More stories

  • in

    Hunting alters viral transmission and evolution in a large carnivore

    1.Packer, C. et al. Sport hunting, predator control and conservation of large carnivores. PLoS ONE 4, e5941 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    2.Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).CAS 
    PubMed 

    Google Scholar 
    3.Treves, A. Hunting for large carnivore conservation. J. Appl. Ecol. 46, 1350–1356 (2009).
    Google Scholar 
    4.Milner-Gulland, E. J. et al. Reproductive collapse in saiga antelope harems. Nature 422, 135 (2003).CAS 
    PubMed 

    Google Scholar 
    5.Bischof, R. et al. Implementation uncertainty when using recreational hunting to manage carnivores. J. Appl. Ecol. 49, 824–832 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    6.Booth, V. R., Masonde, J., Simukonda, C. & Cumming, D. H. M. Managing hunting quotas of African lions (Panthera leo): a case study from Zambia. J. Nat. Conserv. 55, 125817 (2020).
    Google Scholar 
    7.Potapov, A., Merrill, E. & Lewis, M. A. Wildlife disease elimination and density dependence. Proc. R. Soc. B 279, 3139–3145 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    8.Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20, 511–519 (2005).
    Google Scholar 
    9.Beeton, N. & McCallum, H. Models predict that culling is not a feasible strategy to prevent extinction of Tasmanian devils from facial tumour disease. J. Appl. Ecol. 48, 1315–1323 (2011).
    Google Scholar 
    10.Choisy, M. & Rohani, P. Harvesting can increase severity of wildlife disease epidemics. Proc. R. Soc. B 273, 2025–2034 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    11.Allendorf, F. W. & Hard, J. J. Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc. Natl Acad. Sci. USA 106, 9987–9994 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).PubMed 

    Google Scholar 
    13.Woodroffe, R. et al. Culling and cattle controls influence tuberculosis risk for badgers. Proc. Natl Acad. Sci. USA 103, 14713–14717 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Carr, A. N. et al. Wildlife Management Practices Associated with Pathogen Exposure in Non-native Wild Pigs in Florida, U.S. (USDA National Wildlife Research Center, 2019).15.Woodroffe, R., Cleaveland, S., Courtenay, O., Laurenson, M. K. & Artois, M. in The Biology and Conservation of Wild Canids 123–142 (Oxford Univ. Press, 2004).16.Carter, S. P. et al. Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proc. R. Soc. B 274, 2769–2777 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    17.Silk, M. J. et al. Contact networks structured by sex underpin sex-specific epidemiology of infection. Ecol. Lett. 21, 309–318 (2018).PubMed 

    Google Scholar 
    18.Silk, M. J. et al. The application of statistical network models in disease research. Methods Ecol. Evol. 8, 1026–1041 (2017).
    Google Scholar 
    19.Morters, M. K. et al. Evidence-based control of canine rabies: a critical review of population density reduction. J. Anim. Ecol. 82, 6–14 (2013).PubMed 

    Google Scholar 
    20.Lachish, S., McCallum, H., Mann, D., Pukk, C. E. & Jones, M. E. Evaluation of selective culling of infected individuals to control Tasmanian Devil facial tumor disease. Conserv. Biol. 24, 841–851 (2010).PubMed 

    Google Scholar 
    21.Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).CAS 
    PubMed 

    Google Scholar 
    22.Didelot, X., Fraser, C., Gardy, J. & Colijn, C. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 34, msw075 (2017).
    Google Scholar 
    23.Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Logan, K. A. & Runge, J. P. et al. Effects of hunting on a puma population in Colorado. Wildl. Monogr. 209, 1–35 (2020).
    Google Scholar 
    25.Biek, R., Pybus, O. G., Lloyd-Smith, J. O. & Didelot, X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30, 306–313 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    26.Pybus, O. G., Tatem, A. J. & Lemey, P. Virus evolution and transmission in an ever more connected world. Proc. R. Soc. B 282, 20142878 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Woolhouse, M. E. J., Adair, K. & Brierley, L. RNA viruses: a case study of the biology of emerging infectious diseases. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.oh-0001-2012 (2021).28.Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Fountain-Jones, N. M. et al. Towards an eco-phylogenetic framework for infectious disease ecology. Biol. Rev. 93, 950–970 (2018).PubMed 

    Google Scholar 
    30.Webb, C. O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145–155 (2000).PubMed 

    Google Scholar 
    31.Biek, R. et al. Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J. Virol. 77, 9578–9589 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Pedersen, N. C., Yamamoto, J. K., Ishida, T. & Hansen, H. Feline immunodeficiency virus infection. Vet. Immunol. Immunopathol. 21, 111–129 (1989).CAS 
    PubMed 

    Google Scholar 
    33.Malmberg, J. L. et al. Altered lentiviral infection dynamics follow genetic rescue of the Florida panther. Proc. R. Soc. B 286, 20191689 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    34.Elbroch, L. M., Levy, M., Lubell, M., Quigley, H. & Caragiulo, A. Adaptive social strategies in a solitary carnivore. Sci. Adv. 3, e1701218 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    35.Sweanor, L. L., Logan, K. A. & Hornocker, M. G. Cougar dispersal patterns, metapopulation dynamics, and conservation. Conserv. Biol. 14, 798–808 (2000).
    Google Scholar 
    36.Fountain-Jones, N. M. et al. Linking social and spatial networks to viral community phylogenetics reveals subtype-specific transmission dynamics in African lions. J. Anim. Ecol. 86, 1469–1482 (2017).PubMed 

    Google Scholar 
    37.Gilbertson, M. L. J. et al. Transmission of one predicts another: apathogenic proxies for transmission dynamics of a fatal virus. Preprint at bioRxiv https://doi.org/10.1101/2021.01.09.426055 (2021).38.Fountain-Jones, N. M. et al. Host relatedness and landscape connectivity shape pathogen spread in a large secretive carnivore. Commun. Biol. 4, 12 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    39.Hornocker, M. G. & Negri, S. Cougar: Ecology and Conservation (Univ. Chicago Press, 2010).40.Moss, W. E., Alldredge, M. W. & Pauli, J. N. Quantifying risk and resource use for a large carnivore in an expanding urban-wildland interface. J. Appl. Ecol. 53, 371–378 (2016).
    Google Scholar 
    41.Trumbo, D. et al. Urbanization impacts apex predator gene flow but not genetic diversity across an urban-rural divide. Mol. Ecol. 28, 4926–4940 (2019).CAS 
    PubMed 

    Google Scholar 
    42.VandeWoude, S. & Apetrei, C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin. Microbiol. Rev. 19, 728–762 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Logan, K. A. & Sweanor, L. L. Desert Puma: Evolutionary Ecology and Conservation of an Enduring Carnivore (Island Press, 2001).44.Krakoff, E., Gagne, R. B., VandeWoude, S. & Carver, S. Variation in intra-individual lentiviral evolution rates: a systematic review of human, nonhuman primate, and felid species. J. Virol. https://doi.org/10.1128/JVI.00538-19 (2019).45.Volz, E. M. & Didelot, X. Modeling the growth and decline of pathogen effective population size provides insight into epidemic dynamics and drivers of antimicrobial resistance. Syst. Biol. 67, 719–728 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    46.Murrell, B. et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Kenyon, J. C. & Lever, A. M. L. The molecular biology of feline immunodeficiency virus (FIV). Viruses 3, 2192–2213 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Tamuri, A. U., dos Reis, M., Hay, A. J. & Goldstein, R. A. Identifying changes in selective constraints: host shifts in influenza. PLoS Comput. Biol. 5, e1000564 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Forni, D., Cagliani, R., Clerici, M. & Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25, 35–48 (2017).CAS 
    PubMed 

    Google Scholar 
    50.Fountain-Jones, N. M. et al. Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore. Mol. Ecol. 26, 6487–6498 (2017).PubMed 

    Google Scholar 
    51.Kozakiewicz, C. P. et al. Pathogens in space: advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol. Appl. 11, 1763–1778 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    52.McDonald, J. L., Smith, G. C., McDonald, R. A., Delahay, R. J. & Hodgson, D. Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife–disease interactions. Proc. R. Soc. B 281, 20140526 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    53.Gilbertson, M. L. J., Fountain-Jones, N. M. & Craft, M. E. Incorporating genomic methods into contact networks to reveal new insights into animal behaviour and infectious disease dynamics. Behaviour 155, 759–791 (2018).PubMed 

    Google Scholar 
    54.Alldredge, M. W., Blecha, T. & Lewis, J. H. Less invasive monitoring of cougars in Colorado’s front range. Wildl. Soc. Bull. 43, 222–230 (2019).
    Google Scholar 
    55.Lewis, J. S. et al. The effects of urbanization on population density, occupancy, and detection probability of wild felids. Ecol. Appl. 25, 1880–1895 (2015).PubMed 

    Google Scholar 
    56.Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).57.Didelot, X., Kendall, M., Xu, Y., White, P. J. & McCarthy, N. Genomic epidemiology analysis of infectious disease outbreaks using TransPhylo. Curr. Protoc. 1, e60 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    58.Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. statnet: software tools for the representation, visualization, analysis and simulation of network data. J. Stat. Softw. 24, 1548 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    59.Wertheim, J. O., Murrell, B., Smith, M. D., Pond, S. L. K. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2015).CAS 
    PubMed 

    Google Scholar 
    60.Kosakovsky Pond, S. L. et al. A random effects branch-site model for detecting episodic diversifying selection. Mol. Biol. Evol. 28, 3033–3043 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Weaver, S. et al. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Gill, M. S., Lemey, P., Bennett, S. N., Biek, R. & Suchard, M. A. Understanding past population dynamics: Bayesian coalescent-based modeling with covariates. Syst. Biol. 65, 1041–1056 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    63.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Google Scholar 
    64.Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).
    Google Scholar 
    65.Fountain-Jones, N. nfj1380/Transmission-dynamics_huntingPumaFIV: (Puma-FIV_transmissionDynamics) (Zenodo, 2021); https://doi.org/10.5281/zenodo.560216266.Fountain-Jones, N. et al. Emerging phylogenetic structure of the SARS-CoV-2 pandemic. Virus Evol. 6, veaa082 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    67.Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789 (2016).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Hunting shapes wildlife disease transmission

    1.Wobeser, G. Rev. Sci. Tech. 21, 159–178 (2002).CAS 
    Article 

    Google Scholar 
    2.Fountain-Jones, N. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/10.1038/s41559-021-01635-5 (2021).Article 

    Google Scholar 
    3.Lloyd-Smith, J. O. et al. Trends Ecol. Evol. 20, 511–519 (2005).Article 

    Google Scholar 
    4.Woodroffe, R. et al. Proc. Natl Acad. Sci. USA 103, 14713–14717 (2006).CAS 
    Article 

    Google Scholar 
    5.Ham, C., Donnelly, C. A., Astley, K. L., Jackson, S. Y. B. & Woodroffe, R. J. Appl. Ecol. 56, 2390–2399 (2019).Article 

    Google Scholar 
    6.Logan, K. A. & Runge, J. P. Wildl. Monogr. 209, 1–35 (2021).Article 

    Google Scholar 
    7.Fountain-Jones, N. M. et al. Commun. Biol. 4, 12 (2021).Article 

    Google Scholar  More

  • in

    Reply to: Do not downplay biodiversity loss

    1.Loreau, M. et al. Do not downplay biodiversity loss. Nature https://doi.org/10.1038/s41586-021-04179-7 (2022).2.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).Article 

    Google Scholar 
    4.Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Divers. Distrib. 23, 1372–1380 (2017).Article 

    Google Scholar 
    5.Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Murali, G. et al. Emphasizing declining populations in the Living Planet Report. Nature https://doi.org/10.1038/s41586-021-04165-z (2022).7.Leung, B., et al. Reply to: Emphasizing declining populations in the Living Planet Report. Nature https://doi.org/10.1038/s41586-021-04166-y (2022).8.Dornelas, M., et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).Article 

    Google Scholar 
    9.Hilborn, R. Faith based fisheries. Fisheries 31, 554–555 (2006).
    Google Scholar  More

  • in

    Reply to: Emphasizing declining populations in the Living Planet Report

    Department of Biology, McGill University, Montreal, Quebec, CanadaBrian Leung & Anna L. HargreavesBieler School of Environment, McGill University, Montreal, Quebec, CanadaBrian LeungDepartment of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaDan A. GreenbergSchool of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USABrian McGillCentre for Biological Diversity, University of St Andrews, St Andrews, UKMaria DornelasIndicators and Assessments Unit, Institute of Zoology, Zoological Society of London, London, UKRobin FreemanB.L. wrote the response. A.C.H. and D.A.G. helped with writing, editing and discussing ideas. B.M. and M.D. discussed ideas with some editing. R.F. contributed discussions to the original manuscript2. More

  • in

    Reply to: The Living Planet Index does not measure abundance

    Department of Biology, McGill University, Montreal, Quebec, CanadaBrian Leung & Anna L. HargreavesBieler School of Environment, McGill University, Montreal, Quebec, CanadaBrian LeungDepartment of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaDan A. GreenbergSchool of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USABrian McGillCentre for Biological Diversity, University of St Andrews, St Andrews, UKMaria DornelasIndicators and Assessments Unit, Institute of Zoology, Zoological Society of London, London, UKRobin FreemanB.L. wrote the response. A.L.H. and D.A.G. helped with writing, editing and discussing ideas. B.M., M.D. and R.F. discussed ideas and did some editing. More

  • in

    Reply to: Shifting baselines and biodiversity success stories

    Cite this articleLeung, B., Hargreaves, A.L., Greenberg, D.A. et al. Reply to: Shifting baselines and biodiversity success stories.
    Nature 601, E19 (2022). https://doi.org/10.1038/s41586-021-03749-zDownload citationPublished: 26 January 2022Issue Date: 27 January 2022DOI: https://doi.org/10.1038/s41586-021-03749-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Do not downplay biodiversity loss

    1.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    2.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).Article 

    Google Scholar 
    3.Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    4.Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity in decline or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    5.Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).Article 

    Google Scholar 
    6.Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 

    Google Scholar 
    8.Scholes, R. J. et al. Toward a global biodiversity observing system. Science 321, 1044–1045 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    The Living Planet Index does not measure abundance

    1.Almond, R. E. A., Grooten, M. & Petersen, T. (eds) Living Planet Report 2020 – Bending the Curve of Biodiversity Loss (WWF, 2020).2.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    3.Buckland, S. T., Studeny, A. C., Magurran, A. E., Illian, J. B. & Newson, S. E. The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere 2, 1–15 (2011).Article 

    Google Scholar 
    4.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).Article 

    Google Scholar 
    5.Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Divers. Distrib. 23, 1372–1380 (2017).Article 

    Google Scholar 
    6.Marconi, V., McRae, L., Deinet, S., Ledger, S. & Freeman, F. in Living Planet Report 2020 – Bending the Curve of Biodiversity Loss (eds Almond, R. E. A., Grooten, M. & Petersen, T.) (WWF, 2020).7.Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    8.Daskalova, G. N. et al. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368, 1341–1347 (2020).CAS 
    Article 
    ADS 

    Google Scholar 
    9.IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).10.van Strien, A. J., Soldaat, L. L. & Gregory, R. D. Desirable mathematical properties of indicators for biodiversity change. Ecol. Indic. 14, 202–208 (2012).Article 

    Google Scholar  More