. & Júnior, A. P. P. Production of biodiesel: Source strategies and efficiency in the Brazilian energy matrix. Energy Sour. Part A Recov. Util. Environ. Eff. 38, 277–285. https://doi.org/10.1080/15567036.2012.716139 (2016).CAS 
 Article 
 Google Scholar 
 72.Peres, C. A. Why we need megareserves in Amazonia. Cons. Biol. 19, 728–733. https://doi.org/10.1111/j.1523-1739.2005.00691.x (2005).Article 
Google Scholar More
 