More stories

  • in

    Density of invasive western honey bee (Apis mellifera) colonies in fragmented woodlands indicates potential for large impacts on native species

    Geslin, B. et al. Massively introduced managed species and their consequences for plant–pollinator interactions. Adv. Ecol. Res. 57, 147–199 (2017).
    Google Scholar 
    Huryn, V. M. B. Ecological impacts of introduced honey bees. Q. R. Biol. 72, 275–297 (1997).
    Google Scholar 
    Stout, J. C. & Morales, C. L. Ecological impacts of invasive alien species on bees. Apidologie 40, 388–409 (2009).
    Google Scholar 
    Hung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. Ser. B 285, 20172140 (2018).
    Google Scholar 
    Paini, D. R. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. Austral Ecol. 29, 399–407 (2004).
    Google Scholar 
    Moritz, R. F. A., Hartel, S. & Neumann, P. Global invasions of the western honey bee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12, 289–301 (2005).
    Google Scholar 
    Paini, D. R. & Roberts, J. D. Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus). Biol. Cons. 123, 103–112 (2005).
    Google Scholar 
    Munoz, I. & De la Rua, P. Wide genetic diversity in old world honey bees threatened by introgression. Apidologie 52, 200–217 (2021).
    Google Scholar 
    Williams, I. H. The dependences of crop production within the European Union on pollination by honey bees. Agric. Zool. Rev. 6, 229–257 (1994).
    Google Scholar 
    Thompson, C. E., Biesmeijer, J. C., Allnutt, T. R., Pietravalle, S. & Budge, G. E. Parasite pressures on feral honey bees (Apis mellifera sp.). PLoS One 9, e105164 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Belsky, J. & Joshi, N. K. Impact of biotic and abiotic stressors on managed and feral bees. Insects 10, 233 (2019).PubMed Central 

    Google Scholar 
    Medina-Flores, C. A., Guzman-Novoa, E., Hamiduzzaman, M. M., Arechiga-Flores, C. F. & Lopez-Carlos, M. A. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico. Genet. Mol. Res. 13, 7282–7293 (2014).CAS 
    PubMed 

    Google Scholar 
    Portman, Z. M., Tepedino, V. J., Tripodi, A. D., Szalanski, A. L. & Durham, S. L. Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees. Biol. Invasions 20, 593–606 (2018).
    Google Scholar 
    Santos, G. M. D. et al. Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biol. Invasions 14, 2369–2378 (2012).
    Google Scholar 
    Chapman, R. E. & Bourke, A. F. G. The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4, 650–662 (2001).
    Google Scholar 
    Aizen, M. A. et al. When mutualism goes bad: Density-dependent impacts of introduced bees on plant reproduction. New Phytol. 204, 322–324 (2014).
    Google Scholar 
    Breeze, T. D. et al. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS One 9, e82996 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baum, K. A. et al. Spatial distribution of Africanized honey bees in an urban landscape. Landsc. Urban Plan. 100, 153–163 (2011).
    Google Scholar 
    Ratnieks, F. L. W., Piery, M. A. & Cuadriello, I. The natural nest and nest density of the africanized honey-bee (Hymenoptera, Apidae) near Tapachula, Chiapas, Mexico. Can. Entomol. 123, 353–359 (1991).
    Google Scholar 
    Baum, K. A., Rubink, W. L., Pinto, M. A. & Coulson, R. N. Spatial and temporal distribution and nest site characteristics of feral honey bee (Hymenoptera: Apidae) colonies in a coastal prairie landscape. Environ. Entomol. 33, 727–739 (2004).
    Google Scholar 
    Rangel, J. et al. Africanization of a feral honey bee (Apis mellifera) population in South Texas: Does a decade make a difference?. Ecol. Evol. 6, 2158–2169 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Oldroyd, B. P., Thexton, E. G., Lawler, S. H. & Crozier, R. H. Population demography of Australian feral bees (Apis mellifera). Oecologia 111, 381–387 (1997).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Arundel, J. et al. Remarkable uniformity in the densities of feral honey bee Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) colonies in South Eastern Australia. Austral Entomol. 53, 328–336 (2014).
    Google Scholar 
    Remm, J. & Lõhmus, A. Tree cavities in forests—The broad distribution pattern of a keystone structure for biodiversity. For. Ecol. Manag. 262, 579–585 (2006).
    Google Scholar 
    Lindenmayer, D., Crane, M., Blanchard, W., Okada, S. & Montague-Drake, R. Do nest boxes in restored woodlands promote the conservation of hollow-dependent fauna?. Restor. Ecol. 24, 244–251 (2016).
    Google Scholar 
    New South Wales Department of Planning, Industry and Environment 2003. https://www.environment.nsw.gov.au/topics/animals-and-plants/threatened-species/nsw-threatened-species-scientific-committee/determinations/final-determinations/2000-2003/competition-from-feral-honeybees-key-threatening-process-listing (accessed 22 Feb 2021).Goldingay, R. L., Rohweder, D. & Taylor, B. D. Nest box contentions: Are nest boxes used by the species they target?. Ecol. Manag. Restor. 21, 115–122 (2020).
    Google Scholar 
    Lindenmayer, D. B. et al. Are nest boxes a viable alternative source of cavities for hollow-dependent animals? Long-term monitoring of nest box occupancy, pest use and attrition. Biol. Cons. 142, 33–42 (2009).
    Google Scholar 
    Lindenmayer, D. B. et al. The anatomy of a failed offset. Biol. Conserv. 210, 286–292 (2017).
    Google Scholar 
    Macak, P. V. Nest boxes for wildlife in Victoria: An overview of nest box distribution and use. Vic. Nat. 137, 4–14 (2020).
    Google Scholar 
    Le Roux, D. S. et al. Effects of entrance size, tree size and landscape context on nest box occupancy: Considerations for management and biodiversity offsets. For. Ecol. Manag. 366, 135–142 (2016).
    Google Scholar 
    Berris, K. K. & Barth, M. PVC nest boxes are less at risk of occupancy by feral honey bees than timber nest boxes and natural hollows. Ecol. Manag. Restor. 21, 155–157 (2020).
    Google Scholar 
    Jaffe, R. et al. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv. Biol. 24, 583–593 (2010).PubMed 

    Google Scholar 
    Utaipanon, P., Schaerf, T. M. & Oldroyd, B. P. Assessing the density of honey bee colonies at ecosystem scales. Ecol. Entomol. 44, 291–304 (2019).
    Google Scholar 
    Utaipanon, P., Holmes, M. J., Chapman, N. C. & Oldroyd, B. P. Estimating the density of honey bee (Apis mellifera) colonies using trapped drones: Area sampled and drone mating flight distance. Apidologie 50, 578–592 (2019).CAS 

    Google Scholar 
    Williamson, E. M. Reliability of honey bee hive density estimates using drone sampling: does relative hive size or distance affect a colony’s drone contribution? Honours Thesis, The University of Adelaide (2020).Benson, J. S. The effect of 200 years of European settlement on the vegetation and flora of New South Wales. Cunninghamia 2, 343–370 (1991).
    Google Scholar 
    New South Wales Office of Environment and Heritage 2015. Upgraded NSW woody vegetation extent for 2011. http://data.auscover.org.au/xwiki/bin/view/Product+pages/nsw+5m+woody+extent+and+fpc (accessed 13 May 2020).R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). www.R-project.org (accessed 12 January 2021).Burnham, K. P. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Albert, A. & Anderson, J. A. On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71, 1–10 (1984).MathSciNet 
    MATH 

    Google Scholar 
    Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993).MathSciNet 
    MATH 

    Google Scholar 
    Kosmidis, I., Pagui, E. C. K. & Sartori, N. Mean and median bias reduction in generalized linear models. Stat. Comput. 30, 43–59 (2020).MathSciNet 
    MATH 

    Google Scholar 
    Anderson, D. R. Model Based Inference in the Life Sciences: A Primer on Evidence (Springer Science & Business Media, 2007).
    Google Scholar 
    Barton, K. MuMIn: Multi-model inference. R package version 1.43.17 (2016).Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package version 3.4-5 (2020).Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.3.0 (2018).Kosmidis, I. brglm2: Bias Reduction in Generalized Linear Models. R package version 0.6.2 (2020).Kosmidis, I., Schumacher, D. detectseparation: Detect and Check for Separation and Infinite Maximum Likelihood Estimates. R package version 0.1 (2020).Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).
    Google Scholar 
    Pateiro-Lopez, B., Rodriguez-Casal, A. Alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane. R package version 2.2 (2019).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar 
    Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
    Google Scholar 
    Wickham, H. Forcats: Tools for working with categorical variables (factors). R package version 0.5.0 (2018).Wickham, H., François, R., Henry, L., Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.0 (2021).Birtchnell, M. J. & Gibson, M. Long-term flowering patterns of melliferous Eucalyptus (Myrtaceae) species. Aust. J. Bot. 54, 745–754 (2006).
    Google Scholar 
    Steinhauer, N. et al. Drivers of colony losses. Curr. Opin. Insect Sci. 26, 142–148 (2018).PubMed 

    Google Scholar 
    Cunningham, S. A., Heard, T. & FitzGibbon, F. The future of pollinators for Australian Agriculture. Aust. J. Agric. Res. 53, 893–900 (2002).
    Google Scholar 
    Hinson, E. M., Duncan, M., Lim, J., Arundel, J. & Oldroyd, B. P. The density of feral honey bee (Apis mellifera) colonies in South East Australia is greater in undisturbed than in disturbed habitats. Apidologie 46, 403–413 (2015).
    Google Scholar 
    McIntyre, S. Ecological and anthropomorphic factors permitting low-risk assisted colonization in temperate grassy woodlands. Biol. Conserv. 144, 1781–1789 (2011).
    Google Scholar 
    Steffan-Dewenter, I. & Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. B Biol. Sci. 270, 569–575 (2003).
    Google Scholar 
    Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. U.S.A. 116, 909–914 (2019).CAS 
    PubMed 

    Google Scholar 
    Arthur, A. D., Li, J., Henry, S. & Cunningham, S. A. Influence of woody vegetation on pollinator densities in oilseed Brassica fields in an Australian temperate landscape. Basic Appl. Ecol. 11, 406–414 (2010).
    Google Scholar 
    Lindenmayer, D. B. et al. New policies for old trees: Averting a global crisis in a keystone ecological structure. Conserv. Lett. 7, 61–69 (2014).
    Google Scholar 
    Crane, M. J., Lindenmayer, D. B. & Cunningham, R. B. The value of countryside elements in the conservation of a threatened arboreal marsupial Petaurus norfolcensis in agricultural landscapes of south-eastern Australia—the disproportional value of scattered trees. PLoS One 9, e107178 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibbons, P., Lindenmayer, D. B., Barry, S. C. & Tanton, M. T. Hollow selection by vertebrate fauna in forests of southeastern Australia and implications for forest management. Biol. Conserv. 103, 1–12 (2002).
    Google Scholar 
    Seeley, T. D. & Morse, R. A. The nest of the honey bee (Apis mellifera L.). Insectes Soc. 23, 495–512 (1976).
    Google Scholar 
    Hung, K. L. J., Ascher, J. S., Davids, J. A. & Holway, D. A. Ecological filtering in scrub fragments restructures the taxonomic and functional composition of native bee assemblages. Ecology 100, e02654 (2019).PubMed 

    Google Scholar 
    Cockle, K. L., Martin, K. & Drever, M. C. Supply of tree-holes limits nest density of cavity-nesting birds in primary and logged subtropical Atlantic forest. Biol. Conserv. 143, 2851–2857 (2010).
    Google Scholar 
    Heard, T. Stingless bees. In Australian Native Bees: A Practical Hand Book 106–139 (NSW Department of Primary Industries, 2016).Geoscience Australia 2006. GEODATA TOPO 250K. Commonwealth of Australia. http://pid.geoscience.gov.au/dataset/ga/63999 (accessed 11 December 2020). More

  • in

    Iron and manganese co-limit the growth of two phytoplankton groups dominant at two locations of the Drake Passage

    Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).CAS 
    PubMed 

    Google Scholar 
    Landschützer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015).PubMed 

    Google Scholar 
    Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles 21, https://doi.org/10.1029/2006GB002907 (2007).Buesseler, K. O., Boyd, P. W., Black, E. E. & Siegel, D. A. Metrics that matter for assessing the ocean biological carbon pump. Proc. Natl Acad. Sci. USA 117, 9679–9687 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Baar, H. J. On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar. Ecol. Prog. Ser. 65, 105–122 (1990).
    Google Scholar 
    Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5, 191–215 (2013).
    Google Scholar 
    Martin, J. H., Fitzwater, S. E. & Gordon, R. M. Iron deficiency limits phytoplankton growth in Antarctic waters. Glob. Biogeochem. Cycles 4, 5–12 (1990).CAS 

    Google Scholar 
    Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. science 315, 612–617 (2007).CAS 
    PubMed 

    Google Scholar 
    Sunda, W. Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front. Microbiol. 3, 204 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Martin, J. H. Glacial‐interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).
    Google Scholar 
    Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Iron in Antarctic waters. Nature 345, 156 (1990).CAS 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 

    Google Scholar 
    Behrenfeld, M. J. & Milligan, A. J. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 5, 217–246 (2013).
    Google Scholar 
    Greene, R. M., Geider, R. J., Kolber, Z. & Falkowski, P. G. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol. 100, 565–575 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raven, J. A., Evans, M. C. & Korb, R. E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Res. 60, 111–150 (1999).CAS 

    Google Scholar 
    Raven, J. A. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. N. Phytologist 116, 1–18 (1990).CAS 

    Google Scholar 
    Wolfe-Simon, F., Grzebyk, D., Schofield, O. & Falkowski, P. G. The role and evolution of superoxide dismutases in algae 1. J. Phycol. 41, 453–465 (2005).CAS 

    Google Scholar 
    Middag, R. D., De Baar, H. J. W., Laan, P., Cai, P. V. & Van Ooijen, J. C. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 58, 2661–2677 (2011).CAS 

    Google Scholar 
    Buma, A. G., De Baar, H. J., Nolting, R. F. & Van Bennekom, A. J. Metal enrichment experiments in the Weddell‐Scotia Seas: effects of iron and manganese on various plankton communities. Limnol. Oceanogr. 36, 1865–1878 (1991).CAS 

    Google Scholar 
    Middag, R., de Baar, H. J., Klunder, M. B. & Laan, P. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co‐limitation. Limnol. Oceanogr. 58, 287–300 (2013).CAS 

    Google Scholar 
    Browning, T. J. et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys. Res. Lett. 41, 2851–2857 (2014).CAS 

    Google Scholar 
    Wu, M. et al. Manganese and iron deficiency in Southern Ocean Phaeocystis Antarctica populations revealed through taxon-specific protein indicators. Nat. Commun. 10, 1–10 (2019).
    Google Scholar 
    Browning, T. J., Achterberg, E. P., Engel, A. & Mawji, E. Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean. Nat. Commun. 12, 884 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viljoen, J. J. et al. Links between the phytoplankton community composition and trace metal distribution in summer surface waters of the Atlantic southern ocean. Front. Mar. Sci. 6, 295 (2019).
    Google Scholar 
    Arrigo, K. R. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005).CAS 
    PubMed 

    Google Scholar 
    De Baar, H. J. W. von Liebig’s law of the minimum and plankton ecology (1899–1991). Prog. Oceanogr. 33, 347–386 (1994).
    Google Scholar 
    Saito, M. A., Goepfert, T. J. & Ritt, J. T. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol. Oceanogr. 53, 276–290 (2008).CAS 

    Google Scholar 
    Pausch, F., Bischof, K. & Trimborn, S. Iron and manganese co-limit growth of the Southern Ocean diatom Chaetoceros debilis. PLos ONE 14, e0221959 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hopkinson, B. M. et al. Iron limitation across chlorophyll gradients in the southern Drake Passage: phytoplankton responses to iron addition and photosynthetic indicators of iron stress. Limnol. Oceanogr. 52, 2540–2554 (2007).CAS 

    Google Scholar 
    Trimborn, S., Hoppe, C. J., Taylor, B. B., Bracher, A. & Hassler, C. Physiological characteristics of open ocean and coastal phytoplankton communities of Western Antarctic Peninsula and Drake Passage waters. Deep Sea Res. Part I: Oceanographic Res. Pap. 98, 115–124 (2015).CAS 

    Google Scholar 
    Rijkenberg, M. J. et al. The distribution of dissolved iron in the West Atlantic Ocean. PLoS ONE 9, e101323 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Prézelin, B. B., Hofmann, E. E., Mengelt, C. & Klinck, J. M. The linkage between upper circumpolar deep water (UCDW) and phytoplankton assemblages on the west Antarctic Peninsula continental shelf. J. Mar. Res. 58, 165–202 (2000).
    Google Scholar 
    Varela, M., Fernandez, E. & Serret, P. Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep Sea Res. Part II: Topical Stud. Oceanogr. 49, 749–768 (2002).CAS 

    Google Scholar 
    Hoffmann, L. J., Peeken, I. & Lochte, K. Effects of iron on the elemental stoichiometry during EIFEX and in the diatoms Fragilariopsis kerguelensis and Chaetoceros dichaeta. Biogeosciences 4, 569–579 (2007).CAS 

    Google Scholar 
    Blanco-Ameijeiras, S. et al. Exopolymeric substances control microbial community structure and function by contributing to both C and Fe nutrition in Fe-limited Southern Ocean provinces. Microorganisms 8, 1980 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Church, M. J., Hutchins, D. A. & Ducklow, H. W. Limitation of bacterial growth by dissolved organic matter and iron in the Southern Ocean. Appl. Environ. Microbiol. 66, 455–466 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Obernosterer, I., Fourquez, M. & Blain, S. Fe and C co-limitation of heterotrophic bacteria in the naturally fertilized region off the Kerguelen Islands. Biogeosciences 12, 1983–1992 (2015).
    Google Scholar 
    Fourquez, M., Obernosterer, I., Davies, D. M., Trull, T. W. & Blain, S. Microbial iron uptake in the naturally fertilized waters in the vicinity of the Kerguelen Islands: phytoplankton–bacteria interactions. Biogeosciences 12, 1893–1906 (2015).
    Google Scholar 
    Fourquez, M. et al. Microbial competition in the subpolar southern ocean: an Fe–C Co-limitation experiment. Front. Mar. Sci. 6, 776 (2020).
    Google Scholar 
    Boyd, P. W. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000).CAS 
    PubMed 

    Google Scholar 
    De Baar, H. J. et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res. Oceans 110, https://doi.org/10.1029/2004JC002601 (2005).Smetacek, V. & Naqvi, S. W. A. The next generation of iron fertilization experiments in the Southern Ocean. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 366, 3947–3967 (2008).CAS 

    Google Scholar 
    Geider, R. J. & La Roche, J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynthesis Res. 39, 275–301 (1994).CAS 

    Google Scholar 
    van Leeuwe, M. A. & Stefels, J. Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment composition. J. Phycol. 34, 496–503 (1998).
    Google Scholar 
    Hoffmann, L. J., Peeken, I., Lochte, K., Assmy, P. & Veldhuis, M. Different reactions of Southern Ocean phytoplankton size classes to iron fertilization. Limnol. Oceanogr. 51, 1217–1229 (2006).CAS 

    Google Scholar 
    Koch, F., Beszteri, S., Harms, L. & Trimborn, S. The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica. Limnol. Oceanogr. 64, 357–375 (2019).CAS 

    Google Scholar 
    Koch, F. & Trimborn, S. Limitation by Fe, Zn, Co, and B12 results in similar physiological responses in two antarctic phytoplankton species. Front. Mar. Sci. 6, 514 (2019).
    Google Scholar 
    Peers, G. & Price, N. M. A role for manganese in superoxide dismutases and growth of iron‐deficient diatoms. Limnol. Oceanogr. 49, 1774–1783 (2004).CAS 

    Google Scholar 
    Cefarelli, A. O. et al. Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance. Polar Biol. 33, 1463–1484 (2010).
    Google Scholar 
    Marchetti, A. & Harrison, P. J. Coupled changes in the cell morphology and elemental (C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnol. Oceanogr. 52, 2270–2284 (2007).CAS 

    Google Scholar 
    Boyd, P. W. et al. Microbial control of diatom bloom dynamics in the open ocean. Geophys. Res. Lett. 39, https://doi.org/10.1029/2012GL053448 (2012).Behrenfeld, M. J. & Kolber, Z. S. Widespread iron limitation of phytoplankton in the South Pacific Ocean. Science 283, 840–843 (1999).CAS 
    PubMed 

    Google Scholar 
    Strzepek, R. F., Hunter, K. A., Frew, R. D., Harrison, P. J. & Boyd, P. W. Iron‐light interactions differ in Southern Ocean phytoplankton. Limnol. Oceanogr. 57, 1182–1200 (2012).CAS 

    Google Scholar 
    Klunder, M. B. et al. Dissolved Fe across the Weddell Sea and Drake Passage: impact of DFe on nutrient uptake. Biogeosciences 11, 651–669 (2014).
    Google Scholar 
    Trimborn, S. et al. Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification. Mar. Ecol. Prog. Ser. 578, 35–50 (2017).CAS 

    Google Scholar 
    Smith, W. O. & Lancelot, C. Bottom-up versus top-down control in phytoplankton of the Southern Ocean. Antarct. Sci. 16, 531–539 (2004).
    Google Scholar 
    Schoffman, H., Lis, H., Shaked, Y. & Keren, N. Iron–nutrient interactions within phytoplankton. Front. Plant Sci. 7, 1223 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Meijers, A. J. S. The Southern Ocean in the coupled model intercomparison project phase 5. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 372, 20130296 (2014).CAS 

    Google Scholar 
    Hauck, J. et al. On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century. Glob. Biogeochem. Cycles 29, 1451–1470 (2015).CAS 

    Google Scholar 
    Cabanes, D. J. et al. Using Fe chemistry to predict Fe uptake rates for natural plankton assemblages from the Southern Ocean. Mar. Chem. 225, 103853 (2020).CAS 

    Google Scholar 
    Cutter, G. A. et al. Sampling and sample-handling protocols for GEOTRACES Cruises, Version 3.0 (2017).Gerringa, L. J. A., De Baar, H. J. W. & Timmermans, K. R. A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA. Mar. Chem. 68, 335–346 (2000).CAS 

    Google Scholar 
    Hoppe, C. J. et al. Iron limitation modulates ocean acidification effects on Southern Ocean phytoplankton communities. PLoS ONE 8, e79890 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hathorne, E. C. et al. Online preconcentration ICP-MS analysis of rare earth elements in seawater. Geochemistry, Geophysics, Geosystems 13, https://doi.org/10.1029/2011GC003907 (2012).Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. & Achterberg, E. P. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Analytica Chim. Acta 976, 1–13 (2017).CAS 

    Google Scholar 
    Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Int. Ver. f.ür. theoretische und Angew. Limnologie: Mitteilungen 9, 1–38 (1958).
    Google Scholar 
    Edler, L. Recommendations on Methods for Marine Biological Studies in the Baltic Sea. Phytoplankton and Chlorophyll (Publication-Baltic Marine Biologists BMB (Sweden), 1979).Tomas, C. R. & Haste, G. R. Identifying Marine Phytoplankton (Academic Press, 1997).Olson, R. J., Zettler, E. R., Chisholm, S. W. & Dusenberry, J. A. in Particle Analysis in Oceanography 351–399 (Springer, 1991).Koch, F., Sanudo-Wilhelmy, S. A., Fisher, N. S. & Gobler, C. J. Effect of vitamins B1 and B12 on bloom dynamics of the harmful brown tide alga, Aureococcus anophagefferens (Pelagophyceae). Limnol. Oceanogr. 58, 1761–1774 (2013).CAS 

    Google Scholar 
    Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).CAS 

    Google Scholar 
    Oxborough, K. et al. Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Limnol. Oceanogr.: Methods 10, 142–154 (2012).
    Google Scholar 
    Schlitzer, R. Ocean Data View. (2015). More

  • in

    A scientist by any other name

    Many women in science, technology, engineering and mathematics (STEM) need to make decisions about marital name change, and have to consider how this might affect their publication record and future career. Mentorship that considers race, ethnicity, culture, religion and parenting, as well as a centralized system to dynamically and retroactively streamline name change, will promote agency and choice for women navigating STEM careers, writes Bala Chaudhary.Women, whether in same-sex or heterosexual relationships, still predominantly make decisions regarding marital name change1. In science, technology, engineering and mathematics (STEM) fields, as the proportion of female researchers rises, more women are considering the potential effects of marital name change on their careers. The stakes are high, as relationship status and name discrimination contribute to gender2 and racial3 inequities in faculty hiring. The shifting demographics of students and a greater proportion of STEM undergraduates engaging in research and publishing has also led to more scientists questioning decisions around name changes. Dual-scientist couples considering sharing a last name may wonder about gendered assessments of their contributions to work. Women occasionally ask for advice on this topic using social-media platforms such as Twitter. Community members chime in with myriad options: keep your name, change your name, hyphenate, add a middle name, couples choose a new name, keep separate personal and legal names, and so on. There is no single correct approach for this personal decision, so online discussions and testimonials4 are invaluable resources for women with few immediate role models. More

  • in

    How itchy vicuñas remade a vast wilderness

    .readcube-buybox { display: none !important;}

    When mange began to kill llama-like animals called vicuñas in the high Andes, their loss reverberated through the food web to affect grasslands and, eventually, condors1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00592-8

    ReferencesMonk, J. D. et al. Ecol. Lett. https://doi.org/10.1111/ele.13983 (2022).PubMed 
    Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    How colonialism fed the flames of Australia’s catastrophic wildfires
    Research Highlight 24 FEB 22

    Apply Singapore Index on Cities’ Biodiversity at scale
    Correspondence 22 FEB 22

    Marching in the streets for climate-crisis action
    Career Q&A 22 FEB 22

    Jobs

    Data Scientist or Machine Learning / AI expert (m/f/div)

    Max Planck Computing and Data Facility (MPCDF)
    Garching near Munich, Germany

    Postdoc (m/f/div) in Bioinformatics / Computational Biology

    Max Planck Institute for Plant Breeding Research (MPIPZ)
    Cologne, Germany

    Max Planck Research Group Leader Positions in Plant Biology (W2)

    Max Planck Institute of Molecular Plant Physiology (MPIMP)
    Potsdam near Berlin, Germany

    Postdoc (m/f/div) in Molecular Biology

    Max Planck Institute for Plant Breeding Research (MPIPZ)
    Cologne, Germany More

  • in

    Learning from symbioses

    Esperanza Martínez-Romero is a professor of ecological genomics and was coordinator of the undergraduate programme on genomics at Universidad Nacional Autónoma de México. Her work on plant symbioses, and outreach with local farmers has encouraged uptake of sustainable practices and the use of biofertilizers.It was during my first year as an undergraduate student that I was exposed to genetic engineering, when Dr Francisco Bolívar lectured on his development of vectors for gene cloning. I found these results fascinating, and it was listening to talks from scientists at my institute that made me realize that research was my vocation. Towards the end of my bachelor’s degree, Dr Marc von Montagu from Belgium visited and told us about plant genetic transformations — a new field within genetic engineering. Although I was accepted into his laboratory to do my doctorate, I preferred Mexico. I turned my academic journey around and instead chose to apply to a new research centre in Cuernavaca outside of Mexico City — my next turning point. I suspected that a new research centre would provide more opportunities for the development of novel areas, and would have open positions for researchers. Indeed, I was hired at this new research centre and started my own ecology group. It was there that I started working with nitrogen-fixing bacteria and plants. The effects of nitrogen-fixing bacteria on plants were outstanding. Although the scope of molecular biology was incipient to the characterization of bacterial species and populations, we were nevertheless able to make molecular characterizations of the rhizobial species that formed nitrogen-fixing nodules on beans — the most important legume for human consumption in the world. In 1991, we described a novel species, Rhizobium tropici, which could deliver high levels of nitrogen to legumes. It was then that I realized nitrogen fixation is key to the development of sustainable agriculture and could benefit farmers in Mexico and around the world. Some of the species described by my group are now used as inoculants in agriculture, reducing the use of chemical fertilizers and allowing farmers to make cost savings. To facilitate this, I published a manual on biofertilization for farmers and gave conferences and workshops to them. My group has also undertaken reforestation programmes using nitrogen-fixing legume trees inoculated with the rhizobial species that we described. More

  • in

    Assessing the impact of water use in conventional and organic carrot production in Poland

    The LCA approach includes the potential effects of depriving humans and ecosystems of water resources, as well as the specific potential effects of pollutants affecting water and thus the environment49. Water stress is commonly defined as the ratio of total freshwater consumption to the level of its hydrological availability. ISO 14046 presents a new concept, i.e., WF, which is associated with the LCA approach. The standard’s “water scarcity footprint” refers to the potential impacts associated with the quantitative aspect of water use50. Figure 2 shows the WF per cultivation area of conventional and organic carrot production. In general, there are significant differences in the total value of the WF in question. For conventional carrot production technology, it is 10.25 m3 ha−1, while for organic technology, it is only 1.96 m3 ha−1. In the case of conventional production, treatments using significant amounts of chemicals have the greatest impact on the WF, i.e., fertilization (mainly mineral) (WF = 6.85 m3 ha−1), and chemical plant protection (WF = 1.19 m3 ha−1). The analysis of WF in organic farming showed that its highest value (WF = 0.84 m3 ha−1) concerns the harvesting of carrots, while soil preparation ranks second (WF = 0.45 m3 ha−1). A slightly lower WF of 0.38 m3 ha−1 was recorded in the case of transporting the harvested carrots to the farm buildings. It can therefore be concluded that in organic farming, it is (diesel) fuel consumption that has the greatest impact on WF level.Figure 2Water footprint in conventional and organic carrot production (m3 ha−1).Full size imageIn terms of production volume, in conventional technology, the WF is 0.196 m3 t−1. On the other hand, in organic technology the value of WF is approx. four times lower and amounts to 0.049 m3 t−1 of harvested carrots. For comparison, the WF in tomato production is 160 m3 per 1 tonne of produce51. Such a high value results mainly from irrigation of the plants.In order to explain in detail the impact of individual agricultural treatments on the water deficit in carrot production, a detailed WF analysis was carried out for the treatments that demonstrated the highest values. In the case of conventional technology, it was fertilization (Fig. 3). Upon analyzing Fig. 3, it can be observed that the use of urea, and hence nitrogen, has the greatest impact on WF with regard to fertilization. Most nitrogen mineral fertilizers have a negative impact on the environment, causing ozone depletion in the stratosphere, groundwater pollution, global warming, and water eutrophication52,53. The largest water footprint associated with the use of mineral fertilizers in conventional cultivation is mainly due to a very energy-intensive fertilizer production process. Depending on the type of fertilizer and the technology used, the production process involves machines and equipment for cleaning, grinding, drying, sieving, extruding, granulating, packing, pumping, evaporation (crystallization) and transport. The vast majority of these treatments are powered by electricity. In contrast, conventional power production, regardless of the technology and fuel used (nuclear, natural gas, or coal), is characterized by very high water consumption. Mineral fertilizers are also a material whose consumed mass is relatively high compared to other production materials (seeds, pesticides, and diesel fuel). These two factors mentioned above have a decisive impact on the largest water footprint associated with the use of mineral fertilizers in conventional carrot cultivation. Processes requiring the use of machinery, i.e., fertilizer spreaders (1%) and the consumption of diesel fuel (0.1%) have the lowest impact on the level of fertilization-induced WF. Such a low impact of diesel fuel results mainly from its relatively low consumption during fertilization, most often using very efficient centrifugal spreaders. For comparison, WF related only to the use of carrot irrigation water is 20 m3 t−1 of harvested crops54.Figure 3Water footprint related to carrot fertilization in conventional production (m3 ha−1).Full size imageIn the case of organic technology, WF of harvesting was analyzed in detail (Fig. 4). Carrots were excavated with harvesters, which cut the aboveground parts, cleaned the roots and collected them in a hopper. Sometimes the excavation was preceded by mowing the carrot leaves with mowers. Carrot harvesters are machines that require farm tractors with high-power combustion engines, and the harvesting procedure itself is very time-consuming, hence such a large impact of fuel consumption on WF in carrot harvesting. Despite the above, the share of diesel consumption in the total value of WF related to carrot harvesting is only 11%. However, when comparing the WF related to fuel consumed during harvesting and during fertilization, it can be noticed that in the case of harvesting, WF is approx. 15 times higher.Figure 4Water footprint related to carrot harvest in organic production (m3 ha−1).Full size imageIn LCA, the potential effects of water pollution have traditionally been addressed in impact categories such as (eco) toxicity, acidification, and eutrophication42,43. In the WF analysis, the impact of water consumption is generally related to specific goals within a given conservation area, such as: Human Health, Ecosystems Quality and Resources43. The impact of water consumption on human health is expressed in DALY and is obtained by modeling the cause-effect chain of water scarcity (lack of irrigation water) leading to malnutrition. Ecosystem quality is assessed by modeling the cause-effect chain of freshwater consumption with the quality of the terrestrial ecosystem, based on the number of species disappearing each year (species * year). On the other hand, the impact of water consumption in the resources category is assessed by modeling the cause-effect chain of freshwater consumption in relation to the depletion of water resources, along with the cost ($) of extracting an additional cubic meter of water46. The data in Table 2 shows WF in conventional carrot production related to the three impact categories, and Fig. 5 shows its structure. The total impact of individual processes in the Human Health category is 1.15E−05 DALY, in the Ecosystem Quality category—1.53E−07 species * year, and in the Resources category—2.97 $ surplus. For comparison, WF in the above-mentioned impact areas per 1 ha of tomatoes is, respectively: Human Health—5.00E−03 DALY, Ecosystem Quality—2.50E−05 species * year55. When analyzing Fig. 5, it can be observed that in all impact categories, fertilization has the greatest environmental impact, the share of which in individual categories is at approx. 67.0–67.7%. Chemical plant protection ranks second, the impact of which in the three categories ranges from 11.9 to 12.6%. In addition to the treatments related to fertilizers and chemicals, treatments associated with high consumption of diesel fuel, i.e., soil preparation and harvest, have a significant impact on the value of individual categories in carrot production. This confirms the results of many studies, i.e. that the extraction, production and, above all, the use of diesel fuel bring significant damage to the environment56,57.Table 2 Environmental impact related to the use of water in conventional carrot production per area unit (ha).Full size tableFigure 5The structure of WF in individual impact categories in conventional carrot production.Full size imageBearing in mind that carrot yield range in conventional cultivation is 43–65 t ha−1, the total impact of individual processes per 100 tons of harvested carrots is as follows: Human Health: 2.17E−05 DALY, Ecosystem Quality: 2.88E−07 species * year and Resources: 5.57 $ surplus.Upon comparing the obtained results with the research presented in the literature and conducted with a similar methodology, it can be concluded that for the production of 100 tons of tomatoes, the total environmental footprint for the above-mentioned impact areas, including factors other than water, is respectively: Human Health: 2.7E−01 DALY, Ecosystems Quality: 1.45E−03 Species * year, Resources: 1.05E + 06 $58. On the other hand, the WF for green beans, per 100 tons of harvest was reported as follows: Human Health: from 2.00E−2 to 1.08E−1 DALY, Ecosystem Quality: from1.10E−3 to 1.80E−3 species * year, Resources: from 1.90E+2 to 1.40E+3 $ surplus59.Detailed WF results for the fertilization process in conventional carrot production are presented in Fig. 6. Among the individual factors shaping the environmental impact, what stands out is the consumption of urea, i.e. nitrogen (44.9–47.0% of the total impact in individual categories) and of phosphorus fertilizers, the impact of which is at 31.4–32.4%.Figure 6Structure of WF of the fertilization process in conventional carrot production as per individual impact categories.Full size imageIn endpoint analysis, the impact of water use is generally related to specific endpoints in a given conservation area: Human Health, Ecosystems Quality or Resources43. The data in Table 3 shows WF in organic carrot production as per the three impact categories, and Fig. 7 shows its structure. The total WF values in each category are as follows: in the Human Health category—2.11E−06 DALY, in the Ecosystem Quality category—3.00E−08 species * year and in the Resources category—0.56 $ surplus. The above results are over five times lower compared to the footprint in conventional production (Table 2), and therefore it can be concluded that organic production not only enables the production of healthy carrot, but also has a very positive impact on the broadly understood environment. Upon analyzing the data from Tables 2 and 3, it can be observed that the environmental impact of fertilization treatment in organic production is over thirty times lower compared to the impact of fertilization in conventional production. Moreover, the fact that no pesticides are used means that the impact of chemical plant protection treatments is 0. Upon analyzing Fig. 7, it can be observed that the largest share in the total value of WF in individual impact categories is that of carrot harvest, from 41.9% (Ecosystem Quality) to 43.1% (Resources). The reason for such a significant environmental impact of carrot harvesting technology is the use of complex harvesters, as explained in Fig. 8. When calculating WF, both direct water consumption in a technology is taken into account, as well as indirect, related e.g., to the production of agricultural equipment used in the technology. The complexity of the machinery, the type of materials it is made of and the type of technology used in its production determine the WF.Table 3 Environmental impact related to the use of water in organic carrot production per area unit (ha).Full size tableFigure 7The structure of WF in individual impact categories in organic carrot production.Full size imageFigure 8Structure of WF of the harvest process in organic carrot production as per individual impact categories.Full size imageThe methodology for calculating WF is very diverse and includes many methods. Moreover, the results of research on WF related to the production of vegetable species presented in the literature often differ in terms of the analyzed system boundaries, production technology, irrigation, etc. Therefore, the possibility of a broad discussion of the results of WF of conventional and organic carrot production is limited.The detailed structure of WF of the carrot harvesting process in organic farming is shown in Fig. 8. The use of machines, i.e. harvesters, has a decisive share (90.3–96.6%) in the total value of individual impact categories. The reason for this significant impact was explained above. Relatively high consumption of fuel during harvester operation contributes little to the water footprint structure. The use of diesel fuel has the highest impact on damage caused in the Ecosystem Quality category, with the lowest impact in the Human Health category. More

  • in

    Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod

    Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
    Google Scholar 
    Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357, 495–498 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499–504 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Therkildsen, N. O. et al. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487–490 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Brennan, R. S., Garrett, A. D., Huber, K. E., Hargarten, H. & Pespeni, M. H. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions. Proc. R. Soc. B: Biol. Sci. 286, 20190943 (2019).CAS 

    Google Scholar 
    Stearns, S. C. The evolutionary significance of phenotypic plasticity. Bioscience 39, 436–445 (1989).Thompson, J. D. Phenotypic plasticity as a component of evolutionary change. Trends Ecol. Evol. 6, 246–249 (1991).CAS 
    PubMed 

    Google Scholar 
    Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180176 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Chevin, L. M., Collins, S. & Lefèvre, F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct. Ecol. https://doi.org/10.1111/j.1365-2435.2012.02043.x (2013).Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).PubMed 

    Google Scholar 
    Calosi, P., De Wit, P., Thor, P. & Dupont, S. Will life find a way? Evolution of marine species under global change. Evol. Appl. 9, 1035–1042 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).PubMed 

    Google Scholar 
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Posavi, M., Gulisija, D., Munro, J. B., Silva, J. C. & Lee, C. E. Rapid evolution of genome-wide gene expression and plasticity during saline to freshwater invasions by the copepod Eurytemora affinis species complex. Mol. Ecol. 29, 4835–4856 (2020).CAS 
    PubMed 

    Google Scholar 
    Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kelly, M. W., Pankey, M. S., DeBiasse, M. B. & Plachetzki, D. C. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. 31, 398–406 (2017).
    Google Scholar 
    Sikkink, K. L., Reynolds, R. M., Ituarte, C. M., Cresko, W. A. & Phillips, P. C. Rapid evolution of phenotypic plasticity and shifting thresholds of genetic assimilation in the nematode Caenorhabditis remanei. G3 4, 1103–1112 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Brennan, R. S., Galvez, F. & Whitehead, A. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus. J. Exp. Biol. 218, 1212–1222 (2015).PubMed 

    Google Scholar 
    Kelly, M. W., Pankey, M. S. & DeBiasse, M. B. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. https://doi.org/10.1111/1365-2435.12725 (2017).Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7, 118–126 (1953).
    Google Scholar 
    Schlötterer, C., Kofler, R., Versace, E., Tobler, R. & Franssen, S. U. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity 114, 431–440 (2015).PubMed 

    Google Scholar 
    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).PubMed 

    Google Scholar 
    Huang, Y. & Agrawal, A. F. Experimental evolution of gene expression and plasticity in alternative selective regimes. PLoS Genet. 12, e1006336 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Mallard, F., Nolte, V. & Schlötterer, C. The evolution of phenotypic plasticity in response to temperature stress. Genome Biol. Evol. 12, 2429–2440 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schaum, C. E. & Collins, S. Plasticity predicts evolution in a marine alga. Proc. Biol. Sci. 281, 20141486 (2014).Kelly, S. A., Czech, P. P., Wight, J. T., Blank, K. M. & Garland, T. Jr Experimental evolution and phenotypic plasticity of hindlimb bones in high-activity house mice. J. Morphol. 267, 360–374 (2006).PubMed 

    Google Scholar 
    Garland, T. Jr & Kelly, S. A. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 209, 2344–2361 (2006).PubMed 

    Google Scholar 
    Gibbin, E. M., Massamba N’Siala, G., Chakravarti, L. J., Jarrold, M. D. & Calosi, P. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCairns, R. J. S. & Bernatchez, L. Adaptive divergence between freshwater and marine sticklebacks: insights into the role of phenotypic plasticity from an integrated analysis of candidate gene expression. Evolution 64, 1029–1047 (2010).CAS 
    PubMed 

    Google Scholar 
    Whitehead, A. The evolutionary radiation of diverse osmotolerant physiologies in killifish (Fundulus sp.). Evolution 64, 2070–2085 (2010).PubMed 

    Google Scholar 
    Lind, M. I. & Johansson, F. The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria. J. Evol. Biol. 20, 1288–1297 (2007).CAS 
    PubMed 

    Google Scholar 
    Lázaro-Nogal, A. et al. Environmental heterogeneity leads to higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into climate change responses. J. Ecol. 103, 338–350 (2015).
    Google Scholar 
    Gianoli, E. Plasticity of traits and correlations in two populations of Convolvulus arvensis (Convolvulaceae) differing in environmental heterogeneity. Int. J. Plant Sci. 165, 825–832 (2004).
    Google Scholar 
    Fischer, E. K., Song, Y., Hughes, K. A., Zhou, W. & Hoke, K. L. Nonparallel transcriptional divergence during parallel adaptation. Mol. Ecol. 30, 1516–1530 (2021).PubMed 

    Google Scholar 
    Gunter, H. M., Schneider, R. F., Karner, I., Sturmbauer, C. & Meyer, A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol. Ecol. 26, 6634–6653 (2017).CAS 
    PubMed 

    Google Scholar 
    Bitter, M. C. et al. Fluctuating selection and global change: a synthesis and review on disentangling the roles of climate amplitude, predictability and novelty. Proc. Biol. Sci. 288, 20210727 (2021).CAS 
    PubMed 

    Google Scholar 
    Skliris, N. et al. Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Clim. Dyn. 43, 709–736 (2014).
    Google Scholar 
    Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. in Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1029–1136 (Cambridge University Press, 2013).Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).PubMed 

    Google Scholar 
    Reusch, T. B. H. & Boyd, P. W. Experimental evolution meets marine phytoplankton. Evolution 67, 1849–1859 (2013).PubMed 

    Google Scholar 
    Palumbi, S. R., Evans, T. G., Pespeni, M. H. & Somero, G. N. Present and future adaptation of marine species assemblages. Oceanography https://doi.org/10.5670/oceanog.2019.314 (2019).Helmuth, B. et al. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci. Data 3, 160087 (2016).MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive ‘acidified’ water onto the continental shelf. Science 320, 1490–1492 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 

    Google Scholar 
    Huys, R. & Boxshall, G. A. Copepod Evolution. (marinespecies.org, 1991).Langer, J. A. F. et al. Acclimation and adaptation of the coastal calanoid copepod Acartia tonsa to ocean acidification: a long-term laboratory investigation. Mar. Ecol. Prog. Ser. 619, 35–51 (2019).ADS 
    CAS 

    Google Scholar 
    Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Ann. Rev. Mar. Sci. 5, 349–370 (2013).PubMed 

    Google Scholar 
    De Wit, P., Dupont, S. & Thor, P. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol. Appl. 9, 1112–1123 (2016).PubMed 

    Google Scholar 
    Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Chang. Biol. 21, 2261–2271 (2015).ADS 
    PubMed 

    Google Scholar 
    Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180186 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).PubMed 

    Google Scholar 
    Mauchline, J. The Biology of Calanoid Copepods (Academic Press, 1998).Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).PubMed 

    Google Scholar 
    Gobler, C. J. & Baumann, H. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett. 12, 20150976 (2016).Rice, E., Dam, H. G. & Stewart, G. Impact of climate change on estuarine zooplankton: surface water warming in Long Island Sound is associated with changes in copepod size and community structure. Estuaries Coasts 38, 13–23 (2015).
    Google Scholar 
    IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 1454 (IPCC, 2014).Caldeira, K. & Wickett, M. E. Oceanography: anthropogenic carbon and ocean pH. Nature 425, 365 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Chang. 11, 780–786 (2021).ADS 

    Google Scholar 
    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barghi, N., Hermisson, J. & Schlötterer, C. Polygenic adaptation: a unifying framework to understand positive selection. Nat. Rev. Genet. 21, 769–781 (2020).CAS 
    PubMed 

    Google Scholar 
    Láruson, Á. J., Yeaman, S. & Lotterhos, K. E. The importance of genetic redundancy in evolution. Trends Ecol. Evol. 35, 809–822 (2020).PubMed 

    Google Scholar 
    Tobler, R. et al. Massive habitat-specific genomic response in D. melanogaster populations during experimental evolution in hot and cold environments. Mol. Biol. Evol. 31, 364–375 (2014).CAS 
    PubMed 

    Google Scholar 
    Belhadj Slimen, I. et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperth. 30, 513–523 (2014).CAS 

    Google Scholar 
    Downs, C. A. & Heckathorn, S. A. The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett. 430, 246–250 (1998).CAS 
    PubMed 

    Google Scholar 
    Harada, A. E., Healy, T. M. & Burton, R. S. Variation in thermal tolerance and its relationship to mitochondrial function across populations of Tigriopus californicus. Front. Physiol. 10, 213 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Chung, D. J. & Schulte, P. M. Mitochondria and the thermal limits of ectotherms. J. Exp. Biol. 223 (2020).Mathew, A. N. U. & Morimoto, R. I. Role of the heat-shock response in the life and death of proteins. Ann. N. Y. Acad. Sci. 851, 99–111 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Evans, T. G., Pespeni, M. H., Hofmann, G. E., Palumbi, S. R. & Sanford, E. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic. Mol. Ecol. 26, 2257–2275 (2017).CAS 
    PubMed 

    Google Scholar 
    Bailey, A. et al. Regulation of gene expression is associated with tolerance of the Arctic copepod Calanus glacialis to CO2-acidified sea water. Ecol. Evol. 7, 7145–7160 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Anjum, R. & Blenis, J. The RSK family of kinases: emerging roles in cellular signalling. Nat. Rev. Mol. Cell Biol. 9, 747–758 (2008).CAS 
    PubMed 

    Google Scholar 
    Marshall, D. J. Transgenerational plasticity in the sea: context-dependent maternal effects across the life history. Ecology 89, 418–427 (2008).PubMed 

    Google Scholar 
    Vehmaa, A., Brutemark, A. & Engström-Öst, J. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS ONE 7, e48538 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Skinner, M. K. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol. 25, 2–6 (2008).CAS 
    PubMed 

    Google Scholar 
    Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Chang. Biol. 25, 4147–4164 (2019).ADS 
    PubMed 

    Google Scholar 
    Sasaki, M. C. & Dam, H. G. Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short‐lived copepod. Ecol. Evol. 90, 193 (2020).
    Google Scholar 
    Ho, W.-C., Li, D., Zhu, Q. & Zhang, J. Phenotypic plasticity as a long-term memory easing readaptations to ancestral environments. Sci. Adv. 6, eaba3388 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caswell, H. Matrix population models. Encyclopedia of Environmetrics 3, https://doi.org/10.1002/9781118445112.stat07481 (2006).Huey, R. B., Wakefield, T., Crill, W. D. & Gilchrist, G. W. Within- and between-generation effects of temperature on early fecundity of Drosophila melanogaster. Heredity 74, 216–223 (1995). Pt 2.PubMed 

    Google Scholar 
    Zwaan, B., Bijlsma, R. & Hoekstra, R. F. Direct selection on life span in Drosophila melanogaster. Evolution 49, 649–659 (1995).PubMed 

    Google Scholar 
    Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359 (1990).ADS 

    Google Scholar 
    Jerison, E. R., Nguyen Ba, A. N., Desai, M. M. & Kryazhimskiy, S. Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat. Ecol. Evol. 4, 601–611 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Zhong, S., Khodursky, A., Dykhuizen, D. E. & Dean, A. M. Evolutionary genomics of ecological specialization. Proc. Natl Acad. Sci. USA 101, 11719–11724 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    MacLean, R. C., Bell, G. & Rainey, P. B. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc. Natl Acad. Sci. USA 101, 8072–8077 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bettencourt, B. R., Feder, M. E. & Cavicchi, S. Experimental evolution of HSP70 expression and thermotolerance in Drosophila melanogaster. Evolution 53, 484–492 (1999).CAS 
    PubMed 

    Google Scholar 
    Schaum, C.-E., Buckling, A., Smirnoff, N., Studholme, D. J. & Yvon-Durocher, G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat. Commun. 9, 1719 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Orr, H. A. Adaptation and the cost of complexity. Evolution 54, 13–20 (2000).CAS 
    PubMed 

    Google Scholar 
    Chen, P. & Zhang, J. Antagonistic pleiotropy conceals molecular adaptations in changing environments. Nat. Ecol. Evol. 4, 461–469 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mayor, D. J., Sommer, U., Cook, K. B. & Viant, M. R. The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Sci. Rep. 5, 13690 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pedersen, S. A. et al. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates. Environ. Sci. Technol. 48, 12275–12284 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bono, L. M., Smith, L. B. Jr, Pfennig, D. W. & Burch, C. L. The emergence of performance trade-offs during local adaptation: insights from experimental evolution. Mol. Ecol. 26, 1720–1733 (2017).PubMed 

    Google Scholar 
    Masel, J., King, O. D. & Maughan, H. The loss of adaptive plasticity during long periods of environmental stasis. Am. Nat. 169, 38–46 (2007).PubMed 

    Google Scholar 
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bay, R. A. et al. Predicting responses to contemporary environmental change using evolutionary response architectures. Am. Nat. 189, 463–473 (2017).PubMed 

    Google Scholar 
    Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).PubMed 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 

    Google Scholar 
    Feinberg, L. R. & Dam, H. G. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 175, 87–96 (1998).ADS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jørgensen, T. S. et al. The genome and mRNA transcriptome of the cosmopolitan calanoid copepod Acartia tonsa Dana improve the understanding of copepod genome size evolution. Genome Biol. Evol. https://doi.org/10.1093/gbe/evz067 (2019).Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 

    Google Scholar 
    Davidson, N. M., Hawkins, A. D. K. & Oshlack, A. SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes. Genome Biol. 18, 148 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2016).Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 14 (2016).PubMed 

    Google Scholar 
    Campbell-Staton, S. C., Velotta, J. P. & Winchell, K. M. Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands. Nat. Commun. 12, 6195 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics https://doi.org/10.1093/bioinformatics/btr521 (2011).Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Orozco-terWengel, P. et al. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Mol. Ecol. 21, 4931–4941 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Kofler, R. et al. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS ONE 6, e15925 (2011).ADS 
    CAS 

    Google Scholar 
    Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 16, 371 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2013).Therneau, T. A Package for Survival Analysis in S. version 2.38. (Mayo Foundation, 2015).Kassambara, A., Kosinski, M., Biecek, P. & Fabian, S. Package ‘survminer’. Drawing Survival Curves using ‘ggplot2’. (R package version 0. 3. 1.) (2017).Houde, S. E. L. & Roman, M. R. Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 40, 69–77 (1987).ADS 

    Google Scholar 
    Brennan, R. S. et al. Code repository for ‘Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod’. Zenodo https://doi.org/10.5281/zenodo.5840148 (2022). More

  • in

    Causal networks of phytoplankton diversity and biomass are modulated by environmental context

    Quantification of causal networksWe first compared the relative strengths of causal links across systems (Supplementary Fig. S3). Phytoplankton species richness was the major controlling factor for phytoplankton biomass (significant in 16 of 19 sites, Fig. 2a) in these diverse aquatic systems, consistent with experimental studies17. However, the averaged linkage strength for this effect was not significantly different from that of NO3 (i.e., BD → EF vs. NO3 → EF; permutation test P = 0.501), highlighting that nitrogen availability was equally important in affecting phytoplankton biomass in natural systems.Fig. 2: Relative strengths of various modules.Standardized linkage strengths of causal variables affecting (a) phytoplankton biomass and (b) species richness (here, BD) and loop weights for various types of (c) pairwise feedbacks and (d) triangular feedbacks. All statistics were calculated from the 19 independent sites (n = 19) and depicted as joint violins and box plots to present the empirical distribution that labels the maxima and minima at the top and bottom of the violins, respectively, and shows 25, 50, and 75% quantiles in the boxes with whiskers presenting at most 1.5 * interquartile range. The two numbers within the parentheses (S; R1) above each violin plot report the number of significant results in CCM (S; labeled blue) and the number of systems in which a particular module had the greatest strength (i.e., rank 1; R1; labeled red). Source data are provided as a Source Data file.Full size imageIn the opposite direction, phytoplankton biomass was a significant driver of phytoplankton species richness in most ecosystems (15 of 19 sites, Fig. 2b). However, NO3 more often had a stronger effect, appearing as the most important driver in 11 of 19 sites compared to phytoplankton biomass (4 of 19 sites) (Fig. 2b). Although the difference in effect strength was not significant (permutation test, P = 0.162), these results implicated nitrogen availability as an essential determinant affecting both phytoplankton diversity and biomass. As a sensitivity test, we also examined the effects of Shannon diversity. The results suggest that the importance of nutrients is robust to the use of other diversity indexes (e.g., Shannon diversity in Supplementary Fig. S4), although the causal effects from phytoplankton biomass became relatively more important compared to biomass effects on species richness (Fig. 2b). Based on these findings, we inferred that processes influencing nutrients (e.g., external loadings and internal cycling38) need to be considered when investigating aquatic biodiversity. Changes in those processes (e.g., climatic39 or anthropogenic40 driven nutrient changes) may indeed substantially impact phytoplankton biodiversity, and subsequent ecosystem functioning.The importance of NO3 uncovered in our analyses might not be a counter-intuitive result, as many systems analyzed in this study were P-rich. For instance, the average phosphate concentration was 57.5 and 41.7 μgP/L for Lake Mendota (Me) and Lake Monona (Mo) (Supplementary Table S1), respectively. In addition, there were also high total phosphorus (TP) concentrations in shallow lake systems, e.g., average TP was 106.1, 112.5, and 126.4 μgP/L in Lake Inba (Ib), Lake Kasumigaura (Ks), and Müggelsee (Mu), respectively. Phosphorus was not always a limiting factor in eutrophic and mesotrophic systems, e.g., Lake Kasumigaura41 and Lake Geneva (Gv)42. In addition, nitrogen was deficient and limited cyanobacteria bloom in Müggelsee (Mu)43. Nonetheless, we cannot exclude the possibility of colimitation44 in N and P and the possibility that P availability also depends on N45, which warrants further investigation.Apart from nutrients and temperature, the causal effects of other important drivers on phytoplankton biomass and diversity were also examined, though not in all 19 systems due to data limitation. The causal effects of physical environmental factors, such as irradiance and water column stability, were presented in Supplementary Fig. S5; the results indicated that the quantified causal strengths on average were not as strong as the effects of diversity and nutrients. Moreover, the effects of consumers (e.g., zooplankton), which have been suggested as important drivers affecting species diversity of phytoplankton communities46, were also examined. Based on our analysis of zooplankton, the causal effects of herbivorous crustaceans on phytoplankton biomass and diversity were significant in most of the analyzed systems. However, these effects were on average not as strong as the effects of phytoplankton diversity and nutrients, respectively (Supplementary Fig. S6). Nonetheless, these findings were not generalized to all 19 systems due to a lack of complete datasets as shown in Supplementary Table S3, and thus warrant more detailed investigation in future studies.In addition to individual causal effects, we investigated feedbacks across systems. Pairwise feedbacks (e.g., BD ↔ EF and NO3 ↔ EF) were common (Fig. 2c). However, the averaged linkage strength was often stronger in one direction when involving BD (Fig. 3). Specifically, the average strength of BD → EF was stronger than for the opposite direction of EF → BD (permutation test P = 0.015); BD → EF was stronger than EF → BD in 14 of the 19 systems (Fig. 3). In addition, biodiversity effects on nutrients (BD → NO3 and BD → PO4) were also stronger than their reversed effects (NO3 → BD and PO4 → BD) in 12 and 13 systems, respectively. In comparison, the interactions between nutrients and productivity were more symmetrical: nutrient effects on biomass (NO3 → EF and PO4 → EF) were stronger than biomass effects on nutrients (EF → NO3 and EF → PO4) in only 9 and 8 of 19 systems, respectively. These results supported the previous findings8 that biodiversity effects more often operate at short-term scales, which makes effects more observable in our monthly-scale analyses than feedback effects on diversity, which are expected to occur on a more prolonged timescale, e.g., through slowly changing nutrient cycling31 or decomposition47. Nevertheless, the timescale dependence of causal interactions in ecosystem networks is a topic that needs further study.Fig. 3: Directional bias in pairwise feedbacks.The difference in standardized linkage strengths between the two directions was computed for each pairwise feedback and depicted as joint violin and box plots. All statistics were calculated from the 19 independent sites (n = 19) and depicted as joint violins and box plots to present the empirical distribution that labels the maxima and minima at the top and bottom of the violins, respectively, and shows 25, 50, and 75% quantiles in the boxes with whiskers presenting at most 1.5 * interquartile range. The number above the plot indicates the number of systems with a positive difference in linkage strength. For example, BD → EF was stronger than its feedback, EF → BD, in 14 of the systems. In general, the strength of diversity effects (BD → EF, BD → NO3, BD → PO4) was usually stronger than feedback effects (EF → BD, NO3 → BD, PO4 → BD). Source data are provided as a Source Data file.Full size imageSubsequently, we quantified the strengths of pairwise feedbacks as the geometric mean of the linkage strengths in each direction, following a previous study9 (see more details in Methods). Among these feedbacks (Fig. 2c and Supplementary Fig. S7), BD ↔ NO3 had the highest median and average strength (0.78 and 0.68, respectively) across systems. However, strengths of BD ↔ NO3 were highly variable among systems (large interquartile range in Fig. 2c), and thus were only significant in 11 of 19 systems, compared to BD ↔ EF (15 of 19 systems). These findings reinforced the importance of nutrients as key determinants for aquatic biodiversity and implied that nutrient effects are context-dependent. In other words, BD ↔ NO3 was less common than BD ↔ EF across systems, despite its stronger average strength. The prevalence of BD ↔ EF indicated a need for more long-term experiments and process-based/theoretical modeling accounting for bidirectional interactions between diversity and biomass16, because bidirectional interactions and feedbacks may challenge our simple predictions for ecosystem dynamics, based on knowledge of unidirectional interactions30.Quantification of the causal network also allowed us to analyze triangular feedbacks. Within the conceptual framework of Fig. 1b, there are four kinds of triangular feedbacks involving biodiversity, ecosystem functioning, and either nitrate or phosphate (Type I: BD → EF → NO3 and BD → EF → PO4; Type II: EF → BD → NO3 and EF → BD → PO4). There was at least one significant triangular feedback in 14 of 19 sites (Fig. 2d). More specifically, NO3-associated feedbacks (Type I-N and Type II-N) were usually stronger than PO4-associated feedbacks (Type I-P and Type II-P) (Fig. 2d), although the difference in strength among the four types of feedbacks was not significant (Fig. 2d; Kruskal–Wallis test, P = 0.59). The dominance of NO3-associated feedbacks in our study was attributed to many of the sites being marine and eutrophic lakes, which are likely to be N-limited due to an imbalance in external loadings48 or strong denitrification49. Among both NO3- and PO4-associated feedbacks, there were no significant differences in strength between Type I and Type II feedbacks (Supplementary Fig. S7), suggesting that biodiversity can directly influence biomass (Type I), as well as through a pathway that involves endogenous nutrient variables (Type II) and eventually feeds back on itself.Causal networks under environmental contextsOur empirical analyses revealed state dependency of the causal links and feedbacks among biodiversity, biomass, and environmental factors in natural systems; that is, their strengths were highly dependent on the state of other variables. Based on a cross-system comparison (Methods), strengths of individual links (e.g., BD → EF), pairwise feedbacks (e.g., BD ↔ EF), and triangular feedbacks (e.g., BD → EF → NO3 → BD) varied systematically, depending on environmental characteristics (Fig. 4 and Supplementary Fig. S8). Ecosystems with higher species diversity (long-term average species richness) and lower average PO4 concentrations had stronger BD → EF links (Fig. 4a; correlation coefficient r = 0.600 and −0.513; P = 0.007 and 0.025 for species diversity and PO4, respectively). These results were further confirmed by stepwise regression, indicating that the ecosystems characterized by higher diversity, lower average temperature, and oligotrophic conditions had stronger BD → EF (best-fit regression model: BD → EF strength = 0.663 + 0.171*BD − 0.139*T − 0.096*PO4; F3, 15 = 9.958 and P  More