More stories

  • in

    Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems

    1.Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA, Waite DW, et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol. 2021;6:946–59.CAS 
    PubMed 

    Google Scholar 
    2.Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507–10.CAS 
    PubMed 

    Google Scholar 
    3.Buckley DH, Graber JR, Schmidt TM. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol. 1998;64:4333–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Casamayor EO, Schäfer H, Bañeras L, Pedrós-Alió C, Muyzer G. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: Comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2000;66:499–508.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 2005;102:14683–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Stahl DA, de la Torre JR. Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol. 2012;66:83–101.CAS 
    PubMed 

    Google Scholar 
    7.DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature. 1992;356:148–9.CAS 
    PubMed 

    Google Scholar 
    9.Qin W, Zheng Y, Zhao F, Wang Y, Urakawa H, Martens-Habbena W, et al. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME J. 2020;14:2596–609.
    Google Scholar 
    10.Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems. 2020;5:e00415–00420.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 2020;14:2105–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Wang Y, Huang J-M, Cui G-J, Nunoura T, Takaki Y, Li W-L, et al. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environ Microbiol. 2019b;21:716–29.CAS 
    PubMed 

    Google Scholar 
    13.Zhong H, Lehtovirta-Morley L, Liu J, Zheng Y, Lin H, Song D, et al. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome. 2020;8:78.PubMed 
    PubMed Central 

    Google Scholar 
    14.Wang B, Qin W, Ren Y, Zhou X, Jung M-Y, Han P, et al. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME J. 2019a;13:3067–79.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Sheridan PO, Raguideau S, Quince C, Holden J, Zhang L, Gaze WH, et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat Commun. 2020;11:5494.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 2019;13:2150–61.PubMed 
    PubMed Central 

    Google Scholar 
    17.Yang Y, Zhang C, Lenton TM, Yan X, Zhu M, Zhou M, et al. The evolution pathway of ammonia-oxidizing archaea shaped by major geological events. Mol Biol Evol. 2021;38:3637–48.PubMed 
    PubMed Central 

    Google Scholar 
    18.Alves RJE, Minh BQ, Urich T, von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1517.PubMed 
    PubMed Central 

    Google Scholar 
    19.Llirós M, Casamayor EO, Borrego C. High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study. FEMS Microbiol Ecol. 2008;66:331–42.PubMed 

    Google Scholar 
    20.Wang Z, Wang Z, Huang C, Pei Y. Vertical distribution of ammonia-oxidizing archaea (AOA) in the hyporheic zone of a eutrophic river in North China. World J Microbiol Biotechnol. 2014;30:1335–46.CAS 
    PubMed 

    Google Scholar 
    21.Mußmann M, Brito I, Pitcher A, Sinninghe Damsté JS, Hatzenpichler R, Richter A, et al. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci USA. 2011;108:16771–6.PubMed 
    PubMed Central 

    Google Scholar 
    22.Biller S, Mosier A, Wells G, Francis C. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat. Front Microbiol. 2012;3:252.23.Beman JM, Francis CA. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl Environ Microbiol. 2006;72:7767–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Auguet J-C, Nomokonova N, Camarero L, Casamayor EO. Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Appl Environ Microbiol. 2011;77:1937–45.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Small GE, Bullerjahn GS, Sterner RW, Beall BFN, Brovold S, Finlay JC, et al. Rates and controls of nitrification in a large oligotrophic lake. Limnol Oceanogr. 2013;58:276–86.CAS 

    Google Scholar 
    26.Herber J, Klotz F, Frommeyer B, Weis S, Straile D, Kolar A, et al. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ Microbiol. 2020;22:212–28.CAS 
    PubMed 

    Google Scholar 
    27.Auguet J-C, Triadó-Margarit X, Nomokonova N, Camarero L, Casamayor EO. Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. ISME J. 2012;6:1786–97.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Podowski JC, Paver SF, Newton RJ, Coleman ML. Genome streamlining, proteorhodopsin, and organic nitrogen metabolism in freshwater nitrifiers. bioRxiv. 2021;2021.2001.2019.427344.29.Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotech. 2016;34:942–9.CAS 

    Google Scholar 
    30.Restrepo-Ortiz CX, Auguet J-C, Casamayor EO. Targeting spatiotemporal dynamics of planktonic SAGMGC-1 and segregation of ammonia-oxidizing thaumarchaeota ecotypes by newly designed primers and quantitative polymerase chain reaction. Environ Microbiol. 2014;16:689–700.CAS 
    PubMed 

    Google Scholar 
    31.Liu S, Wang H, Chen L, Wang J, Zheng M, Liu S, et al. Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. ISME J. 2020;14:2488–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Santos-Júnior CD, Sarmento H, de Miranda FP, Henrique-Silva F, Logares R. Uncovering the genomic potential of the Amazon River microbiome to degrade rainforest organic matter. Microbiome. 2020;8:151.PubMed 
    PubMed Central 

    Google Scholar 
    33.Jung M-Y, Sedlacek CJ, Kits KD, Mueller AJ, Rhee S-K, Hink L, et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 2022;16:272–83.CAS 
    PubMed 

    Google Scholar 
    34.Kim BK, Jung MY, Yu DS, Park SJ, Oh TK, Rhee SK, et al. Genome sequence of an ammonia-oxidizing soil archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1. J Bacteriol. 2011;193:5539–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Jung MY, Park SJ, Kim SJ, Kim JG, Sinninghe Damste JS, Jeon CO, et al. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I.1a cultivated from a deep oligotrophic soil horizon. Appl Environ Microbiol. 2014;80:3645–55.PubMed 
    PubMed Central 

    Google Scholar 
    36.Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S, Bulaev A, et al. Enrichment and genome sequence of the group i.1a ammonia-oxidizing archaeon “Ca. Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats. PLoS One. 2013;8:e80835.PubMed 
    PubMed Central 

    Google Scholar 
    37.Li Y, Ding K, Wen X, Zhang B, Shen B, Yang Y. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics. Sci Rep. 2016;6:23747.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2017;11:1142–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Wang Y, Qin W, Jiang X, Ju F, Mao Y, Zhang A, et al. Seasonal prevalence of ammonia-oxidizing archaea in a full-scale municipal wastewater treatment plant treating saline wastewater revealed by a 6-year time-series analysis. Environ Sci Technol. 2021;55:2662–73.CAS 
    PubMed 

    Google Scholar 
    40.Xing P, Tao Y, Luo J, Wang L, Li B, Li H, et al. Stratification of microbiomes during the holomictic period of Lake Fuxian, an alpine monomictic lake. Limnol Oceanogr. 2020;65:S134–S148.
    Google Scholar 
    41.Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Environ Microbiol. 2017;84:e02132–02117.PubMed 
    PubMed Central 

    Google Scholar 
    42.Cabello-Yeves PJ, Zemskaya TI, Zakharenko AS, Sakirko MV, Ivanov VG, Ghai R et al. Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr. 2020;65:1471–88.43.Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA. 2014;111:12504–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Bayer B, Vojvoda J, Offre P, Alves RJ, Elisabeth NH, Garcia JA, et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 2016;10:1051–63.CAS 
    PubMed 

    Google Scholar 
    45.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Hink L, Gubry-Rangin C, Nicol GW, Prosser JI. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 2018;12:1084–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.CAS 
    PubMed 

    Google Scholar 
    48.Mayr MJ, Zimmermann M, Guggenheim C, Brand A, Bürgmann H. Niche partitioning of methane-oxidizing bacteria along the oxygen–methane counter gradient of stratified lakes. ISME J. 2020;14:274–87.CAS 
    PubMed 

    Google Scholar 
    49.Reis PCJ, Thottathil SD, Ruiz-González C, Prairie YT. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ Microbiol. 2020;22:738–51.CAS 
    PubMed 

    Google Scholar 
    50.Tran PQ, Bachand SC, McIntyre PB, Kraemer BM, Vadeboncoeur Y, Kimirei IA, et al. Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. ISME J 2021;15:1971–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Sauder LA, Engel K, Lo C-C, Chain P, Neufeld JD. Candidatus Nitrosotenuis aquarius, an ammonia-oxidizing archaeon from a freshwater aquarium biofilter. Appl Environ Microbiol. 2018;84:e01430-18.52.Hug LA, Thomas BC, Brown CT, Frischkorn KR, Williams KH, Tringe SG, et al. Aquifer environment selects for microbial species cohorts in sediment and groundwater. ISME J. 2015;9:1846–56.PubMed 
    PubMed Central 

    Google Scholar 
    53.Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D. A genus definition for Bacteria and Archaea based on a standard genome relatedness index. MBio. 2020;11:e02475–02419.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DWR. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environ Microbiol. 2019;21:3927–52.CAS 
    PubMed 

    Google Scholar 
    55.Herbold CW, Lehtovirta-Morley LE, Jung M-Y, Jehmlich N, Hausmann B, Han P, et al. Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environ Microbiol. 2017;19:4939–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Shen M, Li Q, Ren M, Lin Y, Wang J, Chen L, et al. Trophic status is associated with community structure and metabolic potential of planktonic microbiota in plateau lakes. Front Microbiol. 2019;10:2560–2560.PubMed 
    PubMed Central 

    Google Scholar 
    57.Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 

    Google Scholar 
    58.Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González JM, et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA. 2013;110:11463–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Grzymski JJ, Dussaq AM. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J. 2012;6:71–80.CAS 
    PubMed 

    Google Scholar 
    60.Bragg JG, Hyder CL. Nitrogen versus carbon use in prokaryotic genomes and proteomes. Proc R Soc Lond B Biol Sci. 2004;271:S374–7.CAS 

    Google Scholar 
    61.Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol. 2017;2:1367–73.CAS 
    PubMed 

    Google Scholar 
    62.Baudouin-Cornu P, Schuerer K, Marlière P, Thomas D. Intimate evolution of proteins: Proteome atomic content correlates with genome base composition. J Biol Chem. 2004;279:5421–8.CAS 
    PubMed 

    Google Scholar 
    63.Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, et al. Genomic and proteomic characterization of Candidatus Nitrosopelagicus brevis: An ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci USA. 2015;112:1173–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Luo H, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Ann Moran M, et al. Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME J. 2014;8:732–6.CAS 
    PubMed 

    Google Scholar 
    65.Reji L, Tolar BB, Smith JM, Chavez FP, Francis CA. Depth distributions of nitrite reductase (nirK) gene variants reveal spatial dynamics of thaumarchaeal ecotype populations in coastal Monterey Bay. Environ Microbiol. 2019;21:4032–45.CAS 
    PubMed 

    Google Scholar 
    66.Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA. 2006;103:18296–301.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: A phylogenetic perspective. Science. 2015;350:aac9323.PubMed 

    Google Scholar 
    68.Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.CAS 
    PubMed 

    Google Scholar 
    69.Paver SF, Muratore D, Newton RJ, Coleman ML, Flynn TM. Reevaluating the salty divide: Phylogenetic specificity of transitions between marine and freshwater systems. mSystems. 2018;3:e00232–00218.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Henson MW, Lanclos VC, Faircloth BC, Thrash JC. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 2018;12:1846–60.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Luo H, Csűros M, Hughes AL, Moran MA, Azam F, Zehr J. Evolution of divergent life history strategies in marine Alphaproteobacteria. MBio. 2013;4:e00373–00313.PubMed 
    PubMed Central 

    Google Scholar 
    72.Zaremba-Niedzwiedzka K, Viklund J, Zhao W, Ast J, Sczyrba A, Woyke T, et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biol. 2013;14:R130.PubMed 
    PubMed Central 

    Google Scholar 
    73.Fillol M, Auguet J-C, Casamayor EO, Borrego CM. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J. 2016;10:665–77.PubMed 

    Google Scholar 
    74.Siuda W, Kiersztyn B. Urea in lake ecosystem: The origin, concentration and distribution in relation to trophic state of the Great Mazurian Lakes (Poland). Pol J Ecol. 2015;63:110–23. 114
    Google Scholar 
    75.Spang A, Poehlein A, Offre P, Zumbragel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    PubMed 

    Google Scholar 
    76.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    PubMed 

    Google Scholar 
    77.Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–E7946.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Carini P, Dupont Christopher L, Santoro, Alyson E. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ Microbiol. 2018;20:2112–24.CAS 
    PubMed 

    Google Scholar 
    79.Bogard MJ, Donald DB, Finlay K, Leavitt PR. Distribution and regulation of urea in lakes of central North America. Freshw Biol. 2012;57:1277–92.CAS 

    Google Scholar 
    80.Glibert PM, Harrison J, Heil C, Seitzinger S. Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochemistry. 2006;77:441–63.CAS 

    Google Scholar 
    81.Alonso-Sáez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL, et al. Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci USA. 2012;109:17989–94.PubMed 
    PubMed Central 

    Google Scholar 
    82.Tolar BB, Wallsgrove NJ, Popp BN, Hollibaugh JT. Oxidation of urea-derived nitrogen by thaumarchaeota-dominated marine nitrifying communities. Environ Microbiol. 2017;19:4838–50.CAS 
    PubMed 

    Google Scholar 
    83.Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42:353–75.CAS 
    PubMed 

    Google Scholar 
    84.Hagemann M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev. 2011;35:87–123.CAS 
    PubMed 

    Google Scholar 
    85.Blount P, Iscla I. Life with bacterial mechanosensitive channels, from discovery to physiology to pharmacological target. Microbiol Mol Biol Rev. 2020;84:e00055–00019.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Martinac B, Bavi N, Ridone P, Nikolaev YA, Martinac AD, Nakayama Y, et al. Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophys Rev. 2018;10:1377–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Widderich N, Czech L, Elling FJ, Konneke M, Stoveken N, Pittelkow M, et al. Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environ Microbiol. 2016;18:1227–48.CAS 
    PubMed 

    Google Scholar 
    88.Jung H, Hilger D, Raba M. The Na+/L-proline transporter PutP. Front Biosci-Landmark. 2012;17:745–59.CAS 

    Google Scholar 
    89.Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010;11:777–88.CAS 
    PubMed 

    Google Scholar 
    90.Li D-C, Yang F, Lu B, Chen D-F, Yang W-J. Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2. Cell Stress Chaperones. 2012;17:103–8.PubMed 

    Google Scholar 
    91.Qin W, Amin SA, Lundeen RA, Heal KR, Martens-Habbena W, Turkarslan S, et al. Stress response of a marine ammonia-oxidizing archaeon informs physiological status of environmental populations. ISME J. 2017a;12:508–19.PubMed 
    PubMed Central 

    Google Scholar 
    92.Phadtare S, Inouye M. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol. 2001;183:1205–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Albers S-V, Jarrell KF. The archaellum: An update on the unique archaeal motility structure. Trends Microbiol. 2018;26:351–62.CAS 
    PubMed 

    Google Scholar 
    94.Mosier AC, Lund MB, Francis CA. Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Micro Ecol. 2012;64:955–63.CAS 

    Google Scholar 
    95.Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, et al. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int J Syst Evol Microbiol. 2017b;67:5067–79.PubMed 

    Google Scholar 
    96.Dupuis M-È, Villion M, Magadán AH, Moineau S. CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance. Nat Commun. 2013;4:2087.PubMed 

    Google Scholar 
    97.Krupovic M, Makarova KS, Wolf YI, Medvedeva S, Prangishvili D, Forterre P, et al. Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol. 2019;21:2056–78.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Reduced rainfall and resistant varieties mediate a critical transition in the coffee rust disease

    Critical transition theory tells us that, as exogenous parameters drive the system towards a bifurcation and the emergence of a new equilibrium, we can see evidence of the upcoming transition through decreasing resistance to each oscillation peak15, like a ball rolling around in a cup whose walls are becoming less and less steep1,6. We find evidence of this critical slowing down within the year-to-year deceleration of rust growth rates just prior to their annual peak, or λ, our formal slowing down measure. This is coupled with a delay in the initiation month (takeoff) of the oscillation itself. The oscillations collapse in 2019 as the system apparently switches to a more benign non-epidemic state.In the mid-elevation zone of southwestern Mexico where we conducted our study, the general expectation from climate change, in addition to increased temperature, is reduced rainfall19,20, a pattern broadly in evidence for the past five years (Fig. S2). With regard to the coffee rust disease, this precipitation trend is most closely associated with the change in λ, and reflects the obligate range of associated moisture and temperature conditions required for the rust to flourish9,17. On the other hand, rust-resistant replanting has been occurring throughout coffee farms in much of Mesoamerica since the rust outbreak in 2012–201321,22. This could limit plant-to-plant spread by reducing opportunities for direct contact with an infected plant, as well as decrease the environmental spore load by reducing the contributing pool of infected plants in the broader region. On our site, the slowing down patterns of both λ and the rust takeoff point were associated with more rust-resistant replanting on a local level, while the significant linear delay in the year-to-year rust takeoff over the study period may reflect larger-scale effects emerging from increased resistance across the farm.Our preliminary treatment of April as the annual rust season initiation point corresponded generally with a seasonal pattern of increasing rainfall. This approach might be assumed by a manager experiencing the system in real time without knowledge of how the rust season will play out that year. Such an assumption works well in the first two seasons of our data, where the rust increase and rainy season both appear to begin in April. However, this association decouples in subsequent years. Evidently, the critical slowing down we initially estimated in Fig. 1B is partitioned into two components: one that imposes a lag on the initiation of the disease, and another that imposes a decelerating approach to the peak rust intensity, necessitating a joint model of the initiation month and the critical slowing down warning signal (λ). That the takeoff had a significant delaying trend over the study period suggests that the initiation of the rust season can also be seen as a measure of critical slowing down, in that a slower approach to the equilibrium point (the seasonal rust peak) will likely be reflected in a failure to even recognize the increase when it is still very small. Thus, the conspicuous change in takeoff point over time (Fig. 2A, B) itself suggests a critical slowing down and the negative values of λ in Fig. 1B may be mainly a reflection of a lag in takeoff time. The overall increasing lag in rust takeoff each year could mean that the transmission factor itself may be exhibiting a critical slowing down as the critical transition is approached, due to the progressive influence of parameters outside of the present analysis. Given the basic biology of the disease10, this trend may stem from a year-to-year secular decline in the environmental spore load causing initiation of the disease season to be deterred by a small amount each year.The evident relationship between critical slowing down and reduced rainfall is suggestive of a connection to climate change, while a slow secular increase in the proportion of rust-resistant varieties could have inhibited local or regional spread, leading to an effective “herd immunity” to the disease. The joint operation of reduced rainfall and fewer susceptible plants raises the possibility of dual bifurcations and hysteretic zones in the dynamic landscape, which we illustrate in a qualitative fashion (generalized to climate and management) in Fig. 4a. The initial outbreak, which was unexpected in light of the historically low, but persistent, levels of rust in the region7,8, was likely a critical transition precipitated by interactions between local and regional processes14. As foregrounded in Fig. 4b, we propose that a possible parameter driving the system to this initial bifurcation was recent increases in precipitation, as evidenced in local rainfall records (Fig. S2) and regional trends19. This could have propelled the system past a hysteretic phase space to where seasonal conditions dictated that the system jump to a high rust intensity equilibrium, represented conceptually in Fig. 4a by the dotted trajectory leading to the upper surface of the landscape that corresponds to an epidemic state of the rust. Likewise, in the years following the outbreak, our findings suggest that, while the system still tracked precipitation, progressive replanting of resistant varieties emerged as another parameter axis (management) that drove the system through a second critical transition back to a low rust equilibrium (Fig. 4c). Although the dynamical landscape in Fig. 4 is a qualitative representation, the trajectory along the upper surface helps to visualize how two exogenous forces, operating separately, both contributed to the critical transition we observed in our data. The trajectory we propose brings attention to the interesting possibility that the main driver of slowing down shifted from climate (precipitation) to management (replanting), leading to the second critical transition. Indeed, though the average yearly replanting rate remained roughly the same year-to-year (Fig. S1), we note that much of the cutting prior to the collapse in 2019 seemed to be concentrated in April that year (Fig. 1D), accompanied presumably by a similarly timed replanting campaign.Figure 4Envisioning the combination of climate and management effects in a joint hysteretic framing, stemming from gradual change in both forcing parameters. (A) Relative positions of rust intensity for each year are illustrated in their approximate positions with red arrows (other trajectories could be imagined based on the data presented herein). Inset plots provide a conceptualized view of the dynamics between the two forcing variables on rust intensity: (B) management (in our case, resistant variety replanting) and (C) climate (precipitation). In the inset plots, arrows indicate directions of change; solid and dashed lines indicate stable and unstable equilibria, respectively.Full size imageRecent work on critical transitions suggests that perturbances driving a system to transition are more realistically not distinct or isolated, and that the stochastic and deterministic elements of the system can therefore be entangled or even interdependent4. Likewise, we find that the variability in the environmental covariates of monthly rainfall and resistant variety replanting better explained patterns in λ than a linear trend leading up to the transition, as represented by the year variable. The correlation between the quadrat grouping offset estimates from the λ and takeoff components of the multivariate model also suggest that slowing down and delayed takeoff were associated at the individual quadrat level (Fig. 3C). Accounting for this spatial effect, these two components do not appear to be correlated by year (Fig. 3D). This suggests that the shared variability between these two indicators reflects variability in spatial environment within the plot rather than idiosyncratic effects of unique years. Besides the direct effect of resistant varieties, local stochasticity and spread dynamics may also play a role. Local growing conditions, such as variability in shade from overstory trees, can affect dispersal through rainfall splash and wind23,24. Additional management factors may also play a role, such as the vegetation structure and the presence of paths25, as well as the physical relationship between coffee plants26.Our observations of the rust dynamics themselves allow us to detect the general signals anticipating a critical transition, though the drivers may emerge from a complex system of dialectical interactions that must be considered in their whole7,27. The concept of critical slowing down thus may lend itself to application across coffee-growing regions, where predicted effects of climate change and other geographic conditions may differ9,19. Since the emergence of the rust outbreak, recommendations and protocols have been published for monitoring rust levels, potentially providing managers with regular data in changes in rust intensity for many areas9,28. As the resilience of a system can be interpreted through measuring critical slowing down prior to catastrophe2, as well as, in our case, the “exit time” from an undesirable regime4, we demonstrate that such concepts may be applied to this monitoring data to gain some insight into the system’s status. Future studies could explore signs of critical slowing down across coffee-growing regions and management systems to see how these signals predict significant changes and respond to local drivers, potentially adding to the vocabulary of agroecological management.In sum, it is clear that both a lag in takeoff point for the seasonal oscillation and the rate of approach to the peak each year seem to conspire to produce a critical slowing down, strong evidence that the decline in the disease in 2019–2020 is indeed a critical transition, regardless of the underlying mechanism. While our model suggests that two exogenous forces, rainfall and resistant variety replanting, may be driving the slowing down in our case, the underlying dynamical landscape is likely not unique to our site. More generally, the phenomenon of multivariate bifurcations leading to subsequent critical transitions (e.g., Fig. 4) is perhaps more common than thought29. Examinations of critical transitions should therefore consider the larger dynamical landscape for the possibility of subsequent transitions. More

  • in

    Mapping native and non-native vegetation in the Brazilian Cerrado using freely available satellite products

    1.Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, R541–R545 (2018).CAS 
    PubMed 

    Google Scholar 
    2.Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Change Biol. 26, 300–318 (2019).ADS 

    Google Scholar 
    3.Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants. 5, 944–951 (2019).CAS 
    PubMed 

    Google Scholar 
    4.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Moro, M. F., Nic Lughadha, E., de Araújo, F. S. & Martins, F. R. A phytogeographical metaanalysis of the semiarid caatinga domain in Brazil. Bot. Rev. 82, 91–148 (2016).6.Terra, M., et al. Water availability drives gradients of tree diversity, structure and functional traits in the Atlantic–Cerrado–Caatinga transition, Brazil. J. Plant Ecol. 11, 803–814 (2018).7.Leite, M. B., Xavier, R. O., Oliveira, P. T. S., Silva, F. K. G. & Silva Matos, D. M. Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant Soil. 426, 1–15 (2018).8.Silvertown, J., Araya, Y. & Gowing, D. Hydrological niches in terrestrial plant communities: a review. J. Ecol. 103, 93–108 (2014).
    Google Scholar 
    9.Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).ADS 

    Google Scholar 
    10.Congalton, R. G., Gu, J., Yadav, K., Thenkabail, P. & Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 6(12), 12070–12093 (2014).ADS 

    Google Scholar 
    11.Phiri, D. & Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 9(9), 967 (2017).
    Google Scholar 
    12.Joshi, N. et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 8(1), 70 (2016).ADS 

    Google Scholar 
    13.Xiao, J. et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233, 111383 (2019).ADS 

    Google Scholar 
    14.Françoso, R. D. et al. Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodivers. Conserv. 29, 1477–1500 (2019).
    Google Scholar 
    15.Eiten, G. Delimitation of the cerrado concept. Plant Ecol. 36, 169–178 (1978).
    Google Scholar 
    16.Ribeiro, J.F. & Walter, B.M.T. As principais fitofisionomias do bioma Cerrado in Cerrado: ecologia e flora (ed. Sano, S.M., Almeida, S.P. & Ribeiro, J.F.) 151–212 (EMBRAPA, 2008).17.Oliveria, P.S. & Marquis, R.J. The Cerrados of Brazil: ecology and natural history of a neotropical savanna. (Columbia University Press, 2002).18.Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).ADS 

    Google Scholar 
    19.European Space Agency. Data. https://climate.esa.int/en/projects/land-cover/data/ (2021).20.Pellegrini, A. F. A. Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313–324 (2016).PubMed 

    Google Scholar 
    21.Vourlitis, G. L. et al. Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in Southern Mato Grosso. Soil Sci. Soc. Am. J. 77, 1370–1379 (2013).ADS 
    CAS 

    Google Scholar 
    22.Abrahão, A. et al. Soil types select for plants with matching nutrient-acquisition and use traits in hyperdiverse and severely nutrient-impoverished campos rupestres and cerrado in Central Brazil. J. Ecol. 107, 1302–1316 (2018).
    Google Scholar 
    23.de Assis, A. C. C., Coelho, R. M., da Silva Pinheiro, E. & Durigan, G. Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecol. 212, 1135–1147 (2011).24.Oliveira, P. T. S. et al. Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrology. 10, e1759 (2016).25.de Oliveira Xavier, R., Leite, M. B., Dexter, K. & da Silva Matos, D. M. Differential effects of soil waterlogging on herbaceous and woody plant communities in a Neotropical savanna. Oecologia. 190, 471–483 (2019).26.Zappi, D. C., Moro, M. F., Meagher, T. R. & Nic Lughadha, E. Plant biodiversity drivers in Brazilian campos rupestres: insights from phylogenetic structure. Front. Plant Sci. 8, (2017).27.Neri, A. V., Schaefer, C. E. G. R., Souza, A. L., Ferreira-Junior, W. G. & Meira-Neto, J. A. A. Pedology and plant physiognomies in the cerrado, Brazil. An. Acad. Bras. Ciênc. 85, 87–102 (2013).CAS 
    PubMed 

    Google Scholar 
    28.Simon, M. F. & Pennington, T. Evidence for Adaptation to Fire Regimes in the Tropical Savannas of the Brazilian Cerrado. Int. J. Plant Sci. 173, 711–723 (2012).
    Google Scholar 
    29.de Castro, E. A. & Kauffman, J. B. Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263–283 (1998).
    Google Scholar 
    30.da Silva, D. M. & Batalha, M. A. Soil–vegetation relationships in cerrados under different fire frequencies. Plant Soil 311, 87–96 (2008).CAS 

    Google Scholar 
    31.Durigan, G. Zero-fire: Not possible nor desirable in the Cerrado of Brazil. Flora. 268, 151612 (2020).32.Lloyd, J. & Veenendaal, E. M. Are fire mediated feedbacks burning out of control? (2016)33.Bueno, M. L. et al. The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. J. Ecol. 106, 2109–2120 (2018).
    Google Scholar 
    34.Alencar, A. et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 12, 924 (2020).ADS 

    Google Scholar 
    35.INPE. Projeto TerraClass Cerrado Mapeamento do Uso e Cobertura Vegetal do Cerrado. http://www.inpe.br/cra/projetos_pesquisas/dados_terraclass.php (2019)36.Sano, E. E., Rosa, R., Brito, J. L. S. & Ferreira, L. G. Land cover mapping of the tropical savanna region in Brazil. Environ. Monit. Assess. 166, 113–124 (2009).PubMed 

    Google Scholar 
    37.Sano, E. E. et al. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manag. 232, 818–828 (2019).
    Google Scholar 
    38.Monteiro, L. M. et al. Evaluating the impact of future actions in minimizing vegetation loss from land conversion in the Brazilian Cerrado under climate change. Biodivers. Conserv. 29, 1701–1722 (2018).
    Google Scholar 
    39.Silva, J. F., Farinas, M. R., Felfili, J. M. & Klink, C. A. Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J. Biogeogr. 33, 536–548 (2006).
    Google Scholar 
    40.Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).
    Google Scholar 
    41.Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    42.Gomes, L., Miranda, H. S. & Bustamante, M. M. C. How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome? For. Ecol. Manag. 417, 281–290 (2018).43.Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 203, 71–89 (2017).ADS 

    Google Scholar 
    44.Cava, M. G. B., Pilon, N. A. L., Ribeiro, M. C. & Durigan, G. Abandoned pastures cannot spontaneously recover the attributes of old-growth savannas. J. Appl. Ecol. 55, 1164–1172 (2017).
    Google Scholar 
    45.Brancalion, P. H. S. et al. Governance innovations from a multi-stakeholder coalition to implement large-scale Forest Restoration in Brazil. World Dev. Perspect. 3, 15–17 (2016).
    Google Scholar 
    46.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B. 375, 20190120 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    47.MMA. Plano de Manejo Parque Nacional Chapada dos Veadeiros. Ministro de Estado do Meio Ambiente. Brasília. (2009).48.Hunke, P., Roller, R., Zeilhofer, P., Schröder, B. & Mueller, E. N. Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Reg. 4, 31–43 (2015).
    Google Scholar 
    49.Sampaio, A.B. et. al. Guia de restauração do Cerrado: volume 1: semeadura direta. Embrapa Cerrados-Livro técnico (INFOTECA-E, 2015).50.Schmidt, I. B. et al. Tailoring restoration interventions to the grassland-savanna-forest complex in central Brazil. Restor. Ecol. 27, 942–948 (2019).
    Google Scholar 
    51.Schmidt, I. B. et al. Community-based native seed production for restoration in Brazil: the role of science and policy. Plant Biol. J. 21, 389–397 (2018).
    Google Scholar 
    52.Strassburg, B. B. N. et al. Author Correction: Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 4, 765–765 (2020).PubMed 

    Google Scholar 
    53.Assis, G. B., Pilon, N. A. L., Siqueira, M. F. & Durigan, G. Effectiveness and costs of invasive species control using different techniques to restore cerrado grasslands. Restor. Ecol. 29, (2020).54.Torello-Raventos, M. et al. On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecol. Divers. 6, 101–137 (2013).
    Google Scholar 
    55.da Silva, D. P., Amaral, A. G., Bijos, N. R. & Munhoz, C. B. R. Is the herb-shrub composition of veredas (Brazilian palm swamps) distinguishable?. Acta Bot. Bras. 32, 47–54 (2017).
    Google Scholar 
    56.Munhoz, C. B. R. & Felfili, J. M. Florística do estrato herbáceo-subarbustivo de um campo limpo úmido em Brasília, Brasil. Biota. Neotrop. 7, 205–215 (2007).
    Google Scholar 
    57.Franco, A. C. et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 19, 326–335 (2004).
    Google Scholar 
    58.Oliveras, I. & Malhi, Y. Many shades of green: the dynamic tropical forest–savannah transition zones. Phil. Trans. R. Soc. B. 371, 20150308 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    59.Cianciaruso, MV. & Batalha, MA. A year in a Cerrado wet grassland: a non-seasonal island in a seasonal savanna environment. Braz. J. Biol. 68, 495–501 (2008).60.MapBiomas. MapBiomas v5.0. https://mapbiomas.org (2021).61.Souza, C. M. Jr. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with landsat archive and earth engine. Remote Sens. 12, 2735 (2020).ADS 

    Google Scholar 
    62.Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 

    Google Scholar 
    63.Crouzeilles, R. et al. There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspect. Ecol. Conserv. 17, 80–83 (2019).
    Google Scholar 
    64.Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Change Biol. 26, 7006–7020 (2020).ADS 

    Google Scholar 
    65.Rosan, T. M. et al. Extensive 21st-Century Woody Encroachment in South America’s Savanna. Geophys. Res. Lett. 46, 6594–6603 (2019).ADS 

    Google Scholar 
    66.Schwieder, M. et al. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 52, 361–370 (2016).ADS 

    Google Scholar 
    67.Ribeiro, F. F. et al. Geographic Object-Based Image Analysis Framework for Mapping Vegetation Physiognomic Types at Fine Scales in Neotropical Savannas. Remote Sens. 12, 1721 (2020).ADS 

    Google Scholar 
    68.Jacon, A. D., Galvão, L. S., dos Santos, J. R. & Sano, E. E. Seasonal characterization and discrimination of savannah physiognomies in Brazil using hyperspectral metrics from Hyperion/EO-1. Int. J. Remote Sens. 38, 4494–4516 (2017).
    Google Scholar 
    69.Neves, A. K. et al. Hierarchical mapping of Brazilian Savanna (Cerrado) physiognomies based on deep learning. J. App. Remote Sens. 15, 044504–1–044504–23 (2021).70.de Souza Mendes, F., Baron, D., Gerold, G., Liesenberg, V. & Erasmi, S. Optical and SAR remote sensing synergism for mapping vegetation types in the endangered cerrado/amazon ecotone of nova mutum—mato grosso. Remote Sens. 11, 1161 (2019).ADS 

    Google Scholar 
    71.Sano, E. E., Ferreira, L. G., Asner, G. P. & Steinke, E. T. Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. Int. J. Remote Sens. 28, 2739–2752 (2007).
    Google Scholar 
    72.Flores-Anderson, A.I., Herndon, K.E., Thapa, R.B. & Cherrington, E. The SAR handbook: comprehensive methodologies for forest monitoring and biomass estimation. (SERVIR, 2019).73.Bendini, H. N. et al. Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series. Int. J. Appl. Earth. Obs. Geoinf. 82, 101872 (2019).74.Bendini, H. N. et al. Combining environmental and Landsat analysis ready data for vegetation mapping: a case study in the Brazilian savanna biome. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B3–2020, 953–960 (2020).75.ECMWF. Climate reanalysis. https://climate.copernicus.eu/climate-reanalysis (2021).76.UNESCO. MINOR MODIFICATIONS PROPOSAL TO THE BOUNDARIES of Cerrado Protected Areas World Heritage: Chapada dos Veadeiros and Emas National Parks. (UNESCO Brasília, 2019)77.ICUN. Advisory mission to Cerrado Protected Areas World Heritage Property (Chapada Dos Veadeiros component) (Brazil). (International Union for Conservation of Nature, 2016)78.EMBRAPA. Sistema brasileiro de classificação dos solos. (EMBRAPA, 2006)79.IBGE. Mapa de Solos do Brasil do IBGE escala 1:250.000 https://www.ibge.gov.br/geociencias/downloads-geociencias.html (IBGE, 2020).80.Rodrigues, J. A. et al. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth. Obs. Geoinf. 78, 318–331 (2019).ADS 

    Google Scholar 
    81.NASA, MCD64A1 v6. https://lpdaac.usgs.gov/products/mcd64a1v006/ (2021)82.GEE. Earth Engine Data Catalog. https://developers.google.com/earth-engine/datasets (2021)83.Vreugdenhil, M. et al. Sensitivity of sentinel-1 backscatter to vegetation dynamics: an Austrian case study. Remote Sens. 10, 1396 (2018).ADS 

    Google Scholar 
    84.Harfenmeister, K., Spengler, D. & Weltzien, C. Analyzing temporal and spatial characteristics of crop parameters using sentinel-1 backscatter data. Remote Sens. 11, 1569 (2019).ADS 

    Google Scholar 
    85.European Space Agency. Level-2A Algorithm Overview https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (2021)86.GEE. Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR (2021).87.GEE. USGS Landsat 8 Level 2, Collection 2, Tier 1. https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 (2021)88.Xue, J. & Su, B. Significant remote sensing vegetation indices: a review of developments and applications. J. Sens. 2017, 1353691 (2017).
    Google Scholar 
    89.Parente, L. & Ferreira, L. Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016. Remote Sens. 10, 606 (2018).ADS 

    Google Scholar 
    90.Hill, M. J., Zhou, Q., Sun, Q., Schaaf, C. B. & Palace, M. Relationships between vegetation indices, fractional cover retrievals and the structure and composition of Brazilian Cerrado natural vegetation. Int. J. Remote Sens. 38, 874–905 (2017).
    Google Scholar 
    91.Nomura, K. & Mitchard, E. More than meets the eye: using sentinel-2 to map small plantations in complex forest landscapes. Remote Sens. 10, 1693 (2018).ADS 

    Google Scholar 
    92.Hagen-Zanker, A. A computational framework for generalized moving windows and its application to landscape pattern analysis. Int. J. Appl. Earth. Obs. Geoinf. 44, 205–216 (2016).ADS 

    Google Scholar 
    93.Wantzen, K. M. et al. Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Agric. Ecosyst. Environ. 151, 70–79 (2012).CAS 

    Google Scholar 
    94.ESA. Copernicus DEM: Global and European Digital Elevation Model (COP-DEM). https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198 (2021)95.Breiman, L. Mach. Learn. 45, 5–32 (2001).96.Chen, D. & Wei, H. The effect of spatial autocorrelation and class proportion on the accuracy measures from different sampling designs. ISPRS J. Photogramm. Remote Sens. 64, 140–150 (2009).ADS 

    Google Scholar 
    97.Olofsson, P., Foody, G. M., Stehman, S. V. & Woodcock, C. E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 129, 122–131 (2013).ADS 

    Google Scholar 
    98.Foody, G. M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201 (2002).ADS 

    Google Scholar 
    99.Jank, L., Barrios, S. C., do Valle, C. B., Simeão, R. M. & Alves, G. F. The value of improved pastures to Brazilian beef production. Crop Pasture Sci. 65, 1132 (2014).100.Oliveira, J. et al. Choosing pasture maps: An assessment of pasture land classification definitions and a case study of Brazil. Int. J. Appl. Earth. Obs. Geoinf. 93, 102205 (2020).101.Pereira, O., Ferreira, L., Pinto, F. & Baumgarten, L. Assessing pasture degradation in the Brazilian cerrado based on the analysis of MODIS NDVI time-series. Remote Sens. 10, 1761 (2018).ADS 

    Google Scholar 
    102.Meirelles, M.L., Ferreira, E.A.B. and Franco, A.C. Dinâmica sazonal do carbono em campo úmido do cerrado. Embrapa Cerrados-Documentos (INFOTECA-E, 2006).103.França, A. M. S., Paiva, R. J. O., Sano, E. E. & Carvalho, A. M. Estimates for carbon stocks in soil under humid grassland areas in the federal district of Brazil. OJE 04, 777–787 (2014).
    Google Scholar 
    104.Silveira, F. A. O. et al. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil. 403, 129–152 (2015).
    Google Scholar 
    105.Pereira, E. G., Siqueira-Silva, A. I., de Souza, A. E., Melo, N. M. J. & Souza, J. P. Distinct ecophysiological strategies of widespread and endemic species from the megadiverse campo rupestre. Flora 238, 79–86 (2018).
    Google Scholar 
    106.Moreira, S. N., Pott, V. J., Pott, A., da Silva, R. H. & Júnior, G. A. D. Flora and vegetation structure of Vereda in southwestern Cerrado. Oecol. Aust. 23, 776–798 (2019).
    Google Scholar 
    107.Pinto, J. R. R., Lenza, E. & Pinto, A. de S. Composição florística e estrutura da vegetação arbustivo-arbórea em um cerrado rupestre, Cocalzinho de Goiás, Goiás. Rev. Bras. Bot. 32, (2009).108.Gomes, L., Lenza, E., Maracahipes, L., Marimon, B. S. & Oliveira, E. A. de. Comparações florísticas e estruturais entre duas comunidades lenhosas de cerrado típico e cerrado rupestre, Mato Grosso, Brasil. Acta Bot. Bras. 25, 865–875 (2011).109.Gomes, D.L. Classificação fitofisionômica do cerrado no Parque Nacional da Chapada dos Veadeiros, GO, com a aplicação de uma análise combinatória com filtros adaptativos em imagens TM Landsat. (Dissertação de Mestrado, Brasília, 2008).110.Neyret, M. et al. Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. Ecol. Evol. 6, 5674–5689 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    111.Abreu, R. C. R. et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).112.Morais, V. A. et al. Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil. Cerne 19, 237–245 (2013).
    Google Scholar 
    113.Bispo, P. da C. et al. Woody aboveground biomass mapping of the Brazilian savanna with a multi-sensor and machine learning approach. Remote Sens. 12, 2685 (2020).114.Taberelli, M. & Gascon, C. Lessons from fragmentation research: improving management and policy guidelines for biodiversity conservation. Conserv. Biol. 19, 734–739 (2005).
    Google Scholar 
    115.Holder, D. N. H., Dockary, M. & Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 4, 273–288 (1983).
    Google Scholar 
    116.Li, J. & Roy, D. A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 9, 902 (2017).ADS 

    Google Scholar 
    117.Hunter, F. D. L., Mitchard, E. T. A., Tyrrell, P. & Russell, S. Inter-seasonal time series imagery enhances classification accuracy of grazing resource and land degradation maps in a savanna ecosystem. Remote Sens. 12, 198 (2020).ADS 

    Google Scholar 
    118.Ramos, D. M., Diniz, P., Ooi, M. K. J., Borghetti, F. & Valls, J. F. M. Avoiding the dry season: dispersal time and syndrome mediate seed dormancy in grasses in Neotropical savanna and wet grasslands. J. Veg. Sci. 28, 798–807 (2017).
    Google Scholar 
    119.de Camargo, M. G. G., de Carvalho, G. H., Alberton, B. de C., Reys, P. & Morellato, L. P. C. Leafing patterns and leaf exchange strategies of a cerrado woody community. Biotropica. 50, 442–454 (2018).120.Rüetschi, M., Schaepman, M. & Small, D. Using multitemporal sentinel-1 C-band backscatter to monitor phenology and classify deciduous and coniferous forests in Northern Switzerland. Remote Sens. 10, 55 (2017).ADS 

    Google Scholar 
    121.Sano, E. E., Ferreira, L. G. & Huete, A. R. Synthetic aperture radar (L band) and optical vegetation indices for discriminating the Brazilian savanna physiognomies: a comparative analysis. Earth Interact. 9, 1–15 (2005).
    Google Scholar 
    122.Joshi, N. et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 8, 70 (2016).ADS 

    Google Scholar 
    123.Nicolau, A. P., Flores-Anderson, A., Griffin, R., Herndon, K. & Meyer, F. J. Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest. Int. J. Appl. Earth. Obs. Geoinf. 94, 102214 (2021).124.Notarnicola, C. & Posa, F. Inferring vegetation water content from C- and L-band SAR images. IEEE Trans. Geosci. Remote Sens. 45, 3165–3171 (2007).ADS 

    Google Scholar 
    125.El Hajj, M., Baghdadi, N., Bazzi, H. & Zribi, M. Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands. Remote Sens. 11, 31 (2018).ADS 

    Google Scholar 
    126.JAXA. Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-Forest map. https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm (JAXA, 2021).127.Zimbres, B. et al. Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. For. Ecol. Manag. 499, 119615 (2021).128.Ryan, C. M. et al. Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery. Glob. Change Biol. 18, 243–257 (2011).ADS 

    Google Scholar 
    129.Yu, Y. & Saatchi, S. Sensitivity of L-Band SAR backscatter to aboveground biomass of global forests. Remote Sens. 8, 522 (2016).ADS 

    Google Scholar 
    130.Pilon, N. A. L. et al. The diversity of post-fire regeneration strategies in the cerrado ground layer. J. Ecol. 109, 154–166 (2020).
    Google Scholar 
    131.Schmidt, I. B. & Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora. 268, 151613 (2020).132.Boschetti, L. et al. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 235, 111490 (2019).133.Humber, M. L., Boschetti, L., Giglio, L. & Justice, C. O. Spatial and temporal intercomparison of four global burned area products. Int. J. Digit. Earth. 12, 460–484 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    134.Arruda, V. L. S., Piontekowski, V. J., Alencar, A., Pereira, R. S. & Matricardi, E. A. T. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sens. Appl. Soc. Environ. 22, 100472 (2021).135.Santos, F. L. M. et al. Assessing VIIRS capabilities to improve burned area mapping over the Brazilian Cerrado. Int. J. Remote Sens. 41, 8300–8327 (2020).
    Google Scholar 
    136.Marques, E. Q. et al. Redefining the Cerrado-Amazonia transition: implications for conservation. Biodivers. Conserv. 29, 1501–1517 (2019).
    Google Scholar 
    137.Marimon, B. S. et al. Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecol. Divers. 7, 281–292 (2013).
    Google Scholar 
    138.Mellor, A., Boukir, S., Haywood, A. & Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 105, 155–168 (2015).ADS 

    Google Scholar 
    139.DRYFLOR. Plant diversity patterns in neotropical dry forests and their conservation implications. Science. 353, 1383–1387 (2016). More

  • in

    Species characteristics and cultural value of stone wall trees in the urban area of Macao

    Species composition of stone wall treesFamilies and genera of stone wall treesThere were 96 stone wall trees belonging to 6 genera and 5 families in Macao. Among them, Moraceae and Ficus appeared the most frequently, both reaching 85 times, accounting for 88.5% (Table 1). It showed that Moraceae, a kind of tropical distribution family, was dominant in the stone wall trees communities, which meant that stone wall trees species in Macao appeared distinctly tropical nature18.Table 1 Frequency of occurrence of stone wall Trees in different families and genera.Full size tableSpecies of stone wall treesThere were 16 species of the stone wall trees in Macao including Bridelia tomentosa, Celtis sinensis, Eriobotrya japonica, Ficus altissima, F. benjamina, F. elastica, F. hispida, F. microcarpa, F. pandurata, F. subpisocarpa, F. tinctoria subsp. gibbosa, F. rumphii, F. variegata, F. virens, Leucaena leucocephala, and Trema cannabina (Fig. 2).Figure 216 species of stone wall trees in Macao (photo was taken by Professor Qin Xingsheng).Full size imageBased on the frequency of occurrence of various tree species, the frequency was concentrated in the range of 1–5%. Among them, Ficus microcarpa had the highest frequency, reaching 58 times, with a frequency of 60.4% (Fig. 3). This tree species is robust, adaptable and fast growing, which is the main population of Ficus19.Figure 3Frequency distribution of stone wall tree species in Macao.Full size imageStone wall trees in the historic center of MacaoThe historic center of Macao, covering an area of about 2.8 km2, is the heartland of Macao’s historical and cultural heritage, which plays a significant role in the cultural heritage around the world18. The historic center of Macao provides valuable historical and cultural resources that enable Macao to transform into a world tourism center20.A total of 14 plots were located in the historic Center of Macao (Fig. 4), with 45 stone wall trees, accounting for 47.9% of the total number of trees in the survey. Among them, Jardim Luís de Camões has the largest number of 9 stone wall trees. The park, built in the mid-eighteenth century, is one of the oldest gardens in Macao and has the largest number of old trees in Macao. The park had provided good time and environmental conditions for the growth of stone wall trees.Figure 4(a) Schematic diagram of distribution and number of stone wall trees in the historic Center of Macao. (b) Schematic diagram of historic center of Macao. (URL of the Macao map: https://www.d-maps.com/m/asia/china/macau/macau02.gif).Full size imageAccording to Decree No. 56/84/M of the Macao Special Administrative Region Government Printing Department, immovable property that represents the creation of man, or the development of nature or technology and has cultural significance is considered tangible cultural property. The occurrence of the stone wall tree was inextricably linked to ancient wall-building techniques of that time, which was of great significance for the study of the technological development and ecological landscape of the historic center of Macao. The concept of “historic urban landscape” was proposed by Zhang Song20, who argued that cities were organisms in continuous evolution, emphasizing respect for the interrelationship between natural and man-made environments. The stone wall trees in the historic center of Macao have been associated with the local culture and ecology tightly and should be preserved as important urban landscape.Symbiotic relationship between tree and stone wallsAs shown in the table below (Table 2), it was found that most of the stone wall trees had root systems that were not only superficially attached to the wall but also extended to the top or bottom of the wall. In particular, Ficus spp. whose strong root system could closely mosaic with the wall, thus forming a strong symbiosis.Table 2 The relationship between the root system of the stone wall tree and the wall.Full size tableStone walls can imitate the traditional nature-accommodating features to permit spontaneous establishment of a diverse plant assemblage. Besides vegetative diversities in terms of species composition, growth form and biomass structure, stone walls can support a mass collection of urban wildlife and provide various ecosystem service. It is highly recommended that modern urban design be created to embrace stone wall landscape as an integral part of naturalistic or ecological design.Vision for the establishment of the stone wall tree trail system in the historic of MacaoThe traditional street environment in the Macao Peninsula is a kind of distinctive urban landscape, which can highlight the specificity and value of the urban context. The combination of the stone wall trees and walls, together with the traditional streets, form a spatial urban landscape. Starting from the location of the stone wall tree landscape, the dots and lines are prospective to promote the establishment of a comprehensive stone wall tree landscape trail system (Fig. 5), so that the public can make use of the existing biological resources to have a better understanding of the land on which they live.Figure 5Schematic diagram of the stone wall trees trail system on the Macao Peninsula (URL of the Macao map: https://www.d-maps.com/m/asia/china/macau/macau02.gif and the finished map is created by Meisi Chen through the Photoshop CS6 and Arc GIS 10.2).Full size imageSince 2012, the Macao Government has been implementing the “Strolling along Macao Street” project, which aims at studying and exploring the history and culture of the streets of Macao through an in-depth cultural tourism route and promoting it to different levels of society. The establishment of the stone wall tree trail system can rely on this project to raise the public’s awareness of the protection and cultural identity of the stone wall tree landscape through a variety of ways. For example, route design competition, photography competition and exhibition, recruitment of “Stonewall Tree Protection Ambassadors” and other forms of participation, so that the public could complete the “role change” in the high degree of such participation—from “onlookers” to “bystanders”.Survey results of associated plant speciesSpecies composition and occurrence of frequencyThe survey showed that there were 101 species of stone wall tree associated plants in Macao, under 88 genera and 51 families. Most associated plants belonged to Euphorbiaceae, Compositae, and Araceae.There were 85 species with a frequency of 1–5 times, accounting for 84.2% of total species. A total of 11 species appeared 11–15 times, accounting for 4.0% (Fig. 6). There were a total of 4 species that appeared more than 15 times. They were Cocculus orbiculatus, Pteris cretica, Paederia scandens, and Pyrrosia adnascens. Most of the associated species appeared only 1–5 times, indicating that most plants were selective and accidental for the growth conditions of stone wall sites.Figure 6Occurrence frequency in various species of associated plants.Full size imageLife form compositionHerbaceous plants with 37 species, accounting the percentage of 52.3% (Fig. 7), were dominant in the associated plant species because the seeds of herbaceous plants are lighter and can be propagated to the wall surface by wind force.Figure 7Life form of associated plants with stone wall trees in Macao.Full size imageSimilarity analysis of the associated plants in MacaoIn order to compare the similarity of associated plant species in different environment, the surveyed sample sites for this study were divided into three categories: motorized lanes, non-motorized lanes, and park habitats (Table 3). According to Jaccard’s similarity principle, Sj is extremely dissimilar when it is 0.00–0.25, and the analysis showed that the similarity of companion plant species in all three habitats was extremely dissimilar. Therefore, it indicated that the companion plants in different habitats had obvious diversity and uniqueness.Table 3 Jaccard similarity index for companion plant species composition among three habitats.Full size table More

  • in

    No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata

    1.GESAMP. Global pollution trends: coastal ecosystem assessment for the past century. 101 (2018).2.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS 
    PubMed 

    Google Scholar 
    3.Hartmann, N. B. et al. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integr. Environ. Assess. Manag. 13, 488–493 (2017).PubMed 

    Google Scholar 
    4.Bour, A., Avio, C. G., Gorbi, S., Regoli, F. & Hylland, K. Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level. Environ. Pollut. 243, 1217–1225 (2018).CAS 
    PubMed 

    Google Scholar 
    5.Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science (80-) 47, 768–770 (2015).ADS 

    Google Scholar 
    6.PlasticsEurope. Plastics—The Facts 2020. PlasticsEurope (2020).7.Sweet, M., Steifox, M. & Lamb, J. Plastics and Shallow Water Coral Reefs. Synthesis of the Science for Policy-Makers (2019).8.Stafford, R. & Jones, P. J. S. Viewpoint—Ocean plastic pollution: A convenient but distracting truth? Mar. Policy 19, 0–1 (2019).9.Backhaus, T. & Wagner, M. Microplastics in the environment: Much ado about nothing? A debate. Glob. Challenges 1900022, 1900022 (2019).
    Google Scholar 
    10.Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 2388–2392 (2013).CAS 
    PubMed 

    Google Scholar 
    11.Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    12.Donovan, M. K. et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl. Acad. Sci. USA. 117, 5351–5357 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Lamb, J. B. et al. Plastic waste associated with disease on coral reefs. Science (80-) 359, 460–462 (2018).CAS 
    ADS 

    Google Scholar 
    14.Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (2011).15.Tan, F. et al. Microplastic pollution around remote uninhabited coral reefs of Nansha Islands, South China Sea. Sci. Total Environ. 725, 138383 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    16.Bucol, L. A. et al. Microplastics in marine sediments and rabbitfish (Siganus fuscescens) from selected coastal areas of Negros Oriental, Philippines. Mar. Pollut. Bull. 150, 110685 (2020).CAS 
    PubMed 

    Google Scholar 
    17.Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 1–8 (2017).
    Google Scholar 
    18.Lagarde, F. et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 215, 331–339 (2016).CAS 
    PubMed 

    Google Scholar 
    19.Cordova, M. R., Hadi, T. A. & Prayudha, B. Occurrence and abundance of microplastics in coral reef sediment: A case study in Sekotong, Lombok-Indonesia. AES Bioflux 10, 23–29 (2018).
    Google Scholar 
    20.Ogston, A. S., Storlazzi, C. D., Field, M. E. & Presto, M. K. Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii. Coral Reefs 23, 559–569 (2004).
    Google Scholar 
    21.Bellwood, D. R. Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus on the Great Barrier Reef, Australia. Mar. Biol. 121, 419–429 (1995).
    Google Scholar 
    22.Rosenfeld, M., Bresler, V. & Abelson, A. Sediment as a possible food source for corals. Ecol. Lett. 2, 345–348 (1999).
    Google Scholar 
    23.Rogers, C. S. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62, 185–202 (1990).ADS 

    Google Scholar 
    24.Bastidas, C., Bone, D. & Garcia, E. M. Sedimentation rates and metal content of sediments in a Venezuelan coral reef. Mar. Pollut. Bull. 38, 16–24 (1999).CAS 

    Google Scholar 
    25.Smith, L. D., Negri, A. P., Philipp, E., Webster, N. S. & Heyward, A. J. The effects of antifoulant-paint-contaminated sediments on coral recruits and branchlets. Mar. Biol. 143, 651–657 (2003).CAS 

    Google Scholar 
    26.Stafford-Smith, M. Sediment rejection efficiency of 22 species of Australian scleractinian corals. Mar. Biol. 115, 229–243 (1993).
    Google Scholar 
    27.Junjie, R. K., Browne, N. K., Erftemeijer, P. L. A. & Todd, P. A. Impacts of sediments on coral energetics: Partitioning the effects of turbidity and settling particles. PLoS ONE 9, e107195 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    28.Hall, N. M., Berry, K. L. E., Rintoul, L. & Hoogenboom, M. O. Microplastic ingestion by scleractinian corals. Mar. Biol. 162, 725–732 (2015).CAS 

    Google Scholar 
    29.Allen, A. S., Seymour, A. C. & Rittschof, D. Chemoreception drives plastic consumption in a hard coral. Mar. Pollut. Bull. 124, 198–205 (2017).CAS 
    PubMed 

    Google Scholar 
    30.Mouchi, V. et al. Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure. Environ. Pollut. 253, 322–329 (2019).CAS 
    PubMed 

    Google Scholar 
    31.Tang, J., Ni, X., Zhou, Z., Wang, L. & Lin, S. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. Environ. Pollut. 243, 66–74 (2018).CAS 
    PubMed 

    Google Scholar 
    32.Chapron, L. et al. Macro- and microplastics affect cold-water corals growth, feeding and behaviour. Sci. Rep. 8, 1–8 (2018).CAS 

    Google Scholar 
    33.Hankins, C., Moso, E. & Lasseigne, D. Microplastics impair growth in two atlantic scleractinian coral species, Pseudodiploria clivosa and Acropora cervicornis. Environ. Pollut. 275, 116649 (2021).CAS 
    PubMed 

    Google Scholar 
    34.Rocha, R. J. M. et al. Do microplastics affect the zoanthid Zoanthus sociatus?. Sci. Total Environ. 713, 136659 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    35.Reichert, J. et al. Interactive effects of microplastic pollution and heat stress on reef-building corals. Environ. Pollut. 290, 118010 (2021).CAS 
    PubMed 

    Google Scholar 
    36.Rotjan, R. D. et al. Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata. Proc. R. Soc. B Biol. Sci. 286, 20190726 (2019).CAS 

    Google Scholar 
    37.Reichert, J., Schellenberg, J., Schubert, P. & Wilke, T. Responses of reef building corals to microplastic exposure. Environ. Pollut. 237, 955–960 (2018).CAS 
    PubMed 

    Google Scholar 
    38.Hankins, C., Duffy, A. & Drisco, K. Scleractinian coral microplastic ingestion: Potential calcification effects, size limits, and retention. Mar. Pollut. Bull. 135, 587–593 (2018).CAS 
    PubMed 

    Google Scholar 
    39.Reichert, J., Arnold, A. L., Hoogenboom, M. O., Schubert, P. & Wilke, T. Impacts of microplastics on growth and health of hermatypic corals are species-specific. Environ. Pollut. 254, 113074 (2019).CAS 
    PubMed 

    Google Scholar 
    40.Mendrik, F. M. et al. Species-specific impact of microplastics on coral physiology. Environ. Pollut. 269, 116238 (2021).CAS 
    PubMed 

    Google Scholar 
    41.Corona, E., Martin, C., Marasco, R. & Duarte, C. M. Passive and active removal of marine microplastics by a mushroom Coral (Danafungia scruposa). Front. Mar. Sci. 7, 1–9 (2020).ADS 

    Google Scholar 
    42.Martin, C., Corona, E., Mahadik, G. A. & Duarte, C. M. Adhesion to coral surface as a potential sink for marine microplastics. Environ. Pollut. 255, 113281 (2019).CAS 
    PubMed 

    Google Scholar 
    43.Oldenburg, K. S., Urban-Rich, J., Castillo, K. D. & Baumann, J. H. Microfiber abundance associated with coral tissue varies geographically on the Belize Mesoamerican Barrier Reef System. Mar. Pollut. Bull. 163, 111938 (2021).CAS 
    PubMed 

    Google Scholar 
    44.Axworthy, J. B. & Padilla-Gamiño, J. L. Microplastics ingestion and heterotrophy in thermally stressed corals. Sci. Rep. 9, 1–8 (2019).
    Google Scholar 
    45.Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed 

    Google Scholar 
    46.Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. 7, 362 (2020).
    Google Scholar 
    47.Rochman, C. M., Hentschel, B. T. & The, S. J. Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments. PLoS ONE 9, e85433 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    48.Niu, Y., Ying, D., Li, K., Wang, Y. & Jia, J. Adsorption of heavy-metal ions from aqueous solution onto chitosan-modified polyethylene terephthalate (PET). Res. Chem. Intermed. 43, 4213–4245 (2017).CAS 

    Google Scholar 
    49.Frias, J., Sobral, P. & Ferreira, A. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar. Pollut. Bull. 60, 1988–1992 (2010).CAS 
    PubMed 

    Google Scholar 
    50.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).CAS 
    PubMed 

    Google Scholar 
    51.Botterell, Z. L. R. et al. Bioavailability of microplastics to marine zooplankton: Effect of shape and infochemicals. Environ. Sci. Technol. 54, 12024–12033 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    52.Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the ecosystem. Nature 428, 66–70 (2004).CAS 
    PubMed 
    ADS 

    Google Scholar 
    53.Benson, A. & Muscatine, L. Wax in coral mucus: Energy transfer from corals to reef fishes. Limnol. Oceanogr. 19, 810–814 (1974).ADS 

    Google Scholar 
    54.Verla, A. W., Enyoh, C. E., Verla, E. N. & Nwarnorh, K. O. Microplastic–toxic chemical interaction: A review study on quantified levels, mechanism and implication. SN Appl. Sci. 1, 1–30 (2019).CAS 

    Google Scholar 
    55.Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296, 291–309 (2005).CAS 
    ADS 

    Google Scholar 
    56.Weber, M., Lott, C. & Fabricius, K. E. Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. J. Exp. Mar. Bio. Ecol. 336, 18–32 (2006).CAS 

    Google Scholar 
    57.Riegl, B. & Branch, G. Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamoroux 1816) corals. J. Exp. Mar. Bio. Ecol. 186, 259–275 (1995).
    Google Scholar 
    58.Felsing, S. et al. A new approach in separating microplastics from environmental samples based on their electrostatic behavior. Environ. Pollut. 234, 20–28 (2018).CAS 
    PubMed 

    Google Scholar 
    59.Bessell-Browne, P., Negri, A. P., Fisher, R., Clode, P. L. & Jones, R. Cumulative impacts: Thermally bleached corals have reduced capacity to clear deposited sediment. Sci. Rep. 7, 1–14 (2017).
    Google Scholar 
    60.Fitt, W. K. et al. Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J. Exp. Mar. Bio. Ecol. 373, 102–110 (2009).
    Google Scholar 
    61.Weber, M. et al. Mechanisms of damage to corals exposed to sedimentation. Proc. Natl. Acad. Sci. USA. 109, E1558 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Lear, G. et al. Plastics and the microbiome: Impacts and solutions. Environ. Microbiomes 16, 1–19 (2021).
    Google Scholar 
    63.Palardy, J., Rodrigues, L. & Grottolli, A. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J. Exp. Mar. Bio. Ecol. 367, 180–188 (2008).CAS 

    Google Scholar 
    64.Jennings, H. Modifiability in behaviour, 1: Behavior of sea anemones. J. Exp. Zool. 4, 447–632 (1905).
    Google Scholar 
    65.Boschma, H. On the feeding reactions and digestion in the coral polyp Astrangia danae, with notes on its symbiosis with zooxanthellae. Biol. Bull. 49, 407–439 (1925).CAS 

    Google Scholar 
    66.Anthony, K. R. N. Coral suspension feeding on fine particulate matter. J. Exp. Mar. Bio. Ecol. 232, 85–106 (1999).
    Google Scholar 
    67.Schlekat, C., McGee, B. & Reinharz, E. Testing sediment toxicity in chesapeake bay with the amphipod Leptocheirus plumulosus: An evaluation. Environ. Toxicol. Chem. 11, 225–236 (1992).CAS 

    Google Scholar 
    68.Nie, H., Wang, J., Xu, K., Huang, Y. & Yan, M. Microplastic pollution in water and fish samples around Nanxun Reef in Nansha Islands, South China Sea. Sci. Total Environ. 696, 134022 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    69.Cai, M. et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 633, 1206–1216 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    70.Zhu, L. et al. Microplastic pollution in North Yellow Sea, China: Observations on occurrence, distribution and identification. Sci. Total Environ. 636, 20–29 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    71.Saliu, F. et al. Microplastic and charred microplastic in the Faafu Atoll, Maldives. Mar. Pollut. Bull. 136, 464–471 (2018).CAS 
    PubMed 

    Google Scholar 
    72.Saliu, F., Montano, S., Leoni, B., Lasagni, M. & Galli, P. Microplastics as a threat to coral reef environments: Detection of phthalate esters in neuston and scleractinian corals from the Faafu Atoll, Maldives. Mar. Pollut. Bull. 142, 234–241 (2019).CAS 
    PubMed 

    Google Scholar 
    73.Bessa, F. et al. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 128, 575–584 (2018).CAS 
    PubMed 

    Google Scholar 
    74.Ivar Do Sul, J. A. & Costa, M. F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 185, 352–364 (2014).CAS 
    PubMed 

    Google Scholar 
    75.Chubarenko, I., Bagaev, A., Zobkov, M. & Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 108, 105–112 (2016).CAS 
    PubMed 

    Google Scholar 
    76.Tang, J. et al. Differential enrichment and physiological impacts of ingested microplastics in scleractinian corals in situ. J. Hazard. Mater. 404, 124205 (2021).CAS 
    PubMed 

    Google Scholar 
    77.Harrison, J. P., Schratzberger, M., Sapp, M. & Osborn, A. M. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 14, 1–15 (2014).
    Google Scholar 
    78.Veron, J. Corals of the World (2000).79.Benavides, M. et al. Diazotrophs: A non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J. Exp. Biol. 219, 2608–2612 (2016).PubMed 

    Google Scholar 
    80.Einbinder, S. et al. Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar. Ecol. Prog. Ser. 381, 167–174 (2009).ADS 

    Google Scholar 
    81.Erni-Cassola, G., Gibson, M. I., Thompson, R. C. & Christie-Oleza, J. A. Lost, but found with Nile red: A novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environ. Sci. Technol. 51, 13641–13648 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    82.Swain, T. D., Schellinger, J. L., Strimaitis, A. M. & Reuter, K. E. Evolution of anthozoan polyp retraction mechanisms: Convergent functional morphology and evolutionary allometry of the marginal musculature in order Zoanthidea (Cnidaria: Anthozoa: Hexacorallia). BMC Evol. Biol. 15, 1–19 (2015).
    Google Scholar 
    83.Laissue, P. P., Gu, Y., Qian, C. & Smith, D. J. Light-induced polyp retraction and tissue rupture in the photosensitive, reef-building coral Acropora muricata. bioRxiv https://doi.org/10.1101/862045 (2019).Article 

    Google Scholar 
    84.Renegar, D. A. & Turner, N. R. Species sensitivity assessment of five Atlantic scleractinian coral species to 1-methylnaphthalene. Sci. Rep. 11, 1–17 (2021).
    Google Scholar 
    85.Armoza-Zvuloni, R., Schneider, A., Sher, D. & Shaked, Y. Rapid Hydrogen Peroxide release from the coral Stylophora pistillata during feeding and in response to chemical and physical stimuli. Sci. Rep. 6, 1–10 (2016).
    Google Scholar 
    86.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Meijering, E., Dzyubachyck, O. & Smal, I. Methods for cell and particle tracking. In Methods in Enzymology (Elsevier, 2012).88.Sorgeloos, P., Dhert, P. & Candrevab, P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147–159 (2001).
    Google Scholar 
    89.R Core Team. R: A language and environment for statistical computing (2019).90.Wood, A. S., Scheipl, F. & Wood, M. S. Package ‘gamm4’. (2020).91.Zuur, A., Saveliev, A. & Ieno, E. A Beginner’s Guide to Generalized Additive Mixed Models with R. (Highland Statistics Ltd, 2014).92.Zuur, A. F., Hilbe, J. M. & Ieno, E. N. A Beginner’s Guide to GLM and GLMM with R (Highland Statistics Ltd, 2013).93.Pyke, A. & Thompson, J. Statistical analysis of survival and removal rate experiments. Ecology 67, 240–245 (1986).
    Google Scholar 
    94.Therneau, T. M. Mixed effects cox models. R-Package Description. https://doi.org/10.1111/oik.01149 (2015).Article 

    Google Scholar 
    95.Katki, H. A. & Mark, S. D. Survival analysis of studies nested within cohorts using the NestedCohort Package. 1–16 (2013).96.Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package BRMS. R J. 10, 395–411 (2018).
    Google Scholar 
    97.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer, 2009).98.Manly, B. F. J. Measuring selectivity from multiple choice feeding-preference experiments. Biometrics 51, 709 (1995).
    Google Scholar 
    99.Richardson, J. Package ‘ selectapref ’. Anal. F. Lab. Foraging 8–11 (2020). More

  • in

    Oriental freshwater mussels arose in East Gondwana and arrived to Asia on the Indian Plate and Burma Terrane

    1.Graf, D. L. & Cummings, K. S. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). J. Molluscan Stud. 73, 291–314. https://doi.org/10.1093/mollus/eym029 (2007).Article 

    Google Scholar 
    2.Graf, D. L. & Cummings, K. S. A “big data” approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species. J. Molluscan Stud. 87, 034. https://doi.org/10.1093/mollus/eyaa034 (2021).Article 

    Google Scholar 
    3.Vaughn, C. C. Ecosystem services provided by freshwater mussels. Hydrobiologia 810, 15–27. https://doi.org/10.1007/s10750-017-3139-x (2018).Article 

    Google Scholar 
    4.Ożgo, M. et al. Lake-stream transition zones support hotspots of freshwater ecosystem services: Evidence from a 35-year study on unionid mussels. Sci. Total Environ. 774, 145114. https://doi.org/10.1016/j.scitotenv.2021.145114 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Lopes-Lima, M. et al. Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia 810, 1–14. https://doi.org/10.1007/s10750-017-3486-7 (2018).Article 

    Google Scholar 
    6.Bolotov, I. N. et al. Climate warming as a possible trigger of keystone mussel population decline in oligotrophic rivers at the continental scale. Sci. Rep. 8, 35. https://doi.org/10.1038/s41598-017-18873-y (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Ferreira-Rodríguez, N. et al. Research priorities for freshwater mussel conservation assessment. Biol. Conserv. 231, 77–87. https://doi.org/10.1016/j.biocon.2019.01.002 (2019).Article 

    Google Scholar 
    8.Lundquist, S. P., Worthington, T. A. & Aldridge, D. C. Freshwater mussels as a tool for reconstructing climate history. Ecol. Ind. 101, 11–21. https://doi.org/10.1016/j.ecolind.2018.12.048 (2019).Article 

    Google Scholar 
    9.Sousa, R. et al. The role of anthropogenic habitats in freshwater mussel conservation. Glob. Change Biol. 27, 2298–2314. https://doi.org/10.1111/gcb.15549 (2021).ADS 
    Article 

    Google Scholar 
    10.Bogan, A. E. Freshwater bivalve extinctions (Mollusca: Unionoida): A search for causes. Integr. Comp. Biol. 33, 599–609. https://doi.org/10.1093/icb/33.6.599 (1993).Article 

    Google Scholar 
    11.Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330. https://doi.org/10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 (2004).Article 

    Google Scholar 
    12.Hughes, J. et al. Past and present patterns of connectivity among populations of four cryptic species of freshwater mussels Velesunio spp (Hyriidae) in central Australia. Mol. Ecol. 13, 3197–3212. https://doi.org/10.1111/j.1365-294X.2004.02305.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Martel, A. L. et al. Freshwater mussels (Bivalvia: Margaritiferidae, Unionidae) of the Atlantic Maritime Ecozone. In Assessment of Species Diversity in the Atlantic Maritime Ecozone (eds McAlpine, D. F. & Smith, I. M.) 551–598 (NRC Research Press, 2010).
    Google Scholar 
    14.Haag, W. R. North American Freshwater Mussels: Natural History, Ecology, and Conservation (Cambridge University Press, 2012).
    Google Scholar 
    15.Smith, C. H., Pfeiffer, J. M. & Johnson, N. A. Comparative phylogenomics reveal complex evolution of life history strategies in a clade of bivalves with parasitic larvae (Bivalvia: Unionoida: Ambleminae). Cladistics 36, 505–520. https://doi.org/10.1111/cla.12423 (2020).Article 
    PubMed 

    Google Scholar 
    16.Sepkoski, J. J. Jr. & Rex, M. A. Distribution of freshwater mussels: Coastal rivers as biogeographic islands. Syst. Biol. 23, 165–188. https://doi.org/10.1093/sysbio/23.2.165 (1974).Article 

    Google Scholar 
    17.Haag, W. R. A hierarchical classification of freshwater mussel diversity in North America. J. Biogeogr. 37, 12–26. https://doi.org/10.1111/j.1365-2699.2009.02191.x (2010).Article 

    Google Scholar 
    18.Graf, D. L., Jones, H., Geneva, A. J., Pfeiffer, J. M. III. & Klunzinger, M. W. Molecular phylogenetic analysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia: Unionida) and the paraphyly of Australasian taxa. Mol. Phylogenet. Evol. 85, 1–9. https://doi.org/10.1016/j.ympev.2015.01.012 (2015).Article 
    PubMed 

    Google Scholar 
    19.Bolotov, I. N. et al. Ancient river inference explains exceptional Oriental freshwater mussel radiations. Sci. Rep. 7, 2135. https://doi.org/10.1038/s41598-017-02312-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Bolotov, I. N. et al. Integrative taxonomy, biogeography and conservation of freshwater mussels (Unionidae) in Russia. Sci. Rep. 10, 3072. https://doi.org/10.1038/s41598-020-59867-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Lopes-Lima, M. et al. Diversity, biogeography, evolutionary relationships, and conservation of Eastern Mediterranean freshwater mussels (Bivalvia: Unionidae). Mol. Phylogenet. Evol. 163, 107261. https://doi.org/10.1016/j.ympev.2021.107261 (2021).Article 
    PubMed 

    Google Scholar 
    22.Bolotov, I. N. et al. Eight new freshwater mussels (Unionidae) from tropical Asia. Sci. Rep. 9, 12053. https://doi.org/10.1038/s41598-019-48528-z (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bolotov, I. N. et al. New freshwater mussel taxa discoveries clarify biogeographic division of Southeast Asia. Sci. Rep. 10, 6616. https://doi.org/10.1038/s41598-020-63612-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Jeratthitikul, E., Paphatmethin, S., Zieritz, A., Lopes-Lima, M. & Bun, P. Hyriopsis panhai, a new species of freshwater mussel from Thailand (Bivalvia: Unionidae). Raffles Bull. Zool. 69, 124–136. https://doi.org/10.26107/RBZ-2021-0011 (2021).Article 

    Google Scholar 
    25.Jeratthitikul, E., Sucharit, C. & Prasankok, P. Molecular phylogeny of the Indochinese freshwater mussel genus Scabies Haas, 1911 (Bivalvia: Unionidae). Trop. Nat. Hist. 19, 21–36 (2019).
    Google Scholar 
    26.Jeratthitikul, E., Sutcharit, C., Ngor, P. B. & Prasankok, P. Molecular phylogeny reveals a new genus of freshwater mussels from the Mekong River Basin (Bivalvia: Unionidae). Eur. J. Taxon. 775, 119–142. https://doi.org/10.5852/ejt.2021.775.1553 (2021).Article 

    Google Scholar 
    27.Pfeiffer, J. M., Graf, D. L., Cummings, K. S. & Page, L. M. Taxonomic revision of a radiation of South-East Asian freshwater mussels (Unionidae: Gonideinae: Contradentini+ Rectidentini). Invertebr. Syst. 35, 394–470. https://doi.org/10.1071/IS20044 (2021).Article 

    Google Scholar 
    28.Zieritz, A. et al. A new genus and two new, rare freshwater mussel (Bivalvia: Unionidae) species endemic to Borneo are threatened by ongoing habitat destruction. Aquat. Conserv. https://doi.org/10.1002/aqc.3695 (2021).Article 

    Google Scholar 
    29.Smith, C. H., Johnson, N. A., Pfeiffer, J. M. & Gangloff, M. M. Molecular and morphological data reveal non-monophyly and speciation in imperiled freshwater mussels (Anodontoides and Strophitus). Mol. Phylogenet. Evol. 119, 50–62. https://doi.org/10.1016/j.ympev.2017.10.018 (2018).Article 
    PubMed 

    Google Scholar 
    30.Inoue, K. et al. A new species of freshwater mussel in the genus Popenaias Frierson, 1927, from Gulf coastal rivers of central Mexico (Bivalvia: Unionida: Unionidae) with comments on the genus. Zootaxa 4816, 457–490. https://doi.org/10.11646/zootaxa.4816.4.3 (2020).Article 

    Google Scholar 
    31.Ortiz-Sepulveda, C. M. et al. Diversification dynamics of freshwater bivalves (Unionidae: Parreysiinae: Coelaturini) indicate historic hydrographic connections throughout the East African Rift System. Mol. Phylogenet. Evol. 148, 106816. https://doi.org/10.1016/j.ympev.2020.106816 (2020).Article 
    PubMed 

    Google Scholar 
    32.Tomilova, A. A. et al. An endemic freshwater mussel species from the Orontes River basin in Turkey and Syria represents duck mussel’s intraspecific lineage: Implications for conservation. Limnologica 84, 125811. https://doi.org/10.1016/j.limno.2020.125811 (2020).CAS 
    Article 

    Google Scholar 
    33.Tomilova, A. A. et al. Evidence for plio-pleistocene duck mussel refugia in the Azov Sea river basins. Diversity 12, 118. https://doi.org/10.3390/d12030118 (2020).Article 

    Google Scholar 
    34.Pfeiffer, J. M., Sharpe, A. E., Johnson, N. A., Emery, K. F. & Page, L. M. Molecular phylogeny of the Nearctic and Mesoamerican freshwater mussel genus Megalonaias. Hydrobiologia 811, 139–151. https://doi.org/10.1007/s10750-017-3441-7 (2018).CAS 
    Article 

    Google Scholar 
    35.Bolotov, I. N. et al. A new genus and tribe of freshwater mussel (Unionidae) from Southeast Asia. Sci. Rep. 8, 10030. https://doi.org/10.1038/s41598-018-28385-y (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Konopleva, E. S. et al. New freshwater mussels from two Southeast Asian genera Bineurus and Thaiconcha (Pseudodontini, Gonideinae, Unionidae). Sci. Rep. 11, 8244. https://doi.org/10.1038/s41598-021-87633-w (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Lopes-Lima, M. et al. Freshwater mussels (Bivalvia: Unionidae) from the Rising Sun (Far East Asia): Phylogeny, systematics, and distribution. Mol. Phylogenet. Evol. 146, 106755. https://doi.org/10.1016/j.ympev.2020.106755 (2020).Article 
    PubMed 

    Google Scholar 
    38.Rangin, C. Active and recent tectonics of the Burma Platelet in Myanmar. Geol. Soc. Lond. Mem. 48, 53–64. https://doi.org/10.1144/M48.3 (2017).Article 

    Google Scholar 
    39.Licht, A. et al. Magmatic history of central Myanmar and implications for the evolution of the Burma Terrane. Gondwana Res. 87, 303–319. https://doi.org/10.1016/j.gr.2020.06.016 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 863–868. https://doi.org/10.1038/s41561-019-0443-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Morley, C. K., Chantraprasert, S., Kongchum, J. & Chenoll, K. The West Burma Terrane, a review of recent paleo-latitude data, its geological implications and constraints. Earth Sci. Rev. 220, 103722. https://doi.org/10.1016/j.earscirev.2021.103722 (2021).Article 

    Google Scholar 
    42.Martin, C. R. et al. Paleocene latitude of the Kohistan-Ladakh arc indicates multistage India-Eurasia collision. Proc. Natl. Acad. Sci. USA 117, 29487–29494. https://doi.org/10.1073/pnas.2009039117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Frisch, W., Meschede, M. & Blakey, R. C. Plate Tectonics: Continental Drift and Mountain Building (Springer Science & Business Media, 2010).
    Google Scholar 
    44.Ali, J. R. & Aitchison, J. C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth Sci. Rev. 88, 145–166. https://doi.org/10.1016/j.earscirev.2008.01.007 (2008).ADS 
    Article 

    Google Scholar 
    45.Chatterjee, S., Goswami, A. & Scotese, C. R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 23, 238–267. https://doi.org/10.1016/j.gr.2012.07.001 (2013).ADS 
    Article 

    Google Scholar 
    46.van Hinsbergen, D. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl. Acad. Sci. USA 109, 7659–7664. https://doi.org/10.1073/pnas.1117262109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.van Hinsbergen, D. J. et al. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 760, 69–94. https://doi.org/10.1016/j.tecto.2018.04.006 (2019).ADS 
    Article 

    Google Scholar 
    48.Morley, C. K., Naing, T. T., Searle, M. & Robinson, S. A. Structural and tectonic development of the Indo-Burma ranges. Earth Sci. Rev. 200, 102992. https://doi.org/10.1016/j.earscirev.2019.102992 (2020).Article 

    Google Scholar 
    49.Poinar, G. Jr. Burmese amber: Evidence of Gondwanan origin and Cretaceous dispersion. Hist. Biol. 31, 1304–1309. https://doi.org/10.1080/08912963.2018.1446531 (2019).Article 

    Google Scholar 
    50.Zhang, X. et al. Tracing Argoland in eastern Tethys and implications for India-Asia convergence. GSA Bull. 133, 1712–1722. https://doi.org/10.1130/B35772.1 (2021).CAS 
    Article 

    Google Scholar 
    51.Pfeiffer, J. M., Graf, D. L., Cummings, K. S. & Page, L. M. Molecular phylogeny and taxonomic revision of two enigmatic freshwater mussel genera (Bivalvia: Unionidae incertae sedis: Harmandia and Unionetta) reveals a diverse clade of Southeast Asian Parreysiinae. J. Molluscan Stud. 84, 404–416. https://doi.org/10.1093/mollus/eyy028 (2018).Article 

    Google Scholar 
    52.Whelan, N. V., Geneva, A. J. & Graf, D. L. Molecular phylogenetic analysis of tropical freshwater mussels (Mollusca: Bivalvia: Unionoida) resolves the position of Coelatura and supports a monophyletic Unionidae. Mol. Phylogenet. Evol. 61, 504–514. https://doi.org/10.1016/j.ympev.2011.07.016 (2011).Article 
    PubMed 

    Google Scholar 
    53.Konopleva, E. S. et al. A new genus and two new species of freshwater mussels (Unionidae) from Western Indochina. Sci. Rep. 9, 4106. https://doi.org/10.1038/s41598-019-39365-1 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Muanta, S., Jeratthitikul, E., Panha, S. & Prasankok, P. Phylogeography of the freshwater bivalve genus Ensidens (Unionidae) in Thailand. J. Molluscan Stud. 85, 224–231. https://doi.org/10.1093/mollus/eyz013 (2019).Article 

    Google Scholar 
    55.Zieritz, A. et al. Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia. Sci. Total Environ. 571, 1069–1078. https://doi.org/10.1016/j.scitotenv.2016.07.098 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Bolotov, I. N. et al. New taxa of freshwater mussels (Unionidae) from a species-rich but overlooked evolutionary hotspot in Southeast Asia. Sci. Rep. 7, 11573. https://doi.org/10.1038/s41598-017-11957-9 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Subba Rao, N. V. Handbook. Freshwater Molluscs of India (Zoological Survey of India, 1989).58.Ramakrishna & Dey, A. Handbook on Indian Freshwater Molluscs (Zoological Survey of India, 2007).59.Prashad, B. The marsupium and glochidium of some Unionidae and on the Indian species hitherto assigned to the genus Nodularia. Rec. Indian Mus. 15, 143–148 (1918).
    Google Scholar 
    60.Burdi, G. H., Baloch, W. A., Begum, F., Soomro, A. N. & Khuhawar, M. Y. Ecological studies on freshwater bivalve mussels (Pelecypoda) of Indus River and its canals at Kotri Barrage Sindh, Pakistan. Sindh Univ. Res. J. 41, 31–36 (2009).
    Google Scholar 
    61.Nesemann, H. et al. Aquatic Invertebrates of the Ganga River System: Volume 1—Mollusca, Annelida, Crustacea (in part) (Hasko Nesemann and Chandi Press, 2007).62.Budha, P. B. A Field Guide to Freshwater Molluscs of Kailali, Far Western Nepal (Central Department of Zoology, Tribhuvan University, 2016).
    Google Scholar 
    63.Gittenberger, E., Leda, P., Gyeltshen, C. & Sherub, S. Distributional patterns of molluscan taxa in Bhutan (Mollusca). Biodiversität Naturausstattung Himalaya 4, 143–151 (2018).
    Google Scholar 
    64.Nanda, A. C., Sehgal, R. K. & Chauhan, P. R. Siwalik-age faunas from the Himalayan foreland Basin of South Asia. J. Asian Earth Sci. 162, 54–68. https://doi.org/10.1016/j.jseaes.2017.10.035 (2018).ADS 
    Article 

    Google Scholar 
    65.Vredenburg, E. & Prashad, B. Unionidae from the Miocene of Burma. Rec. Geol. Surv. India 51, 371–374 (1921).
    Google Scholar 
    66.Prashad, B. On some Fossil Indian Unionidae. Rec. Geol. Surv. India 60, 308–312 (1928).
    Google Scholar 
    67.Modell, H. Paläontologische und geologische Untersuchungen im Tertiär von Pakistan. 4. Die tertiären Najaden des Punjab und Vorderindiens. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, neue Folge 135, 1–49 (1969).68.Takayasu, K., Gurung, D. D. & Matsuoka, K. Some new species of freshwater bivalves from the Mio-Pliocene Churia Group, west-central Nepal. Trans. Proc. Paleontol. Soc. Jpn. New Ser. 179, 157–168. https://doi.org/10.14825/prpsj1951.1995.179_157 (1995).Article 

    Google Scholar 
    69.Gurung, D. Freshwater molluscs from the Late Neogene Siwalik Group, Surai Khola, western Nepal. J. Nepal Geol. Soc. 17, 7–28. https://doi.org/10.3126/jngs.v17i0.32095 (1998).Article 

    Google Scholar 
    70.Simpson, C. T. Synopsis of the naiades, or pearly fresh-water mussels. Proc. U.S. Natl. Mus. 22, 501–1044 (1900).
    Google Scholar 
    71.Madhyastha, N. A. & Mumbrekar, K. D. Two endemic genera of bivalves in the Tunga River of the Western Ghats, Karnataka, India. Tentacle 14, 23–24 (2006).
    Google Scholar 
    72.Prashad, B. Notes on lamellibranchs in the Indian Museum. Rec. Indian Mus. 19, 165–173 (1920).
    Google Scholar 
    73.Haas, F. Eine neude indische Najade, Trapezoideus prashadi. Senckenbergiana 4, 101–102 (1922).
    Google Scholar 
    74.Sowerby, G. B. Genus Unio. Conchologica Iconica 16, pls. 1, 61–96 (1868).75.Haas, F. Die Unioniden. H.C. Küster, Systematisches Conchylien-Cabinet von Martini und Chemnitz 9, 257–288 (1919).76.Hadl, G. Results of the Austrian-Ceylonese Hydrobiological Mission 1970 of the 1st Zoological Institute of the University of Vienna (Austria) and the Department of Zoology of the Vidyalankara University of Ceylon, Kelaniya. Part XVIII: Freshwater Mussels Bivalvia. Bull. Fish. Res. Stn. Sri Lanka (Ceylon) 25, 183–188 (1974).
    Google Scholar 
    77.Gittenberger et al. A Field Guide to the Common Molluscs of Bhutan (National Biodiversity Centre (NBC), Ministry of Agriculture and Forests, 2017).78.Annandale, N. & Prashad, B. The Mollusca of the inland waters of Baluchistan and of Seistan. Rec. Indian Mus. 18, 17–62 (1919).
    Google Scholar 
    79.Simpson, C. T. A Descriptive Catalogue of the Naiades, or Pearly Fresh-Water Mussels. Parts I-III (Bryant Walker, 1914).
    Google Scholar 
    80.Mörch, O. A. L. On the land and fresh-water Mollusca of Greenland. Am. J. Conchol. 4, 25–40 (1868).
    Google Scholar 
    81.Schröter, J. S. Die Geschichte der Flussconchylien: Mit vorzüglicher Rücksicht auf Diejenigen Welche in den Thüringischen Wassern Leben (Halle, bey Johann Jacob Gebauer, 1779).82.Spengler, L. Om Slaegterne Chaena Mya og Unio. Skrivter Naturhistorie-Selskabet 3, 16–69 (1993).
    Google Scholar 
    83.Haas, F. Bemerkungen über Spenglers Unionen. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhav 65, 51–66 (1913).
    Google Scholar 
    84.Haas, F. Superfamilia Unionacea. Das Tierreich 88, 1–663 (1969).
    Google Scholar 
    85.Prashad, B. On some undescribed freshwater Molluscs from various parts of India and Burma. Rec. Geol. Surv. India 62, 428–433 (1930).
    Google Scholar 
    86.Conrad, T. A. A synopsis of the family of Naïades of North America, with notes, and a table of some of the genera and sub-genera of the family, according to their geographical distribution, and descriptions of genera and sub-genera. Proc. Acad. Natl. Sci. Phila. 6, 243–269 (1853).
    Google Scholar 
    87.Sowerby, G. B. Genus Unio. Conchol. Iconica 16, 31–54 (1866).
    Google Scholar 
    88.Frierson, L. S. A Classified and Annotated Check List of the North American Naiades (Baylor University Press, 1927).
    Google Scholar 
    89.Prashad, B. Studies on the anatomy of Indian Mollusca. The soft parts of some Indian Unionidae. Rec. Indian Mus. 16, 289–296 (1919).
    Google Scholar 
    90.Annandale, N. Further note on the burrows of Solenaia soleniformis. Rec. Indian Mus. 16, 205–206 (1919).
    Google Scholar 
    91.Godwin-Austen, H. H. Description of a new species of Margaritanopsis (Unionidae) from the Southern Shan States, with notes on Solenaia soleniformis. Rec. Indian Mus. 16, 203–205 (1919).
    Google Scholar 
    92.Pfeiffer, J. M., Breinholt, J. W. & Page, L. M. Unioverse: A phylogenetic resource for reconstructing the evolution of freshwater mussels (Bivalvia, Unionoida). Mol. Phylogenet. Evol. 137, 114–126. https://doi.org/10.1016/j.ympev.2019.02.016 (2019).Article 
    PubMed 

    Google Scholar 
    93.Huang, X.-C. et al. Towards a global phylogeny of freshwater mussels (Bivalivia: Unionida): Species delimitation of Chinese taxa, mitochondrial phylogenomics, and diversification patterns. Mol. Phylogenet. Evol. 130, 45–59. https://doi.org/10.1016/j.ympev.2018.09.019 (2019).Article 
    PubMed 

    Google Scholar 
    94.Bolotov, I. N., Kondakov, A. V., Konopleva, E. S. & Vikhrev, I. V. A new genus of ultra-elongate freshwater mussels from Vietnam and eastern China (Bivalvia: Unionidae). Ecol. Montenegrina 39, 1–6. https://doi.org/10.37828/em.2021.39.1 (2021).Article 

    Google Scholar 
    95.Pfeiffer, J. M. & Graf, D. L. Evolution of bilaterally asymmetrical larvae in freshwater mussels (Bivalvia: Unionoida: Unionidae). Zool. J. Linn. Soc. 175, 307–318. https://doi.org/10.1111/zoj.12282 (2015).Article 

    Google Scholar 
    96.Rafinesque, C. S. Continuation of a Monograph of the Bivalve Shells of the River Ohio and Other Rivers of the Western States. By Prof. C.S. Rafinesque. (Published at Brussels, September, 1820). Containing 46 species, from No. 76 to no. 121. Including an Appendix on Some Bivalve Shells of the Rivers of Hindostan, with a Supplement on the Fossil Bivalves of the Western States, and the Tulosites, A New Genus of Fossils (1831).97.Blanford, W. T. Contributions to Indian Malacology no VII. List of species of Unio and Anodonta described as occurring in India, Ceylon and Burma. J. Asiat. Soc. Bengal 35, 134–155 (1866).
    Google Scholar 
    98.Frierson, L. S. Remarks on classification of the Unionidae. Nautilus 28, 6–8 (1914).
    Google Scholar 
    99.Johnson, R. I. The types of Unionidae (Mollusca: Bivalvia) described by C. S. Rafinesque in the Museum national d’Histoire naturelle, Paris. J. Conchyliol. 110, 35–37 (1973).
    Google Scholar 
    100.Vanatta, E. G. Rafinesque’s types of Unio. Proc. Acad. Natl. Sci. Phila. 67, 549–559 (1915).
    Google Scholar 
    101.Baker, H. B. Some of Rafinesque’s unionid names. The Nautilus 77, 140–142 (1964).
    Google Scholar 
    102.Williams, J. D., Bogan, A. E. & Garner, J. T. Freshwater mussels of Alabama and the Mobile Basin in Georgia, Mississippi and Tennessee (University of Alabama Press, 2008).
    Google Scholar 
    103.Bogan, A. E. A resolution of the nomenclatural confusion surrounding Plagiola Rafinesque, Epioblasma Rafinesque, and Dysnomia Agassiz (Mollusca: Bivalvia: Unionidae). Malacol. Rev. 30, 77–86 (1997).
    Google Scholar 
    104.Graf, D. L. & Cummings, K. S. Palaeoheterodont diversity (Mollusca: Trigonioida+ Unionoida): What we know and what we wish we knew about freshwater mussel evolution. Zool. J. Linn. Soc. 148, 343–394. https://doi.org/10.1111/j.1096-3642.2006.00259.x (2006).Article 

    Google Scholar 
    105.Modell, H. Das natlirliche System der Najaden. Arch. Molluskenkunde 74, 161–191 (1942).
    Google Scholar 
    106.Starobogatov, Y. I. Fauna of Molluscs and Zoogeographic Division of Continental Waterbodies of the Globe (Nauka, 1970).
    Google Scholar 
    107.Bolotov, I. N. et al. Discovery of Novaculina myanmarensis sp. nov. (Bivalvia: Pharidae: Pharellinae) closes the freshwater razor clams range disjunction in Southeast Asia. Sci. Rep. 8, 16325. https://doi.org/10.1038/s41598-018-34491-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Than, W. et al. Phylogeography and distribution of the freshwater razor clams Novaculina myanmarensis and N. gangetica in Myanmar, with notes on two doubtful nominal taxa described as Novaculina members (Bivalvia: Pharidae). Ecol. Montenegrina 40, 59–67. https://doi.org/10.37828/em.2021.40.4 (2021).Article 

    Google Scholar 
    109.Haas, F. Beiträge zu einer Monographie der asiatischen Unioniden. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 38, 129–203 (1924).
    Google Scholar 
    110.Preston, H. B. Mollusca (Freshwater Gastropoda & Pelecypoda). Fauna of British India, including Ceylon and Burma (Taylor and Francis, 1915).
    Google Scholar 
    111.Prashad, B. A revision of the Burmese Unionidae. Rec. Indian Mus. 24, 91–111 (1922).
    Google Scholar 
    112.Theobald, W. Catalogue of the Recent Shells in the Museum of the Asiatic Society (Bengal Military Orphan Press, 1860).
    Google Scholar 
    113.Zieritz, A. et al. Diversity, biogeography and conservation of freshwater mussels (Bivalvia: Unionida) in East and Southeast Asia. Hydrobiologia 810, 29–44. https://doi.org/10.1007/s10750-017-3104-8 (2018).Article 

    Google Scholar 
    114.Konopleva, E. S. et al. A taxonomic review of Trapezidens (Bivalvia: Unionidae: Lamellidentini), a freshwater mussel genus endemic to Myanmar, with a description of a new species. Ecol. Montenegrina 27, 45–57. https://doi.org/10.37828/em.2020.27.6 (2020).Article 

    Google Scholar 
    115.Brandt, R. A. M. The non-marine aquatic mollusca of Thailand. Arch. Mollusckenkunde 105, 1–423 (1974).
    Google Scholar 
    116.Neumayr, M. Süsswasser-Mollusken. Die wissenschaftlichen ergebnisse der reise des grafen Béla Széchenyi in Ostasien 1877–1880(2), 637–662 (1899).
    Google Scholar 
    117.Tripathy, B. & Mukhopadhayay, A. Freshwater molluscs of India: An insight of into their diversity, distribution and conservation. In Aquatic Ecosystem: Biodiversity, Ecology and Conservation (eds Rawat, M. et al.) 163–195 (Springer, 2015).
    Google Scholar 
    118.Prashad, B. VIII—Some Noteworthy Examples of Parallel Evolution in the Molluscan Faunas of South-eastern Asia and South America. Proc. R. Soc. Edinb. 51, 42–53. https://doi.org/10.1017/s0370164600022987 (1932).Article 

    Google Scholar 
    119.Smith, E. A. Description of Mulleria dalyi, n. sp., from India. Proc. Malacol. Soc. Lond. 3, 14–16 (1898).
    Google Scholar 
    120.Bogan, A. E. & Hoeh, W. R. On becoming cemented: Evolutionary relationships among the genera in the freshwater bivalve family Etheriidae (Bivalvia: Unionoida). Geol. Soc. Lond. Spec. Publ. 177, 159–168. https://doi.org/10.1144/GSL.SP.2000.177.01.09 (2000).ADS 
    Article 

    Google Scholar 
    121.Bogan, A. E. & Roe, K. J. Freshwater bivalve (Unioniformes) diversity, systematics, and evolution: Status and future directions. J. N. Am. Benthol. Soc. 27, 349–369. https://doi.org/10.1899/07-069.1 (2008).Article 

    Google Scholar 
    122.Hoeh, W. R., Bogan, A. E., Heard, W. H. & Chapman, E. G. Palaeoheterodont phylogeny, character evolution, diversity and phylogenetic classification: A reflection on methods of analysis. Malacologia 51, 307–317. https://doi.org/10.4002/040.051.0206 (2009).Article 

    Google Scholar 
    123.Woodward, M. F. On the anatomy of Mulleria dalyi, Smth. J. Molluscan Stud. 3, 87–91. https://doi.org/10.1093/oxfordjournals.mollus.a065152 (1898).Article 

    Google Scholar 
    124.Aravind, N. A. et al. The status and distribution of freshwater molluscs of the Western Ghats. In The Status and Distribution of Freshwater Biodiversity in the Western Ghats, India (eds Molur, S. et al.) 21–42 (IUCN and Zoo Outreach Organisation, 2011).
    Google Scholar 
    125.Madhyastha, N. A. Pseudomulleria dalyi (Acostea dalyi): A rare cemented bivalve of Western Ghats. Zoos’ Print J. 16, 573 (2001).
    Google Scholar 
    126.Loria, S. F. & Prendini, L. Out of India, thrice: Diversification of Asian forest scorpions reveals three colonizations of Southeast Asia. Sci. Rep. 10, 22301. https://doi.org/10.1038/s41598-020-78183-8 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    127.Köhler, F. & Glaubrecht, M. Out of Asia and into India: On the molecular phylogeny and biogeography of the endemic freshwater gastropod Paracrostoma Cossmann, 1900 (Caenogastropoda: Pachychilidae). Biol. J. Lin. Soc. 91, 627–651. https://doi.org/10.1111/j.1095-8312.2007.00866.x (2007).Article 

    Google Scholar 
    128.Dahanukar, N., Raut, R. & Bhat, A. Distribution, endemism and threat status of freshwater fishes in the Western Ghats of India. J. Biogeogr. 31, 123–136. https://doi.org/10.1046/j.0305-0270.2003.01016.x (2004).Article 

    Google Scholar 
    129.Britz, R. et al. Aenigmachannidae, a new family of snakehead fishes (Teleostei: Channoidei) from subterranean waters of South India. Sci. Rep. 10, 16081. https://doi.org/10.1038/s41598-020-73129-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    130.Hedges, S. B. The coelacanth of frogs. Nature 425, 669–670. https://doi.org/10.1038/425669a (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    131.Dutta, S. K., Vasudevan, K., Chaitra, M. S., Shanker, K. & Aggarwal, R. K. Jurassic frogs and the evolution of amphibian endemism in the Western Ghats. Curr. Sci. 86, 211–216 (2004).CAS 

    Google Scholar 
    132.Roelants, K., Jiang, J. & Bossuyt, F. Endemic ranid (Amphibia: Anura) genera in southern mountain ranges of the Indian subcontinent represent ancient frog lineages: Evidence from molecular data. Mol. Phylogenet. Evol. 31, 730–740. https://doi.org/10.1016/j.ympev.2003.09.011 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    133.Van Bocxlaer, I. et al. Mountain-associated clade endemism in an ancient frog family (Nyctibatrachidae) on the Indian subcontinent. Mol. Phylogenet. Evol. 62, 839–847. https://doi.org/10.1016/j.ympev.2011.11.027 (2012).Article 
    PubMed 

    Google Scholar 
    134.Krishnan, R. M. & Ramesh, B. R. Endemism and sexual systems in the evergreen tree flora of the Western Ghats, India. Divers. Distrib. 11, 559–565. https://doi.org/10.1111/j.1366-9516.2005.00190.x (2005).Article 

    Google Scholar 
    135.Mörch, O. A. L. Catalogue des Mollusques terrestres et fluviatiles des anciennes colonies du golfe du Bengale. J. Conchyliol. 20, 303–345 (1872).
    Google Scholar 
    136.Graf, D. L. & Cummings, K. S. Freshwater mussel (Mollusca: Bivalvia: Unionoida) richness and endemism in the ecoregions of Africa and Madagascar based on comprehensive museum sampling. Hydrobiologia 678, 17–36. https://doi.org/10.1007/s10750-011-0810-5 (2011).Article 

    Google Scholar 
    137.Li, Z. et al. Kinematic evolution of the West Burma block during and after India-Asia collision revealed by paleomagnetism. J. Geodyn. 134, 101690. https://doi.org/10.1016/j.jog.2019.101690 (2020).Article 

    Google Scholar 
    138.Van Damme, D., Bogan, A. E. & Dierick, M. A revision of the Mesozoic naiads (Unionoida) of Africa and the biogeographic implications. Earth Sci. Rev. 147, 141–200. https://doi.org/10.1016/j.earscirev.2015.04.011 (2015).ADS 
    Article 

    Google Scholar 
    139.Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021 (2012).ADS 
    Article 

    Google Scholar 
    140.Bosworth, W. Mesozoic and early Tertiary rift tectonics in East Africa. Tectonophysics 209, 115–137. https://doi.org/10.1016/0040-1951(92)90014-W (1992).ADS 
    Article 

    Google Scholar 
    141.Guiraud, R., Bosworth, W., Thierry, J. & Delplanque, A. Phanerozoic geological evolution of Northern and Central Africa: An overview. J. Afr. Earth Sci. 43, 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017 (2005).ADS 
    Article 

    Google Scholar 
    142.Wilson, M. & Guiraud, R. Magmatism and rifting in Western and Central Africa, from Late Jurassic to Recent times. Tectonophysics 213, 203–225 (1992).ADS 

    Google Scholar 
    143.Chatterjee, S., Scotese, C. R. & Bajpai, S. Indian Plate and Its Epic Voyage from Gondwana to Asia: Its Tectonic, Paleoclimatic, and Paleobiogeographic Evolution (Special Paper 529, The Geological Society of America, 2017).144.Briggs, J. C. The biogeographic and tectonic history of India. J. Biogeogr. 30, 381–388. https://doi.org/10.1046/j.1365-2699.2003.00809.x (2003).Article 

    Google Scholar 
    145.Hartman, J. H., Erickson, D. N. & Bakken, A. Stephen Hislop and his 1860 Cretaceous continental molluscan new species descriptions in Latin from the Deccan Plateau, India. Palaeontology 51, 1225–1252. https://doi.org/10.1111/j.1475-4983.2008.00807.x (2008).Article 

    Google Scholar 
    146.Vandamme, D., Courtillot, V., Besse, J. & Montigny, R. Paleomagnetism and age determinations of the Deccan Traps (India): Results of a Nagpur-Bombay Traverse and review of earlier work. Rev. Geophys. 29, 159–190. https://doi.org/10.1029/91RG00218 (1991).ADS 
    Article 

    Google Scholar 
    147.Bolotov, I. N. et al. Multi-locus fossil-calibrated phylogeny, biogeography and a subgeneric revision of the Margaritiferidae (Mollusca: Bivalvia: Unionoida). Mol. Phylogenet. Evol. 103, 104–121. https://doi.org/10.1016/j.ympev.2016.07.020 (2016).Article 
    PubMed 

    Google Scholar 
    148.Lyubas, A. A. et al. A taxonomic revision of fossil freshwater pearl mussels (Bivalvia: Unionoida: Margaritiferidae) from Pliocene and Pleistocene deposits of Southeastern Europe. Ecol. Montenegrina 21, 1–16. https://doi.org/10.37828/em.2019.21.1 (2019).Article 

    Google Scholar 
    149.Campbell, D. C. et al. Phylogeny of North American amblemines (Bivalvia, Unionoida): Prodigious polyphyly proves pervasive across genera. Invertebr. Biol. 124, 131–164 (2005).
    Google Scholar 
    150.Lopes-Lima, M. et al. Revisiting the North American freshwater mussel genus Quadrula sensu lato (Bivalvia: Unionidae): Phylogeny, taxonomy and species delineation. Zool. Scr. 48, 313–336. https://doi.org/10.1111/zsc.12344 (2019).Article 

    Google Scholar 
    151.Aksenova, O. V. et al. Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World. Sci. Rep. 8, 11199. https://doi.org/10.1038/s41598-018-29451-1 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    152.Kosuch, J., Vences, M., Dubois, A., Ohler, A. & Böhme, W. Out of Asia: Mitochondrial DNA evidence for an oriental origin of tiger frogs, genus Hoplobatrachus. Mol. Phylogenet. Evol. 21, 398–407. https://doi.org/10.1006/mpev.2001.1034 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    153.Sil, M., Aravind, N. A. & Karanth, K. P. Into-India or out-of-India? Historical biogeography of the freshwater gastropod genus Pila (Caenogastropoda: Ampullariidae). Biol. J. Lin. Soc. 129, 752–764. https://doi.org/10.1093/biolinnean/blz171 (2020).Article 

    Google Scholar 
    154.Sil, M., Aravind, N. A. & Karanth, K. P. Role of geography and climatic oscillations in governing into-India dispersal of freshwater snails of the family: Viviparidae. Mol. Phylogenet. Evol. 138, 174–181. https://doi.org/10.1016/j.ympev.2019.05.027 (2019).Article 
    PubMed 

    Google Scholar 
    155.Garg, S. & Biju, S. D. New microhylid frog genus from Peninsular India with Southeast Asian affinity suggests multiple Cenozoic biotic exchanges between India and Eurasia. Sci. Rep. 9, 1906. https://doi.org/10.1038/s41598-018-38133-x (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    156.Gorin, V. A. et al. A little frog leaps a long way: Compounded colonizations of the Indian Subcontinent discovered in the tiny Oriental frog genus Microhyla (Amphibia: Microhylidae). PeerJ 8, e9411. https://doi.org/10.7717/peerj.9411 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Karanth, K. P. An island called India: Phylogenetic patterns across multiple taxonomic groups reveal endemic radiations. Curr. Sci. 108, 1847–1851 (2015).
    Google Scholar 
    158.Karanth, K. P. Out-of-India Gondwanan origin of some tropical Asian biota. Curr. Sci. 90, 789–792 (2006).
    Google Scholar 
    159.Datta-Roy, A. & Karanth, K. P. The Out-of-India hypothesis: What do molecules suggest?. J. Biosci. 34, 687–697. https://doi.org/10.1007/s12038-009-0057-8 (2009).Article 
    PubMed 

    Google Scholar 
    160.Gower, D. J. et al. A molecular phylogeny of ichthyophiid caecilians (Amphibia: Gymnophiona: Ichthyophiidae): Out of India or out of South East Asia?. Proc. R. Soc. Lond. B 269, 1563–1569. https://doi.org/10.1098/rspb.2002.2050 (2002).CAS 
    Article 

    Google Scholar 
    161.Kamei, R. G. et al. Discovery of a new family of amphibians from northeast India with ancient links to Africa. Proc. R. Soc. B 279, 2396–2401. https://doi.org/10.1098/rspb.2012.0150 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    162.Yamahira, K. et al. Mesozoic origin and ‘out-of-India’radiation of ricefishes (Adrianichthyidae). Biol. Let. 17, 20210212. https://doi.org/10.1098/rsbl.2021.0212 (2021).Article 

    Google Scholar 
    163.Klaus, S., Schubart, C. D., Streit, B. & Pfenninger, M. When Indian crabs were not yet Asian-biogeographic evidence for Eocene proximity of India and Southeast Asia. BMC Evol. Biol. 10, 287. https://doi.org/10.1186/1471-2148-10-287 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    164.Joshi, J., Karanth, P. K. & Edgecombe, G. D. The out-of-India hypothesis: Evidence from an ancient centipede genus, Rhysida (Chilopoda: Scolopendromorpha) from the Oriental Region, and systematics of Indian species. Zool. J. Linn. Soc. 189, 828–861. https://doi.org/10.1093/zoolinnean/zlz138 (2020).Article 

    Google Scholar 
    165.Foley, S., Krehenwinkel, H., Cheng, D. Q. & Piel, W. H. Phylogenomic analyses reveal a Gondwanan origin and repeated out of India colonizations into Asia by tarantulas (Araneae: Theraphosidae). PeerJ 9, e11162. https://doi.org/10.7717/peerj.11162 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    166.Dayanandan, S., Ashton, P. S., Williams, S. M. & Primack, R. B. Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene. Am. J. Bot. 86, 1182–1190 (1999).CAS 
    PubMed 

    Google Scholar 
    167.Conti, E., Eriksson, T., Schönenberger, J., Sytsma, K. J. & Baum, D. A. Early Tertiary out-of-India dispersal of Crypteroniaceae: Evidence from phylogeny and molecular dating. Evolution 56, 1931–1942. https://doi.org/10.1111/j.0014-3820.2002.tb00119.x (2002).Article 
    PubMed 

    Google Scholar 
    168.Chen, J. et al. Eurypterogerron kachinensis gen et sp nov, a remarkable minlagerrontid (Hemiptera, Cicadomorpha) in mid-Cretaceous Burmese amber. Cretaceous Res. 110, 104418. https://doi.org/10.1016/j.cretres.2020.104418 (2020).Article 

    Google Scholar 
    169.Rasnitsyn, A. P. & Öhm-Kühnle, C. Three new female Aptenoperissus from mid-Cretaceous Burmese amber (Hymenoptera, Stephanoidea, Aptenoperissidae): Unexpected diversity of paradoxical wasps suggests insular features of source biome. Cretac. Res. 91, 168–175. https://doi.org/10.1016/j.cretres.2018.06.004 (2018).Article 

    Google Scholar 
    170.Zhang, Q., Rasnitsyn, A. P., Wang, B. & Zhang, H. Hymenoptera (wasps, bees and ants) in mid-Cretaceous Burmese amber: A review of the fauna. Proc. Geol. Assoc. 129, 736–747. https://doi.org/10.1016/j.pgeola.2018.06.004 (2018).Article 

    Google Scholar 
    171.Bolotov, I. N. et al. A new fossil piddock (Bivalvia: Pholadidae) may indicate estuarine to freshwater environments near Cretaceous amber-producing forests in Myanmar. Sci. Rep. 11, 6646. https://doi.org/10.1038/s41598-021-86241-y (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    172.Balashov, I. A., Perkovsky, E. E. & Vasilenko, D. V. A mid-Cretaceous land snail Burminella artiukhini gen. et. sp. nov. from Burmese amber: A “missing link” between Pupinidae and other Cyclophoroidea? (Caenogastropoda). Cretaceous Res. 118, 104941. https://doi.org/10.1016/j.cretres.2021.104941 (2021).Article 

    Google Scholar 
    173.Balashov, I. An inventory of molluscs recorded from mid-Cretaceous Burmese amber, with the description of a land snail, Euthema annae sp. nov. (Caenogastropoda, Cyclophoroidea, Diplommatinidae). Cretaceous Res. 118, 104676. https://doi.org/10.1016/j.cretres.2020.104676 (2021).Article 

    Google Scholar 
    174.Yu, T., Neubauer, T. A. & Jochum, A. First freshwater gastropod preserved in amber suggests long-distance dispersal during the Cretaceous Period. Geol. Mag. 58, 1327–1334. https://doi.org/10.1017/S0016756821000285 (2021).ADS 
    Article 

    Google Scholar 
    175.Bingle-Davis, M. J. Systematics, diversity, and origins of Upper Cretaceous continental molluscan fauna in the infra- and intertrappean strata of the Deccan Plateau, central India (PhD Dissertation) (University of North Dakota, 2012).176.Huang, H. et al. At a crossroads: The late Eocene flora of central Myanmar owes its composition to plate collision and tropical climate. Rev. Palaeobot. Palynol. 291, 104441. https://doi.org/10.1016/j.revpalbo.2021.104441 (2021).Article 

    Google Scholar 
    177.Westerweel, J. et al. Burma Terrane collision and northward indentation in the Eastern Himalayas recorded in the Eocene-Miocene Chindwin Basin (Myanmar). Tectonics 39, e2020TC006413. https://doi.org/10.1029/2020TC006413 (2020).ADS 
    Article 

    Google Scholar 
    178.Soe, T. T. & Watkinson, I. M. The Sagaing Fault Myanmar. Geol. Soc. 48, 413–441. https://doi.org/10.1144/M48.19 (2017).Article 

    Google Scholar 
    179.de Sena Oliveira, I. et al. Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol. 26, 2594–2601. https://doi.org/10.1016/j.cub.2016.07.023 (2016).CAS 
    Article 

    Google Scholar 
    180.Gustafson, L. L. et al. Evaluation of a nonlethal technique for hemolymph collection in Elliptio complanata, a freshwater bivalve (Mollusca: Unionidae). Dis. Aquat. Org. 65, 159–165. https://doi.org/10.3354/dao065159 (2005).Article 

    Google Scholar 
    181.Jaksch, K., Eschner, A., Rintelen, T. V. & Haring, E. DNA analysis of molluscs from a museum wet collection: A comparison of different extraction methods. BMC. Res. Notes 9, 348. https://doi.org/10.1186/s13104-016-2147-7 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    182.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    183.Graf, D. L. Patterns of freshwater bivalve global diversity and the state of phylogenetic studies on the Unionoida, Sphaeriidae, and Cyrenidae. Am. Malacol. Bull. 31, 135–153. https://doi.org/10.4003/006.031.0106 (2013).Article 

    Google Scholar 
    184.Nguyen, L.-T., Schmidt, H. A., Haeseler, V. A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    185.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    186.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. https://doi.org/10.1038/nmeth.4285 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    187.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. https://doi.org/10.1093/molbev/msx281 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    188.Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235. https://doi.org/10.1093/nar/gkw256 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    189.Miller, M., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010).190.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    191.Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    192.Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 
    PubMed 

    Google Scholar 
    193.Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes 7, 965–968. https://doi.org/10.1111/j.1471-8286.2007.01821.x (2007).CAS 
    Article 

    Google Scholar 
    194.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, 1–28. https://doi.org/10.1371/journal.pcbi.1006650 (2019).CAS 
    Article 

    Google Scholar 
    195.Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    196.Zieritz, A. et al. Mitogenomic phylogeny and fossil-calibrated mutation rates for all F-and M-type mtDNA genes of the largest freshwater mussel family, the Unionidae (Bivalvia). Zool. J. Linn. Soc. 193, 1088–1107. https://doi.org/10.1093/zoolinnean/zlaa153 (2020).Article 

    Google Scholar 
    197.Froufe, E. et al. Who lives where? Molecular and morphometric analyses clarify which Unio species (Unionida, Mollusca) inhabit the southwestern Palearctic. Org. Divers. Evol. 16, 597–611. https://doi.org/10.1007/s13127-016-0262-x (2016).Article 

    Google Scholar 
    198.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    199.Rambaut, A. et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    200.Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970. https://doi.org/10.1093/sysbio/syu056 (2014).Article 
    PubMed 

    Google Scholar 
    201.Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248. https://doi.org/10.21425/F5FBG19694 (2013).Article 

    Google Scholar 
    202.Yu, Y., Blair, C. & He, X. J. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606. https://doi.org/10.1093/molbev/msz257 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    203.Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+ J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749. https://doi.org/10.1111/jbi.13173 (2018).Article 

    Google Scholar 
    204.Yu, Y., Harris, A. J. & He, X. S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. Mol. Phylogenet. Evol. 56, 848–850. https://doi.org/10.1016/j.ympev.2010.04.011 (2010).Article 
    PubMed 

    Google Scholar 
    205.Müller, R. D. et al. GPlates: Building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261. https://doi.org/10.1029/2018GC007584 (2018).ADS 
    Article 

    Google Scholar 
    206.Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907. https://doi.org/10.1029/2018TC005462 (2019).ADS 
    Article 

    Google Scholar 
    207.Cao, X. et al. A deforming plate tectonic model of the South China Block since the Jurassic. Gondwana Res. https://doi.org/10.1016/j.gr.2020.11.010 (2020).Article 

    Google Scholar 
    208.Young, A. et al. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosci. Front. 10, 989–1013. https://doi.org/10.1016/j.gsf.2018.05.011 (2019).ADS 
    Article 

    Google Scholar 
    209.Torsvik, T. H. et al. Pacific-Panthalassic reconstructions: Overview, errata and the way forward. Geochem. Geophys. Geosyst. 20, 3659–3689. https://doi.org/10.1029/2019GC008402 (2019).ADS 
    Article 

    Google Scholar 
    210.Nevill, G. List of the Mollusca brought back by Dr. J. Anderson from Yunnan and Upper Burma, with descriptions of new species. J. Asiatic Soc. Bengal 46, 14–41 (1877).
    Google Scholar 
    211.Bolotov, I. N. et al. Indonaia rectangularis (Tapparone-Canefri, 1889), comb. nov., a forgotten freshwater mussel species from Myanmar. ZooKeys 852, 23–30. https://doi.org/10.3897/zookeys.852.33898 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    212.Eydoux, F. Mollusques. Magasin Zool. 8, 181–192 (1838).
    Google Scholar 
    213.Lea, I. Observations on the Naïades, and descriptions of new species of that and other families. Trans. Am. Philos. Soc. 4, 63–121 (1831).
    Google Scholar 
    214.Nesemann, H. A., Sharma, S. U., Sharma, G. O. & Sinha, R. K. Illustrated checklist of large freshwater bivalves of the Ganga River system (Mollusca: Bivalvia: Solecurtidae, Unionidae, Amblemidae). Nachrichchtenblatt Ersten Vorarlberger Malakologischen Gesellschaft 13, 1–51 (2005).
    Google Scholar 
    215.Gmelin, J. F. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, locis. Curt 1(6), 3021–3909 (1791).
    Google Scholar 
    216.Lea, I. Description of twenty-five new species of exotic uniones. Proc. Acad. Natl. Sci. Phila. 8, 92–95 (1856).
    Google Scholar 
    217.Martens, E. V. Binnen-Conchylien aus Ober-Birma. Arch. Nat. 65, 30–48 (1899).
    Google Scholar 
    218.Preston, H. B. A catalogue of the Asiatic naiades in the collection of the Indian Museum, Calcutta, with descriptions of new species. Rec. Indian Mus. 7, 279–308 (1912).
    Google Scholar 
    219.Annandale, N. & Prashad, B. XXVIII. The aquatic and amphibious Mollusca of Manipur. Rec. Indian Mus. 22, 529–631 (1921).
    Google Scholar 
    220.Annandale, N. & Prashad, B. Some freshwater molluscs from the Bombay Presidency. Rec. Indian Mus. 16, 139–152 (1919).
    Google Scholar 
    221.Philippi, R. A. Unio. Tab. I. Abbildungen und Beschreibungen neuer oder wenig gekannter Conchylien 1, 19–20 (1843).222.Hanley, S. Appendix, containing descriptions of the shells delineated in the plates, yet not described in the text; with a systematic list of the engravings, etc. In An Illustrated and Descriptive Catalogue of Recent Bivalve Shells 335–389 (Williams and Norgate, 1856).
    Google Scholar 
    223.Theobald, W. Descriptions of some new land and freshwater shells from India and Burmah. J. Asiatic Soc. Bengal 45, 184–189 (1876).
    Google Scholar 
    224.Lea, I. Observations on the Naïades; and descriptions of new species of that and other families. Trans. Am. Philos. Soc. 5, 23–119 (1834).
    Google Scholar 
    225.Hutton, T. Notices of some land and fresh water shells occurring in Afghanistan. J. Asiatic Soc. Bengal 18, 649–661 (1849).
    Google Scholar 
    226.Annandale, N. Aquatic molluscs of the Inlé Lake and connected waters. Rec. Indian Mus. 14, 103–182 (1918).
    Google Scholar 
    227.Gould, A. A. D. Gould described new shells, received from Rev Mr Mason, of Burmah. Proc. Boston Soc. Nat. Hist. 2, 218–221 (1847).
    Google Scholar 
    228.Benson, W. H. Descriptions of Indian and Burmese species of the genus Unio, Retz. Ann. Mag. Nat. Hist. 10, 184–195 (1862).
    Google Scholar 
    229.Lea, I. Description of new freshwater and land shells. Trans. Am. Philos. Soc. 6, 1–154 (1838).
    Google Scholar 
    230.Lamarck, J.-B. Histoire naturelle des animaux sans vertèbres. Vol. 6 (Chez l’Auteur, 1819).231.Müller, O. F. Vermivm Terrestrium et Fluviatilium, Seu Animalium Infusoriorum, Helminthicorum et Testaceorum, non Marinorum, Succincta Historia. Havniae Lisiae 2, 1–214 (1774).
    Google Scholar 
    232.Lea, I. Descriptions of three new species of exotic uniones. Proc. Acad. Natl. Sci. Phila. 11, 331 (1860).
    Google Scholar 
    233.Lea, I. Continuation of paper on fresh water and land shells. Proc. Am. Philos. Soc. 2, 30–34 (1841).
    Google Scholar 
    234.Benson, W. H. Descriptive catalogue of a collection of land and fresh-water shells, chiefly contained in the museum of the Asiatic Society. J. Asiatic Soc. Bengal 5, 741–750 (1836).
    Google Scholar 
    235.Hislop, S. Description of fossil shells, from the above-described deposits. Q. J. Geol. Soc. Lond. 16, 166–181 (1860).
    Google Scholar 
    236.Malcolmson, J. G. XXXVIII: On the Fossils of the Eastern portion of the Great Basaltic District of India. Trans. Geol. Soc. Lond. 5, 537–575 (1840).
    Google Scholar 
    237.Newbold, C. Summary of the Geology of Southern India. Part V. Fresh-water Limestones and Cherts. J. R. Asiatic Soc. Great Br. Irel. 8, 219–227 (1846).
    Google Scholar 
    238.Prashad, B. On a new fossil unionid from the intertrappean beds of Peninsular India. Rec. Geol. Surv. India 51, 368–370 (1921).
    Google Scholar 
    239.Lopes-Lima, M. et al. Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): Defining modern subfamilies and tribes. Mol. Phylogenet. Evol. 106, 174–191. https://doi.org/10.1016/j.ympev.2016.08.021 (2017).Article 
    PubMed 

    Google Scholar 
    240.Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1–52. https://doi.org/10.1029/2001GC000252 (2003).Article 

    Google Scholar 
    241.Preece, R. C. et al. William Benson and the Golden Age of Malacology in British India. Trop. Nat. Hist. 22, 1–612 (2022).MathSciNet 

    Google Scholar  More

  • in

    The neglected role of relative humidity in the interannual variability of urban malaria in Indian cities

    Data descriptionIn Indian cities, cases of falciparum malaria rise after the monsoon rains and peak in October–November. To address the question of whether humidity influences the seasonality and inter-annual variability of urban malaria we focus on 2 cities, Ahmedabad and Surat, with over 3 million people in the semi-arid state of Gujarat, India. These cities exhibit a rising population where sustained, extensive, and consistent surveillance programs have been conducted for over two decades. Despite their close proximity, these cities also exhibit distinct environments. While Ahmedabad is semi-arid, Surat is coastal with a maritime influence on its climate and is prone to flooding from the Tapi river.The malaria data consists of monthly cases collected from 1997 to 2014 by the respective Municipal Corporations of the cities of Ahmedabad and Surat (Fig. 1A, B). The epidemiological data result from two kinds of surveillance: (a) the collection of blood slides from fever patients by house-to-house visits by a health worker and examination of these slides for positive malaria parasites at the Primary/Community Health Center (active surveillance); (b) examination of blood slides from fever patients reporting directly to the Primary/Community Health Center (passive surveillance). Both types of data are pooled into a temporal record for each city. We used climate data of monthly RH, rainfall, and temperature for the same 18 years recorded at a local weather station within each city, supplied by the Indian Meteorological Department in Pune (India) and verified in the GHCN network of climate data (https://www.ncdc.noaa.gov/ghcn-daily-description). Since station data sometimes exhibit biases and can fail to represent the climate of the whole area of interest, here the whole city, we used gridded climate products (https://www.chc.ucsb.edu/data/chirps for precipitation and https://modis.gsfc.nasa.gov/data/dataprod/mod11.php for temperature) and constructed an average of grid cells to verify if climate covariates from the station data coincide with the satellite-based products (Supplementary Fig. 14). Time series for total population size were obtained through estimates by the respective municipal corporation.Data analysesThe temporal lagged correlation between monthly malaria cases and monthly meteorological factors from 1997 to 2014 was explored first for the two cities, by defining an interannual association based on maximum lagged correlations between the mean of the cases in the peak months (Aug–Nov) and the climate covariates. For humidity, we defined a three months window preceding the case epidemic season. This period was determined to fall between April and July for Surat and from May to July for Ahmedabad (Supplementary Table 2). The windows defined for the other covariates are shown in Supplementary Fig. 2.In addition, the temporal and possibly transient association of variability at different periods between the times series for malaria and humidity was also examined using wavelet coherence analysis3,42. In contrast to the Fourier spectral approaches, wavelet analyses are well suited for the study of signals whose frequency composition changes in time. The wavelet spectrum specifically provides a time-frequency decomposition of the total variance that is local in time42. The wavelet coherence analysis indicates the co-occurrence of a particular frequency at a given time in the number of cases and in the climate covariate.The wavelet cross-spectrum is given by ({W}_{x,y}(f,tau )={W}_{x,y}(f,tau ){W}_{x,y}^{* }(f,tau )) where x and y represent the two-time series, f is the scale parameter and (tau), the time parameter, with * denoting the complex conjugate. As in the Fourier spectral approaches, the wavelet coherence is defined as the cross-spectrum normalized by the spectrum of each signal$${R}_{x,y}(f,tau )=frac{|langle {W}_{x,y}(f,tau )rangle |}{{|langle {W}_{x,x}(f,tau )rangle |}^{1/2}{|langle {W}_{y,y}(f,tau )rangle |}^{1/2}}$$
    (1)
    where (langle rangle) denotes a smoothing operator in both time and scale. Using this definition, ({R}_{x,y}(f,tau )) is bounded by (0 , < , {R}_{x,y}(f,tau ), < , 1). The smoothing is performed, as in Fourier spectral approaches, by a convolution with a constant length window function both in the time and frequency directions42. We have chosen to use a procedure based on resampling the observed data with a Markov process scheme that preserves only the short temporal correlations. Our aim is to test whether the wavelet-based quantities (the coherence) observed at a particular position on the time-scale plane are not due to a random process with the same Markov transitions (time order) as the original time series42. In our wavelet coherence spectrum, the white lines indicate the α = 5% significant level computed on the basis of 1000 bootstrapped series, and the shaded area, known as the cone of influence, indicates the influence of edge effects.Transmission modelWith a stochastic transmission model (Supplementary Fig. 5), we test the hypothesis that humidity is important in driving the temporal dynamics of malaria. The model subdivides the total population P into two classes of infectious and susceptible individuals respectively, to allow for heterogeneity in the degree of clinical symptoms and protection conferred by the previous infection. Specifically, the number of individuals in those classes is denoted by S1 for those susceptible to infection, E, for those exposed to infection, I1, for those infected, symptomatic and infectious, I2, for those that are infected but are asymptomatic and still infectious, and S2, for those recovering from initial infection with partial protection. In the equation for S1, the flow of newborns combined with the death rate of each class results in population numbers equal to those observed for the overall demographic growth of the city. The system of stochastic differential equations is given by the following equations:$$d{S}_{1}/{dt}=left(delta P+{dP}/{dt}right)+{mu }_{{S}_{2}{S}_{1}}{S}_{2}-{mu }_{{SE}}(t){S}_{1}-delta {S}_{1,}$$ (2) $${dE}/{dt}={mu }_{{SE}}(t){S}_{1}-{mu }_{E{I}_{1}}E-delta E,$$ (3) $$d{I}_{1}/{dt}={mu }_{E{I}_{1}}E+{mu }_{{I}_{1}{S}_{2}}{I}_{1}-delta {I}_{1},$$ (4) $$d{S}_{2}/{dt}={mu }_{{I}_{1}{S}_{2}}{I}_{1}+{mu }_{{I}_{1}{S}_{2}}{I}_{2}-{mu }_{{S}_{2}{S}_{1}}{S}_{2}-{mu }_{{SE}}(t){S}_{2}-delta {S}_{2},$$ (5) $$d{I}_{2}/{dt}={mu }_{{SE}}(t){S}_{2}+{mu }_{{I}_{2}{S}_{2}}{I}_{2}-delta {I}_{2},$$ (6) We rely on a model that represents vector dynamics implicitly by implementing a Gamma-distributed time delay with mean in the force of infection (the rate of transmission per susceptible individual)9,16,43. This distributed lag is meant to account for the developmental delay of P. falciparum parasites within surviving mosquitoes. For this purpose, we follow the phenomenological representation of transmission via a mosquito vector introduced in refs. 16,43,44, which includes a distributed delay in the transmission from infected to susceptible humans. That is, the force of infection generated by the number of infections at any given time is not experienced at that same time by susceptible individuals, as would be the case in a directly transmitted disease. Under vector transmission, susceptible individuals experience it with a delay, which we consider Gamma distributed, to avoid the unrealistic assumption of a perfectly fixed delay, and to use a positive distribution with a flexible shape and a well-defined mode.Specifically, the development of the parasite within the mosquito introduces a distributed delay in the “latent” force of infection λ (s) resulting in the realized rate of infection of susceptible individuals$${mu }_{{SE}}left(tright)={int }_{{{{{{rm{infty }}}}}}}^{t}gamma (t-s)lambda (s){ds},$$ (7) where the delay probability function follows a gamma distribution. In this expression, λ(s) corresponds to the “latent” force of infection$$lambda (t)=left(frac{{I}_{1}+{I}_{2}}{Pleft(tright)}right)beta (t)$$ (8) where parameter β denotes the transmission rate. The transmission rate is specified to include the effects of seasonality, (interannual) climate variability, and environmental noise with the following expression$$beta left(tright)={{exp }}left[{sum }_{k=1}^{6}{b}_{k}{S}_{k}+{b}_{{RH}}{S}_{4}Cright]left[frac{dGamma }{{dt}}right]$$ (9) where seasonality is represented nonparametrically as the sum of six terms with a basis of periodic b-splines (t) (k = 1…, 6), and the coefficients (({b}_{k})) are parameters to be fitted determining the temporal (seasonal) shape. The b-splines are shown in Supplementary Fig. 6. The first term in Eq. (9) (the exponential of the weighted sum of these six splines) provides the basic, seasonal shape of the transmission rate (Supplementary Fig. 12). We superimpose this seasonality variability in the transmission rate across years through explicit consideration of a specific covariate (temperature, rainfall or humidity, depending on the model). We explain first how the covariate C is defined and second, how its effect is introduced in Eq. (9). C represents respectively in the different models, the mean of monthly humidity, the mean of monthly temperature, and the accumulated monthly rainfall, for a defined temporal window. That is, the covariate is defined here to represent yearly effects in a given window of time that is critical for the way a specific climate factor affects transmission. This window was chosen as the one with the highest correlation to the total cases aggregated for the epidemic season. We examined windows of all possible sizes within the previous six months which precede the epidemic season, as climate factors influence the abundance of the vector and the fraction of vectors infected, and these effects on the vector are manifested in the human cases with a delay. The resulting windows chosen to calculate C are shown in Supplementary Fig. 4. The effect of the covariate on the transmission rate was then localized in time in Eq. (9), by multiplying C to spline S4, which corresponds to the time of the year preceding the epidemic season (and including the window during which C was obtained) (Supplementary Fig. 6). Parameter ({b}_{{{{{rm{RH}}}}}}) then quantifies the strength of the climate effect by modulating the seasonal component of the transmission rate corresponding to this time of the year. Finally, environmental noise is introduced in the transmission rate with a Gamma distribution Γ to represent additional fluctuations absent in the climate covariate (details are provided in ref. 46).In practice and for ease of implementation (including parameter inference), we transform the integral in Eq. (7) into a Markovian chain of differential equations going from the equation for ({lambda }_{1}) to that for ({lambda }_{j}) (Eqs. 10–11) following16,44:$${dlambda }_{1}/{dt}=(lambda -{k}_{1})k{tau }^{-1}$$ (10) $${dlambda }_{j}/{dt}=left({k}_{j-1}-{k}_{j}right)k{tau }^{-1},{for; j}=2$$ (11) Parameter estimationWe estimated parameters with an iterated filtering approach to maximize the likelihood for partially observed, nonlinear and stochastic dynamical models. Specifically, the estimation of parameters and initial conditions for all state variables was carried out with the iterated filtering algorithm known as MIF, for maximum likelihood iterated filtering, implemented in the R package “pomp” (partially observed Markov processes44,45,46. This “plug-and-play” method45,47 is simulation-based, meaning that parameter search relies on a large number of stochastic simulations from initial conditions to the end of the time series.For details on the method, see46 and for other applications to malaria and climate forcing, see refs. 9,16,43,48. This algorithm allows for consideration of both measurement and process noise, in addition to hidden variables, which are a typical limitation of surveillance records providing a single observed variable for the incidence. It consists of two loops, with the external loop essentially iterating an internal, “filtering” loop, and in so doing generating a new, improved estimate of the parameter values at each iteration. The filtering loop implements a selection process for a large number of “particles” over time. For each time step, a particle can be seen as a simulation characterized by its own set of parameter values. Particles can survive or die as the result of a resampling process, with probabilities determined by their likelihood given the data. From this selection process over the whole extent of the data, a new estimate of the parameters is generated, and from this estimate, a cloud of new particles is reinitialized using a given noise intensity adjusted by a cooling factor. The initial search in parameter space was performed with a grid of 10,000 random parameter combinations, and the output of this search was used as the initial conditions of a more local search46,49.The fitting algorithm provides an estimate of the likelihood itself. On the basis of the likelihood, we can then implement model comparisons (i.e., model selection) on the basis of the likelihood ratio test and DIC (Table 1). We further compared the ability of the different models to explain the temporal patterns of the data with different comparisons of the observed cases and the predicted ones via model simulation. Namely, we simulated 1000 runs from the respective stochastic MLE models from the estimated initial conditions. We obtained the median of monthly cases from these simulations as well as the uncertainty as to the 10–90% quantiles of the monthly cases. We considered visually whether this interval includes the observation and how close the median simulated cases are to the observed cases. We also considered whether the interannual cycles (in particular, their highs and lows) in the data and the simulations are in phase. We further compared the simulated predictions and observations by aggregating cases for the epidemic season. In a scatter plot of predictions against observations, we can assess how close the points fall to the diagonal, and whether the uncertainty of predictions contains the diagonal (where predictions equal observations). We more formally implemented this comparison with a criterion for evaluating stochastic predictions known as the CRPS, which is a commonly used measure of performance for probabilistic prediction of a scalar observation. It is a quadratic measure of the difference between the prediction cumulative distribution function (CDF) and the empirical CDF of the observation.Permutation testWe used a permutation procedure to test whether the association between humidity and malaria transmission might be confounded by season. In this procedure, we selected the humidity data for each of the 12-months and randomized these humidity data across years, rerunning the analysis with the randomized explanatory variables. Then, we correlated the predicted cases in a year with the humidity in the random window selected. We conducted 10,000 permutations, and sampling was done with replacement. For each permutation, we then calculated how well the humidity correlated with the time series of malaria. If the correlation between humidity and malaria incidence in the actual time series was significantly stronger than the correlations we observed in the randomized samples, we concluded that confounding by season was an unlikely explanation for this correlation.Out-of-fit predictionTo examine the ability of the process-based model to predict malaria incidence, we compared the total number of malaria cases observed for each city to those predicted by model simulations in a window of time not used to estimate the parameters. That is, monthly cases from January 1997 to only December 2008 were used as a training set for parameter estimation. We chose this length of the data set, to place ourselves in the position of having about two characteristic multiannual cycles (of 4–5 years) of the reported cases inform inference, while still leaving a sufficient number of seasons to test prediction on at least one such full cycle. The resulting MLE model relies on estimated state variables at the end of the training period as the initial conditions for predicting the first “out-of-fit” year. The estimated initial states are then obtained for January of each predicted year (between 2009 and 2014) by extending sequential filtering and assimilating the new data for the past 12 months. That is, because the inference method provides filtered values of the hidden variables, we can use these estimates and their distribution at a given time as initial conditions from which to simulate the following year. Parameter estimates are also continuously updated with the addition of one more year of data. Predictions are obtained by simulating the model forward over the next 12 months. To consider the uncertainty arising from both dynamic and measurement noise, the distribution of predicted observed cases is obtained for each month from 1000 simulations with initial conditions resampled from their estimated values. Departures between the yearly projections and the out-of-fit data can be used to evaluate the impact of humidity variability on the predictability of the upcoming season.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Hunting alters viral transmission and evolution in a large carnivore

    1.Packer, C. et al. Sport hunting, predator control and conservation of large carnivores. PLoS ONE 4, e5941 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    2.Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).CAS 
    PubMed 

    Google Scholar 
    3.Treves, A. Hunting for large carnivore conservation. J. Appl. Ecol. 46, 1350–1356 (2009).
    Google Scholar 
    4.Milner-Gulland, E. J. et al. Reproductive collapse in saiga antelope harems. Nature 422, 135 (2003).CAS 
    PubMed 

    Google Scholar 
    5.Bischof, R. et al. Implementation uncertainty when using recreational hunting to manage carnivores. J. Appl. Ecol. 49, 824–832 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    6.Booth, V. R., Masonde, J., Simukonda, C. & Cumming, D. H. M. Managing hunting quotas of African lions (Panthera leo): a case study from Zambia. J. Nat. Conserv. 55, 125817 (2020).
    Google Scholar 
    7.Potapov, A., Merrill, E. & Lewis, M. A. Wildlife disease elimination and density dependence. Proc. R. Soc. B 279, 3139–3145 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    8.Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20, 511–519 (2005).
    Google Scholar 
    9.Beeton, N. & McCallum, H. Models predict that culling is not a feasible strategy to prevent extinction of Tasmanian devils from facial tumour disease. J. Appl. Ecol. 48, 1315–1323 (2011).
    Google Scholar 
    10.Choisy, M. & Rohani, P. Harvesting can increase severity of wildlife disease epidemics. Proc. R. Soc. B 273, 2025–2034 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    11.Allendorf, F. W. & Hard, J. J. Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc. Natl Acad. Sci. USA 106, 9987–9994 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).PubMed 

    Google Scholar 
    13.Woodroffe, R. et al. Culling and cattle controls influence tuberculosis risk for badgers. Proc. Natl Acad. Sci. USA 103, 14713–14717 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Carr, A. N. et al. Wildlife Management Practices Associated with Pathogen Exposure in Non-native Wild Pigs in Florida, U.S. (USDA National Wildlife Research Center, 2019).15.Woodroffe, R., Cleaveland, S., Courtenay, O., Laurenson, M. K. & Artois, M. in The Biology and Conservation of Wild Canids 123–142 (Oxford Univ. Press, 2004).16.Carter, S. P. et al. Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proc. R. Soc. B 274, 2769–2777 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    17.Silk, M. J. et al. Contact networks structured by sex underpin sex-specific epidemiology of infection. Ecol. Lett. 21, 309–318 (2018).PubMed 

    Google Scholar 
    18.Silk, M. J. et al. The application of statistical network models in disease research. Methods Ecol. Evol. 8, 1026–1041 (2017).
    Google Scholar 
    19.Morters, M. K. et al. Evidence-based control of canine rabies: a critical review of population density reduction. J. Anim. Ecol. 82, 6–14 (2013).PubMed 

    Google Scholar 
    20.Lachish, S., McCallum, H., Mann, D., Pukk, C. E. & Jones, M. E. Evaluation of selective culling of infected individuals to control Tasmanian Devil facial tumor disease. Conserv. Biol. 24, 841–851 (2010).PubMed 

    Google Scholar 
    21.Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).CAS 
    PubMed 

    Google Scholar 
    22.Didelot, X., Fraser, C., Gardy, J. & Colijn, C. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 34, msw075 (2017).
    Google Scholar 
    23.Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Logan, K. A. & Runge, J. P. et al. Effects of hunting on a puma population in Colorado. Wildl. Monogr. 209, 1–35 (2020).
    Google Scholar 
    25.Biek, R., Pybus, O. G., Lloyd-Smith, J. O. & Didelot, X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30, 306–313 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    26.Pybus, O. G., Tatem, A. J. & Lemey, P. Virus evolution and transmission in an ever more connected world. Proc. R. Soc. B 282, 20142878 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Woolhouse, M. E. J., Adair, K. & Brierley, L. RNA viruses: a case study of the biology of emerging infectious diseases. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.oh-0001-2012 (2021).28.Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Fountain-Jones, N. M. et al. Towards an eco-phylogenetic framework for infectious disease ecology. Biol. Rev. 93, 950–970 (2018).PubMed 

    Google Scholar 
    30.Webb, C. O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145–155 (2000).PubMed 

    Google Scholar 
    31.Biek, R. et al. Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J. Virol. 77, 9578–9589 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Pedersen, N. C., Yamamoto, J. K., Ishida, T. & Hansen, H. Feline immunodeficiency virus infection. Vet. Immunol. Immunopathol. 21, 111–129 (1989).CAS 
    PubMed 

    Google Scholar 
    33.Malmberg, J. L. et al. Altered lentiviral infection dynamics follow genetic rescue of the Florida panther. Proc. R. Soc. B 286, 20191689 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    34.Elbroch, L. M., Levy, M., Lubell, M., Quigley, H. & Caragiulo, A. Adaptive social strategies in a solitary carnivore. Sci. Adv. 3, e1701218 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    35.Sweanor, L. L., Logan, K. A. & Hornocker, M. G. Cougar dispersal patterns, metapopulation dynamics, and conservation. Conserv. Biol. 14, 798–808 (2000).
    Google Scholar 
    36.Fountain-Jones, N. M. et al. Linking social and spatial networks to viral community phylogenetics reveals subtype-specific transmission dynamics in African lions. J. Anim. Ecol. 86, 1469–1482 (2017).PubMed 

    Google Scholar 
    37.Gilbertson, M. L. J. et al. Transmission of one predicts another: apathogenic proxies for transmission dynamics of a fatal virus. Preprint at bioRxiv https://doi.org/10.1101/2021.01.09.426055 (2021).38.Fountain-Jones, N. M. et al. Host relatedness and landscape connectivity shape pathogen spread in a large secretive carnivore. Commun. Biol. 4, 12 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    39.Hornocker, M. G. & Negri, S. Cougar: Ecology and Conservation (Univ. Chicago Press, 2010).40.Moss, W. E., Alldredge, M. W. & Pauli, J. N. Quantifying risk and resource use for a large carnivore in an expanding urban-wildland interface. J. Appl. Ecol. 53, 371–378 (2016).
    Google Scholar 
    41.Trumbo, D. et al. Urbanization impacts apex predator gene flow but not genetic diversity across an urban-rural divide. Mol. Ecol. 28, 4926–4940 (2019).CAS 
    PubMed 

    Google Scholar 
    42.VandeWoude, S. & Apetrei, C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin. Microbiol. Rev. 19, 728–762 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Logan, K. A. & Sweanor, L. L. Desert Puma: Evolutionary Ecology and Conservation of an Enduring Carnivore (Island Press, 2001).44.Krakoff, E., Gagne, R. B., VandeWoude, S. & Carver, S. Variation in intra-individual lentiviral evolution rates: a systematic review of human, nonhuman primate, and felid species. J. Virol. https://doi.org/10.1128/JVI.00538-19 (2019).45.Volz, E. M. & Didelot, X. Modeling the growth and decline of pathogen effective population size provides insight into epidemic dynamics and drivers of antimicrobial resistance. Syst. Biol. 67, 719–728 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    46.Murrell, B. et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Kenyon, J. C. & Lever, A. M. L. The molecular biology of feline immunodeficiency virus (FIV). Viruses 3, 2192–2213 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Tamuri, A. U., dos Reis, M., Hay, A. J. & Goldstein, R. A. Identifying changes in selective constraints: host shifts in influenza. PLoS Comput. Biol. 5, e1000564 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Forni, D., Cagliani, R., Clerici, M. & Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25, 35–48 (2017).CAS 
    PubMed 

    Google Scholar 
    50.Fountain-Jones, N. M. et al. Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore. Mol. Ecol. 26, 6487–6498 (2017).PubMed 

    Google Scholar 
    51.Kozakiewicz, C. P. et al. Pathogens in space: advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol. Appl. 11, 1763–1778 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    52.McDonald, J. L., Smith, G. C., McDonald, R. A., Delahay, R. J. & Hodgson, D. Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife–disease interactions. Proc. R. Soc. B 281, 20140526 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    53.Gilbertson, M. L. J., Fountain-Jones, N. M. & Craft, M. E. Incorporating genomic methods into contact networks to reveal new insights into animal behaviour and infectious disease dynamics. Behaviour 155, 759–791 (2018).PubMed 

    Google Scholar 
    54.Alldredge, M. W., Blecha, T. & Lewis, J. H. Less invasive monitoring of cougars in Colorado’s front range. Wildl. Soc. Bull. 43, 222–230 (2019).
    Google Scholar 
    55.Lewis, J. S. et al. The effects of urbanization on population density, occupancy, and detection probability of wild felids. Ecol. Appl. 25, 1880–1895 (2015).PubMed 

    Google Scholar 
    56.Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).57.Didelot, X., Kendall, M., Xu, Y., White, P. J. & McCarthy, N. Genomic epidemiology analysis of infectious disease outbreaks using TransPhylo. Curr. Protoc. 1, e60 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    58.Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. statnet: software tools for the representation, visualization, analysis and simulation of network data. J. Stat. Softw. 24, 1548 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    59.Wertheim, J. O., Murrell, B., Smith, M. D., Pond, S. L. K. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2015).CAS 
    PubMed 

    Google Scholar 
    60.Kosakovsky Pond, S. L. et al. A random effects branch-site model for detecting episodic diversifying selection. Mol. Biol. Evol. 28, 3033–3043 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Weaver, S. et al. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Gill, M. S., Lemey, P., Bennett, S. N., Biek, R. & Suchard, M. A. Understanding past population dynamics: Bayesian coalescent-based modeling with covariates. Syst. Biol. 65, 1041–1056 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    63.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Google Scholar 
    64.Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).
    Google Scholar 
    65.Fountain-Jones, N. nfj1380/Transmission-dynamics_huntingPumaFIV: (Puma-FIV_transmissionDynamics) (Zenodo, 2021); https://doi.org/10.5281/zenodo.560216266.Fountain-Jones, N. et al. Emerging phylogenetic structure of the SARS-CoV-2 pandemic. Virus Evol. 6, veaa082 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    67.Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789 (2016).PubMed 
    PubMed Central 

    Google Scholar  More