Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti
1.Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).PubMed
PubMed Central
Google Scholar
2.W. H. O. Multisectoral approach to the prevention and control of vector-borne diseases (2020).3.Ryan, S. J. et al. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Change Biol. 27, 84–93 (2021).
Google Scholar
4.Iwamura, T., Guzman-Holst, A. & Murray, K. A. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat. Commun. 11, 2130 (2020).CAS
PubMed
PubMed Central
Google Scholar
5.Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).PubMed
Google Scholar
6.Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, 1–67 (2020).
Google Scholar
7.Couret, J., Dotson, E. & Benedict, M. Q. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE 9, 1–9 (2014).
Google Scholar
8.Barreaux, A. M. G., Stone, C. M., Barreaux, P. & Koella, J. C. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasites Vectors 11, 485 (2018).PubMed
PubMed Central
Google Scholar
9.Huxley, P. J., Murray, K. A., Pawar, S. & Cator, L. J. The effect of resource limitation on the temperature dependence of mosquito population fitness. Proc. R. Soc. B: Biol. Sci. 288, rspb.2020.3217 (2021).10.Ostfeld, R. S. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).CAS
PubMed
Google Scholar
11.Beltran, R. S. et al. Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proc. R. Soc. B: Biol. Sci. 288, rspb.2020.2817 (2021).12.Yang, L. H., Bastow, J. L., Spence, K. O. & Wright, A. N. What can we learn from resource pulses? Ecology 89, 621–634 (2008).PubMed
Google Scholar
13.Dye, C. Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J. Animal Ecol. 53, 247 (1984).
Google Scholar
14.Southwood, T. R., Murdie, G., Yasuno, M., Tonn, R. J. & Reader, P. M. Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull. World Health Organ. 46, 211–226 (1972).CAS
PubMed
PubMed Central
Google Scholar
15.Arrivillaga, J. & Barrera, R. Food as a limiting factor for Aedes aegypti in water-storage containers. J. Vector Ecol. 29, 11–20 (2004).PubMed
Google Scholar
16.Barrera, R., Amador, M. & Clark, G. G. Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J. Med. Entomol. 43, 484–492 (2006).PubMed
Google Scholar
17.Yee, D. A. & Juliano, S. A. Concurrent effects of resource pulse amount, type, and frequency on community and population properties of consumers in detritus-based systems. Oecologia 169, 511–522 (2012).PubMed
Google Scholar
18.Subra, R. & Mouchet, J. The regulation of preimaginal populations of Aedes aegypti (L.) (Diptera: Culicidae) on the Kenya coast. Ann. Trop. Med. Parasitol. 78, 63–70 (1984).CAS
PubMed
Google Scholar
19.Amarasekare, P. & Savage, V. A framework for elucidating the temperature dependence of fitness. Am. Nat. 179, 178–191 (2012).PubMed
Google Scholar
20.Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, 6 (2019).21.García-Carreras, B. et al. Role of carbon allocation efficiency in the temperature dependence of autotroph growth rates. Proc. Natl Acad. Sci. USA 115, E7361–E7368 (2018).PubMed
PubMed Central
Google Scholar
22.Smith, T. P., Clegg, T., Bell, T. & Pawar, S. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 24, 2123–2133 (2021).PubMed
Google Scholar
23.Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).
Google Scholar
24.Amarasekare, P. Effects of climate warming on consumer-resource interactions: a latitudinal perspective. Front. Ecol. Evol. 7, 1–15 (2019).25.Amarasekare, P. & Simon, M. W. Latitudinal directionality in ectotherm invasion success. Proc. R. Soc. B: Biol. Sci. 287, 20191411 (2020).
Google Scholar
26.Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).CAS
PubMed
Google Scholar
27.Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Change Biol. 21, 1025–1040 (2015).
Google Scholar
28.Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).PubMed
PubMed Central
Google Scholar
29.Thomas, M. K. et al. Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).
Google Scholar
30.Siegel, P., Baker, K. G., Low‐Décarie, E. & Geider, R. J. High predictability of direct competition between marine diatoms under different temperatures and nutrient states. Ecol. Evol. 10, 7276–7290 (2020).PubMed
PubMed Central
Google Scholar
31.Bestion, E., García-Carreras, B., Schaum, C.-E., Pawar, S. & Yvon-Durocher, G. Metabolic traits predict the effects of warming on phytoplankton competition. Ecol. Lett. 21, 655–664 (2018).PubMed
PubMed Central
Google Scholar
32.Jackson, C. flexsurv: A Platform for Parametric Survival Modeling in R. J. Stat. Softw. 70, 1–33 (2016).
Google Scholar
33.Bellows, T. S. The descriptive properties of some models for density dependence. J. Animal Ecol. 50, 139–156 (1981).
Google Scholar
34.Orcutt, J. D. & Porter, K. G. The synergistic effects of temperature and food concentration of life history parameters of Daphnia. Oecologia 63, 300–306 (1984).PubMed
Google Scholar
35.Huey, R. B. & Berrigan, D. Temperature, demography, and ectotherm fitness. Am. Nat. 158, 204–210 (2001).CAS
PubMed
Google Scholar
36.Caswell, H. A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor. Popul. Biol. 14, 215–230 (1978).CAS
PubMed
Google Scholar
37.Kammenga, J. E., Busschers, M., Straalen, N. M., Van, Jepson, P. C. & Bakker, J. Stress induced fitness reduction is not determined by the most sensitive life-cycle trait. Funct. Ecol. 10, 106 (1996).
Google Scholar
38.Cator, L. J. et al. The role of vector trait variation in vector-borne disease dynamics. Front. Ecol. Evol. 8, 1–25 (2020).
Google Scholar
39.Juliano, S. A. Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology 79, 255 (1998).
Google Scholar
40.Shapiro, L. L. M., Murdock, C. C., Jacobs, G. R., Thomas, R. J. & Thomas, M. B. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proc. R. Soc. B: Biol. Sci. 283, 20160298 (2016).
Google Scholar
41.Carvajal-Lago, L., Ruiz-López, M. J., Figuerola, J. & Martínez-de la Puente, J. Implications of diet on mosquito life history traits and pathogen transmission. Environ. Res. 195, 110893 (2021).CAS
PubMed
Google Scholar
42.Reiner, R. C. et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010. J. R. Soc. Interface 10, 20120921–20120921 (2013).PubMed
PubMed Central
Google Scholar
43.Farjana, T., Tuno, N. & Higa, Y. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Med.Vet. Entomol. 26, 210–217 (2012).CAS
PubMed
Google Scholar
44.Kooijman, S. A. L. M. Dynamic energy and mass budgets in biological systems. (Cambridge University Press, 2000).45.Merritt, R. W., Dadd, R. H. & Walker, E. D. Feeding behaviour, natural food, and nutritional relationships and larval mosquitoes. Annu. Rev. Entomol. 37, 349–376 (1992).46.Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857 (2010).CAS
Google Scholar
47.Smith, T. P. et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat. Commun. 10, 5124 (2019).PubMed
PubMed Central
Google Scholar
48.Yee, D. A., Kaufman, M. G. & Juliano, S. A. The significance of ratios of detritus types and micro-organism productivity to competitive interactions between aquatic insect detritivores. J. Animal Ecol. 76, 1105–1115 (2007).
Google Scholar
49.Chouaia, B. et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 12, S2 (2012).CAS
PubMed
PubMed Central
Google Scholar
50.Souza, R. S. et al. Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Front. Physiol. 10, 1–24 (2019).
Google Scholar
51.Dickson, L. B. et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 3, e1700585 (2017).PubMed
PubMed Central
Google Scholar
52.Hery, L. et al. Natural variation in physicochemical profiles and bacterial communities associated with Aedes aegypti breeding sites and larvae on Guadeloupe and French Guiana. Microbial Ecol. 81, 93–109 (2021).CAS
Google Scholar
53.Liikanen, A., Murtoniemi, T., Tanskanen, H., Väisänen, T. & Martikainen, P. J. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 59, 269–286 (2002).CAS
Google Scholar
54.Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).CAS
PubMed
PubMed Central
Google Scholar
55.Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS
Google Scholar
56.Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).
Google Scholar
57.Steinwascher, K. Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti. Environ. Entomol. 11, 150–153 (1982).
Google Scholar
58.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS
PubMed
Google Scholar
59.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol., Evol. Syst. 37, 637–669 (2006).
Google Scholar
60.Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).PubMed
PubMed Central
Google Scholar
61.Bargielowski, I. E., Lounibos, L. P. & Carrasquilla, M. C. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proc. Natl Acad. Sci. USA 110, 2888–2892 (2013).CAS
PubMed
PubMed Central
Google Scholar
62.Arguez, A. et al. NOAA’s 1981–2010 U.S. climate normals: an overview. Bull. Am. Meteorol. Soc. 93, 1687–1697 (2012).
Google Scholar
63.Caswell, H. Matrix population models construction, analysis, and interpretation. Nat. Resource Model. (Sinauer Associates, 1989).64.Birch, L. C. The intrinsic rate of natural increase of an insect population. J. Animal Ecol. 17, 15 (1948).
Google Scholar
65.Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).CAS
PubMed
Google Scholar
66.R. Core Team. R: A language and environment for statistical computing. (2018).67.Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio Package in R. J. Stat. Softw. 22, 1–23 (2007).
Google Scholar
68.Therneau, T. A Package for Survival Analysis in R. (2021).69.Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27, 396–402 (2002).
Google Scholar
70.Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483 (1993).
Google Scholar
71.Livdahl, T. P. & Sugihara, G. Non-linear interactions of populations and the importance of estimating per capita rates of change. J. Animal Ecol. 53, 573 (1984).
Google Scholar
72.Juliano, S. A. & Lounibos, L. P. Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol. Lett. 8, 558–574 (2005).PubMed
PubMed Central
Google Scholar
73.van den Heuvel, M. J. The effect of rearing temperature on the wing length, thorax length, leg length and ovariole number of the adult mosquito, Aedes aegypti (L.). Trans. R. Entomol. Soc. Lond. 115, 197–216 (1963).
Google Scholar
74.Farjana, T. & Tuno, N. Effect of body size on multiple blood feeding and egg retention of Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae). Med. Entomol. Zool. 63, 123–131 (2012).
Google Scholar
75.Skalski, J. R., Millspaugh, J. J., Dillingham, P. & Buchanan, R. A. Calculating the variance of the finite rate of population change from a matrix model in Mathematica. Environ. Model. Softw. 22, 359–364 (2007).
Google Scholar
76.Hope, R. M. Rmisc: Rmisc: Ryan Miscellaneous. (2013).77.Caswell, H., Naiman, R. J. & Morin, R. Evaluating the consequences of reproduction in complex salmonid life cycles. Aquaculture 43, 123–134 (1984).
Google Scholar
78.de Kroon, H., Plaisier, A., van Groenendael, J. & Caswell, H. Elasticity: the relative contribution of demographic parameters to population growth rate. Ecology 67, 1427–1431 (1986).
Google Scholar
79.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Statist. Softw. 67, (2015).80.Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: a new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 12, 1138–1143 (2021).
Google Scholar
81.Lactin, D. J., Holliday, N. J., Johnson, D. L. & Craigen, R. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68–75 (1995).
Google Scholar
82.Kamykowski, D. & McCollum, S. A. The temperature acclimatized swimming speed of selected marine dinoflagellates. J. Plankton Res. 8, 275–287 (1986).
Google Scholar More