More stories

  • in

    Fishing activity before closure, during closure, and after reopening of the Northeast Canyons and Seamounts Marine National Monument

    Data and softwareThis analysis used two main data sources: (1) annual (through 2020) summaries of landings by species and by region provided by the Atlantic Coastal Cooperative Statistics Program (ACCSP), and (2) vessel-tracking data provided by Global Fishing Watch. The ACCSP is a cooperative state-federal program of U.S. states and the District of Columbia; it was established in 1995 to be the principal source of fisheries-dependent information on the Atlantic Coast of the United States. For the ACCSP data, I obtained annual landings by species for the North Atlantic region, Mid Atlantic region, and South Atlantic region (excluding landings from the Gulf of Mexico). The weekly cumulative landings data was obtained from the NOAA Fisheries Greater Atlantic Quota Monitoring website. Global Fishing Watch is an organization that provides access to information on commercial fishing activities, in particular information on the identity and location of fishing vessels34. Many large vessels use a system known as the Automatic Identification System (AIS) to avoid collisions at sea, broadcast their location to port authorities and other vessels, and to view other vessels in their vicinity. Vessels fitted with AIS transceivers can be observed by AIS base stations and by satellites fitted with AIS receivers. The US Coast Guard requires all vessels larger than 65 feet to have an AIS receiver onboard. Global Fishing Watch obtains AIS data for fishing vessels and enables users with Internet access to monitor fishing activity globally, and to view individual vessel tracks. They also partner with academic researchers to provide more fine-scale data.To obtain the vessel-tracking data for the relevant fisheries, I reviewed NOAA databases of squid and mackerel permits (2019 version; vessels with squid permits are automatically issued a Butterfish permit), and the Atlantic tuna permits (2020 version) and matched each permitted vessel to its unique Maritime Mobile Service Identity (MMSI) number, which is associated with Global Fishing Watch tracking information. I was able to identify 84% (187/224) of squid/butterfish permitted vessels (I focused on the SMB1A (Tier 1) permit category associated with the vast majority ( approx. 99%) of squid catch35), 100% of Tier 1 and Tier 2 mackerel-permitted vessels (56/56 vessels), and 74% of active tuna longline vessels (100/135 vessels). “Active” is defined as having reported successfully setting pelagic longline gear at least once between 2006 and 201236. This translates to a total of 17.55 million observations on fishing vessel locations for all three fisheries. I drop any observations that are missing either a latitude or longitude entry. For the squid and mackerel fisheries, I drop any observations with unusual longitudes ((ge 0^{circ }) and ( More

  • in

    Iterative data-driven forecasting of the transmission and management of SARS-CoV-2/COVID-19 using social interventions at the county-level

    1.Ebrahim, S. H., Ahmed, Q. A., Gozzer, E., Schlagenhauf, P. & Memish, Z. A. Covid-19 and community mitigation strategies in a pandemic. BMJ 368, m1066. https://doi.org/10.1136/bmj.m1066 (2020).Article 
    PubMed 

    Google Scholar 
    2.Ebrahim, S. H. et al. All hands on deck: A synchronized whole-of-world approach for COVID-19 mitigation. Int. J. Infect. Dis. 98, 208–215. https://doi.org/10.1016/j.ijid.2020.06.049 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Kantner, M. & Koprucki, T. Beyond just “flattening the curve”: Optimal control of epidemics with purely non-pharmaceutical interventions. J. Math. Ind. https://doi.org/10.1186/s13362-020-00091-3 (2020).MathSciNet 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    4.Kupferschmidt, K. The lockdowns worked-but what comes next?. Science 368, 218–219. https://doi.org/10.1126/science.368.6488.218 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Byambasuren, O. et al. Estimating the seroprevalence of SARS-CoV-2 infections: Systematic review. medRxiv. https://doi.org/10.1101/2020.07.13.20153163 (2020).Article 

    Google Scholar 
    6.Fontanet, A. & Cauchemez, S. COVID-19 herd immunity: Where are we?. Nat. Rev. Immunol. 20, 583–584. https://doi.org/10.1038/s41577-020-00451-5 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Chowdhury, R. et al. Dynamic interventions to control COVID-19 pandemic: A multivariate prediction modelling study comparing 16 worldwide countries. Eur. J. Epidemiol. 35, 389–399. https://doi.org/10.1007/s10654-020-00649-w (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Giordano, G. et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 26, 855–860. https://doi.org/10.1038/s41591-020-0883-7 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368, 860. https://doi.org/10.1126/science.abb5793 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Prem, K. et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 5, e261–e270. https://doi.org/10.1016/S2468-2667(20)30073-6 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Leung, K., Wu, J. T., Liu, D. & Leung, G. M. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: A modelling impact assessment. Lancet 395, 1382–1393. https://doi.org/10.1016/S0140-6736(20)30746-7 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Peng, L., Yang, W., Zhang, D., Zhuge, C. & Hong, L. Epidemic analysis of COVID-19 in China by dynamical modeling. medRxiv. https://doi.org/10.1101/2020.02.16.20023465 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Read, J. M., Bridgen, J. R. E., Cummings, D. A. T., Ho, A. & Jewell, C. P. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions. medRxiv. https://doi.org/10.1101/2020.01.23.20018549 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Roda, W. C., Varughese, M. B., Han, D. & Li, M. Y. Why is it difficult to accurately predict the COVID-19 epidemic?. Infect. Dis. Model 5, 271–281. https://doi.org/10.1016/j.idm.2020.03.001 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Wu, J. T., Leung, K. & Leung, G. M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 395, 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Perc, M., Gorišek Miksić, N., Slavinec, M. & Stožer, A. Forecasting COVID-19. Front. Phys. https://doi.org/10.3389/fphy.2020.00127 (2020).Article 

    Google Scholar 
    17.Er, S., Yang, S. & Zhao, T. COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 prediction. Sci. Rep. 11, 14262. https://doi.org/10.1038/s41598-021-93545-6 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Hunter, E., Mac Namee, B. & Kelleher, J. An open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS One. https://doi.org/10.1371/journal.pone.0208775 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Venkatramanan, S. et al. Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 22, 43–49. https://doi.org/10.1016/j.epidem.2017.02.010 (2018).Article 
    PubMed 

    Google Scholar 
    20.Brett, T. S. & Rohani, P. Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2008087117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Britton, T., Ball, F. & Trapman, P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science 369, 846–849. https://doi.org/10.1126/science.abc6810 (2020).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Beven, K. Environmental Modelling: An Uncertain Future? (CRC Press, 2010).
    Google Scholar 
    23.Dietze, M. C. Prediction in ecology: A first-principles framework. Ecol. Appl. 27, 2048–2060. https://doi.org/10.1002/eap.1589 (2017).Article 
    PubMed 

    Google Scholar 
    24.Dietze, M. C. et al. Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proc. Natl. Acad. Sci. 115, 1424. https://doi.org/10.1073/pnas.1710231115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Keenan, T. F., Carbone, M. S., Reichstein, M. & Richardson, A. D. The model-data fusion pitfall: Assuming certainty in an uncertain world. Oecologia 167, 587–597. https://doi.org/10.1007/s00442-011-2106-x (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    26.Niu, S. et al. The role of data assimilation in predictive ecology. Ecosphere 5, art65. https://doi.org/10.1890/ES13-00273.1 (2014).Article 

    Google Scholar 
    27.White, E. P. et al. Developing an automated iterative near-term forecasting system for an ecological study. Methods Ecol. Evol. 10, 332–344. https://doi.org/10.1111/2041-210X.13104 (2019).Article 

    Google Scholar 
    28.Luo, Y. et al. Ecological forecasting and data assimilation in a data-rich era. Ecol. Appl. 21, 1429–1442. https://doi.org/10.1890/09-1275.1 (2011).Article 
    PubMed 

    Google Scholar 
    29.White, B. G. et al. Short-term forecast validation of six models. Weather Forecast. 14, 84–108. https://doi.org/10.1175/1520-0434(1999)014%3C0084:STFVOS%3E2.0.CO;2 (1999).ADS 
    Article 

    Google Scholar 
    30.Calvetti, D., Hoover, A. P., Rose, J. & Somersalo, E. Metapopulation network models for understanding, predicting, and managing the coronavirus disease COVID-19. Front. Phys. https://doi.org/10.3389/fphy.2020.00261 (2020).Article 

    Google Scholar 
    31.O’Sullivan, D., Gahegan, M., Exeter, D. J. & Adams, B. Spatially explicit models for exploring COVID-19 lockdown strategies. T Gis 24, 967–1000. https://doi.org/10.1111/tgis.12660 (2020).Article 

    Google Scholar 
    32.James, N., Menzies, M. & Bondell, H. Understanding spatial propagation using metric geometry with application to the spread of COVID-19 in the United States. EPL (Europhys. Lett.) 135, 48004. https://doi.org/10.1209/0295-5075/ac2752 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Li, D. et al. Identifying US County-level characteristics associated with high COVID-19 burden. BMC Public Health 21, 1007. https://doi.org/10.1186/s12889-021-11060-9 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Bisset, K. R. et al. INDEMICS: An interactive high-performance computing framework for data-intensive epidemic modeling. ACM Trans. Model Comput. Simul. https://doi.org/10.1145/2501602 (2014).MathSciNet 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    35.Chao, D. L., Halloran, M. E., Obenchain, V. J. & Longini, I. M. Jr. FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput. Biol. 6, e1000656. https://doi.org/10.1371/journal.pcbi.1000656 (2010).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Marathe, M. V. & Ramakrishnan, N. Recent advances in computational epidemiology. IEEE Intell. Syst. 28, 96–101. https://doi.org/10.1109/MIS.2013.114 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Dowd, M. A sequential Monte Carlo approach for marine ecological prediction. Environmetrics 17, 435–455. https://doi.org/10.1002/env.780 (2006).MathSciNet 
    Article 

    Google Scholar 
    38.Gu, F. On-demand data assimilation of large-scale spatial temporal systems using sequential Monte Carlo methods. Simul. Model. Pract. Theory 85, 1–14. https://doi.org/10.1016/j.simpat.2018.03.007 (2018).Article 

    Google Scholar 
    39.Michael, E. et al. Continental-scale, data-driven predictive assessment of eliminating the vector-borne disease, lymphatic filariasis, in sub-Saharan Africa by 2020. BMC Med. 15, 176. https://doi.org/10.1186/s12916-017-0933-2 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Poole, D. & Raftery, A. E. Inference for deterministic simulation models: The Bayesian melding approach. J. Am. Stat. Assoc. 95, 1244–1255. https://doi.org/10.1080/01621459.2000.10474324 (2000).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    41.Singh, B. K. & Michael, E. Bayesian calibration of simulation models for supporting management of the elimination of the macroparasitic disease, Lymphatic Filariasis. Parasites Vectors 8, 522. https://doi.org/10.1186/s13071-015-1132-7 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Sisson, S. A., Fan, Y. & Tanaka, M. M. Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 104, 1760. https://doi.org/10.1073/pnas.0607208104 (2007).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    43.Spear, R. C., Hubbard, A., Liang, S. & Seto, E. Disease transmission models for public health decision making: Toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ. Health Perspect. 110, 907–915. https://doi.org/10.1289/ehp.02110907 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Taylor, S. D. & White, E. P. Automated data-intensive forecasting of plant phenology throughout the United States. Ecol. Appl. 30, e02025. https://doi.org/10.1002/eap.2025 (2020).Article 
    PubMed 

    Google Scholar 
    45.Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is automated using continuous analysis. Nat. Biotechnol. 35, 342–346. https://doi.org/10.1038/nbt.3780 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Delgoshaei, P., Austin, M. A. & Pertzborn, A. J. A semantic framework for modeling and simulation of cyber-physical systems. Int. J. Adv. Sys. Measure. 7, 223–237 (2014).
    Google Scholar 
    47.Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Henkel, R., Wolkenhauer, O. & Waltemath, D. Combining computational models, semantic annotations and simulation experiments in a graph database. Database https://doi.org/10.1093/database/bau130 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2 (2014).
    Google Scholar 
    50.Nakamura, K., Higuchi, T. & Hirose, N. Sequential data assimilation: Information fusion of a numerical simulation and large scale observation data. J. UCS 12, 608–626. https://doi.org/10.3217/jucs-012-06-0608 (2006).Article 

    Google Scholar 
    51.Stodden, V. & Miguez, S. Best practices for computational science: Software infrastructure and environments for reproducible and extensible research. J. Open Res. Softw. https://doi.org/10.5334/jors.ay (2014).Article 

    Google Scholar 
    52.Unacast. Social distancing scoreboard. https://www.unacast.com/covid19/social-distancing-scoreboard (2020).53.Willem, L. et al. SOCRATES: An online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. BMC Res. Notes 13, 293. https://doi.org/10.1186/s13104-020-05136-9 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Iboi, E. A., Ngonghala, C. N. & Gumel, A. B. Will an imperfect vaccine curtail the COVID-19 pandemic in the U.S.?. Infect. Dis. Model 5, 510–524. https://doi.org/10.1016/j.idm.2020.07.006 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30553-3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Contreras, S., Villavicencio, H. A., Medina-Ortiz, D., Biron-Lattes, J. P. & Olivera-Nappa, A. A multi-group SEIRA model for the spread of COVID-19 among heterogeneous populations. Chaos Solitons Fractals 136, 109925. https://doi.org/10.1016/j.chaos.2020.109925 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5, e74. https://doi.org/10.1371/journal.pmed.0050074 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Chen, R. Markov Chain Monte Carlo Vol. Volume 7 Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore 147–182 (Co-Published with Singapore University Press, 2005).59.Doucet, A., Godsill, S. & Andrieu, C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208. https://doi.org/10.1023/A:1008935410038 (2000).Article 

    Google Scholar 
    60.Fearnhead, P. & Kunsch, H. R. Particle filters and data assimilation. Annu. Rev. Stat. Appl. 5, 421–449. https://doi.org/10.1146/annurev-statistics-031017-100232 (2018).MathSciNet 
    Article 

    Google Scholar 
    61.Gu, F., Butt, M., Ai, C., Shen, X. & Xiao, J. Proceedings of the Conference on Summer Computer Simulation 1–10 (Society for Computer Simulation International, 2015).62.Florida Agency for Health Care Administration. https://ahca.myflorida.com/ (2020).63.Polonsky, J. A. et al. Outbreak analytics: A developing data science for informing the response to emerging pathogens. Philos. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2018.0276 (2019).Article 

    Google Scholar 
    64.Gambhir, M. et al. Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis. BMC Biol. 8, 22. https://doi.org/10.1186/1741-7007-8-22 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Spear, R. C. & Hubbard, A. Modelling Parasite Transmission and Control 99–111 (Springer, 2010).66.James, N. & Menzies, M. COVID-19 in the United States: Trajectories and second surge behavior. Chaos Interdiscip. J. Nonlinear Sci. 30, 091102. https://doi.org/10.1063/5.0024204 (2020).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    67.Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589, 82–87. https://doi.org/10.1038/s41586-020-2923-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.James, N. & Menzies, M. Efficiency of communities and financial markets during the 2020 pandemic. Chaos Interdiscip. J. Nonlinear Sci. 31, 083116. https://doi.org/10.1063/5.0054493 (2021).MathSciNet 
    Article 

    Google Scholar 
    69.Yilmazkuday, H. Stay-at-home works to fight against COVID-19: International evidence from Google mobility data. J. Hum. Behav. Soc. Environ. 31, 210–220. https://doi.org/10.1080/10911359.2020.1845903 (2021).Article 

    Google Scholar 
    70.Brienen, N. C., Timen, A., Wallinga, J., Van Steenbergen, J. E. & Teunis, P. F. The effect of mask use on the spread of influenza during a pandemic. Risk Anal. 30, 1210–1218. https://doi.org/10.1111/j.1539-6924.2010.01428.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Pathology and virology of natural highly pathogenic avian influenza H5N8 infection in wild Common buzzards (Buteo buteo)

    This study describes the virological and pathological findings of Common buzzards infected with the 2020–2021 HPAI H5N8 virus. These analyses showed that the main lesions were HPAI virus-associated inflammation and necrosis in multiple tissues including brain and heart, confirming HPAI as cause of death or severe disease.The Common buzzard presents with several characteristic traits that make it a valuable bioindicator of HPAIV presence in wildlife. It is a medium-sized raptor, present almost throughout Europe. In the Netherlands, its population has been stable since 1970 with an estimated maximum winter population of 30,000–50,000 individuals16. The Common buzzard is mainly a resident bird, which generally inhabits woodlands but is adaptable to wetlands16,17. Its feeding behavior as an opportunistic predator and scavenger has the potential to expose it to HPAIV-infected prey. Given these predisposing biological traits, it is not unexpected that Common buzzards accounted for the highest number of HPAI virus detections in raptors during the 2020–2021 epizootic.Previous studies showed that HPAI viruses in raptors are highly neurotropic and cause severe neurological disease8,10,15,18,19. This study also supports those findings, as the most consistent lesion in Common buzzards was viral encephalitis, with confirmed presence of viral antigen in affected neurons. In addition to the nervous system, all the tissues tested of the Common buzzards were positive for virus based on RT-PCR and showed infection-related, histological lesions, indicating that HPAI H5N8 virus infection in the Common buzzard causes systemic disease.This study showed that HPAI H5N8 virus is also highly cardiotropic, as the myocardium of the Common buzzards contained the highest amount of virus based on RT-PCR (Table 1), and virus-associated, severe histological lesions in 63% (7/11) birds. In addition, 54% (6/11) of the Common buzzards showed virus-associated lesions in the liver and spleen.The Common buzzard is considered to be infected via the oral route by ingesting HPAIV-infected preys. Transmission of HPAIV from ingesting infected chicken meat has been experimentally confirmed in raptors20. Interestingly, the proventriculus of two birds in our study showed necrotic lesions with viral antigen. This finding further supports the oral route of infection, although we cannot exclude the possibility that the proventriculus was infected via the hematogenous route. It also provides new records of HPAIV enterotropism in wild birds. The adaptation to the intestinal tract is a mechanism recently reported for HPAI H5N8 virus, that may allow a more efficient fecal–oral transmission in wild birds5.Real time PCR (RT-PCR) is the preferred test for HPAI virus detection for active and passive bird surveillance9. In this study, cloacal and pharyngeal swabs had comparable RNA-levels, and both were adequate for the detection of the virus. The tissue analysis by RT-PCR showed that heart, brain, and air sac had highest viral RNA concentrations compared to other organs. Although not confirmed by a quantitative real time PCR, the results obtained by RT-PCR are well supported by histopathology and immunohistochemistry. Our advice for diagnostic pathologists is to collect at least a miniset of samples including brain, heart, liver and spleen, as these tissues are relatively easily sampled and were positive by both RT-PCR and for virus-antigen-associated lesions. For virus diagnosis of Common buzzards found dead (but without the interest or possibility to perform pathological examination), it is enough to collect pharyngeal and cloacal swabs, because they were positive by RT-PCR with Ct values that were comparable to those in most tissues (with exception of heart, that had higher Ct values).We did not detect antibodies against avian influenza virus NP in the sera of the Common buzzards in this study. Most of the birds (8/11) were juveniles in their first year of life, and likely they did not have protective antibodies from previous infections, as this was the first time in their lives that they experienced a HPAI epizootic. The absence of antibodies indicates also that the Common buzzards died acutely soon after infection, similarly to experimentally infected raptors that did not seroconvert before early death19. All the birds in our study were females. Females are larger than males (adult female weigh about 15% more than adult males), thus it is possible that female raptors are easier to find during surveillance or that there are sex-associated differences in feeding patterns.This study showed that HPAIV infection in Common buzzards produced severe systemic disease, and subsequent acute death based on the stage of the pathological changes and absence of serum antibodies. Cloacal and pharyngeal swabs were comparable in detecting the infection. Many organs contained viral RNA; with heart, brain and air sac containing the highest amount of viral RNA. The proventriculus of two birds showed virus-associated lesions, implying a possible adaptation of the virus to the gastro-intestinal tract. More

  • in

    Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species

    1.Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).CAS 
    PubMed 

    Google Scholar 
    2.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS 
    PubMed 

    Google Scholar 
    3.Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117, 1–8 (2021).
    Google Scholar 
    4.Kulakowski, D. et al. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Ecol. Manag. 388, 120–131 (2017).
    Google Scholar 
    5.Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129, 1–55 (2015).
    Google Scholar 
    6.Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200, 1–8 (2020).
    Google Scholar 
    7.Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).CAS 
    PubMed 

    Google Scholar 
    8.Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).
    Google Scholar 
    9.Sallé, A. et al. Forest decline differentially affects trophic guilds of canopy-dwelling beetles. Ann. For. Sci. 77, 86 (2020).
    Google Scholar 
    10.Beudert, B. et al. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 8, 272–281 (2015).
    Google Scholar 
    11.Evans, P. M. et al. Testing the relative sensitivity of 102 ecological variables as indicators of woodland condition in the New Forest, UK. Ecol. Indic. 107, 105575, 1–12 (2019).
    Google Scholar 
    12.Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
    Google Scholar 
    13.Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).PubMed 

    Google Scholar 
    14.Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).PubMed 

    Google Scholar 
    15.Moretti, M., Obrist, M. K. & Duelli, P. Arthropod biodiversity after forest fires: winners and losers in the winter fire regime of the southern Alps. Ecography 27, 173–186 (2004).
    Google Scholar 
    16.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121, 1–13 (2019).
    Google Scholar 
    17.Larsen, S., Chase, J. M., Durance, I. & Ormerod, S. J. Lifting the veil: Richness measurements fail to detect systematic biodiversity change over three decades. Ecology 99, 1316–1326 (2018).PubMed 

    Google Scholar 
    18.Cardoso, P. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).
    Google Scholar 
    19.Morinière, J. et al. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding‐based biomonitoring. Mol. Ecol. Resour. 19, 900–928 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    20.Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270, 313–321 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213, 1–16 (2013).
    Google Scholar 
    22.Wang, C. et al. The ecological impact of pest-induced tree dieback on insect biodiversity in Yunnan pine plantations, China. Ecol. Manag. 491, 119173, 1–11 (2021).
    Google Scholar 
    23.Roland, J. & Taylor, P. D. Insect parasitoid species respond to forest structure at different spatial scales. Nature 386, 710–713 (1997).CAS 

    Google Scholar 
    24.Nguyen, L.-T.-H. et al. Bottom-up effect of water stress on the aphid parasitoid Aphidius ervi. Entomol. Gen. 38, 15–27 (2018).
    Google Scholar 
    25.Lebourgeois, F., Rathgeber, C. B. K. & Ulrich, E. Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J. Veg. Sci. 21, 364–376 (2010).
    Google Scholar 
    26.Camarero, J. J., Bigler, C., Linares, J. C. & Gil-Pelegrín, E. Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests. Ecol. Manag. 262, 759–769 (2011).
    Google Scholar 
    27.Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of Life Data system. Mol. Ecol. Notes 7, 355–364 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Hui, C. & McGeoch, M. A. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184, 684–694 (2014).PubMed 

    Google Scholar 
    29.McGeoch, M. A. et al. Measuring continuous compositional change using decline and decay in zeta diversity. Ecology 100, e02832, 1–18 (2019).
    Google Scholar 
    30.Latombe, G., McGeoch, M., Nipperess, D. & Hui, C. zetadiv: Functions to compute compositional turnover using zeta diversity (version 1.2.0) [software] https://github.com/GLatombe/zetadiv (2020).31.Brown, A. M. et al. The fourth-corner solution—using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).
    Google Scholar 
    32.Hartop, E., Srivathsan, A., Ronquist, F. & Meier, R. Large-scale Integrative Taxonomy (LIT): resolving the data conundrum for dark taxa. Preprint at BioRxiv https://doi.org/10.1101/2021.04.13.439467 (2021).33.Kortmann, M. et al. Ecology versus society: impacts of bark beetle infestations on biodiversity and restorativeness in protected areas of Central Europe. Biol. Conserv. 254, 10893, 1–9 (2021).
    Google Scholar 
    34.Thorn, S. et al. Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology 101, e02949, 1–8 (2020).
    Google Scholar 
    35.Müller, J., Noss, R. F., Bussler, H. & Brandl, R. Learning from a “benign neglect strategy” in a national park: response of saproxylic beetles to dead wood accumulation. Biol. Conserv. 143, 2559–2569 (2010).
    Google Scholar 
    36.Cours, J. et al. Contrasting responses of habitat conditions and insect biodiversity to pest- or climate-induced dieback in coniferous mountain forests. Ecol. Manag. 482, 11881, 1–14 (2021).
    Google Scholar 
    37.Herrault, P.-A. et al. Combined effects of area, connectivity, history and structural heterogeneity of woodlands on the species richness of hoverflies (Diptera: Syrphidae). Landsc. Ecol. 31, 877–893 (2016).
    Google Scholar 
    38.Leather, S. R. “Ecological Armageddon”—more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172, 1–3 (2018).
    Google Scholar 
    39.Fleishman, E., Noss, R. & Noon, B. Utility and limitations of species richness metrics for conservation planning. Ecol. Indic. 6, 543–553 (2006).
    Google Scholar 
    40.Borges, P. A. V., Rigal, F., Ros-Prieto, A. & Cardoso, P. Increase of insular exotic arthropod diversity is a fundamental dimension of the current biodiversity crisis. Insect Conserv. Divers. 13, 508–518 (2020).
    Google Scholar 
    41.Ienco, A., Dapporto, L., Greco, S., Infusino, M. & Scalercio, S. β-diversity partitioning of moth communities within and between different forest types. Sci. Nat. 107, 8, 1–11 (2020).
    Google Scholar 
    42.Thorn, S. et al. The living dead: acknowledging life after tree death to stop forest degradation. Front. Ecol. Environ. 18, 505–512 (2020).
    Google Scholar 
    43.Arnan, X., Bosch, J., Comas, L., Gracia, M. & Retana, J. Habitat determinants of abundance, structure and composition of flying Hymenoptera communities in mountain old-growth forests. Insect Conserv. Divers. 4, 200–211 (2011).
    Google Scholar 
    44.Säterberg, T., Jonsson, T., Yearsley, J., Berg, S. & Ebenman, B. A potential role for rare species in ecosystem dynamics. Sci. Rep. 9, 11107, 1–12 (2019).
    Google Scholar 
    45.Jain, M. et al. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 4, 104–112 (2014).PubMed 

    Google Scholar 
    46.Soliveres, S. et al. Locally rare species influence grassland ecosystem multifunctionality. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150269, 1–10 (2016).
    Google Scholar 
    47.Heidrich, L. et al. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 4, 1204–1212 (2020).PubMed 

    Google Scholar 
    48.Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forests: a hierarchical typology for inventory standardization. Ecol. Indic. 84, 194–207 (2018).
    Google Scholar 
    49.Seibold, S. et al. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J. Appl. Ecol. 53, 934–943 (2016).
    Google Scholar 
    50.Ji, Y. et al. SPIKEPIPE: a metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Resour. 20, 256–267 (2020).CAS 
    PubMed 

    Google Scholar 
    51.Sire, L. et al. The challenge of DNA barcoding saproxylic beetles in natural history collections—exploring the potential of parallel multiplex sequencing with Illumina MiSeq. Front. Ecol. Evol. 7, 495, 1–12 (2019).
    Google Scholar 
    52.Morinière, J. et al. Species identification in Malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix. PLoS ONE 11, e0155497, 1–14 (2016).
    Google Scholar 
    53.Ashfaq, M. et al. Insect diversity in the Saharo-Arabian region: revealing a little-studied fauna by DNA barcoding. PLoS ONE 13, e0199965, 1–16 (2018).
    Google Scholar 
    54.Karlsson, D., Hartop, E., Forshage, M., Jaschhof, M. & Ronquist, F. The Swedish Malaise trap project: a 15 year retrospective on a countrywide insect inventory. Biodivers. Data J. 8, e47255, 1–35 (2020).
    Google Scholar 
    55.Russo, L., Stehouwer, R., Heberling, J. M. & Shea, K. The composite insect trap: an innovative combination trap for biologically diverse sampling. PLoS ONE 6, e21079, 1–7 (2011).
    Google Scholar 
    56.Lambert, J., Drenou, C., Denux, J.-P., Balent, G. & Cheret, V. Monitoring forest decline through remote sensing time series analysis. GIScience Remote Sens 50, 437–457 (2013).
    Google Scholar 
    57.Lemmon, P. E. A spherical densiometer for estimating forest overstory density. For. Sci. 2, 314–320 (1956).
    Google Scholar 
    58.Larrieu, L. & Gonin, P. L’indice de biodiversité potentielle (ibp): une méthode simple et rapide pour évaluer la biodiversité potentielle des peuplements forestiers. Rev. For. Fr. 6, 727–748 (2008).
    Google Scholar 
    59.Larsson, T.-B. in Criteria and Indicators for Sustainable Forest Management at the Forest Management Unit Level (eds. Franc, A., Laroussinie, O. & Karjalainen, T.) Vol. 38, 75–81 (European Forest Institute Proceeding, 2001).60.Gosselin, F. & Larrieu, L. Developing and using statistical tools to estimate observer effect for ordered class data: the case of the IBP (Index of Biodiversity Potential). Ecol. Indic. 110, 105884, 1–10 (2020).
    Google Scholar 
    61.Elbrecht, V., Peinert, B. & Leese, F. Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol. Evol. 7, 6918–6926 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    62.Leray, M., Haenel, Q. & Bourlat, S. J. in Marine Genomics (ed. Bourlat, S. J.) Vol. 1452, 209–218 (Springer New York, 2016).63.Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34, 1–14 (2013).
    Google Scholar 
    64.Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS 
    PubMed 

    Google Scholar 
    65.Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6, 1–7 (2014).
    Google Scholar 
    66.Illumina. Illumina two-channel SBS sequencing technology. Pub. No. 770-2013-054. https://www.well.ox.ac.uk/ogc/wp-content/uploads/2017/09/techspotlight_two-channel_sbs.pdf (2016).67.Knittel, T. & Picard, D. PCR with degenerate primers 9 containing deoxyinosine fails with PFU DNA polumerase. Genome Res. 2, 346–347 (1993).CAS 

    Google Scholar 
    68.Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).
    Google Scholar 
    69.Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421, 1–10 (2009).
    Google Scholar 
    70.Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88, 1–7 (2016).
    Google Scholar 
    71.Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33) [software]. https://github.com/najoshi/sickle (2011).72.Nurk, S. et al. in RECOMB 2013: Research in Computational Molecular Biology (eds. Deng, M., Jiang, R., Sun, F. & Zhang, X.) Vol. 7821, 158–170 (Springer International Publishing, 2013).73.Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinforma. 13, 31, 1–7 (2012).
    Google Scholar 
    74.Zepeda-Mendoza, M. L., Bohmann, K., Carmona Baez, A. & Gilbert, M. T. P. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses. BMC Res. Notes 9, 255, 1–13 (2016).
    Google Scholar 
    75.R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2017).76.Renkonen, O. Statistisch-ökologische Untersuchungen über die terrestische Käferwelt der finnischen Bruchmoore. Ann. Bot. Soc. Zool.-Bot. Fenn. Vanamo 6, 1–231 (1938).
    Google Scholar 
    77.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584, 1–22 (2016).
    Google Scholar 
    78.Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B Biol. Sci. 270, S96–S99 (2003).CAS 

    Google Scholar 
    79.Boyer, F. et al. OBITOOLS: a UNIX-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    PubMed 

    Google Scholar 
    80.Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1188, 1–11 (2017).
    Google Scholar 
    81.Chamberlain, S. bold: Interface to BOLD systems API. (version 1.1.0) [software] https://CRAN.R-project.org/package=bold (2020).82.Godfray, C. H. J. Parasitoids: Behavioral and Evolutionary Ecology 472 pp (Princeton University Press, 1994).83.Bouget, C., Brustel, H. & Zagatti, P. The French Information System on Saproxylic BEetle Ecology (FRISBEE): an ecological and taxonomical database to help with the assessment of forest conservation status. Rev. D’Ecologie Terre Vie Société Natl. Prot. Nat. 63, 33–36 (2008).84.Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282 (2015).
    Google Scholar 
    85.Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385 (2020).
    Google Scholar 
    86.Hsieh, T. C., Ma, K. H. & Chao, iNEXT: iNterpolation and EXTrapolation for species diversity (version 2.0.20) [software] http://chao.stat.nthu.edu.tw/wordpress/software-download/ (2020).87.Oksanen, J. et al. vegan: Community ecology package (version 2.5-6) [software] https://CRAN.R-project.org/package=vegan (2020).88.Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2019).89.Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical methods for analysing multivariate abundance data (version 4.3.1) [software] https://CRAN.R-project.org/package=mvabund (2020).90.Popovic, G. C., Warton, D. I., Thomson, F. J., Hui, F. K. C. & Moles, A. T. Untangling direct species associations from indirect mediator species effects with graphical models. Methods Ecol. Evol. 10, 1571–1583 (2019).
    Google Scholar 
    91.De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).
    Google Scholar 
    92.Gaston, K. J. in Rarity Vol. 13, 1–21 (Springer, 1994).93.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217, 1–11 (2013).
    Google Scholar 
    94.Akaike, H. Information theory and an extension of the maximum likelihood principle. in Second International Symposium on Information Theory 267–281 (1973).95.Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).
    Google Scholar 
    96.Sire, L. et al. Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. Zenodo. https://doi.org/10.5281/zenodo.5653307 (2021).97.Sire, L. et al. Supplementary Data—Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. figshare. Dataset https://doi.org/10.6084/m9.figshare.16975636.v1 (2021). More

  • in

    Landscape Dynamics (landDX) an open-access spatial-temporal database for the Kenya-Tanzania borderlands

    Aarhus University, SORALO and KWT digitized bomas, fences and agriculture in a systematic manner using available satellite imagery (see methods). All digitization was re-checked by supervisors, to ensure that no data had been missed, and was adjusted following quality control where and when required. All data were then manually checked by conservation practitioners knowledgeable of the study area. Both the spatial resolution and temporal sampling of the data may present limitations to its accuracy and usage.Spatial resolutionFor both the KWT and SORALO datasets collected using Google Earth, we used the latest Google Earth imagery. Additionally, for KWT’s dataset, we also used the latest Bing maps imagery. However, the spatial resolution of this Google Earth and Bing maps data varies. Resolution can be as high as ~0.5 m, while a few remaining areas still rely on Landsat Imagery with a resolution of 30 m. However, the quality of the Google Earth and Bing maps imagery was generally high enough across the study area to accurately delineate bomas, fencelines and agricultural land. Figures 3 and 4 provide examples of areas that would be digitized, with the boundaries of the boma and fence lines clearly visible.The fencing data collected by Aarhus University used Landsat Imagery at 30 m resolution and smaller fences may be missing from the dataset as they are harder to distinguish. This is also true for wire fence (the predominant type of fencing around the Maasai Mara; Fig. 3C). Vegetation differences used to identify these fence lines may take some time to develop. Therefore, there may be an underestimate of the fences mapped, especially in those regions with high usage of wire fences.It must be noted that images from Google Earth have an overall positional root mean squared error of 39.7 m, which may impact the interpretation of this dataset23. We believe that these errors are acceptable for our first attempt at collecting landscape-scale data, and will be refined over time with improved imagery and ground-truthing. Landsat data has a root mean squared error usually below the size of a pixel, with 90% of pixels having less than 12 m deviation (1 https://www.usgs.gov/media/videos/landsat-collections-rmse).Temporal variationThe most likely discrepancies in data quality will arise from temporal variation in fencing placement, boma usage and placement, and agricultural change. Google Earth data were used for SORALO, using data available up to February 2020. Google Earth and Bing maps data were used for KWT, with data up to 2017. The weighted mean imagery date for SORALO (weighted by the area covered) was the 9th of September 2016 and ranged from 15th of December 2000 to 12th of February 2020 (Fig. 5). Where possible we have added a date-time stamp to the boma, agriculture and fencing dataset to best match the date the satellite imagery was acquired, or when it was collected on the ground. However, KWT and some SORALO data lack date attribute, the latter because no date stamp was found in Google Earth, and the former because no date was recorded for any data. The Aarhus University fencing data are from a Landsat Image from January 2016, and the MEP data are from on-the-ground collection. Our database is built so that as new or updated data become available, from both new satellite imagery and ground-based identification, the data layer can be adjusted (see below).Livestock enclosure validationWe used data on the location of SORALO livestock enclosures from the Magadi region24 (collected using handheld GPS devices), to estimate the accuracy of our data collection. The SORALO ground-truthed database contains 668 bomas, which have been occupied at least once during 2014–2017. In the same area, our boma points database contains 573 bomas (85%) of which 41.2% (n = 275) are within 100 m of ground-truthed points and 87.7% (n = 586) are within 500 m of the ground-truthed points. These ground-truthed points may have inaccuracies from their data collection. Also, many livestock enclosures distant from ground-truthed points are newer than the ground-truthing dataset.Agricultural land validationWe compared our agricultural data layer to a commonly used global open source data layer, the 2015 GFSAD30AFCE 30-m for Africa: Cropland Extent Product (www.croplands.org). Our layer agreed with the Cropland Extent Product across 856 km2 of cropland. However, our layer demarcated 455 km2 (34.4% of the total extent) more agricultural land than was found in the 30 m Cropland Extent Product, because many small areas of subsistence farming had not been detected by this global layer. Additionally, the Cropland Extent Product contained 468 km2 (35.3% of the Cropland Extent Product) of agricultural extent not captured in our layer. Much of this was on the periphery of large continuous agricultural areas and appears inaccurately mapped by the global product.Continual validation and improvement of databaseOngoing ground-truthing exercises by the Mara Elephant Project and other partners will improve the quality of the database over time, particularly the datasets on wire fencing in the Mara region. To do so the TerraChart app combined with a QuickCapture app (to validate fence lines and boma locations using aerial reconnaissance) are integrated into the ArcGIS online framework, and following validation both manually and using automated Python script, can be used to update the features collection database.Additionally, any data currently held in the private domain can be easily integrated into this database, and made available to the public domain with approval. Linking these features using a parent ID allows for not only the addition of new features, but improved spatial accuracy of old features, and temporal changes to features to be captured.This database will be continually improved over time. For example, current efforts from conservation partners in the region have resulted in large scale acquisition of high resolution, up-to-date, satellite imagery which will be further used to refine this database. More

  • in

    Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks

    1.Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GD, Reich PB, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature. 2019;569:404–8.CAS 
    PubMed 

    Google Scholar 
    2.Finlay RD. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot. 2008;59:1115–26.CAS 
    PubMed 

    Google Scholar 
    3.Smith SE, Read D. Nitrogen mobilization and nutrition in ectomycorrhizal plants. Mycorrhizal Symbiosis. 2008;321–48. https://doi.org/10.1016/b978-012370526-6.50011-8.4.Osonubi O, Mulongoy K, Awotoye OO, Atayese MO, Okali DUU. Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant Soil. 1991;136:131–43.
    Google Scholar 
    5.Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V, et al. Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1-dependent manner. N Phytol. 2020;228:728–40.
    Google Scholar 
    6.Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V, et al. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev. 2012;26:39–60.
    Google Scholar 
    7.Molina R, Horton TR. Mycorrhiza specificity: its role in the development and function of common mycelial networks. Mycorrhizal Netw. 2015. https://doi.org/10.1007/978-94-017-7395-9_1.8.Van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. N Phytol. 2015;205:1406–23.
    Google Scholar 
    9.Brundrett MC. Coevolution of roots and mycorrhizas of land plants. N Phytol. 2002;154:275–304.
    Google Scholar 
    10.Linkies A, Graeber K, Knight C, Leubner-Metzger G. The evolution of seeds. N Phytol. 2010;186:817–31.CAS 

    Google Scholar 
    11.Nara K. Ectomycorrhizal networks and seedling establishment during early primary succession. N Phytol. 2006;169:169–78.CAS 

    Google Scholar 
    12.Horton TR, Molina R, Hood K. Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza. 2005;15:393–403.CAS 
    PubMed 

    Google Scholar 
    13.Teste FP, Simard SW, Durall DM, Guy RD, Jones MD, Schoonmaker AL. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology. 2009;90:2808–22.PubMed 

    Google Scholar 
    14.Teste FP, Simard SW. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia. 2008;158:193–203.PubMed 

    Google Scholar 
    15.Egerton-Warburton LM, Querejeta JI, Allen MF. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot. 2007;58:1473–83.CAS 
    PubMed 

    Google Scholar 
    16.Wallander H, Ekblad A. The Importance of ectomycorrhizal networks for nutrient retention and carbon sequestration in forest ecosystems. Mycorrhizal Netw. 2015;69–90. https://doi.org/10.1007/978-94-017-7395-9_3.17.Song YY, Simard SW, Carroll A, Mohn WW, Zeng RS. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci Rep. 2015;5:1–9.CAS 

    Google Scholar 
    18.Selosse MA, Richard F, He X, Simard SW. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol. 2006;21:621–8.PubMed 

    Google Scholar 
    19.Robinson D, Fitter A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot. 1999;50:9–13.CAS 

    Google Scholar 
    20.Hoeksema JD. Experimentally testing effects of mycorrhizal networks on plant-plant interactions and distinguishing among mechanisms. Mycorrhizal Netw. 2015;255–77. https://doi.org/10.1007/978-94-017-7395-9_9.21.Teste FP, Karst J, Jones MD, Simard SW, Durall DM. Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers. Mycorrhiza. 2006;17:51–65.PubMed 

    Google Scholar 
    22.Graves JD, Watkins NK, Fitter AH, Robinson D, Scrimgeour C. Intraspecific transfer of carbon between plants linked by a common mycorrhizal network. Plant Soil. 1997;192:153–9.CAS 

    Google Scholar 
    23.Wu B, Nara K, Hogetsu T. Can 14C-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? N Phytol. 2001;149:137–46.CAS 

    Google Scholar 
    24.Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol. 2010;25:468–78.PubMed 
    PubMed Central 

    Google Scholar 
    25.Scheublin TR, Van Logtestijn RSP, Van Der Heijden MGA. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol. 2007;95:631–8.CAS 

    Google Scholar 
    26.Epron D, Bahn M, Derrien D, Lattanzi FA, Pumpanen J, Gessler A, et al. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol. 2012;32:776–98.CAS 
    PubMed 

    Google Scholar 
    27.Whiteside MD, Werner GD, Caldas VE, Padje A, Dupin SE, Elbers B, et al. Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr Biol. 2019;29:2043–50.e8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Gorka S, Dietrich M, Mayerhofer W, Gabriel R, Wiesenbauer J, Martin V, et al. Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front Microbiol. 2019;10:1–20.
    Google Scholar 
    29.Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ. Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction a wood-decomposer fungus. Tree Physiol. 2001;21:71–82.CAS 
    PubMed 

    Google Scholar 
    30.Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.CAS 
    PubMed 

    Google Scholar 
    31.Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature. 1997;388:579–82.CAS 

    Google Scholar 
    32.Klein T, Siegwolf RTW, Körner C. Belowground carbon trade among tall trees in a temperate forest. Science 2016;1500:15–8.
    Google Scholar 
    33.Rog I, Rosenstock NP, Körner C, Klein T. Share the wealth: trees with greater ectomycorrhizal species overlap share more carbon. Mol Ecol. 2020;29:2321–33.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Pickles BJ, Wilhelm R, Asay AK, Hahn AS, Simard SW, Mohn WW. Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. N Phytol. 2017;214:400–11.CAS 

    Google Scholar 
    35.Lu Y, Conrad R. In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere. Science. 2005;309:1088–90.CAS 
    PubMed 

    Google Scholar 
    36.Haichar Z, Heulin T, Guyonnet JP, Achouak W. Science direct stable isotope probing of carbon flow in the plant holobiont. Curr Opin Biotechnol. 2016;41:9–13.CAS 
    PubMed 

    Google Scholar 
    37.Sietiö OM, Tuomivirta T, Santalahti M, Kiheri H, Timonen S, Sun H, et al. Ericoid plant species and Pinus sylvestris shape fungal communities in their roots and surrounding soil. N Phytol. 2018;218:738–51.
    Google Scholar 
    38.Sapes G, Demaree P, Lekberg Y, Sala A. Plant carbohydrate depletion impairs water relations and spreads via ectomycorrhizal networks. N Phytol. 2021;229:3172–83.CAS 

    Google Scholar 
    39.Sheffer E. A review of the development of Mediterranean pine-oak ecosystems after land abandonment and afforestation: are they novel ecosystems? Ann Sci. 2012;69:429–43.
    Google Scholar 
    40.Ajbilou R, Marañón T, Arroyo J. Ecological and biogeographical analyses of Mediterranean forests of northern Morocco. Acta Oecologica. 2006;29:104–13.
    Google Scholar 
    41.Loudermilk E, Hiers J, Pokswinski S, O’Brien JJ, Barnett A, Mitchell RJ. The path back: Oaks (Quercus spp.) facilitate longleaf pine (Pinus palustris) seedling establishment in xeric sites. Ecosphere. 2016;7:1–14.
    Google Scholar 
    42.Hynes MM, Smith ME, Zasoski RJ, Bledsoe CS. A molecular survey of ectomycorrhizal hyphae in a California Quercus-Pinus woodland. Mycorrhiza. 2010;20:265–74.CAS 
    PubMed 

    Google Scholar 
    43.Rog I, Jakoby G, Klein T. Forest ecology and management carbon allocation dynamics in conifers and broadleaved tree species revealed by pulse labeling and mass balance. Ecol Manag. 2021;493:119258.
    Google Scholar 
    44.Jia Z, Cao W, Herna M. DNA-Based stable isotope probing. Springer. 2019;2046:17–29.CAS 

    Google Scholar 
    45.Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.CAS 
    PubMed 

    Google Scholar 
    46.Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol. 2016;82:7217–26.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Blecher-Gonen R, Barnett-Itzhaki Z, Jaitin D, Amann-Zalcenstein D, Lara-Astiaso D, Amit I. High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat Protoc. 2013;8:539–54.PubMed 

    Google Scholar 
    48.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Buckley DH, Barnett SE, Youngblut ND. Data analysis for DNA stable isotope probing experiments using multiple window high-resolution SIP Chapter 9. Springer. 2019;2046:44–5.
    Google Scholar 
    50.Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.PubMed 
    PubMed Central 

    Google Scholar 
    51.Kuzyakov Y, Gavrichkova O. time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol. 2010;16:3386–406.
    Google Scholar 
    52.Hagedorn F, Joseph J, Peter M, Luster J, Pritsch K, Geppert U, et al. Recovery of trees from drought depends on belowground sink control. Nat Plants. 2016;2:1–5.
    Google Scholar 
    53.Moreno-Arroyo B, Infante F, Pulido E, Gómez J. The biogeography and taxonomy of Tuber oligospermum (Tul. and C. Tul.) Trappe (Ascomycota). Cryptogam Mycol. 2000;21:147–52.
    Google Scholar 
    54.Buscardo E, Rodríguez-Echeverría S, Martín MP, De Angelis P, Pereira JS, Freitas H. Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biol. 2010;114:628–36.PubMed 

    Google Scholar 
    55.Louro R, Santos-Silva C, Nobre T. What is in a name? Terfezia classification revisited. Fungal Biol. 2019;123:267–73.PubMed 

    Google Scholar 
    56.Tedersoo L, Arnold AE, Hansen K. Novel aspects in the life cycle and biotrophic interactions in Pezizomycetes (Ascomycota, Fungi). Mol Ecol. 2013;22:1488–93.PubMed 

    Google Scholar 
    57.Tedersoo L, Smith ME. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev. 2013;27:83–99.
    Google Scholar 
    58.Agerer R. Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog. 2006;5:67–107.
    Google Scholar 
    59.Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza. 2010;20:217–63.PubMed 

    Google Scholar 
    60.Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-García M, et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun. 2020;11:1–17.
    Google Scholar 
    61.Bruns TD, Bidartondo MI, Taylor DL. Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol. 2002;42:352–9.PubMed 

    Google Scholar 
    62.Pumpanen JS, Heinonsalo J, Rasilo T, Hurme KR, Ilvesniemi H. Carbon balance and allocation of assimilated CO2 in Scots pine, Norway spruce, and Silver birch seedlings determined with gas exchange measurements and 14C pulse labelling. Trees Struct Funct. 2009;23:611–21.CAS 

    Google Scholar 
    63.Heinonsalo J, Pumpanen J, Rasilo T, Hurme KR, Ilvesniemi H. Carbon partitioning in ectomycorrhizal Scots pine seedlings. Soil Biol Biochem. 2010;42:1614–23.CAS 

    Google Scholar 
    64.Wallander H, Göransson H, Rosengren U. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia. 2004;139:89–97.PubMed 

    Google Scholar 
    65.Wilhelm R, Szeitz A, Klassen TL, Mohn WW. Sensitive, efficient quantitation of 13C-enriched nucleic acids via ultrahigh-performance liquid chromatography-tandem mass spectrometry for applications in stable isotope probing. Appl Environ Microbiol. 2014;80:7206–11. https://doi.org/10.1128/AEM.02223-14.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Schildkraut CL, Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962;4:430–43.CAS 
    PubMed 

    Google Scholar 
    67.Jakoby G, Rog I, Megidish S, Klein T. Enhanced root exudation of mature broadleaf and conifer trees in a Mediterranean forest during the dry season. Tree Physiol. 2020;40:1595–605.PubMed 

    Google Scholar 
    68.Meier IC, Pritchard SG, Brzostek ER, Mccormack ML, Phillips RP. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. N Phytol. 2015;205:1164–74.CAS 

    Google Scholar 
    69.Ranjard L, Dequiedt S, Prévost-Bouré NC, Thioulouse J, Saby NPA, Lelievre M, et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 2013;4:1–10.
    Google Scholar 
    70.Carmi I, Yakir D, Yechieli Y, Kronfield J, Stiller M. Variations in the isotopic composition of dissolved inorganic carbon in the unsaturated zone of a semi-arid region. Radiocarbon. 2015;57:397–406.CAS 

    Google Scholar 
    71.Klein T, Hoch G. Tree carbon allocation dynamics determined using a carbon mass balance approach. N Phytol. 2015;205:147–59.CAS 

    Google Scholar 
    72.Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V. et al. Recently photoassimilated carbon and fungus-delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of Fagus sylvatica. N Phytol. 2021;232:2457–74. https://doi.org/10.1111/nph.17591.CAS 
    Article 

    Google Scholar 
    73.Fraser EC, Lieffers VJ, Landhäusser SM. Carbohydrate transfer through root grafts to support shaded trees. Tree Physiol. 2006;26:1019–23.CAS 
    PubMed 

    Google Scholar 
    74.Van Der Heijden MGA, Horton TR. Socialism in soil? the importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol. 2009;97:1139–50.
    Google Scholar  More

  • in

    Ecological niche divergence between extant and glacial land snail populations explained

    1.Nehring, A. Über Tundren und Steppen der Jetzt- und Vorzeit, mit besonderer Berücksichtigung ihrer Fauna (F. Dummler, 1890).2.Chytrý, M. et al. A modern analogue of the Pleistocene steppe-tundra in southern Siberia. Boreas 48, 36–56 (2019).Article 

    Google Scholar 
    3.Graham, R. Late Wisconsin mammalian faunas and environmental gradients of the eastern United States. Paleobiology 2, 343–350 (1976).Article 

    Google Scholar 
    4.Webb, T. I. I. I. The appearance and disappearance of major vegetational assemblages: Long-term vegetational dynamics in eastern North America. Vegetatio 69, 177–187 (1987).Article 

    Google Scholar 
    5.Frest, T. J. & Dickson, J. R. Land snails (Pleistocene-recent) of the Loess Hills: A preliminary survey. Proc. Iowa Acad. Sci. 93, 130–157 (1986).
    Google Scholar 
    6.Nekola, J. C. Paleorefugia and neorefugia: The influence of colonization history on community pattern and process. Ecology 80, 2459–2473 (1999).Article 

    Google Scholar 
    7.Magri, D. et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytol. 17, 199–221 (2006).Article 

    Google Scholar 
    8.Soltis, D. E., Morris, A. B., McLachlan, J. S., Manos, P. S. & Soltis, P. S. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261–4293 (2006).Article 

    Google Scholar 
    9.Graham, R. Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. Paleontol. Soc. Papers 11, 141–158 (2005).Article 

    Google Scholar 
    10.Davis, M. B. Climatic instability, time lags, and community disequilibrium. In Community Ecology (eds Diamond, J. & Case, T. J.) 269–284 (Harper & Row, 1984).11.Baker, R. G. et al. A full-glacial biota from southeastern Iowa USA. J. Quat. Sci. 1, 91–107 (1986).Article 

    Google Scholar 
    12.Baker, R. G., Sullivan, A. E., Hallberg, G. R. & Horton, D. G. Vegetational changes in western Illinois during the onset of late Wisconsinan glaciation. Ecology 70, 1363–1376 (1989).Article 

    Google Scholar 
    13.Baker, R. G. et al. Mid-Wisconsinan environments on the eastern Great Plains. Quat. Sci. Rev. 28, 873–889 (2009).ADS 
    Article 

    Google Scholar 
    14.Scott, G. H. Uniformitarianism, the uniformity of nature, and paleoecology. N. Zeal. J. Geol. Geophys. 6, 510–527 (1963).Article 

    Google Scholar 
    15.Horsák, M. et al. Snail faunas in the Southern Ural forests and their relations to vegetation: An analogue of the Early Holocene assemblages of Central Europe? J. Molluscan Stud. 76, 1–10 (2010).Article 

    Google Scholar 
    16.Ložek, V. Quartärmollusken der Tschechoslowakei (Nakladatelství Československé akademie věd, 1964).17.Horsák, M. et al. European glacial relict snails and plants: environmental context of their modern refugial occurrence in southern Siberia. Boreas 44, 638–657 (2015).Article 

    Google Scholar 
    18.Moine, O. Weichselian Upper Pleniglacial environmental variability in north-western Europe reconstructed from terrestrial mollusc faunas and its relationship with the presence/absence of human settlements. Quat. Int. 337, 90–113 (2014).Article 

    Google Scholar 
    19.Hošek, J. et al. Middle Pleniglacial pedogenesis on the northwestern edge of the Carpathian Basin: A multidisciplinary investigation of the Bíňa pedo-sedimentary section SW Slovakia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 321–339 (2017).Article 

    Google Scholar 
    20.Horsák, M., Škodová, J. & Cernohorsky, N. H. Ecological and historical determinants of Western Carpathian populations of Pupilla alpicola (Charpentier, 1837) in relation to its present range and conservation. J. Molluscan Stud. 77, 248–254 (2011).Article 

    Google Scholar 
    21.Nekola, J. C., Coles, F. B. & Horsák, M. Species assignment in Pupilla (Gastropoda: Pulmonata: Pupillidae): Integration of DNA-sequence data and conchology. J. Molluscan Stud. 81, 196–216 (2015).Article 

    Google Scholar 
    22.Horsák, M., Juřičková, L. & Picka, J. Měkkýši České a Slovenské republiky. Molluscs of the Czech and Slovak Republics (Kabourek, 2013).23.Welter-Schultes, F. W. European non-marine molluscs, a guide for species identification (Planet Poster Editions, 2012).24.von Proschwitz, T. Three land-snail species new to the Norwegian fauna: Pupilla pratensis (Clessin, 1871), Vertigo ultimathule von Proschwitz, 2007 and Balea sarsii Philippi, 1847 [= B. heydeni von Maltzan, 1881]. Fauna Norv. 30, 13–19 (2010).25.Kerney, M. P., Cameron, R. A. D. & Jungbluth, J. H. Die Landschnecken Nord- und Mitteleuropas (Parey Verlag, 1983).26.Horsáková, V., Nekola, J. C. & Horsák, M. When is a “cryptic” species not a cryptic species: A consideration from the Holarctic micro-landsnail genus Euconulus (Gastropoda: Stylommatophora). Mol. Phylogenet. Evol. 132, 307–320 (2019).Article 

    Google Scholar 
    27.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    28.Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).Article 

    Google Scholar 
    29.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    30.Haase, M., Meng, S. & Horsák, M. Tracking parallel adaptation of shell morphology through geological times in the land snail genus Pupilla (Gastropoda: Stylommatophora: Pupillidae). Zool. J. Linnean. Soc. 191, 720–747 (2021).Article 

    Google Scholar 
    31.Ložek, V. Molluscan fauna from the loess series of Bohemia and Moravia. Quat. Int. 76–77, 141–156 (2001).Article 

    Google Scholar 
    32.Fordham, D. A. et al. PaleoView: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358 (2017).Article 

    Google Scholar 
    33.Mysterud, A. The concept of overgrazing and its role in management of large herbivores. Wildlife Biol. 12, 129–141 (2006).Article 

    Google Scholar 
    34.Arnalds, Ó. The soils of Iceland. World Soils Book Series (Springer, 2015).35.Horsák, M. et al. Spring water table depth mediates within-site variation of soil temperature in groundwater-fed mires. Hydrol. Process. 35, e14293 (2021).36.Ložek, V. Zrcadlo minulosti. Česká a slovenská krajina v kvartéru (Dokořán, 2007).37.Ehlers, J., Gibbard, P. L. & Hughes, P. D., eds. Quaternary Glaciations—Extent and Chronology, Volume 15 (Elsevier, 2011). More

  • in

    Accounting for variation in temperature and oxygen availability when quantifying marine ecosystem metabolism

    1.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 

    Google Scholar 
    2.IPCC. AR5 Climate Change 2013: The Physical Science Basis (Intergovernmental Panel on Climate Change, 2013).
    Google Scholar 
    3.IPCC. AR5 Synthesis Report: Climate Change 2014 (Intergovernmental Panel on Climate Change, 2014).
    Google Scholar 
    4.Caldeira, K. & Wickett, M. E. Antropogenic carbon and ocean pH: The coming centuries may see more ocean acidification than the past 300 million years. Nature 425, 365 (2003).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed 

    Google Scholar 
    6.Lowe, A. T., Bos, J. & Ruesink, J. Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the Northeast Pacific coastal ocean. Sci. Rep. 9, 963. https://doi.org/10.1038/s41598-018-37764-4 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    7.Justić, D., Rabalais, N. N. & Turner, R. E. Effects of climate change on hypoxia in coastal waters: A doubled CO2 scenario for the northern Gulf of Mexico. Limnol. Oceanogr. 41, 992–1003 (1996).ADS 

    Google Scholar 
    8.Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).PubMed 
    ADS 

    Google Scholar 
    10.Vaquer-Sunyer, R. & Duarte, C. M. Experimental evaluation of the response of coastal Mediterranean planktonic and benthic metabolism to warming. Estuaries Coast. 36, 697–707 (2013).CAS 

    Google Scholar 
    11.Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).ADS 

    Google Scholar 
    12.Gaarder, T. & Gran, H. H. Investigations of the production of plankton in the Oslo Fjord. Rapports Procès-Verbaux Réunions 42, 3–48 (1927).
    Google Scholar 
    13.Bender, M. et al. A comparison of four methods for determining planktonic community production. Limnol. Oceanogr. 32, 1085–1098 (1987).ADS 

    Google Scholar 
    14.Marra, J. Net and gross productivity: Weighing in with 14C. Aquat. Microb. Ecol. 56, 123–131 (2009).
    Google Scholar 
    15.Hitchcock, G. L., Kirkpatrick, G., Minnett, P. & Palubok, V. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA. Harmful Algae 9, 351–358 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Stephenson, T. A., Zoond, A. & Eyre, J. The liberation and utilisation of oxygen by the population of rock-pools. J. Exp. Biol. 11, 162–172 (1934).
    Google Scholar 
    17.Beyers, R. J. Relationship between temperature and the metabolism of experimental ecosystems. Science 136, 980–982 (1962).CAS 
    PubMed 
    ADS 

    Google Scholar 
    18.Duarte, C. M. & Regaudie-de-Gioux, A. Thresholds of gross primary production for the metabolic balance of marine planktonic communities. Limnol. Oceanogr. 54, 1015–1022 (2009).CAS 
    ADS 

    Google Scholar 
    19.Noël, L.M.-L. et al. Assessment of a field incubation method estimating primary productivity in rockpool communities. Estuar. Coast. Shelf Sci. 88, 153–159 (2010).ADS 

    Google Scholar 
    20.Hall, C. A. S. & Moll, R. Methods of assessing aquatic primary productivity. In Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 19–53 (Springer, 1975).
    Google Scholar 
    21.Platt, T. et al. Biological production of the oceans: The case for a consensus. Mar. Ecol. Prog. Ser. 52, 77–88 (1989).ADS 

    Google Scholar 
    22.Odum, H. T. Primary production in flowing waters. Limnol. Oceanogr. 1, 102–117 (1956).ADS 

    Google Scholar 
    23.Odum, H. T. & Hoskin, C. M. Comparative studies on the metabolism of marine waters. Publ. Inst. Mar. Sci. 5, 16–46 (1958).
    Google Scholar 
    24.Johnson, K. M., Burney, C. M. & Sieburth, J. M. Enigmatic marine ecosystem metabolism measured by direct diel ΣCO2 and O2 flux in conjunction with DOC release and uptake. Mar. Biol. 65, 49–60 (1981).CAS 

    Google Scholar 
    25.Volaric, M. P., Berg, P. & Reidenbach, M. A. Drivers of oyster reef ecosystem metabolism measured across multiple timescales. Estuaries Coast. 43, 2034–2045 (2020).CAS 

    Google Scholar 
    26.Collins, J. R. et al. An autonomous, in situ light-dark bottle device for determining community respiration and net community production. Limnol. Oceanogr. Method. 16, 323–338 (2018).
    Google Scholar 
    27.Steemann Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).
    Google Scholar 
    28.Peterson, B. J. Aquatic primary productivity and the 14C-CO2 method: A history of the productivity problem. Ann. Rev. Ecol. Syst. 11, 359–385 (1980).
    Google Scholar 
    29.Jackson, D. F. & McFadden, J. Phytoplankton photosynthesis in Sanctuary Lake, Pymatuning Reservoir. Ecology 35, 2–4 (1954).
    Google Scholar 
    30.Van de Bogert, M. C., Carpenter, S. R. & Pace, M. L. Assessing pelagic and benthic metabolism using free water measurements. Limnol. Oceanogr. Methods 5, 145–155 (2007).
    Google Scholar 
    31.Barone, B., Nicholson, D., Ferrón, S., Firing, E. & Karl, D. The estimation of gross oxygen production and community respiration from autonomous time-series measurements in the oligotrophic ocean. Limnol. Oceanogr. Methods 17, 650–664 (2019).CAS 

    Google Scholar 
    32.Staehr, P. A. et al. Lake metabolism and the diel oxygen technique: State of the science. Limnol. Oceanogr. Methods 8, 628–644 (2010).CAS 

    Google Scholar 
    33.Nicholson, D. P., Wilson, S. T., Doney, S. C. & Karl, D. M. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles. Geophys. Res. Lett. 42, 4032–4039 (2015).CAS 
    ADS 

    Google Scholar 
    34.Mantikci, M., Hansen, J. L. S. & Markager, S. Photosynthesis enhanced dark respiration in three marine phytoplankton species. J. Exp. Mar. Biol. Ecol. 497, 188–196 (2017).CAS 

    Google Scholar 
    35.Truchot, J.-P. & Duhamel-Jouve, A. Oxygen and carbon dioxide in the marine intertidal environment: Diurnal and tidal changes in rockpools. Resp. Physiol. 39, 241–254 (1980).CAS 

    Google Scholar 
    36.Delille, B., Borges, A. V. & Delille, D. Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuar. Coast. Shelf Sci. 81, 114–122 (2009).ADS 

    Google Scholar 
    37.Woolway, R. I. et al. Diel surface temperature range scales with lake size. PLoS ONE 11, e0152466. https://doi.org/10.1371/journal.pone.0152466 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Andersen, M. R., Kragh, T. & Sand-Jensen, K. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes. Proc. R. Soc. B 284, 20171427. https://doi.org/10.1098/rspb.2017.1427 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Nielsen, K. J. Bottom-up and top-down forces in tide pools: Test of a food chain model in an intertidal community. Ecol. Monogr. 71, 187–217 (2001).
    Google Scholar 
    40.Altieri, A. H., Trussell, G. C., Ewanchuk, P. J., Bernatchez, G. & Bracken, M. E. S. Consumers control diversity and functioning of a natural marine ecosystem. PLoS ONE 4, e5291. https://doi.org/10.1371/journal.pone.0005291 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    41.O’Connor, N. E., Bracken, M. E. S., Crowe, T. P. & Donohue, I. Nutrient enrichment alters the consequences of species loss. J. Ecol. 103, 862–870 (2015).
    Google Scholar 
    42.Rheuban, J. E., Berg, P. & McGlathery, K. J. Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar. Ecol. Prog. Ser. 507, 1–13 (2014).ADS 

    Google Scholar 
    43.Barrón, C. et al. High organic carbon export precludes eutrophication responses in experimental rocky shore communities. Ecosystems 6, 144–153. https://doi.org/10.1007/s10021-002-0402-3 (2003).CAS 
    Article 

    Google Scholar 
    44.Kraufvelin, P., Lindholm, A., Pedersen, M. F., Kirkerud, L. A. & Bonsdorff, E. Biomass, diversity and production of rocky shore macroalgae at two nutrient enrichment and wave action levels. Mar. Biol. 157, 29–47 (2010).
    Google Scholar 
    45.Epping, E. H. G. & Jørgensen, B. B. Light-enhanced oxygen respiration in benthic phototrophic communities. Mar. Ecol. Prog. Ser. 139, 193–203 (1996).ADS 

    Google Scholar 
    46.Graham, J. M., Kranzfelder, J. A. & Auer, M. T. Light and temperature as factors regulating seasonal growth and distribution of Ulothrix zonata (Ulvophyceae). J. Phycol. 21, 228–234. https://doi.org/10.1111/j.0022-3646.1985.00228.x (1985).Article 

    Google Scholar 
    47.Hotchkiss, E. R. & Hall, R. O. Jr. High rates of daytime respiration in three streams: Use of δ18OO2 and O2 to model diel ecosystem metabolism. Limnol. Oceanogr. 59, 798–810. https://doi.org/10.4319/lo.2014.59.3.0798 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    48.Song, C. et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nat. Geosci. 11, 415–420 (2018).CAS 
    ADS 

    Google Scholar 
    49.Conley, D. J., Carstensen, J., Vaquer-Sunyer, R. & Duarte, C. M. Ecosystem thresholds with hypoxia. Hydrobiologia 629, 21–29 (2009).CAS 

    Google Scholar 
    50.Lefèvre, D., Bentley, T. L., Robinson, C., Blight, S. P. & Williams, P. J. L. The temperature response of gross and net community production and respiration in time-varying assemblages of temperate marine micro-plankton. J. Exp. Mar. Biol. Ecol. 184, 201–215 (1994).
    Google Scholar 
    51.López-Urrutia, Á., SanMartin, E., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    52.Grant, J. Sensitivity of benthic community respiration and primary production to changes in temperature and light. Mar. Biol. 90, 299–306 (1986).
    Google Scholar 
    53.Jankowski, K., Schindler, D. E. & Lisi, P. J. Temperature sensitivity of community respiration rates in streams is associated with watershed geomorphic features. Ecology 95, 2707–2714 (2014).
    Google Scholar 
    54.Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B. 365, 2117–2126 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    55.Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    56.Tyler, R. M., Brady, D. C. & Targett, T. E. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries Coast. 32, 123–145 (2009).CAS 

    Google Scholar 
    57.Howard, E. M. et al. Oxygen and triple oxygen isotope measurements provide different insights into gross oxygen production in a shallow salt marsh pond. Estuaries Coast. 43, 1908–1922 (2020).CAS 

    Google Scholar 
    58.Luz, B. & Barkan, E. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288, 2028–2031 (2000).CAS 
    PubMed 
    ADS 

    Google Scholar 
    59.Winslow, L. A. et al. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 6, 622–636 (2016).CAS 

    Google Scholar 
    60.Sorte, C. J. B. & Bracken, M. E. S. Warming and elevated CO2 interact to drive rapid shifts in marine community production. PLoS ONE 10, e0145191. https://doi.org/10.1371/journal.pone.0145191 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Hinode, K. et al. The phenology of gross ecosystem production in a macroalga and seagrass canopy is driven by seasonal temperature. Phycol. Res. 68, 298–312 (2020).CAS 

    Google Scholar 
    62.Bracken, M., Miller, L., Mastroni, S., Lira, S. & Sorte, C. Data from: Accounting for variation in temperature and oxygen availability when quantifying marine ecosystem metabolism. Dryad Dataset https://doi.org/10.7280/D1M39B (2021).Article 

    Google Scholar 
    63.Reiskind, J. B., Seamon, P. T. & Bowes, G. Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol. 87, 686–692 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More